ggml.c 640 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_Q8_K] = {
  513. .type_name = "q8_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q8_K),
  516. .is_quantized = true,
  517. .from_float = quantize_row_q8_K,
  518. }
  519. };
  520. // For internal test use
  521. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  522. GGML_ASSERT(type < GGML_TYPE_COUNT);
  523. return type_traits[type];
  524. }
  525. //
  526. // simd mappings
  527. //
  528. #if defined(__ARM_NEON)
  529. #if !defined(__aarch64__)
  530. // 64-bit compatibility
  531. inline static float vaddvq_f32(float32x4_t v) {
  532. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  533. }
  534. #endif
  535. #endif
  536. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  537. // we then implement the fundamental computation operations below using only these macros
  538. // adding support for new architectures requires to define the corresponding SIMD macros
  539. //
  540. // GGML_F32_STEP / GGML_F16_STEP
  541. // number of elements to process in a single step
  542. //
  543. // GGML_F32_EPR / GGML_F16_EPR
  544. // number of elements to fit in a single register
  545. //
  546. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  547. #define GGML_SIMD
  548. // F32 NEON
  549. #define GGML_F32_STEP 16
  550. #define GGML_F32_EPR 4
  551. #define GGML_F32x4 float32x4_t
  552. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  553. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  554. #define GGML_F32x4_LOAD vld1q_f32
  555. #define GGML_F32x4_STORE vst1q_f32
  556. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  557. #define GGML_F32x4_ADD vaddq_f32
  558. #define GGML_F32x4_MUL vmulq_f32
  559. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  560. #define GGML_F32x4_REDUCE(res, x) \
  561. { \
  562. int offset = GGML_F32_ARR >> 1; \
  563. for (int i = 0; i < offset; ++i) { \
  564. x[i] = vaddq_f32(x[i], x[offset+i]); \
  565. } \
  566. offset >>= 1; \
  567. for (int i = 0; i < offset; ++i) { \
  568. x[i] = vaddq_f32(x[i], x[offset+i]); \
  569. } \
  570. offset >>= 1; \
  571. for (int i = 0; i < offset; ++i) { \
  572. x[i] = vaddq_f32(x[i], x[offset+i]); \
  573. } \
  574. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  575. }
  576. #define GGML_F32_VEC GGML_F32x4
  577. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  578. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  579. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  580. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  581. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  582. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  583. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  584. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  585. // F16 NEON
  586. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  587. #define GGML_F16_STEP 32
  588. #define GGML_F16_EPR 8
  589. #define GGML_F16x8 float16x8_t
  590. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  591. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  592. #define GGML_F16x8_LOAD vld1q_f16
  593. #define GGML_F16x8_STORE vst1q_f16
  594. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  595. #define GGML_F16x8_ADD vaddq_f16
  596. #define GGML_F16x8_MUL vmulq_f16
  597. #define GGML_F16x8_REDUCE(res, x) \
  598. do { \
  599. int offset = GGML_F16_ARR >> 1; \
  600. for (int i = 0; i < offset; ++i) { \
  601. x[i] = vaddq_f16(x[i], x[offset+i]); \
  602. } \
  603. offset >>= 1; \
  604. for (int i = 0; i < offset; ++i) { \
  605. x[i] = vaddq_f16(x[i], x[offset+i]); \
  606. } \
  607. offset >>= 1; \
  608. for (int i = 0; i < offset; ++i) { \
  609. x[i] = vaddq_f16(x[i], x[offset+i]); \
  610. } \
  611. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  612. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  613. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  614. } while (0)
  615. #define GGML_F16_VEC GGML_F16x8
  616. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  617. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  618. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  619. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  620. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  621. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  622. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  623. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  624. #else
  625. // if FP16 vector arithmetic is not supported, we use FP32 instead
  626. // and take advantage of the vcvt_ functions to convert to/from FP16
  627. #define GGML_F16_STEP 16
  628. #define GGML_F16_EPR 4
  629. #define GGML_F32Cx4 float32x4_t
  630. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  631. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  632. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  633. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  634. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  635. #define GGML_F32Cx4_ADD vaddq_f32
  636. #define GGML_F32Cx4_MUL vmulq_f32
  637. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  638. #define GGML_F16_VEC GGML_F32Cx4
  639. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  640. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  641. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  642. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  643. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  644. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  645. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  646. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  647. #endif
  648. #elif defined(__AVX__)
  649. #define GGML_SIMD
  650. // F32 AVX
  651. #define GGML_F32_STEP 32
  652. #define GGML_F32_EPR 8
  653. #define GGML_F32x8 __m256
  654. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  655. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  656. #define GGML_F32x8_LOAD _mm256_loadu_ps
  657. #define GGML_F32x8_STORE _mm256_storeu_ps
  658. #if defined(__FMA__)
  659. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  660. #else
  661. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  662. #endif
  663. #define GGML_F32x8_ADD _mm256_add_ps
  664. #define GGML_F32x8_MUL _mm256_mul_ps
  665. #define GGML_F32x8_REDUCE(res, x) \
  666. do { \
  667. int offset = GGML_F32_ARR >> 1; \
  668. for (int i = 0; i < offset; ++i) { \
  669. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  670. } \
  671. offset >>= 1; \
  672. for (int i = 0; i < offset; ++i) { \
  673. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  674. } \
  675. offset >>= 1; \
  676. for (int i = 0; i < offset; ++i) { \
  677. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  678. } \
  679. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  680. _mm256_extractf128_ps(x[0], 1)); \
  681. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  682. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  683. } while (0)
  684. // TODO: is this optimal ?
  685. #define GGML_F32_VEC GGML_F32x8
  686. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  687. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  688. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  689. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  690. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  691. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  692. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  693. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  694. // F16 AVX
  695. #define GGML_F16_STEP 32
  696. #define GGML_F16_EPR 8
  697. // F16 arithmetic is not supported by AVX, so we use F32 instead
  698. #define GGML_F32Cx8 __m256
  699. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  700. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  701. #if defined(__F16C__)
  702. // the _mm256_cvt intrinsics require F16C
  703. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  704. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  705. #else
  706. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  707. float tmp[8];
  708. for (int i = 0; i < 8; i++) {
  709. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  710. }
  711. return _mm256_loadu_ps(tmp);
  712. }
  713. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  714. float arr[8];
  715. _mm256_storeu_ps(arr, y);
  716. for (int i = 0; i < 8; i++)
  717. x[i] = GGML_FP32_TO_FP16(arr[i]);
  718. }
  719. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  720. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  721. #endif
  722. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  723. #define GGML_F32Cx8_ADD _mm256_add_ps
  724. #define GGML_F32Cx8_MUL _mm256_mul_ps
  725. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  726. #define GGML_F16_VEC GGML_F32Cx8
  727. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  728. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  729. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  730. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  731. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  732. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  733. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  734. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  735. #elif defined(__POWER9_VECTOR__)
  736. #define GGML_SIMD
  737. // F32 POWER9
  738. #define GGML_F32_STEP 32
  739. #define GGML_F32_EPR 4
  740. #define GGML_F32x4 vector float
  741. #define GGML_F32x4_ZERO 0.0f
  742. #define GGML_F32x4_SET1 vec_splats
  743. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  744. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  745. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  746. #define GGML_F32x4_ADD vec_add
  747. #define GGML_F32x4_MUL vec_mul
  748. #define GGML_F32x4_REDUCE(res, x) \
  749. { \
  750. int offset = GGML_F32_ARR >> 1; \
  751. for (int i = 0; i < offset; ++i) { \
  752. x[i] = vec_add(x[i], x[offset+i]); \
  753. } \
  754. offset >>= 1; \
  755. for (int i = 0; i < offset; ++i) { \
  756. x[i] = vec_add(x[i], x[offset+i]); \
  757. } \
  758. offset >>= 1; \
  759. for (int i = 0; i < offset; ++i) { \
  760. x[i] = vec_add(x[i], x[offset+i]); \
  761. } \
  762. res = vec_extract(x[0], 0) + \
  763. vec_extract(x[0], 1) + \
  764. vec_extract(x[0], 2) + \
  765. vec_extract(x[0], 3); \
  766. }
  767. #define GGML_F32_VEC GGML_F32x4
  768. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  769. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  770. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  771. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  772. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  773. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  774. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  775. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  776. // F16 POWER9
  777. #define GGML_F16_STEP GGML_F32_STEP
  778. #define GGML_F16_EPR GGML_F32_EPR
  779. #define GGML_F16_VEC GGML_F32x4
  780. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  781. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  782. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  783. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  784. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  785. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  786. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  787. vec_extract_fp32_from_shortl(vec_xl(0, p))
  788. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  789. #define GGML_F16_VEC_STORE(p, r, i) \
  790. if (i & 0x1) \
  791. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  792. r[i - GGML_ENDIAN_BYTE(0)]), \
  793. 0, p - GGML_F16_EPR)
  794. #elif defined(__wasm_simd128__)
  795. #define GGML_SIMD
  796. // F32 WASM
  797. #define GGML_F32_STEP 16
  798. #define GGML_F32_EPR 4
  799. #define GGML_F32x4 v128_t
  800. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  801. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  802. #define GGML_F32x4_LOAD wasm_v128_load
  803. #define GGML_F32x4_STORE wasm_v128_store
  804. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  805. #define GGML_F32x4_ADD wasm_f32x4_add
  806. #define GGML_F32x4_MUL wasm_f32x4_mul
  807. #define GGML_F32x4_REDUCE(res, x) \
  808. { \
  809. int offset = GGML_F32_ARR >> 1; \
  810. for (int i = 0; i < offset; ++i) { \
  811. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  812. } \
  813. offset >>= 1; \
  814. for (int i = 0; i < offset; ++i) { \
  815. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  816. } \
  817. offset >>= 1; \
  818. for (int i = 0; i < offset; ++i) { \
  819. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  820. } \
  821. res = wasm_f32x4_extract_lane(x[0], 0) + \
  822. wasm_f32x4_extract_lane(x[0], 1) + \
  823. wasm_f32x4_extract_lane(x[0], 2) + \
  824. wasm_f32x4_extract_lane(x[0], 3); \
  825. }
  826. #define GGML_F32_VEC GGML_F32x4
  827. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  828. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  829. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  830. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  831. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  832. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  833. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  834. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  835. // F16 WASM
  836. #define GGML_F16_STEP 16
  837. #define GGML_F16_EPR 4
  838. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  839. float tmp[4];
  840. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  841. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  842. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  843. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  844. return wasm_v128_load(tmp);
  845. }
  846. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  847. float tmp[4];
  848. wasm_v128_store(tmp, x);
  849. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  850. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  851. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  852. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  853. }
  854. #define GGML_F16x4 v128_t
  855. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  856. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  857. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  858. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  859. #define GGML_F16x4_FMA GGML_F32x4_FMA
  860. #define GGML_F16x4_ADD wasm_f32x4_add
  861. #define GGML_F16x4_MUL wasm_f32x4_mul
  862. #define GGML_F16x4_REDUCE(res, x) \
  863. { \
  864. int offset = GGML_F16_ARR >> 1; \
  865. for (int i = 0; i < offset; ++i) { \
  866. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  867. } \
  868. offset >>= 1; \
  869. for (int i = 0; i < offset; ++i) { \
  870. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  871. } \
  872. offset >>= 1; \
  873. for (int i = 0; i < offset; ++i) { \
  874. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  875. } \
  876. res = wasm_f32x4_extract_lane(x[0], 0) + \
  877. wasm_f32x4_extract_lane(x[0], 1) + \
  878. wasm_f32x4_extract_lane(x[0], 2) + \
  879. wasm_f32x4_extract_lane(x[0], 3); \
  880. }
  881. #define GGML_F16_VEC GGML_F16x4
  882. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  883. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  884. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  885. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  886. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  887. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  888. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  889. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  890. #elif defined(__SSE3__)
  891. #define GGML_SIMD
  892. // F32 SSE
  893. #define GGML_F32_STEP 32
  894. #define GGML_F32_EPR 4
  895. #define GGML_F32x4 __m128
  896. #define GGML_F32x4_ZERO _mm_setzero_ps()
  897. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  898. #define GGML_F32x4_LOAD _mm_loadu_ps
  899. #define GGML_F32x4_STORE _mm_storeu_ps
  900. #if defined(__FMA__)
  901. // TODO: Does this work?
  902. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  903. #else
  904. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  905. #endif
  906. #define GGML_F32x4_ADD _mm_add_ps
  907. #define GGML_F32x4_MUL _mm_mul_ps
  908. #define GGML_F32x4_REDUCE(res, x) \
  909. { \
  910. int offset = GGML_F32_ARR >> 1; \
  911. for (int i = 0; i < offset; ++i) { \
  912. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  913. } \
  914. offset >>= 1; \
  915. for (int i = 0; i < offset; ++i) { \
  916. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  917. } \
  918. offset >>= 1; \
  919. for (int i = 0; i < offset; ++i) { \
  920. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  921. } \
  922. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  923. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  924. }
  925. // TODO: is this optimal ?
  926. #define GGML_F32_VEC GGML_F32x4
  927. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  928. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  929. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  930. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  931. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  932. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  933. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  934. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  935. // F16 SSE
  936. #define GGML_F16_STEP 32
  937. #define GGML_F16_EPR 4
  938. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  939. float tmp[4];
  940. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  941. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  942. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  943. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  944. return _mm_loadu_ps(tmp);
  945. }
  946. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  947. float arr[4];
  948. _mm_storeu_ps(arr, y);
  949. x[0] = GGML_FP32_TO_FP16(arr[0]);
  950. x[1] = GGML_FP32_TO_FP16(arr[1]);
  951. x[2] = GGML_FP32_TO_FP16(arr[2]);
  952. x[3] = GGML_FP32_TO_FP16(arr[3]);
  953. }
  954. #define GGML_F32Cx4 __m128
  955. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  956. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  957. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  958. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  959. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  960. #define GGML_F32Cx4_ADD _mm_add_ps
  961. #define GGML_F32Cx4_MUL _mm_mul_ps
  962. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  963. #define GGML_F16_VEC GGML_F32Cx4
  964. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  965. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  966. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  967. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  968. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  969. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  970. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  971. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  972. #endif
  973. // GGML_F32_ARR / GGML_F16_ARR
  974. // number of registers to use per step
  975. #ifdef GGML_SIMD
  976. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  977. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  978. #endif
  979. //
  980. // fundamental operations
  981. //
  982. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  983. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  984. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  985. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  986. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  987. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  988. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  989. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  990. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  991. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  992. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  993. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  994. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  995. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  996. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  997. #ifdef GGML_SIMD
  998. float sumf = 0.0f;
  999. const int np = (n & ~(GGML_F32_STEP - 1));
  1000. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1001. GGML_F32_VEC ax[GGML_F32_ARR];
  1002. GGML_F32_VEC ay[GGML_F32_ARR];
  1003. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1004. for (int j = 0; j < GGML_F32_ARR; j++) {
  1005. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1006. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1007. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1008. }
  1009. }
  1010. // reduce sum0..sum3 to sum0
  1011. GGML_F32_VEC_REDUCE(sumf, sum);
  1012. // leftovers
  1013. for (int i = np; i < n; ++i) {
  1014. sumf += x[i]*y[i];
  1015. }
  1016. #else
  1017. // scalar
  1018. ggml_float sumf = 0.0;
  1019. for (int i = 0; i < n; ++i) {
  1020. sumf += (ggml_float)(x[i]*y[i]);
  1021. }
  1022. #endif
  1023. *s = sumf;
  1024. }
  1025. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1026. ggml_float sumf = 0.0;
  1027. #if defined(GGML_SIMD)
  1028. const int np = (n & ~(GGML_F16_STEP - 1));
  1029. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1030. GGML_F16_VEC ax[GGML_F16_ARR];
  1031. GGML_F16_VEC ay[GGML_F16_ARR];
  1032. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1033. for (int j = 0; j < GGML_F16_ARR; j++) {
  1034. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1035. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1036. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1037. }
  1038. }
  1039. // reduce sum0..sum3 to sum0
  1040. GGML_F16_VEC_REDUCE(sumf, sum);
  1041. // leftovers
  1042. for (int i = np; i < n; ++i) {
  1043. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1044. }
  1045. #else
  1046. for (int i = 0; i < n; ++i) {
  1047. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1048. }
  1049. #endif
  1050. *s = sumf;
  1051. }
  1052. // compute GGML_VEC_DOT_UNROLL dot products at once
  1053. // xs - x row stride in bytes
  1054. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1055. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1056. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1057. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1058. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1059. }
  1060. #if defined(GGML_SIMD)
  1061. const int np = (n & ~(GGML_F16_STEP - 1));
  1062. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1063. GGML_F16_VEC ax[GGML_F16_ARR];
  1064. GGML_F16_VEC ay[GGML_F16_ARR];
  1065. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1066. for (int j = 0; j < GGML_F16_ARR; j++) {
  1067. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1068. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1069. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1070. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1071. }
  1072. }
  1073. }
  1074. // reduce sum0..sum3 to sum0
  1075. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1076. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1077. }
  1078. // leftovers
  1079. for (int i = np; i < n; ++i) {
  1080. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1081. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1082. }
  1083. }
  1084. #else
  1085. for (int i = 0; i < n; ++i) {
  1086. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1087. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1088. }
  1089. }
  1090. #endif
  1091. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1092. s[i] = sumf[i];
  1093. }
  1094. }
  1095. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1096. #if defined(GGML_SIMD)
  1097. const int np = (n & ~(GGML_F32_STEP - 1));
  1098. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1099. GGML_F32_VEC ax[GGML_F32_ARR];
  1100. GGML_F32_VEC ay[GGML_F32_ARR];
  1101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1102. for (int j = 0; j < GGML_F32_ARR; j++) {
  1103. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1104. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1105. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1106. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1107. }
  1108. }
  1109. // leftovers
  1110. for (int i = np; i < n; ++i) {
  1111. y[i] += x[i]*v;
  1112. }
  1113. #else
  1114. // scalar
  1115. for (int i = 0; i < n; ++i) {
  1116. y[i] += x[i]*v;
  1117. }
  1118. #endif
  1119. }
  1120. // xs and vs are byte strides of x and v
  1121. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1122. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1123. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1124. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1125. x[i] = (const float *) ((const char *) xv + i*xs);
  1126. v[i] = (const float *) ((const char *) vv + i*vs);
  1127. }
  1128. #if defined(GGML_SIMD)
  1129. const int np = (n & ~(GGML_F32_STEP - 1));
  1130. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1131. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1132. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1133. }
  1134. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1135. GGML_F32_VEC ay[GGML_F32_ARR];
  1136. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1137. for (int j = 0; j < GGML_F32_ARR; j++) {
  1138. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1139. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1140. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1141. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1142. }
  1143. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1144. }
  1145. }
  1146. // leftovers
  1147. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1148. for (int i = np; i < n; ++i) {
  1149. y[i] += x[k][i]*v[k][0];
  1150. }
  1151. }
  1152. #else
  1153. // scalar
  1154. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1155. for (int i = 0; i < n; ++i) {
  1156. y[i] += x[k][i]*v[k][0];
  1157. }
  1158. }
  1159. #endif
  1160. }
  1161. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1162. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1163. #if defined(GGML_USE_ACCELERATE)
  1164. vDSP_vsmul(y, 1, &v, y, 1, n);
  1165. #elif defined(GGML_SIMD)
  1166. const int np = (n & ~(GGML_F32_STEP - 1));
  1167. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1168. GGML_F32_VEC ay[GGML_F32_ARR];
  1169. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1170. for (int j = 0; j < GGML_F32_ARR; j++) {
  1171. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1172. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1173. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1174. }
  1175. }
  1176. // leftovers
  1177. for (int i = np; i < n; ++i) {
  1178. y[i] *= v;
  1179. }
  1180. #else
  1181. // scalar
  1182. for (int i = 0; i < n; ++i) {
  1183. y[i] *= v;
  1184. }
  1185. #endif
  1186. }
  1187. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1188. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1189. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1190. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1191. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1192. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1193. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1194. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1195. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1196. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1197. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1198. static const float GELU_COEF_A = 0.044715f;
  1199. static const float GELU_QUICK_COEF = -1.702f;
  1200. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1201. inline static float ggml_gelu_f32(float x) {
  1202. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1203. }
  1204. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1205. const uint16_t * i16 = (const uint16_t *) x;
  1206. for (int i = 0; i < n; ++i) {
  1207. y[i] = ggml_table_gelu_f16[i16[i]];
  1208. }
  1209. }
  1210. #ifdef GGML_GELU_FP16
  1211. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1212. uint16_t t;
  1213. for (int i = 0; i < n; ++i) {
  1214. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1215. memcpy(&t, &fp16, sizeof(uint16_t));
  1216. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1217. }
  1218. }
  1219. #else
  1220. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] = ggml_gelu_f32(x[i]);
  1223. }
  1224. }
  1225. #endif
  1226. inline static float ggml_gelu_quick_f32(float x) {
  1227. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1228. }
  1229. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1230. // const uint16_t * i16 = (const uint16_t *) x;
  1231. // for (int i = 0; i < n; ++i) {
  1232. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1233. // }
  1234. //}
  1235. #ifdef GGML_GELU_QUICK_FP16
  1236. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1237. uint16_t t;
  1238. for (int i = 0; i < n; ++i) {
  1239. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1240. memcpy(&t, &fp16, sizeof(uint16_t));
  1241. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1242. }
  1243. }
  1244. #else
  1245. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1246. for (int i = 0; i < n; ++i) {
  1247. y[i] = ggml_gelu_quick_f32(x[i]);
  1248. }
  1249. }
  1250. #endif
  1251. // Sigmoid Linear Unit (SiLU) function
  1252. inline static float ggml_silu_f32(float x) {
  1253. return x/(1.0f + expf(-x));
  1254. }
  1255. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1256. // const uint16_t * i16 = (const uint16_t *) x;
  1257. // for (int i = 0; i < n; ++i) {
  1258. // y[i] = ggml_table_silu_f16[i16[i]];
  1259. // }
  1260. //}
  1261. #ifdef GGML_SILU_FP16
  1262. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1263. uint16_t t;
  1264. for (int i = 0; i < n; ++i) {
  1265. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1266. memcpy(&t, &fp16, sizeof(uint16_t));
  1267. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1268. }
  1269. }
  1270. #else
  1271. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1272. for (int i = 0; i < n; ++i) {
  1273. y[i] = ggml_silu_f32(x[i]);
  1274. }
  1275. }
  1276. #endif
  1277. inline static float ggml_silu_backward_f32(float x, float dy) {
  1278. const float s = 1.0f/(1.0f + expf(-x));
  1279. return dy*s*(1.0f + x*(1.0f - s));
  1280. }
  1281. #ifdef GGML_SILU_FP16
  1282. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1283. for (int i = 0; i < n; ++i) {
  1284. // we did not use x[i] to compute forward silu but its f16 equivalent
  1285. // take derivative at f16 of x[i]:
  1286. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1287. float usedx = GGML_FP16_TO_FP32(fp16);
  1288. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1289. }
  1290. }
  1291. #else
  1292. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1293. for (int i = 0; i < n; ++i) {
  1294. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1295. }
  1296. }
  1297. #endif
  1298. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1299. #ifndef GGML_USE_ACCELERATE
  1300. ggml_float sum = 0.0;
  1301. for (int i = 0; i < n; ++i) {
  1302. sum += (ggml_float)x[i];
  1303. }
  1304. *s = sum;
  1305. #else
  1306. vDSP_sve(x, 1, s, n);
  1307. #endif
  1308. }
  1309. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1310. ggml_float sum = 0.0;
  1311. for (int i = 0; i < n; ++i) {
  1312. sum += (ggml_float)x[i];
  1313. }
  1314. *s = sum;
  1315. }
  1316. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1317. float sum = 0.0f;
  1318. for (int i = 0; i < n; ++i) {
  1319. sum += GGML_FP16_TO_FP32(x[i]);
  1320. }
  1321. *s = sum;
  1322. }
  1323. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1324. #ifndef GGML_USE_ACCELERATE
  1325. float max = -INFINITY;
  1326. for (int i = 0; i < n; ++i) {
  1327. max = MAX(max, x[i]);
  1328. }
  1329. *s = max;
  1330. #else
  1331. vDSP_maxv(x, 1, s, n);
  1332. #endif
  1333. }
  1334. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1335. ggml_vec_norm_f32(n, s, x);
  1336. *s = 1.f/(*s);
  1337. }
  1338. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1339. float max = -INFINITY;
  1340. int idx = 0;
  1341. for (int i = 0; i < n; ++i) {
  1342. max = MAX(max, x[i]);
  1343. if (max == x[i]) { idx = i; }
  1344. }
  1345. *s = idx;
  1346. }
  1347. //
  1348. // data types
  1349. //
  1350. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1351. "NONE",
  1352. "DUP",
  1353. "ADD",
  1354. "ADD1",
  1355. "ACC",
  1356. "SUB",
  1357. "MUL",
  1358. "DIV",
  1359. "SQR",
  1360. "SQRT",
  1361. "LOG",
  1362. "SUM",
  1363. "SUM_ROWS",
  1364. "MEAN",
  1365. "ARGMAX",
  1366. "REPEAT",
  1367. "REPEAT_BACK",
  1368. "CONCAT",
  1369. "SILU_BACK",
  1370. "NORM",
  1371. "RMS_NORM",
  1372. "RMS_NORM_BACK",
  1373. "GROUP_NORM",
  1374. "MUL_MAT",
  1375. "MUL_MAT_ID",
  1376. "OUT_PROD",
  1377. "SCALE",
  1378. "SET",
  1379. "CPY",
  1380. "CONT",
  1381. "RESHAPE",
  1382. "VIEW",
  1383. "PERMUTE",
  1384. "TRANSPOSE",
  1385. "GET_ROWS",
  1386. "GET_ROWS_BACK",
  1387. "DIAG",
  1388. "DIAG_MASK_INF",
  1389. "DIAG_MASK_ZERO",
  1390. "SOFT_MAX",
  1391. "SOFT_MAX_BACK",
  1392. "ROPE",
  1393. "ROPE_BACK",
  1394. "ALIBI",
  1395. "CLAMP",
  1396. "CONV_TRANSPOSE_1D",
  1397. "IM2COL",
  1398. "CONV_TRANSPOSE_2D",
  1399. "POOL_1D",
  1400. "POOL_2D",
  1401. "UPSCALE",
  1402. "PAD",
  1403. "ARGSORT",
  1404. "LEAKY_RELU",
  1405. "FLASH_ATTN",
  1406. "FLASH_FF",
  1407. "FLASH_ATTN_BACK",
  1408. "WIN_PART",
  1409. "WIN_UNPART",
  1410. "GET_REL_POS",
  1411. "ADD_REL_POS",
  1412. "UNARY",
  1413. "MAP_UNARY",
  1414. "MAP_BINARY",
  1415. "MAP_CUSTOM1_F32",
  1416. "MAP_CUSTOM2_F32",
  1417. "MAP_CUSTOM3_F32",
  1418. "MAP_CUSTOM1",
  1419. "MAP_CUSTOM2",
  1420. "MAP_CUSTOM3",
  1421. "CROSS_ENTROPY_LOSS",
  1422. "CROSS_ENTROPY_LOSS_BACK",
  1423. };
  1424. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1425. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1426. "none",
  1427. "x",
  1428. "x+y",
  1429. "x+y",
  1430. "view(x,nb,offset)+=y->x",
  1431. "x-y",
  1432. "x*y",
  1433. "x/y",
  1434. "x^2",
  1435. "√x",
  1436. "log(x)",
  1437. "Σx",
  1438. "Σx_k",
  1439. "Σx/n",
  1440. "argmax(x)",
  1441. "repeat(x)",
  1442. "repeat_back(x)",
  1443. "concat(x, y)",
  1444. "silu_back(x)",
  1445. "norm(x)",
  1446. "rms_norm(x)",
  1447. "rms_norm_back(x)",
  1448. "group_norm(x)",
  1449. "X*Y",
  1450. "X[i]*Y",
  1451. "X*Y",
  1452. "x*v",
  1453. "y-\\>view(x)",
  1454. "x-\\>y",
  1455. "cont(x)",
  1456. "reshape(x)",
  1457. "view(x)",
  1458. "permute(x)",
  1459. "transpose(x)",
  1460. "get_rows(x)",
  1461. "get_rows_back(x)",
  1462. "diag(x)",
  1463. "diag_mask_inf(x)",
  1464. "diag_mask_zero(x)",
  1465. "soft_max(x)",
  1466. "soft_max_back(x)",
  1467. "rope(x)",
  1468. "rope_back(x)",
  1469. "alibi(x)",
  1470. "clamp(x)",
  1471. "conv_transpose_1d(x)",
  1472. "im2col(x)",
  1473. "conv_transpose_2d(x)",
  1474. "pool_1d(x)",
  1475. "pool_2d(x)",
  1476. "upscale(x)",
  1477. "pad(x)",
  1478. "argsort(x)",
  1479. "leaky_relu(x)",
  1480. "flash_attn(x)",
  1481. "flash_ff(x)",
  1482. "flash_attn_back(x)",
  1483. "win_part(x)",
  1484. "win_unpart(x)",
  1485. "get_rel_pos(x)",
  1486. "add_rel_pos(x)",
  1487. "unary(x)",
  1488. "f(x)",
  1489. "f(x,y)",
  1490. "custom_f32(x)",
  1491. "custom_f32(x,y)",
  1492. "custom_f32(x,y,z)",
  1493. "custom(x)",
  1494. "custom(x,y)",
  1495. "custom(x,y,z)",
  1496. "cross_entropy_loss(x,y)",
  1497. "cross_entropy_loss_back(x,y)",
  1498. };
  1499. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1500. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1501. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1502. "ABS",
  1503. "SGN",
  1504. "NEG",
  1505. "STEP",
  1506. "TANH",
  1507. "ELU",
  1508. "RELU",
  1509. "GELU",
  1510. "GELU_QUICK",
  1511. "SILU",
  1512. };
  1513. static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
  1514. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1515. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1516. // WARN:
  1517. // Mis-configuration can lead to problem that's hard to reason about:
  1518. // * At best it crash or talks nosense.
  1519. // * At worst it talks slightly difference but hard to perceive.
  1520. //
  1521. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1522. // Take care about compile options (e.g., GGML_USE_xxx).
  1523. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1524. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1525. static void ggml_setup_op_has_task_pass(void) {
  1526. { // INIT
  1527. bool * p = GGML_OP_HAS_INIT;
  1528. p[GGML_OP_ACC ] = true;
  1529. p[GGML_OP_MUL_MAT ] = true;
  1530. p[GGML_OP_MUL_MAT_ID ] = true;
  1531. p[GGML_OP_OUT_PROD ] = true;
  1532. p[GGML_OP_SET ] = true;
  1533. p[GGML_OP_GET_ROWS_BACK ] = true;
  1534. p[GGML_OP_DIAG_MASK_INF ] = true;
  1535. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1536. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1537. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1538. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1539. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1540. p[GGML_OP_ADD_REL_POS ] = true;
  1541. }
  1542. { // FINALIZE
  1543. bool * p = GGML_OP_HAS_FINALIZE;
  1544. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1545. }
  1546. }
  1547. //
  1548. // ggml context
  1549. //
  1550. struct ggml_context {
  1551. size_t mem_size;
  1552. void * mem_buffer;
  1553. bool mem_buffer_owned;
  1554. bool no_alloc;
  1555. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1556. int n_objects;
  1557. struct ggml_object * objects_begin;
  1558. struct ggml_object * objects_end;
  1559. struct ggml_scratch scratch;
  1560. struct ggml_scratch scratch_save;
  1561. };
  1562. struct ggml_context_container {
  1563. bool used;
  1564. struct ggml_context context;
  1565. };
  1566. //
  1567. // NUMA support
  1568. //
  1569. #define GGML_NUMA_MAX_NODES 8
  1570. #define GGML_NUMA_MAX_CPUS 512
  1571. struct ggml_numa_node {
  1572. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1573. uint32_t n_cpus;
  1574. };
  1575. struct ggml_numa_nodes {
  1576. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1577. uint32_t n_nodes;
  1578. uint32_t total_cpus; // hardware threads on system
  1579. };
  1580. //
  1581. // ggml state
  1582. //
  1583. struct ggml_state {
  1584. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1585. struct ggml_numa_nodes numa;
  1586. };
  1587. // global state
  1588. static struct ggml_state g_state;
  1589. static atomic_int g_state_barrier = 0;
  1590. // barrier via spin lock
  1591. inline static void ggml_critical_section_start(void) {
  1592. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1593. while (processing > 0) {
  1594. // wait for other threads to finish
  1595. atomic_fetch_sub(&g_state_barrier, 1);
  1596. sched_yield(); // TODO: reconsider this
  1597. processing = atomic_fetch_add(&g_state_barrier, 1);
  1598. }
  1599. }
  1600. // TODO: make this somehow automatically executed
  1601. // some sort of "sentry" mechanism
  1602. inline static void ggml_critical_section_end(void) {
  1603. atomic_fetch_sub(&g_state_barrier, 1);
  1604. }
  1605. void ggml_numa_init(void) {
  1606. if (g_state.numa.n_nodes > 0) {
  1607. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1608. return;
  1609. }
  1610. #ifdef __linux__
  1611. struct stat st;
  1612. char path[256];
  1613. int rv;
  1614. // enumerate nodes
  1615. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1616. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1617. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1618. if (stat(path, &st) != 0) { break; }
  1619. ++g_state.numa.n_nodes;
  1620. }
  1621. // enumerate CPUs
  1622. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1623. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1624. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1625. if (stat(path, &st) != 0) { break; }
  1626. ++g_state.numa.total_cpus;
  1627. }
  1628. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1629. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1630. g_state.numa.n_nodes = 0;
  1631. return;
  1632. }
  1633. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1634. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1635. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1636. node->n_cpus = 0;
  1637. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1638. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1639. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1640. if (stat(path, &st) == 0) {
  1641. node->cpus[node->n_cpus++] = c;
  1642. GGML_PRINT_DEBUG(" %u", c);
  1643. }
  1644. }
  1645. GGML_PRINT_DEBUG("\n");
  1646. }
  1647. if (ggml_is_numa()) {
  1648. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1649. if (fptr != NULL) {
  1650. char buf[42];
  1651. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1652. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1653. }
  1654. fclose(fptr);
  1655. }
  1656. }
  1657. #else
  1658. // TODO
  1659. #endif
  1660. }
  1661. bool ggml_is_numa(void) {
  1662. return g_state.numa.n_nodes > 1;
  1663. }
  1664. ////////////////////////////////////////////////////////////////////////////////
  1665. void ggml_print_object(const struct ggml_object * obj) {
  1666. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1667. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1668. }
  1669. void ggml_print_objects(const struct ggml_context * ctx) {
  1670. struct ggml_object * obj = ctx->objects_begin;
  1671. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1672. while (obj != NULL) {
  1673. ggml_print_object(obj);
  1674. obj = obj->next;
  1675. }
  1676. GGML_PRINT("%s: --- end ---\n", __func__);
  1677. }
  1678. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1679. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1680. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1681. }
  1682. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1683. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1684. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1685. }
  1686. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1687. size_t nbytes;
  1688. size_t blck_size = ggml_blck_size(tensor->type);
  1689. if (blck_size == 1) {
  1690. nbytes = ggml_type_size(tensor->type);
  1691. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1692. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1693. }
  1694. }
  1695. else {
  1696. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1697. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1698. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1699. }
  1700. }
  1701. return nbytes;
  1702. }
  1703. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1704. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1705. }
  1706. int ggml_blck_size(enum ggml_type type) {
  1707. return type_traits[type].blck_size;
  1708. }
  1709. size_t ggml_type_size(enum ggml_type type) {
  1710. return type_traits[type].type_size;
  1711. }
  1712. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1713. assert(ne % ggml_blck_size(type) == 0);
  1714. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1715. }
  1716. double ggml_type_sizef(enum ggml_type type) {
  1717. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1718. }
  1719. const char * ggml_type_name(enum ggml_type type) {
  1720. return type_traits[type].type_name;
  1721. }
  1722. bool ggml_is_quantized(enum ggml_type type) {
  1723. return type_traits[type].is_quantized;
  1724. }
  1725. const char * ggml_op_name(enum ggml_op op) {
  1726. return GGML_OP_NAME[op];
  1727. }
  1728. const char * ggml_op_symbol(enum ggml_op op) {
  1729. return GGML_OP_SYMBOL[op];
  1730. }
  1731. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1732. return GGML_UNARY_OP_NAME[op];
  1733. }
  1734. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1735. if (t->op == GGML_OP_UNARY) {
  1736. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1737. return ggml_unary_op_name(uop);
  1738. }
  1739. else {
  1740. return ggml_op_name(t->op);
  1741. }
  1742. }
  1743. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1744. return ggml_type_size(tensor->type);
  1745. }
  1746. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1747. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1748. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1749. }
  1750. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1751. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1752. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1753. }
  1754. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1755. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1756. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1757. }
  1758. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1759. return tensor->ne[3] == 1;
  1760. }
  1761. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1762. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1763. if (tensor->ne[i] > 1) {
  1764. return i + 1;
  1765. }
  1766. }
  1767. return 1;
  1768. }
  1769. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1770. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1771. return (t0->ne[0] == t1->ne[0]) &&
  1772. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1773. (t1->ne[3]%t0->ne[3] == 0);
  1774. }
  1775. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1776. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1777. return (t0->ne[1] == t1->ne[1]) &&
  1778. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1779. (t1->ne[3]%t0->ne[3] == 0);
  1780. }
  1781. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1782. enum ggml_type wtype = GGML_TYPE_COUNT;
  1783. switch (ftype) {
  1784. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1785. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1786. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1787. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1788. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1789. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1790. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1791. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1792. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1793. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1794. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1795. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1796. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1797. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1798. }
  1799. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1800. return wtype;
  1801. }
  1802. size_t ggml_tensor_overhead(void) {
  1803. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1804. }
  1805. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1806. return tensor->nb[0] > tensor->nb[1];
  1807. }
  1808. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1809. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1810. return
  1811. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1812. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1813. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1814. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1815. }
  1816. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1817. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1818. return
  1819. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1820. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1821. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1822. }
  1823. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1824. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1825. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1826. }
  1827. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1828. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1829. return
  1830. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1831. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1832. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1833. }
  1834. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1835. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1836. return
  1837. (t0->ne[0] == t1->ne[0] ) &&
  1838. (t0->ne[1] == t1->ne[1] ) &&
  1839. (t0->ne[2] == t1->ne[2] ) &&
  1840. (t0->ne[3] == t1->ne[3] );
  1841. }
  1842. // check if t1 can be represented as a repeatition of t0
  1843. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1844. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1845. return
  1846. (t1->ne[0]%t0->ne[0] == 0) &&
  1847. (t1->ne[1]%t0->ne[1] == 0) &&
  1848. (t1->ne[2]%t0->ne[2] == 0) &&
  1849. (t1->ne[3]%t0->ne[3] == 0);
  1850. }
  1851. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1852. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1853. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1854. }
  1855. static inline int ggml_up32(int n) {
  1856. return (n + 31) & ~31;
  1857. }
  1858. //static inline int ggml_up64(int n) {
  1859. // return (n + 63) & ~63;
  1860. //}
  1861. static inline int ggml_up(int n, int m) {
  1862. // assert m is a power of 2
  1863. GGML_ASSERT((m & (m - 1)) == 0);
  1864. return (n + m - 1) & ~(m - 1);
  1865. }
  1866. // assert that pointer is aligned to GGML_MEM_ALIGN
  1867. #define ggml_assert_aligned(ptr) \
  1868. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1869. ////////////////////////////////////////////////////////////////////////////////
  1870. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1871. // make this function thread safe
  1872. ggml_critical_section_start();
  1873. static bool is_first_call = true;
  1874. if (is_first_call) {
  1875. // initialize time system (required on Windows)
  1876. ggml_time_init();
  1877. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1878. {
  1879. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1880. ggml_fp16_t ii;
  1881. for (int i = 0; i < (1 << 16); ++i) {
  1882. uint16_t ui = i;
  1883. memcpy(&ii, &ui, sizeof(ii));
  1884. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1885. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1886. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1887. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1888. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1889. }
  1890. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1891. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1892. }
  1893. // initialize g_state
  1894. {
  1895. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1896. g_state = (struct ggml_state) {
  1897. /*.contexts =*/ { { 0 } },
  1898. /*.numa =*/ {
  1899. .n_nodes = 0,
  1900. .total_cpus = 0,
  1901. },
  1902. };
  1903. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1904. g_state.contexts[i].used = false;
  1905. }
  1906. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1907. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1908. }
  1909. #if defined(GGML_USE_CUBLAS)
  1910. ggml_init_cublas();
  1911. #elif defined(GGML_USE_CLBLAST)
  1912. ggml_cl_init();
  1913. #endif
  1914. ggml_setup_op_has_task_pass();
  1915. is_first_call = false;
  1916. }
  1917. // find non-used context in g_state
  1918. struct ggml_context * ctx = NULL;
  1919. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1920. if (!g_state.contexts[i].used) {
  1921. g_state.contexts[i].used = true;
  1922. ctx = &g_state.contexts[i].context;
  1923. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1924. break;
  1925. }
  1926. }
  1927. if (ctx == NULL) {
  1928. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1929. ggml_critical_section_end();
  1930. return NULL;
  1931. }
  1932. // allow to call ggml_init with 0 size
  1933. if (params.mem_size == 0) {
  1934. params.mem_size = GGML_MEM_ALIGN;
  1935. }
  1936. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1937. *ctx = (struct ggml_context) {
  1938. /*.mem_size =*/ mem_size,
  1939. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1940. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1941. /*.no_alloc =*/ params.no_alloc,
  1942. /*.no_alloc_save =*/ params.no_alloc,
  1943. /*.n_objects =*/ 0,
  1944. /*.objects_begin =*/ NULL,
  1945. /*.objects_end =*/ NULL,
  1946. /*.scratch =*/ { 0, 0, NULL, },
  1947. /*.scratch_save =*/ { 0, 0, NULL, },
  1948. };
  1949. GGML_ASSERT(ctx->mem_buffer != NULL);
  1950. ggml_assert_aligned(ctx->mem_buffer);
  1951. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1952. ggml_critical_section_end();
  1953. return ctx;
  1954. }
  1955. void ggml_free(struct ggml_context * ctx) {
  1956. // make this function thread safe
  1957. ggml_critical_section_start();
  1958. bool found = false;
  1959. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1960. if (&g_state.contexts[i].context == ctx) {
  1961. g_state.contexts[i].used = false;
  1962. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1963. __func__, i, ggml_used_mem(ctx));
  1964. if (ctx->mem_buffer_owned) {
  1965. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1966. }
  1967. found = true;
  1968. break;
  1969. }
  1970. }
  1971. if (!found) {
  1972. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1973. }
  1974. ggml_critical_section_end();
  1975. }
  1976. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1977. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1978. }
  1979. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1980. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1981. ctx->scratch = scratch;
  1982. return result;
  1983. }
  1984. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1985. return ctx->no_alloc;
  1986. }
  1987. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1988. ctx->no_alloc = no_alloc;
  1989. }
  1990. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1991. return ctx->mem_buffer;
  1992. }
  1993. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1994. return ctx->mem_size;
  1995. }
  1996. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1997. size_t max_size = 0;
  1998. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  1999. max_size = MAX(max_size, ggml_nbytes(tensor));
  2000. }
  2001. return max_size;
  2002. }
  2003. // IMPORTANT:
  2004. // when creating "opt" tensors, always save and load the scratch buffer
  2005. // this is an error prone process, but it is necessary to support inplace
  2006. // operators when using scratch buffers
  2007. // TODO: implement a better way
  2008. static void ggml_scratch_save(struct ggml_context * ctx) {
  2009. // this is needed to allow opt tensors to store their data
  2010. // TODO: again, need to find a better way
  2011. ctx->no_alloc_save = ctx->no_alloc;
  2012. ctx->no_alloc = false;
  2013. ctx->scratch_save = ctx->scratch;
  2014. ctx->scratch.data = NULL;
  2015. }
  2016. static void ggml_scratch_load(struct ggml_context * ctx) {
  2017. ctx->no_alloc = ctx->no_alloc_save;
  2018. ctx->scratch = ctx->scratch_save;
  2019. }
  2020. ////////////////////////////////////////////////////////////////////////////////
  2021. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2022. // always insert objects at the end of the context's memory pool
  2023. struct ggml_object * obj_cur = ctx->objects_end;
  2024. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2025. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2026. const size_t cur_end = cur_offs + cur_size;
  2027. // align to GGML_MEM_ALIGN
  2028. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2029. char * const mem_buffer = ctx->mem_buffer;
  2030. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2031. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2032. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2033. __func__, cur_end + size_needed, ctx->mem_size);
  2034. assert(false);
  2035. return NULL;
  2036. }
  2037. *obj_new = (struct ggml_object) {
  2038. .offs = cur_end + GGML_OBJECT_SIZE,
  2039. .size = size_needed,
  2040. .next = NULL,
  2041. .type = type,
  2042. };
  2043. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2044. if (obj_cur != NULL) {
  2045. obj_cur->next = obj_new;
  2046. } else {
  2047. // this is the first object in this context
  2048. ctx->objects_begin = obj_new;
  2049. }
  2050. ctx->objects_end = obj_new;
  2051. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2052. return obj_new;
  2053. }
  2054. static struct ggml_tensor * ggml_new_tensor_impl(
  2055. struct ggml_context * ctx,
  2056. enum ggml_type type,
  2057. int n_dims,
  2058. const int64_t * ne,
  2059. struct ggml_tensor * view_src,
  2060. size_t view_offs) {
  2061. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2062. // find the base tensor and absolute offset
  2063. if (view_src != NULL && view_src->view_src != NULL) {
  2064. view_offs += view_src->view_offs;
  2065. view_src = view_src->view_src;
  2066. }
  2067. size_t data_size = ggml_row_size(type, ne[0]);
  2068. for (int i = 1; i < n_dims; i++) {
  2069. data_size *= ne[i];
  2070. }
  2071. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2072. void * data = view_src != NULL ? view_src->data : NULL;
  2073. if (data != NULL) {
  2074. data = (char *) data + view_offs;
  2075. }
  2076. size_t obj_alloc_size = 0;
  2077. if (view_src == NULL && !ctx->no_alloc) {
  2078. if (ctx->scratch.data != NULL) {
  2079. // allocate tensor data in the scratch buffer
  2080. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2081. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2082. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2083. assert(false);
  2084. return NULL;
  2085. }
  2086. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2087. ctx->scratch.offs += data_size;
  2088. } else {
  2089. // allocate tensor data in the context's memory pool
  2090. obj_alloc_size = data_size;
  2091. }
  2092. }
  2093. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2094. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2095. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2096. *result = (struct ggml_tensor) {
  2097. /*.type =*/ type,
  2098. /*.backend =*/ GGML_BACKEND_CPU,
  2099. /*.buffer =*/ NULL,
  2100. /*.ne =*/ { 1, 1, 1, 1 },
  2101. /*.nb =*/ { 0, 0, 0, 0 },
  2102. /*.op =*/ GGML_OP_NONE,
  2103. /*.op_params =*/ { 0 },
  2104. /*.is_param =*/ false,
  2105. /*.grad =*/ NULL,
  2106. /*.src =*/ { NULL },
  2107. /*.perf_runs =*/ 0,
  2108. /*.perf_cycles =*/ 0,
  2109. /*.perf_time_us =*/ 0,
  2110. /*.view_src =*/ view_src,
  2111. /*.view_offs =*/ view_offs,
  2112. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2113. /*.name =*/ { 0 },
  2114. /*.extra =*/ NULL,
  2115. /*.padding =*/ { 0 },
  2116. };
  2117. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2118. //ggml_assert_aligned(result->data);
  2119. for (int i = 0; i < n_dims; i++) {
  2120. result->ne[i] = ne[i];
  2121. }
  2122. result->nb[0] = ggml_type_size(type);
  2123. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2124. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2125. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2126. }
  2127. ctx->n_objects++;
  2128. return result;
  2129. }
  2130. struct ggml_tensor * ggml_new_tensor(
  2131. struct ggml_context * ctx,
  2132. enum ggml_type type,
  2133. int n_dims,
  2134. const int64_t * ne) {
  2135. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2136. }
  2137. struct ggml_tensor * ggml_new_tensor_1d(
  2138. struct ggml_context * ctx,
  2139. enum ggml_type type,
  2140. int64_t ne0) {
  2141. return ggml_new_tensor(ctx, type, 1, &ne0);
  2142. }
  2143. struct ggml_tensor * ggml_new_tensor_2d(
  2144. struct ggml_context * ctx,
  2145. enum ggml_type type,
  2146. int64_t ne0,
  2147. int64_t ne1) {
  2148. const int64_t ne[2] = { ne0, ne1 };
  2149. return ggml_new_tensor(ctx, type, 2, ne);
  2150. }
  2151. struct ggml_tensor * ggml_new_tensor_3d(
  2152. struct ggml_context * ctx,
  2153. enum ggml_type type,
  2154. int64_t ne0,
  2155. int64_t ne1,
  2156. int64_t ne2) {
  2157. const int64_t ne[3] = { ne0, ne1, ne2 };
  2158. return ggml_new_tensor(ctx, type, 3, ne);
  2159. }
  2160. struct ggml_tensor * ggml_new_tensor_4d(
  2161. struct ggml_context * ctx,
  2162. enum ggml_type type,
  2163. int64_t ne0,
  2164. int64_t ne1,
  2165. int64_t ne2,
  2166. int64_t ne3) {
  2167. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2168. return ggml_new_tensor(ctx, type, 4, ne);
  2169. }
  2170. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2171. ggml_scratch_save(ctx);
  2172. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2173. ggml_scratch_load(ctx);
  2174. ggml_set_i32(result, value);
  2175. return result;
  2176. }
  2177. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2178. ggml_scratch_save(ctx);
  2179. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2180. ggml_scratch_load(ctx);
  2181. ggml_set_f32(result, value);
  2182. return result;
  2183. }
  2184. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2185. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2186. }
  2187. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2188. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2189. assert(params_size <= GGML_MAX_OP_PARAMS);
  2190. memcpy(tensor->op_params, params, params_size);
  2191. }
  2192. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2193. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2194. return ((const int32_t *)(tensor->op_params))[i];
  2195. }
  2196. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2197. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2198. ((int32_t *)(tensor->op_params))[i] = value;
  2199. }
  2200. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2201. memset(tensor->data, 0, ggml_nbytes(tensor));
  2202. return tensor;
  2203. }
  2204. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2205. const int n = ggml_nrows(tensor);
  2206. const int nc = tensor->ne[0];
  2207. const size_t n1 = tensor->nb[1];
  2208. char * const data = tensor->data;
  2209. switch (tensor->type) {
  2210. case GGML_TYPE_I8:
  2211. {
  2212. assert(tensor->nb[0] == sizeof(int8_t));
  2213. for (int i = 0; i < n; i++) {
  2214. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2215. }
  2216. } break;
  2217. case GGML_TYPE_I16:
  2218. {
  2219. assert(tensor->nb[0] == sizeof(int16_t));
  2220. for (int i = 0; i < n; i++) {
  2221. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2222. }
  2223. } break;
  2224. case GGML_TYPE_I32:
  2225. {
  2226. assert(tensor->nb[0] == sizeof(int32_t));
  2227. for (int i = 0; i < n; i++) {
  2228. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2229. }
  2230. } break;
  2231. case GGML_TYPE_F16:
  2232. {
  2233. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2234. for (int i = 0; i < n; i++) {
  2235. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2236. }
  2237. } break;
  2238. case GGML_TYPE_F32:
  2239. {
  2240. assert(tensor->nb[0] == sizeof(float));
  2241. for (int i = 0; i < n; i++) {
  2242. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2243. }
  2244. } break;
  2245. default:
  2246. {
  2247. GGML_ASSERT(false);
  2248. } break;
  2249. }
  2250. return tensor;
  2251. }
  2252. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2253. const int n = ggml_nrows(tensor);
  2254. const int nc = tensor->ne[0];
  2255. const size_t n1 = tensor->nb[1];
  2256. char * const data = tensor->data;
  2257. switch (tensor->type) {
  2258. case GGML_TYPE_I8:
  2259. {
  2260. assert(tensor->nb[0] == sizeof(int8_t));
  2261. for (int i = 0; i < n; i++) {
  2262. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2263. }
  2264. } break;
  2265. case GGML_TYPE_I16:
  2266. {
  2267. assert(tensor->nb[0] == sizeof(int16_t));
  2268. for (int i = 0; i < n; i++) {
  2269. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2270. }
  2271. } break;
  2272. case GGML_TYPE_I32:
  2273. {
  2274. assert(tensor->nb[0] == sizeof(int32_t));
  2275. for (int i = 0; i < n; i++) {
  2276. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2277. }
  2278. } break;
  2279. case GGML_TYPE_F16:
  2280. {
  2281. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2282. for (int i = 0; i < n; i++) {
  2283. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2284. }
  2285. } break;
  2286. case GGML_TYPE_F32:
  2287. {
  2288. assert(tensor->nb[0] == sizeof(float));
  2289. for (int i = 0; i < n; i++) {
  2290. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2291. }
  2292. } break;
  2293. default:
  2294. {
  2295. GGML_ASSERT(false);
  2296. } break;
  2297. }
  2298. return tensor;
  2299. }
  2300. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2301. const int64_t ne2 = tensor->ne[2];
  2302. const int64_t ne1 = tensor->ne[1];
  2303. const int64_t ne0 = tensor->ne[0];
  2304. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2305. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2306. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2307. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2308. if (i0) {
  2309. * i0 = i0_;
  2310. }
  2311. if (i1) {
  2312. * i1 = i1_;
  2313. }
  2314. if (i2) {
  2315. * i2 = i2_;
  2316. }
  2317. if (i3) {
  2318. * i3 = i3_;
  2319. }
  2320. }
  2321. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2322. if (!ggml_is_contiguous(tensor)) {
  2323. int64_t id[4] = { 0, 0, 0, 0 };
  2324. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2325. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2326. }
  2327. switch (tensor->type) {
  2328. case GGML_TYPE_I8:
  2329. {
  2330. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2331. return ((int8_t *)(tensor->data))[i];
  2332. }
  2333. case GGML_TYPE_I16:
  2334. {
  2335. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2336. return ((int16_t *)(tensor->data))[i];
  2337. }
  2338. case GGML_TYPE_I32:
  2339. {
  2340. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2341. return ((int32_t *)(tensor->data))[i];
  2342. }
  2343. case GGML_TYPE_F16:
  2344. {
  2345. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2346. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2347. }
  2348. case GGML_TYPE_F32:
  2349. {
  2350. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2351. return ((float *)(tensor->data))[i];
  2352. }
  2353. default:
  2354. {
  2355. GGML_ASSERT(false);
  2356. }
  2357. }
  2358. return 0.0f;
  2359. }
  2360. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2361. if (!ggml_is_contiguous(tensor)) {
  2362. int64_t id[4] = { 0, 0, 0, 0 };
  2363. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2364. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2365. return;
  2366. }
  2367. switch (tensor->type) {
  2368. case GGML_TYPE_I8:
  2369. {
  2370. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2371. ((int8_t *)(tensor->data))[i] = value;
  2372. } break;
  2373. case GGML_TYPE_I16:
  2374. {
  2375. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2376. ((int16_t *)(tensor->data))[i] = value;
  2377. } break;
  2378. case GGML_TYPE_I32:
  2379. {
  2380. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2381. ((int32_t *)(tensor->data))[i] = value;
  2382. } break;
  2383. case GGML_TYPE_F16:
  2384. {
  2385. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2386. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2387. } break;
  2388. case GGML_TYPE_F32:
  2389. {
  2390. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2391. ((float *)(tensor->data))[i] = value;
  2392. } break;
  2393. default:
  2394. {
  2395. GGML_ASSERT(false);
  2396. } break;
  2397. }
  2398. }
  2399. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2400. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2401. switch (tensor->type) {
  2402. case GGML_TYPE_I8:
  2403. return ((int8_t *) data)[0];
  2404. case GGML_TYPE_I16:
  2405. return ((int16_t *) data)[0];
  2406. case GGML_TYPE_I32:
  2407. return ((int32_t *) data)[0];
  2408. case GGML_TYPE_F16:
  2409. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2410. case GGML_TYPE_F32:
  2411. return ((float *) data)[0];
  2412. default:
  2413. GGML_ASSERT(false);
  2414. }
  2415. return 0.0f;
  2416. }
  2417. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2418. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2419. switch (tensor->type) {
  2420. case GGML_TYPE_I8:
  2421. {
  2422. ((int8_t *)(data))[0] = value;
  2423. } break;
  2424. case GGML_TYPE_I16:
  2425. {
  2426. ((int16_t *)(data))[0] = value;
  2427. } break;
  2428. case GGML_TYPE_I32:
  2429. {
  2430. ((int32_t *)(data))[0] = value;
  2431. } break;
  2432. case GGML_TYPE_F16:
  2433. {
  2434. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2435. } break;
  2436. case GGML_TYPE_F32:
  2437. {
  2438. ((float *)(data))[0] = value;
  2439. } break;
  2440. default:
  2441. {
  2442. GGML_ASSERT(false);
  2443. } break;
  2444. }
  2445. }
  2446. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2447. if (!ggml_is_contiguous(tensor)) {
  2448. int64_t id[4] = { 0, 0, 0, 0 };
  2449. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2450. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2451. }
  2452. switch (tensor->type) {
  2453. case GGML_TYPE_I8:
  2454. {
  2455. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2456. return ((int8_t *)(tensor->data))[i];
  2457. }
  2458. case GGML_TYPE_I16:
  2459. {
  2460. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2461. return ((int16_t *)(tensor->data))[i];
  2462. }
  2463. case GGML_TYPE_I32:
  2464. {
  2465. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2466. return ((int32_t *)(tensor->data))[i];
  2467. }
  2468. case GGML_TYPE_F16:
  2469. {
  2470. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2471. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2472. }
  2473. case GGML_TYPE_F32:
  2474. {
  2475. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2476. return ((float *)(tensor->data))[i];
  2477. }
  2478. default:
  2479. {
  2480. GGML_ASSERT(false);
  2481. }
  2482. }
  2483. return 0.0f;
  2484. }
  2485. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2486. if (!ggml_is_contiguous(tensor)) {
  2487. int64_t id[4] = { 0, 0, 0, 0 };
  2488. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2489. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2490. return;
  2491. }
  2492. switch (tensor->type) {
  2493. case GGML_TYPE_I8:
  2494. {
  2495. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2496. ((int8_t *)(tensor->data))[i] = value;
  2497. } break;
  2498. case GGML_TYPE_I16:
  2499. {
  2500. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2501. ((int16_t *)(tensor->data))[i] = value;
  2502. } break;
  2503. case GGML_TYPE_I32:
  2504. {
  2505. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2506. ((int32_t *)(tensor->data))[i] = value;
  2507. } break;
  2508. case GGML_TYPE_F16:
  2509. {
  2510. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2511. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2512. } break;
  2513. case GGML_TYPE_F32:
  2514. {
  2515. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2516. ((float *)(tensor->data))[i] = value;
  2517. } break;
  2518. default:
  2519. {
  2520. GGML_ASSERT(false);
  2521. } break;
  2522. }
  2523. }
  2524. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2525. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2526. switch (tensor->type) {
  2527. case GGML_TYPE_I8:
  2528. return ((int8_t *) data)[0];
  2529. case GGML_TYPE_I16:
  2530. return ((int16_t *) data)[0];
  2531. case GGML_TYPE_I32:
  2532. return ((int32_t *) data)[0];
  2533. case GGML_TYPE_F16:
  2534. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2535. case GGML_TYPE_F32:
  2536. return ((float *) data)[0];
  2537. default:
  2538. GGML_ASSERT(false);
  2539. }
  2540. return 0.0f;
  2541. }
  2542. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2543. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2544. switch (tensor->type) {
  2545. case GGML_TYPE_I8:
  2546. {
  2547. ((int8_t *)(data))[0] = value;
  2548. } break;
  2549. case GGML_TYPE_I16:
  2550. {
  2551. ((int16_t *)(data))[0] = value;
  2552. } break;
  2553. case GGML_TYPE_I32:
  2554. {
  2555. ((int32_t *)(data))[0] = value;
  2556. } break;
  2557. case GGML_TYPE_F16:
  2558. {
  2559. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2560. } break;
  2561. case GGML_TYPE_F32:
  2562. {
  2563. ((float *)(data))[0] = value;
  2564. } break;
  2565. default:
  2566. {
  2567. GGML_ASSERT(false);
  2568. } break;
  2569. }
  2570. }
  2571. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2572. return tensor->data;
  2573. }
  2574. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2575. assert(tensor->type == GGML_TYPE_F32);
  2576. return (float *)(tensor->data);
  2577. }
  2578. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2579. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2580. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2581. }
  2582. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2583. return tensor->name;
  2584. }
  2585. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2586. strncpy(tensor->name, name, sizeof(tensor->name));
  2587. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2588. return tensor;
  2589. }
  2590. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2591. va_list args;
  2592. va_start(args, fmt);
  2593. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2594. va_end(args);
  2595. return tensor;
  2596. }
  2597. struct ggml_tensor * ggml_view_tensor(
  2598. struct ggml_context * ctx,
  2599. struct ggml_tensor * src) {
  2600. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2601. ggml_format_name(result, "%s (view)", src->name);
  2602. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2603. result->nb[i] = src->nb[i];
  2604. }
  2605. return result;
  2606. }
  2607. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2608. struct ggml_object * obj = ctx->objects_begin;
  2609. char * const mem_buffer = ctx->mem_buffer;
  2610. while (obj != NULL) {
  2611. if (obj->type == GGML_OBJECT_TENSOR) {
  2612. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2613. }
  2614. obj = obj->next;
  2615. }
  2616. return NULL;
  2617. }
  2618. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2619. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2620. obj = obj->next;
  2621. char * const mem_buffer = ctx->mem_buffer;
  2622. while (obj != NULL) {
  2623. if (obj->type == GGML_OBJECT_TENSOR) {
  2624. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2625. }
  2626. obj = obj->next;
  2627. }
  2628. return NULL;
  2629. }
  2630. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2631. struct ggml_object * obj = ctx->objects_begin;
  2632. char * const mem_buffer = ctx->mem_buffer;
  2633. while (obj != NULL) {
  2634. if (obj->type == GGML_OBJECT_TENSOR) {
  2635. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2636. if (strcmp(cur->name, name) == 0) {
  2637. return cur;
  2638. }
  2639. }
  2640. obj = obj->next;
  2641. }
  2642. return NULL;
  2643. }
  2644. ////////////////////////////////////////////////////////////////////////////////
  2645. // ggml_dup
  2646. static struct ggml_tensor * ggml_dup_impl(
  2647. struct ggml_context * ctx,
  2648. struct ggml_tensor * a,
  2649. bool inplace) {
  2650. bool is_node = false;
  2651. if (!inplace && (a->grad)) {
  2652. is_node = true;
  2653. }
  2654. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2655. result->op = GGML_OP_DUP;
  2656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2657. result->src[0] = a;
  2658. return result;
  2659. }
  2660. struct ggml_tensor * ggml_dup(
  2661. struct ggml_context * ctx,
  2662. struct ggml_tensor * a) {
  2663. return ggml_dup_impl(ctx, a, false);
  2664. }
  2665. struct ggml_tensor * ggml_dup_inplace(
  2666. struct ggml_context * ctx,
  2667. struct ggml_tensor * a) {
  2668. return ggml_dup_impl(ctx, a, true);
  2669. }
  2670. // ggml_add
  2671. static struct ggml_tensor * ggml_add_impl(
  2672. struct ggml_context * ctx,
  2673. struct ggml_tensor * a,
  2674. struct ggml_tensor * b,
  2675. bool inplace) {
  2676. GGML_ASSERT(ggml_can_repeat(b, a));
  2677. bool is_node = false;
  2678. if (!inplace && (a->grad || b->grad)) {
  2679. // TODO: support backward pass for broadcasting
  2680. GGML_ASSERT(ggml_are_same_shape(a, b));
  2681. is_node = true;
  2682. }
  2683. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2684. result->op = GGML_OP_ADD;
  2685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2686. result->src[0] = a;
  2687. result->src[1] = b;
  2688. return result;
  2689. }
  2690. struct ggml_tensor * ggml_add(
  2691. struct ggml_context * ctx,
  2692. struct ggml_tensor * a,
  2693. struct ggml_tensor * b) {
  2694. return ggml_add_impl(ctx, a, b, false);
  2695. }
  2696. struct ggml_tensor * ggml_add_inplace(
  2697. struct ggml_context * ctx,
  2698. struct ggml_tensor * a,
  2699. struct ggml_tensor * b) {
  2700. return ggml_add_impl(ctx, a, b, true);
  2701. }
  2702. // ggml_add_cast
  2703. static struct ggml_tensor * ggml_add_cast_impl(
  2704. struct ggml_context * ctx,
  2705. struct ggml_tensor * a,
  2706. struct ggml_tensor * b,
  2707. enum ggml_type type) {
  2708. // TODO: support less-strict constraint
  2709. // GGML_ASSERT(ggml_can_repeat(b, a));
  2710. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2711. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2712. bool is_node = false;
  2713. if (a->grad || b->grad) {
  2714. // TODO: support backward pass for broadcasting
  2715. GGML_ASSERT(ggml_are_same_shape(a, b));
  2716. is_node = true;
  2717. }
  2718. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2719. result->op = GGML_OP_ADD;
  2720. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2721. result->src[0] = a;
  2722. result->src[1] = b;
  2723. return result;
  2724. }
  2725. struct ggml_tensor * ggml_add_cast(
  2726. struct ggml_context * ctx,
  2727. struct ggml_tensor * a,
  2728. struct ggml_tensor * b,
  2729. enum ggml_type type) {
  2730. return ggml_add_cast_impl(ctx, a, b, type);
  2731. }
  2732. // ggml_add1
  2733. static struct ggml_tensor * ggml_add1_impl(
  2734. struct ggml_context * ctx,
  2735. struct ggml_tensor * a,
  2736. struct ggml_tensor * b,
  2737. bool inplace) {
  2738. GGML_ASSERT(ggml_is_scalar(b));
  2739. GGML_ASSERT(ggml_is_padded_1d(a));
  2740. bool is_node = false;
  2741. if (a->grad || b->grad) {
  2742. is_node = true;
  2743. }
  2744. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2745. result->op = GGML_OP_ADD1;
  2746. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2747. result->src[0] = a;
  2748. result->src[1] = b;
  2749. return result;
  2750. }
  2751. struct ggml_tensor * ggml_add1(
  2752. struct ggml_context * ctx,
  2753. struct ggml_tensor * a,
  2754. struct ggml_tensor * b) {
  2755. return ggml_add1_impl(ctx, a, b, false);
  2756. }
  2757. struct ggml_tensor * ggml_add1_inplace(
  2758. struct ggml_context * ctx,
  2759. struct ggml_tensor * a,
  2760. struct ggml_tensor * b) {
  2761. return ggml_add1_impl(ctx, a, b, true);
  2762. }
  2763. // ggml_acc
  2764. static struct ggml_tensor * ggml_acc_impl(
  2765. struct ggml_context * ctx,
  2766. struct ggml_tensor * a,
  2767. struct ggml_tensor * b,
  2768. size_t nb1,
  2769. size_t nb2,
  2770. size_t nb3,
  2771. size_t offset,
  2772. bool inplace) {
  2773. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2774. GGML_ASSERT(ggml_is_contiguous(a));
  2775. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2776. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2777. bool is_node = false;
  2778. if (!inplace && (a->grad || b->grad)) {
  2779. is_node = true;
  2780. }
  2781. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2782. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2783. ggml_set_op_params(result, params, sizeof(params));
  2784. result->op = GGML_OP_ACC;
  2785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2786. result->src[0] = a;
  2787. result->src[1] = b;
  2788. return result;
  2789. }
  2790. struct ggml_tensor * ggml_acc(
  2791. struct ggml_context * ctx,
  2792. struct ggml_tensor * a,
  2793. struct ggml_tensor * b,
  2794. size_t nb1,
  2795. size_t nb2,
  2796. size_t nb3,
  2797. size_t offset) {
  2798. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2799. }
  2800. struct ggml_tensor * ggml_acc_inplace(
  2801. struct ggml_context * ctx,
  2802. struct ggml_tensor * a,
  2803. struct ggml_tensor * b,
  2804. size_t nb1,
  2805. size_t nb2,
  2806. size_t nb3,
  2807. size_t offset) {
  2808. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2809. }
  2810. // ggml_sub
  2811. static struct ggml_tensor * ggml_sub_impl(
  2812. struct ggml_context * ctx,
  2813. struct ggml_tensor * a,
  2814. struct ggml_tensor * b,
  2815. bool inplace) {
  2816. GGML_ASSERT(ggml_are_same_shape(a, b));
  2817. bool is_node = false;
  2818. if (!inplace && (a->grad || b->grad)) {
  2819. is_node = true;
  2820. }
  2821. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2822. result->op = GGML_OP_SUB;
  2823. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2824. result->src[0] = a;
  2825. result->src[1] = b;
  2826. return result;
  2827. }
  2828. struct ggml_tensor * ggml_sub(
  2829. struct ggml_context * ctx,
  2830. struct ggml_tensor * a,
  2831. struct ggml_tensor * b) {
  2832. return ggml_sub_impl(ctx, a, b, false);
  2833. }
  2834. struct ggml_tensor * ggml_sub_inplace(
  2835. struct ggml_context * ctx,
  2836. struct ggml_tensor * a,
  2837. struct ggml_tensor * b) {
  2838. return ggml_sub_impl(ctx, a, b, true);
  2839. }
  2840. // ggml_mul
  2841. static struct ggml_tensor * ggml_mul_impl(
  2842. struct ggml_context * ctx,
  2843. struct ggml_tensor * a,
  2844. struct ggml_tensor * b,
  2845. bool inplace) {
  2846. GGML_ASSERT(ggml_can_repeat(b, a));
  2847. bool is_node = false;
  2848. if (!inplace && (a->grad || b->grad)) {
  2849. // TODO: support backward pass for broadcasting
  2850. GGML_ASSERT(ggml_are_same_shape(a, b));
  2851. is_node = true;
  2852. }
  2853. if (inplace) {
  2854. GGML_ASSERT(!is_node);
  2855. }
  2856. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2857. result->op = GGML_OP_MUL;
  2858. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2859. result->src[0] = a;
  2860. result->src[1] = b;
  2861. return result;
  2862. }
  2863. struct ggml_tensor * ggml_mul(
  2864. struct ggml_context * ctx,
  2865. struct ggml_tensor * a,
  2866. struct ggml_tensor * b) {
  2867. return ggml_mul_impl(ctx, a, b, false);
  2868. }
  2869. struct ggml_tensor * ggml_mul_inplace(
  2870. struct ggml_context * ctx,
  2871. struct ggml_tensor * a,
  2872. struct ggml_tensor * b) {
  2873. return ggml_mul_impl(ctx, a, b, true);
  2874. }
  2875. // ggml_div
  2876. static struct ggml_tensor * ggml_div_impl(
  2877. struct ggml_context * ctx,
  2878. struct ggml_tensor * a,
  2879. struct ggml_tensor * b,
  2880. bool inplace) {
  2881. GGML_ASSERT(ggml_can_repeat(b, a));
  2882. bool is_node = false;
  2883. if (!inplace && (a->grad || b->grad)) {
  2884. is_node = true;
  2885. }
  2886. if (inplace) {
  2887. GGML_ASSERT(!is_node);
  2888. }
  2889. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2890. result->op = GGML_OP_DIV;
  2891. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2892. result->src[0] = a;
  2893. result->src[1] = b;
  2894. return result;
  2895. }
  2896. struct ggml_tensor * ggml_div(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * a,
  2899. struct ggml_tensor * b) {
  2900. return ggml_div_impl(ctx, a, b, false);
  2901. }
  2902. struct ggml_tensor * ggml_div_inplace(
  2903. struct ggml_context * ctx,
  2904. struct ggml_tensor * a,
  2905. struct ggml_tensor * b) {
  2906. return ggml_div_impl(ctx, a, b, true);
  2907. }
  2908. // ggml_sqr
  2909. static struct ggml_tensor * ggml_sqr_impl(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a,
  2912. bool inplace) {
  2913. bool is_node = false;
  2914. if (!inplace && (a->grad)) {
  2915. is_node = true;
  2916. }
  2917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2918. result->op = GGML_OP_SQR;
  2919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2920. result->src[0] = a;
  2921. return result;
  2922. }
  2923. struct ggml_tensor * ggml_sqr(
  2924. struct ggml_context * ctx,
  2925. struct ggml_tensor * a) {
  2926. return ggml_sqr_impl(ctx, a, false);
  2927. }
  2928. struct ggml_tensor * ggml_sqr_inplace(
  2929. struct ggml_context * ctx,
  2930. struct ggml_tensor * a) {
  2931. return ggml_sqr_impl(ctx, a, true);
  2932. }
  2933. // ggml_sqrt
  2934. static struct ggml_tensor * ggml_sqrt_impl(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a,
  2937. bool inplace) {
  2938. bool is_node = false;
  2939. if (!inplace && (a->grad)) {
  2940. is_node = true;
  2941. }
  2942. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2943. result->op = GGML_OP_SQRT;
  2944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2945. result->src[0] = a;
  2946. return result;
  2947. }
  2948. struct ggml_tensor * ggml_sqrt(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a) {
  2951. return ggml_sqrt_impl(ctx, a, false);
  2952. }
  2953. struct ggml_tensor * ggml_sqrt_inplace(
  2954. struct ggml_context * ctx,
  2955. struct ggml_tensor * a) {
  2956. return ggml_sqrt_impl(ctx, a, true);
  2957. }
  2958. // ggml_log
  2959. static struct ggml_tensor * ggml_log_impl(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * a,
  2962. bool inplace) {
  2963. bool is_node = false;
  2964. if (!inplace && (a->grad)) {
  2965. is_node = true;
  2966. }
  2967. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2968. result->op = GGML_OP_LOG;
  2969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2970. result->src[0] = a;
  2971. return result;
  2972. }
  2973. struct ggml_tensor * ggml_log(
  2974. struct ggml_context * ctx,
  2975. struct ggml_tensor * a) {
  2976. return ggml_log_impl(ctx, a, false);
  2977. }
  2978. struct ggml_tensor * ggml_log_inplace(
  2979. struct ggml_context * ctx,
  2980. struct ggml_tensor * a) {
  2981. return ggml_log_impl(ctx, a, true);
  2982. }
  2983. // ggml_sum
  2984. struct ggml_tensor * ggml_sum(
  2985. struct ggml_context * ctx,
  2986. struct ggml_tensor * a) {
  2987. bool is_node = false;
  2988. if (a->grad) {
  2989. is_node = true;
  2990. }
  2991. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2992. result->op = GGML_OP_SUM;
  2993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2994. result->src[0] = a;
  2995. return result;
  2996. }
  2997. // ggml_sum_rows
  2998. struct ggml_tensor * ggml_sum_rows(
  2999. struct ggml_context * ctx,
  3000. struct ggml_tensor * a) {
  3001. bool is_node = false;
  3002. if (a->grad) {
  3003. is_node = true;
  3004. }
  3005. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3006. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3007. ne[i] = a->ne[i];
  3008. }
  3009. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3010. result->op = GGML_OP_SUM_ROWS;
  3011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3012. result->src[0] = a;
  3013. return result;
  3014. }
  3015. // ggml_mean
  3016. struct ggml_tensor * ggml_mean(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a) {
  3019. bool is_node = false;
  3020. if (a->grad) {
  3021. GGML_ASSERT(false); // TODO: implement
  3022. is_node = true;
  3023. }
  3024. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3025. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3026. result->op = GGML_OP_MEAN;
  3027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3028. result->src[0] = a;
  3029. return result;
  3030. }
  3031. // ggml_argmax
  3032. struct ggml_tensor * ggml_argmax(
  3033. struct ggml_context * ctx,
  3034. struct ggml_tensor * a) {
  3035. GGML_ASSERT(ggml_is_matrix(a));
  3036. bool is_node = false;
  3037. if (a->grad) {
  3038. GGML_ASSERT(false);
  3039. is_node = true;
  3040. }
  3041. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3042. result->op = GGML_OP_ARGMAX;
  3043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3044. result->src[0] = a;
  3045. return result;
  3046. }
  3047. // ggml_repeat
  3048. struct ggml_tensor * ggml_repeat(
  3049. struct ggml_context * ctx,
  3050. struct ggml_tensor * a,
  3051. struct ggml_tensor * b) {
  3052. GGML_ASSERT(ggml_can_repeat(a, b));
  3053. bool is_node = false;
  3054. if (a->grad) {
  3055. is_node = true;
  3056. }
  3057. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3058. result->op = GGML_OP_REPEAT;
  3059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3060. result->src[0] = a;
  3061. return result;
  3062. }
  3063. // ggml_repeat_back
  3064. struct ggml_tensor * ggml_repeat_back(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a,
  3067. struct ggml_tensor * b) {
  3068. GGML_ASSERT(ggml_can_repeat(b, a));
  3069. bool is_node = false;
  3070. if (a->grad) {
  3071. is_node = true;
  3072. }
  3073. if (ggml_are_same_shape(a, b) && !is_node) {
  3074. return a;
  3075. }
  3076. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3077. result->op = GGML_OP_REPEAT_BACK;
  3078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3079. result->src[0] = a;
  3080. return result;
  3081. }
  3082. // ggml_concat
  3083. struct ggml_tensor * ggml_concat(
  3084. struct ggml_context* ctx,
  3085. struct ggml_tensor* a,
  3086. struct ggml_tensor* b) {
  3087. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3088. bool is_node = false;
  3089. if (a->grad || b->grad) {
  3090. is_node = true;
  3091. }
  3092. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3093. result->op = GGML_OP_CONCAT;
  3094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3095. result->src[0] = a;
  3096. result->src[1] = b;
  3097. return result;
  3098. }
  3099. // ggml_abs
  3100. struct ggml_tensor * ggml_abs(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3104. }
  3105. struct ggml_tensor * ggml_abs_inplace(
  3106. struct ggml_context * ctx,
  3107. struct ggml_tensor * a) {
  3108. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3109. }
  3110. // ggml_sgn
  3111. struct ggml_tensor * ggml_sgn(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a) {
  3114. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3115. }
  3116. struct ggml_tensor * ggml_sgn_inplace(
  3117. struct ggml_context * ctx,
  3118. struct ggml_tensor * a) {
  3119. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3120. }
  3121. // ggml_neg
  3122. struct ggml_tensor * ggml_neg(
  3123. struct ggml_context * ctx,
  3124. struct ggml_tensor * a) {
  3125. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3126. }
  3127. struct ggml_tensor * ggml_neg_inplace(
  3128. struct ggml_context * ctx,
  3129. struct ggml_tensor * a) {
  3130. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3131. }
  3132. // ggml_step
  3133. struct ggml_tensor * ggml_step(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a) {
  3136. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3137. }
  3138. struct ggml_tensor * ggml_step_inplace(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a) {
  3141. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3142. }
  3143. // ggml_tanh
  3144. struct ggml_tensor * ggml_tanh(
  3145. struct ggml_context * ctx,
  3146. struct ggml_tensor * a) {
  3147. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3148. }
  3149. struct ggml_tensor * ggml_tanh_inplace(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a) {
  3152. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3153. }
  3154. // ggml_elu
  3155. struct ggml_tensor * ggml_elu(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a) {
  3158. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3159. }
  3160. struct ggml_tensor * ggml_elu_inplace(
  3161. struct ggml_context * ctx,
  3162. struct ggml_tensor * a) {
  3163. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3164. }
  3165. // ggml_relu
  3166. struct ggml_tensor * ggml_relu(
  3167. struct ggml_context * ctx,
  3168. struct ggml_tensor * a) {
  3169. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3170. }
  3171. struct ggml_tensor * ggml_relu_inplace(
  3172. struct ggml_context * ctx,
  3173. struct ggml_tensor * a) {
  3174. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3175. }
  3176. // ggml_leaky_relu
  3177. struct ggml_tensor * ggml_leaky_relu(
  3178. struct ggml_context * ctx,
  3179. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3180. bool is_node = false;
  3181. if (!inplace && (a->grad)) {
  3182. is_node = true;
  3183. }
  3184. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3185. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3186. result->op = GGML_OP_LEAKY_RELU;
  3187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3188. result->src[0] = a;
  3189. return result;
  3190. }
  3191. // ggml_gelu
  3192. struct ggml_tensor * ggml_gelu(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3196. }
  3197. struct ggml_tensor * ggml_gelu_inplace(
  3198. struct ggml_context * ctx,
  3199. struct ggml_tensor * a) {
  3200. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3201. }
  3202. // ggml_gelu_quick
  3203. struct ggml_tensor * ggml_gelu_quick(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a) {
  3206. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3207. }
  3208. struct ggml_tensor * ggml_gelu_quick_inplace(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a) {
  3211. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3212. }
  3213. // ggml_silu
  3214. struct ggml_tensor * ggml_silu(
  3215. struct ggml_context * ctx,
  3216. struct ggml_tensor * a) {
  3217. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3218. }
  3219. struct ggml_tensor * ggml_silu_inplace(
  3220. struct ggml_context * ctx,
  3221. struct ggml_tensor * a) {
  3222. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3223. }
  3224. // ggml_silu_back
  3225. struct ggml_tensor * ggml_silu_back(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. struct ggml_tensor * b) {
  3229. bool is_node = false;
  3230. if (a->grad || b->grad) {
  3231. // TODO: implement backward
  3232. is_node = true;
  3233. }
  3234. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3235. result->op = GGML_OP_SILU_BACK;
  3236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3237. result->src[0] = a;
  3238. result->src[1] = b;
  3239. return result;
  3240. }
  3241. // ggml_norm
  3242. static struct ggml_tensor * ggml_norm_impl(
  3243. struct ggml_context * ctx,
  3244. struct ggml_tensor * a,
  3245. float eps,
  3246. bool inplace) {
  3247. bool is_node = false;
  3248. if (!inplace && (a->grad)) {
  3249. GGML_ASSERT(false); // TODO: implement backward
  3250. is_node = true;
  3251. }
  3252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3253. ggml_set_op_params(result, &eps, sizeof(eps));
  3254. result->op = GGML_OP_NORM;
  3255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3256. result->src[0] = a;
  3257. return result;
  3258. }
  3259. struct ggml_tensor * ggml_norm(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. float eps) {
  3263. return ggml_norm_impl(ctx, a, eps, false);
  3264. }
  3265. struct ggml_tensor * ggml_norm_inplace(
  3266. struct ggml_context * ctx,
  3267. struct ggml_tensor * a,
  3268. float eps) {
  3269. return ggml_norm_impl(ctx, a, eps, true);
  3270. }
  3271. // ggml_rms_norm
  3272. static struct ggml_tensor * ggml_rms_norm_impl(
  3273. struct ggml_context * ctx,
  3274. struct ggml_tensor * a,
  3275. float eps,
  3276. bool inplace) {
  3277. bool is_node = false;
  3278. if (!inplace && (a->grad)) {
  3279. is_node = true;
  3280. }
  3281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3282. ggml_set_op_params(result, &eps, sizeof(eps));
  3283. result->op = GGML_OP_RMS_NORM;
  3284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3285. result->src[0] = a;
  3286. return result;
  3287. }
  3288. struct ggml_tensor * ggml_rms_norm(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. float eps) {
  3292. return ggml_rms_norm_impl(ctx, a, eps, false);
  3293. }
  3294. struct ggml_tensor * ggml_rms_norm_inplace(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a,
  3297. float eps) {
  3298. return ggml_rms_norm_impl(ctx, a, eps, true);
  3299. }
  3300. // ggml_rms_norm_back
  3301. struct ggml_tensor * ggml_rms_norm_back(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a,
  3304. struct ggml_tensor * b,
  3305. float eps) {
  3306. bool is_node = false;
  3307. if (a->grad) {
  3308. // TODO: implement backward
  3309. is_node = true;
  3310. }
  3311. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3312. ggml_set_op_params(result, &eps, sizeof(eps));
  3313. result->op = GGML_OP_RMS_NORM_BACK;
  3314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3315. result->src[0] = a;
  3316. result->src[1] = b;
  3317. return result;
  3318. }
  3319. // ggml_group_norm
  3320. static struct ggml_tensor * ggml_group_norm_impl(
  3321. struct ggml_context * ctx,
  3322. struct ggml_tensor * a,
  3323. int n_groups,
  3324. bool inplace) {
  3325. bool is_node = false;
  3326. if (!inplace && (a->grad)) {
  3327. GGML_ASSERT(false); // TODO: implement backward
  3328. is_node = true;
  3329. }
  3330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3331. result->op_params[0] = n_groups;
  3332. result->op = GGML_OP_GROUP_NORM;
  3333. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3334. result->src[0] = a;
  3335. return result;
  3336. }
  3337. struct ggml_tensor * ggml_group_norm(
  3338. struct ggml_context * ctx,
  3339. struct ggml_tensor * a,
  3340. int n_groups) {
  3341. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3342. }
  3343. struct ggml_tensor * ggml_group_norm_inplace(
  3344. struct ggml_context * ctx,
  3345. struct ggml_tensor * a,
  3346. int n_groups) {
  3347. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3348. }
  3349. // ggml_mul_mat
  3350. struct ggml_tensor * ggml_mul_mat(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. struct ggml_tensor * b) {
  3354. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3355. GGML_ASSERT(!ggml_is_transposed(a));
  3356. bool is_node = false;
  3357. if (a->grad || b->grad) {
  3358. is_node = true;
  3359. }
  3360. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3361. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3362. result->op = GGML_OP_MUL_MAT;
  3363. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3364. result->src[0] = a;
  3365. result->src[1] = b;
  3366. return result;
  3367. }
  3368. void ggml_mul_mat_set_prec(
  3369. struct ggml_tensor * a,
  3370. enum ggml_prec prec) {
  3371. const int32_t prec_i32 = (int32_t) prec;
  3372. ggml_set_op_params_i32(a, 0, prec_i32);
  3373. }
  3374. // ggml_mul_mat_id
  3375. struct ggml_tensor * ggml_mul_mat_id(
  3376. struct ggml_context * ctx,
  3377. struct ggml_tensor * const as[],
  3378. int n_as,
  3379. struct ggml_tensor * ids,
  3380. int id,
  3381. struct ggml_tensor * b) {
  3382. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3383. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3384. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3385. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3386. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3387. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3388. bool is_node = false;
  3389. if (as[0]->grad || b->grad) {
  3390. is_node = true;
  3391. }
  3392. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3393. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3394. ggml_set_op_params_i32(result, 0, id);
  3395. ggml_set_op_params_i32(result, 1, n_as);
  3396. result->op = GGML_OP_MUL_MAT_ID;
  3397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3398. result->src[0] = ids;
  3399. result->src[1] = b;
  3400. for (int i = 0; i < n_as; i++) {
  3401. struct ggml_tensor * a = as[i];
  3402. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3403. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3404. GGML_ASSERT(!ggml_is_transposed(a));
  3405. result->src[i + 2] = a;
  3406. }
  3407. return result;
  3408. }
  3409. // ggml_out_prod
  3410. struct ggml_tensor * ggml_out_prod(
  3411. struct ggml_context * ctx,
  3412. struct ggml_tensor * a,
  3413. struct ggml_tensor * b) {
  3414. GGML_ASSERT(ggml_can_out_prod(a, b));
  3415. GGML_ASSERT(!ggml_is_transposed(a));
  3416. bool is_node = false;
  3417. if (a->grad || b->grad) {
  3418. is_node = true;
  3419. }
  3420. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3421. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3422. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3423. result->op = GGML_OP_OUT_PROD;
  3424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3425. result->src[0] = a;
  3426. result->src[1] = b;
  3427. return result;
  3428. }
  3429. // ggml_scale
  3430. static struct ggml_tensor * ggml_scale_impl(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. float s,
  3434. bool inplace) {
  3435. GGML_ASSERT(ggml_is_padded_1d(a));
  3436. bool is_node = false;
  3437. if (a->grad) {
  3438. is_node = true;
  3439. }
  3440. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3441. ggml_set_op_params(result, &s, sizeof(s));
  3442. result->op = GGML_OP_SCALE;
  3443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3444. result->src[0] = a;
  3445. return result;
  3446. }
  3447. struct ggml_tensor * ggml_scale(
  3448. struct ggml_context * ctx,
  3449. struct ggml_tensor * a,
  3450. float s) {
  3451. return ggml_scale_impl(ctx, a, s, false);
  3452. }
  3453. struct ggml_tensor * ggml_scale_inplace(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a,
  3456. float s) {
  3457. return ggml_scale_impl(ctx, a, s, true);
  3458. }
  3459. // ggml_set
  3460. static struct ggml_tensor * ggml_set_impl(
  3461. struct ggml_context * ctx,
  3462. struct ggml_tensor * a,
  3463. struct ggml_tensor * b,
  3464. size_t nb1,
  3465. size_t nb2,
  3466. size_t nb3,
  3467. size_t offset,
  3468. bool inplace) {
  3469. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3470. bool is_node = false;
  3471. if (a->grad || b->grad) {
  3472. is_node = true;
  3473. }
  3474. // make a view of the destination
  3475. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3476. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3477. ggml_set_op_params(result, params, sizeof(params));
  3478. result->op = GGML_OP_SET;
  3479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3480. result->src[0] = a;
  3481. result->src[1] = b;
  3482. return result;
  3483. }
  3484. struct ggml_tensor * ggml_set(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a,
  3487. struct ggml_tensor * b,
  3488. size_t nb1,
  3489. size_t nb2,
  3490. size_t nb3,
  3491. size_t offset) {
  3492. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3493. }
  3494. struct ggml_tensor * ggml_set_inplace(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. struct ggml_tensor * b,
  3498. size_t nb1,
  3499. size_t nb2,
  3500. size_t nb3,
  3501. size_t offset) {
  3502. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3503. }
  3504. struct ggml_tensor * ggml_set_1d(
  3505. struct ggml_context * ctx,
  3506. struct ggml_tensor * a,
  3507. struct ggml_tensor * b,
  3508. size_t offset) {
  3509. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3510. }
  3511. struct ggml_tensor * ggml_set_1d_inplace(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a,
  3514. struct ggml_tensor * b,
  3515. size_t offset) {
  3516. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3517. }
  3518. struct ggml_tensor * ggml_set_2d(
  3519. struct ggml_context * ctx,
  3520. struct ggml_tensor * a,
  3521. struct ggml_tensor * b,
  3522. size_t nb1,
  3523. size_t offset) {
  3524. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3525. }
  3526. struct ggml_tensor * ggml_set_2d_inplace(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a,
  3529. struct ggml_tensor * b,
  3530. size_t nb1,
  3531. size_t offset) {
  3532. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3533. }
  3534. // ggml_cpy
  3535. static struct ggml_tensor * ggml_cpy_impl(
  3536. struct ggml_context * ctx,
  3537. struct ggml_tensor * a,
  3538. struct ggml_tensor * b,
  3539. bool inplace) {
  3540. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3541. bool is_node = false;
  3542. if (!inplace && (a->grad || b->grad)) {
  3543. is_node = true;
  3544. }
  3545. // make a view of the destination
  3546. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3547. if (strlen(b->name) > 0) {
  3548. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3549. } else {
  3550. ggml_format_name(result, "%s (copy)", a->name);
  3551. }
  3552. result->op = GGML_OP_CPY;
  3553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3554. result->src[0] = a;
  3555. result->src[1] = b;
  3556. return result;
  3557. }
  3558. struct ggml_tensor * ggml_cpy(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a,
  3561. struct ggml_tensor * b) {
  3562. return ggml_cpy_impl(ctx, a, b, false);
  3563. }
  3564. struct ggml_tensor * ggml_cpy_inplace(
  3565. struct ggml_context * ctx,
  3566. struct ggml_tensor * a,
  3567. struct ggml_tensor * b) {
  3568. return ggml_cpy_impl(ctx, a, b, true);
  3569. }
  3570. // ggml_cont
  3571. static struct ggml_tensor * ggml_cont_impl(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a,
  3574. bool inplace) {
  3575. bool is_node = false;
  3576. if (!inplace && a->grad) {
  3577. is_node = true;
  3578. }
  3579. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3580. ggml_format_name(result, "%s (cont)", a->name);
  3581. result->op = GGML_OP_CONT;
  3582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3583. result->src[0] = a;
  3584. return result;
  3585. }
  3586. struct ggml_tensor * ggml_cont(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a) {
  3589. return ggml_cont_impl(ctx, a, false);
  3590. }
  3591. struct ggml_tensor * ggml_cont_inplace(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a) {
  3594. return ggml_cont_impl(ctx, a, true);
  3595. }
  3596. // make contiguous, with new shape
  3597. GGML_API struct ggml_tensor * ggml_cont_1d(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * a,
  3600. int64_t ne0) {
  3601. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3602. }
  3603. GGML_API struct ggml_tensor * ggml_cont_2d(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a,
  3606. int64_t ne0,
  3607. int64_t ne1) {
  3608. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3609. }
  3610. GGML_API struct ggml_tensor * ggml_cont_3d(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a,
  3613. int64_t ne0,
  3614. int64_t ne1,
  3615. int64_t ne2) {
  3616. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3617. }
  3618. struct ggml_tensor * ggml_cont_4d(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a,
  3621. int64_t ne0,
  3622. int64_t ne1,
  3623. int64_t ne2,
  3624. int64_t ne3) {
  3625. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3626. bool is_node = false;
  3627. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3628. ggml_format_name(result, "%s (cont)", a->name);
  3629. result->op = GGML_OP_CONT;
  3630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3631. result->src[0] = a;
  3632. return result;
  3633. }
  3634. // ggml_reshape
  3635. struct ggml_tensor * ggml_reshape(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. struct ggml_tensor * b) {
  3639. GGML_ASSERT(ggml_is_contiguous(a));
  3640. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3641. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3642. bool is_node = false;
  3643. if (a->grad) {
  3644. is_node = true;
  3645. }
  3646. if (b->grad) {
  3647. // gradient propagation is not supported
  3648. //GGML_ASSERT(false);
  3649. }
  3650. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3651. ggml_format_name(result, "%s (reshaped)", a->name);
  3652. result->op = GGML_OP_RESHAPE;
  3653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3654. result->src[0] = a;
  3655. return result;
  3656. }
  3657. struct ggml_tensor * ggml_reshape_1d(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a,
  3660. int64_t ne0) {
  3661. GGML_ASSERT(ggml_is_contiguous(a));
  3662. GGML_ASSERT(ggml_nelements(a) == ne0);
  3663. bool is_node = false;
  3664. if (a->grad) {
  3665. is_node = true;
  3666. }
  3667. const int64_t ne[1] = { ne0 };
  3668. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3669. ggml_format_name(result, "%s (reshaped)", a->name);
  3670. result->op = GGML_OP_RESHAPE;
  3671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3672. result->src[0] = a;
  3673. return result;
  3674. }
  3675. struct ggml_tensor * ggml_reshape_2d(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. int64_t ne0,
  3679. int64_t ne1) {
  3680. GGML_ASSERT(ggml_is_contiguous(a));
  3681. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3682. bool is_node = false;
  3683. if (a->grad) {
  3684. is_node = true;
  3685. }
  3686. const int64_t ne[2] = { ne0, ne1 };
  3687. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3688. ggml_format_name(result, "%s (reshaped)", a->name);
  3689. result->op = GGML_OP_RESHAPE;
  3690. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3691. result->src[0] = a;
  3692. return result;
  3693. }
  3694. struct ggml_tensor * ggml_reshape_3d(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. int64_t ne0,
  3698. int64_t ne1,
  3699. int64_t ne2) {
  3700. GGML_ASSERT(ggml_is_contiguous(a));
  3701. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3702. bool is_node = false;
  3703. if (a->grad) {
  3704. is_node = true;
  3705. }
  3706. const int64_t ne[3] = { ne0, ne1, ne2 };
  3707. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3708. ggml_format_name(result, "%s (reshaped)", a->name);
  3709. result->op = GGML_OP_RESHAPE;
  3710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3711. result->src[0] = a;
  3712. return result;
  3713. }
  3714. struct ggml_tensor * ggml_reshape_4d(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. int64_t ne0,
  3718. int64_t ne1,
  3719. int64_t ne2,
  3720. int64_t ne3) {
  3721. GGML_ASSERT(ggml_is_contiguous(a));
  3722. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3723. bool is_node = false;
  3724. if (a->grad) {
  3725. is_node = true;
  3726. }
  3727. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3728. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3729. ggml_format_name(result, "%s (reshaped)", a->name);
  3730. result->op = GGML_OP_RESHAPE;
  3731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3732. result->src[0] = a;
  3733. return result;
  3734. }
  3735. static struct ggml_tensor * ggml_view_impl(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a,
  3738. int n_dims,
  3739. const int64_t * ne,
  3740. size_t offset) {
  3741. bool is_node = false;
  3742. if (a->grad) {
  3743. is_node = true;
  3744. }
  3745. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3746. ggml_format_name(result, "%s (view)", a->name);
  3747. ggml_set_op_params(result, &offset, sizeof(offset));
  3748. result->op = GGML_OP_VIEW;
  3749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3750. result->src[0] = a;
  3751. return result;
  3752. }
  3753. // ggml_view_1d
  3754. struct ggml_tensor * ggml_view_1d(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a,
  3757. int64_t ne0,
  3758. size_t offset) {
  3759. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3760. return result;
  3761. }
  3762. // ggml_view_2d
  3763. struct ggml_tensor * ggml_view_2d(
  3764. struct ggml_context * ctx,
  3765. struct ggml_tensor * a,
  3766. int64_t ne0,
  3767. int64_t ne1,
  3768. size_t nb1,
  3769. size_t offset) {
  3770. const int64_t ne[2] = { ne0, ne1 };
  3771. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3772. result->nb[1] = nb1;
  3773. result->nb[2] = result->nb[1]*ne1;
  3774. result->nb[3] = result->nb[2];
  3775. return result;
  3776. }
  3777. // ggml_view_3d
  3778. struct ggml_tensor * ggml_view_3d(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a,
  3781. int64_t ne0,
  3782. int64_t ne1,
  3783. int64_t ne2,
  3784. size_t nb1,
  3785. size_t nb2,
  3786. size_t offset) {
  3787. const int64_t ne[3] = { ne0, ne1, ne2 };
  3788. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3789. result->nb[1] = nb1;
  3790. result->nb[2] = nb2;
  3791. result->nb[3] = result->nb[2]*ne2;
  3792. return result;
  3793. }
  3794. // ggml_view_4d
  3795. struct ggml_tensor * ggml_view_4d(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a,
  3798. int64_t ne0,
  3799. int64_t ne1,
  3800. int64_t ne2,
  3801. int64_t ne3,
  3802. size_t nb1,
  3803. size_t nb2,
  3804. size_t nb3,
  3805. size_t offset) {
  3806. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3807. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3808. result->nb[1] = nb1;
  3809. result->nb[2] = nb2;
  3810. result->nb[3] = nb3;
  3811. return result;
  3812. }
  3813. // ggml_permute
  3814. struct ggml_tensor * ggml_permute(
  3815. struct ggml_context * ctx,
  3816. struct ggml_tensor * a,
  3817. int axis0,
  3818. int axis1,
  3819. int axis2,
  3820. int axis3) {
  3821. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3822. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3823. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3824. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3825. GGML_ASSERT(axis0 != axis1);
  3826. GGML_ASSERT(axis0 != axis2);
  3827. GGML_ASSERT(axis0 != axis3);
  3828. GGML_ASSERT(axis1 != axis2);
  3829. GGML_ASSERT(axis1 != axis3);
  3830. GGML_ASSERT(axis2 != axis3);
  3831. bool is_node = false;
  3832. if (a->grad) {
  3833. is_node = true;
  3834. }
  3835. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3836. ggml_format_name(result, "%s (permuted)", a->name);
  3837. int ne[GGML_MAX_DIMS];
  3838. int nb[GGML_MAX_DIMS];
  3839. ne[axis0] = a->ne[0];
  3840. ne[axis1] = a->ne[1];
  3841. ne[axis2] = a->ne[2];
  3842. ne[axis3] = a->ne[3];
  3843. nb[axis0] = a->nb[0];
  3844. nb[axis1] = a->nb[1];
  3845. nb[axis2] = a->nb[2];
  3846. nb[axis3] = a->nb[3];
  3847. result->ne[0] = ne[0];
  3848. result->ne[1] = ne[1];
  3849. result->ne[2] = ne[2];
  3850. result->ne[3] = ne[3];
  3851. result->nb[0] = nb[0];
  3852. result->nb[1] = nb[1];
  3853. result->nb[2] = nb[2];
  3854. result->nb[3] = nb[3];
  3855. result->op = GGML_OP_PERMUTE;
  3856. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3857. result->src[0] = a;
  3858. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3859. ggml_set_op_params(result, params, sizeof(params));
  3860. return result;
  3861. }
  3862. // ggml_transpose
  3863. struct ggml_tensor * ggml_transpose(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a) {
  3866. bool is_node = false;
  3867. if (a->grad) {
  3868. is_node = true;
  3869. }
  3870. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3871. ggml_format_name(result, "%s (transposed)", a->name);
  3872. result->ne[0] = a->ne[1];
  3873. result->ne[1] = a->ne[0];
  3874. result->nb[0] = a->nb[1];
  3875. result->nb[1] = a->nb[0];
  3876. result->op = GGML_OP_TRANSPOSE;
  3877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3878. result->src[0] = a;
  3879. return result;
  3880. }
  3881. // ggml_get_rows
  3882. struct ggml_tensor * ggml_get_rows(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b) {
  3886. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3887. GGML_ASSERT(b->ne[3] == 1);
  3888. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3889. bool is_node = false;
  3890. if (a->grad || b->grad) {
  3891. is_node = true;
  3892. }
  3893. // TODO: implement non F32 return
  3894. enum ggml_type type = GGML_TYPE_F32;
  3895. if (a->type == GGML_TYPE_I32) {
  3896. type = a->type;
  3897. }
  3898. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3899. result->op = GGML_OP_GET_ROWS;
  3900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3901. result->src[0] = a;
  3902. result->src[1] = b;
  3903. return result;
  3904. }
  3905. // ggml_get_rows_back
  3906. struct ggml_tensor * ggml_get_rows_back(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a,
  3909. struct ggml_tensor * b,
  3910. struct ggml_tensor * c) {
  3911. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3912. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3913. bool is_node = false;
  3914. if (a->grad || b->grad) {
  3915. is_node = true;
  3916. }
  3917. // TODO: implement non F32 return
  3918. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3919. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3920. result->op = GGML_OP_GET_ROWS_BACK;
  3921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3922. result->src[0] = a;
  3923. result->src[1] = b;
  3924. return result;
  3925. }
  3926. // ggml_diag
  3927. struct ggml_tensor * ggml_diag(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a) {
  3930. GGML_ASSERT(a->ne[1] == 1);
  3931. bool is_node = false;
  3932. if (a->grad) {
  3933. is_node = true;
  3934. }
  3935. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3936. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3937. result->op = GGML_OP_DIAG;
  3938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3939. result->src[0] = a;
  3940. return result;
  3941. }
  3942. // ggml_diag_mask_inf
  3943. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. int n_past,
  3947. bool inplace) {
  3948. bool is_node = false;
  3949. if (a->grad) {
  3950. is_node = true;
  3951. }
  3952. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3953. int32_t params[] = { n_past };
  3954. ggml_set_op_params(result, params, sizeof(params));
  3955. result->op = GGML_OP_DIAG_MASK_INF;
  3956. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3957. result->src[0] = a;
  3958. return result;
  3959. }
  3960. struct ggml_tensor * ggml_diag_mask_inf(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a,
  3963. int n_past) {
  3964. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3965. }
  3966. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3967. struct ggml_context * ctx,
  3968. struct ggml_tensor * a,
  3969. int n_past) {
  3970. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3971. }
  3972. // ggml_diag_mask_zero
  3973. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a,
  3976. int n_past,
  3977. bool inplace) {
  3978. bool is_node = false;
  3979. if (a->grad) {
  3980. is_node = true;
  3981. }
  3982. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3983. int32_t params[] = { n_past };
  3984. ggml_set_op_params(result, params, sizeof(params));
  3985. result->op = GGML_OP_DIAG_MASK_ZERO;
  3986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3987. result->src[0] = a;
  3988. return result;
  3989. }
  3990. struct ggml_tensor * ggml_diag_mask_zero(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a,
  3993. int n_past) {
  3994. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3995. }
  3996. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a,
  3999. int n_past) {
  4000. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4001. }
  4002. // ggml_soft_max
  4003. static struct ggml_tensor * ggml_soft_max_impl(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. struct ggml_tensor * mask,
  4007. float scale,
  4008. bool inplace) {
  4009. GGML_ASSERT(ggml_is_contiguous(a));
  4010. if (mask) {
  4011. GGML_ASSERT(ggml_is_contiguous(mask));
  4012. GGML_ASSERT(mask->ne[2] == 1);
  4013. GGML_ASSERT(mask->ne[3] == 1);
  4014. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4015. }
  4016. bool is_node = false;
  4017. if (a->grad) {
  4018. is_node = true;
  4019. }
  4020. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4021. float params[] = { scale };
  4022. ggml_set_op_params(result, params, sizeof(params));
  4023. result->op = GGML_OP_SOFT_MAX;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src[0] = a;
  4026. result->src[1] = mask;
  4027. return result;
  4028. }
  4029. struct ggml_tensor * ggml_soft_max(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a) {
  4032. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4033. }
  4034. struct ggml_tensor * ggml_soft_max_inplace(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a) {
  4037. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4038. }
  4039. struct ggml_tensor * ggml_soft_max_ext(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. struct ggml_tensor * mask,
  4043. float scale) {
  4044. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4045. }
  4046. // ggml_soft_max_back
  4047. static struct ggml_tensor * ggml_soft_max_back_impl(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. struct ggml_tensor * b,
  4051. bool inplace) {
  4052. bool is_node = false;
  4053. if (a->grad || b->grad) {
  4054. is_node = true; // TODO : implement backward pass
  4055. }
  4056. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4057. result->op = GGML_OP_SOFT_MAX_BACK;
  4058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4059. result->src[0] = a;
  4060. result->src[1] = b;
  4061. return result;
  4062. }
  4063. struct ggml_tensor * ggml_soft_max_back(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a,
  4066. struct ggml_tensor * b) {
  4067. return ggml_soft_max_back_impl(ctx, a, b, false);
  4068. }
  4069. struct ggml_tensor * ggml_soft_max_back_inplace(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a,
  4072. struct ggml_tensor * b) {
  4073. return ggml_soft_max_back_impl(ctx, a, b, true);
  4074. }
  4075. // ggml_rope
  4076. static struct ggml_tensor * ggml_rope_impl(
  4077. struct ggml_context * ctx,
  4078. struct ggml_tensor * a,
  4079. struct ggml_tensor * b,
  4080. int n_dims,
  4081. int mode,
  4082. int n_ctx,
  4083. int n_orig_ctx,
  4084. float freq_base,
  4085. float freq_scale,
  4086. float ext_factor,
  4087. float attn_factor,
  4088. float beta_fast,
  4089. float beta_slow,
  4090. float xpos_base,
  4091. bool xpos_down,
  4092. bool inplace) {
  4093. GGML_ASSERT(ggml_is_vector(b));
  4094. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4095. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4096. bool is_node = false;
  4097. if (a->grad) {
  4098. is_node = true;
  4099. }
  4100. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4101. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4102. memcpy(params + 5, &freq_base, sizeof(float));
  4103. memcpy(params + 6, &freq_scale, sizeof(float));
  4104. memcpy(params + 7, &ext_factor, sizeof(float));
  4105. memcpy(params + 8, &attn_factor, sizeof(float));
  4106. memcpy(params + 9, &beta_fast, sizeof(float));
  4107. memcpy(params + 10, &beta_slow, sizeof(float));
  4108. memcpy(params + 11, &xpos_base, sizeof(float));
  4109. memcpy(params + 12, &xpos_down, sizeof(bool));
  4110. ggml_set_op_params(result, params, sizeof(params));
  4111. result->op = GGML_OP_ROPE;
  4112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4113. result->src[0] = a;
  4114. result->src[1] = b;
  4115. return result;
  4116. }
  4117. struct ggml_tensor * ggml_rope(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a,
  4120. struct ggml_tensor * b,
  4121. int n_dims,
  4122. int mode,
  4123. int n_ctx) {
  4124. return ggml_rope_impl(
  4125. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4126. );
  4127. }
  4128. struct ggml_tensor * ggml_rope_inplace(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a,
  4131. struct ggml_tensor * b,
  4132. int n_dims,
  4133. int mode,
  4134. int n_ctx) {
  4135. return ggml_rope_impl(
  4136. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4137. );
  4138. }
  4139. struct ggml_tensor * ggml_rope_custom(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a,
  4142. struct ggml_tensor * b,
  4143. int n_dims,
  4144. int mode,
  4145. int n_ctx,
  4146. int n_orig_ctx,
  4147. float freq_base,
  4148. float freq_scale,
  4149. float ext_factor,
  4150. float attn_factor,
  4151. float beta_fast,
  4152. float beta_slow) {
  4153. return ggml_rope_impl(
  4154. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4155. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4156. );
  4157. }
  4158. struct ggml_tensor * ggml_rope_custom_inplace(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a,
  4161. struct ggml_tensor * b,
  4162. int n_dims,
  4163. int mode,
  4164. int n_ctx,
  4165. int n_orig_ctx,
  4166. float freq_base,
  4167. float freq_scale,
  4168. float ext_factor,
  4169. float attn_factor,
  4170. float beta_fast,
  4171. float beta_slow) {
  4172. return ggml_rope_impl(
  4173. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4174. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4175. );
  4176. }
  4177. struct ggml_tensor * ggml_rope_xpos_inplace(
  4178. struct ggml_context * ctx,
  4179. struct ggml_tensor * a,
  4180. struct ggml_tensor * b,
  4181. int n_dims,
  4182. float base,
  4183. bool down) {
  4184. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4185. }
  4186. // ggml_rope_back
  4187. struct ggml_tensor * ggml_rope_back(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a,
  4190. struct ggml_tensor * b,
  4191. int n_dims,
  4192. int mode,
  4193. int n_ctx,
  4194. int n_orig_ctx,
  4195. float freq_base,
  4196. float freq_scale,
  4197. float ext_factor,
  4198. float attn_factor,
  4199. float beta_fast,
  4200. float beta_slow,
  4201. float xpos_base,
  4202. bool xpos_down) {
  4203. GGML_ASSERT(ggml_is_vector(b));
  4204. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4205. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4206. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4207. bool is_node = false;
  4208. if (a->grad) {
  4209. is_node = false; // TODO: implement backward
  4210. }
  4211. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4212. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4213. memcpy(params + 5, &freq_base, sizeof(float));
  4214. memcpy(params + 6, &freq_scale, sizeof(float));
  4215. memcpy(params + 7, &ext_factor, sizeof(float));
  4216. memcpy(params + 8, &attn_factor, sizeof(float));
  4217. memcpy(params + 9, &beta_fast, sizeof(float));
  4218. memcpy(params + 10, &beta_slow, sizeof(float));
  4219. memcpy(params + 11, &xpos_base, sizeof(float));
  4220. memcpy(params + 12, &xpos_down, sizeof(bool));
  4221. ggml_set_op_params(result, params, sizeof(params));
  4222. result->op = GGML_OP_ROPE_BACK;
  4223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4224. result->src[0] = a;
  4225. result->src[1] = b;
  4226. return result;
  4227. }
  4228. // ggml_alibi
  4229. struct ggml_tensor * ggml_alibi(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a,
  4232. int n_past,
  4233. int n_head,
  4234. float bias_max) {
  4235. GGML_ASSERT(n_past >= 0);
  4236. bool is_node = false;
  4237. if (a->grad) {
  4238. GGML_ASSERT(false); // TODO: implement backward
  4239. is_node = true;
  4240. }
  4241. // TODO: when implement backward, fix this:
  4242. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4243. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4244. int32_t op_params[3] = { n_past, n_head };
  4245. memcpy(op_params + 2, &bias_max, sizeof(float));
  4246. ggml_set_op_params(result, op_params, sizeof(op_params));
  4247. result->op = GGML_OP_ALIBI;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src[0] = a;
  4250. return result;
  4251. }
  4252. // ggml_clamp
  4253. struct ggml_tensor * ggml_clamp(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. float min,
  4257. float max) {
  4258. bool is_node = false;
  4259. if (a->grad) {
  4260. GGML_ASSERT(false); // TODO: implement backward
  4261. is_node = true;
  4262. }
  4263. // TODO: when implement backward, fix this:
  4264. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4265. float params[] = { min, max };
  4266. ggml_set_op_params(result, params, sizeof(params));
  4267. result->op = GGML_OP_CLAMP;
  4268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4269. result->src[0] = a;
  4270. return result;
  4271. }
  4272. // ggml_conv_1d
  4273. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4274. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4275. }
  4276. GGML_API struct ggml_tensor * ggml_conv_1d(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a,
  4279. struct ggml_tensor * b,
  4280. int s0,
  4281. int p0,
  4282. int d0) {
  4283. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4284. struct ggml_tensor * result =
  4285. ggml_mul_mat(ctx,
  4286. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4287. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4288. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4289. return result;
  4290. }
  4291. // ggml_conv_1d_ph
  4292. struct ggml_tensor* ggml_conv_1d_ph(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. struct ggml_tensor * b,
  4296. int s,
  4297. int d) {
  4298. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4299. }
  4300. // ggml_conv_transpose_1d
  4301. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4302. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4303. }
  4304. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b,
  4308. int s0,
  4309. int p0,
  4310. int d0) {
  4311. GGML_ASSERT(ggml_is_matrix(b));
  4312. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4313. GGML_ASSERT(a->ne[3] == 1);
  4314. GGML_ASSERT(p0 == 0);
  4315. GGML_ASSERT(d0 == 1);
  4316. bool is_node = false;
  4317. if (a->grad || b->grad) {
  4318. GGML_ASSERT(false); // TODO: implement backward
  4319. is_node = true;
  4320. }
  4321. const int64_t ne[4] = {
  4322. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4323. a->ne[1], b->ne[2], 1,
  4324. };
  4325. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4326. int32_t params[] = { s0, p0, d0 };
  4327. ggml_set_op_params(result, params, sizeof(params));
  4328. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4330. result->src[0] = a;
  4331. result->src[1] = b;
  4332. return result;
  4333. }
  4334. // ggml_conv_2d
  4335. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4336. // a: [OC,IC, KH, KW]
  4337. // b: [N, IC, IH, IW]
  4338. // result: [N, OH, OW, IC*KH*KW]
  4339. struct ggml_tensor * ggml_im2col(
  4340. struct ggml_context * ctx,
  4341. struct ggml_tensor * a,
  4342. struct ggml_tensor * b,
  4343. int s0,
  4344. int s1,
  4345. int p0,
  4346. int p1,
  4347. int d0,
  4348. int d1,
  4349. bool is_2D) {
  4350. if(is_2D) {
  4351. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4352. } else {
  4353. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4354. }
  4355. bool is_node = false;
  4356. if (a->grad || b->grad) {
  4357. GGML_ASSERT(false); // TODO: implement backward
  4358. is_node = true;
  4359. }
  4360. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4361. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4362. const int64_t ne[4] = {
  4363. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4364. OW,
  4365. is_2D ? OH : b->ne[2],
  4366. is_2D ? b->ne[3] : 1,
  4367. };
  4368. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4369. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4370. ggml_set_op_params(result, params, sizeof(params));
  4371. result->op = GGML_OP_IM2COL;
  4372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4373. result->src[0] = a;
  4374. result->src[1] = b;
  4375. return result;
  4376. }
  4377. // a: [OC,IC, KH, KW]
  4378. // b: [N, IC, IH, IW]
  4379. // result: [N, OC, OH, OW]
  4380. struct ggml_tensor * ggml_conv_2d(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a,
  4383. struct ggml_tensor * b,
  4384. int s0,
  4385. int s1,
  4386. int p0,
  4387. int p1,
  4388. int d0,
  4389. int d1) {
  4390. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4391. struct ggml_tensor * result =
  4392. ggml_mul_mat(ctx,
  4393. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4394. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4395. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4396. return result;
  4397. }
  4398. // ggml_conv_2d_sk_p0
  4399. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4400. struct ggml_context * ctx,
  4401. struct ggml_tensor * a,
  4402. struct ggml_tensor * b) {
  4403. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4404. }
  4405. // ggml_conv_2d_s1_ph
  4406. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. struct ggml_tensor * b) {
  4410. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4411. }
  4412. // ggml_conv_transpose_2d_p0
  4413. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4414. return (ins - 1) * s - 2 * p + ks;
  4415. }
  4416. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a,
  4419. struct ggml_tensor * b,
  4420. int stride) {
  4421. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4422. bool is_node = false;
  4423. if (a->grad || b->grad) {
  4424. GGML_ASSERT(false); // TODO: implement backward
  4425. is_node = true;
  4426. }
  4427. const int64_t ne[4] = {
  4428. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4429. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4430. a->ne[2], b->ne[3],
  4431. };
  4432. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4433. ggml_set_op_params_i32(result, 0, stride);
  4434. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4436. result->src[0] = a;
  4437. result->src[1] = b;
  4438. return result;
  4439. }
  4440. // ggml_pool_*
  4441. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4442. return (ins + 2 * p - ks) / s + 1;
  4443. }
  4444. // ggml_pool_1d
  4445. struct ggml_tensor * ggml_pool_1d(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a,
  4448. enum ggml_op_pool op,
  4449. int k0,
  4450. int s0,
  4451. int p0) {
  4452. bool is_node = false;
  4453. if (a->grad) {
  4454. GGML_ASSERT(false); // TODO: implement backward
  4455. is_node = true;
  4456. }
  4457. const int64_t ne[2] = {
  4458. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4459. a->ne[1],
  4460. };
  4461. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4462. int32_t params[] = { op, k0, s0, p0 };
  4463. ggml_set_op_params(result, params, sizeof(params));
  4464. result->op = GGML_OP_POOL_1D;
  4465. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4466. result->src[0] = a;
  4467. return result;
  4468. }
  4469. // ggml_pool_2d
  4470. struct ggml_tensor * ggml_pool_2d(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a,
  4473. enum ggml_op_pool op,
  4474. int k0,
  4475. int k1,
  4476. int s0,
  4477. int s1,
  4478. float p0,
  4479. float p1) {
  4480. bool is_node = false;
  4481. if (a->grad) {
  4482. GGML_ASSERT(false); // TODO: implement backward
  4483. is_node = true;
  4484. }
  4485. const int64_t ne[3] = {
  4486. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4487. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4488. a->ne[2],
  4489. };
  4490. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4491. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4492. ggml_set_op_params(result, params, sizeof(params));
  4493. result->op = GGML_OP_POOL_2D;
  4494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4495. result->src[0] = a;
  4496. return result;
  4497. }
  4498. // ggml_upscale
  4499. static struct ggml_tensor * ggml_upscale_impl(
  4500. struct ggml_context * ctx,
  4501. struct ggml_tensor * a,
  4502. int scale_factor) {
  4503. bool is_node = false;
  4504. if (a->grad) {
  4505. GGML_ASSERT(false); // TODO: implement backward
  4506. is_node = true;
  4507. }
  4508. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4509. a->ne[0] * scale_factor,
  4510. a->ne[1] * scale_factor,
  4511. a->ne[2], a->ne[3]);
  4512. result->op = GGML_OP_UPSCALE;
  4513. result->op_params[0] = scale_factor;
  4514. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4515. result->src[0] = a;
  4516. return result;
  4517. }
  4518. struct ggml_tensor * ggml_pad(
  4519. struct ggml_context * ctx,
  4520. struct ggml_tensor * a,
  4521. int p0, int p1, int p2, int p3) {
  4522. bool is_node = false;
  4523. if (a->grad) {
  4524. GGML_ASSERT(false); // TODO: implement backward
  4525. is_node = true;
  4526. }
  4527. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4528. a->ne[0] + p0,
  4529. a->ne[1] + p1,
  4530. a->ne[2] + p2,
  4531. a->ne[3] + p3);
  4532. result->op = GGML_OP_PAD;
  4533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4534. result->src[0] = a;
  4535. return result;
  4536. }
  4537. struct ggml_tensor * ggml_upscale(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. int scale_factor) {
  4541. return ggml_upscale_impl(ctx, a, scale_factor);
  4542. }
  4543. // ggml_argsort
  4544. struct ggml_tensor * ggml_argsort(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a,
  4547. enum ggml_sort_order order) {
  4548. bool is_node = false;
  4549. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4550. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4551. result->op = GGML_OP_ARGSORT;
  4552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4553. result->src[0] = a;
  4554. return result;
  4555. }
  4556. // ggml_top_k
  4557. struct ggml_tensor * ggml_top_k(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a,
  4560. int k) {
  4561. GGML_ASSERT(a->ne[0] >= k);
  4562. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4563. result = ggml_view_4d(ctx, result,
  4564. k, result->ne[1], result->ne[2], result->ne[3],
  4565. result->nb[1], result->nb[2], result->nb[3],
  4566. 0);
  4567. return result;
  4568. }
  4569. // ggml_flash_attn
  4570. struct ggml_tensor * ggml_flash_attn(
  4571. struct ggml_context * ctx,
  4572. struct ggml_tensor * q,
  4573. struct ggml_tensor * k,
  4574. struct ggml_tensor * v,
  4575. bool masked) {
  4576. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4577. // TODO: check if vT can be multiplied by (k*qT)
  4578. bool is_node = false;
  4579. if (q->grad || k->grad || v->grad) {
  4580. is_node = true;
  4581. }
  4582. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4583. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4584. int32_t t = masked ? 1 : 0;
  4585. ggml_set_op_params(result, &t, sizeof(t));
  4586. result->op = GGML_OP_FLASH_ATTN;
  4587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4588. result->src[0] = q;
  4589. result->src[1] = k;
  4590. result->src[2] = v;
  4591. return result;
  4592. }
  4593. // ggml_flash_ff
  4594. struct ggml_tensor * ggml_flash_ff(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a,
  4597. struct ggml_tensor * b0,
  4598. struct ggml_tensor * b1,
  4599. struct ggml_tensor * c0,
  4600. struct ggml_tensor * c1) {
  4601. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4602. // TODO: more checks
  4603. bool is_node = false;
  4604. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4605. is_node = true;
  4606. }
  4607. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4608. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4609. result->op = GGML_OP_FLASH_FF;
  4610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4611. result->src[0] = a;
  4612. result->src[1] = b0;
  4613. result->src[2] = b1;
  4614. result->src[3] = c0;
  4615. result->src[4] = c1;
  4616. return result;
  4617. }
  4618. // ggml_flash_attn_back
  4619. struct ggml_tensor * ggml_flash_attn_back(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * q,
  4622. struct ggml_tensor * k,
  4623. struct ggml_tensor * v,
  4624. struct ggml_tensor * d,
  4625. bool masked) {
  4626. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4627. // TODO: check if vT can be multiplied by (k*qT)
  4628. // d shape [D,N,ne2,ne3]
  4629. // q shape [D,N,ne2,ne3]
  4630. // k shape [D,M,kvne2,ne3]
  4631. // v shape [M,D,kvne2,ne3]
  4632. const int64_t D = q->ne[0];
  4633. const int64_t N = q->ne[1];
  4634. const int64_t M = k->ne[1];
  4635. const int64_t ne2 = q->ne[2];
  4636. const int64_t ne3 = q->ne[3];
  4637. const int64_t kvne2 = k->ne[2];
  4638. GGML_ASSERT(k->ne[0] == D);
  4639. GGML_ASSERT(v->ne[0] == M);
  4640. GGML_ASSERT(v->ne[1] == D);
  4641. GGML_ASSERT(d->ne[0] == D);
  4642. GGML_ASSERT(d->ne[1] == N);
  4643. GGML_ASSERT(k->ne[2] == kvne2);
  4644. GGML_ASSERT(k->ne[3] == ne3);
  4645. GGML_ASSERT(v->ne[2] == kvne2);
  4646. GGML_ASSERT(v->ne[3] == ne3);
  4647. GGML_ASSERT(d->ne[2] == ne2);
  4648. GGML_ASSERT(d->ne[3] == ne3);
  4649. GGML_ASSERT(ne2 % kvne2 == 0);
  4650. bool is_node = false;
  4651. if (q->grad || k->grad || v->grad) {
  4652. // when using this operation (in backwards pass) these grads are set.
  4653. // we don't want to create (big) grad of our result, so is_node is false.
  4654. is_node = false;
  4655. }
  4656. // store gradients of q, k and v as continuous tensors concatenated in result.
  4657. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4658. const int64_t elem_q = ggml_nelements(q);
  4659. const int64_t elem_k = ggml_nelements(k);
  4660. const int64_t elem_v = ggml_nelements(v);
  4661. enum ggml_type result_type = GGML_TYPE_F32;
  4662. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4663. const size_t tsize = ggml_type_size(result_type);
  4664. const size_t offs_q = 0;
  4665. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4666. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4667. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4668. const size_t nelements = (end + tsize - 1)/tsize;
  4669. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4670. int32_t masked_i = masked ? 1 : 0;
  4671. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4672. result->op = GGML_OP_FLASH_ATTN_BACK;
  4673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4674. result->src[0] = q;
  4675. result->src[1] = k;
  4676. result->src[2] = v;
  4677. result->src[3] = d;
  4678. return result;
  4679. }
  4680. // ggml_win_part
  4681. struct ggml_tensor * ggml_win_part(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. int w) {
  4685. GGML_ASSERT(a->ne[3] == 1);
  4686. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4687. bool is_node = false;
  4688. if (a->grad) {
  4689. GGML_ASSERT(false); // TODO: implement backward
  4690. is_node = true;
  4691. }
  4692. // padding
  4693. const int px = (w - a->ne[1]%w)%w;
  4694. const int py = (w - a->ne[2]%w)%w;
  4695. const int npx = (px + a->ne[1])/w;
  4696. const int npy = (py + a->ne[2])/w;
  4697. const int np = npx*npy;
  4698. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4699. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4700. int32_t params[] = { npx, npy, w };
  4701. ggml_set_op_params(result, params, sizeof(params));
  4702. result->op = GGML_OP_WIN_PART;
  4703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4704. result->src[0] = a;
  4705. return result;
  4706. }
  4707. // ggml_win_unpart
  4708. struct ggml_tensor * ggml_win_unpart(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. int w0,
  4712. int h0,
  4713. int w) {
  4714. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4715. bool is_node = false;
  4716. if (a->grad) {
  4717. GGML_ASSERT(false); // TODO: implement backward
  4718. is_node = true;
  4719. }
  4720. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4721. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4722. int32_t params[] = { w };
  4723. ggml_set_op_params(result, params, sizeof(params));
  4724. result->op = GGML_OP_WIN_UNPART;
  4725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4726. result->src[0] = a;
  4727. return result;
  4728. }
  4729. // ggml_get_rel_pos
  4730. struct ggml_tensor * ggml_get_rel_pos(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a,
  4733. int qh,
  4734. int kh) {
  4735. GGML_ASSERT(qh == kh);
  4736. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4737. bool is_node = false;
  4738. if (a->grad) {
  4739. GGML_ASSERT(false); // TODO: implement backward
  4740. is_node = true;
  4741. }
  4742. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4743. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4744. result->op = GGML_OP_GET_REL_POS;
  4745. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4746. result->src[0] = a;
  4747. return result;
  4748. }
  4749. // ggml_add_rel_pos
  4750. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. struct ggml_tensor * pw,
  4754. struct ggml_tensor * ph,
  4755. bool inplace) {
  4756. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4757. GGML_ASSERT(ggml_is_contiguous(a));
  4758. GGML_ASSERT(ggml_is_contiguous(pw));
  4759. GGML_ASSERT(ggml_is_contiguous(ph));
  4760. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4761. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4762. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4763. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4764. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4765. bool is_node = false;
  4766. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4767. is_node = true;
  4768. }
  4769. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4770. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4771. result->op = GGML_OP_ADD_REL_POS;
  4772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4773. result->src[0] = a;
  4774. result->src[1] = pw;
  4775. result->src[2] = ph;
  4776. return result;
  4777. }
  4778. struct ggml_tensor * ggml_add_rel_pos(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. struct ggml_tensor * pw,
  4782. struct ggml_tensor * ph) {
  4783. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4784. }
  4785. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. struct ggml_tensor * pw,
  4789. struct ggml_tensor * ph) {
  4790. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4791. }
  4792. // gmml_unary
  4793. static struct ggml_tensor * ggml_unary_impl(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a,
  4796. enum ggml_unary_op op,
  4797. bool inplace) {
  4798. bool is_node = false;
  4799. if (!inplace && (a->grad)) {
  4800. is_node = true;
  4801. }
  4802. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4803. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4804. result->op = GGML_OP_UNARY;
  4805. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4806. result->src[0] = a;
  4807. return result;
  4808. }
  4809. struct ggml_tensor * ggml_unary(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. enum ggml_unary_op op) {
  4813. return ggml_unary_impl(ctx, a, op, false);
  4814. }
  4815. struct ggml_tensor * ggml_unary_inplace(
  4816. struct ggml_context * ctx,
  4817. struct ggml_tensor * a,
  4818. enum ggml_unary_op op) {
  4819. return ggml_unary_impl(ctx, a, op, true);
  4820. }
  4821. // ggml_map_unary
  4822. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4823. struct ggml_context * ctx,
  4824. struct ggml_tensor * a,
  4825. const ggml_unary_op_f32_t fun,
  4826. bool inplace) {
  4827. bool is_node = false;
  4828. if (!inplace && a->grad) {
  4829. is_node = true;
  4830. }
  4831. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4832. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4833. result->op = GGML_OP_MAP_UNARY;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src[0] = a;
  4836. return result;
  4837. }
  4838. struct ggml_tensor * ggml_map_unary_f32(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a,
  4841. const ggml_unary_op_f32_t fun) {
  4842. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4843. }
  4844. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. const ggml_unary_op_f32_t fun) {
  4848. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4849. }
  4850. // ggml_map_binary
  4851. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * a,
  4854. struct ggml_tensor * b,
  4855. const ggml_binary_op_f32_t fun,
  4856. bool inplace) {
  4857. GGML_ASSERT(ggml_are_same_shape(a, b));
  4858. bool is_node = false;
  4859. if (!inplace && (a->grad || b->grad)) {
  4860. is_node = true;
  4861. }
  4862. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4863. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4864. result->op = GGML_OP_MAP_BINARY;
  4865. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4866. result->src[0] = a;
  4867. result->src[1] = b;
  4868. return result;
  4869. }
  4870. struct ggml_tensor * ggml_map_binary_f32(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. struct ggml_tensor * b,
  4874. const ggml_binary_op_f32_t fun) {
  4875. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4876. }
  4877. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. struct ggml_tensor * b,
  4881. const ggml_binary_op_f32_t fun) {
  4882. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4883. }
  4884. // ggml_map_custom1_f32
  4885. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a,
  4888. const ggml_custom1_op_f32_t fun,
  4889. bool inplace) {
  4890. bool is_node = false;
  4891. if (!inplace && a->grad) {
  4892. is_node = true;
  4893. }
  4894. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4895. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4896. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4898. result->src[0] = a;
  4899. return result;
  4900. }
  4901. struct ggml_tensor * ggml_map_custom1_f32(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * a,
  4904. const ggml_custom1_op_f32_t fun) {
  4905. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4906. }
  4907. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4908. struct ggml_context * ctx,
  4909. struct ggml_tensor * a,
  4910. const ggml_custom1_op_f32_t fun) {
  4911. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4912. }
  4913. // ggml_map_custom2_f32
  4914. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. struct ggml_tensor * b,
  4918. const ggml_custom2_op_f32_t fun,
  4919. bool inplace) {
  4920. bool is_node = false;
  4921. if (!inplace && (a->grad || b->grad)) {
  4922. is_node = true;
  4923. }
  4924. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4925. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4926. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4928. result->src[0] = a;
  4929. result->src[1] = b;
  4930. return result;
  4931. }
  4932. struct ggml_tensor * ggml_map_custom2_f32(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. struct ggml_tensor * b,
  4936. const ggml_custom2_op_f32_t fun) {
  4937. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4938. }
  4939. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4940. struct ggml_context * ctx,
  4941. struct ggml_tensor * a,
  4942. struct ggml_tensor * b,
  4943. const ggml_custom2_op_f32_t fun) {
  4944. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4945. }
  4946. // ggml_map_custom3_f32
  4947. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4948. struct ggml_context * ctx,
  4949. struct ggml_tensor * a,
  4950. struct ggml_tensor * b,
  4951. struct ggml_tensor * c,
  4952. const ggml_custom3_op_f32_t fun,
  4953. bool inplace) {
  4954. bool is_node = false;
  4955. if (!inplace && (a->grad || b->grad || c->grad)) {
  4956. is_node = true;
  4957. }
  4958. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4959. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4960. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4962. result->src[0] = a;
  4963. result->src[1] = b;
  4964. result->src[2] = c;
  4965. return result;
  4966. }
  4967. struct ggml_tensor * ggml_map_custom3_f32(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. struct ggml_tensor * b,
  4971. struct ggml_tensor * c,
  4972. const ggml_custom3_op_f32_t fun) {
  4973. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4974. }
  4975. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4976. struct ggml_context * ctx,
  4977. struct ggml_tensor * a,
  4978. struct ggml_tensor * b,
  4979. struct ggml_tensor * c,
  4980. const ggml_custom3_op_f32_t fun) {
  4981. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4982. }
  4983. // ggml_map_custom1
  4984. struct ggml_map_custom1_op_params {
  4985. ggml_custom1_op_t fun;
  4986. int n_tasks;
  4987. void * userdata;
  4988. };
  4989. static struct ggml_tensor * ggml_map_custom1_impl(
  4990. struct ggml_context * ctx,
  4991. struct ggml_tensor * a,
  4992. const ggml_custom1_op_t fun,
  4993. int n_tasks,
  4994. void * userdata,
  4995. bool inplace) {
  4996. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4997. bool is_node = false;
  4998. if (!inplace && a->grad) {
  4999. is_node = true;
  5000. }
  5001. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5002. struct ggml_map_custom1_op_params params = {
  5003. /*.fun =*/ fun,
  5004. /*.n_tasks =*/ n_tasks,
  5005. /*.userdata =*/ userdata
  5006. };
  5007. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5008. result->op = GGML_OP_MAP_CUSTOM1;
  5009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5010. result->src[0] = a;
  5011. return result;
  5012. }
  5013. struct ggml_tensor * ggml_map_custom1(
  5014. struct ggml_context * ctx,
  5015. struct ggml_tensor * a,
  5016. const ggml_custom1_op_t fun,
  5017. int n_tasks,
  5018. void * userdata) {
  5019. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5020. }
  5021. struct ggml_tensor * ggml_map_custom1_inplace(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a,
  5024. const ggml_custom1_op_t fun,
  5025. int n_tasks,
  5026. void * userdata) {
  5027. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5028. }
  5029. // ggml_map_custom2
  5030. struct ggml_map_custom2_op_params {
  5031. ggml_custom2_op_t fun;
  5032. int n_tasks;
  5033. void * userdata;
  5034. };
  5035. static struct ggml_tensor * ggml_map_custom2_impl(
  5036. struct ggml_context * ctx,
  5037. struct ggml_tensor * a,
  5038. struct ggml_tensor * b,
  5039. const ggml_custom2_op_t fun,
  5040. int n_tasks,
  5041. void * userdata,
  5042. bool inplace) {
  5043. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5044. bool is_node = false;
  5045. if (!inplace && (a->grad || b->grad)) {
  5046. is_node = true;
  5047. }
  5048. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5049. struct ggml_map_custom2_op_params params = {
  5050. /*.fun =*/ fun,
  5051. /*.n_tasks =*/ n_tasks,
  5052. /*.userdata =*/ userdata
  5053. };
  5054. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5055. result->op = GGML_OP_MAP_CUSTOM2;
  5056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5057. result->src[0] = a;
  5058. result->src[1] = b;
  5059. return result;
  5060. }
  5061. struct ggml_tensor * ggml_map_custom2(
  5062. struct ggml_context * ctx,
  5063. struct ggml_tensor * a,
  5064. struct ggml_tensor * b,
  5065. const ggml_custom2_op_t fun,
  5066. int n_tasks,
  5067. void * userdata) {
  5068. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5069. }
  5070. struct ggml_tensor * ggml_map_custom2_inplace(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. struct ggml_tensor * b,
  5074. const ggml_custom2_op_t fun,
  5075. int n_tasks,
  5076. void * userdata) {
  5077. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5078. }
  5079. // ggml_map_custom3
  5080. struct ggml_map_custom3_op_params {
  5081. ggml_custom3_op_t fun;
  5082. int n_tasks;
  5083. void * userdata;
  5084. };
  5085. static struct ggml_tensor * ggml_map_custom3_impl(
  5086. struct ggml_context * ctx,
  5087. struct ggml_tensor * a,
  5088. struct ggml_tensor * b,
  5089. struct ggml_tensor * c,
  5090. const ggml_custom3_op_t fun,
  5091. int n_tasks,
  5092. void * userdata,
  5093. bool inplace) {
  5094. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5095. bool is_node = false;
  5096. if (!inplace && (a->grad || b->grad || c->grad)) {
  5097. is_node = true;
  5098. }
  5099. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5100. struct ggml_map_custom3_op_params params = {
  5101. /*.fun =*/ fun,
  5102. /*.n_tasks =*/ n_tasks,
  5103. /*.userdata =*/ userdata
  5104. };
  5105. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5106. result->op = GGML_OP_MAP_CUSTOM3;
  5107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5108. result->src[0] = a;
  5109. result->src[1] = b;
  5110. result->src[2] = c;
  5111. return result;
  5112. }
  5113. struct ggml_tensor * ggml_map_custom3(
  5114. struct ggml_context * ctx,
  5115. struct ggml_tensor * a,
  5116. struct ggml_tensor * b,
  5117. struct ggml_tensor * c,
  5118. const ggml_custom3_op_t fun,
  5119. int n_tasks,
  5120. void * userdata) {
  5121. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5122. }
  5123. struct ggml_tensor * ggml_map_custom3_inplace(
  5124. struct ggml_context * ctx,
  5125. struct ggml_tensor * a,
  5126. struct ggml_tensor * b,
  5127. struct ggml_tensor * c,
  5128. const ggml_custom3_op_t fun,
  5129. int n_tasks,
  5130. void * userdata) {
  5131. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5132. }
  5133. // ggml_cross_entropy_loss
  5134. struct ggml_tensor * ggml_cross_entropy_loss(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a,
  5137. struct ggml_tensor * b) {
  5138. GGML_ASSERT(ggml_are_same_shape(a, b));
  5139. bool is_node = false;
  5140. if (a->grad || b->grad) {
  5141. is_node = true;
  5142. }
  5143. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5144. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5146. result->src[0] = a;
  5147. result->src[1] = b;
  5148. return result;
  5149. }
  5150. // ggml_cross_entropy_loss_back
  5151. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a,
  5154. struct ggml_tensor * b,
  5155. struct ggml_tensor * c) {
  5156. GGML_ASSERT(ggml_are_same_shape(a, b));
  5157. GGML_ASSERT(ggml_is_scalar(c));
  5158. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5159. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5160. result->grad = NULL;
  5161. result->src[0] = a;
  5162. result->src[1] = b;
  5163. result->src[2] = c;
  5164. return result;
  5165. }
  5166. ////////////////////////////////////////////////////////////////////////////////
  5167. void ggml_set_param(
  5168. struct ggml_context * ctx,
  5169. struct ggml_tensor * tensor) {
  5170. tensor->is_param = true;
  5171. GGML_ASSERT(tensor->grad == NULL);
  5172. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5173. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5174. }
  5175. // ggml_compute_forward_dup
  5176. static void ggml_compute_forward_dup_same_cont(
  5177. const struct ggml_compute_params * params,
  5178. const struct ggml_tensor * src0,
  5179. struct ggml_tensor * dst) {
  5180. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5181. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5182. GGML_ASSERT(src0->type == dst->type);
  5183. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5184. return;
  5185. }
  5186. const size_t nb00 = src0->nb[0];
  5187. const size_t nb0 = dst->nb[0];
  5188. const int ith = params->ith; // thread index
  5189. const int nth = params->nth; // number of threads
  5190. // parallelize by elements
  5191. const int ne = ggml_nelements(dst);
  5192. const int dr = (ne + nth - 1) / nth;
  5193. const int ie0 = dr * ith;
  5194. const int ie1 = MIN(ie0 + dr, ne);
  5195. if (ie0 < ie1) {
  5196. memcpy(
  5197. ((char *) dst->data + ie0*nb0),
  5198. ((char *) src0->data + ie0*nb00),
  5199. (ie1 - ie0) * ggml_type_size(src0->type));
  5200. }
  5201. }
  5202. static void ggml_compute_forward_dup_f16(
  5203. const struct ggml_compute_params * params,
  5204. const struct ggml_tensor * src0,
  5205. struct ggml_tensor * dst) {
  5206. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5207. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5208. return;
  5209. }
  5210. GGML_TENSOR_UNARY_OP_LOCALS
  5211. const int ith = params->ith; // thread index
  5212. const int nth = params->nth; // number of threads
  5213. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5214. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5215. return;
  5216. }
  5217. // parallelize by rows
  5218. const int nr = ne01;
  5219. // number of rows per thread
  5220. const int dr = (nr + nth - 1) / nth;
  5221. // row range for this thread
  5222. const int ir0 = dr * ith;
  5223. const int ir1 = MIN(ir0 + dr, nr);
  5224. if (src0->type == dst->type &&
  5225. ne00 == ne0 &&
  5226. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5227. // copy by rows
  5228. const size_t rs = ne00*nb00;
  5229. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5230. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5231. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5232. memcpy(
  5233. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5234. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5235. rs);
  5236. }
  5237. }
  5238. }
  5239. return;
  5240. }
  5241. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5242. if (ggml_is_contiguous(dst)) {
  5243. if (nb00 == sizeof(ggml_fp16_t)) {
  5244. if (dst->type == GGML_TYPE_F16) {
  5245. size_t id = 0;
  5246. const size_t rs = ne00 * nb00;
  5247. char * dst_ptr = (char *) dst->data;
  5248. for (int i03 = 0; i03 < ne03; i03++) {
  5249. for (int i02 = 0; i02 < ne02; i02++) {
  5250. id += rs * ir0;
  5251. for (int i01 = ir0; i01 < ir1; i01++) {
  5252. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5253. memcpy(dst_ptr + id, src0_ptr, rs);
  5254. id += rs;
  5255. }
  5256. id += rs * (ne01 - ir1);
  5257. }
  5258. }
  5259. } else if (dst->type == GGML_TYPE_F32) {
  5260. size_t id = 0;
  5261. float * dst_ptr = (float *) dst->data;
  5262. for (int i03 = 0; i03 < ne03; i03++) {
  5263. for (int i02 = 0; i02 < ne02; i02++) {
  5264. id += ne00 * ir0;
  5265. for (int i01 = ir0; i01 < ir1; i01++) {
  5266. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5267. for (int i00 = 0; i00 < ne00; i00++) {
  5268. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5269. id++;
  5270. }
  5271. }
  5272. id += ne00 * (ne01 - ir1);
  5273. }
  5274. }
  5275. } else if (type_traits[dst->type].from_float) {
  5276. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5277. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5278. size_t id = 0;
  5279. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5280. char * dst_ptr = (char *) dst->data;
  5281. for (int i03 = 0; i03 < ne03; i03++) {
  5282. for (int i02 = 0; i02 < ne02; i02++) {
  5283. id += rs * ir0;
  5284. for (int i01 = ir0; i01 < ir1; i01++) {
  5285. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5286. for (int i00 = 0; i00 < ne00; i00++) {
  5287. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5288. }
  5289. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5290. id += rs;
  5291. }
  5292. id += rs * (ne01 - ir1);
  5293. }
  5294. }
  5295. } else {
  5296. GGML_ASSERT(false); // TODO: implement
  5297. }
  5298. } else {
  5299. //printf("%s: this is not optimal - fix me\n", __func__);
  5300. if (dst->type == GGML_TYPE_F32) {
  5301. size_t id = 0;
  5302. float * dst_ptr = (float *) dst->data;
  5303. for (int i03 = 0; i03 < ne03; i03++) {
  5304. for (int i02 = 0; i02 < ne02; i02++) {
  5305. id += ne00 * ir0;
  5306. for (int i01 = ir0; i01 < ir1; i01++) {
  5307. for (int i00 = 0; i00 < ne00; i00++) {
  5308. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5309. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5310. id++;
  5311. }
  5312. }
  5313. id += ne00 * (ne01 - ir1);
  5314. }
  5315. }
  5316. } else if (dst->type == GGML_TYPE_F16) {
  5317. size_t id = 0;
  5318. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5319. for (int i03 = 0; i03 < ne03; i03++) {
  5320. for (int i02 = 0; i02 < ne02; i02++) {
  5321. id += ne00 * ir0;
  5322. for (int i01 = ir0; i01 < ir1; i01++) {
  5323. for (int i00 = 0; i00 < ne00; i00++) {
  5324. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5325. dst_ptr[id] = *src0_ptr;
  5326. id++;
  5327. }
  5328. }
  5329. id += ne00 * (ne01 - ir1);
  5330. }
  5331. }
  5332. } else {
  5333. GGML_ASSERT(false); // TODO: implement
  5334. }
  5335. }
  5336. return;
  5337. }
  5338. // dst counters
  5339. int64_t i10 = 0;
  5340. int64_t i11 = 0;
  5341. int64_t i12 = 0;
  5342. int64_t i13 = 0;
  5343. if (dst->type == GGML_TYPE_F16) {
  5344. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5345. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5346. i10 += ne00 * ir0;
  5347. while (i10 >= ne0) {
  5348. i10 -= ne0;
  5349. if (++i11 == ne1) {
  5350. i11 = 0;
  5351. if (++i12 == ne2) {
  5352. i12 = 0;
  5353. if (++i13 == ne3) {
  5354. i13 = 0;
  5355. }
  5356. }
  5357. }
  5358. }
  5359. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5360. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5361. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5362. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5363. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5364. if (++i10 == ne00) {
  5365. i10 = 0;
  5366. if (++i11 == ne01) {
  5367. i11 = 0;
  5368. if (++i12 == ne02) {
  5369. i12 = 0;
  5370. if (++i13 == ne03) {
  5371. i13 = 0;
  5372. }
  5373. }
  5374. }
  5375. }
  5376. }
  5377. }
  5378. i10 += ne00 * (ne01 - ir1);
  5379. while (i10 >= ne0) {
  5380. i10 -= ne0;
  5381. if (++i11 == ne1) {
  5382. i11 = 0;
  5383. if (++i12 == ne2) {
  5384. i12 = 0;
  5385. if (++i13 == ne3) {
  5386. i13 = 0;
  5387. }
  5388. }
  5389. }
  5390. }
  5391. }
  5392. }
  5393. } else if (dst->type == GGML_TYPE_F32) {
  5394. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5395. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5396. i10 += ne00 * ir0;
  5397. while (i10 >= ne0) {
  5398. i10 -= ne0;
  5399. if (++i11 == ne1) {
  5400. i11 = 0;
  5401. if (++i12 == ne2) {
  5402. i12 = 0;
  5403. if (++i13 == ne3) {
  5404. i13 = 0;
  5405. }
  5406. }
  5407. }
  5408. }
  5409. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5410. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5411. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5412. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5413. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5414. if (++i10 == ne0) {
  5415. i10 = 0;
  5416. if (++i11 == ne1) {
  5417. i11 = 0;
  5418. if (++i12 == ne2) {
  5419. i12 = 0;
  5420. if (++i13 == ne3) {
  5421. i13 = 0;
  5422. }
  5423. }
  5424. }
  5425. }
  5426. }
  5427. }
  5428. i10 += ne00 * (ne01 - ir1);
  5429. while (i10 >= ne0) {
  5430. i10 -= ne0;
  5431. if (++i11 == ne1) {
  5432. i11 = 0;
  5433. if (++i12 == ne2) {
  5434. i12 = 0;
  5435. if (++i13 == ne3) {
  5436. i13 = 0;
  5437. }
  5438. }
  5439. }
  5440. }
  5441. }
  5442. }
  5443. } else {
  5444. GGML_ASSERT(false); // TODO: implement
  5445. }
  5446. }
  5447. static void ggml_compute_forward_dup_f32(
  5448. const struct ggml_compute_params * params,
  5449. const struct ggml_tensor * src0,
  5450. struct ggml_tensor * dst) {
  5451. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5453. return;
  5454. }
  5455. GGML_TENSOR_UNARY_OP_LOCALS
  5456. const int ith = params->ith; // thread index
  5457. const int nth = params->nth; // number of threads
  5458. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5459. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5460. return;
  5461. }
  5462. // parallelize by rows
  5463. const int nr = ne01;
  5464. // number of rows per thread
  5465. const int dr = (nr + nth - 1) / nth;
  5466. // row range for this thread
  5467. const int ir0 = dr * ith;
  5468. const int ir1 = MIN(ir0 + dr, nr);
  5469. if (src0->type == dst->type &&
  5470. ne00 == ne0 &&
  5471. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5472. // copy by rows
  5473. const size_t rs = ne00*nb00;
  5474. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5475. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5476. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5477. memcpy(
  5478. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5479. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5480. rs);
  5481. }
  5482. }
  5483. }
  5484. return;
  5485. }
  5486. if (ggml_is_contiguous(dst)) {
  5487. // TODO: simplify
  5488. if (nb00 == sizeof(float)) {
  5489. if (dst->type == GGML_TYPE_F32) {
  5490. size_t id = 0;
  5491. const size_t rs = ne00 * nb00;
  5492. char * dst_ptr = (char *) dst->data;
  5493. for (int i03 = 0; i03 < ne03; i03++) {
  5494. for (int i02 = 0; i02 < ne02; i02++) {
  5495. id += rs * ir0;
  5496. for (int i01 = ir0; i01 < ir1; i01++) {
  5497. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5498. memcpy(dst_ptr + id, src0_ptr, rs);
  5499. id += rs;
  5500. }
  5501. id += rs * (ne01 - ir1);
  5502. }
  5503. }
  5504. } else if (type_traits[dst->type].from_float) {
  5505. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5506. size_t id = 0;
  5507. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5508. char * dst_ptr = (char *) dst->data;
  5509. for (int i03 = 0; i03 < ne03; i03++) {
  5510. for (int i02 = 0; i02 < ne02; i02++) {
  5511. id += rs * ir0;
  5512. for (int i01 = ir0; i01 < ir1; i01++) {
  5513. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5514. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5515. id += rs;
  5516. }
  5517. id += rs * (ne01 - ir1);
  5518. }
  5519. }
  5520. } else {
  5521. GGML_ASSERT(false); // TODO: implement
  5522. }
  5523. } else {
  5524. //printf("%s: this is not optimal - fix me\n", __func__);
  5525. if (dst->type == GGML_TYPE_F32) {
  5526. size_t id = 0;
  5527. float * dst_ptr = (float *) dst->data;
  5528. for (int i03 = 0; i03 < ne03; i03++) {
  5529. for (int i02 = 0; i02 < ne02; i02++) {
  5530. id += ne00 * ir0;
  5531. for (int i01 = ir0; i01 < ir1; i01++) {
  5532. for (int i00 = 0; i00 < ne00; i00++) {
  5533. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5534. dst_ptr[id] = *src0_ptr;
  5535. id++;
  5536. }
  5537. }
  5538. id += ne00 * (ne01 - ir1);
  5539. }
  5540. }
  5541. } else if (dst->type == GGML_TYPE_F16) {
  5542. size_t id = 0;
  5543. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5544. for (int i03 = 0; i03 < ne03; i03++) {
  5545. for (int i02 = 0; i02 < ne02; i02++) {
  5546. id += ne00 * ir0;
  5547. for (int i01 = ir0; i01 < ir1; i01++) {
  5548. for (int i00 = 0; i00 < ne00; i00++) {
  5549. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5550. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5551. id++;
  5552. }
  5553. }
  5554. id += ne00 * (ne01 - ir1);
  5555. }
  5556. }
  5557. } else {
  5558. GGML_ASSERT(false); // TODO: implement
  5559. }
  5560. }
  5561. return;
  5562. }
  5563. // dst counters
  5564. int64_t i10 = 0;
  5565. int64_t i11 = 0;
  5566. int64_t i12 = 0;
  5567. int64_t i13 = 0;
  5568. if (dst->type == GGML_TYPE_F32) {
  5569. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5570. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5571. i10 += ne00 * ir0;
  5572. while (i10 >= ne0) {
  5573. i10 -= ne0;
  5574. if (++i11 == ne1) {
  5575. i11 = 0;
  5576. if (++i12 == ne2) {
  5577. i12 = 0;
  5578. if (++i13 == ne3) {
  5579. i13 = 0;
  5580. }
  5581. }
  5582. }
  5583. }
  5584. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5585. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5586. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5587. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5588. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5589. if (++i10 == ne0) {
  5590. i10 = 0;
  5591. if (++i11 == ne1) {
  5592. i11 = 0;
  5593. if (++i12 == ne2) {
  5594. i12 = 0;
  5595. if (++i13 == ne3) {
  5596. i13 = 0;
  5597. }
  5598. }
  5599. }
  5600. }
  5601. }
  5602. }
  5603. i10 += ne00 * (ne01 - ir1);
  5604. while (i10 >= ne0) {
  5605. i10 -= ne0;
  5606. if (++i11 == ne1) {
  5607. i11 = 0;
  5608. if (++i12 == ne2) {
  5609. i12 = 0;
  5610. if (++i13 == ne3) {
  5611. i13 = 0;
  5612. }
  5613. }
  5614. }
  5615. }
  5616. }
  5617. }
  5618. } else if (dst->type == GGML_TYPE_F16) {
  5619. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5620. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5621. i10 += ne00 * ir0;
  5622. while (i10 >= ne0) {
  5623. i10 -= ne0;
  5624. if (++i11 == ne1) {
  5625. i11 = 0;
  5626. if (++i12 == ne2) {
  5627. i12 = 0;
  5628. if (++i13 == ne3) {
  5629. i13 = 0;
  5630. }
  5631. }
  5632. }
  5633. }
  5634. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5635. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5636. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5637. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5638. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5639. if (++i10 == ne0) {
  5640. i10 = 0;
  5641. if (++i11 == ne1) {
  5642. i11 = 0;
  5643. if (++i12 == ne2) {
  5644. i12 = 0;
  5645. if (++i13 == ne3) {
  5646. i13 = 0;
  5647. }
  5648. }
  5649. }
  5650. }
  5651. }
  5652. }
  5653. i10 += ne00 * (ne01 - ir1);
  5654. while (i10 >= ne0) {
  5655. i10 -= ne0;
  5656. if (++i11 == ne1) {
  5657. i11 = 0;
  5658. if (++i12 == ne2) {
  5659. i12 = 0;
  5660. if (++i13 == ne3) {
  5661. i13 = 0;
  5662. }
  5663. }
  5664. }
  5665. }
  5666. }
  5667. }
  5668. } else {
  5669. GGML_ASSERT(false); // TODO: implement
  5670. }
  5671. }
  5672. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5673. static void ggml_compute_forward_dup_bytes(
  5674. const struct ggml_compute_params * params,
  5675. const struct ggml_tensor * src0,
  5676. struct ggml_tensor * dst) {
  5677. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5678. GGML_ASSERT(src0->type == dst->type);
  5679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5680. return;
  5681. }
  5682. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5683. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5684. return;
  5685. }
  5686. GGML_TENSOR_UNARY_OP_LOCALS;
  5687. const size_t type_size = ggml_type_size(src0->type);
  5688. const int ith = params->ith; // thread index
  5689. const int nth = params->nth; // number of threads
  5690. // parallelize by rows
  5691. const int nr = ne01;
  5692. // number of rows per thread
  5693. const int dr = (nr + nth - 1) / nth;
  5694. // row range for this thread
  5695. const int ir0 = dr * ith;
  5696. const int ir1 = MIN(ir0 + dr, nr);
  5697. if (src0->type == dst->type &&
  5698. ne00 == ne0 &&
  5699. nb00 == type_size && nb0 == type_size) {
  5700. // copy by rows
  5701. const size_t rs = ne00 * type_size;
  5702. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5703. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5704. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5705. memcpy(
  5706. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5707. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5708. rs);
  5709. }
  5710. }
  5711. }
  5712. return;
  5713. }
  5714. if (ggml_is_contiguous(dst)) {
  5715. size_t id = 0;
  5716. char * dst_ptr = (char *) dst->data;
  5717. const size_t rs = ne00 * type_size;
  5718. if (nb00 == type_size) {
  5719. // src0 is contigous on first dimension, copy by rows
  5720. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5721. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5722. id += rs * ir0;
  5723. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5724. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5725. memcpy(dst_ptr + id, src0_ptr, rs);
  5726. id += rs;
  5727. }
  5728. id += rs * (ne01 - ir1);
  5729. }
  5730. }
  5731. } else {
  5732. //printf("%s: this is not optimal - fix me\n", __func__);
  5733. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5734. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5735. id += rs * ir0;
  5736. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5737. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5738. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5739. memcpy(dst_ptr + id, src0_ptr, type_size);
  5740. id += type_size;
  5741. }
  5742. }
  5743. id += rs * (ne01 - ir1);
  5744. }
  5745. }
  5746. }
  5747. return;
  5748. }
  5749. // dst counters
  5750. int64_t i10 = 0;
  5751. int64_t i11 = 0;
  5752. int64_t i12 = 0;
  5753. int64_t i13 = 0;
  5754. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5755. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5756. i10 += ne00 * ir0;
  5757. while (i10 >= ne0) {
  5758. i10 -= ne0;
  5759. if (++i11 == ne1) {
  5760. i11 = 0;
  5761. if (++i12 == ne2) {
  5762. i12 = 0;
  5763. if (++i13 == ne3) {
  5764. i13 = 0;
  5765. }
  5766. }
  5767. }
  5768. }
  5769. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5770. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5771. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5772. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5773. memcpy(dst_ptr, src0_ptr, type_size);
  5774. if (++i10 == ne0) {
  5775. i10 = 0;
  5776. if (++i11 == ne1) {
  5777. i11 = 0;
  5778. if (++i12 == ne2) {
  5779. i12 = 0;
  5780. if (++i13 == ne3) {
  5781. i13 = 0;
  5782. }
  5783. }
  5784. }
  5785. }
  5786. }
  5787. }
  5788. i10 += ne00 * (ne01 - ir1);
  5789. while (i10 >= ne0) {
  5790. i10 -= ne0;
  5791. if (++i11 == ne1) {
  5792. i11 = 0;
  5793. if (++i12 == ne2) {
  5794. i12 = 0;
  5795. if (++i13 == ne3) {
  5796. i13 = 0;
  5797. }
  5798. }
  5799. }
  5800. }
  5801. }
  5802. }
  5803. }
  5804. static void ggml_compute_forward_dup(
  5805. const struct ggml_compute_params * params,
  5806. const struct ggml_tensor * src0,
  5807. struct ggml_tensor * dst) {
  5808. if (src0->type == dst->type) {
  5809. ggml_compute_forward_dup_bytes(params, src0, dst);
  5810. return;
  5811. }
  5812. switch (src0->type) {
  5813. case GGML_TYPE_F16:
  5814. {
  5815. ggml_compute_forward_dup_f16(params, src0, dst);
  5816. } break;
  5817. case GGML_TYPE_F32:
  5818. {
  5819. ggml_compute_forward_dup_f32(params, src0, dst);
  5820. } break;
  5821. default:
  5822. {
  5823. GGML_ASSERT(false);
  5824. } break;
  5825. }
  5826. }
  5827. // ggml_compute_forward_add
  5828. static void ggml_compute_forward_add_f32(
  5829. const struct ggml_compute_params * params,
  5830. const struct ggml_tensor * src0,
  5831. const struct ggml_tensor * src1,
  5832. struct ggml_tensor * dst) {
  5833. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5834. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5835. return;
  5836. }
  5837. const int ith = params->ith;
  5838. const int nth = params->nth;
  5839. const int nr = ggml_nrows(src0);
  5840. GGML_TENSOR_BINARY_OP_LOCALS
  5841. GGML_ASSERT( nb0 == sizeof(float));
  5842. GGML_ASSERT(nb00 == sizeof(float));
  5843. // rows per thread
  5844. const int dr = (nr + nth - 1)/nth;
  5845. // row range for this thread
  5846. const int ir0 = dr*ith;
  5847. const int ir1 = MIN(ir0 + dr, nr);
  5848. if (nb10 == sizeof(float)) {
  5849. for (int ir = ir0; ir < ir1; ++ir) {
  5850. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5851. const int64_t i03 = ir/(ne02*ne01);
  5852. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5853. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5854. const int64_t i13 = i03 % ne13;
  5855. const int64_t i12 = i02 % ne12;
  5856. const int64_t i11 = i01 % ne11;
  5857. const int64_t nr0 = ne00 / ne10;
  5858. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5859. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5860. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5861. for (int64_t r = 0; r < nr0; ++r) {
  5862. #ifdef GGML_USE_ACCELERATE
  5863. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5864. #else
  5865. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5866. #endif
  5867. }
  5868. }
  5869. } else {
  5870. // src1 is not contiguous
  5871. for (int ir = ir0; ir < ir1; ++ir) {
  5872. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5873. const int64_t i03 = ir/(ne02*ne01);
  5874. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5875. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5876. const int64_t i13 = i03 % ne13;
  5877. const int64_t i12 = i02 % ne12;
  5878. const int64_t i11 = i01 % ne11;
  5879. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5880. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5881. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5882. const int64_t i10 = i0 % ne10;
  5883. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5884. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5885. }
  5886. }
  5887. }
  5888. }
  5889. static void ggml_compute_forward_add_f16_f32(
  5890. const struct ggml_compute_params * params,
  5891. const struct ggml_tensor * src0,
  5892. const struct ggml_tensor * src1,
  5893. struct ggml_tensor * dst) {
  5894. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5895. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5896. return;
  5897. }
  5898. const int ith = params->ith;
  5899. const int nth = params->nth;
  5900. const int nr = ggml_nrows(src0);
  5901. GGML_TENSOR_BINARY_OP_LOCALS
  5902. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5903. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5904. if (dst->type == GGML_TYPE_F32) {
  5905. GGML_ASSERT( nb0 == sizeof(float));
  5906. }
  5907. else {
  5908. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5909. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5910. }
  5911. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5912. // rows per thread
  5913. const int dr = (nr + nth - 1)/nth;
  5914. // row range for this thread
  5915. const int ir0 = dr*ith;
  5916. const int ir1 = MIN(ir0 + dr, nr);
  5917. if (nb10 == sizeof(float)) {
  5918. if (dst->type == GGML_TYPE_F16) {
  5919. for (int ir = ir0; ir < ir1; ++ir) {
  5920. // src0, src1 and dst are same shape => same indices
  5921. const int i3 = ir/(ne2*ne1);
  5922. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5923. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5924. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5925. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5926. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5927. for (int i = 0; i < ne0; i++) {
  5928. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5929. }
  5930. }
  5931. } else {
  5932. for (int ir = ir0; ir < ir1; ++ir) {
  5933. // src0, src1 and dst are same shape => same indices
  5934. const int i3 = ir/(ne2*ne1);
  5935. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5936. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5937. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5938. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5939. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5940. for (int i = 0; i < ne0; i++) {
  5941. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5942. }
  5943. }
  5944. }
  5945. }
  5946. else {
  5947. // src1 is not contiguous
  5948. GGML_ASSERT(false);
  5949. }
  5950. }
  5951. static void ggml_compute_forward_add_f16_f16(
  5952. const struct ggml_compute_params * params,
  5953. const struct ggml_tensor * src0,
  5954. const struct ggml_tensor * src1,
  5955. struct ggml_tensor * dst) {
  5956. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5957. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5958. return;
  5959. }
  5960. const int ith = params->ith;
  5961. const int nth = params->nth;
  5962. const int nr = ggml_nrows(src0);
  5963. GGML_TENSOR_BINARY_OP_LOCALS
  5964. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5965. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5966. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5967. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5968. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5969. // rows per thread
  5970. const int dr = (nr + nth - 1)/nth;
  5971. // row range for this thread
  5972. const int ir0 = dr*ith;
  5973. const int ir1 = MIN(ir0 + dr, nr);
  5974. if (nb10 == sizeof(ggml_fp16_t)) {
  5975. for (int ir = ir0; ir < ir1; ++ir) {
  5976. // src0, src1 and dst are same shape => same indices
  5977. const int i3 = ir/(ne2*ne1);
  5978. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5979. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5980. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5981. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5982. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5983. for (int i = 0; i < ne0; i++) {
  5984. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5985. }
  5986. }
  5987. }
  5988. else {
  5989. // src1 is not contiguous
  5990. GGML_ASSERT(false);
  5991. }
  5992. }
  5993. static void ggml_compute_forward_add_q_f32(
  5994. const struct ggml_compute_params * params,
  5995. const struct ggml_tensor * src0,
  5996. const struct ggml_tensor * src1,
  5997. struct ggml_tensor * dst) {
  5998. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5999. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6000. return;
  6001. }
  6002. const int nr = ggml_nrows(src0);
  6003. GGML_TENSOR_BINARY_OP_LOCALS
  6004. const int ith = params->ith;
  6005. const int nth = params->nth;
  6006. const enum ggml_type type = src0->type;
  6007. const enum ggml_type dtype = dst->type;
  6008. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6009. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6010. // we don't support permuted src0 or src1
  6011. GGML_ASSERT(nb00 == ggml_type_size(type));
  6012. GGML_ASSERT(nb10 == sizeof(float));
  6013. // dst cannot be transposed or permuted
  6014. GGML_ASSERT(nb0 <= nb1);
  6015. GGML_ASSERT(nb1 <= nb2);
  6016. GGML_ASSERT(nb2 <= nb3);
  6017. GGML_ASSERT(ggml_is_quantized(src0->type));
  6018. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6019. // rows per thread
  6020. const int dr = (nr + nth - 1)/nth;
  6021. // row range for this thread
  6022. const int ir0 = dr*ith;
  6023. const int ir1 = MIN(ir0 + dr, nr);
  6024. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6025. for (int ir = ir0; ir < ir1; ++ir) {
  6026. // src0 indices
  6027. const int i03 = ir/(ne02*ne01);
  6028. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6029. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6030. // src1 and dst are same shape as src0 => same indices
  6031. const int i13 = i03;
  6032. const int i12 = i02;
  6033. const int i11 = i01;
  6034. const int i3 = i03;
  6035. const int i2 = i02;
  6036. const int i1 = i01;
  6037. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6038. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6039. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6040. assert(ne00 % 32 == 0);
  6041. // unquantize row from src0 to temp buffer
  6042. dequantize_row_q(src0_row, wdata, ne00);
  6043. // add src1
  6044. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6045. // quantize row to dst
  6046. if (quantize_row_q != NULL) {
  6047. quantize_row_q(wdata, dst_row, ne00);
  6048. } else {
  6049. memcpy(dst_row, wdata, ne0*nb0);
  6050. }
  6051. }
  6052. }
  6053. static void ggml_compute_forward_add(
  6054. const struct ggml_compute_params * params,
  6055. const struct ggml_tensor * src0,
  6056. const struct ggml_tensor * src1,
  6057. struct ggml_tensor * dst) {
  6058. switch (src0->type) {
  6059. case GGML_TYPE_F32:
  6060. {
  6061. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6062. } break;
  6063. case GGML_TYPE_F16:
  6064. {
  6065. if (src1->type == GGML_TYPE_F16) {
  6066. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6067. }
  6068. else if (src1->type == GGML_TYPE_F32) {
  6069. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6070. }
  6071. else {
  6072. GGML_ASSERT(false);
  6073. }
  6074. } break;
  6075. case GGML_TYPE_Q4_0:
  6076. case GGML_TYPE_Q4_1:
  6077. case GGML_TYPE_Q5_0:
  6078. case GGML_TYPE_Q5_1:
  6079. case GGML_TYPE_Q8_0:
  6080. case GGML_TYPE_Q2_K:
  6081. case GGML_TYPE_Q3_K:
  6082. case GGML_TYPE_Q4_K:
  6083. case GGML_TYPE_Q5_K:
  6084. case GGML_TYPE_Q6_K:
  6085. {
  6086. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6087. } break;
  6088. default:
  6089. {
  6090. GGML_ASSERT(false);
  6091. } break;
  6092. }
  6093. }
  6094. // ggml_compute_forward_add1
  6095. static void ggml_compute_forward_add1_f32(
  6096. const struct ggml_compute_params * params,
  6097. const struct ggml_tensor * src0,
  6098. const struct ggml_tensor * src1,
  6099. struct ggml_tensor * dst) {
  6100. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6101. GGML_ASSERT(ggml_is_scalar(src1));
  6102. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6103. return;
  6104. }
  6105. const int ith = params->ith;
  6106. const int nth = params->nth;
  6107. const int nr = ggml_nrows(src0);
  6108. GGML_TENSOR_UNARY_OP_LOCALS
  6109. GGML_ASSERT( nb0 == sizeof(float));
  6110. GGML_ASSERT(nb00 == sizeof(float));
  6111. // rows per thread
  6112. const int dr = (nr + nth - 1)/nth;
  6113. // row range for this thread
  6114. const int ir0 = dr*ith;
  6115. const int ir1 = MIN(ir0 + dr, nr);
  6116. for (int ir = ir0; ir < ir1; ++ir) {
  6117. // src0 and dst are same shape => same indices
  6118. const int i3 = ir/(ne2*ne1);
  6119. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6120. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6121. #ifdef GGML_USE_ACCELERATE
  6122. UNUSED(ggml_vec_add1_f32);
  6123. vDSP_vadd(
  6124. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6125. (float *) ((char *) src1->data), 0,
  6126. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6127. ne0);
  6128. #else
  6129. ggml_vec_add1_f32(ne0,
  6130. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6131. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6132. *(float *) src1->data);
  6133. #endif
  6134. }
  6135. }
  6136. static void ggml_compute_forward_add1_f16_f32(
  6137. const struct ggml_compute_params * params,
  6138. const struct ggml_tensor * src0,
  6139. const struct ggml_tensor * src1,
  6140. struct ggml_tensor * dst) {
  6141. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6142. GGML_ASSERT(ggml_is_scalar(src1));
  6143. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6144. return;
  6145. }
  6146. // scalar to add
  6147. const float v = *(float *) src1->data;
  6148. const int ith = params->ith;
  6149. const int nth = params->nth;
  6150. const int nr = ggml_nrows(src0);
  6151. GGML_TENSOR_UNARY_OP_LOCALS
  6152. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6153. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6154. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6155. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6156. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6157. // rows per thread
  6158. const int dr = (nr + nth - 1)/nth;
  6159. // row range for this thread
  6160. const int ir0 = dr*ith;
  6161. const int ir1 = MIN(ir0 + dr, nr);
  6162. for (int ir = ir0; ir < ir1; ++ir) {
  6163. // src0 and dst are same shape => same indices
  6164. const int i3 = ir/(ne2*ne1);
  6165. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6166. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6167. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6168. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6169. for (int i = 0; i < ne0; i++) {
  6170. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6171. }
  6172. }
  6173. }
  6174. static void ggml_compute_forward_add1_f16_f16(
  6175. const struct ggml_compute_params * params,
  6176. const struct ggml_tensor * src0,
  6177. const struct ggml_tensor * src1,
  6178. struct ggml_tensor * dst) {
  6179. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6180. GGML_ASSERT(ggml_is_scalar(src1));
  6181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6182. return;
  6183. }
  6184. // scalar to add
  6185. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6186. const int ith = params->ith;
  6187. const int nth = params->nth;
  6188. const int nr = ggml_nrows(src0);
  6189. GGML_TENSOR_UNARY_OP_LOCALS
  6190. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6191. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6192. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6193. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6194. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6195. // rows per thread
  6196. const int dr = (nr + nth - 1)/nth;
  6197. // row range for this thread
  6198. const int ir0 = dr*ith;
  6199. const int ir1 = MIN(ir0 + dr, nr);
  6200. for (int ir = ir0; ir < ir1; ++ir) {
  6201. // src0 and dst are same shape => same indices
  6202. const int i3 = ir/(ne2*ne1);
  6203. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6204. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6205. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6206. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6207. for (int i = 0; i < ne0; i++) {
  6208. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6209. }
  6210. }
  6211. }
  6212. static void ggml_compute_forward_add1_q_f32(
  6213. const struct ggml_compute_params * params,
  6214. const struct ggml_tensor * src0,
  6215. const struct ggml_tensor * src1,
  6216. struct ggml_tensor * dst) {
  6217. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6218. GGML_ASSERT(ggml_is_scalar(src1));
  6219. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6220. return;
  6221. }
  6222. // scalar to add
  6223. const float v = *(float *) src1->data;
  6224. const int ith = params->ith;
  6225. const int nth = params->nth;
  6226. const int nr = ggml_nrows(src0);
  6227. GGML_TENSOR_UNARY_OP_LOCALS
  6228. const enum ggml_type type = src0->type;
  6229. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6230. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6231. // we don't support permuted src0
  6232. GGML_ASSERT(nb00 == ggml_type_size(type));
  6233. // dst cannot be transposed or permuted
  6234. GGML_ASSERT(nb0 <= nb1);
  6235. GGML_ASSERT(nb1 <= nb2);
  6236. GGML_ASSERT(nb2 <= nb3);
  6237. GGML_ASSERT(ggml_is_quantized(src0->type));
  6238. GGML_ASSERT(dst->type == src0->type);
  6239. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6240. // rows per thread
  6241. const int dr = (nr + nth - 1)/nth;
  6242. // row range for this thread
  6243. const int ir0 = dr*ith;
  6244. const int ir1 = MIN(ir0 + dr, nr);
  6245. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6246. for (int ir = ir0; ir < ir1; ++ir) {
  6247. // src0 and dst are same shape => same indices
  6248. const int i3 = ir/(ne2*ne1);
  6249. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6250. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6251. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6252. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6253. assert(ne0 % 32 == 0);
  6254. // unquantize row from src0 to temp buffer
  6255. dequantize_row_q(src0_row, wdata, ne0);
  6256. // add src1
  6257. ggml_vec_acc1_f32(ne0, wdata, v);
  6258. // quantize row to dst
  6259. quantize_row_q(wdata, dst_row, ne0);
  6260. }
  6261. }
  6262. static void ggml_compute_forward_add1(
  6263. const struct ggml_compute_params * params,
  6264. const struct ggml_tensor * src0,
  6265. const struct ggml_tensor * src1,
  6266. struct ggml_tensor * dst) {
  6267. switch (src0->type) {
  6268. case GGML_TYPE_F32:
  6269. {
  6270. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6271. } break;
  6272. case GGML_TYPE_F16:
  6273. {
  6274. if (src1->type == GGML_TYPE_F16) {
  6275. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6276. }
  6277. else if (src1->type == GGML_TYPE_F32) {
  6278. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6279. }
  6280. else {
  6281. GGML_ASSERT(false);
  6282. }
  6283. } break;
  6284. case GGML_TYPE_Q4_0:
  6285. case GGML_TYPE_Q4_1:
  6286. case GGML_TYPE_Q5_0:
  6287. case GGML_TYPE_Q5_1:
  6288. case GGML_TYPE_Q8_0:
  6289. case GGML_TYPE_Q8_1:
  6290. case GGML_TYPE_Q2_K:
  6291. case GGML_TYPE_Q3_K:
  6292. case GGML_TYPE_Q4_K:
  6293. case GGML_TYPE_Q5_K:
  6294. case GGML_TYPE_Q6_K:
  6295. {
  6296. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6297. } break;
  6298. default:
  6299. {
  6300. GGML_ASSERT(false);
  6301. } break;
  6302. }
  6303. }
  6304. // ggml_compute_forward_acc
  6305. static void ggml_compute_forward_acc_f32(
  6306. const struct ggml_compute_params * params,
  6307. const struct ggml_tensor * src0,
  6308. const struct ggml_tensor * src1,
  6309. struct ggml_tensor * dst) {
  6310. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6311. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6312. // view src0 and dst with these strides and data offset inbytes during acc
  6313. // nb0 is implicitly element_size because src0 and dst are contiguous
  6314. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6315. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6316. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6317. size_t offset = ((int32_t *) dst->op_params)[3];
  6318. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6319. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6320. // memcpy needs to be synchronized across threads to avoid race conditions.
  6321. // => do it in INIT phase
  6322. memcpy(
  6323. ((char *) dst->data),
  6324. ((char *) src0->data),
  6325. ggml_nbytes(dst));
  6326. }
  6327. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6328. return;
  6329. }
  6330. const int ith = params->ith;
  6331. const int nth = params->nth;
  6332. const int nr = ggml_nrows(src1);
  6333. const int nc = src1->ne[0];
  6334. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6335. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6336. // src0 and dst as viewed during acc
  6337. const size_t nb0 = ggml_element_size(src0);
  6338. const size_t nb00 = nb0;
  6339. const size_t nb01 = nb1;
  6340. const size_t nb02 = nb2;
  6341. const size_t nb03 = nb3;
  6342. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6343. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6344. GGML_ASSERT(nb10 == sizeof(float));
  6345. // rows per thread
  6346. const int dr = (nr + nth - 1)/nth;
  6347. // row range for this thread
  6348. const int ir0 = dr*ith;
  6349. const int ir1 = MIN(ir0 + dr, nr);
  6350. for (int ir = ir0; ir < ir1; ++ir) {
  6351. // src0 and dst are viewed with shape of src1 and offset
  6352. // => same indices
  6353. const int i3 = ir/(ne12*ne11);
  6354. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6355. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6356. #ifdef GGML_USE_ACCELERATE
  6357. vDSP_vadd(
  6358. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6359. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6360. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6361. #else
  6362. ggml_vec_add_f32(nc,
  6363. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6364. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6365. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6366. #endif
  6367. }
  6368. }
  6369. static void ggml_compute_forward_acc(
  6370. const struct ggml_compute_params * params,
  6371. const struct ggml_tensor * src0,
  6372. const struct ggml_tensor * src1,
  6373. struct ggml_tensor * dst) {
  6374. switch (src0->type) {
  6375. case GGML_TYPE_F32:
  6376. {
  6377. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6378. } break;
  6379. case GGML_TYPE_F16:
  6380. case GGML_TYPE_Q4_0:
  6381. case GGML_TYPE_Q4_1:
  6382. case GGML_TYPE_Q5_0:
  6383. case GGML_TYPE_Q5_1:
  6384. case GGML_TYPE_Q8_0:
  6385. case GGML_TYPE_Q8_1:
  6386. case GGML_TYPE_Q2_K:
  6387. case GGML_TYPE_Q3_K:
  6388. case GGML_TYPE_Q4_K:
  6389. case GGML_TYPE_Q5_K:
  6390. case GGML_TYPE_Q6_K:
  6391. default:
  6392. {
  6393. GGML_ASSERT(false);
  6394. } break;
  6395. }
  6396. }
  6397. // ggml_compute_forward_sub
  6398. static void ggml_compute_forward_sub_f32(
  6399. const struct ggml_compute_params * params,
  6400. const struct ggml_tensor * src0,
  6401. const struct ggml_tensor * src1,
  6402. struct ggml_tensor * dst) {
  6403. assert(params->ith == 0);
  6404. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6405. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6406. return;
  6407. }
  6408. const int nr = ggml_nrows(src0);
  6409. GGML_TENSOR_BINARY_OP_LOCALS
  6410. GGML_ASSERT( nb0 == sizeof(float));
  6411. GGML_ASSERT(nb00 == sizeof(float));
  6412. if (nb10 == sizeof(float)) {
  6413. for (int ir = 0; ir < nr; ++ir) {
  6414. // src0, src1 and dst are same shape => same indices
  6415. const int i3 = ir/(ne2*ne1);
  6416. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6417. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6418. #ifdef GGML_USE_ACCELERATE
  6419. vDSP_vsub(
  6420. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6421. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6422. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6423. ne0);
  6424. #else
  6425. ggml_vec_sub_f32(ne0,
  6426. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6427. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6428. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6429. #endif
  6430. // }
  6431. // }
  6432. }
  6433. } else {
  6434. // src1 is not contiguous
  6435. for (int ir = 0; ir < nr; ++ir) {
  6436. // src0, src1 and dst are same shape => same indices
  6437. const int i3 = ir/(ne2*ne1);
  6438. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6439. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6440. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6441. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6442. for (int i0 = 0; i0 < ne0; i0++) {
  6443. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6444. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6445. }
  6446. }
  6447. }
  6448. }
  6449. static void ggml_compute_forward_sub(
  6450. const struct ggml_compute_params * params,
  6451. const struct ggml_tensor * src0,
  6452. const struct ggml_tensor * src1,
  6453. struct ggml_tensor * dst) {
  6454. switch (src0->type) {
  6455. case GGML_TYPE_F32:
  6456. {
  6457. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6458. } break;
  6459. default:
  6460. {
  6461. GGML_ASSERT(false);
  6462. } break;
  6463. }
  6464. }
  6465. // ggml_compute_forward_mul
  6466. static void ggml_compute_forward_mul_f32(
  6467. const struct ggml_compute_params * params,
  6468. const struct ggml_tensor * src0,
  6469. const struct ggml_tensor * src1,
  6470. struct ggml_tensor * dst) {
  6471. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6472. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6473. return;
  6474. }
  6475. const int ith = params->ith;
  6476. const int nth = params->nth;
  6477. #ifdef GGML_USE_CLBLAST
  6478. if (src1->backend == GGML_BACKEND_GPU) {
  6479. // TODO: OpenCL kernel support full broadcast
  6480. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6481. if (ith == 0) {
  6482. ggml_cl_mul(src0, src1, dst);
  6483. }
  6484. return;
  6485. }
  6486. #endif
  6487. const int64_t nr = ggml_nrows(src0);
  6488. GGML_TENSOR_BINARY_OP_LOCALS
  6489. GGML_ASSERT( nb0 == sizeof(float));
  6490. GGML_ASSERT(nb00 == sizeof(float));
  6491. if (nb10 == sizeof(float)) {
  6492. for (int64_t ir = ith; ir < nr; ir += nth) {
  6493. // src0 and dst are same shape => same indices
  6494. const int64_t i03 = ir/(ne02*ne01);
  6495. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6496. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6497. const int64_t i13 = i03 % ne13;
  6498. const int64_t i12 = i02 % ne12;
  6499. const int64_t i11 = i01 % ne11;
  6500. const int64_t nr0 = ne00 / ne10;
  6501. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6502. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6503. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6504. for (int64_t r = 0 ; r < nr0; ++r) {
  6505. #ifdef GGML_USE_ACCELERATE
  6506. UNUSED(ggml_vec_mul_f32);
  6507. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6508. #else
  6509. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6510. #endif
  6511. }
  6512. }
  6513. } else {
  6514. // src1 is not contiguous
  6515. for (int64_t ir = ith; ir < nr; ir += nth) {
  6516. // src0 and dst are same shape => same indices
  6517. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6518. const int64_t i03 = ir/(ne02*ne01);
  6519. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6520. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6521. const int64_t i13 = i03 % ne13;
  6522. const int64_t i12 = i02 % ne12;
  6523. const int64_t i11 = i01 % ne11;
  6524. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6525. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6526. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6527. const int64_t i10 = i0 % ne10;
  6528. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6529. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6530. }
  6531. }
  6532. }
  6533. }
  6534. static void ggml_compute_forward_mul(
  6535. const struct ggml_compute_params * params,
  6536. const struct ggml_tensor * src0,
  6537. const struct ggml_tensor * src1,
  6538. struct ggml_tensor * dst) {
  6539. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6540. switch (src0->type) {
  6541. case GGML_TYPE_F32:
  6542. {
  6543. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6544. } break;
  6545. default:
  6546. {
  6547. GGML_ASSERT(false);
  6548. } break;
  6549. }
  6550. }
  6551. // ggml_compute_forward_div
  6552. static void ggml_compute_forward_div_f32(
  6553. const struct ggml_compute_params * params,
  6554. const struct ggml_tensor * src0,
  6555. const struct ggml_tensor * src1,
  6556. struct ggml_tensor * dst) {
  6557. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6559. return;
  6560. }
  6561. const int ith = params->ith;
  6562. const int nth = params->nth;
  6563. const int64_t nr = ggml_nrows(src0);
  6564. GGML_TENSOR_BINARY_OP_LOCALS
  6565. GGML_ASSERT( nb0 == sizeof(float));
  6566. GGML_ASSERT(nb00 == sizeof(float));
  6567. if (nb10 == sizeof(float)) {
  6568. for (int64_t ir = ith; ir < nr; ir += nth) {
  6569. // src0 and dst are same shape => same indices
  6570. const int64_t i03 = ir/(ne02*ne01);
  6571. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6572. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6573. const int64_t i13 = i03 % ne13;
  6574. const int64_t i12 = i02 % ne12;
  6575. const int64_t i11 = i01 % ne11;
  6576. const int64_t nr0 = ne00 / ne10;
  6577. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6578. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6579. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6580. for (int64_t r = 0; r < nr0; ++r) {
  6581. #ifdef GGML_USE_ACCELERATE
  6582. UNUSED(ggml_vec_div_f32);
  6583. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6584. #else
  6585. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6586. #endif
  6587. }
  6588. }
  6589. } else {
  6590. // src1 is not contiguous
  6591. for (int64_t ir = ith; ir < nr; ir += nth) {
  6592. // src0 and dst are same shape => same indices
  6593. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6594. const int64_t i03 = ir/(ne02*ne01);
  6595. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6596. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6597. const int64_t i13 = i03 % ne13;
  6598. const int64_t i12 = i02 % ne12;
  6599. const int64_t i11 = i01 % ne11;
  6600. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6601. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6602. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6603. const int64_t i10 = i0 % ne10;
  6604. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6605. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6606. }
  6607. }
  6608. }
  6609. }
  6610. static void ggml_compute_forward_div(
  6611. const struct ggml_compute_params * params,
  6612. const struct ggml_tensor * src0,
  6613. const struct ggml_tensor * src1,
  6614. struct ggml_tensor * dst) {
  6615. switch (src0->type) {
  6616. case GGML_TYPE_F32:
  6617. {
  6618. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6619. } break;
  6620. default:
  6621. {
  6622. GGML_ASSERT(false);
  6623. } break;
  6624. }
  6625. }
  6626. // ggml_compute_forward_sqr
  6627. static void ggml_compute_forward_sqr_f32(
  6628. const struct ggml_compute_params * params,
  6629. const struct ggml_tensor * src0,
  6630. struct ggml_tensor * dst) {
  6631. assert(params->ith == 0);
  6632. assert(ggml_are_same_shape(src0, dst));
  6633. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6634. return;
  6635. }
  6636. const int n = ggml_nrows(src0);
  6637. const int nc = src0->ne[0];
  6638. assert( dst->nb[0] == sizeof(float));
  6639. assert(src0->nb[0] == sizeof(float));
  6640. for (int i = 0; i < n; i++) {
  6641. ggml_vec_sqr_f32(nc,
  6642. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6643. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6644. }
  6645. }
  6646. static void ggml_compute_forward_sqr(
  6647. const struct ggml_compute_params * params,
  6648. const struct ggml_tensor * src0,
  6649. struct ggml_tensor * dst) {
  6650. switch (src0->type) {
  6651. case GGML_TYPE_F32:
  6652. {
  6653. ggml_compute_forward_sqr_f32(params, src0, dst);
  6654. } break;
  6655. default:
  6656. {
  6657. GGML_ASSERT(false);
  6658. } break;
  6659. }
  6660. }
  6661. // ggml_compute_forward_sqrt
  6662. static void ggml_compute_forward_sqrt_f32(
  6663. const struct ggml_compute_params * params,
  6664. const struct ggml_tensor * src0,
  6665. struct ggml_tensor * dst) {
  6666. assert(params->ith == 0);
  6667. assert(ggml_are_same_shape(src0, dst));
  6668. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6669. return;
  6670. }
  6671. const int n = ggml_nrows(src0);
  6672. const int nc = src0->ne[0];
  6673. assert( dst->nb[0] == sizeof(float));
  6674. assert(src0->nb[0] == sizeof(float));
  6675. for (int i = 0; i < n; i++) {
  6676. ggml_vec_sqrt_f32(nc,
  6677. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6678. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6679. }
  6680. }
  6681. static void ggml_compute_forward_sqrt(
  6682. const struct ggml_compute_params * params,
  6683. const struct ggml_tensor * src0,
  6684. struct ggml_tensor * dst) {
  6685. switch (src0->type) {
  6686. case GGML_TYPE_F32:
  6687. {
  6688. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6689. } break;
  6690. default:
  6691. {
  6692. GGML_ASSERT(false);
  6693. } break;
  6694. }
  6695. }
  6696. // ggml_compute_forward_log
  6697. static void ggml_compute_forward_log_f32(
  6698. const struct ggml_compute_params * params,
  6699. const struct ggml_tensor * src0,
  6700. struct ggml_tensor * dst) {
  6701. GGML_ASSERT(params->ith == 0);
  6702. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6704. return;
  6705. }
  6706. const int n = ggml_nrows(src0);
  6707. const int nc = src0->ne[0];
  6708. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6709. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6710. for (int i = 0; i < n; i++) {
  6711. ggml_vec_log_f32(nc,
  6712. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6713. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6714. }
  6715. }
  6716. static void ggml_compute_forward_log(
  6717. const struct ggml_compute_params * params,
  6718. const struct ggml_tensor * src0,
  6719. struct ggml_tensor * dst) {
  6720. switch (src0->type) {
  6721. case GGML_TYPE_F32:
  6722. {
  6723. ggml_compute_forward_log_f32(params, src0, dst);
  6724. } break;
  6725. default:
  6726. {
  6727. GGML_ASSERT(false);
  6728. } break;
  6729. }
  6730. }
  6731. // ggml_compute_forward_sum
  6732. static void ggml_compute_forward_sum_f32(
  6733. const struct ggml_compute_params * params,
  6734. const struct ggml_tensor * src0,
  6735. struct ggml_tensor * dst) {
  6736. assert(params->ith == 0);
  6737. assert(ggml_is_scalar(dst));
  6738. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6739. return;
  6740. }
  6741. assert(ggml_is_scalar(dst));
  6742. assert(src0->nb[0] == sizeof(float));
  6743. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6744. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6745. ggml_float sum = 0;
  6746. ggml_float row_sum = 0;
  6747. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6748. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6749. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6750. ggml_vec_sum_f32_ggf(ne00,
  6751. &row_sum,
  6752. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6753. sum += row_sum;
  6754. }
  6755. }
  6756. }
  6757. ((float *) dst->data)[0] = sum;
  6758. }
  6759. static void ggml_compute_forward_sum_f16(
  6760. const struct ggml_compute_params * params,
  6761. const struct ggml_tensor * src0,
  6762. struct ggml_tensor * dst) {
  6763. assert(params->ith == 0);
  6764. assert(ggml_is_scalar(dst));
  6765. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6766. return;
  6767. }
  6768. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6769. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6770. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6771. float sum = 0;
  6772. float row_sum = 0;
  6773. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6774. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6775. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6776. ggml_vec_sum_f16_ggf(ne00,
  6777. &row_sum,
  6778. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6779. sum += row_sum;
  6780. }
  6781. }
  6782. }
  6783. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6784. }
  6785. static void ggml_compute_forward_sum(
  6786. const struct ggml_compute_params * params,
  6787. const struct ggml_tensor * src0,
  6788. struct ggml_tensor * dst) {
  6789. switch (src0->type) {
  6790. case GGML_TYPE_F32:
  6791. {
  6792. ggml_compute_forward_sum_f32(params, src0, dst);
  6793. } break;
  6794. case GGML_TYPE_F16:
  6795. {
  6796. ggml_compute_forward_sum_f16(params, src0, dst);
  6797. } break;
  6798. default:
  6799. {
  6800. GGML_ASSERT(false);
  6801. } break;
  6802. }
  6803. }
  6804. // ggml_compute_forward_sum_rows
  6805. static void ggml_compute_forward_sum_rows_f32(
  6806. const struct ggml_compute_params * params,
  6807. const struct ggml_tensor * src0,
  6808. struct ggml_tensor * dst) {
  6809. GGML_ASSERT(params->ith == 0);
  6810. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6811. return;
  6812. }
  6813. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6814. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6815. GGML_TENSOR_UNARY_OP_LOCALS
  6816. GGML_ASSERT(ne0 == 1);
  6817. GGML_ASSERT(ne1 == ne01);
  6818. GGML_ASSERT(ne2 == ne02);
  6819. GGML_ASSERT(ne3 == ne03);
  6820. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6821. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6822. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6823. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6824. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6825. float row_sum = 0;
  6826. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6827. dst_row[0] = row_sum;
  6828. }
  6829. }
  6830. }
  6831. }
  6832. static void ggml_compute_forward_sum_rows(
  6833. const struct ggml_compute_params * params,
  6834. const struct ggml_tensor * src0,
  6835. struct ggml_tensor * dst) {
  6836. switch (src0->type) {
  6837. case GGML_TYPE_F32:
  6838. {
  6839. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6840. } break;
  6841. default:
  6842. {
  6843. GGML_ASSERT(false);
  6844. } break;
  6845. }
  6846. }
  6847. // ggml_compute_forward_mean
  6848. static void ggml_compute_forward_mean_f32(
  6849. const struct ggml_compute_params * params,
  6850. const struct ggml_tensor * src0,
  6851. struct ggml_tensor * dst) {
  6852. assert(params->ith == 0);
  6853. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6854. return;
  6855. }
  6856. assert(src0->nb[0] == sizeof(float));
  6857. GGML_TENSOR_UNARY_OP_LOCALS
  6858. assert(ne0 == 1);
  6859. assert(ne1 == ne01);
  6860. assert(ne2 == ne02);
  6861. assert(ne3 == ne03);
  6862. UNUSED(ne0);
  6863. UNUSED(ne1);
  6864. UNUSED(ne2);
  6865. UNUSED(ne3);
  6866. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6867. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6868. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6869. ggml_vec_sum_f32(ne00,
  6870. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6871. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6872. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6873. }
  6874. }
  6875. }
  6876. }
  6877. static void ggml_compute_forward_mean(
  6878. const struct ggml_compute_params * params,
  6879. const struct ggml_tensor * src0,
  6880. struct ggml_tensor * dst) {
  6881. switch (src0->type) {
  6882. case GGML_TYPE_F32:
  6883. {
  6884. ggml_compute_forward_mean_f32(params, src0, dst);
  6885. } break;
  6886. default:
  6887. {
  6888. GGML_ASSERT(false);
  6889. } break;
  6890. }
  6891. }
  6892. // ggml_compute_forward_argmax
  6893. static void ggml_compute_forward_argmax_f32(
  6894. const struct ggml_compute_params * params,
  6895. const struct ggml_tensor * src0,
  6896. struct ggml_tensor * dst) {
  6897. assert(params->ith == 0);
  6898. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6899. return;
  6900. }
  6901. assert(src0->nb[0] == sizeof(float));
  6902. assert(dst->nb[0] == sizeof(float));
  6903. const int64_t ne00 = src0->ne[0];
  6904. const int64_t ne01 = src0->ne[1];
  6905. const size_t nb01 = src0->nb[1];
  6906. const size_t nb0 = dst->nb[0];
  6907. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6908. float * src = (float *) ((char *) src0->data + i1*nb01);
  6909. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6910. int v = 0;
  6911. ggml_vec_argmax_f32(ne00, &v, src);
  6912. dst_[0] = v;
  6913. }
  6914. }
  6915. static void ggml_compute_forward_argmax(
  6916. const struct ggml_compute_params * params,
  6917. const struct ggml_tensor * src0,
  6918. struct ggml_tensor * dst) {
  6919. switch (src0->type) {
  6920. case GGML_TYPE_F32:
  6921. {
  6922. ggml_compute_forward_argmax_f32(params, src0, dst);
  6923. } break;
  6924. default:
  6925. {
  6926. GGML_ASSERT(false);
  6927. } break;
  6928. }
  6929. }
  6930. // ggml_compute_forward_repeat
  6931. static void ggml_compute_forward_repeat_f32(
  6932. const struct ggml_compute_params * params,
  6933. const struct ggml_tensor * src0,
  6934. struct ggml_tensor * dst) {
  6935. GGML_ASSERT(params->ith == 0);
  6936. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6937. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6938. return;
  6939. }
  6940. GGML_TENSOR_UNARY_OP_LOCALS
  6941. // guaranteed to be an integer due to the check in ggml_can_repeat
  6942. const int nr0 = (int)(ne0/ne00);
  6943. const int nr1 = (int)(ne1/ne01);
  6944. const int nr2 = (int)(ne2/ne02);
  6945. const int nr3 = (int)(ne3/ne03);
  6946. // TODO: support for transposed / permuted tensors
  6947. GGML_ASSERT(nb0 == sizeof(float));
  6948. GGML_ASSERT(nb00 == sizeof(float));
  6949. // TODO: maybe this is not optimal?
  6950. for (int i3 = 0; i3 < nr3; i3++) {
  6951. for (int k3 = 0; k3 < ne03; k3++) {
  6952. for (int i2 = 0; i2 < nr2; i2++) {
  6953. for (int k2 = 0; k2 < ne02; k2++) {
  6954. for (int i1 = 0; i1 < nr1; i1++) {
  6955. for (int k1 = 0; k1 < ne01; k1++) {
  6956. for (int i0 = 0; i0 < nr0; i0++) {
  6957. ggml_vec_cpy_f32(ne00,
  6958. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6959. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6960. }
  6961. }
  6962. }
  6963. }
  6964. }
  6965. }
  6966. }
  6967. }
  6968. static void ggml_compute_forward_repeat_f16(
  6969. const struct ggml_compute_params * params,
  6970. const struct ggml_tensor * src0,
  6971. struct ggml_tensor * dst) {
  6972. GGML_ASSERT(params->ith == 0);
  6973. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6974. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6975. return;
  6976. }
  6977. GGML_TENSOR_UNARY_OP_LOCALS
  6978. // guaranteed to be an integer due to the check in ggml_can_repeat
  6979. const int nr0 = (int)(ne0/ne00);
  6980. const int nr1 = (int)(ne1/ne01);
  6981. const int nr2 = (int)(ne2/ne02);
  6982. const int nr3 = (int)(ne3/ne03);
  6983. // TODO: support for transposed / permuted tensors
  6984. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6985. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6986. // TODO: maybe this is not optimal?
  6987. for (int i3 = 0; i3 < nr3; i3++) {
  6988. for (int k3 = 0; k3 < ne03; k3++) {
  6989. for (int i2 = 0; i2 < nr2; i2++) {
  6990. for (int k2 = 0; k2 < ne02; k2++) {
  6991. for (int i1 = 0; i1 < nr1; i1++) {
  6992. for (int k1 = 0; k1 < ne01; k1++) {
  6993. for (int i0 = 0; i0 < nr0; i0++) {
  6994. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6995. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6996. // ggml_vec_cpy_f16(ne00, y, x)
  6997. for (int i = 0; i < ne00; ++i) {
  6998. y[i] = x[i];
  6999. }
  7000. }
  7001. }
  7002. }
  7003. }
  7004. }
  7005. }
  7006. }
  7007. }
  7008. static void ggml_compute_forward_repeat(
  7009. const struct ggml_compute_params * params,
  7010. const struct ggml_tensor * src0,
  7011. struct ggml_tensor * dst) {
  7012. switch (src0->type) {
  7013. case GGML_TYPE_F16:
  7014. case GGML_TYPE_I16:
  7015. {
  7016. ggml_compute_forward_repeat_f16(params, src0, dst);
  7017. } break;
  7018. case GGML_TYPE_F32:
  7019. case GGML_TYPE_I32:
  7020. {
  7021. ggml_compute_forward_repeat_f32(params, src0, dst);
  7022. } break;
  7023. default:
  7024. {
  7025. GGML_ASSERT(false);
  7026. } break;
  7027. }
  7028. }
  7029. // ggml_compute_forward_repeat_back
  7030. static void ggml_compute_forward_repeat_back_f32(
  7031. const struct ggml_compute_params * params,
  7032. const struct ggml_tensor * src0,
  7033. struct ggml_tensor * dst) {
  7034. GGML_ASSERT(params->ith == 0);
  7035. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7036. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7037. return;
  7038. }
  7039. GGML_TENSOR_UNARY_OP_LOCALS
  7040. // guaranteed to be an integer due to the check in ggml_can_repeat
  7041. const int nr0 = (int)(ne00/ne0);
  7042. const int nr1 = (int)(ne01/ne1);
  7043. const int nr2 = (int)(ne02/ne2);
  7044. const int nr3 = (int)(ne03/ne3);
  7045. // TODO: support for transposed / permuted tensors
  7046. GGML_ASSERT(nb0 == sizeof(float));
  7047. GGML_ASSERT(nb00 == sizeof(float));
  7048. if (ggml_is_contiguous(dst)) {
  7049. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7050. } else {
  7051. for (int k3 = 0; k3 < ne3; k3++) {
  7052. for (int k2 = 0; k2 < ne2; k2++) {
  7053. for (int k1 = 0; k1 < ne1; k1++) {
  7054. ggml_vec_set_f32(ne0,
  7055. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7056. 0);
  7057. }
  7058. }
  7059. }
  7060. }
  7061. // TODO: maybe this is not optimal?
  7062. for (int i3 = 0; i3 < nr3; i3++) {
  7063. for (int k3 = 0; k3 < ne3; k3++) {
  7064. for (int i2 = 0; i2 < nr2; i2++) {
  7065. for (int k2 = 0; k2 < ne2; k2++) {
  7066. for (int i1 = 0; i1 < nr1; i1++) {
  7067. for (int k1 = 0; k1 < ne1; k1++) {
  7068. for (int i0 = 0; i0 < nr0; i0++) {
  7069. ggml_vec_acc_f32(ne0,
  7070. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7071. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7072. }
  7073. }
  7074. }
  7075. }
  7076. }
  7077. }
  7078. }
  7079. }
  7080. static void ggml_compute_forward_repeat_back(
  7081. const struct ggml_compute_params * params,
  7082. const struct ggml_tensor * src0,
  7083. struct ggml_tensor * dst) {
  7084. switch (src0->type) {
  7085. case GGML_TYPE_F32:
  7086. {
  7087. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7088. } break;
  7089. default:
  7090. {
  7091. GGML_ASSERT(false);
  7092. } break;
  7093. }
  7094. }
  7095. // ggml_compute_forward_concat
  7096. static void ggml_compute_forward_concat_f32(
  7097. const struct ggml_compute_params * params,
  7098. const struct ggml_tensor * src0,
  7099. const struct ggml_tensor * src1,
  7100. struct ggml_tensor * dst) {
  7101. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7102. return;
  7103. }
  7104. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7105. const int ith = params->ith;
  7106. const int nth = params->nth;
  7107. GGML_TENSOR_BINARY_OP_LOCALS
  7108. // TODO: support for transposed / permuted tensors
  7109. GGML_ASSERT(nb0 == sizeof(float));
  7110. GGML_ASSERT(nb00 == sizeof(float));
  7111. GGML_ASSERT(nb10 == sizeof(float));
  7112. for (int i3 = 0; i3 < ne3; i3++) {
  7113. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7114. if (i2 < ne02) { // src0
  7115. for (int i1 = 0; i1 < ne1; i1++) {
  7116. for (int i0 = 0; i0 < ne0; i0++) {
  7117. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7118. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7119. *y = *x;
  7120. }
  7121. }
  7122. } // src1
  7123. else {
  7124. for (int i1 = 0; i1 < ne1; i1++) {
  7125. for (int i0 = 0; i0 < ne0; i0++) {
  7126. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7127. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7128. *y = *x;
  7129. }
  7130. }
  7131. }
  7132. }
  7133. }
  7134. }
  7135. static void ggml_compute_forward_concat(
  7136. const struct ggml_compute_params* params,
  7137. const struct ggml_tensor* src0,
  7138. const struct ggml_tensor* src1,
  7139. struct ggml_tensor* dst) {
  7140. switch (src0->type) {
  7141. case GGML_TYPE_F32:
  7142. case GGML_TYPE_I32:
  7143. {
  7144. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7145. } break;
  7146. default:
  7147. {
  7148. GGML_ASSERT(false);
  7149. } break;
  7150. }
  7151. }
  7152. // ggml_compute_forward_abs
  7153. static void ggml_compute_forward_abs_f32(
  7154. const struct ggml_compute_params * params,
  7155. const struct ggml_tensor * src0,
  7156. struct ggml_tensor * dst) {
  7157. assert(params->ith == 0);
  7158. assert(ggml_are_same_shape(src0, dst));
  7159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7160. return;
  7161. }
  7162. const int n = ggml_nrows(src0);
  7163. const int nc = src0->ne[0];
  7164. assert(dst->nb[0] == sizeof(float));
  7165. assert(src0->nb[0] == sizeof(float));
  7166. for (int i = 0; i < n; i++) {
  7167. ggml_vec_abs_f32(nc,
  7168. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7169. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7170. }
  7171. }
  7172. static void ggml_compute_forward_abs(
  7173. const struct ggml_compute_params * params,
  7174. const struct ggml_tensor * src0,
  7175. struct ggml_tensor * dst) {
  7176. switch (src0->type) {
  7177. case GGML_TYPE_F32:
  7178. {
  7179. ggml_compute_forward_abs_f32(params, src0, dst);
  7180. } break;
  7181. default:
  7182. {
  7183. GGML_ASSERT(false);
  7184. } break;
  7185. }
  7186. }
  7187. // ggml_compute_forward_sgn
  7188. static void ggml_compute_forward_sgn_f32(
  7189. const struct ggml_compute_params * params,
  7190. const struct ggml_tensor * src0,
  7191. struct ggml_tensor * dst) {
  7192. assert(params->ith == 0);
  7193. assert(ggml_are_same_shape(src0, dst));
  7194. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7195. return;
  7196. }
  7197. const int n = ggml_nrows(src0);
  7198. const int nc = src0->ne[0];
  7199. assert(dst->nb[0] == sizeof(float));
  7200. assert(src0->nb[0] == sizeof(float));
  7201. for (int i = 0; i < n; i++) {
  7202. ggml_vec_sgn_f32(nc,
  7203. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7204. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7205. }
  7206. }
  7207. static void ggml_compute_forward_sgn(
  7208. const struct ggml_compute_params * params,
  7209. const struct ggml_tensor * src0,
  7210. struct ggml_tensor * dst) {
  7211. switch (src0->type) {
  7212. case GGML_TYPE_F32:
  7213. {
  7214. ggml_compute_forward_sgn_f32(params, src0, dst);
  7215. } break;
  7216. default:
  7217. {
  7218. GGML_ASSERT(false);
  7219. } break;
  7220. }
  7221. }
  7222. // ggml_compute_forward_neg
  7223. static void ggml_compute_forward_neg_f32(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. struct ggml_tensor * dst) {
  7227. assert(params->ith == 0);
  7228. assert(ggml_are_same_shape(src0, dst));
  7229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7230. return;
  7231. }
  7232. const int n = ggml_nrows(src0);
  7233. const int nc = src0->ne[0];
  7234. assert(dst->nb[0] == sizeof(float));
  7235. assert(src0->nb[0] == sizeof(float));
  7236. for (int i = 0; i < n; i++) {
  7237. ggml_vec_neg_f32(nc,
  7238. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7239. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7240. }
  7241. }
  7242. static void ggml_compute_forward_neg(
  7243. const struct ggml_compute_params * params,
  7244. const struct ggml_tensor * src0,
  7245. struct ggml_tensor * dst) {
  7246. switch (src0->type) {
  7247. case GGML_TYPE_F32:
  7248. {
  7249. ggml_compute_forward_neg_f32(params, src0, dst);
  7250. } break;
  7251. default:
  7252. {
  7253. GGML_ASSERT(false);
  7254. } break;
  7255. }
  7256. }
  7257. // ggml_compute_forward_step
  7258. static void ggml_compute_forward_step_f32(
  7259. const struct ggml_compute_params * params,
  7260. const struct ggml_tensor * src0,
  7261. struct ggml_tensor * dst) {
  7262. assert(params->ith == 0);
  7263. assert(ggml_are_same_shape(src0, dst));
  7264. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7265. return;
  7266. }
  7267. const int n = ggml_nrows(src0);
  7268. const int nc = src0->ne[0];
  7269. assert(dst->nb[0] == sizeof(float));
  7270. assert(src0->nb[0] == sizeof(float));
  7271. for (int i = 0; i < n; i++) {
  7272. ggml_vec_step_f32(nc,
  7273. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7274. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7275. }
  7276. }
  7277. static void ggml_compute_forward_step(
  7278. const struct ggml_compute_params * params,
  7279. const struct ggml_tensor * src0,
  7280. struct ggml_tensor * dst) {
  7281. switch (src0->type) {
  7282. case GGML_TYPE_F32:
  7283. {
  7284. ggml_compute_forward_step_f32(params, src0, dst);
  7285. } break;
  7286. default:
  7287. {
  7288. GGML_ASSERT(false);
  7289. } break;
  7290. }
  7291. }
  7292. // ggml_compute_forward_tanh
  7293. static void ggml_compute_forward_tanh_f32(
  7294. const struct ggml_compute_params * params,
  7295. const struct ggml_tensor * src0,
  7296. struct ggml_tensor * dst) {
  7297. assert(params->ith == 0);
  7298. assert(ggml_are_same_shape(src0, dst));
  7299. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7300. return;
  7301. }
  7302. const int n = ggml_nrows(src0);
  7303. const int nc = src0->ne[0];
  7304. assert(dst->nb[0] == sizeof(float));
  7305. assert(src0->nb[0] == sizeof(float));
  7306. for (int i = 0; i < n; i++) {
  7307. ggml_vec_tanh_f32(nc,
  7308. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7309. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7310. }
  7311. }
  7312. static void ggml_compute_forward_tanh(
  7313. const struct ggml_compute_params * params,
  7314. const struct ggml_tensor * src0,
  7315. struct ggml_tensor * dst) {
  7316. switch (src0->type) {
  7317. case GGML_TYPE_F32:
  7318. {
  7319. ggml_compute_forward_tanh_f32(params, src0, dst);
  7320. } break;
  7321. default:
  7322. {
  7323. GGML_ASSERT(false);
  7324. } break;
  7325. }
  7326. }
  7327. // ggml_compute_forward_elu
  7328. static void ggml_compute_forward_elu_f32(
  7329. const struct ggml_compute_params * params,
  7330. const struct ggml_tensor * src0,
  7331. struct ggml_tensor * dst) {
  7332. assert(params->ith == 0);
  7333. assert(ggml_are_same_shape(src0, dst));
  7334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7335. return;
  7336. }
  7337. const int n = ggml_nrows(src0);
  7338. const int nc = src0->ne[0];
  7339. assert(dst->nb[0] == sizeof(float));
  7340. assert(src0->nb[0] == sizeof(float));
  7341. for (int i = 0; i < n; i++) {
  7342. ggml_vec_elu_f32(nc,
  7343. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7344. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7345. }
  7346. }
  7347. static void ggml_compute_forward_elu(
  7348. const struct ggml_compute_params * params,
  7349. const struct ggml_tensor * src0,
  7350. struct ggml_tensor * dst) {
  7351. switch (src0->type) {
  7352. case GGML_TYPE_F32:
  7353. {
  7354. ggml_compute_forward_elu_f32(params, src0, dst);
  7355. } break;
  7356. default:
  7357. {
  7358. GGML_ASSERT(false);
  7359. } break;
  7360. }
  7361. }
  7362. // ggml_compute_forward_relu
  7363. static void ggml_compute_forward_relu_f32(
  7364. const struct ggml_compute_params * params,
  7365. const struct ggml_tensor * src0,
  7366. struct ggml_tensor * dst) {
  7367. assert(params->ith == 0);
  7368. assert(ggml_are_same_shape(src0, dst));
  7369. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7370. return;
  7371. }
  7372. const int n = ggml_nrows(src0);
  7373. const int nc = src0->ne[0];
  7374. assert(dst->nb[0] == sizeof(float));
  7375. assert(src0->nb[0] == sizeof(float));
  7376. for (int i = 0; i < n; i++) {
  7377. ggml_vec_relu_f32(nc,
  7378. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7379. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7380. }
  7381. }
  7382. static void ggml_compute_forward_relu(
  7383. const struct ggml_compute_params * params,
  7384. const struct ggml_tensor * src0,
  7385. struct ggml_tensor * dst) {
  7386. switch (src0->type) {
  7387. case GGML_TYPE_F32:
  7388. {
  7389. ggml_compute_forward_relu_f32(params, src0, dst);
  7390. } break;
  7391. default:
  7392. {
  7393. GGML_ASSERT(false);
  7394. } break;
  7395. }
  7396. }
  7397. // ggml_compute_forward_gelu
  7398. static void ggml_compute_forward_gelu_f32(
  7399. const struct ggml_compute_params * params,
  7400. const struct ggml_tensor * src0,
  7401. struct ggml_tensor * dst) {
  7402. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7403. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7404. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7405. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7406. return;
  7407. }
  7408. const int ith = params->ith;
  7409. const int nth = params->nth;
  7410. const int nc = src0->ne[0];
  7411. const int nr = ggml_nrows(src0);
  7412. // rows per thread
  7413. const int dr = (nr + nth - 1)/nth;
  7414. // row range for this thread
  7415. const int ir0 = dr*ith;
  7416. const int ir1 = MIN(ir0 + dr, nr);
  7417. for (int i1 = ir0; i1 < ir1; i1++) {
  7418. ggml_vec_gelu_f32(nc,
  7419. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7420. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7421. #ifndef NDEBUG
  7422. for (int k = 0; k < nc; k++) {
  7423. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7424. UNUSED(x);
  7425. assert(!isnan(x));
  7426. assert(!isinf(x));
  7427. }
  7428. #endif
  7429. }
  7430. }
  7431. static void ggml_compute_forward_gelu(
  7432. const struct ggml_compute_params * params,
  7433. const struct ggml_tensor * src0,
  7434. struct ggml_tensor * dst) {
  7435. switch (src0->type) {
  7436. case GGML_TYPE_F32:
  7437. {
  7438. ggml_compute_forward_gelu_f32(params, src0, dst);
  7439. } break;
  7440. default:
  7441. {
  7442. GGML_ASSERT(false);
  7443. } break;
  7444. }
  7445. }
  7446. // ggml_compute_forward_gelu_quick
  7447. static void ggml_compute_forward_gelu_quick_f32(
  7448. const struct ggml_compute_params * params,
  7449. const struct ggml_tensor * src0,
  7450. struct ggml_tensor * dst) {
  7451. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7452. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7453. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7454. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7455. return;
  7456. }
  7457. const int ith = params->ith;
  7458. const int nth = params->nth;
  7459. const int nc = src0->ne[0];
  7460. const int nr = ggml_nrows(src0);
  7461. // rows per thread
  7462. const int dr = (nr + nth - 1)/nth;
  7463. // row range for this thread
  7464. const int ir0 = dr*ith;
  7465. const int ir1 = MIN(ir0 + dr, nr);
  7466. for (int i1 = ir0; i1 < ir1; i1++) {
  7467. ggml_vec_gelu_quick_f32(nc,
  7468. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7469. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7470. #ifndef NDEBUG
  7471. for (int k = 0; k < nc; k++) {
  7472. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7473. UNUSED(x);
  7474. assert(!isnan(x));
  7475. assert(!isinf(x));
  7476. }
  7477. #endif
  7478. }
  7479. }
  7480. static void ggml_compute_forward_gelu_quick(
  7481. const struct ggml_compute_params * params,
  7482. const struct ggml_tensor * src0,
  7483. struct ggml_tensor * dst) {
  7484. switch (src0->type) {
  7485. case GGML_TYPE_F32:
  7486. {
  7487. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7488. } break;
  7489. default:
  7490. {
  7491. GGML_ASSERT(false);
  7492. } break;
  7493. }
  7494. }
  7495. // ggml_compute_forward_silu
  7496. static void ggml_compute_forward_silu_f32(
  7497. const struct ggml_compute_params * params,
  7498. const struct ggml_tensor * src0,
  7499. struct ggml_tensor * dst) {
  7500. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7501. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7502. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7503. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7504. return;
  7505. }
  7506. const int ith = params->ith;
  7507. const int nth = params->nth;
  7508. const int nc = src0->ne[0];
  7509. const int nr = ggml_nrows(src0);
  7510. // rows per thread
  7511. const int dr = (nr + nth - 1)/nth;
  7512. // row range for this thread
  7513. const int ir0 = dr*ith;
  7514. const int ir1 = MIN(ir0 + dr, nr);
  7515. for (int i1 = ir0; i1 < ir1; i1++) {
  7516. ggml_vec_silu_f32(nc,
  7517. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7518. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7519. #ifndef NDEBUG
  7520. for (int k = 0; k < nc; k++) {
  7521. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7522. UNUSED(x);
  7523. assert(!isnan(x));
  7524. assert(!isinf(x));
  7525. }
  7526. #endif
  7527. }
  7528. }
  7529. static void ggml_compute_forward_silu(
  7530. const struct ggml_compute_params * params,
  7531. const struct ggml_tensor * src0,
  7532. struct ggml_tensor * dst) {
  7533. switch (src0->type) {
  7534. case GGML_TYPE_F32:
  7535. {
  7536. ggml_compute_forward_silu_f32(params, src0, dst);
  7537. } break;
  7538. default:
  7539. {
  7540. GGML_ASSERT(false);
  7541. } break;
  7542. }
  7543. }
  7544. // ggml_compute_forward_leaky_relu
  7545. static void ggml_compute_forward_leaky_relu_f32(
  7546. const struct ggml_compute_params * params,
  7547. const struct ggml_tensor * src0,
  7548. struct ggml_tensor * dst) {
  7549. assert(params->ith == 0);
  7550. assert(ggml_are_same_shape(src0, dst));
  7551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7552. return;
  7553. }
  7554. const int n = ggml_nrows(src0);
  7555. const int nc = src0->ne[0];
  7556. float negative_slope;
  7557. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7558. assert(dst->nb[0] == sizeof(float));
  7559. assert(src0->nb[0] == sizeof(float));
  7560. for (int i = 0; i < n; i++) {
  7561. ggml_vec_leaky_relu_f32(nc,
  7562. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7563. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7564. }
  7565. }
  7566. static void ggml_compute_forward_leaky_relu(
  7567. const struct ggml_compute_params * params,
  7568. const struct ggml_tensor * src0,
  7569. struct ggml_tensor * dst) {
  7570. switch (src0->type) {
  7571. case GGML_TYPE_F32:
  7572. {
  7573. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7574. } break;
  7575. default:
  7576. {
  7577. GGML_ASSERT(false);
  7578. } break;
  7579. }
  7580. }
  7581. // ggml_compute_forward_silu_back
  7582. static void ggml_compute_forward_silu_back_f32(
  7583. const struct ggml_compute_params * params,
  7584. const struct ggml_tensor * src0,
  7585. const struct ggml_tensor * grad,
  7586. struct ggml_tensor * dst) {
  7587. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7588. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7589. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7590. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7591. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7592. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7593. return;
  7594. }
  7595. const int ith = params->ith;
  7596. const int nth = params->nth;
  7597. const int nc = src0->ne[0];
  7598. const int nr = ggml_nrows(src0);
  7599. // rows per thread
  7600. const int dr = (nr + nth - 1)/nth;
  7601. // row range for this thread
  7602. const int ir0 = dr*ith;
  7603. const int ir1 = MIN(ir0 + dr, nr);
  7604. for (int i1 = ir0; i1 < ir1; i1++) {
  7605. ggml_vec_silu_backward_f32(nc,
  7606. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7607. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7608. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7609. #ifndef NDEBUG
  7610. for (int k = 0; k < nc; k++) {
  7611. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7612. UNUSED(x);
  7613. assert(!isnan(x));
  7614. assert(!isinf(x));
  7615. }
  7616. #endif
  7617. }
  7618. }
  7619. static void ggml_compute_forward_silu_back(
  7620. const struct ggml_compute_params * params,
  7621. const struct ggml_tensor * src0,
  7622. const struct ggml_tensor * grad,
  7623. struct ggml_tensor * dst) {
  7624. switch (src0->type) {
  7625. case GGML_TYPE_F32:
  7626. {
  7627. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7628. } break;
  7629. default:
  7630. {
  7631. GGML_ASSERT(false);
  7632. } break;
  7633. }
  7634. }
  7635. // ggml_compute_forward_norm
  7636. static void ggml_compute_forward_norm_f32(
  7637. const struct ggml_compute_params * params,
  7638. const struct ggml_tensor * src0,
  7639. struct ggml_tensor * dst) {
  7640. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7641. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7642. return;
  7643. }
  7644. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7645. const int ith = params->ith;
  7646. const int nth = params->nth;
  7647. GGML_TENSOR_UNARY_OP_LOCALS
  7648. float eps;
  7649. memcpy(&eps, dst->op_params, sizeof(float));
  7650. GGML_ASSERT(eps > 0.0f);
  7651. // TODO: optimize
  7652. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7653. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7654. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7655. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7656. ggml_float sum = 0.0;
  7657. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7658. sum += (ggml_float)x[i00];
  7659. }
  7660. float mean = sum/ne00;
  7661. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7662. ggml_float sum2 = 0.0;
  7663. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7664. float v = x[i00] - mean;
  7665. y[i00] = v;
  7666. sum2 += (ggml_float)(v*v);
  7667. }
  7668. float variance = sum2/ne00;
  7669. const float scale = 1.0f/sqrtf(variance + eps);
  7670. ggml_vec_scale_f32(ne00, y, scale);
  7671. }
  7672. }
  7673. }
  7674. }
  7675. static void ggml_compute_forward_norm(
  7676. const struct ggml_compute_params * params,
  7677. const struct ggml_tensor * src0,
  7678. struct ggml_tensor * dst) {
  7679. switch (src0->type) {
  7680. case GGML_TYPE_F32:
  7681. {
  7682. ggml_compute_forward_norm_f32(params, src0, dst);
  7683. } break;
  7684. default:
  7685. {
  7686. GGML_ASSERT(false);
  7687. } break;
  7688. }
  7689. }
  7690. // ggml_compute_forward_group_rms_norm
  7691. static void ggml_compute_forward_rms_norm_f32(
  7692. const struct ggml_compute_params * params,
  7693. const struct ggml_tensor * src0,
  7694. struct ggml_tensor * dst) {
  7695. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7696. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7697. return;
  7698. }
  7699. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7700. const int ith = params->ith;
  7701. const int nth = params->nth;
  7702. GGML_TENSOR_UNARY_OP_LOCALS
  7703. float eps;
  7704. memcpy(&eps, dst->op_params, sizeof(float));
  7705. GGML_ASSERT(eps > 0.0f);
  7706. // TODO: optimize
  7707. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7708. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7709. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7710. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7711. ggml_float sum = 0.0;
  7712. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7713. sum += (ggml_float)(x[i00] * x[i00]);
  7714. }
  7715. const float mean = sum/ne00;
  7716. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7717. memcpy(y, x, ne00 * sizeof(float));
  7718. // for (int i00 = 0; i00 < ne00; i00++) {
  7719. // y[i00] = x[i00];
  7720. // }
  7721. const float scale = 1.0f/sqrtf(mean + eps);
  7722. ggml_vec_scale_f32(ne00, y, scale);
  7723. }
  7724. }
  7725. }
  7726. }
  7727. static void ggml_compute_forward_rms_norm(
  7728. const struct ggml_compute_params * params,
  7729. const struct ggml_tensor * src0,
  7730. struct ggml_tensor * dst) {
  7731. switch (src0->type) {
  7732. case GGML_TYPE_F32:
  7733. {
  7734. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7735. } break;
  7736. default:
  7737. {
  7738. GGML_ASSERT(false);
  7739. } break;
  7740. }
  7741. }
  7742. static void ggml_compute_forward_rms_norm_back_f32(
  7743. const struct ggml_compute_params * params,
  7744. const struct ggml_tensor * src0,
  7745. const struct ggml_tensor * src1,
  7746. struct ggml_tensor * dst) {
  7747. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7748. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7749. return;
  7750. }
  7751. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7752. const int ith = params->ith;
  7753. const int nth = params->nth;
  7754. GGML_TENSOR_BINARY_OP_LOCALS
  7755. float eps;
  7756. memcpy(&eps, dst->op_params, sizeof(float));
  7757. // TODO: optimize
  7758. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7759. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7760. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7761. // src1 is same shape as src0 => same indices
  7762. const int64_t i11 = i01;
  7763. const int64_t i12 = i02;
  7764. const int64_t i13 = i03;
  7765. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7766. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7767. ggml_float sum_xx = 0.0;
  7768. ggml_float sum_xdz = 0.0;
  7769. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7770. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7771. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7772. }
  7773. //const float mean = (float)(sum_xx)/ne00;
  7774. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7775. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7776. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7777. // we could cache rms from forward pass to improve performance.
  7778. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7779. //const float rms = sqrtf(mean_eps);
  7780. const float rrms = 1.0f / sqrtf(mean_eps);
  7781. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7782. {
  7783. // z = rms_norm(x)
  7784. //
  7785. // rms_norm(src0) =
  7786. // scale(
  7787. // src0,
  7788. // div(
  7789. // 1,
  7790. // sqrt(
  7791. // add(
  7792. // scale(
  7793. // sum(
  7794. // sqr(
  7795. // src0)),
  7796. // (1.0/N)),
  7797. // eps))));
  7798. // postorder:
  7799. // ## op args grad
  7800. // 00 param src0 grad[#00]
  7801. // 01 const 1
  7802. // 02 sqr (#00) grad[#02]
  7803. // 03 sum (#02) grad[#03]
  7804. // 04 const 1/N
  7805. // 05 scale (#03, #04) grad[#05]
  7806. // 06 const eps
  7807. // 07 add (#05, #06) grad[#07]
  7808. // 08 sqrt (#07) grad[#08]
  7809. // 09 div (#01,#08) grad[#09]
  7810. // 10 scale (#00,#09) grad[#10]
  7811. //
  7812. // backward pass, given grad[#10]
  7813. // #10: scale
  7814. // grad[#00] += scale(grad[#10],#09)
  7815. // grad[#09] += sum(mul(grad[#10],#00))
  7816. // #09: div
  7817. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7818. // #08: sqrt
  7819. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7820. // #07: add
  7821. // grad[#05] += grad[#07]
  7822. // #05: scale
  7823. // grad[#03] += scale(grad[#05],#04)
  7824. // #03: sum
  7825. // grad[#02] += repeat(grad[#03], #02)
  7826. // #02:
  7827. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7828. //
  7829. // substitute and simplify:
  7830. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7831. // grad[#02] = repeat(grad[#03], #02)
  7832. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7833. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7834. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7835. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7836. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7837. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7838. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7839. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7840. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7841. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7842. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7843. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7844. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7845. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7846. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7847. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7848. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7849. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7850. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7851. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7852. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7853. // a = b*c + d*e
  7854. // a = b*c*f/f + d*e*f/f
  7855. // a = (b*c*f + d*e*f)*(1/f)
  7856. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7857. // a = (b + d*e/c)*c
  7858. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7859. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7860. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7861. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7862. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7863. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7864. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7865. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7866. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7867. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7868. }
  7869. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7870. // post-order:
  7871. // dx := x
  7872. // dx := scale(dx,-mean_xdz/mean_eps)
  7873. // dx := add(dx, dz)
  7874. // dx := scale(dx, rrms)
  7875. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7876. ggml_vec_cpy_f32 (ne00, dx, x);
  7877. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7878. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7879. ggml_vec_acc_f32 (ne00, dx, dz);
  7880. ggml_vec_scale_f32(ne00, dx, rrms);
  7881. }
  7882. }
  7883. }
  7884. }
  7885. static void ggml_compute_forward_rms_norm_back(
  7886. const struct ggml_compute_params * params,
  7887. const struct ggml_tensor * src0,
  7888. const struct ggml_tensor * src1,
  7889. struct ggml_tensor * dst) {
  7890. switch (src0->type) {
  7891. case GGML_TYPE_F32:
  7892. {
  7893. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7894. } break;
  7895. default:
  7896. {
  7897. GGML_ASSERT(false);
  7898. } break;
  7899. }
  7900. }
  7901. // ggml_compute_forward_group_norm
  7902. static void ggml_compute_forward_group_norm_f32(
  7903. const struct ggml_compute_params * params,
  7904. const struct ggml_tensor * src0,
  7905. struct ggml_tensor * dst) {
  7906. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7907. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7908. return;
  7909. }
  7910. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7911. const int ith = params->ith;
  7912. const int nth = params->nth;
  7913. GGML_TENSOR_UNARY_OP_LOCALS
  7914. const float eps = 1e-6f; // TODO: make this a parameter
  7915. // TODO: optimize
  7916. int n_channels = src0->ne[2];
  7917. int n_groups = dst->op_params[0];
  7918. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7919. for (int i = ith; i < n_groups; i+=nth) {
  7920. int start = i * n_channels_per_group;
  7921. int end = start + n_channels_per_group;
  7922. if (end > n_channels) {
  7923. end = n_channels;
  7924. }
  7925. int step = end - start;
  7926. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7927. ggml_float sum = 0.0;
  7928. for (int64_t i02 = start; i02 < end; i02++) {
  7929. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7930. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7931. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7932. sum += (ggml_float)x[i00];
  7933. }
  7934. }
  7935. }
  7936. float mean = sum / (ne00 * ne01 * step);
  7937. ggml_float sum2 = 0.0;
  7938. for (int64_t i02 = start; i02 < end; i02++) {
  7939. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7940. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7941. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7942. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7943. float v = x[i00] - mean;
  7944. y[i00] = v;
  7945. sum2 += (ggml_float)(v * v);
  7946. }
  7947. }
  7948. }
  7949. float variance = sum2 / (ne00 * ne01 * step);
  7950. const float scale = 1.0f / sqrtf(variance + eps);
  7951. for (int64_t i02 = start; i02 < end; i02++) {
  7952. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7953. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7954. ggml_vec_scale_f32(ne00, y, scale);
  7955. }
  7956. }
  7957. }
  7958. }
  7959. }
  7960. static void ggml_compute_forward_group_norm(
  7961. const struct ggml_compute_params * params,
  7962. const struct ggml_tensor * src0,
  7963. struct ggml_tensor * dst) {
  7964. switch (src0->type) {
  7965. case GGML_TYPE_F32:
  7966. {
  7967. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7968. } break;
  7969. default:
  7970. {
  7971. GGML_ASSERT(false);
  7972. } break;
  7973. }
  7974. }
  7975. // ggml_compute_forward_mul_mat
  7976. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7977. // helper function to determine if it is better to use BLAS or not
  7978. // for large matrices, BLAS is faster
  7979. static bool ggml_compute_forward_mul_mat_use_blas(
  7980. const struct ggml_tensor * src0,
  7981. const struct ggml_tensor * src1,
  7982. struct ggml_tensor * dst) {
  7983. //const int64_t ne00 = src0->ne[0];
  7984. //const int64_t ne01 = src0->ne[1];
  7985. const int64_t ne10 = src1->ne[0];
  7986. const int64_t ne0 = dst->ne[0];
  7987. const int64_t ne1 = dst->ne[1];
  7988. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  7989. // all the experts for each batch element and the processing would become incredibly slow
  7990. // TODO: find the optimal values for these
  7991. if (dst->op != GGML_OP_MUL_MAT_ID &&
  7992. ggml_is_contiguous(src0) &&
  7993. ggml_is_contiguous(src1) &&
  7994. //src0->type == GGML_TYPE_F32 &&
  7995. src1->type == GGML_TYPE_F32 &&
  7996. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7997. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7998. return true;
  7999. }
  8000. return false;
  8001. }
  8002. #endif
  8003. static void ggml_compute_forward_mul_mat(
  8004. const struct ggml_compute_params * params,
  8005. const struct ggml_tensor * src0,
  8006. const struct ggml_tensor * src1,
  8007. struct ggml_tensor * dst) {
  8008. int64_t t0 = ggml_perf_time_us();
  8009. UNUSED(t0);
  8010. GGML_TENSOR_BINARY_OP_LOCALS
  8011. const int ith = params->ith;
  8012. const int nth = params->nth;
  8013. const enum ggml_type type = src0->type;
  8014. const bool src1_cont = ggml_is_contiguous(src1);
  8015. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8016. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8017. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8018. GGML_ASSERT(ne0 == ne01);
  8019. GGML_ASSERT(ne1 == ne11);
  8020. GGML_ASSERT(ne2 == ne12);
  8021. GGML_ASSERT(ne3 == ne13);
  8022. // we don't support permuted src0 or src1
  8023. GGML_ASSERT(nb00 == ggml_type_size(type));
  8024. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8025. // dst cannot be transposed or permuted
  8026. GGML_ASSERT(nb0 == sizeof(float));
  8027. GGML_ASSERT(nb0 <= nb1);
  8028. GGML_ASSERT(nb1 <= nb2);
  8029. GGML_ASSERT(nb2 <= nb3);
  8030. // broadcast factors
  8031. const int64_t r2 = ne12/ne02;
  8032. const int64_t r3 = ne13/ne03;
  8033. // nb01 >= nb00 - src0 is not transposed
  8034. // compute by src0 rows
  8035. #if defined(GGML_USE_CLBLAST)
  8036. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8037. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8038. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8039. }
  8040. return;
  8041. }
  8042. #endif
  8043. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8044. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8045. if (params->ith != 0) {
  8046. return;
  8047. }
  8048. if (params->type == GGML_TASK_INIT) {
  8049. return;
  8050. }
  8051. if (params->type == GGML_TASK_FINALIZE) {
  8052. return;
  8053. }
  8054. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8055. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8056. // broadcast src0 into src1 across 2nd,3rd dimension
  8057. const int64_t i03 = i13/r3;
  8058. const int64_t i02 = i12/r2;
  8059. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8060. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8061. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8062. if (type != GGML_TYPE_F32) {
  8063. float * const wdata = params->wdata;
  8064. ggml_to_float_t const to_float = type_traits[type].to_float;
  8065. size_t id = 0;
  8066. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8067. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  8068. id += ne00;
  8069. }
  8070. assert(id*sizeof(float) <= params->wsize);
  8071. x = wdata;
  8072. }
  8073. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8074. ne1, ne01, ne10,
  8075. 1.0f, y, ne10,
  8076. x, ne00,
  8077. 0.0f, d, ne01);
  8078. }
  8079. }
  8080. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8081. return;
  8082. }
  8083. #endif
  8084. if (params->type == GGML_TASK_INIT) {
  8085. if (src1->type != vec_dot_type) {
  8086. char * wdata = params->wdata;
  8087. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8088. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8089. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8090. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8091. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8092. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8093. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8094. wdata += row_size;
  8095. }
  8096. }
  8097. }
  8098. }
  8099. return;
  8100. }
  8101. if (params->type == GGML_TASK_FINALIZE) {
  8102. return;
  8103. }
  8104. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8105. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8106. const int64_t nr0 = ne01; // src0 rows
  8107. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8108. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8109. // distribute the thread work across the inner or outer loop based on which one is larger
  8110. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8111. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8112. const int64_t ith0 = ith % nth0;
  8113. const int64_t ith1 = ith / nth0;
  8114. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8115. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8116. const int64_t ir010 = dr0*ith0;
  8117. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8118. const int64_t ir110 = dr1*ith1;
  8119. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8120. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8121. // threads with no work simply yield (not sure if it helps)
  8122. if (ir010 >= ir011 || ir110 >= ir111) {
  8123. sched_yield();
  8124. return;
  8125. }
  8126. assert(ne12 % ne02 == 0);
  8127. assert(ne13 % ne03 == 0);
  8128. // block-tiling attempt
  8129. const int64_t blck_0 = 16;
  8130. const int64_t blck_1 = 16;
  8131. // attempt to reduce false-sharing (does not seem to make a difference)
  8132. float tmp[16];
  8133. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8134. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8135. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8136. const int64_t i13 = (ir1/(ne12*ne1));
  8137. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8138. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8139. // broadcast src0 into src1
  8140. const int64_t i03 = i13/r3;
  8141. const int64_t i02 = i12/r2;
  8142. const int64_t i1 = i11;
  8143. const int64_t i2 = i12;
  8144. const int64_t i3 = i13;
  8145. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8146. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8147. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8148. // the original src1 data pointer, so we should index using the indices directly
  8149. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8150. const char * src1_col = (const char *) wdata +
  8151. (src1_cont || src1->type != vec_dot_type
  8152. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8153. : (i11*nb11 + i12*nb12 + i13*nb13));
  8154. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8155. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8156. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8157. //}
  8158. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8159. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8160. }
  8161. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8162. }
  8163. }
  8164. }
  8165. }
  8166. // ggml_compute_forward_mul_mat_id
  8167. static void ggml_compute_forward_mul_mat_id(
  8168. const struct ggml_compute_params * params,
  8169. const struct ggml_tensor * ids,
  8170. const struct ggml_tensor * src1,
  8171. struct ggml_tensor * dst) {
  8172. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8173. GGML_TENSOR_BINARY_OP_LOCALS
  8174. const int ith = params->ith;
  8175. const int nth = params->nth;
  8176. const enum ggml_type type = src0->type;
  8177. const bool src1_cont = ggml_is_contiguous(src1);
  8178. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8179. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8180. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8181. GGML_ASSERT(ne0 == ne01);
  8182. GGML_ASSERT(ne1 == ne11);
  8183. GGML_ASSERT(ne2 == ne12);
  8184. GGML_ASSERT(ne3 == ne13);
  8185. // we don't support permuted src0 or src1
  8186. GGML_ASSERT(nb00 == ggml_type_size(type));
  8187. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8188. // dst cannot be transposed or permuted
  8189. GGML_ASSERT(nb0 == sizeof(float));
  8190. GGML_ASSERT(nb0 <= nb1);
  8191. GGML_ASSERT(nb1 <= nb2);
  8192. GGML_ASSERT(nb2 <= nb3);
  8193. // broadcast factors
  8194. const int64_t r2 = ne12/ne02;
  8195. const int64_t r3 = ne13/ne03;
  8196. // row groups
  8197. const int id = ggml_get_op_params_i32(dst, 0);
  8198. const int n_as = ggml_get_op_params_i32(dst, 1);
  8199. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8200. (char *) params->wdata :
  8201. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8202. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8203. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8204. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8205. if (params->type == GGML_TASK_INIT) {
  8206. char * wdata = params->wdata;
  8207. if (src1->type != vec_dot_type) {
  8208. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8209. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8210. assert(src1->type == GGML_TYPE_F32);
  8211. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8212. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8213. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8214. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8215. wdata += row_size;
  8216. }
  8217. }
  8218. }
  8219. }
  8220. // initialize matrix_row_counts
  8221. GGML_ASSERT(wdata == wdata_src1_end);
  8222. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8223. // group rows by src0 matrix
  8224. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8225. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8226. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8227. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8228. matrix_row_counts[row_id] += 1;
  8229. }
  8230. return;
  8231. }
  8232. if (params->type == GGML_TASK_FINALIZE) {
  8233. return;
  8234. }
  8235. // compute each matrix multiplication in sequence
  8236. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8237. const int64_t cne1 = matrix_row_counts[cur_a];
  8238. if (cne1 == 0) {
  8239. continue;
  8240. }
  8241. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8242. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8243. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8244. const int64_t nr0 = ne01; // src0 rows
  8245. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8246. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8247. // distribute the thread work across the inner or outer loop based on which one is larger
  8248. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8249. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8250. const int64_t ith0 = ith % nth0;
  8251. const int64_t ith1 = ith / nth0;
  8252. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8253. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8254. const int64_t ir010 = dr0*ith0;
  8255. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8256. const int64_t ir110 = dr1*ith1;
  8257. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8258. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8259. // threads with no work simply yield (not sure if it helps)
  8260. if (ir010 >= ir011 || ir110 >= ir111) {
  8261. sched_yield();
  8262. continue;
  8263. }
  8264. assert(ne12 % ne02 == 0);
  8265. assert(ne13 % ne03 == 0);
  8266. // block-tiling attempt
  8267. const int64_t blck_0 = 16;
  8268. const int64_t blck_1 = 16;
  8269. // attempt to reduce false-sharing (does not seem to make a difference)
  8270. float tmp[16];
  8271. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8272. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8273. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8274. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8275. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8276. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8277. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8278. // broadcast src0 into src1
  8279. const int64_t i03 = i13/r3;
  8280. const int64_t i02 = i12/r2;
  8281. const int64_t i1 = i11;
  8282. const int64_t i2 = i12;
  8283. const int64_t i3 = i13;
  8284. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8285. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8286. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8287. // the original src1 data pointer, so we should index using the indices directly
  8288. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8289. const char * src1_col = (const char *) wdata +
  8290. (src1_cont || src1->type != vec_dot_type
  8291. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8292. : (i11*nb11 + i12*nb12 + i13*nb13));
  8293. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8294. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8295. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8296. //}
  8297. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8298. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8299. }
  8300. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8301. }
  8302. }
  8303. }
  8304. }
  8305. #undef MMID_MATRIX_ROW
  8306. }
  8307. // ggml_compute_forward_out_prod
  8308. static void ggml_compute_forward_out_prod_f32(
  8309. const struct ggml_compute_params * params,
  8310. const struct ggml_tensor * src0,
  8311. const struct ggml_tensor * src1,
  8312. struct ggml_tensor * dst) {
  8313. // int64_t t0 = ggml_perf_time_us();
  8314. // UNUSED(t0);
  8315. GGML_TENSOR_BINARY_OP_LOCALS
  8316. const int ith = params->ith;
  8317. const int nth = params->nth;
  8318. GGML_ASSERT(ne0 == ne00);
  8319. GGML_ASSERT(ne1 == ne10);
  8320. GGML_ASSERT(ne2 == ne02);
  8321. GGML_ASSERT(ne02 == ne12);
  8322. GGML_ASSERT(ne3 == ne13);
  8323. GGML_ASSERT(ne03 == ne13);
  8324. // we don't support permuted src0 or src1
  8325. GGML_ASSERT(nb00 == sizeof(float));
  8326. // dst cannot be transposed or permuted
  8327. GGML_ASSERT(nb0 == sizeof(float));
  8328. // GGML_ASSERT(nb0 <= nb1);
  8329. // GGML_ASSERT(nb1 <= nb2);
  8330. // GGML_ASSERT(nb2 <= nb3);
  8331. // nb01 >= nb00 - src0 is not transposed
  8332. // compute by src0 rows
  8333. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8334. // TODO: #if defined(GGML_USE_CLBLAST)
  8335. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8336. bool use_blas = ggml_is_matrix(src0) &&
  8337. ggml_is_matrix(src1) &&
  8338. ggml_is_contiguous(src0) &&
  8339. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8340. #endif
  8341. if (params->type == GGML_TASK_INIT) {
  8342. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8343. if (use_blas) {
  8344. return;
  8345. }
  8346. #endif
  8347. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8348. return;
  8349. }
  8350. if (params->type == GGML_TASK_FINALIZE) {
  8351. return;
  8352. }
  8353. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8354. if (use_blas) {
  8355. if (params->ith != 0) { // All threads other than the first do no work.
  8356. return;
  8357. }
  8358. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8359. // src0: (k,n)
  8360. // src1: (k,m)
  8361. // dst: (m,n)
  8362. //
  8363. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8364. // Also expressed as (major,minor)
  8365. // a: (m,k): so src1 transposed
  8366. // b: (k,n): so src0
  8367. // c: (m,n)
  8368. //
  8369. // However, if ggml_is_transposed(src1) is true, then
  8370. // src1->data already contains a transposed version, so sgemm mustn't
  8371. // transpose it further.
  8372. int n = src0->ne[0];
  8373. int k = src0->ne[1];
  8374. int m = src1->ne[0];
  8375. int transposeA, lda;
  8376. if (!ggml_is_transposed(src1)) {
  8377. transposeA = CblasTrans;
  8378. lda = m;
  8379. } else {
  8380. transposeA = CblasNoTrans;
  8381. lda = k;
  8382. }
  8383. float * a = (float *) ((char *) src1->data);
  8384. float * b = (float *) ((char *) src0->data);
  8385. float * c = (float *) ((char *) dst->data);
  8386. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8387. return;
  8388. }
  8389. #endif
  8390. // dst[:,:,:,:] = 0
  8391. // for i2,i3:
  8392. // for i1:
  8393. // for i01:
  8394. // for i0:
  8395. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8396. // parallelize by last three dimensions
  8397. // total rows in dst
  8398. const int64_t nr = ne1*ne2*ne3;
  8399. // rows per thread
  8400. const int64_t dr = (nr + nth - 1)/nth;
  8401. // row range for this thread
  8402. const int64_t ir0 = dr*ith;
  8403. const int64_t ir1 = MIN(ir0 + dr, nr);
  8404. // block-tiling attempt
  8405. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8406. const int64_t blck_1 = 16;
  8407. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8408. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8409. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8410. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8411. for (int64_t ir = bir; ir < bir1; ++ir) {
  8412. // dst indices
  8413. const int64_t i3 = ir/(ne2*ne1);
  8414. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8415. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8416. const int64_t i02 = i2;
  8417. const int64_t i03 = i3;
  8418. //const int64_t i10 = i1;
  8419. const int64_t i12 = i2;
  8420. const int64_t i13 = i3;
  8421. #if GGML_VEC_MAD_UNROLL > 2
  8422. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8423. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8424. const int64_t i11 = i01;
  8425. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8426. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8427. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8428. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8429. }
  8430. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8431. const int64_t i11 = i01;
  8432. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8433. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8434. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8435. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8436. }
  8437. #else
  8438. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8439. const int64_t i11 = i01;
  8440. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8441. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8442. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8443. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8444. }
  8445. #endif
  8446. }
  8447. }
  8448. }
  8449. //int64_t t1 = ggml_perf_time_us();
  8450. //static int64_t acc = 0;
  8451. //acc += t1 - t0;
  8452. //if (t1 - t0 > 10) {
  8453. // printf("\n");
  8454. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8455. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8456. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8457. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8458. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8459. //}
  8460. }
  8461. static void ggml_compute_forward_out_prod_q_f32(
  8462. const struct ggml_compute_params * params,
  8463. const struct ggml_tensor * src0,
  8464. const struct ggml_tensor * src1,
  8465. struct ggml_tensor * dst) {
  8466. // int64_t t0 = ggml_perf_time_us();
  8467. // UNUSED(t0);
  8468. GGML_TENSOR_BINARY_OP_LOCALS;
  8469. const int ith = params->ith;
  8470. const int nth = params->nth;
  8471. const enum ggml_type type = src0->type;
  8472. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8473. GGML_ASSERT(ne02 == ne12);
  8474. GGML_ASSERT(ne03 == ne13);
  8475. GGML_ASSERT(ne2 == ne12);
  8476. GGML_ASSERT(ne3 == ne13);
  8477. // we don't support permuted src0 dim0
  8478. GGML_ASSERT(nb00 == ggml_type_size(type));
  8479. // dst dim0 cannot be transposed or permuted
  8480. GGML_ASSERT(nb0 == sizeof(float));
  8481. // GGML_ASSERT(nb0 <= nb1);
  8482. // GGML_ASSERT(nb1 <= nb2);
  8483. // GGML_ASSERT(nb2 <= nb3);
  8484. GGML_ASSERT(ne0 == ne00);
  8485. GGML_ASSERT(ne1 == ne10);
  8486. GGML_ASSERT(ne2 == ne02);
  8487. GGML_ASSERT(ne3 == ne03);
  8488. // nb01 >= nb00 - src0 is not transposed
  8489. // compute by src0 rows
  8490. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8491. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8492. if (params->type == GGML_TASK_INIT) {
  8493. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8494. return;
  8495. }
  8496. if (params->type == GGML_TASK_FINALIZE) {
  8497. return;
  8498. }
  8499. // parallelize by last three dimensions
  8500. // total rows in dst
  8501. const int64_t nr = ne1*ne2*ne3;
  8502. // rows per thread
  8503. const int64_t dr = (nr + nth - 1)/nth;
  8504. // row range for this thread
  8505. const int64_t ir0 = dr*ith;
  8506. const int64_t ir1 = MIN(ir0 + dr, nr);
  8507. // dst[:,:,:,:] = 0
  8508. // for i2,i3:
  8509. // for i1:
  8510. // for i01:
  8511. // for i0:
  8512. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8513. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8514. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8515. // dst indices
  8516. const int64_t i3 = ir/(ne2*ne1);
  8517. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8518. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8519. const int64_t i02 = i2;
  8520. const int64_t i03 = i3;
  8521. //const int64_t i10 = i1;
  8522. const int64_t i12 = i2;
  8523. const int64_t i13 = i3;
  8524. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8525. const int64_t i11 = i01;
  8526. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8527. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8528. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8529. dequantize_row_q(s0, wdata, ne0);
  8530. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8531. }
  8532. }
  8533. //int64_t t1 = ggml_perf_time_us();
  8534. //static int64_t acc = 0;
  8535. //acc += t1 - t0;
  8536. //if (t1 - t0 > 10) {
  8537. // printf("\n");
  8538. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8539. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8540. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8541. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8542. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8543. //}
  8544. }
  8545. static void ggml_compute_forward_out_prod(
  8546. const struct ggml_compute_params * params,
  8547. const struct ggml_tensor * src0,
  8548. const struct ggml_tensor * src1,
  8549. struct ggml_tensor * dst) {
  8550. switch (src0->type) {
  8551. case GGML_TYPE_Q4_0:
  8552. case GGML_TYPE_Q4_1:
  8553. case GGML_TYPE_Q5_0:
  8554. case GGML_TYPE_Q5_1:
  8555. case GGML_TYPE_Q8_0:
  8556. case GGML_TYPE_Q2_K:
  8557. case GGML_TYPE_Q3_K:
  8558. case GGML_TYPE_Q4_K:
  8559. case GGML_TYPE_Q5_K:
  8560. case GGML_TYPE_Q6_K:
  8561. {
  8562. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8563. } break;
  8564. case GGML_TYPE_F16:
  8565. {
  8566. GGML_ASSERT(false); // todo
  8567. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8568. } break;
  8569. case GGML_TYPE_F32:
  8570. {
  8571. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8572. } break;
  8573. default:
  8574. {
  8575. GGML_ASSERT(false);
  8576. } break;
  8577. }
  8578. }
  8579. // ggml_compute_forward_scale
  8580. static void ggml_compute_forward_scale_f32(
  8581. const struct ggml_compute_params * params,
  8582. const struct ggml_tensor * src0,
  8583. struct ggml_tensor * dst) {
  8584. GGML_ASSERT(ggml_is_contiguous(src0));
  8585. GGML_ASSERT(ggml_is_contiguous(dst));
  8586. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8587. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8588. return;
  8589. }
  8590. // scale factor
  8591. float v;
  8592. memcpy(&v, dst->op_params, sizeof(float));
  8593. const int ith = params->ith;
  8594. const int nth = params->nth;
  8595. const int nc = src0->ne[0];
  8596. const int nr = ggml_nrows(src0);
  8597. // rows per thread
  8598. const int dr = (nr + nth - 1)/nth;
  8599. // row range for this thread
  8600. const int ir0 = dr*ith;
  8601. const int ir1 = MIN(ir0 + dr, nr);
  8602. const size_t nb01 = src0->nb[1];
  8603. const size_t nb1 = dst->nb[1];
  8604. for (int i1 = ir0; i1 < ir1; i1++) {
  8605. if (dst->data != src0->data) {
  8606. // src0 is same shape as dst => same indices
  8607. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8608. }
  8609. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8610. }
  8611. }
  8612. static void ggml_compute_forward_scale(
  8613. const struct ggml_compute_params * params,
  8614. const struct ggml_tensor * src0,
  8615. struct ggml_tensor * dst) {
  8616. switch (src0->type) {
  8617. case GGML_TYPE_F32:
  8618. {
  8619. ggml_compute_forward_scale_f32(params, src0, dst);
  8620. } break;
  8621. default:
  8622. {
  8623. GGML_ASSERT(false);
  8624. } break;
  8625. }
  8626. }
  8627. // ggml_compute_forward_set
  8628. static void ggml_compute_forward_set_f32(
  8629. const struct ggml_compute_params * params,
  8630. const struct ggml_tensor * src0,
  8631. const struct ggml_tensor * src1,
  8632. struct ggml_tensor * dst) {
  8633. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8634. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8635. // view src0 and dst with these strides and data offset inbytes during set
  8636. // nb0 is implicitly element_size because src0 and dst are contiguous
  8637. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8638. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8639. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8640. size_t offset = ((int32_t *) dst->op_params)[3];
  8641. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8642. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8643. // memcpy needs to be synchronized across threads to avoid race conditions.
  8644. // => do it in INIT phase
  8645. memcpy(
  8646. ((char *) dst->data),
  8647. ((char *) src0->data),
  8648. ggml_nbytes(dst));
  8649. }
  8650. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8651. return;
  8652. }
  8653. const int ith = params->ith;
  8654. const int nth = params->nth;
  8655. const int nr = ggml_nrows(src1);
  8656. const int nc = src1->ne[0];
  8657. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8658. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8659. // src0 and dst as viewed during set
  8660. const size_t nb0 = ggml_element_size(src0);
  8661. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8662. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8663. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8664. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8665. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8666. GGML_ASSERT(nb10 == sizeof(float));
  8667. // rows per thread
  8668. const int dr = (nr + nth - 1)/nth;
  8669. // row range for this thread
  8670. const int ir0 = dr*ith;
  8671. const int ir1 = MIN(ir0 + dr, nr);
  8672. for (int ir = ir0; ir < ir1; ++ir) {
  8673. // src0 and dst are viewed with shape of src1 and offset
  8674. // => same indices
  8675. const int i3 = ir/(ne12*ne11);
  8676. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8677. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8678. ggml_vec_cpy_f32(nc,
  8679. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8680. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8681. }
  8682. }
  8683. static void ggml_compute_forward_set(
  8684. const struct ggml_compute_params * params,
  8685. const struct ggml_tensor * src0,
  8686. const struct ggml_tensor * src1,
  8687. struct ggml_tensor * dst) {
  8688. switch (src0->type) {
  8689. case GGML_TYPE_F32:
  8690. {
  8691. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8692. } break;
  8693. case GGML_TYPE_F16:
  8694. case GGML_TYPE_Q4_0:
  8695. case GGML_TYPE_Q4_1:
  8696. case GGML_TYPE_Q5_0:
  8697. case GGML_TYPE_Q5_1:
  8698. case GGML_TYPE_Q8_0:
  8699. case GGML_TYPE_Q8_1:
  8700. case GGML_TYPE_Q2_K:
  8701. case GGML_TYPE_Q3_K:
  8702. case GGML_TYPE_Q4_K:
  8703. case GGML_TYPE_Q5_K:
  8704. case GGML_TYPE_Q6_K:
  8705. default:
  8706. {
  8707. GGML_ASSERT(false);
  8708. } break;
  8709. }
  8710. }
  8711. // ggml_compute_forward_cpy
  8712. static void ggml_compute_forward_cpy(
  8713. const struct ggml_compute_params * params,
  8714. const struct ggml_tensor * src0,
  8715. struct ggml_tensor * dst) {
  8716. ggml_compute_forward_dup(params, src0, dst);
  8717. }
  8718. // ggml_compute_forward_cont
  8719. static void ggml_compute_forward_cont(
  8720. const struct ggml_compute_params * params,
  8721. const struct ggml_tensor * src0,
  8722. struct ggml_tensor * dst) {
  8723. ggml_compute_forward_dup(params, src0, dst);
  8724. }
  8725. // ggml_compute_forward_reshape
  8726. static void ggml_compute_forward_reshape(
  8727. const struct ggml_compute_params * params,
  8728. const struct ggml_tensor * src0,
  8729. struct ggml_tensor * dst) {
  8730. // NOP
  8731. UNUSED(params);
  8732. UNUSED(src0);
  8733. UNUSED(dst);
  8734. }
  8735. // ggml_compute_forward_view
  8736. static void ggml_compute_forward_view(
  8737. const struct ggml_compute_params * params,
  8738. const struct ggml_tensor * src0) {
  8739. // NOP
  8740. UNUSED(params);
  8741. UNUSED(src0);
  8742. }
  8743. // ggml_compute_forward_permute
  8744. static void ggml_compute_forward_permute(
  8745. const struct ggml_compute_params * params,
  8746. const struct ggml_tensor * src0) {
  8747. // NOP
  8748. UNUSED(params);
  8749. UNUSED(src0);
  8750. }
  8751. // ggml_compute_forward_transpose
  8752. static void ggml_compute_forward_transpose(
  8753. const struct ggml_compute_params * params,
  8754. const struct ggml_tensor * src0) {
  8755. // NOP
  8756. UNUSED(params);
  8757. UNUSED(src0);
  8758. }
  8759. // ggml_compute_forward_get_rows
  8760. static void ggml_compute_forward_get_rows_q(
  8761. const struct ggml_compute_params * params,
  8762. const struct ggml_tensor * src0,
  8763. const struct ggml_tensor * src1,
  8764. struct ggml_tensor * dst) {
  8765. assert(params->ith == 0);
  8766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8767. return;
  8768. }
  8769. GGML_TENSOR_BINARY_OP_LOCALS
  8770. const int64_t nc = ne00;
  8771. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8772. const enum ggml_type type = src0->type;
  8773. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8774. assert(ne0 == nc);
  8775. assert(ne02 == ne11);
  8776. assert(nb00 == ggml_type_size(type));
  8777. assert(ggml_nrows(dst) == nr);
  8778. // TODO: multi-thread
  8779. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8780. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8781. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8782. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8783. dequantize_row_q(
  8784. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8785. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8786. }
  8787. }
  8788. }
  8789. }
  8790. static void ggml_compute_forward_get_rows_f16(
  8791. const struct ggml_compute_params * params,
  8792. const struct ggml_tensor * src0,
  8793. const struct ggml_tensor * src1,
  8794. struct ggml_tensor * dst) {
  8795. assert(params->ith == 0);
  8796. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8797. return;
  8798. }
  8799. GGML_TENSOR_BINARY_OP_LOCALS
  8800. const int64_t nc = ne00;
  8801. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8802. assert(ne0 == nc);
  8803. assert(ne02 == ne11);
  8804. assert(nb00 == sizeof(ggml_fp16_t));
  8805. assert(ggml_nrows(dst) == nr);
  8806. // TODO: multi-thread
  8807. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8808. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8809. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8810. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8811. ggml_fp16_to_fp32_row(
  8812. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8813. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8814. }
  8815. }
  8816. }
  8817. }
  8818. static void ggml_compute_forward_get_rows_f32(
  8819. const struct ggml_compute_params * params,
  8820. const struct ggml_tensor * src0,
  8821. const struct ggml_tensor * src1,
  8822. struct ggml_tensor * dst) {
  8823. assert(params->ith == 0);
  8824. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8825. return;
  8826. }
  8827. GGML_TENSOR_BINARY_OP_LOCALS
  8828. const int64_t nc = ne00;
  8829. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8830. assert(ne0 == nc);
  8831. assert(ne02 == ne11);
  8832. assert(nb00 == sizeof(float));
  8833. assert(ggml_nrows(dst) == nr);
  8834. // TODO: multi-thread
  8835. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8836. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8837. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8838. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8839. ggml_vec_cpy_f32(nc,
  8840. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8841. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8842. }
  8843. }
  8844. }
  8845. }
  8846. static void ggml_compute_forward_get_rows(
  8847. const struct ggml_compute_params * params,
  8848. const struct ggml_tensor * src0,
  8849. const struct ggml_tensor * src1,
  8850. struct ggml_tensor * dst) {
  8851. switch (src0->type) {
  8852. case GGML_TYPE_Q4_0:
  8853. case GGML_TYPE_Q4_1:
  8854. case GGML_TYPE_Q5_0:
  8855. case GGML_TYPE_Q5_1:
  8856. case GGML_TYPE_Q8_0:
  8857. case GGML_TYPE_Q8_1:
  8858. case GGML_TYPE_Q2_K:
  8859. case GGML_TYPE_Q3_K:
  8860. case GGML_TYPE_Q4_K:
  8861. case GGML_TYPE_Q5_K:
  8862. case GGML_TYPE_Q6_K:
  8863. {
  8864. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8865. } break;
  8866. case GGML_TYPE_F16:
  8867. {
  8868. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8869. } break;
  8870. case GGML_TYPE_F32:
  8871. case GGML_TYPE_I32:
  8872. {
  8873. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8874. } break;
  8875. default:
  8876. {
  8877. GGML_ASSERT(false);
  8878. } break;
  8879. }
  8880. //static bool first = true;
  8881. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8882. //if (first) {
  8883. // first = false;
  8884. //} else {
  8885. // for (int k = 0; k < dst->ne[1]; ++k) {
  8886. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8887. // for (int i = 0; i < 16; ++i) {
  8888. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8889. // }
  8890. // printf("\n");
  8891. // }
  8892. // printf("\n");
  8893. // }
  8894. // printf("\n");
  8895. // exit(0);
  8896. //}
  8897. }
  8898. // ggml_compute_forward_get_rows_back
  8899. static void ggml_compute_forward_get_rows_back_f32_f16(
  8900. const struct ggml_compute_params * params,
  8901. const struct ggml_tensor * src0,
  8902. const struct ggml_tensor * src1,
  8903. struct ggml_tensor * dst) {
  8904. GGML_ASSERT(params->ith == 0);
  8905. GGML_ASSERT(ggml_is_contiguous(dst));
  8906. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8907. if (params->type == GGML_TASK_INIT) {
  8908. memset(dst->data, 0, ggml_nbytes(dst));
  8909. }
  8910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8911. return;
  8912. }
  8913. const int nc = src0->ne[0];
  8914. const int nr = ggml_nelements(src1);
  8915. GGML_ASSERT( dst->ne[0] == nc);
  8916. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8917. for (int i = 0; i < nr; ++i) {
  8918. const int r = ((int32_t *) src1->data)[i];
  8919. for (int j = 0; j < nc; ++j) {
  8920. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8921. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8922. }
  8923. }
  8924. }
  8925. static void ggml_compute_forward_get_rows_back_f32(
  8926. const struct ggml_compute_params * params,
  8927. const struct ggml_tensor * src0,
  8928. const struct ggml_tensor * src1,
  8929. struct ggml_tensor * dst) {
  8930. GGML_ASSERT(params->ith == 0);
  8931. GGML_ASSERT(ggml_is_contiguous(dst));
  8932. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8933. if (params->type == GGML_TASK_INIT) {
  8934. memset(dst->data, 0, ggml_nbytes(dst));
  8935. }
  8936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8937. return;
  8938. }
  8939. const int nc = src0->ne[0];
  8940. const int nr = ggml_nelements(src1);
  8941. GGML_ASSERT( dst->ne[0] == nc);
  8942. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8943. for (int i = 0; i < nr; ++i) {
  8944. const int r = ((int32_t *) src1->data)[i];
  8945. ggml_vec_add_f32(nc,
  8946. (float *) ((char *) dst->data + r*dst->nb[1]),
  8947. (float *) ((char *) dst->data + r*dst->nb[1]),
  8948. (float *) ((char *) src0->data + i*src0->nb[1]));
  8949. }
  8950. }
  8951. static void ggml_compute_forward_get_rows_back(
  8952. const struct ggml_compute_params * params,
  8953. const struct ggml_tensor * src0,
  8954. const struct ggml_tensor * src1,
  8955. struct ggml_tensor * dst) {
  8956. switch (src0->type) {
  8957. case GGML_TYPE_F16:
  8958. {
  8959. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8960. } break;
  8961. case GGML_TYPE_F32:
  8962. {
  8963. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8964. } break;
  8965. default:
  8966. {
  8967. GGML_ASSERT(false);
  8968. } break;
  8969. }
  8970. //static bool first = true;
  8971. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8972. //if (first) {
  8973. // first = false;
  8974. //} else {
  8975. // for (int k = 0; k < dst->ne[1]; ++k) {
  8976. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8977. // for (int i = 0; i < 16; ++i) {
  8978. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8979. // }
  8980. // printf("\n");
  8981. // }
  8982. // printf("\n");
  8983. // }
  8984. // printf("\n");
  8985. // exit(0);
  8986. //}
  8987. }
  8988. // ggml_compute_forward_diag
  8989. static void ggml_compute_forward_diag_f32(
  8990. const struct ggml_compute_params * params,
  8991. const struct ggml_tensor * src0,
  8992. struct ggml_tensor * dst) {
  8993. GGML_ASSERT(params->ith == 0);
  8994. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8995. return;
  8996. }
  8997. // TODO: handle transposed/permuted matrices
  8998. GGML_TENSOR_UNARY_OP_LOCALS
  8999. GGML_ASSERT(ne00 == ne0);
  9000. GGML_ASSERT(ne00 == ne1);
  9001. GGML_ASSERT(ne01 == 1);
  9002. GGML_ASSERT(ne02 == ne2);
  9003. GGML_ASSERT(ne03 == ne3);
  9004. GGML_ASSERT(nb00 == sizeof(float));
  9005. GGML_ASSERT(nb0 == sizeof(float));
  9006. for (int i3 = 0; i3 < ne3; i3++) {
  9007. for (int i2 = 0; i2 < ne2; i2++) {
  9008. for (int i1 = 0; i1 < ne1; i1++) {
  9009. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9010. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9011. for (int i0 = 0; i0 < i1; i0++) {
  9012. d[i0] = 0;
  9013. }
  9014. d[i1] = s[i1];
  9015. for (int i0 = i1+1; i0 < ne0; i0++) {
  9016. d[i0] = 0;
  9017. }
  9018. }
  9019. }
  9020. }
  9021. }
  9022. static void ggml_compute_forward_diag(
  9023. const struct ggml_compute_params * params,
  9024. const struct ggml_tensor * src0,
  9025. struct ggml_tensor * dst) {
  9026. switch (src0->type) {
  9027. case GGML_TYPE_F32:
  9028. {
  9029. ggml_compute_forward_diag_f32(params, src0, dst);
  9030. } break;
  9031. default:
  9032. {
  9033. GGML_ASSERT(false);
  9034. } break;
  9035. }
  9036. }
  9037. // ggml_compute_forward_diag_mask_inf
  9038. static void ggml_compute_forward_diag_mask_f32(
  9039. const struct ggml_compute_params * params,
  9040. const struct ggml_tensor * src0,
  9041. struct ggml_tensor * dst,
  9042. const float value) {
  9043. const int ith = params->ith;
  9044. const int nth = params->nth;
  9045. const int n_past = ((int32_t *) dst->op_params)[0];
  9046. const bool inplace = src0->data == dst->data;
  9047. GGML_ASSERT(n_past >= 0);
  9048. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9049. // memcpy needs to be synchronized across threads to avoid race conditions.
  9050. // => do it in INIT phase
  9051. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9052. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9053. memcpy(
  9054. ((char *) dst->data),
  9055. ((char *) src0->data),
  9056. ggml_nbytes(dst));
  9057. }
  9058. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9059. return;
  9060. }
  9061. // TODO: handle transposed/permuted matrices
  9062. const int n = ggml_nrows(src0);
  9063. const int nc = src0->ne[0];
  9064. const int nr = src0->ne[1];
  9065. const int nz = n/nr;
  9066. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9067. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9068. for (int k = 0; k < nz; k++) {
  9069. for (int j = ith; j < nr; j += nth) {
  9070. for (int i = n_past; i < nc; i++) {
  9071. if (i > n_past + j) {
  9072. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9073. }
  9074. }
  9075. }
  9076. }
  9077. }
  9078. static void ggml_compute_forward_diag_mask_inf(
  9079. const struct ggml_compute_params * params,
  9080. const struct ggml_tensor * src0,
  9081. struct ggml_tensor * dst) {
  9082. switch (src0->type) {
  9083. case GGML_TYPE_F32:
  9084. {
  9085. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9086. } break;
  9087. default:
  9088. {
  9089. GGML_ASSERT(false);
  9090. } break;
  9091. }
  9092. }
  9093. static void ggml_compute_forward_diag_mask_zero(
  9094. const struct ggml_compute_params * params,
  9095. const struct ggml_tensor * src0,
  9096. struct ggml_tensor * dst) {
  9097. switch (src0->type) {
  9098. case GGML_TYPE_F32:
  9099. {
  9100. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9101. } break;
  9102. default:
  9103. {
  9104. GGML_ASSERT(false);
  9105. } break;
  9106. }
  9107. }
  9108. // ggml_compute_forward_soft_max
  9109. static void ggml_compute_forward_soft_max_f32(
  9110. const struct ggml_compute_params * params,
  9111. const struct ggml_tensor * src0,
  9112. const struct ggml_tensor * src1,
  9113. struct ggml_tensor * dst) {
  9114. assert(ggml_is_contiguous(dst));
  9115. assert(ggml_are_same_shape(src0, dst));
  9116. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9117. return;
  9118. }
  9119. float scale = 1.0f;
  9120. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9121. // TODO: handle transposed/permuted matrices
  9122. const int ith = params->ith;
  9123. const int nth = params->nth;
  9124. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9125. const int nc = src0->ne[0];
  9126. const int nr = ggml_nrows(src0);
  9127. // rows per thread
  9128. const int dr = (nr + nth - 1)/nth;
  9129. // row range for this thread
  9130. const int ir0 = dr*ith;
  9131. const int ir1 = MIN(ir0 + dr, nr);
  9132. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9133. for (int i1 = ir0; i1 < ir1; i1++) {
  9134. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9135. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9136. // broadcast the mask across rows
  9137. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9138. ggml_vec_cpy_f32 (nc, wp, sp);
  9139. ggml_vec_scale_f32(nc, wp, scale);
  9140. if (mp) {
  9141. ggml_vec_acc_f32(nc, wp, mp);
  9142. }
  9143. #ifndef NDEBUG
  9144. for (int i = 0; i < nc; ++i) {
  9145. //printf("p[%d] = %f\n", i, p[i]);
  9146. assert(!isnan(wp[i]));
  9147. }
  9148. #endif
  9149. float max = -INFINITY;
  9150. ggml_vec_max_f32(nc, &max, wp);
  9151. ggml_float sum = 0.0;
  9152. uint16_t scvt;
  9153. for (int i = 0; i < nc; i++) {
  9154. if (wp[i] == -INFINITY) {
  9155. dp[i] = 0.0f;
  9156. } else {
  9157. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9158. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9159. memcpy(&scvt, &s, sizeof(scvt));
  9160. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9161. sum += (ggml_float)val;
  9162. dp[i] = val;
  9163. }
  9164. }
  9165. assert(sum > 0.0);
  9166. sum = 1.0/sum;
  9167. ggml_vec_scale_f32(nc, dp, sum);
  9168. #ifndef NDEBUG
  9169. for (int i = 0; i < nc; ++i) {
  9170. assert(!isnan(dp[i]));
  9171. assert(!isinf(dp[i]));
  9172. }
  9173. #endif
  9174. }
  9175. }
  9176. static void ggml_compute_forward_soft_max(
  9177. const struct ggml_compute_params * params,
  9178. const struct ggml_tensor * src0,
  9179. const struct ggml_tensor * src1,
  9180. struct ggml_tensor * dst) {
  9181. switch (src0->type) {
  9182. case GGML_TYPE_F32:
  9183. {
  9184. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9185. } break;
  9186. default:
  9187. {
  9188. GGML_ASSERT(false);
  9189. } break;
  9190. }
  9191. }
  9192. // ggml_compute_forward_soft_max_back
  9193. static void ggml_compute_forward_soft_max_back_f32(
  9194. const struct ggml_compute_params * params,
  9195. const struct ggml_tensor * src0,
  9196. const struct ggml_tensor * src1,
  9197. struct ggml_tensor * dst) {
  9198. GGML_ASSERT(ggml_is_contiguous(src0));
  9199. GGML_ASSERT(ggml_is_contiguous(src1));
  9200. GGML_ASSERT(ggml_is_contiguous(dst));
  9201. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9202. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9203. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9204. return;
  9205. }
  9206. // TODO: handle transposed/permuted matrices
  9207. const int ith = params->ith;
  9208. const int nth = params->nth;
  9209. const int nc = src0->ne[0];
  9210. const int nr = ggml_nrows(src0);
  9211. // rows per thread
  9212. const int dr = (nr + nth - 1)/nth;
  9213. // row range for this thread
  9214. const int ir0 = dr*ith;
  9215. const int ir1 = MIN(ir0 + dr, nr);
  9216. for (int i1 = ir0; i1 < ir1; i1++) {
  9217. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9218. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9219. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9220. #ifndef NDEBUG
  9221. for (int i = 0; i < nc; ++i) {
  9222. //printf("p[%d] = %f\n", i, p[i]);
  9223. assert(!isnan(dy[i]));
  9224. assert(!isnan(y[i]));
  9225. }
  9226. #endif
  9227. // Jii = yi - yi*yi
  9228. // Jij = -yi*yj
  9229. // J = diag(y)-y.T*y
  9230. // dx = J * dy
  9231. // dxk = sum_i(Jki * dyi)
  9232. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9233. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9234. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9235. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9236. // dxk = -yk * dot(y, dy) + yk*dyk
  9237. // dxk = yk * (- dot(y, dy) + dyk)
  9238. // dxk = yk * (dyk - dot(y, dy))
  9239. //
  9240. // post-order:
  9241. // dot_y_dy := dot(y, dy)
  9242. // dx := dy
  9243. // dx := dx - dot_y_dy
  9244. // dx := dx * y
  9245. // linear runtime, no additional memory
  9246. float dot_y_dy = 0;
  9247. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9248. ggml_vec_cpy_f32 (nc, dx, dy);
  9249. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9250. ggml_vec_mul_f32 (nc, dx, dx, y);
  9251. #ifndef NDEBUG
  9252. for (int i = 0; i < nc; ++i) {
  9253. assert(!isnan(dx[i]));
  9254. assert(!isinf(dx[i]));
  9255. }
  9256. #endif
  9257. }
  9258. }
  9259. static void ggml_compute_forward_soft_max_back(
  9260. const struct ggml_compute_params * params,
  9261. const struct ggml_tensor * src0,
  9262. const struct ggml_tensor * src1,
  9263. struct ggml_tensor * dst) {
  9264. switch (src0->type) {
  9265. case GGML_TYPE_F32:
  9266. {
  9267. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9268. } break;
  9269. default:
  9270. {
  9271. GGML_ASSERT(false);
  9272. } break;
  9273. }
  9274. }
  9275. // ggml_compute_forward_alibi
  9276. static void ggml_compute_forward_alibi_f32(
  9277. const struct ggml_compute_params * params,
  9278. const struct ggml_tensor * src0,
  9279. struct ggml_tensor * dst) {
  9280. assert(params->ith == 0);
  9281. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9282. return;
  9283. }
  9284. //const int n_past = ((int32_t *) dst->op_params)[0];
  9285. const int n_head = ((int32_t *) dst->op_params)[1];
  9286. float max_bias;
  9287. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9288. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9289. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9290. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9291. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9292. const int64_t n = ggml_nrows(src0);
  9293. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9294. const size_t nb0 = src0->nb[0];
  9295. const size_t nb1 = src0->nb[1];
  9296. const size_t nb2 = src0->nb[2];
  9297. //const int nb3 = src0->nb[3];
  9298. GGML_ASSERT(nb0 == sizeof(float));
  9299. GGML_ASSERT(n_head == ne2);
  9300. // add alibi to src0 (KQ_scaled)
  9301. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9302. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9303. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9304. for (int64_t i = 0; i < ne0; i++) {
  9305. for (int64_t j = 0; j < ne1; j++) {
  9306. for (int64_t k = 0; k < ne2_ne3; k++) {
  9307. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9308. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9309. // TODO: k*nb2 or k*nb3
  9310. float m_k;
  9311. if (k < n_heads_log2_floor) {
  9312. m_k = powf(m0, k + 1);
  9313. } else {
  9314. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9315. }
  9316. pdst[0] = i * m_k + src[0];
  9317. }
  9318. }
  9319. }
  9320. }
  9321. static void ggml_compute_forward_alibi_f16(
  9322. const struct ggml_compute_params * params,
  9323. const struct ggml_tensor * src0,
  9324. struct ggml_tensor * dst) {
  9325. assert(params->ith == 0);
  9326. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9327. return;
  9328. }
  9329. //const int n_past = ((int32_t *) dst->op_params)[0];
  9330. const int n_head = ((int32_t *) dst->op_params)[1];
  9331. float max_bias;
  9332. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9333. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9334. const int ne1 = src0->ne[1]; // seq_len_without_past
  9335. const int ne2 = src0->ne[2]; // n_head -> this is k
  9336. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9337. const int n = ggml_nrows(src0);
  9338. const int ne2_ne3 = n/ne1; // ne2*ne3
  9339. const int nb0 = src0->nb[0];
  9340. const int nb1 = src0->nb[1];
  9341. const int nb2 = src0->nb[2];
  9342. //const int nb3 = src0->nb[3];
  9343. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9344. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9345. GGML_ASSERT(n_head == ne2);
  9346. // add alibi to src0 (KQ_scaled)
  9347. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9348. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9349. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9350. for (int i = 0; i < ne0; i++) {
  9351. for (int j = 0; j < ne1; j++) {
  9352. for (int k = 0; k < ne2_ne3; k++) {
  9353. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9354. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9355. // TODO: k*nb2 or k*nb3
  9356. float m_k;
  9357. if (k < n_heads_log2_floor) {
  9358. m_k = powf(m0, k + 1);
  9359. } else {
  9360. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9361. }
  9362. // we return F32
  9363. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9364. }
  9365. }
  9366. }
  9367. }
  9368. static void ggml_compute_forward_alibi(
  9369. const struct ggml_compute_params * params,
  9370. const struct ggml_tensor * src0,
  9371. struct ggml_tensor * dst) {
  9372. switch (src0->type) {
  9373. case GGML_TYPE_F16:
  9374. {
  9375. ggml_compute_forward_alibi_f16(params, src0, dst);
  9376. } break;
  9377. case GGML_TYPE_F32:
  9378. {
  9379. ggml_compute_forward_alibi_f32(params, src0, dst);
  9380. } break;
  9381. case GGML_TYPE_Q4_0:
  9382. case GGML_TYPE_Q4_1:
  9383. case GGML_TYPE_Q5_0:
  9384. case GGML_TYPE_Q5_1:
  9385. case GGML_TYPE_Q8_0:
  9386. case GGML_TYPE_Q8_1:
  9387. case GGML_TYPE_Q2_K:
  9388. case GGML_TYPE_Q3_K:
  9389. case GGML_TYPE_Q4_K:
  9390. case GGML_TYPE_Q5_K:
  9391. case GGML_TYPE_Q6_K:
  9392. case GGML_TYPE_Q8_K:
  9393. case GGML_TYPE_I8:
  9394. case GGML_TYPE_I16:
  9395. case GGML_TYPE_I32:
  9396. case GGML_TYPE_COUNT:
  9397. {
  9398. GGML_ASSERT(false);
  9399. } break;
  9400. }
  9401. }
  9402. // ggml_compute_forward_clamp
  9403. static void ggml_compute_forward_clamp_f32(
  9404. const struct ggml_compute_params * params,
  9405. const struct ggml_tensor * src0,
  9406. struct ggml_tensor * dst) {
  9407. assert(params->ith == 0);
  9408. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9409. return;
  9410. }
  9411. float min;
  9412. float max;
  9413. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9414. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9415. const int ith = params->ith;
  9416. const int nth = params->nth;
  9417. const int n = ggml_nrows(src0);
  9418. const int nc = src0->ne[0];
  9419. const size_t nb00 = src0->nb[0];
  9420. const size_t nb01 = src0->nb[1];
  9421. const size_t nb0 = dst->nb[0];
  9422. const size_t nb1 = dst->nb[1];
  9423. GGML_ASSERT( nb0 == sizeof(float));
  9424. GGML_ASSERT(nb00 == sizeof(float));
  9425. for (int j = ith; j < n; j += nth) {
  9426. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9427. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9428. for (int i = 0; i < nc; i++) {
  9429. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9430. }
  9431. }
  9432. }
  9433. static void ggml_compute_forward_clamp(
  9434. const struct ggml_compute_params * params,
  9435. const struct ggml_tensor * src0,
  9436. struct ggml_tensor * dst) {
  9437. switch (src0->type) {
  9438. case GGML_TYPE_F32:
  9439. {
  9440. ggml_compute_forward_clamp_f32(params, src0, dst);
  9441. } break;
  9442. case GGML_TYPE_F16:
  9443. case GGML_TYPE_Q4_0:
  9444. case GGML_TYPE_Q4_1:
  9445. case GGML_TYPE_Q5_0:
  9446. case GGML_TYPE_Q5_1:
  9447. case GGML_TYPE_Q8_0:
  9448. case GGML_TYPE_Q8_1:
  9449. case GGML_TYPE_Q2_K:
  9450. case GGML_TYPE_Q3_K:
  9451. case GGML_TYPE_Q4_K:
  9452. case GGML_TYPE_Q5_K:
  9453. case GGML_TYPE_Q6_K:
  9454. case GGML_TYPE_Q8_K:
  9455. case GGML_TYPE_I8:
  9456. case GGML_TYPE_I16:
  9457. case GGML_TYPE_I32:
  9458. case GGML_TYPE_COUNT:
  9459. {
  9460. GGML_ASSERT(false);
  9461. } break;
  9462. }
  9463. }
  9464. // ggml_compute_forward_rope
  9465. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9466. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9467. return 1 - MIN(1, MAX(0, y));
  9468. }
  9469. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9470. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9471. static void rope_yarn(
  9472. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9473. float * cos_theta, float * sin_theta
  9474. ) {
  9475. // Get n-d rotational scaling corrected for extrapolation
  9476. float theta_interp = freq_scale * theta_extrap;
  9477. float theta = theta_interp;
  9478. if (ext_factor != 0.0f) {
  9479. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9480. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9481. // Get n-d magnitude scaling corrected for interpolation
  9482. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9483. }
  9484. *cos_theta = cosf(theta) * mscale;
  9485. *sin_theta = sinf(theta) * mscale;
  9486. }
  9487. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9488. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9489. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9490. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9491. }
  9492. void ggml_rope_yarn_corr_dims(
  9493. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9494. ) {
  9495. // start and end correction dims
  9496. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9497. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9498. }
  9499. static void ggml_compute_forward_rope_f32(
  9500. const struct ggml_compute_params * params,
  9501. const struct ggml_tensor * src0,
  9502. const struct ggml_tensor * src1,
  9503. struct ggml_tensor * dst,
  9504. const bool forward) {
  9505. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9506. return;
  9507. }
  9508. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9509. // these two only relevant for xPos RoPE:
  9510. float xpos_base;
  9511. bool xpos_down;
  9512. //const int n_past = ((int32_t *) dst->op_params)[0];
  9513. const int n_dims = ((int32_t *) dst->op_params)[1];
  9514. const int mode = ((int32_t *) dst->op_params)[2];
  9515. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9516. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9517. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9518. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9519. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9520. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9521. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9522. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9523. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9524. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9525. GGML_TENSOR_UNARY_OP_LOCALS
  9526. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9527. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9528. GGML_ASSERT(nb00 == sizeof(float));
  9529. const int ith = params->ith;
  9530. const int nth = params->nth;
  9531. const int nr = ggml_nrows(dst);
  9532. GGML_ASSERT(n_dims <= ne0);
  9533. GGML_ASSERT(n_dims % 2 == 0);
  9534. // rows per thread
  9535. const int dr = (nr + nth - 1)/nth;
  9536. // row range for this thread
  9537. const int ir0 = dr*ith;
  9538. const int ir1 = MIN(ir0 + dr, nr);
  9539. // row index used to determine which thread to use
  9540. int ir = 0;
  9541. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9542. const float inv_ndims = -1.f/n_dims;
  9543. float corr_dims[2];
  9544. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9545. const bool is_neox = mode & 2;
  9546. const bool is_glm = mode & 4;
  9547. // backward process uses inverse rotation by cos and sin.
  9548. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9549. // this essentially just switches the sign of sin.
  9550. const float sin_sign = forward ? 1.0f : -1.0f;
  9551. const int32_t * pos = (const int32_t *) src1->data;
  9552. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9553. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9554. const int64_t p = pos[i2];
  9555. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9556. if (ir++ < ir0) continue;
  9557. if (ir > ir1) break;
  9558. float theta_base = (float)p;
  9559. if (is_glm) {
  9560. theta_base = MIN(p, n_ctx - 2);
  9561. float block_theta = MAX(p - (n_ctx - 2), 0);
  9562. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9563. const float cos_theta = cosf(theta_base);
  9564. const float sin_theta = sinf(theta_base) * sin_sign;
  9565. const float cos_block_theta = cosf(block_theta);
  9566. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9567. theta_base *= theta_scale;
  9568. block_theta *= theta_scale;
  9569. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9570. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9571. const float x0 = src[0];
  9572. const float x1 = src[n_dims/2];
  9573. const float x2 = src[n_dims];
  9574. const float x3 = src[n_dims/2*3];
  9575. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9576. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9577. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9578. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9579. }
  9580. } else if (!is_neox) {
  9581. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9582. float cos_theta, sin_theta;
  9583. rope_yarn(
  9584. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9585. );
  9586. sin_theta *= sin_sign;
  9587. // zeta scaling for xPos only:
  9588. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9589. if (xpos_down) zeta = 1.0f / zeta;
  9590. theta_base *= theta_scale;
  9591. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9592. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9593. const float x0 = src[0];
  9594. const float x1 = src[1];
  9595. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9596. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9597. }
  9598. } else {
  9599. // TODO: this might be wrong for ne0 != n_dims - need double check
  9600. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9601. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9602. theta_base *= freq_scale;
  9603. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9604. if (ic < n_dims) {
  9605. const int64_t ib = 0;
  9606. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9607. float cur_rot = inv_ndims * ic - ib;
  9608. float cos_theta, sin_theta;
  9609. rope_yarn(
  9610. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9611. &cos_theta, &sin_theta
  9612. );
  9613. sin_theta *= sin_sign;
  9614. theta_base *= theta_scale;
  9615. const int64_t i0 = ib*n_dims + ic/2;
  9616. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9617. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9618. const float x0 = src[0];
  9619. const float x1 = src[n_dims/2];
  9620. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9621. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9622. } else {
  9623. const int64_t i0 = ic;
  9624. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9625. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9626. dst_data[0] = src[0];
  9627. dst_data[1] = src[1];
  9628. }
  9629. }
  9630. }
  9631. }
  9632. }
  9633. }
  9634. }
  9635. static void ggml_compute_forward_rope_f16(
  9636. const struct ggml_compute_params * params,
  9637. const struct ggml_tensor * src0,
  9638. const struct ggml_tensor * src1,
  9639. struct ggml_tensor * dst,
  9640. const bool forward) {
  9641. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9642. return;
  9643. }
  9644. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9645. //const int n_past = ((int32_t *) dst->op_params)[0];
  9646. const int n_dims = ((int32_t *) dst->op_params)[1];
  9647. const int mode = ((int32_t *) dst->op_params)[2];
  9648. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9649. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9650. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9651. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9652. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9653. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9654. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9655. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9656. GGML_TENSOR_UNARY_OP_LOCALS
  9657. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9658. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9659. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9660. const int ith = params->ith;
  9661. const int nth = params->nth;
  9662. const int nr = ggml_nrows(dst);
  9663. GGML_ASSERT(n_dims <= ne0);
  9664. GGML_ASSERT(n_dims % 2 == 0);
  9665. // rows per thread
  9666. const int dr = (nr + nth - 1)/nth;
  9667. // row range for this thread
  9668. const int ir0 = dr*ith;
  9669. const int ir1 = MIN(ir0 + dr, nr);
  9670. // row index used to determine which thread to use
  9671. int ir = 0;
  9672. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9673. const float inv_ndims = -1.f/n_dims;
  9674. float corr_dims[2];
  9675. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9676. const bool is_neox = mode & 2;
  9677. const bool is_glm = mode & 4;
  9678. // backward process uses inverse rotation by cos and sin.
  9679. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9680. // this essentially just switches the sign of sin.
  9681. const float sin_sign = forward ? 1.0f : -1.0f;
  9682. const int32_t * pos = (const int32_t *) src1->data;
  9683. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9684. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9685. const int64_t p = pos[i2];
  9686. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9687. if (ir++ < ir0) continue;
  9688. if (ir > ir1) break;
  9689. float theta_base = (float)p;
  9690. if (is_glm) {
  9691. theta_base = MIN(p, n_ctx - 2);
  9692. float block_theta = MAX(p - (n_ctx - 2), 0);
  9693. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9694. const float cos_theta = cosf(theta_base);
  9695. const float sin_theta = sinf(theta_base) * sin_sign;
  9696. const float cos_block_theta = cosf(block_theta);
  9697. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9698. theta_base *= theta_scale;
  9699. block_theta *= theta_scale;
  9700. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9701. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9702. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9703. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9704. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9705. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9706. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9707. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9708. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9709. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9710. }
  9711. } else if (!is_neox) {
  9712. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9713. float cos_theta, sin_theta;
  9714. rope_yarn(
  9715. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9716. );
  9717. sin_theta *= sin_sign;
  9718. theta_base *= theta_scale;
  9719. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9720. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9721. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9722. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9723. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9724. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9725. }
  9726. } else {
  9727. // TODO: this might be wrong for ne0 != n_dims - need double check
  9728. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9729. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9730. theta_base *= freq_scale;
  9731. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9732. if (ic < n_dims) {
  9733. const int64_t ib = 0;
  9734. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9735. float cur_rot = inv_ndims * ic - ib;
  9736. float cos_theta, sin_theta;
  9737. rope_yarn(
  9738. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9739. &cos_theta, &sin_theta
  9740. );
  9741. sin_theta *= sin_sign;
  9742. theta_base *= theta_scale;
  9743. const int64_t i0 = ib*n_dims + ic/2;
  9744. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9745. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9746. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9747. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9748. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9749. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9750. } else {
  9751. const int64_t i0 = ic;
  9752. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9753. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9754. dst_data[0] = src[0];
  9755. dst_data[1] = src[1];
  9756. }
  9757. }
  9758. }
  9759. }
  9760. }
  9761. }
  9762. }
  9763. static void ggml_compute_forward_rope(
  9764. const struct ggml_compute_params * params,
  9765. const struct ggml_tensor * src0,
  9766. const struct ggml_tensor * src1,
  9767. struct ggml_tensor * dst) {
  9768. switch (src0->type) {
  9769. case GGML_TYPE_F16:
  9770. {
  9771. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9772. } break;
  9773. case GGML_TYPE_F32:
  9774. {
  9775. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9776. } break;
  9777. default:
  9778. {
  9779. GGML_ASSERT(false);
  9780. } break;
  9781. }
  9782. }
  9783. // ggml_compute_forward_rope_back
  9784. static void ggml_compute_forward_rope_back(
  9785. const struct ggml_compute_params * params,
  9786. const struct ggml_tensor * src0,
  9787. const struct ggml_tensor * src1,
  9788. struct ggml_tensor * dst) {
  9789. switch (src0->type) {
  9790. case GGML_TYPE_F16:
  9791. {
  9792. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9793. } break;
  9794. case GGML_TYPE_F32:
  9795. {
  9796. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9797. } break;
  9798. default:
  9799. {
  9800. GGML_ASSERT(false);
  9801. } break;
  9802. }
  9803. }
  9804. // ggml_compute_forward_conv_transpose_1d
  9805. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9806. const struct ggml_compute_params * params,
  9807. const struct ggml_tensor * src0,
  9808. const struct ggml_tensor * src1,
  9809. struct ggml_tensor * dst) {
  9810. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9811. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9812. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9813. int64_t t0 = ggml_perf_time_us();
  9814. UNUSED(t0);
  9815. GGML_TENSOR_BINARY_OP_LOCALS
  9816. const int ith = params->ith;
  9817. const int nth = params->nth;
  9818. const int nk = ne00*ne01*ne02;
  9819. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9820. GGML_ASSERT(nb10 == sizeof(float));
  9821. if (params->type == GGML_TASK_INIT) {
  9822. memset(params->wdata, 0, params->wsize);
  9823. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9824. {
  9825. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9826. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9827. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9828. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9829. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9830. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9831. dst_data[i00*ne02 + i02] = src[i00];
  9832. }
  9833. }
  9834. }
  9835. }
  9836. // permute source data (src1) from (L x Cin) to (Cin x L)
  9837. {
  9838. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9839. ggml_fp16_t * dst_data = wdata;
  9840. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9841. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9842. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9843. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9844. }
  9845. }
  9846. }
  9847. // need to zero dst since we are accumulating into it
  9848. memset(dst->data, 0, ggml_nbytes(dst));
  9849. return;
  9850. }
  9851. if (params->type == GGML_TASK_FINALIZE) {
  9852. return;
  9853. }
  9854. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9855. // total rows in dst
  9856. const int nr = ne1;
  9857. // rows per thread
  9858. const int dr = (nr + nth - 1)/nth;
  9859. // row range for this thread
  9860. const int ir0 = dr*ith;
  9861. const int ir1 = MIN(ir0 + dr, nr);
  9862. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9863. ggml_fp16_t * const wdata_src = wdata + nk;
  9864. for (int i1 = ir0; i1 < ir1; i1++) {
  9865. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9866. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9867. for (int i10 = 0; i10 < ne10; i10++) {
  9868. const int i1n = i10*ne11;
  9869. for (int i00 = 0; i00 < ne00; i00++) {
  9870. float v = 0;
  9871. ggml_vec_dot_f16(ne02, &v,
  9872. (ggml_fp16_t *) wdata_src + i1n,
  9873. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9874. dst_data[i10*s0 + i00] += v;
  9875. }
  9876. }
  9877. }
  9878. }
  9879. static void ggml_compute_forward_conv_transpose_1d_f32(
  9880. const struct ggml_compute_params * params,
  9881. const struct ggml_tensor * src0,
  9882. const struct ggml_tensor * src1,
  9883. struct ggml_tensor * dst) {
  9884. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9885. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9886. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9887. int64_t t0 = ggml_perf_time_us();
  9888. UNUSED(t0);
  9889. GGML_TENSOR_BINARY_OP_LOCALS
  9890. const int ith = params->ith;
  9891. const int nth = params->nth;
  9892. const int nk = ne00*ne01*ne02;
  9893. GGML_ASSERT(nb00 == sizeof(float));
  9894. GGML_ASSERT(nb10 == sizeof(float));
  9895. if (params->type == GGML_TASK_INIT) {
  9896. memset(params->wdata, 0, params->wsize);
  9897. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9898. {
  9899. float * const wdata = (float *) params->wdata + 0;
  9900. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9901. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9902. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9903. float * dst_data = wdata + i01*ne00*ne02;
  9904. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9905. dst_data[i00*ne02 + i02] = src[i00];
  9906. }
  9907. }
  9908. }
  9909. }
  9910. // prepare source data (src1)
  9911. {
  9912. float * const wdata = (float *) params->wdata + nk;
  9913. float * dst_data = wdata;
  9914. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9915. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9916. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9917. dst_data[i10*ne11 + i11] = src[i10];
  9918. }
  9919. }
  9920. }
  9921. // need to zero dst since we are accumulating into it
  9922. memset(dst->data, 0, ggml_nbytes(dst));
  9923. return;
  9924. }
  9925. if (params->type == GGML_TASK_FINALIZE) {
  9926. return;
  9927. }
  9928. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9929. // total rows in dst
  9930. const int nr = ne1;
  9931. // rows per thread
  9932. const int dr = (nr + nth - 1)/nth;
  9933. // row range for this thread
  9934. const int ir0 = dr*ith;
  9935. const int ir1 = MIN(ir0 + dr, nr);
  9936. float * const wdata = (float *) params->wdata + 0;
  9937. float * const wdata_src = wdata + nk;
  9938. for (int i1 = ir0; i1 < ir1; i1++) {
  9939. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9940. float * wdata_kernel = wdata + i1*ne02*ne00;
  9941. for (int i10 = 0; i10 < ne10; i10++) {
  9942. const int i1n = i10*ne11;
  9943. for (int i00 = 0; i00 < ne00; i00++) {
  9944. float v = 0;
  9945. ggml_vec_dot_f32(ne02, &v,
  9946. wdata_src + i1n,
  9947. wdata_kernel + i00*ne02);
  9948. dst_data[i10*s0 + i00] += v;
  9949. }
  9950. }
  9951. }
  9952. }
  9953. static void ggml_compute_forward_conv_transpose_1d(
  9954. const struct ggml_compute_params * params,
  9955. const struct ggml_tensor * src0,
  9956. const struct ggml_tensor * src1,
  9957. struct ggml_tensor * dst) {
  9958. switch (src0->type) {
  9959. case GGML_TYPE_F16:
  9960. {
  9961. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9962. } break;
  9963. case GGML_TYPE_F32:
  9964. {
  9965. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9966. } break;
  9967. default:
  9968. {
  9969. GGML_ASSERT(false);
  9970. } break;
  9971. }
  9972. }
  9973. // src0: kernel [OC, IC, KH, KW]
  9974. // src1: image [N, IC, IH, IW]
  9975. // dst: result [N, OH, OW, IC*KH*KW]
  9976. static void ggml_compute_forward_im2col_f16(
  9977. const struct ggml_compute_params * params,
  9978. const struct ggml_tensor * src0,
  9979. const struct ggml_tensor * src1,
  9980. struct ggml_tensor * dst) {
  9981. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9982. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9983. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9984. int64_t t0 = ggml_perf_time_us();
  9985. UNUSED(t0);
  9986. GGML_TENSOR_BINARY_OP_LOCALS;
  9987. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  9988. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  9989. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  9990. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  9991. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  9992. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  9993. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  9994. const int ith = params->ith;
  9995. const int nth = params->nth;
  9996. const int64_t N = is_2D ? ne13 : ne12;
  9997. const int64_t IC = is_2D ? ne12 : ne11;
  9998. const int64_t IH = is_2D ? ne11 : 1;
  9999. const int64_t IW = ne10;
  10000. const int64_t KH = is_2D ? ne01 : 1;
  10001. const int64_t KW = ne00;
  10002. const int64_t OH = is_2D ? ne2 : 1;
  10003. const int64_t OW = ne1;
  10004. int ofs0 = is_2D ? nb13 : nb12;
  10005. int ofs1 = is_2D ? nb12 : nb11;
  10006. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10007. GGML_ASSERT(nb10 == sizeof(float));
  10008. if (params->type == GGML_TASK_INIT) {
  10009. return;
  10010. }
  10011. if (params->type == GGML_TASK_FINALIZE) {
  10012. return;
  10013. }
  10014. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10015. {
  10016. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10017. for (int64_t in = 0; in < N; in++) {
  10018. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10019. for (int64_t iow = 0; iow < OW; iow++) {
  10020. for (int64_t iic = ith; iic < IC; iic += nth) {
  10021. // micro kernel
  10022. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10023. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10024. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10025. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10026. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10027. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10028. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10029. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10030. } else {
  10031. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10032. }
  10033. }
  10034. }
  10035. }
  10036. }
  10037. }
  10038. }
  10039. }
  10040. }
  10041. static void ggml_compute_forward_im2col(
  10042. const struct ggml_compute_params * params,
  10043. const struct ggml_tensor * src0,
  10044. const struct ggml_tensor * src1,
  10045. struct ggml_tensor * dst) {
  10046. switch (src0->type) {
  10047. case GGML_TYPE_F16:
  10048. {
  10049. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10050. } break;
  10051. case GGML_TYPE_F32:
  10052. {
  10053. GGML_ASSERT(false);
  10054. } break;
  10055. default:
  10056. {
  10057. GGML_ASSERT(false);
  10058. } break;
  10059. }
  10060. }
  10061. // ggml_compute_forward_conv_transpose_2d
  10062. static void ggml_compute_forward_conv_transpose_2d(
  10063. const struct ggml_compute_params * params,
  10064. const struct ggml_tensor * src0,
  10065. const struct ggml_tensor * src1,
  10066. struct ggml_tensor * dst) {
  10067. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10068. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10069. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10070. int64_t t0 = ggml_perf_time_us();
  10071. UNUSED(t0);
  10072. GGML_TENSOR_BINARY_OP_LOCALS
  10073. const int ith = params->ith;
  10074. const int nth = params->nth;
  10075. const int nk = ne00*ne01*ne02*ne03;
  10076. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10077. GGML_ASSERT(nb10 == sizeof(float));
  10078. if (params->type == GGML_TASK_INIT) {
  10079. memset(params->wdata, 0, params->wsize);
  10080. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10081. {
  10082. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10083. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10084. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10085. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10086. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10087. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10088. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10089. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10090. }
  10091. }
  10092. }
  10093. }
  10094. }
  10095. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10096. {
  10097. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10098. for (int i12 = 0; i12 < ne12; i12++) {
  10099. for (int i11 = 0; i11 < ne11; i11++) {
  10100. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10101. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10102. for (int i10 = 0; i10 < ne10; i10++) {
  10103. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10104. }
  10105. }
  10106. }
  10107. }
  10108. memset(dst->data, 0, ggml_nbytes(dst));
  10109. return;
  10110. }
  10111. if (params->type == GGML_TASK_FINALIZE) {
  10112. return;
  10113. }
  10114. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10115. // total patches in dst
  10116. const int np = ne2;
  10117. // patches per thread
  10118. const int dp = (np + nth - 1)/nth;
  10119. // patch range for this thread
  10120. const int ip0 = dp*ith;
  10121. const int ip1 = MIN(ip0 + dp, np);
  10122. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10123. ggml_fp16_t * const wdata_src = wdata + nk;
  10124. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10125. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10126. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10127. for (int i11 = 0; i11 < ne11; i11++) {
  10128. for (int i10 = 0; i10 < ne10; i10++) {
  10129. const int i1n = i11*ne10*ne12 + i10*ne12;
  10130. for (int i01 = 0; i01 < ne01; i01++) {
  10131. for (int i00 = 0; i00 < ne00; i00++) {
  10132. float v = 0;
  10133. ggml_vec_dot_f16(ne03, &v,
  10134. wdata_src + i1n,
  10135. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10136. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10137. }
  10138. }
  10139. }
  10140. }
  10141. }
  10142. }
  10143. // ggml_compute_forward_pool_1d_sk_p0
  10144. static void ggml_compute_forward_pool_1d_sk_p0(
  10145. const struct ggml_compute_params * params,
  10146. const enum ggml_op_pool op,
  10147. const struct ggml_tensor * src,
  10148. const int k,
  10149. struct ggml_tensor * dst) {
  10150. assert(src->type == GGML_TYPE_F32);
  10151. assert(params->ith == 0);
  10152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10153. return;
  10154. }
  10155. const char * cdata = (const char *)src->data;
  10156. const char * const data_end = cdata + ggml_nbytes(src);
  10157. float * drow = (float *)dst->data;
  10158. const int64_t rs = dst->ne[0];
  10159. while (cdata < data_end) {
  10160. const float * const srow = (const float *)cdata;
  10161. int j = 0;
  10162. for (int64_t i = 0; i < rs; ++i) {
  10163. switch (op) {
  10164. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10165. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10166. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10167. }
  10168. for (int ki = 0; ki < k; ++ki) {
  10169. switch (op) {
  10170. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10171. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10172. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10173. }
  10174. ++j;
  10175. }
  10176. switch (op) {
  10177. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10178. case GGML_OP_POOL_MAX: break;
  10179. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10180. }
  10181. }
  10182. cdata += src->nb[1];
  10183. drow += rs;
  10184. }
  10185. }
  10186. // ggml_compute_forward_pool_1d
  10187. static void ggml_compute_forward_pool_1d(
  10188. const struct ggml_compute_params * params,
  10189. const struct ggml_tensor * src0,
  10190. struct ggml_tensor * dst) {
  10191. const int32_t * opts = (const int32_t *)dst->op_params;
  10192. enum ggml_op_pool op = opts[0];
  10193. const int k0 = opts[1];
  10194. const int s0 = opts[2];
  10195. const int p0 = opts[3];
  10196. GGML_ASSERT(p0 == 0); // padding not supported
  10197. GGML_ASSERT(k0 == s0); // only s = k supported
  10198. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10199. }
  10200. // ggml_compute_forward_pool_2d
  10201. static void ggml_compute_forward_pool_2d(
  10202. const struct ggml_compute_params * params,
  10203. const struct ggml_tensor * src,
  10204. struct ggml_tensor * dst) {
  10205. assert(src->type == GGML_TYPE_F32);
  10206. assert(params->ith == 0);
  10207. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10208. return;
  10209. }
  10210. const int32_t * opts = (const int32_t *)dst->op_params;
  10211. enum ggml_op_pool op = opts[0];
  10212. const int k0 = opts[1];
  10213. const int k1 = opts[2];
  10214. const int s0 = opts[3];
  10215. const int s1 = opts[4];
  10216. const int p0 = opts[5];
  10217. const int p1 = opts[6];
  10218. const char * cdata = (const char*)src->data;
  10219. const char * const data_end = cdata + ggml_nbytes(src);
  10220. const int64_t px = dst->ne[0];
  10221. const int64_t py = dst->ne[1];
  10222. const int64_t pa = px * py;
  10223. float * dplane = (float *)dst->data;
  10224. const int ka = k0 * k1;
  10225. const int offset0 = -p0;
  10226. const int offset1 = -p1;
  10227. while (cdata < data_end) {
  10228. for (int oy = 0; oy < py; ++oy) {
  10229. float * const drow = dplane + oy * px;
  10230. for (int ox = 0; ox < px; ++ox) {
  10231. float * const out = drow + ox;
  10232. switch (op) {
  10233. case GGML_OP_POOL_AVG: *out = 0; break;
  10234. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10235. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10236. }
  10237. const int ix = offset0 + ox * s0;
  10238. const int iy = offset1 + oy * s1;
  10239. for (int ky = 0; ky < k1; ++ky) {
  10240. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10241. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10242. for (int kx = 0; kx < k0; ++kx) {
  10243. int j = ix + kx;
  10244. if (j < 0 || j >= src->ne[0]) continue;
  10245. switch (op) {
  10246. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10247. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10248. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10249. }
  10250. }
  10251. }
  10252. switch (op) {
  10253. case GGML_OP_POOL_AVG: *out /= ka; break;
  10254. case GGML_OP_POOL_MAX: break;
  10255. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10256. }
  10257. }
  10258. }
  10259. cdata += src->nb[2];
  10260. dplane += pa;
  10261. }
  10262. }
  10263. // ggml_compute_forward_upscale
  10264. static void ggml_compute_forward_upscale_f32(
  10265. const struct ggml_compute_params * params,
  10266. const struct ggml_tensor * src0,
  10267. struct ggml_tensor * dst) {
  10268. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10269. return;
  10270. }
  10271. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10272. const int ith = params->ith;
  10273. const int nth = params->nth;
  10274. GGML_TENSOR_UNARY_OP_LOCALS
  10275. const int scale_factor = dst->op_params[0];
  10276. // TODO: optimize
  10277. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10278. const int64_t i03 = i3;
  10279. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10280. const int64_t i02 = i2;
  10281. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10282. const int64_t i01 = i1 / scale_factor;
  10283. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10284. const int64_t i00 = i0 / scale_factor;
  10285. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10286. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10287. *y = *x;
  10288. }
  10289. }
  10290. }
  10291. }
  10292. }
  10293. static void ggml_compute_forward_upscale(
  10294. const struct ggml_compute_params * params,
  10295. const struct ggml_tensor * src0,
  10296. struct ggml_tensor * dst) {
  10297. switch (src0->type) {
  10298. case GGML_TYPE_F32:
  10299. {
  10300. ggml_compute_forward_upscale_f32(params, src0, dst);
  10301. } break;
  10302. default:
  10303. {
  10304. GGML_ASSERT(false);
  10305. } break;
  10306. }
  10307. }
  10308. // ggml_compute_forward_pad
  10309. static void ggml_compute_forward_pad_f32(
  10310. const struct ggml_compute_params * params,
  10311. const struct ggml_tensor * src0,
  10312. struct ggml_tensor * dst) {
  10313. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10314. return;
  10315. }
  10316. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10317. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10318. const int ith = params->ith;
  10319. const int nth = params->nth;
  10320. GGML_TENSOR_UNARY_OP_LOCALS
  10321. float * dst_ptr = (float *) dst->data;
  10322. // TODO: optimize
  10323. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10324. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10325. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10326. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10327. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10328. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10329. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10330. dst_ptr[dst_idx] = *src_ptr;
  10331. } else {
  10332. dst_ptr[dst_idx] = 0;
  10333. }
  10334. }
  10335. }
  10336. }
  10337. }
  10338. }
  10339. static void ggml_compute_forward_pad(
  10340. const struct ggml_compute_params * params,
  10341. const struct ggml_tensor * src0,
  10342. struct ggml_tensor * dst) {
  10343. switch (src0->type) {
  10344. case GGML_TYPE_F32:
  10345. {
  10346. ggml_compute_forward_pad_f32(params, src0, dst);
  10347. } break;
  10348. default:
  10349. {
  10350. GGML_ASSERT(false);
  10351. } break;
  10352. }
  10353. }
  10354. // ggml_compute_forward_argsort
  10355. static void ggml_compute_forward_argsort_f32(
  10356. const struct ggml_compute_params * params,
  10357. const struct ggml_tensor * src0,
  10358. struct ggml_tensor * dst) {
  10359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10360. return;
  10361. }
  10362. GGML_TENSOR_UNARY_OP_LOCALS
  10363. GGML_ASSERT(nb0 == sizeof(float));
  10364. const int ith = params->ith;
  10365. const int nth = params->nth;
  10366. const int64_t nr = ggml_nrows(src0);
  10367. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10368. for (int64_t i = ith; i < nr; i += nth) {
  10369. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10370. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10371. for (int64_t j = 0; j < ne0; j++) {
  10372. dst_data[j] = j;
  10373. }
  10374. // C doesn't have a functional sort, so we do a bubble sort instead
  10375. for (int64_t j = 0; j < ne0; j++) {
  10376. for (int64_t k = j + 1; k < ne0; k++) {
  10377. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10378. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10379. int32_t tmp = dst_data[j];
  10380. dst_data[j] = dst_data[k];
  10381. dst_data[k] = tmp;
  10382. }
  10383. }
  10384. }
  10385. }
  10386. }
  10387. static void ggml_compute_forward_argsort(
  10388. const struct ggml_compute_params * params,
  10389. const struct ggml_tensor * src0,
  10390. struct ggml_tensor * dst) {
  10391. switch (src0->type) {
  10392. case GGML_TYPE_F32:
  10393. {
  10394. ggml_compute_forward_argsort_f32(params, src0, dst);
  10395. } break;
  10396. default:
  10397. {
  10398. GGML_ASSERT(false);
  10399. } break;
  10400. }
  10401. }
  10402. // ggml_compute_forward_flash_attn
  10403. static void ggml_compute_forward_flash_attn_f32(
  10404. const struct ggml_compute_params * params,
  10405. const struct ggml_tensor * q,
  10406. const struct ggml_tensor * k,
  10407. const struct ggml_tensor * v,
  10408. const bool masked,
  10409. struct ggml_tensor * dst) {
  10410. int64_t t0 = ggml_perf_time_us();
  10411. UNUSED(t0);
  10412. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10413. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10414. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10415. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10416. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10417. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10418. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10419. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10420. const int ith = params->ith;
  10421. const int nth = params->nth;
  10422. const int64_t D = neq0;
  10423. const int64_t N = neq1;
  10424. const int64_t P = nek1 - N;
  10425. const int64_t M = P + N;
  10426. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10427. GGML_ASSERT(ne0 == D);
  10428. GGML_ASSERT(ne1 == N);
  10429. GGML_ASSERT(P >= 0);
  10430. GGML_ASSERT(nbq0 == sizeof(float));
  10431. GGML_ASSERT(nbk0 == sizeof(float));
  10432. GGML_ASSERT(nbv0 == sizeof(float));
  10433. GGML_ASSERT(neq0 == D);
  10434. GGML_ASSERT(nek0 == D);
  10435. GGML_ASSERT(nev1 == D);
  10436. GGML_ASSERT(neq1 == N);
  10437. GGML_ASSERT(nek1 == N + P);
  10438. GGML_ASSERT(nev1 == D);
  10439. // dst cannot be transposed or permuted
  10440. GGML_ASSERT(nb0 == sizeof(float));
  10441. GGML_ASSERT(nb0 <= nb1);
  10442. GGML_ASSERT(nb1 <= nb2);
  10443. GGML_ASSERT(nb2 <= nb3);
  10444. if (params->type == GGML_TASK_INIT) {
  10445. return;
  10446. }
  10447. if (params->type == GGML_TASK_FINALIZE) {
  10448. return;
  10449. }
  10450. // parallelize by q rows using ggml_vec_dot_f32
  10451. // total rows in q
  10452. const int nr = neq1*neq2*neq3;
  10453. // rows per thread
  10454. const int dr = (nr + nth - 1)/nth;
  10455. // row range for this thread
  10456. const int ir0 = dr*ith;
  10457. const int ir1 = MIN(ir0 + dr, nr);
  10458. const float scale = 1.0f/sqrtf(D);
  10459. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10460. for (int ir = ir0; ir < ir1; ++ir) {
  10461. // q indices
  10462. const int iq3 = ir/(neq2*neq1);
  10463. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10464. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10465. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10466. for (int i = M; i < Mup; ++i) {
  10467. S[i] = -INFINITY;
  10468. }
  10469. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10470. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10471. // k indices
  10472. const int ik3 = iq3;
  10473. const int ik2 = iq2 % nek2;
  10474. const int ik1 = ic;
  10475. // S indices
  10476. const int i1 = ik1;
  10477. ggml_vec_dot_f32(neq0,
  10478. S + i1,
  10479. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10480. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10481. }
  10482. // scale
  10483. ggml_vec_scale_f32(masked_begin, S, scale);
  10484. for (int64_t i = masked_begin; i < M; i++) {
  10485. S[i] = -INFINITY;
  10486. }
  10487. // softmax
  10488. // exclude known -INF S[..] values from max and loop
  10489. // dont forget to set their SW values to zero
  10490. {
  10491. float max = -INFINITY;
  10492. ggml_vec_max_f32(masked_begin, &max, S);
  10493. ggml_float sum = 0.0;
  10494. {
  10495. #ifdef GGML_SOFT_MAX_ACCELERATE
  10496. max = -max;
  10497. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10498. vvexpf(S, S, &Mup);
  10499. ggml_vec_sum_f32(Mup, &sum, S);
  10500. #else
  10501. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10502. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10503. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10504. if (i >= masked_begin) {
  10505. break;
  10506. }
  10507. float * SS = S + i;
  10508. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10509. if (i + j >= masked_begin) {
  10510. break;
  10511. } else if (SS[j] == -INFINITY) {
  10512. SS[j] = 0.0f;
  10513. } else {
  10514. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10515. const float val = expf(SS[j] - max);
  10516. #else
  10517. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10518. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10519. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10520. #endif
  10521. sump[j] += (ggml_float)val;
  10522. SS[j] = val;
  10523. }
  10524. }
  10525. }
  10526. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10527. sum += sump[i];
  10528. }
  10529. #endif
  10530. }
  10531. assert(sum > 0.0);
  10532. sum = 1.0/sum;
  10533. ggml_vec_scale_f32(masked_begin, S, sum);
  10534. #ifndef NDEBUG
  10535. for (int i = 0; i < masked_begin; ++i) {
  10536. assert(!isnan(S[i]));
  10537. assert(!isinf(S[i]));
  10538. }
  10539. #endif
  10540. }
  10541. for (int64_t ic = 0; ic < nev1; ++ic) {
  10542. // dst indices
  10543. const int i1 = iq1;
  10544. const int i2 = iq2;
  10545. const int i3 = iq3;
  10546. // v indices
  10547. const int iv2 = iq2 % nev2;
  10548. const int iv3 = iq3;
  10549. ggml_vec_dot_f32(masked_begin,
  10550. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10551. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10552. S);
  10553. }
  10554. }
  10555. }
  10556. static void ggml_compute_forward_flash_attn_f16(
  10557. const struct ggml_compute_params * params,
  10558. const struct ggml_tensor * q,
  10559. const struct ggml_tensor * k,
  10560. const struct ggml_tensor * v,
  10561. const bool masked,
  10562. struct ggml_tensor * dst) {
  10563. int64_t t0 = ggml_perf_time_us();
  10564. UNUSED(t0);
  10565. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10566. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10567. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10568. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10569. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10570. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10571. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10572. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10573. const int ith = params->ith;
  10574. const int nth = params->nth;
  10575. const int64_t D = neq0;
  10576. const int64_t N = neq1;
  10577. const int64_t P = nek1 - N;
  10578. const int64_t M = P + N;
  10579. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10580. GGML_ASSERT(ne0 == D);
  10581. GGML_ASSERT(ne1 == N);
  10582. GGML_ASSERT(P >= 0);
  10583. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10584. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10585. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10586. GGML_ASSERT(neq0 == D);
  10587. GGML_ASSERT(nek0 == D);
  10588. GGML_ASSERT(nev1 == D);
  10589. GGML_ASSERT(neq1 == N);
  10590. GGML_ASSERT(nek1 == N + P);
  10591. GGML_ASSERT(nev1 == D);
  10592. // dst cannot be transposed or permuted
  10593. GGML_ASSERT(nb0 == sizeof(float));
  10594. GGML_ASSERT(nb0 <= nb1);
  10595. GGML_ASSERT(nb1 <= nb2);
  10596. GGML_ASSERT(nb2 <= nb3);
  10597. if (params->type == GGML_TASK_INIT) {
  10598. return;
  10599. }
  10600. if (params->type == GGML_TASK_FINALIZE) {
  10601. return;
  10602. }
  10603. // parallelize by q rows using ggml_vec_dot_f32
  10604. // total rows in q
  10605. const int nr = neq1*neq2*neq3;
  10606. // rows per thread
  10607. const int dr = (nr + nth - 1)/nth;
  10608. // row range for this thread
  10609. const int ir0 = dr*ith;
  10610. const int ir1 = MIN(ir0 + dr, nr);
  10611. const float scale = 1.0f/sqrtf(D);
  10612. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10613. for (int ir = ir0; ir < ir1; ++ir) {
  10614. // q indices
  10615. const int iq3 = ir/(neq2*neq1);
  10616. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10617. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10618. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10619. for (int i = M; i < Mup; ++i) {
  10620. S[i] = -INFINITY;
  10621. }
  10622. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10623. for (int64_t ic = 0; ic < nek1; ++ic) {
  10624. // k indices
  10625. const int ik3 = iq3;
  10626. const int ik2 = iq2 % nek2;
  10627. const int ik1 = ic;
  10628. // S indices
  10629. const int i1 = ik1;
  10630. ggml_vec_dot_f16(neq0,
  10631. S + i1,
  10632. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10633. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10634. }
  10635. } else {
  10636. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10637. // k indices
  10638. const int ik3 = iq3;
  10639. const int ik2 = iq2 % nek2;
  10640. const int ik1 = ic;
  10641. // S indices
  10642. const int i1 = ik1;
  10643. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10644. S + i1,
  10645. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10646. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10647. }
  10648. }
  10649. // scale
  10650. ggml_vec_scale_f32(nek1, S, scale);
  10651. if (masked) {
  10652. for (int64_t i = P; i < M; i++) {
  10653. if (i > P + iq1) {
  10654. S[i] = -INFINITY;
  10655. }
  10656. }
  10657. }
  10658. // softmax
  10659. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10660. // dont forget to set their S values to zero
  10661. {
  10662. float max = -INFINITY;
  10663. ggml_vec_max_f32(M, &max, S);
  10664. ggml_float sum = 0.0;
  10665. {
  10666. #ifdef GGML_SOFT_MAX_ACCELERATE
  10667. max = -max;
  10668. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10669. vvexpf(S, S, &Mup);
  10670. ggml_vec_sum_f32(Mup, &sum, S);
  10671. #else
  10672. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10673. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10674. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10675. float * SS = S + i;
  10676. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10677. if (SS[j] == -INFINITY) {
  10678. SS[j] = 0.0f;
  10679. } else {
  10680. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10681. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10682. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10683. sump[j] += (ggml_float)val;
  10684. SS[j] = val;
  10685. }
  10686. }
  10687. }
  10688. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10689. sum += sump[i];
  10690. }
  10691. #endif
  10692. }
  10693. assert(sum > 0.0);
  10694. sum = 1.0/sum;
  10695. ggml_vec_scale_f32(M, S, sum);
  10696. #ifndef NDEBUG
  10697. for (int i = 0; i < M; ++i) {
  10698. assert(!isnan(S[i]));
  10699. assert(!isinf(S[i]));
  10700. }
  10701. #endif
  10702. }
  10703. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10704. for (int64_t i = 0; i < M; i++) {
  10705. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10706. }
  10707. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10708. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10709. for (int64_t ic = 0; ic < nev1; ++ic) {
  10710. // dst indices
  10711. const int i1 = iq1;
  10712. const int i2 = iq2;
  10713. const int i3 = iq3;
  10714. // v indices
  10715. const int iv2 = iq2 % nev2;
  10716. const int iv3 = iq3;
  10717. ggml_vec_dot_f16(nev0,
  10718. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10719. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10720. S16);
  10721. }
  10722. } else {
  10723. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10724. // dst indices
  10725. const int i1 = iq1;
  10726. const int i2 = iq2;
  10727. const int i3 = iq3;
  10728. // v indices
  10729. const int iv2 = iq2 % nev2;
  10730. const int iv3 = iq3;
  10731. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10732. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10733. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10734. S16);
  10735. }
  10736. }
  10737. }
  10738. }
  10739. static void ggml_compute_forward_flash_attn(
  10740. const struct ggml_compute_params * params,
  10741. const struct ggml_tensor * q,
  10742. const struct ggml_tensor * k,
  10743. const struct ggml_tensor * v,
  10744. const bool masked,
  10745. struct ggml_tensor * dst) {
  10746. switch (q->type) {
  10747. case GGML_TYPE_F16:
  10748. {
  10749. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10750. } break;
  10751. case GGML_TYPE_F32:
  10752. {
  10753. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10754. } break;
  10755. default:
  10756. {
  10757. GGML_ASSERT(false);
  10758. } break;
  10759. }
  10760. }
  10761. // ggml_compute_forward_flash_ff
  10762. static void ggml_compute_forward_flash_ff_f16(
  10763. const struct ggml_compute_params * params,
  10764. const struct ggml_tensor * a, // F16
  10765. const struct ggml_tensor * b0, // F16 fc_w
  10766. const struct ggml_tensor * b1, // F32 fc_b
  10767. const struct ggml_tensor * c0, // F16 proj_w
  10768. const struct ggml_tensor * c1, // F32 proj_b
  10769. struct ggml_tensor * dst) {
  10770. int64_t t0 = ggml_perf_time_us();
  10771. UNUSED(t0);
  10772. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10773. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10774. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10775. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10776. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10777. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10778. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10779. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10780. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10781. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10782. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10783. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10784. const int ith = params->ith;
  10785. const int nth = params->nth;
  10786. const int64_t D = nea0;
  10787. //const int64_t N = nea1;
  10788. const int64_t M = neb01;
  10789. GGML_ASSERT(ne0 == nea0);
  10790. GGML_ASSERT(ne1 == nea1);
  10791. GGML_ASSERT(ne2 == nea2);
  10792. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10793. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10794. GGML_ASSERT(nbb10 == sizeof(float));
  10795. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10796. GGML_ASSERT(nbc10 == sizeof(float));
  10797. GGML_ASSERT(neb00 == D);
  10798. GGML_ASSERT(neb01 == M);
  10799. GGML_ASSERT(neb10 == M);
  10800. GGML_ASSERT(neb11 == 1);
  10801. GGML_ASSERT(nec00 == M);
  10802. GGML_ASSERT(nec01 == D);
  10803. GGML_ASSERT(nec10 == D);
  10804. GGML_ASSERT(nec11 == 1);
  10805. // dst cannot be transposed or permuted
  10806. GGML_ASSERT(nb0 == sizeof(float));
  10807. GGML_ASSERT(nb0 <= nb1);
  10808. GGML_ASSERT(nb1 <= nb2);
  10809. GGML_ASSERT(nb2 <= nb3);
  10810. if (params->type == GGML_TASK_INIT) {
  10811. return;
  10812. }
  10813. if (params->type == GGML_TASK_FINALIZE) {
  10814. return;
  10815. }
  10816. // parallelize by a rows using ggml_vec_dot_f32
  10817. // total rows in a
  10818. const int nr = nea1*nea2*nea3;
  10819. // rows per thread
  10820. const int dr = (nr + nth - 1)/nth;
  10821. // row range for this thread
  10822. const int ir0 = dr*ith;
  10823. const int ir1 = MIN(ir0 + dr, nr);
  10824. for (int ir = ir0; ir < ir1; ++ir) {
  10825. // a indices
  10826. const int ia3 = ir/(nea2*nea1);
  10827. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10828. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10829. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10830. for (int64_t ic = 0; ic < neb01; ++ic) {
  10831. // b0 indices
  10832. const int ib03 = ia3;
  10833. const int ib02 = ia2;
  10834. const int ib01 = ic;
  10835. // S indices
  10836. const int i1 = ib01;
  10837. ggml_vec_dot_f16(nea0,
  10838. S + i1,
  10839. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10840. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10841. }
  10842. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10843. //ggml_vec_gelu_f32(neb01, S, S);
  10844. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10845. for (int64_t i = 0; i < M; i++) {
  10846. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10847. }
  10848. ggml_vec_gelu_f16(neb01, S16, S16);
  10849. {
  10850. // dst indices
  10851. const int i1 = ia1;
  10852. const int i2 = ia2;
  10853. const int i3 = ia3;
  10854. for (int64_t ic = 0; ic < nec01; ++ic) {
  10855. ggml_vec_dot_f16(neb01,
  10856. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10857. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10858. S16);
  10859. }
  10860. ggml_vec_add_f32(nec01,
  10861. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10862. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10863. (float *) c1->data);
  10864. }
  10865. }
  10866. }
  10867. static void ggml_compute_forward_flash_ff(
  10868. const struct ggml_compute_params * params,
  10869. const struct ggml_tensor * a,
  10870. const struct ggml_tensor * b0,
  10871. const struct ggml_tensor * b1,
  10872. const struct ggml_tensor * c0,
  10873. const struct ggml_tensor * c1,
  10874. struct ggml_tensor * dst) {
  10875. switch (b0->type) {
  10876. case GGML_TYPE_F16:
  10877. {
  10878. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10879. } break;
  10880. case GGML_TYPE_F32:
  10881. {
  10882. GGML_ASSERT(false); // TODO
  10883. } break;
  10884. default:
  10885. {
  10886. GGML_ASSERT(false);
  10887. } break;
  10888. }
  10889. }
  10890. // ggml_compute_forward_flash_attn_back
  10891. static void ggml_compute_forward_flash_attn_back_f32(
  10892. const struct ggml_compute_params * params,
  10893. const struct ggml_tensor * q,
  10894. const struct ggml_tensor * k,
  10895. const struct ggml_tensor * v,
  10896. const struct ggml_tensor * d,
  10897. const bool masked,
  10898. struct ggml_tensor * dst) {
  10899. int64_t t0 = ggml_perf_time_us();
  10900. UNUSED(t0);
  10901. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10902. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10903. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10904. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10905. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10906. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10907. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10908. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10909. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10910. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10911. const int ith = params->ith;
  10912. const int nth = params->nth;
  10913. const int64_t D = neq0;
  10914. const int64_t N = neq1;
  10915. const int64_t P = nek1 - N;
  10916. const int64_t M = P + N;
  10917. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10918. const int mxDM = MAX(D, Mup);
  10919. // GGML_ASSERT(ne0 == D);
  10920. // GGML_ASSERT(ne1 == N);
  10921. GGML_ASSERT(P >= 0);
  10922. GGML_ASSERT(nbq0 == sizeof(float));
  10923. GGML_ASSERT(nbk0 == sizeof(float));
  10924. GGML_ASSERT(nbv0 == sizeof(float));
  10925. GGML_ASSERT(neq0 == D);
  10926. GGML_ASSERT(nek0 == D);
  10927. GGML_ASSERT(nev1 == D);
  10928. GGML_ASSERT(ned0 == D);
  10929. GGML_ASSERT(neq1 == N);
  10930. GGML_ASSERT(nek1 == N + P);
  10931. GGML_ASSERT(nev1 == D);
  10932. GGML_ASSERT(ned1 == N);
  10933. // dst cannot be transposed or permuted
  10934. GGML_ASSERT(nb0 == sizeof(float));
  10935. GGML_ASSERT(nb0 <= nb1);
  10936. GGML_ASSERT(nb1 <= nb2);
  10937. GGML_ASSERT(nb2 <= nb3);
  10938. if (params->type == GGML_TASK_INIT) {
  10939. if (ith == 0) {
  10940. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10941. }
  10942. return;
  10943. }
  10944. if (params->type == GGML_TASK_FINALIZE) {
  10945. return;
  10946. }
  10947. const int64_t elem_q = ggml_nelements(q);
  10948. const int64_t elem_k = ggml_nelements(k);
  10949. enum ggml_type result_type = dst->type;
  10950. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10951. const size_t tsize = ggml_type_size(result_type);
  10952. const size_t offs_q = 0;
  10953. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10954. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10955. void * grad_q = (char *) dst->data;
  10956. void * grad_k = (char *) dst->data + offs_k;
  10957. void * grad_v = (char *) dst->data + offs_v;
  10958. const size_t nbgq1 = nb0*neq0;
  10959. const size_t nbgq2 = nb0*neq0*neq1;
  10960. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10961. const size_t nbgk1 = nb0*nek0;
  10962. const size_t nbgk2 = nb0*nek0*nek1;
  10963. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10964. const size_t nbgv1 = nb0*nev0;
  10965. const size_t nbgv2 = nb0*nev0*nev1;
  10966. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10967. // parallelize by k rows using ggml_vec_dot_f32
  10968. // total rows in k
  10969. const int nr = nek2*nek3;
  10970. // rows per thread
  10971. const int dr = (nr + nth - 1)/nth;
  10972. // row range for this thread
  10973. const int ir0 = dr*ith;
  10974. const int ir1 = MIN(ir0 + dr, nr);
  10975. const float scale = 1.0f/sqrtf(D);
  10976. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10977. // how often k2 (and v2) is repeated in q2
  10978. int nrep = neq2/nek2;
  10979. for (int ir = ir0; ir < ir1; ++ir) {
  10980. // q indices
  10981. const int ik3 = ir/(nek2);
  10982. const int ik2 = ir - ik3*nek2;
  10983. const int iq3 = ik3;
  10984. const int id3 = ik3;
  10985. const int iv3 = ik3;
  10986. const int iv2 = ik2;
  10987. for (int irep = 0; irep < nrep; ++irep) {
  10988. const int iq2 = ik2 + irep*nek2;
  10989. const int id2 = iq2;
  10990. // (ik2 + irep*nek2) % nek2 == ik2
  10991. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10992. const int id1 = iq1;
  10993. // not sure about CACHE_LINE_SIZE_F32..
  10994. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10995. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10996. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10997. for (int i = M; i < Mup; ++i) {
  10998. S[i] = -INFINITY;
  10999. }
  11000. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11001. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11002. // k indices
  11003. const int ik1 = ic;
  11004. // S indices
  11005. const int i1 = ik1;
  11006. ggml_vec_dot_f32(neq0,
  11007. S + i1,
  11008. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11009. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11010. }
  11011. // scale
  11012. ggml_vec_scale_f32(masked_begin, S, scale);
  11013. for (int64_t i = masked_begin; i < M; i++) {
  11014. S[i] = -INFINITY;
  11015. }
  11016. // softmax
  11017. // exclude known -INF S[..] values from max and loop
  11018. // dont forget to set their SM values to zero
  11019. {
  11020. float max = -INFINITY;
  11021. ggml_vec_max_f32(masked_begin, &max, S);
  11022. ggml_float sum = 0.0;
  11023. {
  11024. #ifdef GGML_SOFT_MAX_ACCELERATE
  11025. max = -max;
  11026. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11027. vvexpf(SM, SM, &Mup);
  11028. ggml_vec_sum_f32(Mup, &sum, SM);
  11029. #else
  11030. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11031. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11032. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11033. if (i >= masked_begin) {
  11034. break;
  11035. }
  11036. float * SR = S + i;
  11037. float * SW = SM + i;
  11038. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11039. if (i + j >= masked_begin) {
  11040. break;
  11041. } else if (SR[j] == -INFINITY) {
  11042. SW[j] = 0.0f;
  11043. } else {
  11044. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11045. const float val = expf(SR[j] - max);
  11046. #else
  11047. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11048. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11049. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11050. #endif
  11051. sump[j] += (ggml_float)val;
  11052. SW[j] = val;
  11053. }
  11054. }
  11055. }
  11056. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11057. sum += sump[i];
  11058. }
  11059. #endif
  11060. }
  11061. assert(sum > 0.0);
  11062. sum = 1.0/sum;
  11063. ggml_vec_scale_f32(masked_begin, SM, sum);
  11064. }
  11065. // step-by-step explanation
  11066. {
  11067. // forward-process shape grads from backward process
  11068. // parallel_for ik2,ik3:
  11069. // for irep:
  11070. // iq2 = ik2 + irep*nek2
  11071. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11072. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11073. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11074. // for iq1:
  11075. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11076. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11077. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11078. // S0 = -Inf [D,1,1,1]
  11079. // ~S1[i] = dot(kcur[:D,i], qcur)
  11080. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11081. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11082. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11083. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11084. // ~S5[i] = dot(vcur[:,i], S4)
  11085. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11086. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11087. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11088. // dst backward-/ grad[dst] = d
  11089. //
  11090. // output gradients with their dependencies:
  11091. //
  11092. // grad[kcur] = grad[S1].T @ qcur
  11093. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11094. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11095. // grad[S4] = grad[S5] @ vcur
  11096. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11097. // grad[qcur] = grad[S1] @ kcur
  11098. // grad[vcur] = grad[S5].T @ S4
  11099. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11100. //
  11101. // in post-order:
  11102. //
  11103. // S1 = qcur @ kcur.T
  11104. // S2 = S1 * scale
  11105. // S3 = diag_mask_inf(S2, P)
  11106. // S4 = softmax(S3)
  11107. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11108. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11109. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11110. // grad[qcur] = grad[S1] @ kcur
  11111. // grad[kcur] = grad[S1].T @ qcur
  11112. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11113. //
  11114. // using less variables (SM=S4):
  11115. //
  11116. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11117. // SM = softmax(S)
  11118. // S = d[:D,iq1,iq2,iq3] @ vcur
  11119. // dot_SM_gradSM = dot(SM, S)
  11120. // S = SM * (S - dot(SM, S))
  11121. // S = diag_mask_zero(S, P) * scale
  11122. //
  11123. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11124. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11125. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11126. }
  11127. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11128. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11129. // for ic:
  11130. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11131. // exclude known future zero S[..] values from operation
  11132. ggml_vec_set_f32(masked_begin, S, 0);
  11133. for (int64_t ic = 0; ic < D; ++ic) {
  11134. ggml_vec_mad_f32(masked_begin,
  11135. S,
  11136. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11137. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11138. }
  11139. // S = SM * (S - dot(SM, S))
  11140. float dot_SM_gradSM = 0;
  11141. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11142. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11143. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11144. // S = diag_mask_zero(S, P) * scale
  11145. // already done by above ggml_vec_set_f32
  11146. // exclude known zero S[..] values from operation
  11147. ggml_vec_scale_f32(masked_begin, S, scale);
  11148. // S shape [M,1]
  11149. // SM shape [M,1]
  11150. // kcur shape [D,M]
  11151. // qcur shape [D,1]
  11152. // vcur shape [M,D]
  11153. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11154. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11155. // for ic:
  11156. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11157. // exclude known zero S[..] values from loop
  11158. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11159. ggml_vec_mad_f32(D,
  11160. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11161. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11162. S[ic]);
  11163. }
  11164. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11165. // for ic:
  11166. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11167. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11168. // exclude known zero S[..] values from loop
  11169. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11170. ggml_vec_mad_f32(D,
  11171. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11172. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11173. S[ic]);
  11174. }
  11175. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11176. // for ic:
  11177. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11178. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11179. // exclude known zero SM[..] values from mad
  11180. for (int64_t ic = 0; ic < D; ++ic) {
  11181. ggml_vec_mad_f32(masked_begin,
  11182. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11183. SM,
  11184. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11185. }
  11186. }
  11187. }
  11188. }
  11189. }
  11190. static void ggml_compute_forward_flash_attn_back(
  11191. const struct ggml_compute_params * params,
  11192. const struct ggml_tensor * q,
  11193. const struct ggml_tensor * k,
  11194. const struct ggml_tensor * v,
  11195. const struct ggml_tensor * d,
  11196. const bool masked,
  11197. struct ggml_tensor * dst) {
  11198. switch (q->type) {
  11199. case GGML_TYPE_F32:
  11200. {
  11201. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11202. } break;
  11203. default:
  11204. {
  11205. GGML_ASSERT(false);
  11206. } break;
  11207. }
  11208. }
  11209. // ggml_compute_forward_win_part
  11210. static void ggml_compute_forward_win_part_f32(
  11211. const struct ggml_compute_params * params,
  11212. const struct ggml_tensor * src0,
  11213. struct ggml_tensor * dst) {
  11214. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11215. return;
  11216. }
  11217. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11218. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11219. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11220. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11221. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11222. assert(ne00 == ne0);
  11223. assert(ne3 == nep0*nep1);
  11224. // TODO: optimize / multi-thread
  11225. for (int py = 0; py < nep1; ++py) {
  11226. for (int px = 0; px < nep0; ++px) {
  11227. const int64_t i3 = py*nep0 + px;
  11228. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11229. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11230. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11231. const int64_t i02 = py*w + i2;
  11232. const int64_t i01 = px*w + i1;
  11233. const int64_t i00 = i0;
  11234. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11235. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11236. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11237. ((float *) dst->data)[i] = 0.0f;
  11238. } else {
  11239. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11240. }
  11241. }
  11242. }
  11243. }
  11244. }
  11245. }
  11246. }
  11247. static void ggml_compute_forward_win_part(
  11248. const struct ggml_compute_params * params,
  11249. const struct ggml_tensor * src0,
  11250. struct ggml_tensor * dst) {
  11251. switch (src0->type) {
  11252. case GGML_TYPE_F32:
  11253. {
  11254. ggml_compute_forward_win_part_f32(params, src0, dst);
  11255. } break;
  11256. default:
  11257. {
  11258. GGML_ASSERT(false);
  11259. } break;
  11260. }
  11261. }
  11262. // ggml_compute_forward_win_unpart
  11263. static void ggml_compute_forward_win_unpart_f32(
  11264. const struct ggml_compute_params * params,
  11265. const struct ggml_tensor * src0,
  11266. struct ggml_tensor * dst) {
  11267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11268. return;
  11269. }
  11270. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11271. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11272. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11273. // padding
  11274. const int px = (w - ne1%w)%w;
  11275. //const int py = (w - ne2%w)%w;
  11276. const int npx = (px + ne1)/w;
  11277. //const int npy = (py + ne2)/w;
  11278. assert(ne0 == ne00);
  11279. // TODO: optimize / multi-thread
  11280. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11281. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11282. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11283. const int ip2 = i2/w;
  11284. const int ip1 = i1/w;
  11285. const int64_t i02 = i2%w;
  11286. const int64_t i01 = i1%w;
  11287. const int64_t i00 = i0;
  11288. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11289. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11290. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11291. }
  11292. }
  11293. }
  11294. }
  11295. static void ggml_compute_forward_win_unpart(
  11296. const struct ggml_compute_params * params,
  11297. const struct ggml_tensor * src0,
  11298. struct ggml_tensor * dst) {
  11299. switch (src0->type) {
  11300. case GGML_TYPE_F32:
  11301. {
  11302. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11303. } break;
  11304. default:
  11305. {
  11306. GGML_ASSERT(false);
  11307. } break;
  11308. }
  11309. }
  11310. //gmml_compute_forward_unary
  11311. static void ggml_compute_forward_unary(
  11312. const struct ggml_compute_params * params,
  11313. const struct ggml_tensor * src0,
  11314. struct ggml_tensor * dst) {
  11315. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11316. switch (op) {
  11317. case GGML_UNARY_OP_ABS:
  11318. {
  11319. ggml_compute_forward_abs(params, src0, dst);
  11320. } break;
  11321. case GGML_UNARY_OP_SGN:
  11322. {
  11323. ggml_compute_forward_sgn(params, src0, dst);
  11324. } break;
  11325. case GGML_UNARY_OP_NEG:
  11326. {
  11327. ggml_compute_forward_neg(params, src0, dst);
  11328. } break;
  11329. case GGML_UNARY_OP_STEP:
  11330. {
  11331. ggml_compute_forward_step(params, src0, dst);
  11332. } break;
  11333. case GGML_UNARY_OP_TANH:
  11334. {
  11335. ggml_compute_forward_tanh(params, src0, dst);
  11336. } break;
  11337. case GGML_UNARY_OP_ELU:
  11338. {
  11339. ggml_compute_forward_elu(params, src0, dst);
  11340. } break;
  11341. case GGML_UNARY_OP_RELU:
  11342. {
  11343. ggml_compute_forward_relu(params, src0, dst);
  11344. } break;
  11345. case GGML_UNARY_OP_GELU:
  11346. {
  11347. ggml_compute_forward_gelu(params, src0, dst);
  11348. } break;
  11349. case GGML_UNARY_OP_GELU_QUICK:
  11350. {
  11351. ggml_compute_forward_gelu_quick(params, src0, dst);
  11352. } break;
  11353. case GGML_UNARY_OP_SILU:
  11354. {
  11355. ggml_compute_forward_silu(params, src0, dst);
  11356. } break;
  11357. default:
  11358. {
  11359. GGML_ASSERT(false);
  11360. } break;
  11361. }
  11362. }
  11363. // ggml_compute_forward_get_rel_pos
  11364. static void ggml_compute_forward_get_rel_pos_f16(
  11365. const struct ggml_compute_params * params,
  11366. const struct ggml_tensor * src0,
  11367. struct ggml_tensor * dst) {
  11368. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11369. return;
  11370. }
  11371. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11372. GGML_TENSOR_UNARY_OP_LOCALS
  11373. const int64_t w = ne1;
  11374. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11375. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11376. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11377. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11378. const int64_t pos = (w - i1 - 1) + i2;
  11379. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11380. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11381. }
  11382. }
  11383. }
  11384. }
  11385. static void ggml_compute_forward_get_rel_pos(
  11386. const struct ggml_compute_params * params,
  11387. const struct ggml_tensor * src0,
  11388. struct ggml_tensor * dst) {
  11389. switch (src0->type) {
  11390. case GGML_TYPE_F16:
  11391. {
  11392. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11393. } break;
  11394. default:
  11395. {
  11396. GGML_ASSERT(false);
  11397. } break;
  11398. }
  11399. }
  11400. // ggml_compute_forward_add_rel_pos
  11401. static void ggml_compute_forward_add_rel_pos_f32(
  11402. const struct ggml_compute_params * params,
  11403. const struct ggml_tensor * src0,
  11404. const struct ggml_tensor * src1,
  11405. const struct ggml_tensor * src2,
  11406. struct ggml_tensor * dst) {
  11407. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11408. if (!inplace && params->type == GGML_TASK_INIT) {
  11409. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11410. return;
  11411. }
  11412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11413. return;
  11414. }
  11415. int64_t t0 = ggml_perf_time_us();
  11416. UNUSED(t0);
  11417. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11418. float * src1_data = (float *) src1->data;
  11419. float * src2_data = (float *) src2->data;
  11420. float * dst_data = (float *) dst->data;
  11421. const int64_t ne10 = src1->ne[0];
  11422. const int64_t ne11 = src1->ne[1];
  11423. const int64_t ne12 = src1->ne[2];
  11424. const int64_t ne13 = src1->ne[3];
  11425. const int ith = params->ith;
  11426. const int nth = params->nth;
  11427. // total patches in dst
  11428. const int np = ne13;
  11429. // patches per thread
  11430. const int dp = (np + nth - 1)/nth;
  11431. // patch range for this thread
  11432. const int ip0 = dp*ith;
  11433. const int ip1 = MIN(ip0 + dp, np);
  11434. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11435. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11436. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11437. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11438. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11439. const int64_t jp0 = jp1 + i10;
  11440. const float src1_e = src1_data[jp0];
  11441. const float src2_e = src2_data[jp0];
  11442. const int64_t jdh = jp0 * ne10;
  11443. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11444. for (int64_t j = 0; j < ne10; ++j) {
  11445. dst_data[jdh + j ] += src2_e;
  11446. dst_data[jdw + j*ne10] += src1_e;
  11447. }
  11448. }
  11449. }
  11450. }
  11451. }
  11452. }
  11453. static void ggml_compute_forward_add_rel_pos(
  11454. const struct ggml_compute_params * params,
  11455. const struct ggml_tensor * src0,
  11456. const struct ggml_tensor * src1,
  11457. const struct ggml_tensor * src2,
  11458. struct ggml_tensor * dst) {
  11459. switch (src0->type) {
  11460. case GGML_TYPE_F32:
  11461. {
  11462. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11463. } break;
  11464. default:
  11465. {
  11466. GGML_ASSERT(false);
  11467. } break;
  11468. }
  11469. }
  11470. // ggml_compute_forward_map_unary
  11471. static void ggml_compute_forward_map_unary_f32(
  11472. const struct ggml_compute_params * params,
  11473. const struct ggml_tensor * src0,
  11474. struct ggml_tensor * dst,
  11475. const ggml_unary_op_f32_t fun) {
  11476. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11477. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11478. return;
  11479. }
  11480. const int n = ggml_nrows(src0);
  11481. const int nc = src0->ne[0];
  11482. assert( dst->nb[0] == sizeof(float));
  11483. assert(src0->nb[0] == sizeof(float));
  11484. for (int i = 0; i < n; i++) {
  11485. fun(nc,
  11486. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11487. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11488. }
  11489. }
  11490. static void ggml_compute_forward_map_unary(
  11491. const struct ggml_compute_params * params,
  11492. const struct ggml_tensor * src0,
  11493. struct ggml_tensor * dst,
  11494. const ggml_unary_op_f32_t fun) {
  11495. switch (src0->type) {
  11496. case GGML_TYPE_F32:
  11497. {
  11498. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11499. } break;
  11500. default:
  11501. {
  11502. GGML_ASSERT(false);
  11503. } break;
  11504. }
  11505. }
  11506. // ggml_compute_forward_map_binary
  11507. static void ggml_compute_forward_map_binary_f32(
  11508. const struct ggml_compute_params * params,
  11509. const struct ggml_tensor * src0,
  11510. const struct ggml_tensor * src1,
  11511. struct ggml_tensor * dst,
  11512. const ggml_binary_op_f32_t fun) {
  11513. assert(params->ith == 0);
  11514. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11515. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11516. return;
  11517. }
  11518. const int n = ggml_nrows(src0);
  11519. const int nc = src0->ne[0];
  11520. assert( dst->nb[0] == sizeof(float));
  11521. assert(src0->nb[0] == sizeof(float));
  11522. assert(src1->nb[0] == sizeof(float));
  11523. for (int i = 0; i < n; i++) {
  11524. fun(nc,
  11525. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11526. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11527. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11528. }
  11529. }
  11530. static void ggml_compute_forward_map_binary(
  11531. const struct ggml_compute_params * params,
  11532. const struct ggml_tensor * src0,
  11533. const struct ggml_tensor * src1,
  11534. struct ggml_tensor * dst,
  11535. const ggml_binary_op_f32_t fun) {
  11536. switch (src0->type) {
  11537. case GGML_TYPE_F32:
  11538. {
  11539. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11540. } break;
  11541. default:
  11542. {
  11543. GGML_ASSERT(false);
  11544. } break;
  11545. }
  11546. }
  11547. // ggml_compute_forward_map_custom1
  11548. static void ggml_compute_forward_map_custom1_f32(
  11549. const struct ggml_compute_params * params,
  11550. const struct ggml_tensor * a,
  11551. struct ggml_tensor * dst,
  11552. const ggml_custom1_op_f32_t fun) {
  11553. assert(params->ith == 0);
  11554. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11555. return;
  11556. }
  11557. fun(dst, a);
  11558. }
  11559. // ggml_compute_forward_map_custom2
  11560. static void ggml_compute_forward_map_custom2_f32(
  11561. const struct ggml_compute_params * params,
  11562. const struct ggml_tensor * a,
  11563. const struct ggml_tensor * b,
  11564. struct ggml_tensor * dst,
  11565. const ggml_custom2_op_f32_t fun) {
  11566. assert(params->ith == 0);
  11567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11568. return;
  11569. }
  11570. fun(dst, a, b);
  11571. }
  11572. // ggml_compute_forward_map_custom3
  11573. static void ggml_compute_forward_map_custom3_f32(
  11574. const struct ggml_compute_params * params,
  11575. const struct ggml_tensor * a,
  11576. const struct ggml_tensor * b,
  11577. const struct ggml_tensor * c,
  11578. struct ggml_tensor * dst,
  11579. const ggml_custom3_op_f32_t fun) {
  11580. assert(params->ith == 0);
  11581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11582. return;
  11583. }
  11584. fun(dst, a, b, c);
  11585. }
  11586. // ggml_compute_forward_map_custom1
  11587. static void ggml_compute_forward_map_custom1(
  11588. const struct ggml_compute_params * params,
  11589. const struct ggml_tensor * a,
  11590. struct ggml_tensor * dst) {
  11591. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11592. return;
  11593. }
  11594. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11595. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11596. }
  11597. // ggml_compute_forward_map_custom2
  11598. static void ggml_compute_forward_map_custom2(
  11599. const struct ggml_compute_params * params,
  11600. const struct ggml_tensor * a,
  11601. const struct ggml_tensor * b,
  11602. struct ggml_tensor * dst) {
  11603. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11604. return;
  11605. }
  11606. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11607. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11608. }
  11609. // ggml_compute_forward_map_custom3
  11610. static void ggml_compute_forward_map_custom3(
  11611. const struct ggml_compute_params * params,
  11612. const struct ggml_tensor * a,
  11613. const struct ggml_tensor * b,
  11614. const struct ggml_tensor * c,
  11615. struct ggml_tensor * dst) {
  11616. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11617. return;
  11618. }
  11619. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11620. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11621. }
  11622. // ggml_compute_forward_cross_entropy_loss
  11623. static void ggml_compute_forward_cross_entropy_loss_f32(
  11624. const struct ggml_compute_params * params,
  11625. const struct ggml_tensor * src0,
  11626. const struct ggml_tensor * src1,
  11627. struct ggml_tensor * dst) {
  11628. GGML_ASSERT(ggml_is_contiguous(src0));
  11629. GGML_ASSERT(ggml_is_contiguous(src1));
  11630. GGML_ASSERT(ggml_is_scalar(dst));
  11631. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11632. const int ith = params->ith;
  11633. const int nth = params->nth;
  11634. float * sums = (float *) params->wdata;
  11635. // TODO: handle transposed/permuted matrices
  11636. const int nc = src0->ne[0];
  11637. const int nr = ggml_nrows(src0);
  11638. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11639. if (params->type == GGML_TASK_INIT) {
  11640. if (ith == 0) {
  11641. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11642. }
  11643. return;
  11644. }
  11645. if (params->type == GGML_TASK_FINALIZE) {
  11646. if (ith == 0) {
  11647. float * dp = (float *) dst->data;
  11648. ggml_vec_sum_f32(nth, dp, sums);
  11649. dp[0] *= -1.0f / (float) nr;
  11650. }
  11651. return;
  11652. }
  11653. const double eps = 1e-9;
  11654. // rows per thread
  11655. const int dr = (nr + nth - 1)/nth;
  11656. // row range for this thread
  11657. const int ir0 = dr*ith;
  11658. const int ir1 = MIN(ir0 + dr, nr);
  11659. for (int i1 = ir0; i1 < ir1; i1++) {
  11660. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11661. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11662. float * st = ((float *) params->wdata) + nth + ith*nc;
  11663. #ifndef NDEBUG
  11664. for (int i = 0; i < nc; ++i) {
  11665. //printf("p[%d] = %f\n", i, p[i]);
  11666. assert(!isnan(s0[i]));
  11667. assert(!isnan(s1[i]));
  11668. }
  11669. #endif
  11670. // soft_max
  11671. ggml_float sum = 0.0;
  11672. {
  11673. float max = -INFINITY;
  11674. ggml_vec_max_f32(nc, &max, s0);
  11675. uint16_t scvt; UNUSED(scvt);
  11676. for (int i = 0; i < nc; i++) {
  11677. if (s0[i] == -INFINITY) {
  11678. st[i] = 0.0f;
  11679. } else {
  11680. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11681. const float s = s0[i] - max;
  11682. const float val = expf(s);
  11683. #else
  11684. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11685. memcpy(&scvt, &s, sizeof(scvt));
  11686. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11687. #endif
  11688. sum += (ggml_float)val;
  11689. st[i] = val;
  11690. }
  11691. }
  11692. assert(sum > 0.0);
  11693. // sum = 1.0/sum;
  11694. }
  11695. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11696. sum = (1.0 - eps) / sum;
  11697. ggml_vec_scale_f32(nc, st, sum);
  11698. ggml_vec_add1_f32(nc, st, st, eps);
  11699. ggml_vec_log_f32(nc, st, st);
  11700. ggml_vec_mul_f32(nc, st, st, s1);
  11701. float st_sum = 0;
  11702. ggml_vec_sum_f32(nc, &st_sum, st);
  11703. sums[ith] += st_sum;
  11704. #ifndef NDEBUG
  11705. for (int i = 0; i < nc; ++i) {
  11706. assert(!isnan(st[i]));
  11707. assert(!isinf(st[i]));
  11708. }
  11709. #endif
  11710. }
  11711. }
  11712. static void ggml_compute_forward_cross_entropy_loss(
  11713. const struct ggml_compute_params * params,
  11714. const struct ggml_tensor * src0,
  11715. const struct ggml_tensor * src1,
  11716. struct ggml_tensor * dst) {
  11717. switch (src0->type) {
  11718. case GGML_TYPE_F32:
  11719. {
  11720. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11721. } break;
  11722. default:
  11723. {
  11724. GGML_ASSERT(false);
  11725. } break;
  11726. }
  11727. }
  11728. // ggml_compute_forward_cross_entropy_loss_back
  11729. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11730. const struct ggml_compute_params * params,
  11731. const struct ggml_tensor * src0,
  11732. const struct ggml_tensor * src1,
  11733. const struct ggml_tensor * opt0,
  11734. struct ggml_tensor * dst) {
  11735. GGML_ASSERT(ggml_is_contiguous(dst));
  11736. GGML_ASSERT(ggml_is_contiguous(src0));
  11737. GGML_ASSERT(ggml_is_contiguous(src1));
  11738. GGML_ASSERT(ggml_is_contiguous(opt0));
  11739. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11740. const int64_t ith = params->ith;
  11741. const int64_t nth = params->nth;
  11742. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11743. return;
  11744. }
  11745. const double eps = 1e-9;
  11746. // TODO: handle transposed/permuted matrices
  11747. const int64_t nc = src0->ne[0];
  11748. const int64_t nr = ggml_nrows(src0);
  11749. // rows per thread
  11750. const int64_t dr = (nr + nth - 1)/nth;
  11751. // row range for this thread
  11752. const int64_t ir0 = dr*ith;
  11753. const int64_t ir1 = MIN(ir0 + dr, nr);
  11754. float * d = (float *) opt0->data;
  11755. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11756. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11757. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11758. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11759. #ifndef NDEBUG
  11760. for (int i = 0; i < nc; ++i) {
  11761. //printf("p[%d] = %f\n", i, p[i]);
  11762. assert(!isnan(s0[i]));
  11763. assert(!isnan(s1[i]));
  11764. }
  11765. #endif
  11766. // soft_max
  11767. ggml_float sum = 0.0;
  11768. {
  11769. float max = -INFINITY;
  11770. ggml_vec_max_f32(nc, &max, s0);
  11771. uint16_t scvt; UNUSED(scvt);
  11772. for (int i = 0; i < nc; i++) {
  11773. if (s0[i] == -INFINITY) {
  11774. ds0[i] = 0.0f;
  11775. } else {
  11776. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11777. const float s = s0[i] - max;
  11778. const float val = expf(s);
  11779. #else
  11780. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11781. memcpy(&scvt, &s, sizeof(scvt));
  11782. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11783. #endif
  11784. sum += (ggml_float)val;
  11785. ds0[i] = val;
  11786. }
  11787. }
  11788. assert(sum > 0.0);
  11789. sum = (1.0 - eps)/sum;
  11790. }
  11791. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11792. ggml_vec_scale_f32(nc, ds0, sum);
  11793. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11794. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11795. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11796. #ifndef NDEBUG
  11797. for (int i = 0; i < nc; ++i) {
  11798. assert(!isnan(ds0[i]));
  11799. assert(!isinf(ds0[i]));
  11800. }
  11801. #endif
  11802. }
  11803. }
  11804. static void ggml_compute_forward_cross_entropy_loss_back(
  11805. const struct ggml_compute_params * params,
  11806. const struct ggml_tensor * src0,
  11807. const struct ggml_tensor * src1,
  11808. const struct ggml_tensor * opt0,
  11809. struct ggml_tensor * dst) {
  11810. switch (src0->type) {
  11811. case GGML_TYPE_F32:
  11812. {
  11813. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11814. } break;
  11815. default:
  11816. {
  11817. GGML_ASSERT(false);
  11818. } break;
  11819. }
  11820. }
  11821. /////////////////////////////////
  11822. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11823. GGML_ASSERT(params);
  11824. if (tensor->op == GGML_OP_NONE) {
  11825. return;
  11826. }
  11827. #ifdef GGML_USE_CUBLAS
  11828. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11829. if (skip_cpu) {
  11830. return;
  11831. }
  11832. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11833. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11834. #endif // GGML_USE_CUBLAS
  11835. switch (tensor->op) {
  11836. case GGML_OP_DUP:
  11837. {
  11838. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11839. } break;
  11840. case GGML_OP_ADD:
  11841. {
  11842. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11843. } break;
  11844. case GGML_OP_ADD1:
  11845. {
  11846. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11847. } break;
  11848. case GGML_OP_ACC:
  11849. {
  11850. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11851. } break;
  11852. case GGML_OP_SUB:
  11853. {
  11854. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11855. } break;
  11856. case GGML_OP_MUL:
  11857. {
  11858. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11859. } break;
  11860. case GGML_OP_DIV:
  11861. {
  11862. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11863. } break;
  11864. case GGML_OP_SQR:
  11865. {
  11866. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11867. } break;
  11868. case GGML_OP_SQRT:
  11869. {
  11870. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11871. } break;
  11872. case GGML_OP_LOG:
  11873. {
  11874. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11875. } break;
  11876. case GGML_OP_SUM:
  11877. {
  11878. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11879. } break;
  11880. case GGML_OP_SUM_ROWS:
  11881. {
  11882. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11883. } break;
  11884. case GGML_OP_MEAN:
  11885. {
  11886. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11887. } break;
  11888. case GGML_OP_ARGMAX:
  11889. {
  11890. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11891. } break;
  11892. case GGML_OP_REPEAT:
  11893. {
  11894. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11895. } break;
  11896. case GGML_OP_REPEAT_BACK:
  11897. {
  11898. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11899. } break;
  11900. case GGML_OP_CONCAT:
  11901. {
  11902. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11903. } break;
  11904. case GGML_OP_SILU_BACK:
  11905. {
  11906. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11907. } break;
  11908. case GGML_OP_NORM:
  11909. {
  11910. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11911. } break;
  11912. case GGML_OP_RMS_NORM:
  11913. {
  11914. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11915. } break;
  11916. case GGML_OP_RMS_NORM_BACK:
  11917. {
  11918. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11919. } break;
  11920. case GGML_OP_GROUP_NORM:
  11921. {
  11922. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11923. } break;
  11924. case GGML_OP_MUL_MAT:
  11925. {
  11926. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11927. } break;
  11928. case GGML_OP_MUL_MAT_ID:
  11929. {
  11930. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11931. } break;
  11932. case GGML_OP_OUT_PROD:
  11933. {
  11934. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11935. } break;
  11936. case GGML_OP_SCALE:
  11937. {
  11938. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  11939. } break;
  11940. case GGML_OP_SET:
  11941. {
  11942. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11943. } break;
  11944. case GGML_OP_CPY:
  11945. {
  11946. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11947. } break;
  11948. case GGML_OP_CONT:
  11949. {
  11950. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11951. } break;
  11952. case GGML_OP_RESHAPE:
  11953. {
  11954. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11955. } break;
  11956. case GGML_OP_VIEW:
  11957. {
  11958. ggml_compute_forward_view(params, tensor->src[0]);
  11959. } break;
  11960. case GGML_OP_PERMUTE:
  11961. {
  11962. ggml_compute_forward_permute(params, tensor->src[0]);
  11963. } break;
  11964. case GGML_OP_TRANSPOSE:
  11965. {
  11966. ggml_compute_forward_transpose(params, tensor->src[0]);
  11967. } break;
  11968. case GGML_OP_GET_ROWS:
  11969. {
  11970. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11971. } break;
  11972. case GGML_OP_GET_ROWS_BACK:
  11973. {
  11974. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11975. } break;
  11976. case GGML_OP_DIAG:
  11977. {
  11978. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11979. } break;
  11980. case GGML_OP_DIAG_MASK_INF:
  11981. {
  11982. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11983. } break;
  11984. case GGML_OP_DIAG_MASK_ZERO:
  11985. {
  11986. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11987. } break;
  11988. case GGML_OP_SOFT_MAX:
  11989. {
  11990. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  11991. } break;
  11992. case GGML_OP_SOFT_MAX_BACK:
  11993. {
  11994. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11995. } break;
  11996. case GGML_OP_ROPE:
  11997. {
  11998. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11999. } break;
  12000. case GGML_OP_ROPE_BACK:
  12001. {
  12002. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12003. } break;
  12004. case GGML_OP_ALIBI:
  12005. {
  12006. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12007. } break;
  12008. case GGML_OP_CLAMP:
  12009. {
  12010. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12011. } break;
  12012. case GGML_OP_CONV_TRANSPOSE_1D:
  12013. {
  12014. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12015. } break;
  12016. case GGML_OP_IM2COL:
  12017. {
  12018. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12019. } break;
  12020. case GGML_OP_CONV_TRANSPOSE_2D:
  12021. {
  12022. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12023. } break;
  12024. case GGML_OP_POOL_1D:
  12025. {
  12026. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12027. } break;
  12028. case GGML_OP_POOL_2D:
  12029. {
  12030. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12031. } break;
  12032. case GGML_OP_UPSCALE:
  12033. {
  12034. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12035. } break;
  12036. case GGML_OP_PAD:
  12037. {
  12038. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12039. } break;
  12040. case GGML_OP_ARGSORT:
  12041. {
  12042. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12043. } break;
  12044. case GGML_OP_LEAKY_RELU:
  12045. {
  12046. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12047. } break;
  12048. case GGML_OP_FLASH_ATTN:
  12049. {
  12050. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12051. GGML_ASSERT(t == 0 || t == 1);
  12052. const bool masked = t != 0;
  12053. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12054. } break;
  12055. case GGML_OP_FLASH_FF:
  12056. {
  12057. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12058. } break;
  12059. case GGML_OP_FLASH_ATTN_BACK:
  12060. {
  12061. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12062. GGML_ASSERT(t == 0 || t == 1);
  12063. bool masked = t != 0;
  12064. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12065. } break;
  12066. case GGML_OP_WIN_PART:
  12067. {
  12068. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12069. } break;
  12070. case GGML_OP_WIN_UNPART:
  12071. {
  12072. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12073. } break;
  12074. case GGML_OP_UNARY:
  12075. {
  12076. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12077. } break;
  12078. case GGML_OP_GET_REL_POS:
  12079. {
  12080. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12081. } break;
  12082. case GGML_OP_ADD_REL_POS:
  12083. {
  12084. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12085. } break;
  12086. case GGML_OP_MAP_UNARY:
  12087. {
  12088. ggml_unary_op_f32_t fun;
  12089. memcpy(&fun, tensor->op_params, sizeof(fun));
  12090. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12091. }
  12092. break;
  12093. case GGML_OP_MAP_BINARY:
  12094. {
  12095. ggml_binary_op_f32_t fun;
  12096. memcpy(&fun, tensor->op_params, sizeof(fun));
  12097. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12098. }
  12099. break;
  12100. case GGML_OP_MAP_CUSTOM1_F32:
  12101. {
  12102. ggml_custom1_op_f32_t fun;
  12103. memcpy(&fun, tensor->op_params, sizeof(fun));
  12104. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12105. }
  12106. break;
  12107. case GGML_OP_MAP_CUSTOM2_F32:
  12108. {
  12109. ggml_custom2_op_f32_t fun;
  12110. memcpy(&fun, tensor->op_params, sizeof(fun));
  12111. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12112. }
  12113. break;
  12114. case GGML_OP_MAP_CUSTOM3_F32:
  12115. {
  12116. ggml_custom3_op_f32_t fun;
  12117. memcpy(&fun, tensor->op_params, sizeof(fun));
  12118. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12119. }
  12120. break;
  12121. case GGML_OP_MAP_CUSTOM1:
  12122. {
  12123. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12124. }
  12125. break;
  12126. case GGML_OP_MAP_CUSTOM2:
  12127. {
  12128. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12129. }
  12130. break;
  12131. case GGML_OP_MAP_CUSTOM3:
  12132. {
  12133. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12134. }
  12135. break;
  12136. case GGML_OP_CROSS_ENTROPY_LOSS:
  12137. {
  12138. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12139. }
  12140. break;
  12141. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12142. {
  12143. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12144. }
  12145. break;
  12146. case GGML_OP_NONE:
  12147. {
  12148. // nop
  12149. } break;
  12150. case GGML_OP_COUNT:
  12151. {
  12152. GGML_ASSERT(false);
  12153. } break;
  12154. }
  12155. }
  12156. ////////////////////////////////////////////////////////////////////////////////
  12157. static size_t ggml_hash_size(size_t min_sz) {
  12158. // next primes after powers of two
  12159. static const size_t primes[] = {
  12160. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12161. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12162. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12163. 16777259, 33554467, 67108879, 134217757, 268435459,
  12164. 536870923, 1073741827, 2147483659
  12165. };
  12166. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12167. // find the smallest prime that is larger or equal to min_sz
  12168. size_t l = 0;
  12169. size_t r = n_primes;
  12170. while (l < r) {
  12171. size_t m = (l + r)/2;
  12172. if (primes[m] < min_sz) {
  12173. l = m + 1;
  12174. } else {
  12175. r = m;
  12176. }
  12177. }
  12178. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12179. return sz;
  12180. }
  12181. static size_t ggml_hash(const void * p) {
  12182. return (size_t)p;
  12183. }
  12184. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12185. size_t h = ggml_hash(key) % hash_set.size;
  12186. // linear probing
  12187. size_t i = h;
  12188. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12189. i = (i + 1) % hash_set.size;
  12190. if (i == h) {
  12191. // visited all hash table entries -> not found
  12192. return GGML_HASHTABLE_FULL;
  12193. }
  12194. }
  12195. return i;
  12196. }
  12197. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12198. size_t i = ggml_hash_find(hash_set, key);
  12199. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12200. }
  12201. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12202. size_t i = ggml_hash_find(hash_set, key);
  12203. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12204. if (hash_set.keys[i] == key) {
  12205. return GGML_HASHTABLE_ALREADY_EXISTS;
  12206. }
  12207. // insert
  12208. GGML_ASSERT(hash_set.keys[i] == NULL);
  12209. hash_set.keys[i] = key;
  12210. return i;
  12211. }
  12212. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12213. size_t i = ggml_hash_find(hash_set, key);
  12214. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12215. hash_set.keys[i] = key;
  12216. return i;
  12217. }
  12218. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12219. size = ggml_hash_size(size);
  12220. struct ggml_hash_set result;
  12221. result.size = size;
  12222. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12223. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12224. return result;
  12225. }
  12226. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12227. free(hash_set.keys);
  12228. }
  12229. struct hash_map {
  12230. struct ggml_hash_set set;
  12231. struct ggml_tensor ** vals;
  12232. };
  12233. static struct hash_map * ggml_new_hash_map(size_t size) {
  12234. struct hash_map * result = malloc(sizeof(struct hash_map));
  12235. result->set = ggml_hash_set_new(size);
  12236. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12237. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12238. return result;
  12239. }
  12240. static void ggml_hash_map_free(struct hash_map * map) {
  12241. ggml_hash_set_free(map->set);
  12242. free(map->vals);
  12243. free(map);
  12244. }
  12245. // gradient checkpointing
  12246. static struct ggml_tensor * ggml_recompute_graph_node(
  12247. struct ggml_context * ctx,
  12248. struct ggml_cgraph * graph,
  12249. struct hash_map * replacements,
  12250. struct ggml_tensor * node) {
  12251. if (node == NULL) {
  12252. return NULL;
  12253. }
  12254. if (node->is_param) {
  12255. return node;
  12256. }
  12257. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12258. return node;
  12259. }
  12260. int count_children = 0;
  12261. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12262. if (node->src[k]) {
  12263. ++count_children;
  12264. }
  12265. }
  12266. if (count_children == 0) {
  12267. return node;
  12268. }
  12269. size_t i = ggml_hash_find(replacements->set, node);
  12270. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12271. if (replacements->set.keys[i] == node) {
  12272. return replacements->vals[i];
  12273. }
  12274. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12275. // insert clone into replacements
  12276. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12277. replacements->set.keys[i] = node;
  12278. replacements->vals[i] = clone;
  12279. clone->op = node->op;
  12280. clone->grad = node->grad;
  12281. clone->is_param = node->is_param;
  12282. clone->extra = node->extra;
  12283. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12284. clone->nb[k] = node->nb[k];
  12285. }
  12286. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12287. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12288. }
  12289. if (node->view_src != NULL) {
  12290. clone->data = (node->view_src->data == NULL)
  12291. ? NULL // view_src not yet allocated
  12292. : (char *) node->view_src->data // view_src already allocated
  12293. + node->view_offs;
  12294. clone->view_src = node->view_src;
  12295. clone->view_offs = node->view_offs;
  12296. }
  12297. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12298. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12299. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12300. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12301. return clone;
  12302. }
  12303. void ggml_build_backward_gradient_checkpointing(
  12304. struct ggml_context * ctx,
  12305. struct ggml_cgraph * gf,
  12306. struct ggml_cgraph * gb,
  12307. struct ggml_cgraph * gb_tmp,
  12308. struct ggml_tensor * * checkpoints,
  12309. int n_checkpoints) {
  12310. ggml_graph_cpy(gf, gb_tmp);
  12311. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12312. if (n_checkpoints <= 0) {
  12313. ggml_graph_cpy(gb_tmp, gb);
  12314. return;
  12315. }
  12316. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12317. // insert checkpoints in replacements
  12318. for (int i = 0; i < n_checkpoints; ++i) {
  12319. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12320. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12321. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12322. replacements->set.keys[k] = checkpoints[i];
  12323. replacements->vals[k] = checkpoints[i];
  12324. }
  12325. ggml_graph_cpy(gf, gb);
  12326. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12327. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12328. // by recomputing them from checkpoints
  12329. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12330. struct ggml_tensor * node = gb_tmp->nodes[i];
  12331. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12332. // insert new tensors recomputing src, reusing already made replacements,
  12333. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12334. // recurse for input tensors,
  12335. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12336. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12337. }
  12338. // insert rewritten backward node with replacements made into resulting backward graph gb
  12339. ggml_build_forward_expand(gb, node);
  12340. }
  12341. ggml_hash_map_free(replacements);
  12342. }
  12343. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12344. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12345. if (ggml_hash_contains(zero_table, a)) {
  12346. return b;
  12347. } else {
  12348. return ggml_add_impl(ctx, a, b, false);
  12349. }
  12350. }
  12351. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12352. if (ggml_hash_contains(zero_table, a)) {
  12353. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12354. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12355. } else {
  12356. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12357. }
  12358. }
  12359. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12360. if (ggml_hash_contains(zero_table, a)) {
  12361. return ggml_repeat(ctx, b, a);
  12362. } else {
  12363. return ggml_add1_impl(ctx, a, b, false);
  12364. }
  12365. }
  12366. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12367. if (ggml_hash_contains(zero_table, a)) {
  12368. return ggml_neg(ctx, b);
  12369. } else {
  12370. return ggml_sub_impl(ctx, a, b, false);
  12371. }
  12372. }
  12373. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12374. struct ggml_tensor * src0 = tensor->src[0];
  12375. struct ggml_tensor * src1 = tensor->src[1];
  12376. switch (tensor->op) {
  12377. case GGML_OP_DUP:
  12378. {
  12379. if (src0->grad) {
  12380. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12381. }
  12382. } break;
  12383. case GGML_OP_ADD:
  12384. {
  12385. if (src0->grad) {
  12386. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12387. }
  12388. if (src1->grad) {
  12389. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12390. }
  12391. } break;
  12392. case GGML_OP_ADD1:
  12393. {
  12394. if (src0->grad) {
  12395. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12396. }
  12397. if (src1->grad) {
  12398. src1->grad = ggml_add_or_set(ctx,
  12399. src1->grad,
  12400. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12401. zero_table);
  12402. }
  12403. } break;
  12404. case GGML_OP_ACC:
  12405. {
  12406. if (src0->grad) {
  12407. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12408. }
  12409. if (src1->grad) {
  12410. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12411. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12412. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12413. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12414. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12415. tensor->grad,
  12416. src1->grad->ne[0],
  12417. src1->grad->ne[1],
  12418. src1->grad->ne[2],
  12419. src1->grad->ne[3],
  12420. nb1, nb2, nb3, offset);
  12421. src1->grad =
  12422. ggml_add_or_set(ctx,
  12423. src1->grad,
  12424. ggml_reshape(ctx,
  12425. ggml_cont(ctx, tensor_grad_view),
  12426. src1->grad),
  12427. zero_table);
  12428. }
  12429. } break;
  12430. case GGML_OP_SUB:
  12431. {
  12432. if (src0->grad) {
  12433. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12434. }
  12435. if (src1->grad) {
  12436. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12437. }
  12438. } break;
  12439. case GGML_OP_MUL:
  12440. {
  12441. if (src0->grad) {
  12442. src0->grad =
  12443. ggml_add_or_set(ctx,
  12444. src0->grad,
  12445. ggml_mul(ctx, src1, tensor->grad),
  12446. zero_table);
  12447. }
  12448. if (src1->grad) {
  12449. src1->grad =
  12450. ggml_add_or_set(ctx,
  12451. src1->grad,
  12452. ggml_mul(ctx, src0, tensor->grad),
  12453. zero_table);
  12454. }
  12455. } break;
  12456. case GGML_OP_DIV:
  12457. {
  12458. if (src0->grad) {
  12459. src0->grad =
  12460. ggml_add_or_set(ctx,
  12461. src0->grad,
  12462. ggml_div(ctx, tensor->grad, src1),
  12463. zero_table);
  12464. }
  12465. if (src1->grad) {
  12466. src1->grad =
  12467. ggml_sub_or_set(ctx,
  12468. src1->grad,
  12469. ggml_mul(ctx,
  12470. tensor->grad,
  12471. ggml_div(ctx, tensor, src1)),
  12472. zero_table);
  12473. }
  12474. } break;
  12475. case GGML_OP_SQR:
  12476. {
  12477. if (src0->grad) {
  12478. src0->grad =
  12479. ggml_add_or_set(ctx,
  12480. src0->grad,
  12481. ggml_scale(ctx,
  12482. ggml_mul(ctx, src0, tensor->grad),
  12483. 2.0f),
  12484. zero_table);
  12485. }
  12486. } break;
  12487. case GGML_OP_SQRT:
  12488. {
  12489. if (src0->grad) {
  12490. src0->grad =
  12491. ggml_add_or_set(ctx,
  12492. src0->grad,
  12493. ggml_scale(ctx,
  12494. ggml_div(ctx,
  12495. tensor->grad,
  12496. tensor),
  12497. 0.5f),
  12498. zero_table);
  12499. }
  12500. } break;
  12501. case GGML_OP_LOG:
  12502. {
  12503. if (src0->grad) {
  12504. src0->grad =
  12505. ggml_add_or_set(ctx,
  12506. src0->grad,
  12507. ggml_div(ctx,
  12508. tensor->grad,
  12509. src0),
  12510. zero_table);
  12511. }
  12512. } break;
  12513. case GGML_OP_SUM:
  12514. {
  12515. if (src0->grad) {
  12516. src0->grad =
  12517. ggml_add1_or_set(ctx,
  12518. src0->grad,
  12519. tensor->grad,
  12520. zero_table);
  12521. }
  12522. } break;
  12523. case GGML_OP_SUM_ROWS:
  12524. {
  12525. if (src0->grad) {
  12526. src0->grad =
  12527. ggml_add_or_set(ctx,
  12528. src0->grad,
  12529. ggml_repeat(ctx,
  12530. tensor->grad,
  12531. src0->grad),
  12532. zero_table);
  12533. }
  12534. } break;
  12535. case GGML_OP_MEAN:
  12536. case GGML_OP_ARGMAX:
  12537. {
  12538. GGML_ASSERT(false); // TODO: implement
  12539. } break;
  12540. case GGML_OP_REPEAT:
  12541. {
  12542. // necessary for llama
  12543. if (src0->grad) {
  12544. src0->grad = ggml_add_or_set(ctx,
  12545. src0->grad,
  12546. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12547. zero_table);
  12548. }
  12549. } break;
  12550. case GGML_OP_REPEAT_BACK:
  12551. {
  12552. if (src0->grad) {
  12553. // TODO: test this
  12554. src0->grad = ggml_add_or_set(ctx,
  12555. src0->grad,
  12556. ggml_repeat(ctx, tensor->grad, src0->grad),
  12557. zero_table);
  12558. }
  12559. } break;
  12560. case GGML_OP_CONCAT:
  12561. {
  12562. GGML_ASSERT(false); // TODO: implement
  12563. } break;
  12564. case GGML_OP_SILU_BACK:
  12565. {
  12566. GGML_ASSERT(false); // TODO: not implemented
  12567. } break;
  12568. case GGML_OP_NORM:
  12569. {
  12570. GGML_ASSERT(false); // TODO: not implemented
  12571. } break;
  12572. case GGML_OP_RMS_NORM:
  12573. {
  12574. // necessary for llama
  12575. if (src0->grad) {
  12576. float eps;
  12577. memcpy(&eps, tensor->op_params, sizeof(float));
  12578. src0->grad = ggml_add_or_set(ctx,
  12579. src0->grad,
  12580. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12581. zero_table);
  12582. }
  12583. } break;
  12584. case GGML_OP_RMS_NORM_BACK:
  12585. {
  12586. GGML_ASSERT(false); // TODO: not implemented
  12587. } break;
  12588. case GGML_OP_GROUP_NORM:
  12589. {
  12590. GGML_ASSERT(false); // TODO: not implemented
  12591. } break;
  12592. case GGML_OP_MUL_MAT:
  12593. {
  12594. // https://cs231n.github.io/optimization-2/#staged
  12595. // # forward pass
  12596. // s0 = np.random.randn(5, 10)
  12597. // s1 = np.random.randn(10, 3)
  12598. // t = s0.dot(s1)
  12599. // # now suppose we had the gradient on t from above in the circuit
  12600. // dt = np.random.randn(*t.shape) # same shape as t
  12601. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12602. // ds1 = t.T.dot(dt)
  12603. // tensor.shape [m,p,qq,rr]
  12604. // src0.shape [n,m,q1,r1]
  12605. // src1.shape [n,p,qq,rr]
  12606. // necessary for llama
  12607. if (src0->grad) {
  12608. struct ggml_tensor * s1_tg =
  12609. ggml_out_prod(ctx, // [n,m,qq,rr]
  12610. src1, // [n,p,qq,rr]
  12611. tensor->grad); // [m,p,qq,rr]
  12612. const int64_t qq = s1_tg->ne[2];
  12613. const int64_t rr = s1_tg->ne[3];
  12614. const int64_t q1 = src0->ne[2];
  12615. const int64_t r1 = src0->ne[3];
  12616. const bool ne2_broadcasted = qq > q1;
  12617. const bool ne3_broadcasted = rr > r1;
  12618. if (ne2_broadcasted || ne3_broadcasted) {
  12619. // sum broadcast repetitions of s1_tg into shape of src0
  12620. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12621. }
  12622. src0->grad =
  12623. ggml_add_or_set(ctx,
  12624. src0->grad, // [n,m,q1,r1]
  12625. s1_tg, // [n,m,q1,r1]
  12626. zero_table);
  12627. }
  12628. if (src1->grad) {
  12629. src1->grad =
  12630. ggml_add_or_set(ctx,
  12631. src1->grad, // [n,p,qq,rr]
  12632. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12633. // ggml_cont(ctx, // [m,n,q1,r1]
  12634. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12635. // tensor->grad), // [m,p,qq,rr]
  12636. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12637. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12638. // // and then use ggml_out_prod
  12639. ggml_out_prod(ctx, // [n,p,qq,rr]
  12640. src0, // [n,m,q1,r1]
  12641. ggml_transpose(ctx, // [p,m,qq,rr]
  12642. tensor->grad)), // [m,p,qq,rr]
  12643. zero_table);
  12644. }
  12645. } break;
  12646. case GGML_OP_MUL_MAT_ID:
  12647. {
  12648. GGML_ASSERT(false); // TODO: not implemented
  12649. } break;
  12650. case GGML_OP_OUT_PROD:
  12651. {
  12652. GGML_ASSERT(false); // TODO: not implemented
  12653. } break;
  12654. case GGML_OP_SCALE:
  12655. {
  12656. // necessary for llama
  12657. if (src0->grad) {
  12658. float s;
  12659. memcpy(&s, tensor->op_params, sizeof(float));
  12660. src0->grad =
  12661. ggml_add_or_set(ctx,
  12662. src0->grad,
  12663. ggml_scale_impl(ctx, tensor->grad, s, false),
  12664. zero_table);
  12665. }
  12666. } break;
  12667. case GGML_OP_SET:
  12668. {
  12669. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12670. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12671. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12672. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12673. struct ggml_tensor * tensor_grad_view = NULL;
  12674. if (src0->grad || src1->grad) {
  12675. GGML_ASSERT(src0->type == tensor->type);
  12676. GGML_ASSERT(tensor->grad->type == tensor->type);
  12677. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12678. tensor_grad_view = ggml_view_4d(ctx,
  12679. tensor->grad,
  12680. src1->grad->ne[0],
  12681. src1->grad->ne[1],
  12682. src1->grad->ne[2],
  12683. src1->grad->ne[3],
  12684. nb1, nb2, nb3, offset);
  12685. }
  12686. if (src0->grad) {
  12687. src0->grad = ggml_add_or_set(ctx,
  12688. src0->grad,
  12689. ggml_acc_impl(ctx,
  12690. tensor->grad,
  12691. ggml_neg(ctx, tensor_grad_view),
  12692. nb1, nb2, nb3, offset, false),
  12693. zero_table);
  12694. }
  12695. if (src1->grad) {
  12696. src1->grad =
  12697. ggml_add_or_set(ctx,
  12698. src1->grad,
  12699. ggml_reshape(ctx,
  12700. ggml_cont(ctx, tensor_grad_view),
  12701. src1->grad),
  12702. zero_table);
  12703. }
  12704. } break;
  12705. case GGML_OP_CPY:
  12706. {
  12707. // necessary for llama
  12708. // cpy overwrites value of src1 by src0 and returns view(src1)
  12709. // the overwriting is mathematically equivalent to:
  12710. // tensor = src0 * 1 + src1 * 0
  12711. if (src0->grad) {
  12712. // dsrc0 = dtensor * 1
  12713. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12714. }
  12715. if (src1->grad) {
  12716. // dsrc1 = dtensor * 0 -> noop
  12717. }
  12718. } break;
  12719. case GGML_OP_CONT:
  12720. {
  12721. // same as cpy
  12722. if (src0->grad) {
  12723. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12724. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12725. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12726. }
  12727. } break;
  12728. case GGML_OP_RESHAPE:
  12729. {
  12730. // necessary for llama
  12731. if (src0->grad) {
  12732. src0->grad =
  12733. ggml_add_or_set(ctx, src0->grad,
  12734. ggml_reshape(ctx,
  12735. ggml_is_contiguous(tensor->grad)
  12736. ? tensor->grad
  12737. : ggml_cont(ctx, tensor->grad),
  12738. src0->grad),
  12739. zero_table);
  12740. }
  12741. } break;
  12742. case GGML_OP_VIEW:
  12743. {
  12744. // necessary for llama
  12745. if (src0->grad) {
  12746. size_t offset;
  12747. memcpy(&offset, tensor->op_params, sizeof(offset));
  12748. size_t nb1 = tensor->nb[1];
  12749. size_t nb2 = tensor->nb[2];
  12750. size_t nb3 = tensor->nb[3];
  12751. if (src0->type != src0->grad->type) {
  12752. // gradient is typically F32, but src0 could be other type
  12753. size_t ng = ggml_element_size(src0->grad);
  12754. size_t n0 = ggml_element_size(src0);
  12755. GGML_ASSERT(offset % n0 == 0);
  12756. GGML_ASSERT(nb1 % n0 == 0);
  12757. GGML_ASSERT(nb2 % n0 == 0);
  12758. GGML_ASSERT(nb3 % n0 == 0);
  12759. offset = (offset / n0) * ng;
  12760. nb1 = (nb1 / n0) * ng;
  12761. nb2 = (nb2 / n0) * ng;
  12762. nb3 = (nb3 / n0) * ng;
  12763. }
  12764. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12765. }
  12766. } break;
  12767. case GGML_OP_PERMUTE:
  12768. {
  12769. // necessary for llama
  12770. if (src0->grad) {
  12771. int32_t * axes = (int32_t *) tensor->op_params;
  12772. int axis0 = axes[0] & 0x3;
  12773. int axis1 = axes[1] & 0x3;
  12774. int axis2 = axes[2] & 0x3;
  12775. int axis3 = axes[3] & 0x3;
  12776. int axes_backward[4] = {0,0,0,0};
  12777. axes_backward[axis0] = 0;
  12778. axes_backward[axis1] = 1;
  12779. axes_backward[axis2] = 2;
  12780. axes_backward[axis3] = 3;
  12781. src0->grad =
  12782. ggml_add_or_set(ctx, src0->grad,
  12783. ggml_permute(ctx,
  12784. tensor->grad,
  12785. axes_backward[0],
  12786. axes_backward[1],
  12787. axes_backward[2],
  12788. axes_backward[3]),
  12789. zero_table);
  12790. }
  12791. } break;
  12792. case GGML_OP_TRANSPOSE:
  12793. {
  12794. // necessary for llama
  12795. if (src0->grad) {
  12796. src0->grad =
  12797. ggml_add_or_set(ctx, src0->grad,
  12798. ggml_transpose(ctx, tensor->grad),
  12799. zero_table);
  12800. }
  12801. } break;
  12802. case GGML_OP_GET_ROWS:
  12803. {
  12804. // necessary for llama (only for tokenizer)
  12805. if (src0->grad) {
  12806. src0->grad =
  12807. ggml_add_or_set(ctx, src0->grad,
  12808. // last ggml_get_rows_back argument src0->grad is only
  12809. // necessary to setup correct output shape
  12810. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12811. zero_table);
  12812. }
  12813. if (src1->grad) {
  12814. // noop
  12815. }
  12816. } break;
  12817. case GGML_OP_GET_ROWS_BACK:
  12818. {
  12819. GGML_ASSERT(false); // TODO: not implemented
  12820. } break;
  12821. case GGML_OP_DIAG:
  12822. {
  12823. GGML_ASSERT(false); // TODO: not implemented
  12824. } break;
  12825. case GGML_OP_DIAG_MASK_INF:
  12826. {
  12827. // necessary for llama
  12828. if (src0->grad) {
  12829. const int n_past = ((int32_t *) tensor->op_params)[0];
  12830. src0->grad =
  12831. ggml_add_or_set(ctx, src0->grad,
  12832. /* ggml_diag_mask_inf_impl() shouldn't be here */
  12833. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  12834. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12835. zero_table);
  12836. }
  12837. } break;
  12838. case GGML_OP_DIAG_MASK_ZERO:
  12839. {
  12840. // necessary for llama
  12841. if (src0->grad) {
  12842. const int n_past = ((int32_t *) tensor->op_params)[0];
  12843. src0->grad =
  12844. ggml_add_or_set(ctx, src0->grad,
  12845. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12846. zero_table);
  12847. }
  12848. } break;
  12849. case GGML_OP_SOFT_MAX:
  12850. {
  12851. // necessary for llama
  12852. if (src0->grad) {
  12853. src0->grad =
  12854. ggml_add_or_set(ctx, src0->grad,
  12855. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12856. zero_table);
  12857. }
  12858. } break;
  12859. case GGML_OP_SOFT_MAX_BACK:
  12860. {
  12861. GGML_ASSERT(false); // TODO: not implemented
  12862. } break;
  12863. case GGML_OP_ROPE:
  12864. {
  12865. // necessary for llama
  12866. if (src0->grad) {
  12867. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12868. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12869. const int mode = ((int32_t *) tensor->op_params)[2];
  12870. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12871. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12872. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12873. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12874. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12875. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12876. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12877. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12878. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12879. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12880. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12881. src0->grad = ggml_add_or_set(ctx,
  12882. src0->grad,
  12883. ggml_rope_back(ctx,
  12884. tensor->grad,
  12885. src1,
  12886. n_dims,
  12887. mode,
  12888. n_ctx,
  12889. n_orig_ctx,
  12890. freq_base,
  12891. freq_scale,
  12892. ext_factor,
  12893. attn_factor,
  12894. beta_fast,
  12895. beta_slow,
  12896. xpos_base,
  12897. xpos_down),
  12898. zero_table);
  12899. }
  12900. } break;
  12901. case GGML_OP_ROPE_BACK:
  12902. {
  12903. if (src0->grad) {
  12904. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12905. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12906. const int mode = ((int32_t *) tensor->op_params)[2];
  12907. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12908. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12909. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12910. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12911. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12912. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12913. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12914. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12915. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12916. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12917. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12918. src0->grad = ggml_add_or_set(ctx,
  12919. src0->grad,
  12920. ggml_rope_impl(ctx,
  12921. tensor->grad,
  12922. src1,
  12923. n_dims,
  12924. mode,
  12925. n_ctx,
  12926. n_orig_ctx,
  12927. freq_base,
  12928. freq_scale,
  12929. ext_factor,
  12930. attn_factor,
  12931. beta_fast,
  12932. beta_slow,
  12933. xpos_base,
  12934. xpos_down,
  12935. false),
  12936. zero_table);
  12937. }
  12938. } break;
  12939. case GGML_OP_ALIBI:
  12940. {
  12941. GGML_ASSERT(false); // TODO: not implemented
  12942. } break;
  12943. case GGML_OP_CLAMP:
  12944. {
  12945. GGML_ASSERT(false); // TODO: not implemented
  12946. } break;
  12947. case GGML_OP_CONV_TRANSPOSE_1D:
  12948. {
  12949. GGML_ASSERT(false); // TODO: not implemented
  12950. } break;
  12951. case GGML_OP_IM2COL:
  12952. {
  12953. GGML_ASSERT(false); // TODO: not implemented
  12954. } break;
  12955. case GGML_OP_CONV_TRANSPOSE_2D:
  12956. {
  12957. GGML_ASSERT(false); // TODO: not implemented
  12958. } break;
  12959. case GGML_OP_POOL_1D:
  12960. {
  12961. GGML_ASSERT(false); // TODO: not implemented
  12962. } break;
  12963. case GGML_OP_POOL_2D:
  12964. {
  12965. GGML_ASSERT(false); // TODO: not implemented
  12966. } break;
  12967. case GGML_OP_UPSCALE:
  12968. {
  12969. GGML_ASSERT(false); // TODO: not implemented
  12970. } break;
  12971. case GGML_OP_PAD:
  12972. {
  12973. GGML_ASSERT(false); // TODO: not implemented
  12974. } break;
  12975. case GGML_OP_ARGSORT:
  12976. {
  12977. GGML_ASSERT(false); // TODO: not implemented
  12978. } break;
  12979. case GGML_OP_LEAKY_RELU:
  12980. {
  12981. GGML_ASSERT(false); // TODO: not implemented
  12982. } break;
  12983. case GGML_OP_FLASH_ATTN:
  12984. {
  12985. struct ggml_tensor * flash_grad = NULL;
  12986. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12987. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12988. GGML_ASSERT(t == 0 || t == 1);
  12989. bool masked = t != 0;
  12990. flash_grad =
  12991. ggml_flash_attn_back(ctx,
  12992. src0,
  12993. src1,
  12994. tensor->src[2],
  12995. tensor->grad,
  12996. masked);
  12997. }
  12998. struct ggml_tensor * src2 = tensor->src[2];
  12999. const int64_t elem_q = ggml_nelements(src0);
  13000. const int64_t elem_k = ggml_nelements(src1);
  13001. const int64_t elem_v = ggml_nelements(src2);
  13002. enum ggml_type result_type = flash_grad->type;
  13003. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13004. const size_t tsize = ggml_type_size(result_type);
  13005. const size_t offs_q = 0;
  13006. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13007. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13008. if (src0->grad) {
  13009. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13010. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13011. src0->grad = ggml_add_or_set(ctx,
  13012. src0->grad,
  13013. grad_q,
  13014. zero_table);
  13015. }
  13016. if (src1->grad) {
  13017. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13018. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13019. src1->grad = ggml_add_or_set(ctx,
  13020. src1->grad,
  13021. grad_k,
  13022. zero_table);
  13023. }
  13024. if (src2->grad) {
  13025. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13026. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13027. src2->grad = ggml_add_or_set(ctx,
  13028. src2->grad,
  13029. grad_v,
  13030. zero_table);
  13031. }
  13032. } break;
  13033. case GGML_OP_FLASH_FF:
  13034. {
  13035. GGML_ASSERT(false); // not supported
  13036. } break;
  13037. case GGML_OP_FLASH_ATTN_BACK:
  13038. {
  13039. GGML_ASSERT(false); // not supported
  13040. } break;
  13041. case GGML_OP_WIN_PART:
  13042. case GGML_OP_WIN_UNPART:
  13043. case GGML_OP_UNARY:
  13044. {
  13045. switch (ggml_get_unary_op(tensor)) {
  13046. case GGML_UNARY_OP_ABS:
  13047. {
  13048. if (src0->grad) {
  13049. src0->grad =
  13050. ggml_add_or_set(ctx,
  13051. src0->grad,
  13052. ggml_mul(ctx,
  13053. ggml_sgn(ctx, src0),
  13054. tensor->grad),
  13055. zero_table);
  13056. }
  13057. } break;
  13058. case GGML_UNARY_OP_SGN:
  13059. {
  13060. if (src0->grad) {
  13061. // noop
  13062. }
  13063. } break;
  13064. case GGML_UNARY_OP_NEG:
  13065. {
  13066. if (src0->grad) {
  13067. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13068. }
  13069. } break;
  13070. case GGML_UNARY_OP_STEP:
  13071. {
  13072. if (src0->grad) {
  13073. // noop
  13074. }
  13075. } break;
  13076. case GGML_UNARY_OP_TANH:
  13077. {
  13078. GGML_ASSERT(false); // TODO: not implemented
  13079. } break;
  13080. case GGML_UNARY_OP_ELU:
  13081. {
  13082. GGML_ASSERT(false); // TODO: not implemented
  13083. } break;
  13084. case GGML_UNARY_OP_RELU:
  13085. {
  13086. if (src0->grad) {
  13087. src0->grad = ggml_add_or_set(ctx,
  13088. src0->grad,
  13089. ggml_mul(ctx,
  13090. ggml_step(ctx, src0),
  13091. tensor->grad),
  13092. zero_table);
  13093. }
  13094. } break;
  13095. case GGML_UNARY_OP_GELU:
  13096. {
  13097. GGML_ASSERT(false); // TODO: not implemented
  13098. } break;
  13099. case GGML_UNARY_OP_GELU_QUICK:
  13100. {
  13101. GGML_ASSERT(false); // TODO: not implemented
  13102. } break;
  13103. case GGML_UNARY_OP_SILU:
  13104. {
  13105. // necessary for llama
  13106. if (src0->grad) {
  13107. src0->grad = ggml_add_or_set(ctx,
  13108. src0->grad,
  13109. ggml_silu_back(ctx, src0, tensor->grad),
  13110. zero_table);
  13111. }
  13112. } break;
  13113. default:
  13114. GGML_ASSERT(false);
  13115. }
  13116. } break;
  13117. case GGML_OP_GET_REL_POS:
  13118. case GGML_OP_ADD_REL_POS:
  13119. case GGML_OP_MAP_UNARY:
  13120. case GGML_OP_MAP_BINARY:
  13121. case GGML_OP_MAP_CUSTOM1_F32:
  13122. case GGML_OP_MAP_CUSTOM2_F32:
  13123. case GGML_OP_MAP_CUSTOM3_F32:
  13124. case GGML_OP_MAP_CUSTOM1:
  13125. case GGML_OP_MAP_CUSTOM2:
  13126. case GGML_OP_MAP_CUSTOM3:
  13127. {
  13128. GGML_ASSERT(false); // not supported
  13129. } break;
  13130. case GGML_OP_CROSS_ENTROPY_LOSS:
  13131. {
  13132. if (src0->grad) {
  13133. src0->grad = ggml_add_or_set(ctx,
  13134. src0->grad,
  13135. ggml_cross_entropy_loss_back(ctx,
  13136. src0,
  13137. src1,
  13138. tensor->grad),
  13139. zero_table);
  13140. }
  13141. } break;
  13142. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13143. {
  13144. GGML_ASSERT(false); // not supported
  13145. } break;
  13146. case GGML_OP_NONE:
  13147. {
  13148. // nop
  13149. } break;
  13150. case GGML_OP_COUNT:
  13151. {
  13152. GGML_ASSERT(false);
  13153. } break;
  13154. }
  13155. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13156. if (tensor->src[i] && tensor->src[i]->grad) {
  13157. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13158. }
  13159. }
  13160. }
  13161. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13162. if (node->grad == NULL) {
  13163. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13164. // it can also happen during forward pass, if the user performs computations with constants
  13165. if (node->op != GGML_OP_NONE) {
  13166. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13167. }
  13168. }
  13169. // check if already visited
  13170. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13171. return;
  13172. }
  13173. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13174. const int k =
  13175. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13176. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13177. /* unknown order, just fall back to using i*/ i;
  13178. if (node->src[k]) {
  13179. ggml_visit_parents(cgraph, node->src[k]);
  13180. }
  13181. }
  13182. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13183. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13184. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13185. if (strlen(node->name) == 0) {
  13186. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13187. }
  13188. cgraph->leafs[cgraph->n_leafs] = node;
  13189. cgraph->n_leafs++;
  13190. } else {
  13191. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13192. if (strlen(node->name) == 0) {
  13193. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13194. }
  13195. cgraph->nodes[cgraph->n_nodes] = node;
  13196. if (cgraph->grads) {
  13197. cgraph->grads[cgraph->n_nodes] = node->grad;
  13198. }
  13199. cgraph->n_nodes++;
  13200. }
  13201. }
  13202. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13203. if (!expand) {
  13204. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13205. ggml_graph_clear(cgraph);
  13206. }
  13207. const int n0 = cgraph->n_nodes;
  13208. UNUSED(n0);
  13209. ggml_visit_parents(cgraph, tensor);
  13210. const int n_new = cgraph->n_nodes - n0;
  13211. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13212. if (n_new > 0) {
  13213. // the last added node should always be starting point
  13214. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13215. }
  13216. }
  13217. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13218. ggml_build_forward_impl(cgraph, tensor, true);
  13219. }
  13220. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13221. GGML_ASSERT(gf->n_nodes > 0);
  13222. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13223. if (keep) {
  13224. for (int i = 0; i < gf->n_nodes; i++) {
  13225. struct ggml_tensor * node = gf->nodes[i];
  13226. if (node->grad) {
  13227. node->grad = ggml_dup_tensor(ctx, node);
  13228. gf->grads[i] = node->grad;
  13229. }
  13230. }
  13231. }
  13232. // remember original gradients which start with zero values
  13233. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13234. for (int i = 0; i < gf->n_nodes; i++) {
  13235. if (gf->grads[i]) {
  13236. ggml_hash_insert(zero_table, gf->grads[i]);
  13237. }
  13238. }
  13239. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13240. struct ggml_tensor * node = gf->nodes[i];
  13241. // inplace operations to add gradients are not created by ggml_compute_backward
  13242. // use allocator to automatically make inplace operations
  13243. if (node->grad) {
  13244. ggml_compute_backward(ctx, node, zero_table);
  13245. }
  13246. }
  13247. for (int i = 0; i < gf->n_nodes; i++) {
  13248. struct ggml_tensor * node = gf->nodes[i];
  13249. if (node->is_param) {
  13250. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13251. ggml_build_forward_expand(gb, node->grad);
  13252. }
  13253. }
  13254. ggml_hash_set_free(zero_table);
  13255. }
  13256. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13257. size_t nbytes = sizeof(struct ggml_cgraph);
  13258. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13259. if (grads) {
  13260. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13261. }
  13262. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13263. return nbytes;
  13264. }
  13265. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13266. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13267. }
  13268. size_t ggml_graph_overhead(void) {
  13269. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13270. }
  13271. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13272. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13273. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13274. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13275. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13276. size_t hash_size = ggml_hash_size(size * 2);
  13277. struct ggml_tensor ** nodes_ptr = data_start;
  13278. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13279. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13280. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13281. // check that we allocated the correct amount of memory
  13282. assert(obj_size == (size_t) (
  13283. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13284. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13285. *cgraph = (struct ggml_cgraph) {
  13286. /*.size =*/ size,
  13287. /*.n_nodes =*/ 0,
  13288. /*.n_leafs =*/ 0,
  13289. /*.nodes =*/ nodes_ptr,
  13290. /*.grads =*/ grads_ptr,
  13291. /*.leafs =*/ leafs_ptr,
  13292. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13293. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13294. /*.perf_runs =*/ 0,
  13295. /*.perf_cycles =*/ 0,
  13296. /*.perf_time_us =*/ 0,
  13297. };
  13298. return cgraph;
  13299. }
  13300. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13301. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13302. }
  13303. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13304. struct ggml_cgraph cgraph = {
  13305. /*.size =*/ 0,
  13306. /*.n_nodes =*/ i1 - i0,
  13307. /*.n_leafs =*/ 0,
  13308. /*.nodes =*/ cgraph0->nodes + i0,
  13309. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13310. /*.leafs =*/ NULL,
  13311. /*.hash_table =*/ { 0, NULL },
  13312. /*.order =*/ cgraph0->order,
  13313. /*.perf_runs =*/ 0,
  13314. /*.perf_cycles =*/ 0,
  13315. /*.perf_time_us =*/ 0,
  13316. };
  13317. return cgraph;
  13318. }
  13319. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13320. GGML_ASSERT(dst->size >= src->n_leafs);
  13321. GGML_ASSERT(dst->size >= src->n_nodes);
  13322. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13323. dst->n_leafs = src->n_leafs;
  13324. dst->n_nodes = src->n_nodes;
  13325. dst->order = src->order;
  13326. for (int i = 0; i < src->n_leafs; ++i) {
  13327. dst->leafs[i] = src->leafs[i];
  13328. }
  13329. for (int i = 0; i < src->n_nodes; ++i) {
  13330. dst->nodes[i] = src->nodes[i];
  13331. }
  13332. if (src->grads) {
  13333. GGML_ASSERT(dst->grads != NULL);
  13334. for (int i = 0; i < src->n_nodes; ++i) {
  13335. dst->grads[i] = src->grads[i];
  13336. }
  13337. }
  13338. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13339. if (src->visited_hash_table.keys[i]) {
  13340. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13341. }
  13342. }
  13343. }
  13344. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13345. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13346. ggml_graph_cpy(cgraph, result);
  13347. return result;
  13348. }
  13349. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13350. GGML_ASSERT(cgraph->grads != NULL);
  13351. for (int i = 0; i < cgraph->n_nodes; i++) {
  13352. struct ggml_tensor * grad = cgraph->grads[i];
  13353. if (grad) {
  13354. ggml_set_zero(grad);
  13355. }
  13356. }
  13357. }
  13358. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13359. cgraph->n_leafs = 0;
  13360. cgraph->n_nodes = 0;
  13361. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13362. }
  13363. //
  13364. // thread data
  13365. //
  13366. // synchronization is done via busy loops
  13367. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13368. //
  13369. #ifdef __APPLE__
  13370. //#include <os/lock.h>
  13371. //
  13372. //typedef os_unfair_lock ggml_lock_t;
  13373. //
  13374. //#define ggml_lock_init(x) UNUSED(x)
  13375. //#define ggml_lock_destroy(x) UNUSED(x)
  13376. //#define ggml_lock_lock os_unfair_lock_lock
  13377. //#define ggml_lock_unlock os_unfair_lock_unlock
  13378. //
  13379. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13380. typedef int ggml_lock_t;
  13381. #define ggml_lock_init(x) UNUSED(x)
  13382. #define ggml_lock_destroy(x) UNUSED(x)
  13383. #define ggml_lock_lock(x) UNUSED(x)
  13384. #define ggml_lock_unlock(x) UNUSED(x)
  13385. #define GGML_LOCK_INITIALIZER 0
  13386. typedef pthread_t ggml_thread_t;
  13387. #define ggml_thread_create pthread_create
  13388. #define ggml_thread_join pthread_join
  13389. #else
  13390. //typedef pthread_spinlock_t ggml_lock_t;
  13391. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13392. //#define ggml_lock_destroy pthread_spin_destroy
  13393. //#define ggml_lock_lock pthread_spin_lock
  13394. //#define ggml_lock_unlock pthread_spin_unlock
  13395. typedef int ggml_lock_t;
  13396. #define ggml_lock_init(x) UNUSED(x)
  13397. #define ggml_lock_destroy(x) UNUSED(x)
  13398. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13399. #define ggml_lock_lock(x) _mm_pause()
  13400. #else
  13401. #define ggml_lock_lock(x) UNUSED(x)
  13402. #endif
  13403. #define ggml_lock_unlock(x) UNUSED(x)
  13404. #define GGML_LOCK_INITIALIZER 0
  13405. typedef pthread_t ggml_thread_t;
  13406. #define ggml_thread_create pthread_create
  13407. #define ggml_thread_join pthread_join
  13408. #endif
  13409. // Android's libc implementation "bionic" does not support setting affinity
  13410. #if defined(__linux__) && !defined(__BIONIC__)
  13411. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13412. if (!ggml_is_numa()) {
  13413. return;
  13414. }
  13415. // run thread on node_num thread_n / (threads per node)
  13416. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13417. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13418. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13419. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13420. CPU_ZERO_S(setsize, cpus);
  13421. for (size_t i = 0; i < node->n_cpus; ++i) {
  13422. CPU_SET_S(node->cpus[i], setsize, cpus);
  13423. }
  13424. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13425. if (rv) {
  13426. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13427. strerror(rv));
  13428. }
  13429. CPU_FREE(cpus);
  13430. }
  13431. static void clear_numa_thread_affinity(void) {
  13432. if (!ggml_is_numa()) {
  13433. return;
  13434. }
  13435. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13436. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13437. CPU_ZERO_S(setsize, cpus);
  13438. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13439. CPU_SET_S(i, setsize, cpus);
  13440. }
  13441. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13442. if (rv) {
  13443. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13444. strerror(rv));
  13445. }
  13446. CPU_FREE(cpus);
  13447. }
  13448. #else
  13449. // TODO: Windows etc.
  13450. // (the linux implementation may also work on BSD, someone should test)
  13451. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13452. static void clear_numa_thread_affinity(void) {}
  13453. #endif
  13454. struct ggml_compute_state_shared {
  13455. const struct ggml_cgraph * cgraph;
  13456. const struct ggml_cplan * cplan;
  13457. int64_t perf_node_start_cycles;
  13458. int64_t perf_node_start_time_us;
  13459. const int n_threads;
  13460. // synchronization primitives
  13461. atomic_int n_active; // num active threads
  13462. atomic_int node_n; // active graph node
  13463. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13464. void * abort_callback_data;
  13465. };
  13466. struct ggml_compute_state {
  13467. ggml_thread_t thrd;
  13468. int ith;
  13469. struct ggml_compute_state_shared * shared;
  13470. };
  13471. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13472. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13473. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13474. node->perf_runs++;
  13475. node->perf_cycles += cycles_cur;
  13476. node->perf_time_us += time_us_cur;
  13477. }
  13478. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13479. int n_tasks = 0;
  13480. switch (node->op) {
  13481. case GGML_OP_CPY:
  13482. case GGML_OP_DUP:
  13483. case GGML_OP_ADD:
  13484. case GGML_OP_ADD1:
  13485. case GGML_OP_ACC:
  13486. {
  13487. n_tasks = n_threads;
  13488. } break;
  13489. case GGML_OP_SUB:
  13490. case GGML_OP_SQR:
  13491. case GGML_OP_SQRT:
  13492. case GGML_OP_LOG:
  13493. case GGML_OP_SUM:
  13494. case GGML_OP_SUM_ROWS:
  13495. case GGML_OP_MEAN:
  13496. case GGML_OP_ARGMAX:
  13497. case GGML_OP_REPEAT:
  13498. case GGML_OP_REPEAT_BACK:
  13499. case GGML_OP_LEAKY_RELU:
  13500. {
  13501. n_tasks = 1;
  13502. } break;
  13503. case GGML_OP_UNARY:
  13504. switch (ggml_get_unary_op(node)) {
  13505. case GGML_UNARY_OP_ABS:
  13506. case GGML_UNARY_OP_SGN:
  13507. case GGML_UNARY_OP_NEG:
  13508. case GGML_UNARY_OP_STEP:
  13509. case GGML_UNARY_OP_TANH:
  13510. case GGML_UNARY_OP_ELU:
  13511. case GGML_UNARY_OP_RELU:
  13512. {
  13513. n_tasks = 1;
  13514. } break;
  13515. case GGML_UNARY_OP_GELU:
  13516. case GGML_UNARY_OP_GELU_QUICK:
  13517. case GGML_UNARY_OP_SILU:
  13518. {
  13519. n_tasks = n_threads;
  13520. } break;
  13521. default:
  13522. GGML_ASSERT(false);
  13523. }
  13524. break;
  13525. case GGML_OP_SILU_BACK:
  13526. case GGML_OP_MUL:
  13527. case GGML_OP_DIV:
  13528. case GGML_OP_NORM:
  13529. case GGML_OP_RMS_NORM:
  13530. case GGML_OP_RMS_NORM_BACK:
  13531. case GGML_OP_GROUP_NORM:
  13532. case GGML_OP_CONCAT:
  13533. {
  13534. n_tasks = n_threads;
  13535. } break;
  13536. case GGML_OP_MUL_MAT:
  13537. {
  13538. n_tasks = n_threads;
  13539. // TODO: use different scheduling for different matrix sizes
  13540. //const int nr0 = ggml_nrows(node->src[0]);
  13541. //const int nr1 = ggml_nrows(node->src[1]);
  13542. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13543. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13544. #if defined(GGML_USE_CUBLAS)
  13545. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13546. n_tasks = 1; // TODO: this actually is doing nothing
  13547. // the threads are still spinning
  13548. }
  13549. #elif defined(GGML_USE_CLBLAST)
  13550. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13551. n_tasks = 1; // TODO: this actually is doing nothing
  13552. // the threads are still spinning
  13553. }
  13554. #endif
  13555. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13556. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13557. n_tasks = 1; // TODO: this actually is doing nothing
  13558. // the threads are still spinning
  13559. }
  13560. #endif
  13561. } break;
  13562. case GGML_OP_MUL_MAT_ID:
  13563. {
  13564. n_tasks = n_threads;
  13565. } break;
  13566. case GGML_OP_OUT_PROD:
  13567. {
  13568. n_tasks = n_threads;
  13569. } break;
  13570. case GGML_OP_SCALE:
  13571. case GGML_OP_SET:
  13572. case GGML_OP_CONT:
  13573. case GGML_OP_RESHAPE:
  13574. case GGML_OP_VIEW:
  13575. case GGML_OP_PERMUTE:
  13576. case GGML_OP_TRANSPOSE:
  13577. case GGML_OP_GET_ROWS:
  13578. case GGML_OP_GET_ROWS_BACK:
  13579. case GGML_OP_DIAG:
  13580. {
  13581. n_tasks = 1;
  13582. } break;
  13583. case GGML_OP_DIAG_MASK_ZERO:
  13584. case GGML_OP_DIAG_MASK_INF:
  13585. case GGML_OP_SOFT_MAX_BACK:
  13586. case GGML_OP_ROPE:
  13587. case GGML_OP_ROPE_BACK:
  13588. case GGML_OP_ADD_REL_POS:
  13589. {
  13590. n_tasks = n_threads;
  13591. } break;
  13592. case GGML_OP_ALIBI:
  13593. {
  13594. n_tasks = 1; //TODO
  13595. } break;
  13596. case GGML_OP_CLAMP:
  13597. {
  13598. n_tasks = 1; //TODO
  13599. } break;
  13600. case GGML_OP_SOFT_MAX:
  13601. {
  13602. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13603. } break;
  13604. case GGML_OP_CONV_TRANSPOSE_1D:
  13605. {
  13606. n_tasks = n_threads;
  13607. } break;
  13608. case GGML_OP_IM2COL:
  13609. {
  13610. n_tasks = n_threads;
  13611. } break;
  13612. case GGML_OP_CONV_TRANSPOSE_2D:
  13613. {
  13614. n_tasks = n_threads;
  13615. } break;
  13616. case GGML_OP_POOL_1D:
  13617. case GGML_OP_POOL_2D:
  13618. {
  13619. n_tasks = 1;
  13620. } break;
  13621. case GGML_OP_UPSCALE:
  13622. {
  13623. n_tasks = n_threads;
  13624. } break;
  13625. case GGML_OP_PAD:
  13626. {
  13627. n_tasks = n_threads;
  13628. } break;
  13629. case GGML_OP_ARGSORT:
  13630. {
  13631. n_tasks = n_threads;
  13632. } break;
  13633. case GGML_OP_FLASH_ATTN:
  13634. {
  13635. n_tasks = n_threads;
  13636. } break;
  13637. case GGML_OP_FLASH_FF:
  13638. {
  13639. n_tasks = n_threads;
  13640. } break;
  13641. case GGML_OP_FLASH_ATTN_BACK:
  13642. {
  13643. n_tasks = n_threads;
  13644. } break;
  13645. case GGML_OP_WIN_PART:
  13646. case GGML_OP_WIN_UNPART:
  13647. case GGML_OP_GET_REL_POS:
  13648. case GGML_OP_MAP_UNARY:
  13649. case GGML_OP_MAP_BINARY:
  13650. case GGML_OP_MAP_CUSTOM1_F32:
  13651. case GGML_OP_MAP_CUSTOM2_F32:
  13652. case GGML_OP_MAP_CUSTOM3_F32:
  13653. {
  13654. n_tasks = 1;
  13655. } break;
  13656. case GGML_OP_MAP_CUSTOM1:
  13657. {
  13658. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13659. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13660. n_tasks = n_threads;
  13661. } else {
  13662. n_tasks = MIN(p->n_tasks, n_threads);
  13663. }
  13664. } break;
  13665. case GGML_OP_MAP_CUSTOM2:
  13666. {
  13667. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13668. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13669. n_tasks = n_threads;
  13670. } else {
  13671. n_tasks = MIN(p->n_tasks, n_threads);
  13672. }
  13673. } break;
  13674. case GGML_OP_MAP_CUSTOM3:
  13675. {
  13676. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13677. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13678. n_tasks = n_threads;
  13679. } else {
  13680. n_tasks = MIN(p->n_tasks, n_threads);
  13681. }
  13682. } break;
  13683. case GGML_OP_CROSS_ENTROPY_LOSS:
  13684. {
  13685. n_tasks = n_threads;
  13686. } break;
  13687. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13688. {
  13689. n_tasks = n_threads;
  13690. } break;
  13691. case GGML_OP_NONE:
  13692. {
  13693. n_tasks = 1;
  13694. } break;
  13695. case GGML_OP_COUNT:
  13696. {
  13697. GGML_ASSERT(false);
  13698. } break;
  13699. default:
  13700. {
  13701. fprintf(stderr, "%s: op not implemented: ", __func__);
  13702. if (node->op < GGML_OP_COUNT) {
  13703. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13704. } else {
  13705. fprintf(stderr, "%d\n", node->op);
  13706. }
  13707. GGML_ASSERT(false);
  13708. } break;
  13709. }
  13710. assert(n_tasks > 0);
  13711. return n_tasks;
  13712. }
  13713. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13714. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13715. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13716. const struct ggml_cplan * cplan = state->shared->cplan;
  13717. const int n_threads = state->shared->n_threads;
  13718. set_numa_thread_affinity(state->ith, n_threads);
  13719. int node_n = -1;
  13720. while (true) {
  13721. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13722. state->shared->node_n += 1;
  13723. return (thread_ret_t) GGML_EXIT_ABORTED;
  13724. }
  13725. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13726. // all other threads are finished and spinning
  13727. // do finalize and init here so we don't have synchronize again
  13728. struct ggml_compute_params params = {
  13729. /*.type =*/ GGML_TASK_FINALIZE,
  13730. /*.ith =*/ 0,
  13731. /*.nth =*/ 0,
  13732. /*.wsize =*/ cplan->work_size,
  13733. /*.wdata =*/ cplan->work_data,
  13734. };
  13735. if (node_n != -1) {
  13736. /* FINALIZE */
  13737. struct ggml_tensor * node = cgraph->nodes[node_n];
  13738. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13739. params.nth = ggml_get_n_tasks(node, n_threads);
  13740. ggml_compute_forward(&params, node);
  13741. }
  13742. ggml_graph_compute_perf_stats_node(node, state->shared);
  13743. }
  13744. // distribute new work or execute it direct if 1T
  13745. while (++node_n < cgraph->n_nodes) {
  13746. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13747. struct ggml_tensor * node = cgraph->nodes[node_n];
  13748. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13749. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13750. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13751. params.nth = n_tasks;
  13752. /* INIT */
  13753. if (GGML_OP_HAS_INIT[node->op]) {
  13754. params.type = GGML_TASK_INIT;
  13755. ggml_compute_forward(&params, node);
  13756. }
  13757. if (n_tasks == 1) {
  13758. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13759. // they do something more efficient than spinning (?)
  13760. params.type = GGML_TASK_COMPUTE;
  13761. ggml_compute_forward(&params, node);
  13762. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13763. params.type = GGML_TASK_FINALIZE;
  13764. ggml_compute_forward(&params, node);
  13765. }
  13766. ggml_graph_compute_perf_stats_node(node, state->shared);
  13767. } else {
  13768. break;
  13769. }
  13770. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13771. break;
  13772. }
  13773. }
  13774. atomic_store(&state->shared->n_active, n_threads);
  13775. atomic_store(&state->shared->node_n, node_n);
  13776. } else {
  13777. // wait for other threads to finish
  13778. const int last = node_n;
  13779. while (true) {
  13780. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13781. // depending on the workload and the operating system.
  13782. // since it is not clear what is the best approach, it should potentially become user-configurable
  13783. // ref: https://github.com/ggerganov/ggml/issues/291
  13784. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13785. sched_yield();
  13786. #endif
  13787. node_n = atomic_load(&state->shared->node_n);
  13788. if (node_n != last) break;
  13789. };
  13790. }
  13791. // check if we should stop
  13792. if (node_n >= cgraph->n_nodes) break;
  13793. /* COMPUTE */
  13794. struct ggml_tensor * node = cgraph->nodes[node_n];
  13795. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13796. struct ggml_compute_params params = {
  13797. /*.type =*/ GGML_TASK_COMPUTE,
  13798. /*.ith =*/ state->ith,
  13799. /*.nth =*/ n_tasks,
  13800. /*.wsize =*/ cplan->work_size,
  13801. /*.wdata =*/ cplan->work_data,
  13802. };
  13803. if (state->ith < n_tasks) {
  13804. ggml_compute_forward(&params, node);
  13805. }
  13806. }
  13807. return GGML_EXIT_SUCCESS;
  13808. }
  13809. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13810. if (n_threads <= 0) {
  13811. n_threads = GGML_DEFAULT_N_THREADS;
  13812. }
  13813. size_t work_size = 0;
  13814. struct ggml_cplan cplan;
  13815. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13816. // thread scheduling for the different operations + work buffer size estimation
  13817. for (int i = 0; i < cgraph->n_nodes; i++) {
  13818. struct ggml_tensor * node = cgraph->nodes[i];
  13819. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13820. size_t cur = 0;
  13821. switch (node->op) {
  13822. case GGML_OP_CPY:
  13823. case GGML_OP_DUP:
  13824. {
  13825. if (ggml_is_quantized(node->type)) {
  13826. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13827. }
  13828. } break;
  13829. case GGML_OP_ADD:
  13830. case GGML_OP_ADD1:
  13831. {
  13832. if (ggml_is_quantized(node->src[0]->type)) {
  13833. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13834. }
  13835. } break;
  13836. case GGML_OP_ACC:
  13837. {
  13838. if (ggml_is_quantized(node->src[0]->type)) {
  13839. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13840. }
  13841. } break;
  13842. case GGML_OP_MUL_MAT:
  13843. {
  13844. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13845. #if defined(GGML_USE_CLBLAST)
  13846. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13847. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13848. } else
  13849. #endif
  13850. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13851. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13852. if (node->src[0]->type != GGML_TYPE_F32) {
  13853. // here we need memory just for single 2D matrix from src0
  13854. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13855. }
  13856. } else
  13857. #endif
  13858. if (node->src[1]->type != vec_dot_type) {
  13859. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  13860. }
  13861. } break;
  13862. case GGML_OP_MUL_MAT_ID:
  13863. {
  13864. const struct ggml_tensor * src0 = node->src[2];
  13865. const struct ggml_tensor * src1 = node->src[1];
  13866. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  13867. if (src1->type != vec_dot_type) {
  13868. cur = ggml_row_size(vec_dot_type, ggml_nelements(src1));
  13869. }
  13870. const int n_as = ggml_get_op_params_i32(node, 1);
  13871. cur = GGML_PAD(cur, sizeof(int64_t)); // align
  13872. cur += n_as * sizeof(int64_t); // matrix_row_counts
  13873. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  13874. } break;
  13875. case GGML_OP_OUT_PROD:
  13876. {
  13877. if (ggml_is_quantized(node->src[0]->type)) {
  13878. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13879. }
  13880. } break;
  13881. case GGML_OP_SOFT_MAX:
  13882. {
  13883. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13884. } break;
  13885. case GGML_OP_CONV_TRANSPOSE_1D:
  13886. {
  13887. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13888. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13889. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13890. const int64_t ne00 = node->src[0]->ne[0]; // K
  13891. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13892. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13893. const int64_t ne10 = node->src[1]->ne[0]; // L
  13894. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13895. if (node->src[0]->type == GGML_TYPE_F16 &&
  13896. node->src[1]->type == GGML_TYPE_F32) {
  13897. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13898. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13899. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13900. node->src[1]->type == GGML_TYPE_F32) {
  13901. cur += sizeof(float)*ne00*ne01*ne02;
  13902. cur += sizeof(float)*ne10*ne11;
  13903. } else {
  13904. GGML_ASSERT(false);
  13905. }
  13906. } break;
  13907. case GGML_OP_CONV_TRANSPOSE_2D:
  13908. {
  13909. const int64_t ne00 = node->src[0]->ne[0]; // W
  13910. const int64_t ne01 = node->src[0]->ne[1]; // H
  13911. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13912. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13913. const int64_t ne10 = node->src[1]->ne[0]; // W
  13914. const int64_t ne11 = node->src[1]->ne[1]; // H
  13915. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13916. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13917. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13918. } break;
  13919. case GGML_OP_FLASH_ATTN:
  13920. {
  13921. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13922. if (node->src[1]->type == GGML_TYPE_F32) {
  13923. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13924. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13925. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13926. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13927. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13928. }
  13929. } break;
  13930. case GGML_OP_FLASH_FF:
  13931. {
  13932. if (node->src[1]->type == GGML_TYPE_F32) {
  13933. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13934. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13935. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13936. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13937. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13938. }
  13939. } break;
  13940. case GGML_OP_FLASH_ATTN_BACK:
  13941. {
  13942. const int64_t D = node->src[0]->ne[0];
  13943. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13944. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13945. if (node->src[1]->type == GGML_TYPE_F32) {
  13946. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13947. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13948. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13949. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13950. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13951. }
  13952. } break;
  13953. case GGML_OP_CROSS_ENTROPY_LOSS:
  13954. {
  13955. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13956. } break;
  13957. case GGML_OP_COUNT:
  13958. {
  13959. GGML_ASSERT(false);
  13960. } break;
  13961. default:
  13962. break;
  13963. }
  13964. work_size = MAX(work_size, cur);
  13965. }
  13966. if (work_size > 0) {
  13967. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13968. }
  13969. cplan.n_threads = n_threads;
  13970. cplan.work_size = work_size;
  13971. cplan.work_data = NULL;
  13972. return cplan;
  13973. }
  13974. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13975. {
  13976. GGML_ASSERT(cplan);
  13977. GGML_ASSERT(cplan->n_threads > 0);
  13978. if (cplan->work_size > 0) {
  13979. GGML_ASSERT(cplan->work_data);
  13980. }
  13981. }
  13982. const int n_threads = cplan->n_threads;
  13983. struct ggml_compute_state_shared state_shared = {
  13984. /*.cgraph =*/ cgraph,
  13985. /*.cgraph_plan =*/ cplan,
  13986. /*.perf_node_start_cycles =*/ 0,
  13987. /*.perf_node_start_time_us =*/ 0,
  13988. /*.n_threads =*/ n_threads,
  13989. /*.n_active =*/ n_threads,
  13990. /*.node_n =*/ -1,
  13991. /*.abort_callback =*/ NULL,
  13992. /*.abort_callback_data =*/ NULL,
  13993. };
  13994. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13995. // create thread pool
  13996. if (n_threads > 1) {
  13997. for (int j = 1; j < n_threads; ++j) {
  13998. workers[j] = (struct ggml_compute_state) {
  13999. .thrd = 0,
  14000. .ith = j,
  14001. .shared = &state_shared,
  14002. };
  14003. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14004. GGML_ASSERT(rc == 0);
  14005. UNUSED(rc);
  14006. }
  14007. }
  14008. workers[0].ith = 0;
  14009. workers[0].shared = &state_shared;
  14010. const int64_t perf_start_cycles = ggml_perf_cycles();
  14011. const int64_t perf_start_time_us = ggml_perf_time_us();
  14012. // this is a work thread too
  14013. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14014. // don't leave affinity set on the main thread
  14015. clear_numa_thread_affinity();
  14016. // join or kill thread pool
  14017. if (n_threads > 1) {
  14018. for (int j = 1; j < n_threads; j++) {
  14019. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14020. GGML_ASSERT(rc == 0);
  14021. }
  14022. }
  14023. // performance stats (graph)
  14024. {
  14025. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14026. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14027. cgraph->perf_runs++;
  14028. cgraph->perf_cycles += perf_cycles_cur;
  14029. cgraph->perf_time_us += perf_time_us_cur;
  14030. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14031. __func__, cgraph->perf_runs,
  14032. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14033. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14034. (double) perf_time_us_cur / 1000.0,
  14035. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14036. }
  14037. return compute_status;
  14038. }
  14039. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14040. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14041. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14042. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14043. ggml_graph_compute(cgraph, &cplan);
  14044. }
  14045. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14046. for (int i = 0; i < cgraph->n_leafs; i++) {
  14047. struct ggml_tensor * leaf = cgraph->leafs[i];
  14048. if (strcmp(leaf->name, name) == 0) {
  14049. return leaf;
  14050. }
  14051. }
  14052. for (int i = 0; i < cgraph->n_nodes; i++) {
  14053. struct ggml_tensor * node = cgraph->nodes[i];
  14054. if (strcmp(node->name, name) == 0) {
  14055. return node;
  14056. }
  14057. }
  14058. return NULL;
  14059. }
  14060. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14061. const int64_t * ne = tensor->ne;
  14062. const size_t * nb = tensor->nb;
  14063. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14064. ggml_type_name(tensor->type),
  14065. ggml_op_name (tensor->op),
  14066. ggml_n_dims(tensor),
  14067. ne[0], ne[1], ne[2], ne[3],
  14068. nb[0], nb[1], nb[2], nb[3],
  14069. tensor->data,
  14070. tensor->name);
  14071. }
  14072. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14073. const int64_t * ne = tensor->ne;
  14074. const size_t * nb = tensor->nb;
  14075. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14076. arg,
  14077. ggml_type_name(tensor->type),
  14078. ggml_op_name (tensor->op),
  14079. ggml_n_dims(tensor),
  14080. ne[0], ne[1], ne[2], ne[3],
  14081. nb[0], nb[1], nb[2], nb[3],
  14082. tensor->data,
  14083. tensor->name);
  14084. }
  14085. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14086. uint64_t size_eval = 0;
  14087. // compute size of intermediate results
  14088. // TODO: does not take into account scratch buffers !!!!
  14089. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14090. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14091. }
  14092. // print
  14093. {
  14094. FILE * fout = stdout;
  14095. fprintf(fout, "\n");
  14096. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14097. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14098. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14099. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14100. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14101. // header
  14102. fprintf(fout, "\n");
  14103. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14104. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14105. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14106. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14107. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14108. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14109. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14110. }
  14111. // header
  14112. fprintf(fout, "\n");
  14113. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14114. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14115. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14116. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14117. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14118. if (cgraph->nodes[i]->src[j]) {
  14119. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14120. }
  14121. }
  14122. fprintf(fout, "\n");
  14123. }
  14124. fprintf(fout, "\n");
  14125. }
  14126. // write binary data
  14127. {
  14128. FILE * fout = fopen(fname, "wb");
  14129. if (!fout) {
  14130. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14131. return;
  14132. }
  14133. // header
  14134. {
  14135. const uint32_t magic = GGML_FILE_MAGIC;
  14136. const uint32_t version = GGML_FILE_VERSION;
  14137. const uint32_t n_leafs = cgraph->n_leafs;
  14138. const uint32_t n_nodes = cgraph->n_nodes;
  14139. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14140. fwrite(&version, sizeof(uint32_t), 1, fout);
  14141. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14142. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14143. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14144. }
  14145. // leafs
  14146. {
  14147. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14148. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14149. const uint32_t type = tensor->type;
  14150. const uint32_t op = tensor->op;
  14151. fwrite(&type, sizeof(uint32_t), 1, fout);
  14152. fwrite(&op, sizeof(uint32_t), 1, fout);
  14153. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14154. const uint64_t ne = tensor->ne[j];
  14155. const uint64_t nb = tensor->nb[j];
  14156. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14157. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14158. }
  14159. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14160. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14161. // dump the data
  14162. // TODO: pad this to 32 byte boundary
  14163. {
  14164. const size_t size = ggml_nbytes(tensor);
  14165. fwrite(tensor->data, sizeof(char), size, fout);
  14166. }
  14167. }
  14168. }
  14169. // nodes
  14170. {
  14171. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14172. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14173. const uint32_t type = tensor->type;
  14174. const uint32_t op = tensor->op;
  14175. fwrite(&type, sizeof(uint32_t), 1, fout);
  14176. fwrite(&op, sizeof(uint32_t), 1, fout);
  14177. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14178. const uint64_t ne = tensor->ne[j];
  14179. const uint64_t nb = tensor->nb[j];
  14180. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14181. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14182. }
  14183. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14184. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14185. // output the op arguments
  14186. {
  14187. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14188. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14189. args[j] = tensor->src[j];
  14190. }
  14191. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14192. if (args[j]) {
  14193. int32_t idx = -1;
  14194. // check if leaf
  14195. {
  14196. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14197. if (args[j] == cgraph->leafs[k]) {
  14198. idx = k;
  14199. break;
  14200. }
  14201. }
  14202. }
  14203. // check if node
  14204. if (idx == -1) {
  14205. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14206. if (args[j] == cgraph->nodes[k]) {
  14207. idx = cgraph->n_leafs + k;
  14208. break;
  14209. }
  14210. }
  14211. }
  14212. if (idx == -1) {
  14213. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14214. fclose(fout);
  14215. return;
  14216. }
  14217. fwrite(&idx, sizeof(int32_t), 1, fout);
  14218. } else {
  14219. const int32_t nul = -1;
  14220. fwrite(&nul, sizeof(int32_t), 1, fout);
  14221. }
  14222. }
  14223. }
  14224. }
  14225. }
  14226. fclose(fout);
  14227. }
  14228. }
  14229. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14230. assert(*ctx_data == NULL);
  14231. assert(*ctx_eval == NULL);
  14232. struct ggml_cgraph * result = NULL;
  14233. struct ggml_tensor * data = NULL;
  14234. // read file into data
  14235. {
  14236. FILE * fin = fopen(fname, "rb");
  14237. if (!fin) {
  14238. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14239. return result;
  14240. }
  14241. size_t fsize = 0;
  14242. fseek(fin, 0, SEEK_END);
  14243. fsize = ftell(fin);
  14244. fseek(fin, 0, SEEK_SET);
  14245. // create the data context
  14246. {
  14247. const size_t overhead = 1*ggml_tensor_overhead();
  14248. struct ggml_init_params params = {
  14249. .mem_size = fsize + overhead,
  14250. .mem_buffer = NULL,
  14251. .no_alloc = false,
  14252. };
  14253. *ctx_data = ggml_init(params);
  14254. if (!*ctx_data) {
  14255. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14256. fclose(fin);
  14257. return result;
  14258. }
  14259. }
  14260. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14261. {
  14262. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14263. if (ret != fsize) {
  14264. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14265. fclose(fin);
  14266. return result;
  14267. }
  14268. }
  14269. fclose(fin);
  14270. }
  14271. // populate result
  14272. {
  14273. char * ptr = (char *) data->data;
  14274. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14275. if (magic != GGML_FILE_MAGIC) {
  14276. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14277. return result;
  14278. }
  14279. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14280. if (version != GGML_FILE_VERSION) {
  14281. fprintf(stderr, "%s: invalid version number\n", __func__);
  14282. return result;
  14283. }
  14284. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14285. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14286. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14287. const int graph_size = MAX(n_leafs, n_nodes);
  14288. // create the data context
  14289. {
  14290. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14291. struct ggml_init_params params = {
  14292. .mem_size = size_eval + overhead,
  14293. .mem_buffer = NULL,
  14294. .no_alloc = true,
  14295. };
  14296. *ctx_eval = ggml_init(params);
  14297. if (!*ctx_eval) {
  14298. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14299. return result;
  14300. }
  14301. }
  14302. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14303. result->n_leafs = n_leafs;
  14304. result->n_nodes = n_nodes;
  14305. // leafs
  14306. {
  14307. uint32_t type;
  14308. uint32_t op;
  14309. for (uint32_t i = 0; i < n_leafs; ++i) {
  14310. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14311. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14312. int64_t ne[GGML_MAX_DIMS];
  14313. size_t nb[GGML_MAX_DIMS];
  14314. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14315. uint64_t ne_cur;
  14316. uint64_t nb_cur;
  14317. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14318. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14319. ne[j] = ne_cur;
  14320. nb[j] = nb_cur;
  14321. }
  14322. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14323. tensor->op = (enum ggml_op) op;
  14324. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14325. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14326. tensor->data = (void *) ptr;
  14327. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14328. tensor->nb[j] = nb[j];
  14329. }
  14330. result->leafs[i] = tensor;
  14331. ptr += ggml_nbytes(tensor);
  14332. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14333. }
  14334. }
  14335. ggml_set_no_alloc(*ctx_eval, false);
  14336. // nodes
  14337. {
  14338. uint32_t type;
  14339. uint32_t op;
  14340. for (uint32_t i = 0; i < n_nodes; ++i) {
  14341. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14342. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14343. enum ggml_op eop = (enum ggml_op) op;
  14344. int64_t ne[GGML_MAX_DIMS];
  14345. size_t nb[GGML_MAX_DIMS];
  14346. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14347. uint64_t ne_cur;
  14348. uint64_t nb_cur;
  14349. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14350. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14351. ne[j] = ne_cur;
  14352. nb[j] = nb_cur;
  14353. }
  14354. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14355. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14356. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14357. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14358. // parse args
  14359. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14360. const int32_t arg_idx = ptr_arg_idx[j];
  14361. if (arg_idx == -1) {
  14362. continue;
  14363. }
  14364. if (arg_idx < result->n_leafs) {
  14365. args[j] = result->leafs[arg_idx];
  14366. } else {
  14367. args[j] = result->nodes[arg_idx - result->n_leafs];
  14368. }
  14369. }
  14370. // create the tensor
  14371. // "view" operations are handled differently
  14372. // TODO: handle inplace ops - currently a copy is always made
  14373. struct ggml_tensor * tensor = NULL;
  14374. switch (eop) {
  14375. // TODO: implement other view ops
  14376. case GGML_OP_RESHAPE:
  14377. {
  14378. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14379. } break;
  14380. case GGML_OP_VIEW:
  14381. {
  14382. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14383. size_t offs;
  14384. memcpy(&offs, ptr_op_params, sizeof(offs));
  14385. tensor->data = ((char *) tensor->data) + offs;
  14386. } break;
  14387. case GGML_OP_TRANSPOSE:
  14388. {
  14389. tensor = ggml_transpose(*ctx_eval, args[0]);
  14390. } break;
  14391. case GGML_OP_PERMUTE:
  14392. {
  14393. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14394. } break;
  14395. default:
  14396. {
  14397. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14398. tensor->op = eop;
  14399. } break;
  14400. }
  14401. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14402. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14403. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14404. tensor->nb[j] = nb[j];
  14405. }
  14406. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14407. tensor->src[j] = args[j];
  14408. }
  14409. result->nodes[i] = tensor;
  14410. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14411. }
  14412. }
  14413. }
  14414. return result;
  14415. }
  14416. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14417. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14418. GGML_PRINT("=== GRAPH ===\n");
  14419. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14420. for (int i = 0; i < cgraph->n_nodes; i++) {
  14421. struct ggml_tensor * node = cgraph->nodes[i];
  14422. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14423. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14424. i,
  14425. node->ne[0], node->ne[1], node->ne[2],
  14426. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14427. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14428. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14429. (double) node->perf_time_us / 1000.0,
  14430. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14431. }
  14432. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14433. for (int i = 0; i < cgraph->n_leafs; i++) {
  14434. struct ggml_tensor * node = cgraph->leafs[i];
  14435. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14436. i,
  14437. node->ne[0], node->ne[1],
  14438. ggml_op_name(node->op),
  14439. ggml_get_name(node));
  14440. }
  14441. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14442. if (perf_total_per_op_us[i] == 0) {
  14443. continue;
  14444. }
  14445. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14446. }
  14447. GGML_PRINT("========================================\n");
  14448. }
  14449. // check if node is part of the graph
  14450. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14451. if (cgraph == NULL) {
  14452. return true;
  14453. }
  14454. for (int i = 0; i < cgraph->n_nodes; i++) {
  14455. if (cgraph->nodes[i] == node) {
  14456. return true;
  14457. }
  14458. }
  14459. return false;
  14460. }
  14461. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14462. for (int i = 0; i < cgraph->n_nodes; i++) {
  14463. struct ggml_tensor * parent = cgraph->nodes[i];
  14464. if (parent->grad == node) {
  14465. return parent;
  14466. }
  14467. }
  14468. return NULL;
  14469. }
  14470. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14471. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14472. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14473. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14474. gparent0 ? (void *) gparent0 : (void *) parent,
  14475. gparent0 ? "g" : "x",
  14476. gparent ? (void *) gparent : (void *) node,
  14477. gparent ? "g" : "x",
  14478. gparent ? "empty" : "vee",
  14479. gparent ? "dashed" : "solid",
  14480. label);
  14481. }
  14482. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14483. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14484. (void *) parent, "x",
  14485. (void *) node, "x",
  14486. label);
  14487. }
  14488. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14489. char color[16];
  14490. FILE * fp = fopen(filename, "w");
  14491. GGML_ASSERT(fp);
  14492. fprintf(fp, "digraph G {\n");
  14493. fprintf(fp, " newrank = true;\n");
  14494. fprintf(fp, " rankdir = LR;\n");
  14495. for (int i = 0; i < gb->n_nodes; i++) {
  14496. struct ggml_tensor * node = gb->nodes[i];
  14497. if (ggml_graph_get_parent(gb, node) != NULL) {
  14498. continue;
  14499. }
  14500. if (node->is_param) {
  14501. snprintf(color, sizeof(color), "yellow");
  14502. } else if (node->grad) {
  14503. if (ggml_graph_find(gf, node)) {
  14504. snprintf(color, sizeof(color), "green");
  14505. } else {
  14506. snprintf(color, sizeof(color), "lightblue");
  14507. }
  14508. } else {
  14509. snprintf(color, sizeof(color), "white");
  14510. }
  14511. fprintf(fp, " \"%p\" [ "
  14512. "style = filled; fillcolor = %s; shape = record; "
  14513. "label=\"",
  14514. (void *) node, color);
  14515. if (strlen(node->name) > 0) {
  14516. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14517. } else {
  14518. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14519. }
  14520. if (ggml_is_matrix(node)) {
  14521. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14522. } else {
  14523. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14524. }
  14525. if (node->grad) {
  14526. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14527. } else {
  14528. fprintf(fp, "\"; ]\n");
  14529. }
  14530. }
  14531. for (int i = 0; i < gb->n_leafs; i++) {
  14532. struct ggml_tensor * node = gb->leafs[i];
  14533. snprintf(color, sizeof(color), "pink");
  14534. fprintf(fp, " \"%p\" [ "
  14535. "style = filled; fillcolor = %s; shape = record; "
  14536. "label=\"<x>",
  14537. (void *) node, color);
  14538. if (strlen(node->name) > 0) {
  14539. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14540. } else {
  14541. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14542. }
  14543. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14544. if (ggml_nelements(node) < 5) {
  14545. fprintf(fp, " | (");
  14546. for (int j = 0; j < ggml_nelements(node); j++) {
  14547. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14548. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14549. }
  14550. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14551. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14552. }
  14553. else {
  14554. fprintf(fp, "#");
  14555. }
  14556. if (j < ggml_nelements(node) - 1) {
  14557. fprintf(fp, ", ");
  14558. }
  14559. }
  14560. fprintf(fp, ")");
  14561. }
  14562. fprintf(fp, "\"; ]\n");
  14563. }
  14564. for (int i = 0; i < gb->n_nodes; i++) {
  14565. struct ggml_tensor * node = gb->nodes[i];
  14566. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14567. if (node->src[j]) {
  14568. char label[16];
  14569. snprintf(label, sizeof(label), "src %d", j);
  14570. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14571. }
  14572. }
  14573. }
  14574. for (int i = 0; i < gb->n_leafs; i++) {
  14575. struct ggml_tensor * node = gb->leafs[i];
  14576. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14577. if (node->src[j]) {
  14578. char label[16];
  14579. snprintf(label, sizeof(label), "src %d", j);
  14580. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14581. }
  14582. }
  14583. }
  14584. fprintf(fp, "}\n");
  14585. fclose(fp);
  14586. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14587. }
  14588. ////////////////////////////////////////////////////////////////////////////////
  14589. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14590. int i = 0;
  14591. for (int p = 0; p < np; ++p) {
  14592. const int64_t ne = ggml_nelements(ps[p]) ;
  14593. // TODO: add function to set tensor from array
  14594. for (int64_t j = 0; j < ne; ++j) {
  14595. ggml_set_f32_1d(ps[p], j, x[i++]);
  14596. }
  14597. }
  14598. }
  14599. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14600. int i = 0;
  14601. for (int p = 0; p < np; ++p) {
  14602. const int64_t ne = ggml_nelements(ps[p]) ;
  14603. // TODO: add function to get all elements at once
  14604. for (int64_t j = 0; j < ne; ++j) {
  14605. x[i++] = ggml_get_f32_1d(ps[p], j);
  14606. }
  14607. }
  14608. }
  14609. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14610. int64_t i = 0;
  14611. for (int p = 0; p < np; ++p) {
  14612. const int64_t ne = ggml_nelements(ps[p]) ;
  14613. // TODO: add function to get all elements at once
  14614. for (int64_t j = 0; j < ne; ++j) {
  14615. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14616. }
  14617. }
  14618. }
  14619. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14620. int64_t i = 0;
  14621. for (int p = 0; p < np; ++p) {
  14622. const int64_t ne = ggml_nelements(ps[p]) ;
  14623. // TODO: add function to get all elements at once
  14624. for (int64_t j = 0; j < ne; ++j) {
  14625. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14626. }
  14627. }
  14628. }
  14629. //
  14630. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14631. //
  14632. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14633. //
  14634. static enum ggml_opt_result ggml_opt_adam(
  14635. struct ggml_context * ctx,
  14636. struct ggml_opt_context * opt,
  14637. struct ggml_opt_params params,
  14638. struct ggml_tensor * f,
  14639. struct ggml_cgraph * gf,
  14640. struct ggml_cgraph * gb,
  14641. ggml_opt_callback callback,
  14642. void * callback_data) {
  14643. GGML_ASSERT(ggml_is_scalar(f));
  14644. // these will store the parameters we want to optimize
  14645. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14646. int np = 0;
  14647. int64_t nx = 0;
  14648. for (int i = 0; i < gf->n_nodes; ++i) {
  14649. if (gf->nodes[i]->is_param) {
  14650. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14651. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14652. ps[np++] = gf->nodes[i];
  14653. nx += ggml_nelements(gf->nodes[i]);
  14654. }
  14655. }
  14656. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14657. int iter = opt->iter;
  14658. ggml_opt_init(opt->ctx, opt, params, nx);
  14659. opt->iter = iter;
  14660. }
  14661. // constants
  14662. float sched = params.adam.sched;
  14663. const float alpha = params.adam.alpha;
  14664. const float decay = params.adam.decay * alpha;
  14665. const float beta1 = params.adam.beta1;
  14666. const float beta2 = params.adam.beta2;
  14667. const float eps = params.adam.eps;
  14668. const float gclip = params.adam.gclip;
  14669. const int decay_min_ndim = params.adam.decay_min_ndim;
  14670. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14671. const float accum_norm = 1.0f / (float) n_accum;
  14672. float * g = opt->adam.g->data; // gradients
  14673. float * m = opt->adam.m->data; // first moment
  14674. float * v = opt->adam.v->data; // second moment
  14675. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14676. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14677. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14678. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14679. bool cancel = false;
  14680. // compute the function value
  14681. float fx = 0;
  14682. ggml_set_zero(opt->adam.g);
  14683. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14684. if (callback) {
  14685. callback(callback_data, accum_step, &sched, &cancel);
  14686. if (cancel) {
  14687. return GGML_OPT_CANCEL;
  14688. }
  14689. }
  14690. // ggml_graph_reset (gf);
  14691. ggml_set_f32 (f->grad, 1.0f);
  14692. ggml_graph_compute(gb, &cplan);
  14693. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14694. fx += ggml_get_f32_1d(f, 0);
  14695. }
  14696. fx *= accum_norm;
  14697. opt->adam.fx_prev = fx;
  14698. opt->adam.fx_best = opt->adam.fx_prev;
  14699. if (pf) {
  14700. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14701. }
  14702. opt->loss_before = opt->adam.fx_prev;
  14703. opt->loss_after = opt->adam.fx_prev;
  14704. // initialize
  14705. if (opt->just_initialized) {
  14706. opt->adam.n_no_improvement = 0;
  14707. opt->just_initialized = false;
  14708. }
  14709. float * fx_best = &opt->adam.fx_best;
  14710. float * fx_prev = &opt->adam.fx_prev;
  14711. int * n_no_improvement = &opt->adam.n_no_improvement;
  14712. int iter0 = opt->iter;
  14713. // run the optimizer
  14714. for (int t = 0; t < params.adam.n_iter; ++t) {
  14715. opt->iter = iter0 + t + 1;
  14716. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14717. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14718. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14719. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14720. for (int i = 0; i < np; ++i) {
  14721. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14722. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14723. }
  14724. const int64_t t_start_wall = ggml_time_us();
  14725. const int64_t t_start_cpu = ggml_cycles();
  14726. UNUSED(t_start_wall);
  14727. UNUSED(t_start_cpu);
  14728. {
  14729. float gnorm = 1.0f;
  14730. if (gclip > 0.0f) {
  14731. // gradient clipping
  14732. ggml_float sum = 0.0;
  14733. for (int64_t i = 0; i < nx; ++i) {
  14734. sum += (ggml_float)(g[i]*g[i]);
  14735. }
  14736. ggml_float norm = sqrt(sum);
  14737. if (norm > (ggml_float) gclip) {
  14738. gnorm = (float) ((ggml_float) gclip / norm);
  14739. }
  14740. }
  14741. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14742. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14743. int64_t i = 0;
  14744. for (int p = 0; p < np; ++p) {
  14745. const int64_t ne = ggml_nelements(ps[p]);
  14746. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  14747. for (int64_t j = 0; j < ne; ++j) {
  14748. float x = ggml_get_f32_1d(ps[p], j);
  14749. float g_ = g[i]*gnorm;
  14750. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14751. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14752. float mh = m[i]*beta1h;
  14753. float vh = v[i]*beta2h;
  14754. vh = sqrtf(vh) + eps;
  14755. x = x*(1.0f - p_decay) - mh/vh;
  14756. ggml_set_f32_1d(ps[p], j, x);
  14757. ++i;
  14758. }
  14759. }
  14760. }
  14761. fx = 0;
  14762. ggml_set_zero(opt->adam.g);
  14763. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14764. if (callback) {
  14765. callback(callback_data, accum_step, &sched, &cancel);
  14766. if (cancel) {
  14767. return GGML_OPT_CANCEL;;
  14768. }
  14769. }
  14770. // ggml_graph_reset (gf);
  14771. ggml_set_f32 (f->grad, 1.0f);
  14772. ggml_graph_compute(gb, &cplan);
  14773. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14774. fx += ggml_get_f32_1d(f, 0);
  14775. }
  14776. fx *= accum_norm;
  14777. opt->loss_after = fx;
  14778. // check convergence
  14779. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14780. GGML_PRINT_DEBUG("converged\n");
  14781. return GGML_OPT_OK;
  14782. }
  14783. // delta-based convergence test
  14784. if (pf != NULL) {
  14785. // need at least params.past iterations to start checking for convergence
  14786. if (params.past <= iter0 + t) {
  14787. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14788. if (fabsf(rate) < params.delta) {
  14789. return GGML_OPT_OK;
  14790. }
  14791. }
  14792. pf[(iter0 + t)%params.past] = fx;
  14793. }
  14794. // check for improvement
  14795. if (params.max_no_improvement > 0) {
  14796. if (fx_best[0] > fx) {
  14797. fx_best[0] = fx;
  14798. n_no_improvement[0] = 0;
  14799. } else {
  14800. ++n_no_improvement[0];
  14801. if (n_no_improvement[0] >= params.max_no_improvement) {
  14802. return GGML_OPT_OK;
  14803. }
  14804. }
  14805. }
  14806. fx_prev[0] = fx;
  14807. {
  14808. const int64_t t_end_cpu = ggml_cycles();
  14809. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14810. UNUSED(t_end_cpu);
  14811. const int64_t t_end_wall = ggml_time_us();
  14812. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14813. UNUSED(t_end_wall);
  14814. }
  14815. }
  14816. return GGML_OPT_DID_NOT_CONVERGE;
  14817. }
  14818. //
  14819. // L-BFGS
  14820. //
  14821. // the L-BFGS implementation below is based on the following implementation:
  14822. //
  14823. // https://github.com/chokkan/liblbfgs
  14824. //
  14825. struct ggml_lbfgs_iteration_data {
  14826. float alpha;
  14827. float ys;
  14828. float * s;
  14829. float * y;
  14830. };
  14831. static enum ggml_opt_result linesearch_backtracking(
  14832. const struct ggml_opt_params * params,
  14833. int nx,
  14834. float * x,
  14835. float * fx,
  14836. float * g,
  14837. float * d,
  14838. float * step,
  14839. const float * xp,
  14840. struct ggml_tensor * f,
  14841. struct ggml_cgraph * gb,
  14842. struct ggml_cplan * cplan,
  14843. const int np,
  14844. struct ggml_tensor * ps[],
  14845. bool * cancel,
  14846. ggml_opt_callback callback,
  14847. void * callback_data) {
  14848. int count = 0;
  14849. float width = 0.0f;
  14850. float dg = 0.0f;
  14851. float finit = 0.0f;
  14852. float dginit = 0.0f;
  14853. float dgtest = 0.0f;
  14854. const float dec = 0.5f;
  14855. const float inc = 2.1f;
  14856. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14857. const float accum_norm = 1.0f / (float) n_accum;
  14858. if (*step <= 0.f) {
  14859. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14860. }
  14861. // compute the initial gradient in the search direction
  14862. ggml_vec_dot_f32(nx, &dginit, g, d);
  14863. // make sure that d points to a descent direction
  14864. if (0 < dginit) {
  14865. return GGML_LINESEARCH_FAIL;
  14866. }
  14867. // initialize local variables
  14868. finit = *fx;
  14869. dgtest = params->lbfgs.ftol*dginit;
  14870. while (true) {
  14871. ggml_vec_cpy_f32(nx, x, xp);
  14872. ggml_vec_mad_f32(nx, x, d, *step);
  14873. // evaluate the function and gradient values
  14874. {
  14875. ggml_opt_set_params(np, ps, x);
  14876. *fx = 0;
  14877. memset(g, 0, sizeof(float)*nx);
  14878. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14879. if (callback) {
  14880. // LBFG-S does not support learning rate -> ignore learning schedule
  14881. float sched = 0;
  14882. callback(callback_data, accum_step, &sched, cancel);
  14883. if (*cancel) {
  14884. return GGML_OPT_CANCEL;
  14885. }
  14886. }
  14887. // ggml_graph_reset (gf);
  14888. ggml_set_f32 (f->grad, 1.0f);
  14889. ggml_graph_compute(gb, cplan);
  14890. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14891. *fx += ggml_get_f32_1d(f, 0);
  14892. }
  14893. *fx *= accum_norm;
  14894. }
  14895. ++count;
  14896. if (*fx > finit + (*step)*dgtest) {
  14897. width = dec;
  14898. } else {
  14899. // Armijo condition is satisfied
  14900. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14901. return count;
  14902. }
  14903. ggml_vec_dot_f32(nx, &dg, g, d);
  14904. // check the Wolfe condition
  14905. if (dg < params->lbfgs.wolfe * dginit) {
  14906. width = inc;
  14907. } else {
  14908. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14909. // regular Wolfe conditions
  14910. return count;
  14911. }
  14912. if(dg > -params->lbfgs.wolfe*dginit) {
  14913. width = dec;
  14914. } else {
  14915. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14916. return count;
  14917. }
  14918. }
  14919. }
  14920. if (*step < params->lbfgs.min_step) {
  14921. return GGML_LINESEARCH_MINIMUM_STEP;
  14922. }
  14923. if (*step > params->lbfgs.max_step) {
  14924. return GGML_LINESEARCH_MAXIMUM_STEP;
  14925. }
  14926. if (params->lbfgs.max_linesearch <= count) {
  14927. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14928. }
  14929. (*step) *= width;
  14930. }
  14931. GGML_UNREACHABLE();
  14932. }
  14933. static enum ggml_opt_result ggml_opt_lbfgs(
  14934. struct ggml_context * ctx,
  14935. struct ggml_opt_context * opt,
  14936. struct ggml_opt_params params,
  14937. struct ggml_tensor * f,
  14938. struct ggml_cgraph * gf,
  14939. struct ggml_cgraph * gb,
  14940. ggml_opt_callback callback,
  14941. void * callback_data) {
  14942. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14943. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14944. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14945. return GGML_OPT_INVALID_WOLFE;
  14946. }
  14947. }
  14948. const int m = params.lbfgs.m;
  14949. // these will store the parameters we want to optimize
  14950. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14951. int np = 0;
  14952. int nx = 0;
  14953. for (int i = 0; i < gf->n_nodes; ++i) {
  14954. if (gf->nodes[i]->is_param) {
  14955. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14956. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14957. ps[np++] = gf->nodes[i];
  14958. nx += ggml_nelements(gf->nodes[i]);
  14959. }
  14960. }
  14961. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14962. int iter = opt->iter;
  14963. ggml_opt_init(ctx, opt, params, nx);
  14964. opt->iter = iter;
  14965. }
  14966. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14967. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14968. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14969. float * x = opt->lbfgs.x->data; // current parameters
  14970. float * xp = opt->lbfgs.xp->data; // previous parameters
  14971. float * g = opt->lbfgs.g->data; // current gradient
  14972. float * gp = opt->lbfgs.gp->data; // previous gradient
  14973. float * d = opt->lbfgs.d->data; // search direction
  14974. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14975. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14976. const float accum_norm = 1.0f / (float) n_accum;
  14977. float fx = 0.0f; // cost function value
  14978. float xnorm = 0.0f; // ||x||
  14979. float gnorm = 0.0f; // ||g||
  14980. // initialize x from the graph nodes
  14981. ggml_opt_get_params(np, ps, x);
  14982. // the L-BFGS memory
  14983. float * lm_alpha = opt->lbfgs.lmal->data;
  14984. float * lm_ys = opt->lbfgs.lmys->data;
  14985. float * lm_s = opt->lbfgs.lms->data;
  14986. float * lm_y = opt->lbfgs.lmy->data;
  14987. bool cancel = false;
  14988. // evaluate the function value and its gradient
  14989. {
  14990. ggml_opt_set_params(np, ps, x);
  14991. fx = 0;
  14992. memset(g, 0, sizeof(float)*nx);
  14993. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14994. if (callback) {
  14995. // LBFG-S does not support learning rate -> ignore learning schedule
  14996. float sched = 0;
  14997. callback(callback_data, accum_step, &sched, &cancel);
  14998. if (cancel) {
  14999. return GGML_OPT_CANCEL;
  15000. }
  15001. }
  15002. // ggml_graph_reset (gf);
  15003. ggml_set_f32 (f->grad, 1.0f);
  15004. ggml_graph_compute(gb, &cplan);
  15005. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15006. fx += ggml_get_f32_1d(f, 0);
  15007. }
  15008. fx *= accum_norm;
  15009. opt->loss_before = fx;
  15010. opt->loss_after = fx;
  15011. }
  15012. // search direction = -gradient
  15013. ggml_vec_neg_f32(nx, d, g);
  15014. // ||x||, ||g||
  15015. ggml_vec_norm_f32(nx, &xnorm, x);
  15016. ggml_vec_norm_f32(nx, &gnorm, g);
  15017. if (xnorm < 1.0f) {
  15018. xnorm = 1.0f;
  15019. }
  15020. // already optimized
  15021. if (gnorm/xnorm <= params.lbfgs.eps) {
  15022. return GGML_OPT_OK;
  15023. }
  15024. if (opt->just_initialized) {
  15025. if (pf) {
  15026. pf[0] = fx;
  15027. }
  15028. opt->lbfgs.fx_best = fx;
  15029. // initial step
  15030. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15031. opt->lbfgs.j = 0;
  15032. opt->lbfgs.k = 1;
  15033. opt->lbfgs.end = 0;
  15034. opt->lbfgs.n_no_improvement = 0;
  15035. opt->just_initialized = false;
  15036. }
  15037. float * fx_best = &opt->lbfgs.fx_best;
  15038. float * step = &opt->lbfgs.step;
  15039. int * j = &opt->lbfgs.j;
  15040. int * k = &opt->lbfgs.k;
  15041. int * end = &opt->lbfgs.end;
  15042. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15043. int ls = 0;
  15044. int bound = 0;
  15045. float ys = 0.0f;
  15046. float yy = 0.0f;
  15047. float beta = 0.0f;
  15048. int it = 0;
  15049. while (true) {
  15050. // store the current position and gradient vectors
  15051. ggml_vec_cpy_f32(nx, xp, x);
  15052. ggml_vec_cpy_f32(nx, gp, g);
  15053. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15054. // to determine if the optimization should be cancelled
  15055. // this is a simple change, but not doing this atm, since I don't have a nice
  15056. // way to test and don't want to break something with so many changes lined up
  15057. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15058. if (cancel) {
  15059. return GGML_OPT_CANCEL;
  15060. }
  15061. if (ls < 0) {
  15062. // linesearch failed - go back to the previous point and return
  15063. ggml_vec_cpy_f32(nx, x, xp);
  15064. ggml_vec_cpy_f32(nx, g, gp);
  15065. return ls;
  15066. }
  15067. opt->loss_after = fx;
  15068. ggml_vec_norm_f32(nx, &xnorm, x);
  15069. ggml_vec_norm_f32(nx, &gnorm, g);
  15070. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15071. if (xnorm < 1.0f) {
  15072. xnorm = 1.0f;
  15073. }
  15074. if (gnorm/xnorm <= params.lbfgs.eps) {
  15075. // converged
  15076. return GGML_OPT_OK;
  15077. }
  15078. // delta-based convergence test
  15079. if (pf != NULL) {
  15080. // need at least params.past iterations to start checking for convergence
  15081. if (params.past <= k[0]) {
  15082. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15083. if (fabsf(rate) < params.delta) {
  15084. return GGML_OPT_OK;
  15085. }
  15086. }
  15087. pf[k[0]%params.past] = fx;
  15088. }
  15089. // check for improvement
  15090. if (params.max_no_improvement > 0) {
  15091. if (fx < fx_best[0]) {
  15092. fx_best[0] = fx;
  15093. n_no_improvement[0] = 0;
  15094. } else {
  15095. n_no_improvement[0]++;
  15096. if (n_no_improvement[0] >= params.max_no_improvement) {
  15097. return GGML_OPT_OK;
  15098. }
  15099. }
  15100. }
  15101. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15102. // reached the maximum number of iterations
  15103. return GGML_OPT_DID_NOT_CONVERGE;
  15104. }
  15105. // update vectors s and y:
  15106. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15107. // y_{k+1} = g_{k+1} - g_{k}.
  15108. //
  15109. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15110. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15111. // compute scalars ys and yy:
  15112. // ys = y^t \cdot s -> 1 / \rho.
  15113. // yy = y^t \cdot y.
  15114. //
  15115. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15116. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15117. lm_ys[end[0]] = ys;
  15118. // find new search direction
  15119. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15120. bound = (m <= k[0]) ? m : k[0];
  15121. k[0]++;
  15122. it++;
  15123. end[0] = (end[0] + 1)%m;
  15124. // initialize search direction with -g
  15125. ggml_vec_neg_f32(nx, d, g);
  15126. j[0] = end[0];
  15127. for (int i = 0; i < bound; ++i) {
  15128. j[0] = (j[0] + m - 1) % m;
  15129. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15130. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15131. lm_alpha[j[0]] /= lm_ys[j[0]];
  15132. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15133. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15134. }
  15135. ggml_vec_scale_f32(nx, d, ys/yy);
  15136. for (int i = 0; i < bound; ++i) {
  15137. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15138. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15139. beta /= lm_ys[j[0]];
  15140. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15141. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15142. j[0] = (j[0] + 1)%m;
  15143. }
  15144. step[0] = 1.0;
  15145. }
  15146. GGML_UNREACHABLE();
  15147. }
  15148. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15149. struct ggml_opt_params result;
  15150. switch (type) {
  15151. case GGML_OPT_ADAM:
  15152. {
  15153. result = (struct ggml_opt_params) {
  15154. .type = GGML_OPT_ADAM,
  15155. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15156. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15157. .past = 0,
  15158. .delta = 1e-5f,
  15159. .max_no_improvement = 100,
  15160. .print_forward_graph = true,
  15161. .print_backward_graph = true,
  15162. .n_gradient_accumulation = 1,
  15163. .adam = {
  15164. .n_iter = 10000,
  15165. .sched = 1.000f,
  15166. .decay = 0.0f,
  15167. .decay_min_ndim = 2,
  15168. .alpha = 0.001f,
  15169. .beta1 = 0.9f,
  15170. .beta2 = 0.999f,
  15171. .eps = 1e-8f,
  15172. .eps_f = 1e-5f,
  15173. .eps_g = 1e-3f,
  15174. .gclip = 0.0f,
  15175. },
  15176. };
  15177. } break;
  15178. case GGML_OPT_LBFGS:
  15179. {
  15180. result = (struct ggml_opt_params) {
  15181. .type = GGML_OPT_LBFGS,
  15182. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15183. .n_threads = 1,
  15184. .past = 0,
  15185. .delta = 1e-5f,
  15186. .max_no_improvement = 0,
  15187. .print_forward_graph = true,
  15188. .print_backward_graph = true,
  15189. .n_gradient_accumulation = 1,
  15190. .lbfgs = {
  15191. .m = 6,
  15192. .n_iter = 100,
  15193. .max_linesearch = 20,
  15194. .eps = 1e-5f,
  15195. .ftol = 1e-4f,
  15196. .wolfe = 0.9f,
  15197. .min_step = 1e-20f,
  15198. .max_step = 1e+20f,
  15199. .linesearch = GGML_LINESEARCH_DEFAULT,
  15200. },
  15201. };
  15202. } break;
  15203. }
  15204. return result;
  15205. }
  15206. GGML_API void ggml_opt_init(
  15207. struct ggml_context * ctx,
  15208. struct ggml_opt_context * opt,
  15209. struct ggml_opt_params params,
  15210. int64_t nx) {
  15211. opt->ctx = ctx;
  15212. opt->params = params;
  15213. opt->iter = 0;
  15214. opt->nx = nx;
  15215. opt->just_initialized = true;
  15216. if (opt->ctx == NULL) {
  15217. struct ggml_init_params ctx_opt_params;
  15218. if (opt->params.type == GGML_OPT_ADAM) {
  15219. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15220. if (opt->params.past > 0) {
  15221. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15222. }
  15223. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15224. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15225. if (opt->params.past > 0) {
  15226. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15227. }
  15228. }
  15229. ctx_opt_params.mem_buffer = NULL;
  15230. ctx_opt_params.no_alloc = false;
  15231. opt->ctx = ggml_init(ctx_opt_params);
  15232. }
  15233. switch (opt->params.type) {
  15234. case GGML_OPT_ADAM:
  15235. {
  15236. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15237. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15238. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15239. opt->adam.pf = params.past > 0
  15240. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15241. : NULL;
  15242. ggml_set_zero(opt->adam.m);
  15243. ggml_set_zero(opt->adam.v);
  15244. if (opt->adam.pf) {
  15245. ggml_set_zero(opt->adam.pf);
  15246. }
  15247. } break;
  15248. case GGML_OPT_LBFGS:
  15249. {
  15250. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15251. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15252. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15253. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15254. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15255. opt->lbfgs.pf = params.past > 0
  15256. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15257. : NULL;
  15258. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15259. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15260. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15261. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15262. ggml_set_zero(opt->lbfgs.x);
  15263. ggml_set_zero(opt->lbfgs.xp);
  15264. ggml_set_zero(opt->lbfgs.g);
  15265. ggml_set_zero(opt->lbfgs.gp);
  15266. ggml_set_zero(opt->lbfgs.d);
  15267. if (opt->lbfgs.pf) {
  15268. ggml_set_zero(opt->lbfgs.pf);
  15269. }
  15270. ggml_set_zero(opt->lbfgs.lmal);
  15271. ggml_set_zero(opt->lbfgs.lmys);
  15272. ggml_set_zero(opt->lbfgs.lms);
  15273. ggml_set_zero(opt->lbfgs.lmy);
  15274. } break;
  15275. }
  15276. }
  15277. enum ggml_opt_result ggml_opt(
  15278. struct ggml_context * ctx,
  15279. struct ggml_opt_params params,
  15280. struct ggml_tensor * f) {
  15281. bool free_ctx = false;
  15282. if (ctx == NULL) {
  15283. struct ggml_init_params params_ctx = {
  15284. .mem_size = 16*1024*1024,
  15285. .mem_buffer = NULL,
  15286. .no_alloc = false,
  15287. };
  15288. ctx = ggml_init(params_ctx);
  15289. if (ctx == NULL) {
  15290. return GGML_OPT_NO_CONTEXT;
  15291. }
  15292. free_ctx = true;
  15293. }
  15294. enum ggml_opt_result result = GGML_OPT_OK;
  15295. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15296. ggml_opt_init(ctx, opt, params, 0);
  15297. result = ggml_opt_resume(ctx, opt, f);
  15298. if (free_ctx) {
  15299. ggml_free(ctx);
  15300. }
  15301. return result;
  15302. }
  15303. enum ggml_opt_result ggml_opt_resume(
  15304. struct ggml_context * ctx,
  15305. struct ggml_opt_context * opt,
  15306. struct ggml_tensor * f) {
  15307. // build forward + backward compute graphs
  15308. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15309. ggml_build_forward_expand(gf, f);
  15310. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15311. ggml_build_backward_expand(ctx, gf, gb, true);
  15312. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15313. }
  15314. enum ggml_opt_result ggml_opt_resume_g(
  15315. struct ggml_context * ctx,
  15316. struct ggml_opt_context * opt,
  15317. struct ggml_tensor * f,
  15318. struct ggml_cgraph * gf,
  15319. struct ggml_cgraph * gb,
  15320. ggml_opt_callback callback,
  15321. void * callback_data) {
  15322. // build forward + backward compute graphs
  15323. enum ggml_opt_result result = GGML_OPT_OK;
  15324. switch (opt->params.type) {
  15325. case GGML_OPT_ADAM:
  15326. {
  15327. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15328. } break;
  15329. case GGML_OPT_LBFGS:
  15330. {
  15331. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15332. } break;
  15333. }
  15334. if (opt->params.print_forward_graph) {
  15335. ggml_graph_print (gf);
  15336. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15337. }
  15338. if (opt->params.print_backward_graph) {
  15339. ggml_graph_print (gb);
  15340. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15341. }
  15342. return result;
  15343. }
  15344. ////////////////////////////////////////////////////////////////////////////////
  15345. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15346. assert(k % QK4_0 == 0);
  15347. const int nb = k / QK4_0;
  15348. for (int b = 0; b < n; b += k) {
  15349. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15350. quantize_row_q4_0_reference(src + b, y, k);
  15351. for (int i = 0; i < nb; i++) {
  15352. for (int j = 0; j < QK4_0; j += 2) {
  15353. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15354. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15355. hist[vi0]++;
  15356. hist[vi1]++;
  15357. }
  15358. }
  15359. }
  15360. return (n/QK4_0*sizeof(block_q4_0));
  15361. }
  15362. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15363. assert(k % QK4_1 == 0);
  15364. const int nb = k / QK4_1;
  15365. for (int b = 0; b < n; b += k) {
  15366. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15367. quantize_row_q4_1_reference(src + b, y, k);
  15368. for (int i = 0; i < nb; i++) {
  15369. for (int j = 0; j < QK4_1; j += 2) {
  15370. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15371. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15372. hist[vi0]++;
  15373. hist[vi1]++;
  15374. }
  15375. }
  15376. }
  15377. return (n/QK4_1*sizeof(block_q4_1));
  15378. }
  15379. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15380. assert(k % QK5_0 == 0);
  15381. const int nb = k / QK5_0;
  15382. for (int b = 0; b < n; b += k) {
  15383. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15384. quantize_row_q5_0_reference(src + b, y, k);
  15385. for (int i = 0; i < nb; i++) {
  15386. uint32_t qh;
  15387. memcpy(&qh, &y[i].qh, sizeof(qh));
  15388. for (int j = 0; j < QK5_0; j += 2) {
  15389. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15390. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15391. // cast to 16 bins
  15392. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15393. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15394. hist[vi0]++;
  15395. hist[vi1]++;
  15396. }
  15397. }
  15398. }
  15399. return (n/QK5_0*sizeof(block_q5_0));
  15400. }
  15401. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15402. assert(k % QK5_1 == 0);
  15403. const int nb = k / QK5_1;
  15404. for (int b = 0; b < n; b += k) {
  15405. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15406. quantize_row_q5_1_reference(src + b, y, k);
  15407. for (int i = 0; i < nb; i++) {
  15408. uint32_t qh;
  15409. memcpy(&qh, &y[i].qh, sizeof(qh));
  15410. for (int j = 0; j < QK5_1; j += 2) {
  15411. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15412. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15413. // cast to 16 bins
  15414. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15415. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15416. hist[vi0]++;
  15417. hist[vi1]++;
  15418. }
  15419. }
  15420. }
  15421. return (n/QK5_1*sizeof(block_q5_1));
  15422. }
  15423. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15424. assert(k % QK8_0 == 0);
  15425. const int nb = k / QK8_0;
  15426. for (int b = 0; b < n; b += k) {
  15427. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15428. quantize_row_q8_0_reference(src + b, y, k);
  15429. for (int i = 0; i < nb; i++) {
  15430. for (int j = 0; j < QK8_0; ++j) {
  15431. const int8_t vi = y[i].qs[j];
  15432. hist[vi/16 + 8]++;
  15433. }
  15434. }
  15435. }
  15436. return (n/QK8_0*sizeof(block_q8_0));
  15437. }
  15438. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15439. size_t result = 0;
  15440. switch (type) {
  15441. case GGML_TYPE_Q4_0:
  15442. {
  15443. GGML_ASSERT(start % QK4_0 == 0);
  15444. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15445. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15446. } break;
  15447. case GGML_TYPE_Q4_1:
  15448. {
  15449. GGML_ASSERT(start % QK4_1 == 0);
  15450. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15451. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15452. } break;
  15453. case GGML_TYPE_Q5_0:
  15454. {
  15455. GGML_ASSERT(start % QK5_0 == 0);
  15456. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15457. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15458. } break;
  15459. case GGML_TYPE_Q5_1:
  15460. {
  15461. GGML_ASSERT(start % QK5_1 == 0);
  15462. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15463. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15464. } break;
  15465. case GGML_TYPE_Q8_0:
  15466. {
  15467. GGML_ASSERT(start % QK8_0 == 0);
  15468. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15469. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15470. } break;
  15471. case GGML_TYPE_Q2_K:
  15472. {
  15473. GGML_ASSERT(start % QK_K == 0);
  15474. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15475. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15476. } break;
  15477. case GGML_TYPE_Q3_K:
  15478. {
  15479. GGML_ASSERT(start % QK_K == 0);
  15480. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15481. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15482. } break;
  15483. case GGML_TYPE_Q4_K:
  15484. {
  15485. GGML_ASSERT(start % QK_K == 0);
  15486. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15487. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15488. } break;
  15489. case GGML_TYPE_Q5_K:
  15490. {
  15491. GGML_ASSERT(start % QK_K == 0);
  15492. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15493. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15494. } break;
  15495. case GGML_TYPE_Q6_K:
  15496. {
  15497. GGML_ASSERT(start % QK_K == 0);
  15498. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15499. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15500. } break;
  15501. case GGML_TYPE_F16:
  15502. {
  15503. int elemsize = sizeof(ggml_fp16_t);
  15504. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15505. result = n * elemsize;
  15506. } break;
  15507. case GGML_TYPE_F32:
  15508. {
  15509. int elemsize = sizeof(float);
  15510. result = n * elemsize;
  15511. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15512. } break;
  15513. default:
  15514. assert(false);
  15515. }
  15516. return result;
  15517. }
  15518. ////////////////////////////////////////////////////////////////////////////////
  15519. struct gguf_str {
  15520. uint64_t n; // GGUFv2
  15521. char * data;
  15522. };
  15523. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15524. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15525. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15526. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15527. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15528. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15529. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15530. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15531. [GGUF_TYPE_BOOL] = sizeof(bool),
  15532. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15533. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15534. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15535. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15536. [GGUF_TYPE_ARRAY] = 0, // undefined
  15537. };
  15538. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15539. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15540. [GGUF_TYPE_UINT8] = "u8",
  15541. [GGUF_TYPE_INT8] = "i8",
  15542. [GGUF_TYPE_UINT16] = "u16",
  15543. [GGUF_TYPE_INT16] = "i16",
  15544. [GGUF_TYPE_UINT32] = "u32",
  15545. [GGUF_TYPE_INT32] = "i32",
  15546. [GGUF_TYPE_FLOAT32] = "f32",
  15547. [GGUF_TYPE_BOOL] = "bool",
  15548. [GGUF_TYPE_STRING] = "str",
  15549. [GGUF_TYPE_ARRAY] = "arr",
  15550. [GGUF_TYPE_UINT64] = "u64",
  15551. [GGUF_TYPE_INT64] = "i64",
  15552. [GGUF_TYPE_FLOAT64] = "f64",
  15553. };
  15554. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15555. union gguf_value {
  15556. uint8_t uint8;
  15557. int8_t int8;
  15558. uint16_t uint16;
  15559. int16_t int16;
  15560. uint32_t uint32;
  15561. int32_t int32;
  15562. float float32;
  15563. uint64_t uint64;
  15564. int64_t int64;
  15565. double float64;
  15566. bool bool_;
  15567. struct gguf_str str;
  15568. struct {
  15569. enum gguf_type type;
  15570. uint64_t n; // GGUFv2
  15571. void * data;
  15572. } arr;
  15573. };
  15574. struct gguf_kv {
  15575. struct gguf_str key;
  15576. enum gguf_type type;
  15577. union gguf_value value;
  15578. };
  15579. struct gguf_header {
  15580. char magic[4];
  15581. uint32_t version;
  15582. uint64_t n_tensors; // GGUFv2
  15583. uint64_t n_kv; // GGUFv2
  15584. };
  15585. struct gguf_tensor_info {
  15586. struct gguf_str name;
  15587. uint32_t n_dims;
  15588. uint64_t ne[GGML_MAX_DIMS];
  15589. enum ggml_type type;
  15590. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15591. // for writing API
  15592. const void * data;
  15593. size_t size;
  15594. };
  15595. struct gguf_context {
  15596. struct gguf_header header;
  15597. struct gguf_kv * kv;
  15598. struct gguf_tensor_info * infos;
  15599. size_t alignment;
  15600. size_t offset; // offset of `data` from beginning of file
  15601. size_t size; // size of `data` in bytes
  15602. //uint8_t * padding;
  15603. void * data;
  15604. };
  15605. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15606. const size_t n = fread(dst, 1, size, file);
  15607. *offset += n;
  15608. return n == size;
  15609. }
  15610. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15611. p->n = 0;
  15612. p->data = NULL;
  15613. bool ok = true;
  15614. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15615. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15616. return ok;
  15617. }
  15618. struct gguf_context * gguf_init_empty(void) {
  15619. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15620. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15621. ctx->header.version = GGUF_VERSION;
  15622. ctx->header.n_tensors = 0;
  15623. ctx->header.n_kv = 0;
  15624. ctx->kv = NULL;
  15625. ctx->infos = NULL;
  15626. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15627. ctx->offset = 0;
  15628. ctx->size = 0;
  15629. ctx->data = NULL;
  15630. return ctx;
  15631. }
  15632. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15633. FILE * file = fopen(fname, "rb");
  15634. if (!file) {
  15635. return NULL;
  15636. }
  15637. // offset from start of file
  15638. size_t offset = 0;
  15639. char magic[4];
  15640. // check the magic before making allocations
  15641. {
  15642. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15643. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15644. if (magic[i] != GGUF_MAGIC[i]) {
  15645. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15646. fclose(file);
  15647. return NULL;
  15648. }
  15649. }
  15650. }
  15651. bool ok = true;
  15652. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15653. // read the header
  15654. {
  15655. strncpy(ctx->header.magic, magic, 4);
  15656. ctx->kv = NULL;
  15657. ctx->infos = NULL;
  15658. ctx->data = NULL;
  15659. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15660. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15661. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15662. if (ctx->header.version == 1) {
  15663. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15664. fclose(file);
  15665. gguf_free(ctx);
  15666. return NULL;
  15667. }
  15668. if (!ok) {
  15669. fprintf(stderr, "%s: failed to read header\n", __func__);
  15670. fclose(file);
  15671. gguf_free(ctx);
  15672. return NULL;
  15673. }
  15674. }
  15675. // read the kv pairs
  15676. {
  15677. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15678. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15679. struct gguf_kv * kv = &ctx->kv[i];
  15680. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15681. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15682. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15683. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15684. switch (kv->type) {
  15685. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15686. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15687. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15688. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15689. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15690. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15691. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15692. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15693. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15694. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15695. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15696. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15697. case GGUF_TYPE_ARRAY:
  15698. {
  15699. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15700. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15701. switch (kv->value.arr.type) {
  15702. case GGUF_TYPE_UINT8:
  15703. case GGUF_TYPE_INT8:
  15704. case GGUF_TYPE_UINT16:
  15705. case GGUF_TYPE_INT16:
  15706. case GGUF_TYPE_UINT32:
  15707. case GGUF_TYPE_INT32:
  15708. case GGUF_TYPE_FLOAT32:
  15709. case GGUF_TYPE_UINT64:
  15710. case GGUF_TYPE_INT64:
  15711. case GGUF_TYPE_FLOAT64:
  15712. case GGUF_TYPE_BOOL:
  15713. {
  15714. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15715. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15716. } break;
  15717. case GGUF_TYPE_STRING:
  15718. {
  15719. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15720. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15721. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15722. }
  15723. } break;
  15724. case GGUF_TYPE_ARRAY:
  15725. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15726. }
  15727. } break;
  15728. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15729. }
  15730. if (!ok) {
  15731. break;
  15732. }
  15733. }
  15734. if (!ok) {
  15735. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15736. fclose(file);
  15737. gguf_free(ctx);
  15738. return NULL;
  15739. }
  15740. }
  15741. // read the tensor infos
  15742. {
  15743. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15744. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15745. struct gguf_tensor_info * info = &ctx->infos[i];
  15746. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15747. info->ne[j] = 1;
  15748. }
  15749. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15750. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15751. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15752. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15753. }
  15754. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15755. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15756. if (!ok) {
  15757. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15758. fclose(file);
  15759. gguf_free(ctx);
  15760. return NULL;
  15761. }
  15762. }
  15763. }
  15764. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15765. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15766. if (alignment_idx != -1) {
  15767. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15768. }
  15769. // we require the data section to be aligned, so take into account any padding
  15770. {
  15771. const size_t offset_pad = offset % ctx->alignment;
  15772. if (offset_pad != 0) {
  15773. offset += ctx->alignment - offset_pad;
  15774. fseek(file, offset, SEEK_SET);
  15775. }
  15776. }
  15777. // store the current file offset - this is where the data section starts
  15778. ctx->offset = offset;
  15779. // compute the total size of the data section, taking into account the alignment
  15780. {
  15781. ctx->size = 0;
  15782. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15783. struct gguf_tensor_info * info = &ctx->infos[i];
  15784. const int64_t ne =
  15785. (int64_t) info->ne[0] *
  15786. (int64_t) info->ne[1] *
  15787. (int64_t) info->ne[2] *
  15788. (int64_t) info->ne[3];
  15789. if (ne % ggml_blck_size(info->type) != 0) {
  15790. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15791. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15792. fclose(file);
  15793. gguf_free(ctx);
  15794. return NULL;
  15795. }
  15796. const size_t size_cur = ggml_row_size(info->type, ne);
  15797. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15798. }
  15799. }
  15800. // load the tensor data only if requested
  15801. if (params.ctx != NULL) {
  15802. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15803. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15804. // the ggml_tensor structs to the appropriate locations in the binary blob
  15805. // compute the exact size needed for the new ggml_context
  15806. const size_t mem_size =
  15807. params.no_alloc ?
  15808. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15809. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15810. struct ggml_init_params pdata = {
  15811. .mem_size = mem_size,
  15812. .mem_buffer = NULL,
  15813. .no_alloc = params.no_alloc,
  15814. };
  15815. *params.ctx = ggml_init(pdata);
  15816. struct ggml_context * ctx_data = *params.ctx;
  15817. struct ggml_tensor * data = NULL;
  15818. if (!params.no_alloc) {
  15819. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15820. ok = ok && data != NULL;
  15821. // read the binary blob with the tensor data
  15822. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15823. if (!ok) {
  15824. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15825. fclose(file);
  15826. ggml_free(ctx_data);
  15827. gguf_free(ctx);
  15828. return NULL;
  15829. }
  15830. ctx->data = data->data;
  15831. }
  15832. ggml_set_no_alloc(ctx_data, true);
  15833. // create the tensors
  15834. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15835. const int64_t ne[GGML_MAX_DIMS] = {
  15836. ctx->infos[i].ne[0],
  15837. ctx->infos[i].ne[1],
  15838. ctx->infos[i].ne[2],
  15839. ctx->infos[i].ne[3],
  15840. };
  15841. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15842. ok = ok && cur != NULL;
  15843. ggml_set_name(cur, ctx->infos[i].name.data);
  15844. if (!ok) {
  15845. break;
  15846. }
  15847. // point the data member to the appropriate location in the binary blob using the tensor infos
  15848. if (!params.no_alloc) {
  15849. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15850. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15851. }
  15852. }
  15853. if (!ok) {
  15854. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15855. fclose(file);
  15856. ggml_free(ctx_data);
  15857. gguf_free(ctx);
  15858. return NULL;
  15859. }
  15860. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15861. }
  15862. fclose(file);
  15863. return ctx;
  15864. }
  15865. void gguf_free(struct gguf_context * ctx) {
  15866. if (ctx == NULL) {
  15867. return;
  15868. }
  15869. if (ctx->kv) {
  15870. // free string memory - not great..
  15871. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15872. struct gguf_kv * kv = &ctx->kv[i];
  15873. if (kv->key.data) {
  15874. free(kv->key.data);
  15875. }
  15876. if (kv->type == GGUF_TYPE_STRING) {
  15877. if (kv->value.str.data) {
  15878. free(kv->value.str.data);
  15879. }
  15880. }
  15881. if (kv->type == GGUF_TYPE_ARRAY) {
  15882. if (kv->value.arr.data) {
  15883. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15884. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15885. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15886. if (str->data) {
  15887. free(str->data);
  15888. }
  15889. }
  15890. }
  15891. free(kv->value.arr.data);
  15892. }
  15893. }
  15894. }
  15895. free(ctx->kv);
  15896. }
  15897. if (ctx->infos) {
  15898. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15899. struct gguf_tensor_info * info = &ctx->infos[i];
  15900. if (info->name.data) {
  15901. free(info->name.data);
  15902. }
  15903. }
  15904. free(ctx->infos);
  15905. }
  15906. GGML_ALIGNED_FREE(ctx);
  15907. }
  15908. const char * gguf_type_name(enum gguf_type type) {
  15909. return GGUF_TYPE_NAME[type];
  15910. }
  15911. int gguf_get_version(const struct gguf_context * ctx) {
  15912. return ctx->header.version;
  15913. }
  15914. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15915. return ctx->alignment;
  15916. }
  15917. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15918. return ctx->offset;
  15919. }
  15920. void * gguf_get_data(const struct gguf_context * ctx) {
  15921. return ctx->data;
  15922. }
  15923. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15924. return ctx->header.n_kv;
  15925. }
  15926. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15927. // return -1 if key not found
  15928. int keyfound = -1;
  15929. const int n_kv = gguf_get_n_kv(ctx);
  15930. for (int i = 0; i < n_kv; ++i) {
  15931. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15932. keyfound = i;
  15933. break;
  15934. }
  15935. }
  15936. return keyfound;
  15937. }
  15938. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15939. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15940. return ctx->kv[key_id].key.data;
  15941. }
  15942. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15943. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15944. return ctx->kv[key_id].type;
  15945. }
  15946. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15947. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15948. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15949. return ctx->kv[key_id].value.arr.type;
  15950. }
  15951. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15952. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15953. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15954. return ctx->kv[key_id].value.arr.data;
  15955. }
  15956. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15957. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15958. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15959. struct gguf_kv * kv = &ctx->kv[key_id];
  15960. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15961. return str->data;
  15962. }
  15963. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15964. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15965. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15966. return ctx->kv[key_id].value.arr.n;
  15967. }
  15968. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15969. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15970. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15971. return ctx->kv[key_id].value.uint8;
  15972. }
  15973. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15974. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15975. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15976. return ctx->kv[key_id].value.int8;
  15977. }
  15978. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15979. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15980. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15981. return ctx->kv[key_id].value.uint16;
  15982. }
  15983. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15984. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15985. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15986. return ctx->kv[key_id].value.int16;
  15987. }
  15988. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15989. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15990. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15991. return ctx->kv[key_id].value.uint32;
  15992. }
  15993. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15994. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15995. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15996. return ctx->kv[key_id].value.int32;
  15997. }
  15998. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15999. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16000. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16001. return ctx->kv[key_id].value.float32;
  16002. }
  16003. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16004. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16005. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16006. return ctx->kv[key_id].value.uint64;
  16007. }
  16008. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16009. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16010. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16011. return ctx->kv[key_id].value.int64;
  16012. }
  16013. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16014. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16015. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16016. return ctx->kv[key_id].value.float64;
  16017. }
  16018. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16019. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16020. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16021. return ctx->kv[key_id].value.bool_;
  16022. }
  16023. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16024. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16025. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16026. return ctx->kv[key_id].value.str.data;
  16027. }
  16028. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16029. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16030. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16031. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16032. return &ctx->kv[key_id].value;
  16033. }
  16034. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16035. return ctx->header.n_tensors;
  16036. }
  16037. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16038. // return -1 if tensor not found
  16039. int tensorfound = -1;
  16040. const int n_tensors = gguf_get_n_tensors(ctx);
  16041. for (int i = 0; i < n_tensors; ++i) {
  16042. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16043. tensorfound = i;
  16044. break;
  16045. }
  16046. }
  16047. return tensorfound;
  16048. }
  16049. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16050. return ctx->infos[i].offset;
  16051. }
  16052. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16053. return ctx->infos[i].name.data;
  16054. }
  16055. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16056. return ctx->infos[i].type;
  16057. }
  16058. // returns the index
  16059. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16060. const int idx = gguf_find_key(ctx, key);
  16061. if (idx >= 0) {
  16062. return idx;
  16063. }
  16064. const int n_kv = gguf_get_n_kv(ctx);
  16065. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16066. ctx->kv[n_kv].key.n = strlen(key);
  16067. ctx->kv[n_kv].key.data = strdup(key);
  16068. ctx->header.n_kv++;
  16069. return n_kv;
  16070. }
  16071. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16072. const int idx = gguf_get_or_add_key(ctx, key);
  16073. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16074. ctx->kv[idx].value.uint8 = val;
  16075. }
  16076. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16077. const int idx = gguf_get_or_add_key(ctx, key);
  16078. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16079. ctx->kv[idx].value.int8 = val;
  16080. }
  16081. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16082. const int idx = gguf_get_or_add_key(ctx, key);
  16083. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16084. ctx->kv[idx].value.uint16 = val;
  16085. }
  16086. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16087. const int idx = gguf_get_or_add_key(ctx, key);
  16088. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16089. ctx->kv[idx].value.int16 = val;
  16090. }
  16091. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16092. const int idx = gguf_get_or_add_key(ctx, key);
  16093. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16094. ctx->kv[idx].value.uint32 = val;
  16095. }
  16096. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16097. const int idx = gguf_get_or_add_key(ctx, key);
  16098. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16099. ctx->kv[idx].value.int32 = val;
  16100. }
  16101. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16102. const int idx = gguf_get_or_add_key(ctx, key);
  16103. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16104. ctx->kv[idx].value.float32 = val;
  16105. }
  16106. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16107. const int idx = gguf_get_or_add_key(ctx, key);
  16108. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16109. ctx->kv[idx].value.uint64 = val;
  16110. }
  16111. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16112. const int idx = gguf_get_or_add_key(ctx, key);
  16113. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16114. ctx->kv[idx].value.int64 = val;
  16115. }
  16116. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16117. const int idx = gguf_get_or_add_key(ctx, key);
  16118. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16119. ctx->kv[idx].value.float64 = val;
  16120. }
  16121. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16122. const int idx = gguf_get_or_add_key(ctx, key);
  16123. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16124. ctx->kv[idx].value.bool_ = val;
  16125. }
  16126. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16127. const int idx = gguf_get_or_add_key(ctx, key);
  16128. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16129. ctx->kv[idx].value.str.n = strlen(val);
  16130. ctx->kv[idx].value.str.data = strdup(val);
  16131. }
  16132. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16133. const int idx = gguf_get_or_add_key(ctx, key);
  16134. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16135. ctx->kv[idx].value.arr.type = type;
  16136. ctx->kv[idx].value.arr.n = n;
  16137. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16138. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16139. }
  16140. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16141. const int idx = gguf_get_or_add_key(ctx, key);
  16142. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16143. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16144. ctx->kv[idx].value.arr.n = n;
  16145. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16146. for (int i = 0; i < n; i++) {
  16147. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16148. str->n = strlen(data[i]);
  16149. str->data = strdup(data[i]);
  16150. }
  16151. }
  16152. // set or add KV pairs from another context
  16153. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16154. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16155. switch (src->kv[i].type) {
  16156. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16157. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16158. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16159. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16160. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16161. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16162. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16163. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16164. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16165. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16166. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16167. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16168. case GGUF_TYPE_ARRAY:
  16169. {
  16170. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16171. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16172. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16173. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16174. }
  16175. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16176. free((void *)data);
  16177. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16178. GGML_ASSERT(false && "nested arrays not supported");
  16179. } else {
  16180. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16181. }
  16182. } break;
  16183. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16184. }
  16185. }
  16186. }
  16187. void gguf_add_tensor(
  16188. struct gguf_context * ctx,
  16189. const struct ggml_tensor * tensor) {
  16190. const int idx = ctx->header.n_tensors;
  16191. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16192. ctx->infos[idx].name.n = strlen(tensor->name);
  16193. ctx->infos[idx].name.data = strdup(tensor->name);
  16194. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16195. ctx->infos[idx].ne[i] = 1;
  16196. }
  16197. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16198. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16199. ctx->infos[idx].ne[i] = tensor->ne[i];
  16200. }
  16201. ctx->infos[idx].type = tensor->type;
  16202. ctx->infos[idx].offset = 0;
  16203. ctx->infos[idx].data = tensor->data;
  16204. ctx->infos[idx].size = ggml_nbytes(tensor);
  16205. if (ctx->header.n_tensors > 0) {
  16206. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16207. }
  16208. ctx->header.n_tensors++;
  16209. }
  16210. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16211. const int idx = gguf_find_tensor(ctx, name);
  16212. if (idx < 0) {
  16213. GGML_ASSERT(false && "tensor not found");
  16214. }
  16215. ctx->infos[idx].type = type;
  16216. }
  16217. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16218. const int idx = gguf_find_tensor(ctx, name);
  16219. if (idx < 0) {
  16220. GGML_ASSERT(false && "tensor not found");
  16221. }
  16222. ctx->infos[idx].data = data;
  16223. ctx->infos[idx].size = size;
  16224. // update offsets
  16225. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16226. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16227. }
  16228. }
  16229. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16230. // fwrite(&val->n, sizeof(val->n), 1, file);
  16231. // fwrite(val->data, sizeof(char), val->n, file);
  16232. //}
  16233. //
  16234. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16235. // fwrite(val, sizeof(char), size, file);
  16236. //}
  16237. struct gguf_buf {
  16238. void * data;
  16239. size_t size;
  16240. size_t offset;
  16241. };
  16242. static struct gguf_buf gguf_buf_init(size_t size) {
  16243. struct gguf_buf buf = {
  16244. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16245. /*buf.size =*/ size,
  16246. /*buf.offset =*/ 0,
  16247. };
  16248. return buf;
  16249. }
  16250. static void gguf_buf_free(struct gguf_buf buf) {
  16251. if (buf.data) {
  16252. free(buf.data);
  16253. }
  16254. }
  16255. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16256. if (buf->offset + size > buf->size) {
  16257. buf->size = 1.5*(buf->offset + size);
  16258. if (buf->data) {
  16259. buf->data = realloc(buf->data, buf->size);
  16260. }
  16261. }
  16262. }
  16263. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16264. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16265. if (buf->data) {
  16266. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16267. }
  16268. buf->offset += sizeof(val->n);
  16269. if (buf->data) {
  16270. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16271. }
  16272. buf->offset += val->n;
  16273. }
  16274. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16275. gguf_buf_grow(buf, el_size);
  16276. if (buf->data) {
  16277. memcpy((char *) buf->data + buf->offset, val, el_size);
  16278. }
  16279. buf->offset += el_size;
  16280. }
  16281. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16282. // write header
  16283. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16284. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16285. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16286. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16287. // write key-value pairs
  16288. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16289. struct gguf_kv * kv = &ctx->kv[i];
  16290. gguf_bwrite_str(buf, &kv->key);
  16291. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16292. switch (kv->type) {
  16293. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16294. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16295. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16296. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16297. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16298. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16299. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16300. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16301. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16302. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16303. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16304. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16305. case GGUF_TYPE_ARRAY:
  16306. {
  16307. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16308. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16309. switch (kv->value.arr.type) {
  16310. case GGUF_TYPE_UINT8:
  16311. case GGUF_TYPE_INT8:
  16312. case GGUF_TYPE_UINT16:
  16313. case GGUF_TYPE_INT16:
  16314. case GGUF_TYPE_UINT32:
  16315. case GGUF_TYPE_INT32:
  16316. case GGUF_TYPE_FLOAT32:
  16317. case GGUF_TYPE_UINT64:
  16318. case GGUF_TYPE_INT64:
  16319. case GGUF_TYPE_FLOAT64:
  16320. case GGUF_TYPE_BOOL:
  16321. {
  16322. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16323. } break;
  16324. case GGUF_TYPE_STRING:
  16325. {
  16326. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16327. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16328. }
  16329. } break;
  16330. case GGUF_TYPE_ARRAY:
  16331. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16332. }
  16333. } break;
  16334. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16335. }
  16336. }
  16337. // write tensor infos
  16338. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16339. struct gguf_tensor_info * info = &ctx->infos[i];
  16340. gguf_bwrite_str(buf, &info->name);
  16341. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16342. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16343. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16344. }
  16345. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16346. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16347. }
  16348. // we require the data section to be aligned, so take into account any padding
  16349. {
  16350. const size_t offset = buf->offset;
  16351. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16352. if (offset_pad != offset) {
  16353. uint8_t pad = 0;
  16354. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16355. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16356. }
  16357. }
  16358. }
  16359. if (only_meta) {
  16360. return;
  16361. }
  16362. size_t offset = 0;
  16363. // write tensor data
  16364. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16365. struct gguf_tensor_info * info = &ctx->infos[i];
  16366. const size_t size = info->size;
  16367. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16368. gguf_bwrite_el(buf, info->data, size);
  16369. if (size_pad != size) {
  16370. uint8_t pad = 0;
  16371. for (size_t j = 0; j < size_pad - size; ++j) {
  16372. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16373. }
  16374. }
  16375. GGML_ASSERT(offset == info->offset);
  16376. offset += size_pad;
  16377. }
  16378. }
  16379. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16380. FILE * file = fopen(fname, "wb");
  16381. if (!file) {
  16382. GGML_ASSERT(false && "failed to open file for writing");
  16383. }
  16384. struct gguf_buf buf = gguf_buf_init(16*1024);
  16385. gguf_write_to_buf(ctx, &buf, only_meta);
  16386. fwrite(buf.data, 1, buf.offset, file);
  16387. gguf_buf_free(buf);
  16388. fclose(file);
  16389. }
  16390. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16391. // no allocs - only compute size
  16392. struct gguf_buf buf = gguf_buf_init(0);
  16393. gguf_write_to_buf(ctx, &buf, true);
  16394. return buf.offset;
  16395. }
  16396. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16397. struct gguf_buf buf = gguf_buf_init(16*1024);
  16398. gguf_write_to_buf(ctx, &buf, true);
  16399. memcpy(data, buf.data, buf.offset);
  16400. gguf_buf_free(buf);
  16401. }
  16402. ////////////////////////////////////////////////////////////////////////////////
  16403. int ggml_cpu_has_avx(void) {
  16404. #if defined(__AVX__)
  16405. return 1;
  16406. #else
  16407. return 0;
  16408. #endif
  16409. }
  16410. int ggml_cpu_has_avx_vnni(void) {
  16411. #if defined(__AVXVNNI__)
  16412. return 1;
  16413. #else
  16414. return 0;
  16415. #endif
  16416. }
  16417. int ggml_cpu_has_avx2(void) {
  16418. #if defined(__AVX2__)
  16419. return 1;
  16420. #else
  16421. return 0;
  16422. #endif
  16423. }
  16424. int ggml_cpu_has_avx512(void) {
  16425. #if defined(__AVX512F__)
  16426. return 1;
  16427. #else
  16428. return 0;
  16429. #endif
  16430. }
  16431. int ggml_cpu_has_avx512_vbmi(void) {
  16432. #if defined(__AVX512VBMI__)
  16433. return 1;
  16434. #else
  16435. return 0;
  16436. #endif
  16437. }
  16438. int ggml_cpu_has_avx512_vnni(void) {
  16439. #if defined(__AVX512VNNI__)
  16440. return 1;
  16441. #else
  16442. return 0;
  16443. #endif
  16444. }
  16445. int ggml_cpu_has_fma(void) {
  16446. #if defined(__FMA__)
  16447. return 1;
  16448. #else
  16449. return 0;
  16450. #endif
  16451. }
  16452. int ggml_cpu_has_neon(void) {
  16453. #if defined(__ARM_NEON)
  16454. return 1;
  16455. #else
  16456. return 0;
  16457. #endif
  16458. }
  16459. int ggml_cpu_has_arm_fma(void) {
  16460. #if defined(__ARM_FEATURE_FMA)
  16461. return 1;
  16462. #else
  16463. return 0;
  16464. #endif
  16465. }
  16466. int ggml_cpu_has_metal(void) {
  16467. #if defined(GGML_USE_METAL)
  16468. return 1;
  16469. #else
  16470. return 0;
  16471. #endif
  16472. }
  16473. int ggml_cpu_has_f16c(void) {
  16474. #if defined(__F16C__)
  16475. return 1;
  16476. #else
  16477. return 0;
  16478. #endif
  16479. }
  16480. int ggml_cpu_has_fp16_va(void) {
  16481. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16482. return 1;
  16483. #else
  16484. return 0;
  16485. #endif
  16486. }
  16487. int ggml_cpu_has_wasm_simd(void) {
  16488. #if defined(__wasm_simd128__)
  16489. return 1;
  16490. #else
  16491. return 0;
  16492. #endif
  16493. }
  16494. int ggml_cpu_has_blas(void) {
  16495. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16496. return 1;
  16497. #else
  16498. return 0;
  16499. #endif
  16500. }
  16501. int ggml_cpu_has_cublas(void) {
  16502. #if defined(GGML_USE_CUBLAS)
  16503. return 1;
  16504. #else
  16505. return 0;
  16506. #endif
  16507. }
  16508. int ggml_cpu_has_clblast(void) {
  16509. #if defined(GGML_USE_CLBLAST)
  16510. return 1;
  16511. #else
  16512. return 0;
  16513. #endif
  16514. }
  16515. int ggml_cpu_has_gpublas(void) {
  16516. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16517. }
  16518. int ggml_cpu_has_sse3(void) {
  16519. #if defined(__SSE3__)
  16520. return 1;
  16521. #else
  16522. return 0;
  16523. #endif
  16524. }
  16525. int ggml_cpu_has_ssse3(void) {
  16526. #if defined(__SSSE3__)
  16527. return 1;
  16528. #else
  16529. return 0;
  16530. #endif
  16531. }
  16532. int ggml_cpu_has_vsx(void) {
  16533. #if defined(__POWER9_VECTOR__)
  16534. return 1;
  16535. #else
  16536. return 0;
  16537. #endif
  16538. }
  16539. ////////////////////////////////////////////////////////////////////////////////