ggml.c 677 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. // note: do not use these inside ggml.c
  271. // these are meant to be used via the ggml.h API
  272. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  273. return GGML_FP16_TO_FP32(x);
  274. }
  275. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  276. return GGML_FP32_TO_FP16(x);
  277. }
  278. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  279. for (int i = 0; i < n; i++) {
  280. y[i] = GGML_FP16_TO_FP32(x[i]);
  281. }
  282. }
  283. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  284. int i = 0;
  285. #if defined(__F16C__)
  286. for (; i + 7 < n; i += 8) {
  287. __m256 x_vec = _mm256_loadu_ps(x + i);
  288. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  290. }
  291. for(; i + 3 < n; i += 4) {
  292. __m128 x_vec = _mm_loadu_ps(x + i);
  293. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  294. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  295. }
  296. #endif
  297. for (; i < n; i++) {
  298. y[i] = GGML_FP32_TO_FP16(x[i]);
  299. }
  300. }
  301. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  302. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  303. }
  304. //
  305. // timing
  306. //
  307. #if defined(_MSC_VER) || defined(__MINGW32__)
  308. static int64_t timer_freq, timer_start;
  309. void ggml_time_init(void) {
  310. LARGE_INTEGER t;
  311. QueryPerformanceFrequency(&t);
  312. timer_freq = t.QuadPart;
  313. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  314. // and the uptime is high enough.
  315. // We subtract the program start time to reduce the likelihood of that happening.
  316. QueryPerformanceCounter(&t);
  317. timer_start = t.QuadPart;
  318. }
  319. int64_t ggml_time_ms(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceCounter(&t);
  322. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  323. }
  324. int64_t ggml_time_us(void) {
  325. LARGE_INTEGER t;
  326. QueryPerformanceCounter(&t);
  327. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  328. }
  329. #else
  330. void ggml_time_init(void) {}
  331. int64_t ggml_time_ms(void) {
  332. struct timespec ts;
  333. clock_gettime(CLOCK_MONOTONIC, &ts);
  334. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  335. }
  336. int64_t ggml_time_us(void) {
  337. struct timespec ts;
  338. clock_gettime(CLOCK_MONOTONIC, &ts);
  339. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  340. }
  341. #endif
  342. int64_t ggml_cycles(void) {
  343. return clock();
  344. }
  345. int64_t ggml_cycles_per_ms(void) {
  346. return CLOCKS_PER_SEC/1000;
  347. }
  348. #ifdef GGML_PERF
  349. #define ggml_perf_time_ms() ggml_time_ms()
  350. #define ggml_perf_time_us() ggml_time_us()
  351. #define ggml_perf_cycles() ggml_cycles()
  352. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  353. #else
  354. #define ggml_perf_time_ms() 0
  355. #define ggml_perf_time_us() 0
  356. #define ggml_perf_cycles() 0
  357. #define ggml_perf_cycles_per_ms() 0
  358. #endif
  359. //
  360. // cache line
  361. //
  362. #if defined(__cpp_lib_hardware_interference_size)
  363. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  364. #else
  365. #if defined(__POWER9_VECTOR__)
  366. #define CACHE_LINE_SIZE 128
  367. #else
  368. #define CACHE_LINE_SIZE 64
  369. #endif
  370. #endif
  371. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  372. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  373. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  374. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  375. [GGML_TYPE_I8] = {
  376. .type_name = "i8",
  377. .blck_size = 1,
  378. .type_size = sizeof(int8_t),
  379. .is_quantized = false,
  380. },
  381. [GGML_TYPE_I16] = {
  382. .type_name = "i16",
  383. .blck_size = 1,
  384. .type_size = sizeof(int16_t),
  385. .is_quantized = false,
  386. },
  387. [GGML_TYPE_I32] = {
  388. .type_name = "i32",
  389. .blck_size = 1,
  390. .type_size = sizeof(int32_t),
  391. .is_quantized = false,
  392. },
  393. [GGML_TYPE_F32] = {
  394. .type_name = "f32",
  395. .blck_size = 1,
  396. .type_size = sizeof(float),
  397. .is_quantized = false,
  398. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  399. .vec_dot_type = GGML_TYPE_F32,
  400. .nrows = 1,
  401. },
  402. [GGML_TYPE_F16] = {
  403. .type_name = "f16",
  404. .blck_size = 1,
  405. .type_size = sizeof(ggml_fp16_t),
  406. .is_quantized = false,
  407. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  408. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  409. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  410. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  411. .vec_dot_type = GGML_TYPE_F16,
  412. .nrows = 1,
  413. },
  414. [GGML_TYPE_Q4_0] = {
  415. .type_name = "q4_0",
  416. .blck_size = QK4_0,
  417. .type_size = sizeof(block_q4_0),
  418. .is_quantized = true,
  419. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  420. .from_float = quantize_row_q4_0,
  421. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  422. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  423. .vec_dot_type = GGML_TYPE_Q8_0,
  424. #if defined (__ARM_FEATURE_MATMUL_INT8)
  425. .nrows = 2,
  426. #else
  427. .nrows = 1,
  428. #endif
  429. },
  430. [GGML_TYPE_Q4_1] = {
  431. .type_name = "q4_1",
  432. .blck_size = QK4_1,
  433. .type_size = sizeof(block_q4_1),
  434. .is_quantized = true,
  435. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  436. .from_float = quantize_row_q4_1,
  437. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  438. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  439. .vec_dot_type = GGML_TYPE_Q8_1,
  440. #if defined (__ARM_FEATURE_MATMUL_INT8)
  441. .nrows = 2,
  442. #else
  443. .nrows = 1,
  444. #endif
  445. },
  446. [4] = { // GGML_TYPE_Q4_2
  447. .type_name = "DEPRECATED",
  448. .blck_size = 0,
  449. .type_size = 0,
  450. .is_quantized = false,
  451. .to_float = NULL,
  452. .from_float = NULL,
  453. .from_float_reference = NULL,
  454. .vec_dot = NULL,
  455. .vec_dot_type = GGML_TYPE_COUNT,
  456. .nrows = 1,
  457. },
  458. [5] = { // GGML_TYPE_Q4_3
  459. .type_name = "DEPRECATED",
  460. .blck_size = 0,
  461. .type_size = 0,
  462. .is_quantized = false,
  463. .to_float = NULL,
  464. .from_float = NULL,
  465. .from_float_reference = NULL,
  466. .vec_dot = NULL,
  467. .vec_dot_type = GGML_TYPE_COUNT,
  468. .nrows = 1,
  469. },
  470. [GGML_TYPE_Q5_0] = {
  471. .type_name = "q5_0",
  472. .blck_size = QK5_0,
  473. .type_size = sizeof(block_q5_0),
  474. .is_quantized = true,
  475. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  476. .from_float = quantize_row_q5_0,
  477. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  478. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  479. .vec_dot_type = GGML_TYPE_Q8_0,
  480. .nrows = 1,
  481. },
  482. [GGML_TYPE_Q5_1] = {
  483. .type_name = "q5_1",
  484. .blck_size = QK5_1,
  485. .type_size = sizeof(block_q5_1),
  486. .is_quantized = true,
  487. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  488. .from_float = quantize_row_q5_1,
  489. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  490. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  491. .vec_dot_type = GGML_TYPE_Q8_1,
  492. .nrows = 1,
  493. },
  494. [GGML_TYPE_Q8_0] = {
  495. .type_name = "q8_0",
  496. .blck_size = QK8_0,
  497. .type_size = sizeof(block_q8_0),
  498. .is_quantized = true,
  499. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  500. .from_float = quantize_row_q8_0,
  501. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  502. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  503. .vec_dot_type = GGML_TYPE_Q8_0,
  504. #if defined (__ARM_FEATURE_MATMUL_INT8)
  505. .nrows = 2,
  506. #else
  507. .nrows = 1,
  508. #endif
  509. },
  510. [GGML_TYPE_Q8_1] = {
  511. .type_name = "q8_1",
  512. .blck_size = QK8_1,
  513. .type_size = sizeof(block_q8_1),
  514. .is_quantized = true,
  515. .from_float = quantize_row_q8_1,
  516. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  517. .vec_dot_type = GGML_TYPE_Q8_1,
  518. .nrows = 1,
  519. },
  520. [GGML_TYPE_Q2_K] = {
  521. .type_name = "q2_K",
  522. .blck_size = QK_K,
  523. .type_size = sizeof(block_q2_K),
  524. .is_quantized = true,
  525. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  526. .from_float = quantize_row_q2_K,
  527. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  528. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  529. .vec_dot_type = GGML_TYPE_Q8_K,
  530. .nrows = 1,
  531. },
  532. [GGML_TYPE_Q3_K] = {
  533. .type_name = "q3_K",
  534. .blck_size = QK_K,
  535. .type_size = sizeof(block_q3_K),
  536. .is_quantized = true,
  537. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  538. .from_float = quantize_row_q3_K,
  539. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  540. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  541. .vec_dot_type = GGML_TYPE_Q8_K,
  542. .nrows = 1,
  543. },
  544. [GGML_TYPE_Q4_K] = {
  545. .type_name = "q4_K",
  546. .blck_size = QK_K,
  547. .type_size = sizeof(block_q4_K),
  548. .is_quantized = true,
  549. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  550. .from_float = quantize_row_q4_K,
  551. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  552. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  553. .vec_dot_type = GGML_TYPE_Q8_K,
  554. .nrows = 1,
  555. },
  556. [GGML_TYPE_Q5_K] = {
  557. .type_name = "q5_K",
  558. .blck_size = QK_K,
  559. .type_size = sizeof(block_q5_K),
  560. .is_quantized = true,
  561. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  562. .from_float = quantize_row_q5_K,
  563. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  564. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  565. .vec_dot_type = GGML_TYPE_Q8_K,
  566. .nrows = 1,
  567. },
  568. [GGML_TYPE_Q6_K] = {
  569. .type_name = "q6_K",
  570. .blck_size = QK_K,
  571. .type_size = sizeof(block_q6_K),
  572. .is_quantized = true,
  573. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  574. .from_float = quantize_row_q6_K,
  575. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  576. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  577. .vec_dot_type = GGML_TYPE_Q8_K,
  578. .nrows = 1,
  579. },
  580. [GGML_TYPE_IQ2_XXS] = {
  581. .type_name = "iq2_xxs",
  582. .blck_size = QK_K,
  583. .type_size = sizeof(block_iq2_xxs),
  584. .is_quantized = true,
  585. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  586. .from_float = NULL,
  587. .from_float_reference = NULL,
  588. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  589. .vec_dot_type = GGML_TYPE_Q8_K,
  590. .nrows = 1,
  591. },
  592. [GGML_TYPE_IQ2_XS] = {
  593. .type_name = "iq2_xs",
  594. .blck_size = QK_K,
  595. .type_size = sizeof(block_iq2_xs),
  596. .is_quantized = true,
  597. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  598. .from_float = NULL,
  599. .from_float_reference = NULL,
  600. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  601. .vec_dot_type = GGML_TYPE_Q8_K,
  602. .nrows = 1,
  603. },
  604. [GGML_TYPE_IQ3_XXS] = {
  605. .type_name = "iq3_xxs",
  606. .blck_size = QK_K,
  607. .type_size = sizeof(block_iq3_xxs),
  608. .is_quantized = true,
  609. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  610. .from_float = quantize_row_iq3_xxs,
  611. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  612. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  613. .vec_dot_type = GGML_TYPE_Q8_K,
  614. .nrows = 1,
  615. },
  616. [GGML_TYPE_IQ3_S] = {
  617. .type_name = "iq3_s",
  618. .blck_size = QK_K,
  619. .type_size = sizeof(block_iq3_s),
  620. .is_quantized = true,
  621. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  622. .from_float = quantize_row_iq3_s,
  623. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  624. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  625. .vec_dot_type = GGML_TYPE_Q8_K,
  626. .nrows = 1,
  627. },
  628. [GGML_TYPE_IQ2_S] = {
  629. .type_name = "iq2_s",
  630. .blck_size = QK_K,
  631. .type_size = sizeof(block_iq2_s),
  632. .is_quantized = true,
  633. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  634. .from_float = quantize_row_iq2_s,
  635. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  636. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  637. .vec_dot_type = GGML_TYPE_Q8_K,
  638. .nrows = 1,
  639. },
  640. [GGML_TYPE_IQ1_S] = {
  641. .type_name = "iq1_s",
  642. .blck_size = QK_K,
  643. .type_size = sizeof(block_iq1_s),
  644. .is_quantized = true,
  645. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  646. .from_float = NULL,
  647. .from_float_reference = NULL,
  648. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  649. .vec_dot_type = GGML_TYPE_Q8_K,
  650. .nrows = 1,
  651. },
  652. [GGML_TYPE_IQ4_NL] = {
  653. .type_name = "iq4_nl",
  654. .blck_size = QK4_NL,
  655. .type_size = sizeof(block_iq4_nl),
  656. .is_quantized = true,
  657. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  658. .from_float = quantize_row_iq4_nl,
  659. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  660. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  661. .vec_dot_type = GGML_TYPE_Q8_0,
  662. .nrows = 1,
  663. },
  664. [GGML_TYPE_IQ4_XS] = {
  665. .type_name = "iq4_xs",
  666. #if QK_K == 64
  667. .blck_size = QK4_NL,
  668. #else
  669. .blck_size = QK_K,
  670. #endif
  671. .type_size = sizeof(block_iq4_xs),
  672. .is_quantized = true,
  673. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  674. .from_float = quantize_row_iq4_xs,
  675. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  676. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  677. #if QK_K == 64
  678. .vec_dot_type = GGML_TYPE_Q8_0,
  679. #else
  680. .vec_dot_type = GGML_TYPE_Q8_K,
  681. #endif
  682. .nrows = 1,
  683. },
  684. [GGML_TYPE_Q8_K] = {
  685. .type_name = "q8_K",
  686. .blck_size = QK_K,
  687. .type_size = sizeof(block_q8_K),
  688. .is_quantized = true,
  689. .from_float = quantize_row_q8_K,
  690. }
  691. };
  692. // For internal test use
  693. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  694. GGML_ASSERT(type < GGML_TYPE_COUNT);
  695. return type_traits[type];
  696. }
  697. //
  698. // simd mappings
  699. //
  700. #if defined(__ARM_NEON)
  701. #if !defined(__aarch64__)
  702. // 64-bit compatibility
  703. inline static float vaddvq_f32(float32x4_t v) {
  704. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  705. }
  706. #endif
  707. #endif
  708. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  709. // we then implement the fundamental computation operations below using only these macros
  710. // adding support for new architectures requires to define the corresponding SIMD macros
  711. //
  712. // GGML_F32_STEP / GGML_F16_STEP
  713. // number of elements to process in a single step
  714. //
  715. // GGML_F32_EPR / GGML_F16_EPR
  716. // number of elements to fit in a single register
  717. //
  718. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  719. #define GGML_SIMD
  720. // F32 NEON
  721. #define GGML_F32_STEP 16
  722. #define GGML_F32_EPR 4
  723. #define GGML_F32x4 float32x4_t
  724. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  725. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  726. #define GGML_F32x4_LOAD vld1q_f32
  727. #define GGML_F32x4_STORE vst1q_f32
  728. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  729. #define GGML_F32x4_ADD vaddq_f32
  730. #define GGML_F32x4_MUL vmulq_f32
  731. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  732. #define GGML_F32x4_REDUCE(res, x) \
  733. { \
  734. int offset = GGML_F32_ARR >> 1; \
  735. for (int i = 0; i < offset; ++i) { \
  736. x[i] = vaddq_f32(x[i], x[offset+i]); \
  737. } \
  738. offset >>= 1; \
  739. for (int i = 0; i < offset; ++i) { \
  740. x[i] = vaddq_f32(x[i], x[offset+i]); \
  741. } \
  742. offset >>= 1; \
  743. for (int i = 0; i < offset; ++i) { \
  744. x[i] = vaddq_f32(x[i], x[offset+i]); \
  745. } \
  746. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  747. }
  748. #define GGML_F32_VEC GGML_F32x4
  749. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  750. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  751. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  752. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  753. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  754. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  755. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  756. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  757. // F16 NEON
  758. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  759. #define GGML_F16_STEP 32
  760. #define GGML_F16_EPR 8
  761. #define GGML_F16x8 float16x8_t
  762. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  763. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  764. #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
  765. #define GGML_F16x8_STORE vst1q_f16
  766. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  767. #define GGML_F16x8_ADD vaddq_f16
  768. #define GGML_F16x8_MUL vmulq_f16
  769. #define GGML_F16x8_REDUCE(res, x) \
  770. do { \
  771. int offset = GGML_F16_ARR >> 1; \
  772. for (int i = 0; i < offset; ++i) { \
  773. x[i] = vaddq_f16(x[i], x[offset+i]); \
  774. } \
  775. offset >>= 1; \
  776. for (int i = 0; i < offset; ++i) { \
  777. x[i] = vaddq_f16(x[i], x[offset+i]); \
  778. } \
  779. offset >>= 1; \
  780. for (int i = 0; i < offset; ++i) { \
  781. x[i] = vaddq_f16(x[i], x[offset+i]); \
  782. } \
  783. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  784. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  785. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  786. } while (0)
  787. #define GGML_F16_VEC GGML_F16x8
  788. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  789. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  790. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  791. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  792. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  793. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  794. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  795. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  796. #else
  797. // if FP16 vector arithmetic is not supported, we use FP32 instead
  798. // and take advantage of the vcvt_ functions to convert to/from FP16
  799. #define GGML_F16_STEP 16
  800. #define GGML_F16_EPR 4
  801. #define GGML_F32Cx4 float32x4_t
  802. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  803. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  804. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
  805. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  806. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  807. #define GGML_F32Cx4_ADD vaddq_f32
  808. #define GGML_F32Cx4_MUL vmulq_f32
  809. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  810. #define GGML_F16_VEC GGML_F32Cx4
  811. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  812. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  813. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  814. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  815. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  816. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  817. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  818. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  819. #endif
  820. #elif defined(__AVX__)
  821. #define GGML_SIMD
  822. // F32 AVX
  823. #define GGML_F32_STEP 32
  824. #define GGML_F32_EPR 8
  825. #define GGML_F32x8 __m256
  826. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  827. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  828. #define GGML_F32x8_LOAD _mm256_loadu_ps
  829. #define GGML_F32x8_STORE _mm256_storeu_ps
  830. #if defined(__FMA__)
  831. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  832. #else
  833. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  834. #endif
  835. #define GGML_F32x8_ADD _mm256_add_ps
  836. #define GGML_F32x8_MUL _mm256_mul_ps
  837. #define GGML_F32x8_REDUCE(res, x) \
  838. do { \
  839. int offset = GGML_F32_ARR >> 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  842. } \
  843. offset >>= 1; \
  844. for (int i = 0; i < offset; ++i) { \
  845. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  846. } \
  847. offset >>= 1; \
  848. for (int i = 0; i < offset; ++i) { \
  849. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  850. } \
  851. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  852. _mm256_extractf128_ps(x[0], 1)); \
  853. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  854. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  855. } while (0)
  856. // TODO: is this optimal ?
  857. #define GGML_F32_VEC GGML_F32x8
  858. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  859. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  860. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  861. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  862. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  863. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  864. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  865. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  866. // F16 AVX
  867. #define GGML_F16_STEP 32
  868. #define GGML_F16_EPR 8
  869. // F16 arithmetic is not supported by AVX, so we use F32 instead
  870. #define GGML_F32Cx8 __m256
  871. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  872. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  873. #if defined(__F16C__)
  874. // the _mm256_cvt intrinsics require F16C
  875. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  876. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  877. #else
  878. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  879. float tmp[8];
  880. for (int i = 0; i < 8; i++) {
  881. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  882. }
  883. return _mm256_loadu_ps(tmp);
  884. }
  885. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  886. float arr[8];
  887. _mm256_storeu_ps(arr, y);
  888. for (int i = 0; i < 8; i++)
  889. x[i] = GGML_FP32_TO_FP16(arr[i]);
  890. }
  891. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  892. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  893. #endif
  894. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  895. #define GGML_F32Cx8_ADD _mm256_add_ps
  896. #define GGML_F32Cx8_MUL _mm256_mul_ps
  897. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  898. #define GGML_F16_VEC GGML_F32Cx8
  899. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  900. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  901. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  902. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  903. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  904. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  905. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  906. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  907. #elif defined(__POWER9_VECTOR__)
  908. #define GGML_SIMD
  909. // F32 POWER9
  910. #define GGML_F32_STEP 32
  911. #define GGML_F32_EPR 4
  912. #define GGML_F32x4 vector float
  913. #define GGML_F32x4_ZERO 0.0f
  914. #define GGML_F32x4_SET1 vec_splats
  915. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  916. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  917. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  918. #define GGML_F32x4_ADD vec_add
  919. #define GGML_F32x4_MUL vec_mul
  920. #define GGML_F32x4_REDUCE(res, x) \
  921. { \
  922. int offset = GGML_F32_ARR >> 1; \
  923. for (int i = 0; i < offset; ++i) { \
  924. x[i] = vec_add(x[i], x[offset+i]); \
  925. } \
  926. offset >>= 1; \
  927. for (int i = 0; i < offset; ++i) { \
  928. x[i] = vec_add(x[i], x[offset+i]); \
  929. } \
  930. offset >>= 1; \
  931. for (int i = 0; i < offset; ++i) { \
  932. x[i] = vec_add(x[i], x[offset+i]); \
  933. } \
  934. res = vec_extract(x[0], 0) + \
  935. vec_extract(x[0], 1) + \
  936. vec_extract(x[0], 2) + \
  937. vec_extract(x[0], 3); \
  938. }
  939. #define GGML_F32_VEC GGML_F32x4
  940. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  941. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  942. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  943. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  944. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  945. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  946. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  947. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  948. // F16 POWER9
  949. #define GGML_F16_STEP GGML_F32_STEP
  950. #define GGML_F16_EPR GGML_F32_EPR
  951. #define GGML_F16_VEC GGML_F32x4
  952. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  953. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  954. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  955. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  956. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  957. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  958. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  959. vec_extract_fp32_from_shortl(vec_xl(0, p))
  960. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  961. #define GGML_F16_VEC_STORE(p, r, i) \
  962. if (i & 0x1) \
  963. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  964. r[i - GGML_ENDIAN_BYTE(0)]), \
  965. 0, p - GGML_F16_EPR)
  966. #elif defined(__wasm_simd128__)
  967. #define GGML_SIMD
  968. // F32 WASM
  969. #define GGML_F32_STEP 16
  970. #define GGML_F32_EPR 4
  971. #define GGML_F32x4 v128_t
  972. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  973. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  974. #define GGML_F32x4_LOAD wasm_v128_load
  975. #define GGML_F32x4_STORE wasm_v128_store
  976. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  977. #define GGML_F32x4_ADD wasm_f32x4_add
  978. #define GGML_F32x4_MUL wasm_f32x4_mul
  979. #define GGML_F32x4_REDUCE(res, x) \
  980. { \
  981. int offset = GGML_F32_ARR >> 1; \
  982. for (int i = 0; i < offset; ++i) { \
  983. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  984. } \
  985. offset >>= 1; \
  986. for (int i = 0; i < offset; ++i) { \
  987. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  988. } \
  989. offset >>= 1; \
  990. for (int i = 0; i < offset; ++i) { \
  991. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  992. } \
  993. res = wasm_f32x4_extract_lane(x[0], 0) + \
  994. wasm_f32x4_extract_lane(x[0], 1) + \
  995. wasm_f32x4_extract_lane(x[0], 2) + \
  996. wasm_f32x4_extract_lane(x[0], 3); \
  997. }
  998. #define GGML_F32_VEC GGML_F32x4
  999. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1000. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1001. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1002. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1003. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1004. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1005. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1006. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1007. // F16 WASM
  1008. #define GGML_F16_STEP 16
  1009. #define GGML_F16_EPR 4
  1010. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1011. float tmp[4];
  1012. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1013. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1014. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1015. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1016. return wasm_v128_load(tmp);
  1017. }
  1018. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1019. float tmp[4];
  1020. wasm_v128_store(tmp, x);
  1021. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1022. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1023. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1024. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1025. }
  1026. #define GGML_F16x4 v128_t
  1027. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1028. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1029. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1030. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1031. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1032. #define GGML_F16x4_ADD wasm_f32x4_add
  1033. #define GGML_F16x4_MUL wasm_f32x4_mul
  1034. #define GGML_F16x4_REDUCE(res, x) \
  1035. { \
  1036. int offset = GGML_F16_ARR >> 1; \
  1037. for (int i = 0; i < offset; ++i) { \
  1038. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1039. } \
  1040. offset >>= 1; \
  1041. for (int i = 0; i < offset; ++i) { \
  1042. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1043. } \
  1044. offset >>= 1; \
  1045. for (int i = 0; i < offset; ++i) { \
  1046. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1047. } \
  1048. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1049. wasm_f32x4_extract_lane(x[0], 1) + \
  1050. wasm_f32x4_extract_lane(x[0], 2) + \
  1051. wasm_f32x4_extract_lane(x[0], 3); \
  1052. }
  1053. #define GGML_F16_VEC GGML_F16x4
  1054. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1055. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1056. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1057. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1058. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1059. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1060. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1061. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1062. #elif defined(__SSE3__)
  1063. #define GGML_SIMD
  1064. // F32 SSE
  1065. #define GGML_F32_STEP 32
  1066. #define GGML_F32_EPR 4
  1067. #define GGML_F32x4 __m128
  1068. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1069. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1070. #define GGML_F32x4_LOAD _mm_loadu_ps
  1071. #define GGML_F32x4_STORE _mm_storeu_ps
  1072. #if defined(__FMA__)
  1073. // TODO: Does this work?
  1074. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1075. #else
  1076. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1077. #endif
  1078. #define GGML_F32x4_ADD _mm_add_ps
  1079. #define GGML_F32x4_MUL _mm_mul_ps
  1080. #define GGML_F32x4_REDUCE(res, x) \
  1081. { \
  1082. int offset = GGML_F32_ARR >> 1; \
  1083. for (int i = 0; i < offset; ++i) { \
  1084. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1085. } \
  1086. offset >>= 1; \
  1087. for (int i = 0; i < offset; ++i) { \
  1088. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1089. } \
  1090. offset >>= 1; \
  1091. for (int i = 0; i < offset; ++i) { \
  1092. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1093. } \
  1094. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1095. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1096. }
  1097. // TODO: is this optimal ?
  1098. #define GGML_F32_VEC GGML_F32x4
  1099. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1100. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1101. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1102. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1103. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1104. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1105. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1106. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1107. // F16 SSE
  1108. #define GGML_F16_STEP 32
  1109. #define GGML_F16_EPR 4
  1110. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1111. float tmp[4];
  1112. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1113. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1114. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1115. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1116. return _mm_loadu_ps(tmp);
  1117. }
  1118. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1119. float arr[4];
  1120. _mm_storeu_ps(arr, y);
  1121. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1122. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1123. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1124. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1125. }
  1126. #define GGML_F32Cx4 __m128
  1127. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1128. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1129. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1130. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1131. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1132. #define GGML_F32Cx4_ADD _mm_add_ps
  1133. #define GGML_F32Cx4_MUL _mm_mul_ps
  1134. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1135. #define GGML_F16_VEC GGML_F32Cx4
  1136. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1137. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1138. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1139. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1140. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1141. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1142. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1143. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1144. #endif
  1145. // GGML_F32_ARR / GGML_F16_ARR
  1146. // number of registers to use per step
  1147. #ifdef GGML_SIMD
  1148. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1149. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1150. #endif
  1151. //
  1152. // fundamental operations
  1153. //
  1154. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1155. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1156. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1157. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1158. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1159. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1160. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1161. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1162. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1163. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1164. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1165. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1166. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1167. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1168. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1169. assert(nrc == 1);
  1170. UNUSED(nrc);
  1171. UNUSED(bx);
  1172. UNUSED(by);
  1173. UNUSED(bs);
  1174. #ifdef GGML_SIMD
  1175. float sumf = 0.0f;
  1176. const int np = (n & ~(GGML_F32_STEP - 1));
  1177. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1178. GGML_F32_VEC ax[GGML_F32_ARR];
  1179. GGML_F32_VEC ay[GGML_F32_ARR];
  1180. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1181. for (int j = 0; j < GGML_F32_ARR; j++) {
  1182. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1183. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1184. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1185. }
  1186. }
  1187. // reduce sum0..sum3 to sum0
  1188. GGML_F32_VEC_REDUCE(sumf, sum);
  1189. // leftovers
  1190. for (int i = np; i < n; ++i) {
  1191. sumf += x[i]*y[i];
  1192. }
  1193. #else
  1194. // scalar
  1195. ggml_float sumf = 0.0;
  1196. for (int i = 0; i < n; ++i) {
  1197. sumf += (ggml_float)(x[i]*y[i]);
  1198. }
  1199. #endif
  1200. *s = sumf;
  1201. }
  1202. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1203. assert(nrc == 1);
  1204. UNUSED(nrc);
  1205. UNUSED(bx);
  1206. UNUSED(by);
  1207. UNUSED(bs);
  1208. ggml_float sumf = 0.0;
  1209. #if defined(GGML_SIMD)
  1210. const int np = (n & ~(GGML_F16_STEP - 1));
  1211. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1212. GGML_F16_VEC ax[GGML_F16_ARR];
  1213. GGML_F16_VEC ay[GGML_F16_ARR];
  1214. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1215. for (int j = 0; j < GGML_F16_ARR; j++) {
  1216. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1217. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1218. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1219. }
  1220. }
  1221. // reduce sum0..sum3 to sum0
  1222. GGML_F16_VEC_REDUCE(sumf, sum);
  1223. // leftovers
  1224. for (int i = np; i < n; ++i) {
  1225. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1226. }
  1227. #else
  1228. for (int i = 0; i < n; ++i) {
  1229. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1230. }
  1231. #endif
  1232. *s = sumf;
  1233. }
  1234. // compute GGML_VEC_DOT_UNROLL dot products at once
  1235. // xs - x row stride in bytes
  1236. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1237. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1238. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1239. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1240. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1241. }
  1242. #if defined(GGML_SIMD)
  1243. const int np = (n & ~(GGML_F16_STEP - 1));
  1244. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1245. GGML_F16_VEC ax[GGML_F16_ARR];
  1246. GGML_F16_VEC ay[GGML_F16_ARR];
  1247. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1248. for (int j = 0; j < GGML_F16_ARR; j++) {
  1249. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1250. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1251. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1252. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1253. }
  1254. }
  1255. }
  1256. // reduce sum0..sum3 to sum0
  1257. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1258. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1259. }
  1260. // leftovers
  1261. for (int i = np; i < n; ++i) {
  1262. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1263. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1264. }
  1265. }
  1266. #else
  1267. for (int i = 0; i < n; ++i) {
  1268. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1269. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1270. }
  1271. }
  1272. #endif
  1273. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1274. s[i] = sumf[i];
  1275. }
  1276. }
  1277. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1278. #if defined(GGML_SIMD)
  1279. const int np = (n & ~(GGML_F32_STEP - 1));
  1280. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1281. GGML_F32_VEC ax[GGML_F32_ARR];
  1282. GGML_F32_VEC ay[GGML_F32_ARR];
  1283. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1284. for (int j = 0; j < GGML_F32_ARR; j++) {
  1285. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1286. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1287. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1288. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1289. }
  1290. }
  1291. // leftovers
  1292. for (int i = np; i < n; ++i) {
  1293. y[i] += x[i]*v;
  1294. }
  1295. #else
  1296. // scalar
  1297. for (int i = 0; i < n; ++i) {
  1298. y[i] += x[i]*v;
  1299. }
  1300. #endif
  1301. }
  1302. // xs and vs are byte strides of x and v
  1303. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1304. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1305. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1306. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1307. x[i] = (const float *) ((const char *) xv + i*xs);
  1308. v[i] = (const float *) ((const char *) vv + i*vs);
  1309. }
  1310. #if defined(GGML_SIMD)
  1311. const int np = (n & ~(GGML_F32_STEP - 1));
  1312. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1313. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1314. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1315. }
  1316. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1317. GGML_F32_VEC ay[GGML_F32_ARR];
  1318. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1319. for (int j = 0; j < GGML_F32_ARR; j++) {
  1320. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1321. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1322. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1323. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1324. }
  1325. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1326. }
  1327. }
  1328. // leftovers
  1329. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1330. for (int i = np; i < n; ++i) {
  1331. y[i] += x[k][i]*v[k][0];
  1332. }
  1333. }
  1334. #else
  1335. // scalar
  1336. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1337. for (int i = 0; i < n; ++i) {
  1338. y[i] += x[k][i]*v[k][0];
  1339. }
  1340. }
  1341. #endif
  1342. }
  1343. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1344. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1345. #if defined(GGML_USE_ACCELERATE)
  1346. vDSP_vsmul(y, 1, &v, y, 1, n);
  1347. #elif defined(GGML_SIMD)
  1348. const int np = (n & ~(GGML_F32_STEP - 1));
  1349. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1350. GGML_F32_VEC ay[GGML_F32_ARR];
  1351. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1352. for (int j = 0; j < GGML_F32_ARR; j++) {
  1353. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1354. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1355. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1356. }
  1357. }
  1358. // leftovers
  1359. for (int i = np; i < n; ++i) {
  1360. y[i] *= v;
  1361. }
  1362. #else
  1363. // scalar
  1364. for (int i = 0; i < n; ++i) {
  1365. y[i] *= v;
  1366. }
  1367. #endif
  1368. }
  1369. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1370. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1371. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1372. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1373. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1374. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1375. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1376. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1377. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1378. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1379. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1380. // TODO: optimize performance
  1381. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1382. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1383. static const float GELU_COEF_A = 0.044715f;
  1384. static const float GELU_QUICK_COEF = -1.702f;
  1385. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1386. inline static float ggml_gelu_f32(float x) {
  1387. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1388. }
  1389. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1390. const uint16_t * i16 = (const uint16_t *) x;
  1391. for (int i = 0; i < n; ++i) {
  1392. y[i] = ggml_table_gelu_f16[i16[i]];
  1393. }
  1394. }
  1395. #ifdef GGML_GELU_FP16
  1396. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1397. uint16_t t;
  1398. for (int i = 0; i < n; ++i) {
  1399. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1400. memcpy(&t, &fp16, sizeof(uint16_t));
  1401. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1402. }
  1403. }
  1404. #else
  1405. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1406. for (int i = 0; i < n; ++i) {
  1407. y[i] = ggml_gelu_f32(x[i]);
  1408. }
  1409. }
  1410. #endif
  1411. inline static float ggml_gelu_quick_f32(float x) {
  1412. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1413. }
  1414. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1415. // const uint16_t * i16 = (const uint16_t *) x;
  1416. // for (int i = 0; i < n; ++i) {
  1417. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1418. // }
  1419. //}
  1420. #ifdef GGML_GELU_QUICK_FP16
  1421. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1422. uint16_t t;
  1423. for (int i = 0; i < n; ++i) {
  1424. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1425. memcpy(&t, &fp16, sizeof(uint16_t));
  1426. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1427. }
  1428. }
  1429. #else
  1430. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1431. for (int i = 0; i < n; ++i) {
  1432. y[i] = ggml_gelu_quick_f32(x[i]);
  1433. }
  1434. }
  1435. #endif
  1436. // Sigmoid Linear Unit (SiLU) function
  1437. inline static float ggml_silu_f32(float x) {
  1438. return x/(1.0f + expf(-x));
  1439. }
  1440. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1441. // const uint16_t * i16 = (const uint16_t *) x;
  1442. // for (int i = 0; i < n; ++i) {
  1443. // y[i] = ggml_table_silu_f16[i16[i]];
  1444. // }
  1445. //}
  1446. #ifdef GGML_SILU_FP16
  1447. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1448. uint16_t t;
  1449. for (int i = 0; i < n; ++i) {
  1450. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1451. memcpy(&t, &fp16, sizeof(uint16_t));
  1452. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1453. }
  1454. }
  1455. #else
  1456. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1457. for (int i = 0; i < n; ++i) {
  1458. y[i] = ggml_silu_f32(x[i]);
  1459. }
  1460. }
  1461. #endif
  1462. inline static float ggml_silu_backward_f32(float x, float dy) {
  1463. const float s = 1.0f/(1.0f + expf(-x));
  1464. return dy*s*(1.0f + x*(1.0f - s));
  1465. }
  1466. #ifdef GGML_SILU_FP16
  1467. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1468. for (int i = 0; i < n; ++i) {
  1469. // we did not use x[i] to compute forward silu but its f16 equivalent
  1470. // take derivative at f16 of x[i]:
  1471. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1472. float usedx = GGML_FP16_TO_FP32(fp16);
  1473. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1474. }
  1475. }
  1476. #else
  1477. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1478. for (int i = 0; i < n; ++i) {
  1479. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1480. }
  1481. }
  1482. #endif
  1483. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1484. #ifndef GGML_USE_ACCELERATE
  1485. ggml_float sum = 0.0;
  1486. for (int i = 0; i < n; ++i) {
  1487. sum += (ggml_float)x[i];
  1488. }
  1489. *s = sum;
  1490. #else
  1491. vDSP_sve(x, 1, s, n);
  1492. #endif
  1493. }
  1494. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1495. ggml_float sum = 0.0;
  1496. for (int i = 0; i < n; ++i) {
  1497. sum += (ggml_float)x[i];
  1498. }
  1499. *s = sum;
  1500. }
  1501. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1502. float sum = 0.0f;
  1503. for (int i = 0; i < n; ++i) {
  1504. sum += GGML_FP16_TO_FP32(x[i]);
  1505. }
  1506. *s = sum;
  1507. }
  1508. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1509. #ifndef GGML_USE_ACCELERATE
  1510. float max = -INFINITY;
  1511. for (int i = 0; i < n; ++i) {
  1512. max = MAX(max, x[i]);
  1513. }
  1514. *s = max;
  1515. #else
  1516. vDSP_maxv(x, 1, s, n);
  1517. #endif
  1518. }
  1519. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1520. ggml_vec_norm_f32(n, s, x);
  1521. *s = 1.f/(*s);
  1522. }
  1523. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1524. float max = -INFINITY;
  1525. int idx = 0;
  1526. for (int i = 0; i < n; ++i) {
  1527. max = MAX(max, x[i]);
  1528. if (max == x[i]) { idx = i; }
  1529. }
  1530. *s = idx;
  1531. }
  1532. //
  1533. // data types
  1534. //
  1535. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1536. "NONE",
  1537. "DUP",
  1538. "ADD",
  1539. "ADD1",
  1540. "ACC",
  1541. "SUB",
  1542. "MUL",
  1543. "DIV",
  1544. "SQR",
  1545. "SQRT",
  1546. "LOG",
  1547. "SUM",
  1548. "SUM_ROWS",
  1549. "MEAN",
  1550. "ARGMAX",
  1551. "REPEAT",
  1552. "REPEAT_BACK",
  1553. "CONCAT",
  1554. "SILU_BACK",
  1555. "NORM",
  1556. "RMS_NORM",
  1557. "RMS_NORM_BACK",
  1558. "GROUP_NORM",
  1559. "MUL_MAT",
  1560. "MUL_MAT_ID",
  1561. "OUT_PROD",
  1562. "SCALE",
  1563. "SET",
  1564. "CPY",
  1565. "CONT",
  1566. "RESHAPE",
  1567. "VIEW",
  1568. "PERMUTE",
  1569. "TRANSPOSE",
  1570. "GET_ROWS",
  1571. "GET_ROWS_BACK",
  1572. "DIAG",
  1573. "DIAG_MASK_INF",
  1574. "DIAG_MASK_ZERO",
  1575. "SOFT_MAX",
  1576. "SOFT_MAX_BACK",
  1577. "ROPE",
  1578. "ROPE_BACK",
  1579. "ALIBI",
  1580. "CLAMP",
  1581. "CONV_TRANSPOSE_1D",
  1582. "IM2COL",
  1583. "CONV_TRANSPOSE_2D",
  1584. "POOL_1D",
  1585. "POOL_2D",
  1586. "UPSCALE",
  1587. "PAD",
  1588. "ARGSORT",
  1589. "LEAKY_RELU",
  1590. "FLASH_ATTN",
  1591. "FLASH_FF",
  1592. "FLASH_ATTN_BACK",
  1593. "WIN_PART",
  1594. "WIN_UNPART",
  1595. "GET_REL_POS",
  1596. "ADD_REL_POS",
  1597. "UNARY",
  1598. "MAP_UNARY",
  1599. "MAP_BINARY",
  1600. "MAP_CUSTOM1_F32",
  1601. "MAP_CUSTOM2_F32",
  1602. "MAP_CUSTOM3_F32",
  1603. "MAP_CUSTOM1",
  1604. "MAP_CUSTOM2",
  1605. "MAP_CUSTOM3",
  1606. "CROSS_ENTROPY_LOSS",
  1607. "CROSS_ENTROPY_LOSS_BACK",
  1608. };
  1609. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1610. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1611. "none",
  1612. "x",
  1613. "x+y",
  1614. "x+y",
  1615. "view(x,nb,offset)+=y->x",
  1616. "x-y",
  1617. "x*y",
  1618. "x/y",
  1619. "x^2",
  1620. "√x",
  1621. "log(x)",
  1622. "Σx",
  1623. "Σx_k",
  1624. "Σx/n",
  1625. "argmax(x)",
  1626. "repeat(x)",
  1627. "repeat_back(x)",
  1628. "concat(x, y)",
  1629. "silu_back(x)",
  1630. "norm(x)",
  1631. "rms_norm(x)",
  1632. "rms_norm_back(x)",
  1633. "group_norm(x)",
  1634. "X*Y",
  1635. "X[i]*Y",
  1636. "X*Y",
  1637. "x*v",
  1638. "y-\\>view(x)",
  1639. "x-\\>y",
  1640. "cont(x)",
  1641. "reshape(x)",
  1642. "view(x)",
  1643. "permute(x)",
  1644. "transpose(x)",
  1645. "get_rows(x)",
  1646. "get_rows_back(x)",
  1647. "diag(x)",
  1648. "diag_mask_inf(x)",
  1649. "diag_mask_zero(x)",
  1650. "soft_max(x)",
  1651. "soft_max_back(x)",
  1652. "rope(x)",
  1653. "rope_back(x)",
  1654. "alibi(x)",
  1655. "clamp(x)",
  1656. "conv_transpose_1d(x)",
  1657. "im2col(x)",
  1658. "conv_transpose_2d(x)",
  1659. "pool_1d(x)",
  1660. "pool_2d(x)",
  1661. "upscale(x)",
  1662. "pad(x)",
  1663. "argsort(x)",
  1664. "leaky_relu(x)",
  1665. "flash_attn(x)",
  1666. "flash_ff(x)",
  1667. "flash_attn_back(x)",
  1668. "win_part(x)",
  1669. "win_unpart(x)",
  1670. "get_rel_pos(x)",
  1671. "add_rel_pos(x)",
  1672. "unary(x)",
  1673. "f(x)",
  1674. "f(x,y)",
  1675. "custom_f32(x)",
  1676. "custom_f32(x,y)",
  1677. "custom_f32(x,y,z)",
  1678. "custom(x)",
  1679. "custom(x,y)",
  1680. "custom(x,y,z)",
  1681. "cross_entropy_loss(x,y)",
  1682. "cross_entropy_loss_back(x,y)",
  1683. };
  1684. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1685. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1686. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1687. "ABS",
  1688. "SGN",
  1689. "NEG",
  1690. "STEP",
  1691. "TANH",
  1692. "ELU",
  1693. "RELU",
  1694. "GELU",
  1695. "GELU_QUICK",
  1696. "SILU",
  1697. "HARDSWISH",
  1698. "HARDSIGMOID",
  1699. };
  1700. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1701. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1702. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1703. // WARN:
  1704. // Mis-configuration can lead to problem that's hard to reason about:
  1705. // * At best it crash or talks nosense.
  1706. // * At worst it talks slightly difference but hard to perceive.
  1707. //
  1708. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1709. // Take care about compile options (e.g., GGML_USE_xxx).
  1710. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1711. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1712. static void ggml_setup_op_has_task_pass(void) {
  1713. { // INIT
  1714. bool * p = GGML_OP_HAS_INIT;
  1715. p[GGML_OP_ACC ] = true;
  1716. p[GGML_OP_MUL_MAT ] = true;
  1717. p[GGML_OP_MUL_MAT_ID ] = true;
  1718. p[GGML_OP_OUT_PROD ] = true;
  1719. p[GGML_OP_SET ] = true;
  1720. p[GGML_OP_GET_ROWS_BACK ] = true;
  1721. p[GGML_OP_DIAG_MASK_INF ] = true;
  1722. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1723. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1724. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1725. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1726. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1727. p[GGML_OP_ADD_REL_POS ] = true;
  1728. }
  1729. { // FINALIZE
  1730. bool * p = GGML_OP_HAS_FINALIZE;
  1731. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1732. }
  1733. }
  1734. //
  1735. // ggml context
  1736. //
  1737. struct ggml_context {
  1738. size_t mem_size;
  1739. void * mem_buffer;
  1740. bool mem_buffer_owned;
  1741. bool no_alloc;
  1742. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1743. int n_objects;
  1744. struct ggml_object * objects_begin;
  1745. struct ggml_object * objects_end;
  1746. struct ggml_scratch scratch;
  1747. struct ggml_scratch scratch_save;
  1748. };
  1749. struct ggml_context_container {
  1750. bool used;
  1751. struct ggml_context context;
  1752. };
  1753. //
  1754. // NUMA support
  1755. //
  1756. #define GGML_NUMA_MAX_NODES 8
  1757. #define GGML_NUMA_MAX_CPUS 512
  1758. struct ggml_numa_node {
  1759. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1760. uint32_t n_cpus;
  1761. };
  1762. struct ggml_numa_nodes {
  1763. enum ggml_numa_strategy numa_strategy;
  1764. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1765. uint32_t n_nodes;
  1766. uint32_t total_cpus; // hardware threads on system
  1767. uint32_t current_node; // node on which main process is execting
  1768. #if defined(__gnu_linux__)
  1769. cpu_set_t cpuset; // cpuset from numactl
  1770. #else
  1771. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1772. #endif
  1773. };
  1774. //
  1775. // ggml state
  1776. //
  1777. struct ggml_state {
  1778. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1779. struct ggml_numa_nodes numa;
  1780. };
  1781. // global state
  1782. static struct ggml_state g_state;
  1783. static atomic_int g_state_barrier = 0;
  1784. // barrier via spin lock
  1785. inline static void ggml_critical_section_start(void) {
  1786. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1787. while (processing > 0) {
  1788. // wait for other threads to finish
  1789. atomic_fetch_sub(&g_state_barrier, 1);
  1790. sched_yield(); // TODO: reconsider this
  1791. processing = atomic_fetch_add(&g_state_barrier, 1);
  1792. }
  1793. }
  1794. // TODO: make this somehow automatically executed
  1795. // some sort of "sentry" mechanism
  1796. inline static void ggml_critical_section_end(void) {
  1797. atomic_fetch_sub(&g_state_barrier, 1);
  1798. }
  1799. #if defined(__gnu_linux__)
  1800. static cpu_set_t ggml_get_numa_affinity(void) {
  1801. cpu_set_t cpuset;
  1802. pthread_t thread;
  1803. thread = pthread_self();
  1804. CPU_ZERO(&cpuset);
  1805. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1806. return cpuset;
  1807. }
  1808. #else
  1809. static uint32_t ggml_get_numa_affinity(void) {
  1810. return 0; // no NUMA support
  1811. }
  1812. #endif
  1813. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1814. if (g_state.numa.n_nodes > 0) {
  1815. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1816. return;
  1817. }
  1818. #if defined(__gnu_linux__)
  1819. struct stat st;
  1820. char path[256];
  1821. int rv;
  1822. // set numa scheme
  1823. g_state.numa.numa_strategy = numa_flag;
  1824. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1825. g_state.numa.cpuset = ggml_get_numa_affinity();
  1826. // enumerate nodes
  1827. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1828. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1829. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1830. if (stat(path, &st) != 0) { break; }
  1831. ++g_state.numa.n_nodes;
  1832. }
  1833. // enumerate CPUs
  1834. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1835. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1836. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1837. if (stat(path, &st) != 0) { break; }
  1838. ++g_state.numa.total_cpus;
  1839. }
  1840. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1841. // figure out which node we're on
  1842. uint current_cpu;
  1843. int getcpu_ret = 0;
  1844. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1845. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1846. #else
  1847. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1848. getcpu_ret = syscall(SYS_getcpu,&current_cpu,&g_state.numa.current_node);
  1849. #endif
  1850. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1851. g_state.numa.n_nodes = 0;
  1852. return;
  1853. }
  1854. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1855. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1856. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1857. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1858. node->n_cpus = 0;
  1859. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1860. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1861. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1862. if (stat(path, &st) == 0) {
  1863. node->cpus[node->n_cpus++] = c;
  1864. GGML_PRINT_DEBUG(" %u", c);
  1865. }
  1866. }
  1867. GGML_PRINT_DEBUG("\n");
  1868. }
  1869. if (ggml_is_numa()) {
  1870. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1871. if (fptr != NULL) {
  1872. char buf[42];
  1873. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1874. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1875. }
  1876. fclose(fptr);
  1877. }
  1878. }
  1879. #else
  1880. GGML_UNUSED(numa_flag);
  1881. // TODO
  1882. #endif
  1883. }
  1884. bool ggml_is_numa(void) {
  1885. return g_state.numa.n_nodes > 1;
  1886. }
  1887. ////////////////////////////////////////////////////////////////////////////////
  1888. void ggml_print_object(const struct ggml_object * obj) {
  1889. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1890. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1891. }
  1892. void ggml_print_objects(const struct ggml_context * ctx) {
  1893. struct ggml_object * obj = ctx->objects_begin;
  1894. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1895. while (obj != NULL) {
  1896. ggml_print_object(obj);
  1897. obj = obj->next;
  1898. }
  1899. GGML_PRINT("%s: --- end ---\n", __func__);
  1900. }
  1901. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1902. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1903. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1904. }
  1905. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1906. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1907. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1908. }
  1909. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1910. size_t nbytes;
  1911. size_t blck_size = ggml_blck_size(tensor->type);
  1912. if (blck_size == 1) {
  1913. nbytes = ggml_type_size(tensor->type);
  1914. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1915. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1916. }
  1917. }
  1918. else {
  1919. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1920. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1921. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1922. }
  1923. }
  1924. return nbytes;
  1925. }
  1926. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1927. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1928. }
  1929. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1930. return type_traits[type].blck_size;
  1931. }
  1932. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1933. return type_traits[type].type_size;
  1934. }
  1935. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1936. assert(ne % ggml_blck_size(type) == 0);
  1937. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1938. }
  1939. double ggml_type_sizef(enum ggml_type type) {
  1940. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1941. }
  1942. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1943. return type_traits[type].type_name;
  1944. }
  1945. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1946. return type_traits[type].is_quantized;
  1947. }
  1948. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1949. return GGML_OP_NAME[op];
  1950. }
  1951. const char * ggml_op_symbol(enum ggml_op op) {
  1952. return GGML_OP_SYMBOL[op];
  1953. }
  1954. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1955. return GGML_UNARY_OP_NAME[op];
  1956. }
  1957. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1958. if (t->op == GGML_OP_UNARY) {
  1959. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1960. return ggml_unary_op_name(uop);
  1961. }
  1962. else {
  1963. return ggml_op_name(t->op);
  1964. }
  1965. }
  1966. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1967. return ggml_type_size(tensor->type);
  1968. }
  1969. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1970. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1971. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1972. }
  1973. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1974. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1975. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1976. }
  1977. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1978. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1979. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1980. }
  1981. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1982. return tensor->ne[3] == 1;
  1983. }
  1984. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1985. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1986. if (tensor->ne[i] > 1) {
  1987. return i + 1;
  1988. }
  1989. }
  1990. return 1;
  1991. }
  1992. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1993. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1994. return (t0->ne[0] == t1->ne[0]) &&
  1995. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1996. (t1->ne[3]%t0->ne[3] == 0);
  1997. }
  1998. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1999. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2000. return (t0->ne[1] == t1->ne[1]) &&
  2001. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2002. (t1->ne[3]%t0->ne[3] == 0);
  2003. }
  2004. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2005. enum ggml_type wtype = GGML_TYPE_COUNT;
  2006. switch (ftype) {
  2007. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2008. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2009. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2010. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2011. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2012. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2013. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2014. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2015. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2016. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2017. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2018. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2019. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2020. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2021. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2022. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2023. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2024. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2025. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2026. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2027. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2028. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2029. }
  2030. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2031. return wtype;
  2032. }
  2033. size_t ggml_tensor_overhead(void) {
  2034. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2035. }
  2036. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2037. return tensor->nb[0] > tensor->nb[1];
  2038. }
  2039. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2040. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2041. return
  2042. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2043. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2044. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2045. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2046. }
  2047. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2048. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2049. return
  2050. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2051. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2052. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2053. }
  2054. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2055. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2056. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2057. }
  2058. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2059. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2060. return
  2061. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2062. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2063. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2064. }
  2065. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2066. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2067. return
  2068. (t0->ne[0] == t1->ne[0] ) &&
  2069. (t0->ne[1] == t1->ne[1] ) &&
  2070. (t0->ne[2] == t1->ne[2] ) &&
  2071. (t0->ne[3] == t1->ne[3] );
  2072. }
  2073. // check if t1 can be represented as a repeatition of t0
  2074. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2075. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2076. return
  2077. (t1->ne[0]%t0->ne[0] == 0) &&
  2078. (t1->ne[1]%t0->ne[1] == 0) &&
  2079. (t1->ne[2]%t0->ne[2] == 0) &&
  2080. (t1->ne[3]%t0->ne[3] == 0);
  2081. }
  2082. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2083. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2084. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2085. }
  2086. static inline int ggml_up32(int n) {
  2087. return (n + 31) & ~31;
  2088. }
  2089. //static inline int ggml_up64(int n) {
  2090. // return (n + 63) & ~63;
  2091. //}
  2092. static inline int ggml_up(int n, int m) {
  2093. // assert m is a power of 2
  2094. GGML_ASSERT((m & (m - 1)) == 0);
  2095. return (n + m - 1) & ~(m - 1);
  2096. }
  2097. // assert that pointer is aligned to GGML_MEM_ALIGN
  2098. #define ggml_assert_aligned(ptr) \
  2099. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2100. ////////////////////////////////////////////////////////////////////////////////
  2101. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2102. // make this function thread safe
  2103. ggml_critical_section_start();
  2104. static bool is_first_call = true;
  2105. if (is_first_call) {
  2106. // initialize time system (required on Windows)
  2107. ggml_time_init();
  2108. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2109. {
  2110. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2111. ggml_fp16_t ii;
  2112. for (int i = 0; i < (1 << 16); ++i) {
  2113. uint16_t ui = i;
  2114. memcpy(&ii, &ui, sizeof(ii));
  2115. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2116. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2117. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2118. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2119. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2120. }
  2121. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2122. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2123. }
  2124. // initialize g_state
  2125. {
  2126. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2127. g_state = (struct ggml_state) {
  2128. /*.contexts =*/ { { 0 } },
  2129. /*.numa =*/ {
  2130. .n_nodes = 0,
  2131. .total_cpus = 0,
  2132. },
  2133. };
  2134. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2135. g_state.contexts[i].used = false;
  2136. }
  2137. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2138. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2139. }
  2140. #if defined(GGML_USE_CUBLAS)
  2141. ggml_init_cublas();
  2142. #elif defined(GGML_USE_CLBLAST)
  2143. ggml_cl_init();
  2144. #elif defined(GGML_USE_VULKAN)
  2145. ggml_vk_init_cpu_assist();
  2146. #elif defined(GGML_USE_SYCL)
  2147. ggml_init_sycl();
  2148. #endif
  2149. ggml_setup_op_has_task_pass();
  2150. is_first_call = false;
  2151. }
  2152. // find non-used context in g_state
  2153. struct ggml_context * ctx = NULL;
  2154. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2155. if (!g_state.contexts[i].used) {
  2156. g_state.contexts[i].used = true;
  2157. ctx = &g_state.contexts[i].context;
  2158. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2159. break;
  2160. }
  2161. }
  2162. if (ctx == NULL) {
  2163. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2164. ggml_critical_section_end();
  2165. return NULL;
  2166. }
  2167. // allow to call ggml_init with 0 size
  2168. if (params.mem_size == 0) {
  2169. params.mem_size = GGML_MEM_ALIGN;
  2170. }
  2171. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2172. *ctx = (struct ggml_context) {
  2173. /*.mem_size =*/ mem_size,
  2174. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2175. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2176. /*.no_alloc =*/ params.no_alloc,
  2177. /*.no_alloc_save =*/ params.no_alloc,
  2178. /*.n_objects =*/ 0,
  2179. /*.objects_begin =*/ NULL,
  2180. /*.objects_end =*/ NULL,
  2181. /*.scratch =*/ { 0, 0, NULL, },
  2182. /*.scratch_save =*/ { 0, 0, NULL, },
  2183. };
  2184. GGML_ASSERT(ctx->mem_buffer != NULL);
  2185. ggml_assert_aligned(ctx->mem_buffer);
  2186. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2187. ggml_critical_section_end();
  2188. return ctx;
  2189. }
  2190. void ggml_free(struct ggml_context * ctx) {
  2191. if (ctx == NULL) {
  2192. return;
  2193. }
  2194. // make this function thread safe
  2195. ggml_critical_section_start();
  2196. bool found = false;
  2197. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2198. if (&g_state.contexts[i].context == ctx) {
  2199. g_state.contexts[i].used = false;
  2200. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2201. __func__, i, ggml_used_mem(ctx));
  2202. if (ctx->mem_buffer_owned) {
  2203. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2204. }
  2205. found = true;
  2206. break;
  2207. }
  2208. }
  2209. if (!found) {
  2210. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2211. }
  2212. ggml_critical_section_end();
  2213. }
  2214. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2215. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2216. }
  2217. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2218. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2219. ctx->scratch = scratch;
  2220. return result;
  2221. }
  2222. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2223. return ctx->no_alloc;
  2224. }
  2225. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2226. ctx->no_alloc = no_alloc;
  2227. }
  2228. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2229. return ctx->mem_buffer;
  2230. }
  2231. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2232. return ctx->mem_size;
  2233. }
  2234. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2235. size_t max_size = 0;
  2236. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2237. size_t bytes = ggml_nbytes(tensor);
  2238. max_size = MAX(max_size, bytes);
  2239. }
  2240. return max_size;
  2241. }
  2242. // IMPORTANT:
  2243. // when creating "opt" tensors, always save and load the scratch buffer
  2244. // this is an error prone process, but it is necessary to support inplace
  2245. // operators when using scratch buffers
  2246. // TODO: implement a better way
  2247. static void ggml_scratch_save(struct ggml_context * ctx) {
  2248. // this is needed to allow opt tensors to store their data
  2249. // TODO: again, need to find a better way
  2250. ctx->no_alloc_save = ctx->no_alloc;
  2251. ctx->no_alloc = false;
  2252. ctx->scratch_save = ctx->scratch;
  2253. ctx->scratch.data = NULL;
  2254. }
  2255. static void ggml_scratch_load(struct ggml_context * ctx) {
  2256. ctx->no_alloc = ctx->no_alloc_save;
  2257. ctx->scratch = ctx->scratch_save;
  2258. }
  2259. ////////////////////////////////////////////////////////////////////////////////
  2260. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2261. // always insert objects at the end of the context's memory pool
  2262. struct ggml_object * obj_cur = ctx->objects_end;
  2263. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2264. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2265. const size_t cur_end = cur_offs + cur_size;
  2266. // align to GGML_MEM_ALIGN
  2267. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2268. char * const mem_buffer = ctx->mem_buffer;
  2269. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2270. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2271. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2272. __func__, cur_end + size_needed, ctx->mem_size);
  2273. assert(false);
  2274. return NULL;
  2275. }
  2276. *obj_new = (struct ggml_object) {
  2277. .offs = cur_end + GGML_OBJECT_SIZE,
  2278. .size = size_needed,
  2279. .next = NULL,
  2280. .type = type,
  2281. };
  2282. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2283. if (obj_cur != NULL) {
  2284. obj_cur->next = obj_new;
  2285. } else {
  2286. // this is the first object in this context
  2287. ctx->objects_begin = obj_new;
  2288. }
  2289. ctx->objects_end = obj_new;
  2290. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2291. return obj_new;
  2292. }
  2293. static struct ggml_tensor * ggml_new_tensor_impl(
  2294. struct ggml_context * ctx,
  2295. enum ggml_type type,
  2296. int n_dims,
  2297. const int64_t * ne,
  2298. struct ggml_tensor * view_src,
  2299. size_t view_offs) {
  2300. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2301. // find the base tensor and absolute offset
  2302. if (view_src != NULL && view_src->view_src != NULL) {
  2303. view_offs += view_src->view_offs;
  2304. view_src = view_src->view_src;
  2305. }
  2306. size_t data_size = ggml_row_size(type, ne[0]);
  2307. for (int i = 1; i < n_dims; i++) {
  2308. data_size *= ne[i];
  2309. }
  2310. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2311. void * data = view_src != NULL ? view_src->data : NULL;
  2312. if (data != NULL) {
  2313. data = (char *) data + view_offs;
  2314. }
  2315. size_t obj_alloc_size = 0;
  2316. if (view_src == NULL && !ctx->no_alloc) {
  2317. if (ctx->scratch.data != NULL) {
  2318. // allocate tensor data in the scratch buffer
  2319. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2320. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2321. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2322. assert(false);
  2323. return NULL;
  2324. }
  2325. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2326. ctx->scratch.offs += data_size;
  2327. } else {
  2328. // allocate tensor data in the context's memory pool
  2329. obj_alloc_size = data_size;
  2330. }
  2331. }
  2332. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2333. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2334. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2335. *result = (struct ggml_tensor) {
  2336. /*.type =*/ type,
  2337. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2338. /*.buffer =*/ NULL,
  2339. /*.ne =*/ { 1, 1, 1, 1 },
  2340. /*.nb =*/ { 0, 0, 0, 0 },
  2341. /*.op =*/ GGML_OP_NONE,
  2342. /*.op_params =*/ { 0 },
  2343. /*.flags =*/ 0,
  2344. /*.grad =*/ NULL,
  2345. /*.src =*/ { NULL },
  2346. /*.perf_runs =*/ 0,
  2347. /*.perf_cycles =*/ 0,
  2348. /*.perf_time_us =*/ 0,
  2349. /*.view_src =*/ view_src,
  2350. /*.view_offs =*/ view_offs,
  2351. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2352. /*.name =*/ { 0 },
  2353. /*.extra =*/ NULL,
  2354. /*.padding =*/ { 0 },
  2355. };
  2356. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2357. //ggml_assert_aligned(result->data);
  2358. for (int i = 0; i < n_dims; i++) {
  2359. result->ne[i] = ne[i];
  2360. }
  2361. result->nb[0] = ggml_type_size(type);
  2362. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2363. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2364. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2365. }
  2366. ctx->n_objects++;
  2367. return result;
  2368. }
  2369. struct ggml_tensor * ggml_new_tensor(
  2370. struct ggml_context * ctx,
  2371. enum ggml_type type,
  2372. int n_dims,
  2373. const int64_t * ne) {
  2374. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2375. }
  2376. struct ggml_tensor * ggml_new_tensor_1d(
  2377. struct ggml_context * ctx,
  2378. enum ggml_type type,
  2379. int64_t ne0) {
  2380. return ggml_new_tensor(ctx, type, 1, &ne0);
  2381. }
  2382. struct ggml_tensor * ggml_new_tensor_2d(
  2383. struct ggml_context * ctx,
  2384. enum ggml_type type,
  2385. int64_t ne0,
  2386. int64_t ne1) {
  2387. const int64_t ne[2] = { ne0, ne1 };
  2388. return ggml_new_tensor(ctx, type, 2, ne);
  2389. }
  2390. struct ggml_tensor * ggml_new_tensor_3d(
  2391. struct ggml_context * ctx,
  2392. enum ggml_type type,
  2393. int64_t ne0,
  2394. int64_t ne1,
  2395. int64_t ne2) {
  2396. const int64_t ne[3] = { ne0, ne1, ne2 };
  2397. return ggml_new_tensor(ctx, type, 3, ne);
  2398. }
  2399. struct ggml_tensor * ggml_new_tensor_4d(
  2400. struct ggml_context * ctx,
  2401. enum ggml_type type,
  2402. int64_t ne0,
  2403. int64_t ne1,
  2404. int64_t ne2,
  2405. int64_t ne3) {
  2406. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2407. return ggml_new_tensor(ctx, type, 4, ne);
  2408. }
  2409. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2410. ggml_scratch_save(ctx);
  2411. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2412. ggml_scratch_load(ctx);
  2413. ggml_set_i32(result, value);
  2414. return result;
  2415. }
  2416. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2417. ggml_scratch_save(ctx);
  2418. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2419. ggml_scratch_load(ctx);
  2420. ggml_set_f32(result, value);
  2421. return result;
  2422. }
  2423. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2424. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2425. }
  2426. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2427. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2428. assert(params_size <= GGML_MAX_OP_PARAMS);
  2429. memcpy(tensor->op_params, params, params_size);
  2430. }
  2431. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2432. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2433. return ((const int32_t *)(tensor->op_params))[i];
  2434. }
  2435. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2436. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2437. ((int32_t *)(tensor->op_params))[i] = value;
  2438. }
  2439. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2440. memset(tensor->data, 0, ggml_nbytes(tensor));
  2441. return tensor;
  2442. }
  2443. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2444. const int n = ggml_nrows(tensor);
  2445. const int nc = tensor->ne[0];
  2446. const size_t n1 = tensor->nb[1];
  2447. char * const data = tensor->data;
  2448. switch (tensor->type) {
  2449. case GGML_TYPE_I8:
  2450. {
  2451. assert(tensor->nb[0] == sizeof(int8_t));
  2452. for (int i = 0; i < n; i++) {
  2453. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2454. }
  2455. } break;
  2456. case GGML_TYPE_I16:
  2457. {
  2458. assert(tensor->nb[0] == sizeof(int16_t));
  2459. for (int i = 0; i < n; i++) {
  2460. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2461. }
  2462. } break;
  2463. case GGML_TYPE_I32:
  2464. {
  2465. assert(tensor->nb[0] == sizeof(int32_t));
  2466. for (int i = 0; i < n; i++) {
  2467. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2468. }
  2469. } break;
  2470. case GGML_TYPE_F16:
  2471. {
  2472. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2473. for (int i = 0; i < n; i++) {
  2474. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2475. }
  2476. } break;
  2477. case GGML_TYPE_F32:
  2478. {
  2479. assert(tensor->nb[0] == sizeof(float));
  2480. for (int i = 0; i < n; i++) {
  2481. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2482. }
  2483. } break;
  2484. default:
  2485. {
  2486. GGML_ASSERT(false);
  2487. } break;
  2488. }
  2489. return tensor;
  2490. }
  2491. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2492. const int n = ggml_nrows(tensor);
  2493. const int nc = tensor->ne[0];
  2494. const size_t n1 = tensor->nb[1];
  2495. char * const data = tensor->data;
  2496. switch (tensor->type) {
  2497. case GGML_TYPE_I8:
  2498. {
  2499. assert(tensor->nb[0] == sizeof(int8_t));
  2500. for (int i = 0; i < n; i++) {
  2501. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2502. }
  2503. } break;
  2504. case GGML_TYPE_I16:
  2505. {
  2506. assert(tensor->nb[0] == sizeof(int16_t));
  2507. for (int i = 0; i < n; i++) {
  2508. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2509. }
  2510. } break;
  2511. case GGML_TYPE_I32:
  2512. {
  2513. assert(tensor->nb[0] == sizeof(int32_t));
  2514. for (int i = 0; i < n; i++) {
  2515. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2516. }
  2517. } break;
  2518. case GGML_TYPE_F16:
  2519. {
  2520. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2521. for (int i = 0; i < n; i++) {
  2522. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2523. }
  2524. } break;
  2525. case GGML_TYPE_F32:
  2526. {
  2527. assert(tensor->nb[0] == sizeof(float));
  2528. for (int i = 0; i < n; i++) {
  2529. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2530. }
  2531. } break;
  2532. default:
  2533. {
  2534. GGML_ASSERT(false);
  2535. } break;
  2536. }
  2537. return tensor;
  2538. }
  2539. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2540. const int64_t ne2 = tensor->ne[2];
  2541. const int64_t ne1 = tensor->ne[1];
  2542. const int64_t ne0 = tensor->ne[0];
  2543. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2544. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2545. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2546. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2547. if (i0) {
  2548. * i0 = i0_;
  2549. }
  2550. if (i1) {
  2551. * i1 = i1_;
  2552. }
  2553. if (i2) {
  2554. * i2 = i2_;
  2555. }
  2556. if (i3) {
  2557. * i3 = i3_;
  2558. }
  2559. }
  2560. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2561. if (!ggml_is_contiguous(tensor)) {
  2562. int64_t id[4] = { 0, 0, 0, 0 };
  2563. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2564. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2565. }
  2566. switch (tensor->type) {
  2567. case GGML_TYPE_I8:
  2568. {
  2569. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2570. return ((int8_t *)(tensor->data))[i];
  2571. }
  2572. case GGML_TYPE_I16:
  2573. {
  2574. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2575. return ((int16_t *)(tensor->data))[i];
  2576. }
  2577. case GGML_TYPE_I32:
  2578. {
  2579. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2580. return ((int32_t *)(tensor->data))[i];
  2581. }
  2582. case GGML_TYPE_F16:
  2583. {
  2584. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2585. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2586. }
  2587. case GGML_TYPE_F32:
  2588. {
  2589. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2590. return ((float *)(tensor->data))[i];
  2591. }
  2592. default:
  2593. {
  2594. GGML_ASSERT(false);
  2595. }
  2596. }
  2597. return 0.0f;
  2598. }
  2599. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2600. if (!ggml_is_contiguous(tensor)) {
  2601. int64_t id[4] = { 0, 0, 0, 0 };
  2602. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2603. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2604. return;
  2605. }
  2606. switch (tensor->type) {
  2607. case GGML_TYPE_I8:
  2608. {
  2609. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2610. ((int8_t *)(tensor->data))[i] = value;
  2611. } break;
  2612. case GGML_TYPE_I16:
  2613. {
  2614. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2615. ((int16_t *)(tensor->data))[i] = value;
  2616. } break;
  2617. case GGML_TYPE_I32:
  2618. {
  2619. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2620. ((int32_t *)(tensor->data))[i] = value;
  2621. } break;
  2622. case GGML_TYPE_F16:
  2623. {
  2624. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2625. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2626. } break;
  2627. case GGML_TYPE_F32:
  2628. {
  2629. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2630. ((float *)(tensor->data))[i] = value;
  2631. } break;
  2632. default:
  2633. {
  2634. GGML_ASSERT(false);
  2635. } break;
  2636. }
  2637. }
  2638. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2639. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2640. switch (tensor->type) {
  2641. case GGML_TYPE_I8:
  2642. return ((int8_t *) data)[0];
  2643. case GGML_TYPE_I16:
  2644. return ((int16_t *) data)[0];
  2645. case GGML_TYPE_I32:
  2646. return ((int32_t *) data)[0];
  2647. case GGML_TYPE_F16:
  2648. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2649. case GGML_TYPE_F32:
  2650. return ((float *) data)[0];
  2651. default:
  2652. GGML_ASSERT(false);
  2653. }
  2654. return 0.0f;
  2655. }
  2656. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2657. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2658. switch (tensor->type) {
  2659. case GGML_TYPE_I8:
  2660. {
  2661. ((int8_t *)(data))[0] = value;
  2662. } break;
  2663. case GGML_TYPE_I16:
  2664. {
  2665. ((int16_t *)(data))[0] = value;
  2666. } break;
  2667. case GGML_TYPE_I32:
  2668. {
  2669. ((int32_t *)(data))[0] = value;
  2670. } break;
  2671. case GGML_TYPE_F16:
  2672. {
  2673. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2674. } break;
  2675. case GGML_TYPE_F32:
  2676. {
  2677. ((float *)(data))[0] = value;
  2678. } break;
  2679. default:
  2680. {
  2681. GGML_ASSERT(false);
  2682. } break;
  2683. }
  2684. }
  2685. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2686. if (!ggml_is_contiguous(tensor)) {
  2687. int64_t id[4] = { 0, 0, 0, 0 };
  2688. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2689. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2690. }
  2691. switch (tensor->type) {
  2692. case GGML_TYPE_I8:
  2693. {
  2694. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2695. return ((int8_t *)(tensor->data))[i];
  2696. }
  2697. case GGML_TYPE_I16:
  2698. {
  2699. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2700. return ((int16_t *)(tensor->data))[i];
  2701. }
  2702. case GGML_TYPE_I32:
  2703. {
  2704. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2705. return ((int32_t *)(tensor->data))[i];
  2706. }
  2707. case GGML_TYPE_F16:
  2708. {
  2709. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2710. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2711. }
  2712. case GGML_TYPE_F32:
  2713. {
  2714. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2715. return ((float *)(tensor->data))[i];
  2716. }
  2717. default:
  2718. {
  2719. GGML_ASSERT(false);
  2720. }
  2721. }
  2722. return 0.0f;
  2723. }
  2724. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2725. if (!ggml_is_contiguous(tensor)) {
  2726. int64_t id[4] = { 0, 0, 0, 0 };
  2727. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2728. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2729. return;
  2730. }
  2731. switch (tensor->type) {
  2732. case GGML_TYPE_I8:
  2733. {
  2734. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2735. ((int8_t *)(tensor->data))[i] = value;
  2736. } break;
  2737. case GGML_TYPE_I16:
  2738. {
  2739. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2740. ((int16_t *)(tensor->data))[i] = value;
  2741. } break;
  2742. case GGML_TYPE_I32:
  2743. {
  2744. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2745. ((int32_t *)(tensor->data))[i] = value;
  2746. } break;
  2747. case GGML_TYPE_F16:
  2748. {
  2749. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2750. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2751. } break;
  2752. case GGML_TYPE_F32:
  2753. {
  2754. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2755. ((float *)(tensor->data))[i] = value;
  2756. } break;
  2757. default:
  2758. {
  2759. GGML_ASSERT(false);
  2760. } break;
  2761. }
  2762. }
  2763. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2764. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2765. switch (tensor->type) {
  2766. case GGML_TYPE_I8:
  2767. return ((int8_t *) data)[0];
  2768. case GGML_TYPE_I16:
  2769. return ((int16_t *) data)[0];
  2770. case GGML_TYPE_I32:
  2771. return ((int32_t *) data)[0];
  2772. case GGML_TYPE_F16:
  2773. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2774. case GGML_TYPE_F32:
  2775. return ((float *) data)[0];
  2776. default:
  2777. GGML_ASSERT(false);
  2778. }
  2779. return 0.0f;
  2780. }
  2781. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2782. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2783. switch (tensor->type) {
  2784. case GGML_TYPE_I8:
  2785. {
  2786. ((int8_t *)(data))[0] = value;
  2787. } break;
  2788. case GGML_TYPE_I16:
  2789. {
  2790. ((int16_t *)(data))[0] = value;
  2791. } break;
  2792. case GGML_TYPE_I32:
  2793. {
  2794. ((int32_t *)(data))[0] = value;
  2795. } break;
  2796. case GGML_TYPE_F16:
  2797. {
  2798. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2799. } break;
  2800. case GGML_TYPE_F32:
  2801. {
  2802. ((float *)(data))[0] = value;
  2803. } break;
  2804. default:
  2805. {
  2806. GGML_ASSERT(false);
  2807. } break;
  2808. }
  2809. }
  2810. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2811. return tensor->data;
  2812. }
  2813. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2814. assert(tensor->type == GGML_TYPE_F32);
  2815. return (float *)(tensor->data);
  2816. }
  2817. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2818. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2819. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2820. }
  2821. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2822. return tensor->name;
  2823. }
  2824. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2825. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2826. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2827. return tensor;
  2828. }
  2829. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2830. va_list args;
  2831. va_start(args, fmt);
  2832. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2833. va_end(args);
  2834. return tensor;
  2835. }
  2836. struct ggml_tensor * ggml_view_tensor(
  2837. struct ggml_context * ctx,
  2838. struct ggml_tensor * src) {
  2839. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2840. ggml_format_name(result, "%s (view)", src->name);
  2841. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2842. result->nb[i] = src->nb[i];
  2843. }
  2844. return result;
  2845. }
  2846. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2847. struct ggml_object * obj = ctx->objects_begin;
  2848. char * const mem_buffer = ctx->mem_buffer;
  2849. while (obj != NULL) {
  2850. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2851. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2852. }
  2853. obj = obj->next;
  2854. }
  2855. return NULL;
  2856. }
  2857. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2858. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2859. obj = obj->next;
  2860. char * const mem_buffer = ctx->mem_buffer;
  2861. while (obj != NULL) {
  2862. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2863. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2864. }
  2865. obj = obj->next;
  2866. }
  2867. return NULL;
  2868. }
  2869. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2870. struct ggml_object * obj = ctx->objects_begin;
  2871. char * const mem_buffer = ctx->mem_buffer;
  2872. while (obj != NULL) {
  2873. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2874. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2875. if (strcmp(cur->name, name) == 0) {
  2876. return cur;
  2877. }
  2878. }
  2879. obj = obj->next;
  2880. }
  2881. return NULL;
  2882. }
  2883. ////////////////////////////////////////////////////////////////////////////////
  2884. // ggml_dup
  2885. static struct ggml_tensor * ggml_dup_impl(
  2886. struct ggml_context * ctx,
  2887. struct ggml_tensor * a,
  2888. bool inplace) {
  2889. bool is_node = false;
  2890. if (!inplace && (a->grad)) {
  2891. is_node = true;
  2892. }
  2893. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2894. result->op = GGML_OP_DUP;
  2895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2896. result->src[0] = a;
  2897. return result;
  2898. }
  2899. struct ggml_tensor * ggml_dup(
  2900. struct ggml_context * ctx,
  2901. struct ggml_tensor * a) {
  2902. return ggml_dup_impl(ctx, a, false);
  2903. }
  2904. struct ggml_tensor * ggml_dup_inplace(
  2905. struct ggml_context * ctx,
  2906. struct ggml_tensor * a) {
  2907. return ggml_dup_impl(ctx, a, true);
  2908. }
  2909. // ggml_add
  2910. static struct ggml_tensor * ggml_add_impl(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a,
  2913. struct ggml_tensor * b,
  2914. bool inplace) {
  2915. GGML_ASSERT(ggml_can_repeat(b, a));
  2916. bool is_node = false;
  2917. if (!inplace && (a->grad || b->grad)) {
  2918. // TODO: support backward pass for broadcasting
  2919. GGML_ASSERT(ggml_are_same_shape(a, b));
  2920. is_node = true;
  2921. }
  2922. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2923. result->op = GGML_OP_ADD;
  2924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2925. result->src[0] = a;
  2926. result->src[1] = b;
  2927. return result;
  2928. }
  2929. struct ggml_tensor * ggml_add(
  2930. struct ggml_context * ctx,
  2931. struct ggml_tensor * a,
  2932. struct ggml_tensor * b) {
  2933. return ggml_add_impl(ctx, a, b, false);
  2934. }
  2935. struct ggml_tensor * ggml_add_inplace(
  2936. struct ggml_context * ctx,
  2937. struct ggml_tensor * a,
  2938. struct ggml_tensor * b) {
  2939. return ggml_add_impl(ctx, a, b, true);
  2940. }
  2941. // ggml_add_cast
  2942. static struct ggml_tensor * ggml_add_cast_impl(
  2943. struct ggml_context * ctx,
  2944. struct ggml_tensor * a,
  2945. struct ggml_tensor * b,
  2946. enum ggml_type type) {
  2947. // TODO: support less-strict constraint
  2948. // GGML_ASSERT(ggml_can_repeat(b, a));
  2949. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2950. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2951. bool is_node = false;
  2952. if (a->grad || b->grad) {
  2953. // TODO: support backward pass for broadcasting
  2954. GGML_ASSERT(ggml_are_same_shape(a, b));
  2955. is_node = true;
  2956. }
  2957. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2958. result->op = GGML_OP_ADD;
  2959. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2960. result->src[0] = a;
  2961. result->src[1] = b;
  2962. return result;
  2963. }
  2964. struct ggml_tensor * ggml_add_cast(
  2965. struct ggml_context * ctx,
  2966. struct ggml_tensor * a,
  2967. struct ggml_tensor * b,
  2968. enum ggml_type type) {
  2969. return ggml_add_cast_impl(ctx, a, b, type);
  2970. }
  2971. // ggml_add1
  2972. static struct ggml_tensor * ggml_add1_impl(
  2973. struct ggml_context * ctx,
  2974. struct ggml_tensor * a,
  2975. struct ggml_tensor * b,
  2976. bool inplace) {
  2977. GGML_ASSERT(ggml_is_scalar(b));
  2978. GGML_ASSERT(ggml_is_padded_1d(a));
  2979. bool is_node = false;
  2980. if (a->grad || b->grad) {
  2981. is_node = true;
  2982. }
  2983. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2984. result->op = GGML_OP_ADD1;
  2985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2986. result->src[0] = a;
  2987. result->src[1] = b;
  2988. return result;
  2989. }
  2990. struct ggml_tensor * ggml_add1(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a,
  2993. struct ggml_tensor * b) {
  2994. return ggml_add1_impl(ctx, a, b, false);
  2995. }
  2996. struct ggml_tensor * ggml_add1_inplace(
  2997. struct ggml_context * ctx,
  2998. struct ggml_tensor * a,
  2999. struct ggml_tensor * b) {
  3000. return ggml_add1_impl(ctx, a, b, true);
  3001. }
  3002. // ggml_acc
  3003. static struct ggml_tensor * ggml_acc_impl(
  3004. struct ggml_context * ctx,
  3005. struct ggml_tensor * a,
  3006. struct ggml_tensor * b,
  3007. size_t nb1,
  3008. size_t nb2,
  3009. size_t nb3,
  3010. size_t offset,
  3011. bool inplace) {
  3012. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3013. GGML_ASSERT(ggml_is_contiguous(a));
  3014. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3015. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3016. bool is_node = false;
  3017. if (!inplace && (a->grad || b->grad)) {
  3018. is_node = true;
  3019. }
  3020. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3021. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3022. ggml_set_op_params(result, params, sizeof(params));
  3023. result->op = GGML_OP_ACC;
  3024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3025. result->src[0] = a;
  3026. result->src[1] = b;
  3027. return result;
  3028. }
  3029. struct ggml_tensor * ggml_acc(
  3030. struct ggml_context * ctx,
  3031. struct ggml_tensor * a,
  3032. struct ggml_tensor * b,
  3033. size_t nb1,
  3034. size_t nb2,
  3035. size_t nb3,
  3036. size_t offset) {
  3037. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3038. }
  3039. struct ggml_tensor * ggml_acc_inplace(
  3040. struct ggml_context * ctx,
  3041. struct ggml_tensor * a,
  3042. struct ggml_tensor * b,
  3043. size_t nb1,
  3044. size_t nb2,
  3045. size_t nb3,
  3046. size_t offset) {
  3047. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3048. }
  3049. // ggml_sub
  3050. static struct ggml_tensor * ggml_sub_impl(
  3051. struct ggml_context * ctx,
  3052. struct ggml_tensor * a,
  3053. struct ggml_tensor * b,
  3054. bool inplace) {
  3055. GGML_ASSERT(ggml_are_same_shape(a, b));
  3056. bool is_node = false;
  3057. if (!inplace && (a->grad || b->grad)) {
  3058. is_node = true;
  3059. }
  3060. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3061. result->op = GGML_OP_SUB;
  3062. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3063. result->src[0] = a;
  3064. result->src[1] = b;
  3065. return result;
  3066. }
  3067. struct ggml_tensor * ggml_sub(
  3068. struct ggml_context * ctx,
  3069. struct ggml_tensor * a,
  3070. struct ggml_tensor * b) {
  3071. return ggml_sub_impl(ctx, a, b, false);
  3072. }
  3073. struct ggml_tensor * ggml_sub_inplace(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a,
  3076. struct ggml_tensor * b) {
  3077. return ggml_sub_impl(ctx, a, b, true);
  3078. }
  3079. // ggml_mul
  3080. static struct ggml_tensor * ggml_mul_impl(
  3081. struct ggml_context * ctx,
  3082. struct ggml_tensor * a,
  3083. struct ggml_tensor * b,
  3084. bool inplace) {
  3085. GGML_ASSERT(ggml_can_repeat(b, a));
  3086. bool is_node = false;
  3087. if (!inplace && (a->grad || b->grad)) {
  3088. // TODO: support backward pass for broadcasting
  3089. GGML_ASSERT(ggml_are_same_shape(a, b));
  3090. is_node = true;
  3091. }
  3092. if (inplace) {
  3093. GGML_ASSERT(!is_node);
  3094. }
  3095. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3096. result->op = GGML_OP_MUL;
  3097. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3098. result->src[0] = a;
  3099. result->src[1] = b;
  3100. return result;
  3101. }
  3102. struct ggml_tensor * ggml_mul(
  3103. struct ggml_context * ctx,
  3104. struct ggml_tensor * a,
  3105. struct ggml_tensor * b) {
  3106. return ggml_mul_impl(ctx, a, b, false);
  3107. }
  3108. struct ggml_tensor * ggml_mul_inplace(
  3109. struct ggml_context * ctx,
  3110. struct ggml_tensor * a,
  3111. struct ggml_tensor * b) {
  3112. return ggml_mul_impl(ctx, a, b, true);
  3113. }
  3114. // ggml_div
  3115. static struct ggml_tensor * ggml_div_impl(
  3116. struct ggml_context * ctx,
  3117. struct ggml_tensor * a,
  3118. struct ggml_tensor * b,
  3119. bool inplace) {
  3120. GGML_ASSERT(ggml_can_repeat(b, a));
  3121. bool is_node = false;
  3122. if (!inplace && (a->grad || b->grad)) {
  3123. is_node = true;
  3124. }
  3125. if (inplace) {
  3126. GGML_ASSERT(!is_node);
  3127. }
  3128. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3129. result->op = GGML_OP_DIV;
  3130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3131. result->src[0] = a;
  3132. result->src[1] = b;
  3133. return result;
  3134. }
  3135. struct ggml_tensor * ggml_div(
  3136. struct ggml_context * ctx,
  3137. struct ggml_tensor * a,
  3138. struct ggml_tensor * b) {
  3139. return ggml_div_impl(ctx, a, b, false);
  3140. }
  3141. struct ggml_tensor * ggml_div_inplace(
  3142. struct ggml_context * ctx,
  3143. struct ggml_tensor * a,
  3144. struct ggml_tensor * b) {
  3145. return ggml_div_impl(ctx, a, b, true);
  3146. }
  3147. // ggml_sqr
  3148. static struct ggml_tensor * ggml_sqr_impl(
  3149. struct ggml_context * ctx,
  3150. struct ggml_tensor * a,
  3151. bool inplace) {
  3152. bool is_node = false;
  3153. if (!inplace && (a->grad)) {
  3154. is_node = true;
  3155. }
  3156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3157. result->op = GGML_OP_SQR;
  3158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3159. result->src[0] = a;
  3160. return result;
  3161. }
  3162. struct ggml_tensor * ggml_sqr(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a) {
  3165. return ggml_sqr_impl(ctx, a, false);
  3166. }
  3167. struct ggml_tensor * ggml_sqr_inplace(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a) {
  3170. return ggml_sqr_impl(ctx, a, true);
  3171. }
  3172. // ggml_sqrt
  3173. static struct ggml_tensor * ggml_sqrt_impl(
  3174. struct ggml_context * ctx,
  3175. struct ggml_tensor * a,
  3176. bool inplace) {
  3177. bool is_node = false;
  3178. if (!inplace && (a->grad)) {
  3179. is_node = true;
  3180. }
  3181. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3182. result->op = GGML_OP_SQRT;
  3183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3184. result->src[0] = a;
  3185. return result;
  3186. }
  3187. struct ggml_tensor * ggml_sqrt(
  3188. struct ggml_context * ctx,
  3189. struct ggml_tensor * a) {
  3190. return ggml_sqrt_impl(ctx, a, false);
  3191. }
  3192. struct ggml_tensor * ggml_sqrt_inplace(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. return ggml_sqrt_impl(ctx, a, true);
  3196. }
  3197. // ggml_log
  3198. static struct ggml_tensor * ggml_log_impl(
  3199. struct ggml_context * ctx,
  3200. struct ggml_tensor * a,
  3201. bool inplace) {
  3202. bool is_node = false;
  3203. if (!inplace && (a->grad)) {
  3204. is_node = true;
  3205. }
  3206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3207. result->op = GGML_OP_LOG;
  3208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3209. result->src[0] = a;
  3210. return result;
  3211. }
  3212. struct ggml_tensor * ggml_log(
  3213. struct ggml_context * ctx,
  3214. struct ggml_tensor * a) {
  3215. return ggml_log_impl(ctx, a, false);
  3216. }
  3217. struct ggml_tensor * ggml_log_inplace(
  3218. struct ggml_context * ctx,
  3219. struct ggml_tensor * a) {
  3220. return ggml_log_impl(ctx, a, true);
  3221. }
  3222. // ggml_sum
  3223. struct ggml_tensor * ggml_sum(
  3224. struct ggml_context * ctx,
  3225. struct ggml_tensor * a) {
  3226. bool is_node = false;
  3227. if (a->grad) {
  3228. is_node = true;
  3229. }
  3230. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3231. result->op = GGML_OP_SUM;
  3232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3233. result->src[0] = a;
  3234. return result;
  3235. }
  3236. // ggml_sum_rows
  3237. struct ggml_tensor * ggml_sum_rows(
  3238. struct ggml_context * ctx,
  3239. struct ggml_tensor * a) {
  3240. bool is_node = false;
  3241. if (a->grad) {
  3242. is_node = true;
  3243. }
  3244. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3245. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3246. ne[i] = a->ne[i];
  3247. }
  3248. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3249. result->op = GGML_OP_SUM_ROWS;
  3250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3251. result->src[0] = a;
  3252. return result;
  3253. }
  3254. // ggml_mean
  3255. struct ggml_tensor * ggml_mean(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a) {
  3258. bool is_node = false;
  3259. if (a->grad) {
  3260. GGML_ASSERT(false); // TODO: implement
  3261. is_node = true;
  3262. }
  3263. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3264. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3265. result->op = GGML_OP_MEAN;
  3266. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3267. result->src[0] = a;
  3268. return result;
  3269. }
  3270. // ggml_argmax
  3271. struct ggml_tensor * ggml_argmax(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a) {
  3274. GGML_ASSERT(ggml_is_matrix(a));
  3275. bool is_node = false;
  3276. if (a->grad) {
  3277. GGML_ASSERT(false);
  3278. is_node = true;
  3279. }
  3280. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3281. result->op = GGML_OP_ARGMAX;
  3282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3283. result->src[0] = a;
  3284. return result;
  3285. }
  3286. // ggml_repeat
  3287. struct ggml_tensor * ggml_repeat(
  3288. struct ggml_context * ctx,
  3289. struct ggml_tensor * a,
  3290. struct ggml_tensor * b) {
  3291. GGML_ASSERT(ggml_can_repeat(a, b));
  3292. bool is_node = false;
  3293. if (a->grad) {
  3294. is_node = true;
  3295. }
  3296. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3297. result->op = GGML_OP_REPEAT;
  3298. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3299. result->src[0] = a;
  3300. return result;
  3301. }
  3302. // ggml_repeat_back
  3303. struct ggml_tensor * ggml_repeat_back(
  3304. struct ggml_context * ctx,
  3305. struct ggml_tensor * a,
  3306. struct ggml_tensor * b) {
  3307. GGML_ASSERT(ggml_can_repeat(b, a));
  3308. bool is_node = false;
  3309. if (a->grad) {
  3310. is_node = true;
  3311. }
  3312. if (ggml_are_same_shape(a, b) && !is_node) {
  3313. return a;
  3314. }
  3315. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3316. result->op = GGML_OP_REPEAT_BACK;
  3317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3318. result->src[0] = a;
  3319. return result;
  3320. }
  3321. // ggml_concat
  3322. struct ggml_tensor * ggml_concat(
  3323. struct ggml_context* ctx,
  3324. struct ggml_tensor* a,
  3325. struct ggml_tensor* b) {
  3326. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3327. bool is_node = false;
  3328. if (a->grad || b->grad) {
  3329. is_node = true;
  3330. }
  3331. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3332. result->op = GGML_OP_CONCAT;
  3333. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3334. result->src[0] = a;
  3335. result->src[1] = b;
  3336. return result;
  3337. }
  3338. // ggml_abs
  3339. struct ggml_tensor * ggml_abs(
  3340. struct ggml_context * ctx,
  3341. struct ggml_tensor * a) {
  3342. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3343. }
  3344. struct ggml_tensor * ggml_abs_inplace(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a) {
  3347. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3348. }
  3349. // ggml_sgn
  3350. struct ggml_tensor * ggml_sgn(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a) {
  3353. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3354. }
  3355. struct ggml_tensor * ggml_sgn_inplace(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a) {
  3358. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3359. }
  3360. // ggml_neg
  3361. struct ggml_tensor * ggml_neg(
  3362. struct ggml_context * ctx,
  3363. struct ggml_tensor * a) {
  3364. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3365. }
  3366. struct ggml_tensor * ggml_neg_inplace(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a) {
  3369. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3370. }
  3371. // ggml_step
  3372. struct ggml_tensor * ggml_step(
  3373. struct ggml_context * ctx,
  3374. struct ggml_tensor * a) {
  3375. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3376. }
  3377. struct ggml_tensor * ggml_step_inplace(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a) {
  3380. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3381. }
  3382. // ggml_tanh
  3383. struct ggml_tensor * ggml_tanh(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a) {
  3386. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3387. }
  3388. struct ggml_tensor * ggml_tanh_inplace(
  3389. struct ggml_context * ctx,
  3390. struct ggml_tensor * a) {
  3391. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3392. }
  3393. // ggml_elu
  3394. struct ggml_tensor * ggml_elu(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a) {
  3397. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3398. }
  3399. struct ggml_tensor * ggml_elu_inplace(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a) {
  3402. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3403. }
  3404. // ggml_relu
  3405. struct ggml_tensor * ggml_relu(
  3406. struct ggml_context * ctx,
  3407. struct ggml_tensor * a) {
  3408. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3409. }
  3410. struct ggml_tensor * ggml_relu_inplace(
  3411. struct ggml_context * ctx,
  3412. struct ggml_tensor * a) {
  3413. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3414. }
  3415. // ggml_leaky_relu
  3416. struct ggml_tensor * ggml_leaky_relu(
  3417. struct ggml_context * ctx,
  3418. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3419. bool is_node = false;
  3420. if (!inplace && (a->grad)) {
  3421. is_node = true;
  3422. }
  3423. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3424. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3425. result->op = GGML_OP_LEAKY_RELU;
  3426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3427. result->src[0] = a;
  3428. return result;
  3429. }
  3430. // ggml_gelu
  3431. struct ggml_tensor * ggml_gelu(
  3432. struct ggml_context * ctx,
  3433. struct ggml_tensor * a) {
  3434. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3435. }
  3436. struct ggml_tensor * ggml_gelu_inplace(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a) {
  3439. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3440. }
  3441. // ggml_gelu_quick
  3442. struct ggml_tensor * ggml_gelu_quick(
  3443. struct ggml_context * ctx,
  3444. struct ggml_tensor * a) {
  3445. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3446. }
  3447. struct ggml_tensor * ggml_gelu_quick_inplace(
  3448. struct ggml_context * ctx,
  3449. struct ggml_tensor * a) {
  3450. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3451. }
  3452. // ggml_silu
  3453. struct ggml_tensor * ggml_silu(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a) {
  3456. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3457. }
  3458. struct ggml_tensor * ggml_silu_inplace(
  3459. struct ggml_context * ctx,
  3460. struct ggml_tensor * a) {
  3461. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3462. }
  3463. // ggml_silu_back
  3464. struct ggml_tensor * ggml_silu_back(
  3465. struct ggml_context * ctx,
  3466. struct ggml_tensor * a,
  3467. struct ggml_tensor * b) {
  3468. bool is_node = false;
  3469. if (a->grad || b->grad) {
  3470. // TODO: implement backward
  3471. is_node = true;
  3472. }
  3473. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3474. result->op = GGML_OP_SILU_BACK;
  3475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3476. result->src[0] = a;
  3477. result->src[1] = b;
  3478. return result;
  3479. }
  3480. // ggml hardswish
  3481. struct ggml_tensor * ggml_hardswish(
  3482. struct ggml_context * ctx,
  3483. struct ggml_tensor * a) {
  3484. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3485. }
  3486. // ggml hardsigmoid
  3487. struct ggml_tensor * ggml_hardsigmoid(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a) {
  3490. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3491. }
  3492. // ggml_norm
  3493. static struct ggml_tensor * ggml_norm_impl(
  3494. struct ggml_context * ctx,
  3495. struct ggml_tensor * a,
  3496. float eps,
  3497. bool inplace) {
  3498. bool is_node = false;
  3499. if (!inplace && (a->grad)) {
  3500. GGML_ASSERT(false); // TODO: implement backward
  3501. is_node = true;
  3502. }
  3503. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3504. ggml_set_op_params(result, &eps, sizeof(eps));
  3505. result->op = GGML_OP_NORM;
  3506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3507. result->src[0] = a;
  3508. return result;
  3509. }
  3510. struct ggml_tensor * ggml_norm(
  3511. struct ggml_context * ctx,
  3512. struct ggml_tensor * a,
  3513. float eps) {
  3514. return ggml_norm_impl(ctx, a, eps, false);
  3515. }
  3516. struct ggml_tensor * ggml_norm_inplace(
  3517. struct ggml_context * ctx,
  3518. struct ggml_tensor * a,
  3519. float eps) {
  3520. return ggml_norm_impl(ctx, a, eps, true);
  3521. }
  3522. // ggml_rms_norm
  3523. static struct ggml_tensor * ggml_rms_norm_impl(
  3524. struct ggml_context * ctx,
  3525. struct ggml_tensor * a,
  3526. float eps,
  3527. bool inplace) {
  3528. bool is_node = false;
  3529. if (!inplace && (a->grad)) {
  3530. is_node = true;
  3531. }
  3532. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3533. ggml_set_op_params(result, &eps, sizeof(eps));
  3534. result->op = GGML_OP_RMS_NORM;
  3535. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3536. result->src[0] = a;
  3537. return result;
  3538. }
  3539. struct ggml_tensor * ggml_rms_norm(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * a,
  3542. float eps) {
  3543. return ggml_rms_norm_impl(ctx, a, eps, false);
  3544. }
  3545. struct ggml_tensor * ggml_rms_norm_inplace(
  3546. struct ggml_context * ctx,
  3547. struct ggml_tensor * a,
  3548. float eps) {
  3549. return ggml_rms_norm_impl(ctx, a, eps, true);
  3550. }
  3551. // ggml_rms_norm_back
  3552. struct ggml_tensor * ggml_rms_norm_back(
  3553. struct ggml_context * ctx,
  3554. struct ggml_tensor * a,
  3555. struct ggml_tensor * b,
  3556. float eps) {
  3557. bool is_node = false;
  3558. if (a->grad) {
  3559. // TODO: implement backward
  3560. is_node = true;
  3561. }
  3562. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3563. ggml_set_op_params(result, &eps, sizeof(eps));
  3564. result->op = GGML_OP_RMS_NORM_BACK;
  3565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3566. result->src[0] = a;
  3567. result->src[1] = b;
  3568. return result;
  3569. }
  3570. // ggml_group_norm
  3571. static struct ggml_tensor * ggml_group_norm_impl(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a,
  3574. int n_groups,
  3575. bool inplace) {
  3576. bool is_node = false;
  3577. if (!inplace && (a->grad)) {
  3578. GGML_ASSERT(false); // TODO: implement backward
  3579. is_node = true;
  3580. }
  3581. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3582. result->op_params[0] = n_groups;
  3583. result->op = GGML_OP_GROUP_NORM;
  3584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3585. result->src[0] = a;
  3586. return result;
  3587. }
  3588. struct ggml_tensor * ggml_group_norm(
  3589. struct ggml_context * ctx,
  3590. struct ggml_tensor * a,
  3591. int n_groups) {
  3592. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3593. }
  3594. struct ggml_tensor * ggml_group_norm_inplace(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a,
  3597. int n_groups) {
  3598. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3599. }
  3600. // ggml_mul_mat
  3601. struct ggml_tensor * ggml_mul_mat(
  3602. struct ggml_context * ctx,
  3603. struct ggml_tensor * a,
  3604. struct ggml_tensor * b) {
  3605. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3606. GGML_ASSERT(!ggml_is_transposed(a));
  3607. bool is_node = false;
  3608. if (a->grad || b->grad) {
  3609. is_node = true;
  3610. }
  3611. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3612. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3613. result->op = GGML_OP_MUL_MAT;
  3614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3615. result->src[0] = a;
  3616. result->src[1] = b;
  3617. return result;
  3618. }
  3619. void ggml_mul_mat_set_prec(
  3620. struct ggml_tensor * a,
  3621. enum ggml_prec prec) {
  3622. const int32_t prec_i32 = (int32_t) prec;
  3623. ggml_set_op_params_i32(a, 0, prec_i32);
  3624. }
  3625. // ggml_mul_mat_id
  3626. struct ggml_tensor * ggml_mul_mat_id(
  3627. struct ggml_context * ctx,
  3628. struct ggml_tensor * const as[],
  3629. int n_as,
  3630. struct ggml_tensor * ids,
  3631. int id,
  3632. struct ggml_tensor * b) {
  3633. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3634. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3635. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3636. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3637. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3638. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3639. bool is_node = false;
  3640. if (as[0]->grad || b->grad) {
  3641. is_node = true;
  3642. }
  3643. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3644. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3645. ggml_set_op_params_i32(result, 0, id);
  3646. ggml_set_op_params_i32(result, 1, n_as);
  3647. result->op = GGML_OP_MUL_MAT_ID;
  3648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3649. result->src[0] = ids;
  3650. result->src[1] = b;
  3651. for (int i = 0; i < n_as; i++) {
  3652. struct ggml_tensor * a = as[i];
  3653. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3654. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3655. GGML_ASSERT(!ggml_is_transposed(a));
  3656. result->src[i + 2] = a;
  3657. }
  3658. return result;
  3659. }
  3660. // ggml_out_prod
  3661. struct ggml_tensor * ggml_out_prod(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a,
  3664. struct ggml_tensor * b) {
  3665. GGML_ASSERT(ggml_can_out_prod(a, b));
  3666. GGML_ASSERT(!ggml_is_transposed(a));
  3667. bool is_node = false;
  3668. if (a->grad || b->grad) {
  3669. is_node = true;
  3670. }
  3671. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3672. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3673. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3674. result->op = GGML_OP_OUT_PROD;
  3675. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3676. result->src[0] = a;
  3677. result->src[1] = b;
  3678. return result;
  3679. }
  3680. // ggml_scale
  3681. static struct ggml_tensor * ggml_scale_impl(
  3682. struct ggml_context * ctx,
  3683. struct ggml_tensor * a,
  3684. float s,
  3685. bool inplace) {
  3686. GGML_ASSERT(ggml_is_padded_1d(a));
  3687. bool is_node = false;
  3688. if (a->grad) {
  3689. is_node = true;
  3690. }
  3691. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3692. ggml_set_op_params(result, &s, sizeof(s));
  3693. result->op = GGML_OP_SCALE;
  3694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3695. result->src[0] = a;
  3696. return result;
  3697. }
  3698. struct ggml_tensor * ggml_scale(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a,
  3701. float s) {
  3702. return ggml_scale_impl(ctx, a, s, false);
  3703. }
  3704. struct ggml_tensor * ggml_scale_inplace(
  3705. struct ggml_context * ctx,
  3706. struct ggml_tensor * a,
  3707. float s) {
  3708. return ggml_scale_impl(ctx, a, s, true);
  3709. }
  3710. // ggml_set
  3711. static struct ggml_tensor * ggml_set_impl(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * a,
  3714. struct ggml_tensor * b,
  3715. size_t nb1,
  3716. size_t nb2,
  3717. size_t nb3,
  3718. size_t offset,
  3719. bool inplace) {
  3720. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3721. bool is_node = false;
  3722. if (a->grad || b->grad) {
  3723. is_node = true;
  3724. }
  3725. // make a view of the destination
  3726. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3727. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3728. ggml_set_op_params(result, params, sizeof(params));
  3729. result->op = GGML_OP_SET;
  3730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3731. result->src[0] = a;
  3732. result->src[1] = b;
  3733. return result;
  3734. }
  3735. struct ggml_tensor * ggml_set(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a,
  3738. struct ggml_tensor * b,
  3739. size_t nb1,
  3740. size_t nb2,
  3741. size_t nb3,
  3742. size_t offset) {
  3743. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3744. }
  3745. struct ggml_tensor * ggml_set_inplace(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. struct ggml_tensor * b,
  3749. size_t nb1,
  3750. size_t nb2,
  3751. size_t nb3,
  3752. size_t offset) {
  3753. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3754. }
  3755. struct ggml_tensor * ggml_set_1d(
  3756. struct ggml_context * ctx,
  3757. struct ggml_tensor * a,
  3758. struct ggml_tensor * b,
  3759. size_t offset) {
  3760. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3761. }
  3762. struct ggml_tensor * ggml_set_1d_inplace(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a,
  3765. struct ggml_tensor * b,
  3766. size_t offset) {
  3767. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3768. }
  3769. struct ggml_tensor * ggml_set_2d(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a,
  3772. struct ggml_tensor * b,
  3773. size_t nb1,
  3774. size_t offset) {
  3775. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3776. }
  3777. struct ggml_tensor * ggml_set_2d_inplace(
  3778. struct ggml_context * ctx,
  3779. struct ggml_tensor * a,
  3780. struct ggml_tensor * b,
  3781. size_t nb1,
  3782. size_t offset) {
  3783. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3784. }
  3785. // ggml_cpy
  3786. static struct ggml_tensor * ggml_cpy_impl(
  3787. struct ggml_context * ctx,
  3788. struct ggml_tensor * a,
  3789. struct ggml_tensor * b) {
  3790. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3791. bool is_node = false;
  3792. if (a->grad || b->grad) {
  3793. // inplace is false and either one have a grad
  3794. is_node = true;
  3795. }
  3796. // make a view of the destination
  3797. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3798. if (strlen(b->name) > 0) {
  3799. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3800. } else {
  3801. ggml_format_name(result, "%s (copy)", a->name);
  3802. }
  3803. result->op = GGML_OP_CPY;
  3804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3805. result->src[0] = a;
  3806. result->src[1] = b;
  3807. return result;
  3808. }
  3809. struct ggml_tensor * ggml_cpy(
  3810. struct ggml_context * ctx,
  3811. struct ggml_tensor * a,
  3812. struct ggml_tensor * b) {
  3813. return ggml_cpy_impl(ctx, a, b);
  3814. }
  3815. struct ggml_tensor * ggml_cast(
  3816. struct ggml_context * ctx,
  3817. struct ggml_tensor * a,
  3818. enum ggml_type type) {
  3819. bool is_node = false;
  3820. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3821. ggml_format_name(result, "%s (copy)", a->name);
  3822. result->op = GGML_OP_CPY;
  3823. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3824. result->src[0] = a;
  3825. result->src[1] = result;
  3826. return result;
  3827. }
  3828. // ggml_cont
  3829. static struct ggml_tensor * ggml_cont_impl(
  3830. struct ggml_context * ctx,
  3831. struct ggml_tensor * a) {
  3832. bool is_node = false;
  3833. if (a->grad) {
  3834. is_node = true;
  3835. }
  3836. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3837. ggml_format_name(result, "%s (cont)", a->name);
  3838. result->op = GGML_OP_CONT;
  3839. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3840. result->src[0] = a;
  3841. return result;
  3842. }
  3843. struct ggml_tensor * ggml_cont(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a) {
  3846. return ggml_cont_impl(ctx, a);
  3847. }
  3848. // make contiguous, with new shape
  3849. GGML_API struct ggml_tensor * ggml_cont_1d(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a,
  3852. int64_t ne0) {
  3853. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3854. }
  3855. GGML_API struct ggml_tensor * ggml_cont_2d(
  3856. struct ggml_context * ctx,
  3857. struct ggml_tensor * a,
  3858. int64_t ne0,
  3859. int64_t ne1) {
  3860. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3861. }
  3862. GGML_API struct ggml_tensor * ggml_cont_3d(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a,
  3865. int64_t ne0,
  3866. int64_t ne1,
  3867. int64_t ne2) {
  3868. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3869. }
  3870. struct ggml_tensor * ggml_cont_4d(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a,
  3873. int64_t ne0,
  3874. int64_t ne1,
  3875. int64_t ne2,
  3876. int64_t ne3) {
  3877. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3878. bool is_node = false;
  3879. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3880. ggml_format_name(result, "%s (cont)", a->name);
  3881. result->op = GGML_OP_CONT;
  3882. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3883. result->src[0] = a;
  3884. return result;
  3885. }
  3886. // ggml_reshape
  3887. struct ggml_tensor * ggml_reshape(
  3888. struct ggml_context * ctx,
  3889. struct ggml_tensor * a,
  3890. struct ggml_tensor * b) {
  3891. GGML_ASSERT(ggml_is_contiguous(a));
  3892. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3893. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3894. bool is_node = false;
  3895. if (a->grad) {
  3896. is_node = true;
  3897. }
  3898. if (b->grad) {
  3899. // gradient propagation is not supported
  3900. //GGML_ASSERT(false);
  3901. }
  3902. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3903. ggml_format_name(result, "%s (reshaped)", a->name);
  3904. result->op = GGML_OP_RESHAPE;
  3905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3906. result->src[0] = a;
  3907. return result;
  3908. }
  3909. struct ggml_tensor * ggml_reshape_1d(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. int64_t ne0) {
  3913. GGML_ASSERT(ggml_is_contiguous(a));
  3914. GGML_ASSERT(ggml_nelements(a) == ne0);
  3915. bool is_node = false;
  3916. if (a->grad) {
  3917. is_node = true;
  3918. }
  3919. const int64_t ne[1] = { ne0 };
  3920. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3921. ggml_format_name(result, "%s (reshaped)", a->name);
  3922. result->op = GGML_OP_RESHAPE;
  3923. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3924. result->src[0] = a;
  3925. return result;
  3926. }
  3927. struct ggml_tensor * ggml_reshape_2d(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. int64_t ne0,
  3931. int64_t ne1) {
  3932. GGML_ASSERT(ggml_is_contiguous(a));
  3933. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3934. bool is_node = false;
  3935. if (a->grad) {
  3936. is_node = true;
  3937. }
  3938. const int64_t ne[2] = { ne0, ne1 };
  3939. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3940. ggml_format_name(result, "%s (reshaped)", a->name);
  3941. result->op = GGML_OP_RESHAPE;
  3942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3943. result->src[0] = a;
  3944. return result;
  3945. }
  3946. struct ggml_tensor * ggml_reshape_3d(
  3947. struct ggml_context * ctx,
  3948. struct ggml_tensor * a,
  3949. int64_t ne0,
  3950. int64_t ne1,
  3951. int64_t ne2) {
  3952. GGML_ASSERT(ggml_is_contiguous(a));
  3953. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3954. bool is_node = false;
  3955. if (a->grad) {
  3956. is_node = true;
  3957. }
  3958. const int64_t ne[3] = { ne0, ne1, ne2 };
  3959. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3960. ggml_format_name(result, "%s (reshaped)", a->name);
  3961. result->op = GGML_OP_RESHAPE;
  3962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3963. result->src[0] = a;
  3964. return result;
  3965. }
  3966. struct ggml_tensor * ggml_reshape_4d(
  3967. struct ggml_context * ctx,
  3968. struct ggml_tensor * a,
  3969. int64_t ne0,
  3970. int64_t ne1,
  3971. int64_t ne2,
  3972. int64_t ne3) {
  3973. GGML_ASSERT(ggml_is_contiguous(a));
  3974. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3975. bool is_node = false;
  3976. if (a->grad) {
  3977. is_node = true;
  3978. }
  3979. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3980. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3981. ggml_format_name(result, "%s (reshaped)", a->name);
  3982. result->op = GGML_OP_RESHAPE;
  3983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3984. result->src[0] = a;
  3985. return result;
  3986. }
  3987. static struct ggml_tensor * ggml_view_impl(
  3988. struct ggml_context * ctx,
  3989. struct ggml_tensor * a,
  3990. int n_dims,
  3991. const int64_t * ne,
  3992. size_t offset) {
  3993. bool is_node = false;
  3994. if (a->grad) {
  3995. is_node = true;
  3996. }
  3997. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3998. ggml_format_name(result, "%s (view)", a->name);
  3999. ggml_set_op_params(result, &offset, sizeof(offset));
  4000. result->op = GGML_OP_VIEW;
  4001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4002. result->src[0] = a;
  4003. return result;
  4004. }
  4005. // ggml_view_1d
  4006. struct ggml_tensor * ggml_view_1d(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a,
  4009. int64_t ne0,
  4010. size_t offset) {
  4011. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4012. return result;
  4013. }
  4014. // ggml_view_2d
  4015. struct ggml_tensor * ggml_view_2d(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a,
  4018. int64_t ne0,
  4019. int64_t ne1,
  4020. size_t nb1,
  4021. size_t offset) {
  4022. const int64_t ne[2] = { ne0, ne1 };
  4023. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4024. result->nb[1] = nb1;
  4025. result->nb[2] = result->nb[1]*ne1;
  4026. result->nb[3] = result->nb[2];
  4027. return result;
  4028. }
  4029. // ggml_view_3d
  4030. struct ggml_tensor * ggml_view_3d(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a,
  4033. int64_t ne0,
  4034. int64_t ne1,
  4035. int64_t ne2,
  4036. size_t nb1,
  4037. size_t nb2,
  4038. size_t offset) {
  4039. const int64_t ne[3] = { ne0, ne1, ne2 };
  4040. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4041. result->nb[1] = nb1;
  4042. result->nb[2] = nb2;
  4043. result->nb[3] = result->nb[2]*ne2;
  4044. return result;
  4045. }
  4046. // ggml_view_4d
  4047. struct ggml_tensor * ggml_view_4d(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. int64_t ne0,
  4051. int64_t ne1,
  4052. int64_t ne2,
  4053. int64_t ne3,
  4054. size_t nb1,
  4055. size_t nb2,
  4056. size_t nb3,
  4057. size_t offset) {
  4058. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4059. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4060. result->nb[1] = nb1;
  4061. result->nb[2] = nb2;
  4062. result->nb[3] = nb3;
  4063. return result;
  4064. }
  4065. // ggml_permute
  4066. struct ggml_tensor * ggml_permute(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a,
  4069. int axis0,
  4070. int axis1,
  4071. int axis2,
  4072. int axis3) {
  4073. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4074. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4075. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4076. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4077. GGML_ASSERT(axis0 != axis1);
  4078. GGML_ASSERT(axis0 != axis2);
  4079. GGML_ASSERT(axis0 != axis3);
  4080. GGML_ASSERT(axis1 != axis2);
  4081. GGML_ASSERT(axis1 != axis3);
  4082. GGML_ASSERT(axis2 != axis3);
  4083. bool is_node = false;
  4084. if (a->grad) {
  4085. is_node = true;
  4086. }
  4087. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4088. ggml_format_name(result, "%s (permuted)", a->name);
  4089. int ne[GGML_MAX_DIMS];
  4090. int nb[GGML_MAX_DIMS];
  4091. ne[axis0] = a->ne[0];
  4092. ne[axis1] = a->ne[1];
  4093. ne[axis2] = a->ne[2];
  4094. ne[axis3] = a->ne[3];
  4095. nb[axis0] = a->nb[0];
  4096. nb[axis1] = a->nb[1];
  4097. nb[axis2] = a->nb[2];
  4098. nb[axis3] = a->nb[3];
  4099. result->ne[0] = ne[0];
  4100. result->ne[1] = ne[1];
  4101. result->ne[2] = ne[2];
  4102. result->ne[3] = ne[3];
  4103. result->nb[0] = nb[0];
  4104. result->nb[1] = nb[1];
  4105. result->nb[2] = nb[2];
  4106. result->nb[3] = nb[3];
  4107. result->op = GGML_OP_PERMUTE;
  4108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4109. result->src[0] = a;
  4110. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4111. ggml_set_op_params(result, params, sizeof(params));
  4112. return result;
  4113. }
  4114. // ggml_transpose
  4115. struct ggml_tensor * ggml_transpose(
  4116. struct ggml_context * ctx,
  4117. struct ggml_tensor * a) {
  4118. bool is_node = false;
  4119. if (a->grad) {
  4120. is_node = true;
  4121. }
  4122. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4123. ggml_format_name(result, "%s (transposed)", a->name);
  4124. result->ne[0] = a->ne[1];
  4125. result->ne[1] = a->ne[0];
  4126. result->nb[0] = a->nb[1];
  4127. result->nb[1] = a->nb[0];
  4128. result->op = GGML_OP_TRANSPOSE;
  4129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4130. result->src[0] = a;
  4131. return result;
  4132. }
  4133. // ggml_get_rows
  4134. struct ggml_tensor * ggml_get_rows(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a,
  4137. struct ggml_tensor * b) {
  4138. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4139. GGML_ASSERT(b->ne[3] == 1);
  4140. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4141. bool is_node = false;
  4142. if (a->grad || b->grad) {
  4143. is_node = true;
  4144. }
  4145. // TODO: implement non F32 return
  4146. enum ggml_type type = GGML_TYPE_F32;
  4147. if (a->type == GGML_TYPE_I32) {
  4148. type = a->type;
  4149. }
  4150. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4151. result->op = GGML_OP_GET_ROWS;
  4152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4153. result->src[0] = a;
  4154. result->src[1] = b;
  4155. return result;
  4156. }
  4157. // ggml_get_rows_back
  4158. struct ggml_tensor * ggml_get_rows_back(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a,
  4161. struct ggml_tensor * b,
  4162. struct ggml_tensor * c) {
  4163. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4164. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4165. bool is_node = false;
  4166. if (a->grad || b->grad) {
  4167. is_node = true;
  4168. }
  4169. // TODO: implement non F32 return
  4170. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4171. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4172. result->op = GGML_OP_GET_ROWS_BACK;
  4173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4174. result->src[0] = a;
  4175. result->src[1] = b;
  4176. return result;
  4177. }
  4178. // ggml_diag
  4179. struct ggml_tensor * ggml_diag(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a) {
  4182. GGML_ASSERT(a->ne[1] == 1);
  4183. bool is_node = false;
  4184. if (a->grad) {
  4185. is_node = true;
  4186. }
  4187. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4188. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4189. result->op = GGML_OP_DIAG;
  4190. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4191. result->src[0] = a;
  4192. return result;
  4193. }
  4194. // ggml_diag_mask_inf
  4195. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. int n_past,
  4199. bool inplace) {
  4200. bool is_node = false;
  4201. if (a->grad) {
  4202. is_node = true;
  4203. }
  4204. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4205. int32_t params[] = { n_past };
  4206. ggml_set_op_params(result, params, sizeof(params));
  4207. result->op = GGML_OP_DIAG_MASK_INF;
  4208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4209. result->src[0] = a;
  4210. return result;
  4211. }
  4212. struct ggml_tensor * ggml_diag_mask_inf(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. int n_past) {
  4216. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4217. }
  4218. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a,
  4221. int n_past) {
  4222. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4223. }
  4224. // ggml_diag_mask_zero
  4225. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a,
  4228. int n_past,
  4229. bool inplace) {
  4230. bool is_node = false;
  4231. if (a->grad) {
  4232. is_node = true;
  4233. }
  4234. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4235. int32_t params[] = { n_past };
  4236. ggml_set_op_params(result, params, sizeof(params));
  4237. result->op = GGML_OP_DIAG_MASK_ZERO;
  4238. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4239. result->src[0] = a;
  4240. return result;
  4241. }
  4242. struct ggml_tensor * ggml_diag_mask_zero(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a,
  4245. int n_past) {
  4246. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4247. }
  4248. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4249. struct ggml_context * ctx,
  4250. struct ggml_tensor * a,
  4251. int n_past) {
  4252. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4253. }
  4254. // ggml_soft_max
  4255. static struct ggml_tensor * ggml_soft_max_impl(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a,
  4258. struct ggml_tensor * mask,
  4259. struct ggml_tensor * pos,
  4260. float scale,
  4261. float max_bias,
  4262. bool inplace) {
  4263. GGML_ASSERT(ggml_is_contiguous(a));
  4264. if (mask) {
  4265. GGML_ASSERT(ggml_is_contiguous(mask));
  4266. GGML_ASSERT(ggml_is_matrix(mask));
  4267. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4268. }
  4269. if (pos) {
  4270. GGML_ASSERT(ggml_is_vector(pos));
  4271. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4272. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4273. }
  4274. if (max_bias > 0.0f) {
  4275. GGML_ASSERT(pos);
  4276. }
  4277. bool is_node = false;
  4278. if (a->grad) {
  4279. is_node = true;
  4280. }
  4281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4282. float params[] = { scale, max_bias };
  4283. ggml_set_op_params(result, params, sizeof(params));
  4284. result->op = GGML_OP_SOFT_MAX;
  4285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4286. result->src[0] = a;
  4287. result->src[1] = mask;
  4288. result->src[2] = pos;
  4289. return result;
  4290. }
  4291. struct ggml_tensor * ggml_soft_max(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a) {
  4294. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4295. }
  4296. struct ggml_tensor * ggml_soft_max_inplace(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a) {
  4299. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4300. }
  4301. struct ggml_tensor * ggml_soft_max_ext(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a,
  4304. struct ggml_tensor * mask,
  4305. struct ggml_tensor * pos,
  4306. float scale,
  4307. float max_bias) {
  4308. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4309. }
  4310. // ggml_soft_max_back
  4311. static struct ggml_tensor * ggml_soft_max_back_impl(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a,
  4314. struct ggml_tensor * b,
  4315. bool inplace) {
  4316. bool is_node = false;
  4317. if (a->grad || b->grad) {
  4318. is_node = true; // TODO : implement backward pass
  4319. }
  4320. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4321. result->op = GGML_OP_SOFT_MAX_BACK;
  4322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4323. result->src[0] = a;
  4324. result->src[1] = b;
  4325. return result;
  4326. }
  4327. struct ggml_tensor * ggml_soft_max_back(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a,
  4330. struct ggml_tensor * b) {
  4331. return ggml_soft_max_back_impl(ctx, a, b, false);
  4332. }
  4333. struct ggml_tensor * ggml_soft_max_back_inplace(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a,
  4336. struct ggml_tensor * b) {
  4337. return ggml_soft_max_back_impl(ctx, a, b, true);
  4338. }
  4339. // ggml_rope
  4340. static struct ggml_tensor * ggml_rope_impl(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a,
  4343. struct ggml_tensor * b,
  4344. int n_dims,
  4345. int mode,
  4346. int n_ctx,
  4347. int n_orig_ctx,
  4348. float freq_base,
  4349. float freq_scale,
  4350. float ext_factor,
  4351. float attn_factor,
  4352. float beta_fast,
  4353. float beta_slow,
  4354. float xpos_base,
  4355. bool xpos_down,
  4356. bool inplace) {
  4357. GGML_ASSERT(ggml_is_vector(b));
  4358. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4359. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4360. bool is_node = false;
  4361. if (a->grad) {
  4362. is_node = true;
  4363. }
  4364. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4365. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4366. memcpy(params + 5, &freq_base, sizeof(float));
  4367. memcpy(params + 6, &freq_scale, sizeof(float));
  4368. memcpy(params + 7, &ext_factor, sizeof(float));
  4369. memcpy(params + 8, &attn_factor, sizeof(float));
  4370. memcpy(params + 9, &beta_fast, sizeof(float));
  4371. memcpy(params + 10, &beta_slow, sizeof(float));
  4372. memcpy(params + 11, &xpos_base, sizeof(float));
  4373. memcpy(params + 12, &xpos_down, sizeof(bool));
  4374. ggml_set_op_params(result, params, sizeof(params));
  4375. result->op = GGML_OP_ROPE;
  4376. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4377. result->src[0] = a;
  4378. result->src[1] = b;
  4379. return result;
  4380. }
  4381. struct ggml_tensor * ggml_rope(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a,
  4384. struct ggml_tensor * b,
  4385. int n_dims,
  4386. int mode,
  4387. int n_ctx) {
  4388. return ggml_rope_impl(
  4389. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4390. );
  4391. }
  4392. struct ggml_tensor * ggml_rope_inplace(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a,
  4395. struct ggml_tensor * b,
  4396. int n_dims,
  4397. int mode,
  4398. int n_ctx) {
  4399. return ggml_rope_impl(
  4400. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4401. );
  4402. }
  4403. struct ggml_tensor * ggml_rope_custom(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a,
  4406. struct ggml_tensor * b,
  4407. int n_dims,
  4408. int mode,
  4409. int n_ctx,
  4410. int n_orig_ctx,
  4411. float freq_base,
  4412. float freq_scale,
  4413. float ext_factor,
  4414. float attn_factor,
  4415. float beta_fast,
  4416. float beta_slow) {
  4417. return ggml_rope_impl(
  4418. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4419. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4420. );
  4421. }
  4422. struct ggml_tensor * ggml_rope_custom_inplace(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. struct ggml_tensor * b,
  4426. int n_dims,
  4427. int mode,
  4428. int n_ctx,
  4429. int n_orig_ctx,
  4430. float freq_base,
  4431. float freq_scale,
  4432. float ext_factor,
  4433. float attn_factor,
  4434. float beta_fast,
  4435. float beta_slow) {
  4436. return ggml_rope_impl(
  4437. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4438. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4439. );
  4440. }
  4441. struct ggml_tensor * ggml_rope_xpos_inplace(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a,
  4444. struct ggml_tensor * b,
  4445. int n_dims,
  4446. float base,
  4447. bool down) {
  4448. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4449. }
  4450. // ggml_rope_back
  4451. struct ggml_tensor * ggml_rope_back(
  4452. struct ggml_context * ctx,
  4453. struct ggml_tensor * a,
  4454. struct ggml_tensor * b,
  4455. int n_dims,
  4456. int mode,
  4457. int n_ctx,
  4458. int n_orig_ctx,
  4459. float freq_base,
  4460. float freq_scale,
  4461. float ext_factor,
  4462. float attn_factor,
  4463. float beta_fast,
  4464. float beta_slow,
  4465. float xpos_base,
  4466. bool xpos_down) {
  4467. GGML_ASSERT(ggml_is_vector(b));
  4468. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4469. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4470. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4471. bool is_node = false;
  4472. if (a->grad) {
  4473. is_node = false; // TODO: implement backward
  4474. }
  4475. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4476. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4477. memcpy(params + 5, &freq_base, sizeof(float));
  4478. memcpy(params + 6, &freq_scale, sizeof(float));
  4479. memcpy(params + 7, &ext_factor, sizeof(float));
  4480. memcpy(params + 8, &attn_factor, sizeof(float));
  4481. memcpy(params + 9, &beta_fast, sizeof(float));
  4482. memcpy(params + 10, &beta_slow, sizeof(float));
  4483. memcpy(params + 11, &xpos_base, sizeof(float));
  4484. memcpy(params + 12, &xpos_down, sizeof(bool));
  4485. ggml_set_op_params(result, params, sizeof(params));
  4486. result->op = GGML_OP_ROPE_BACK;
  4487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4488. result->src[0] = a;
  4489. result->src[1] = b;
  4490. return result;
  4491. }
  4492. // ggml_alibi
  4493. struct ggml_tensor * ggml_alibi(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. int n_past,
  4497. int n_head,
  4498. float bias_max) {
  4499. GGML_ASSERT(n_past >= 0);
  4500. bool is_node = false;
  4501. if (a->grad) {
  4502. GGML_ASSERT(false); // TODO: implement backward
  4503. is_node = true;
  4504. }
  4505. // TODO: when implement backward, fix this:
  4506. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4507. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4508. int32_t op_params[3] = { n_past, n_head };
  4509. memcpy(op_params + 2, &bias_max, sizeof(float));
  4510. ggml_set_op_params(result, op_params, sizeof(op_params));
  4511. result->op = GGML_OP_ALIBI;
  4512. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4513. result->src[0] = a;
  4514. return result;
  4515. }
  4516. // ggml_clamp
  4517. struct ggml_tensor * ggml_clamp(
  4518. struct ggml_context * ctx,
  4519. struct ggml_tensor * a,
  4520. float min,
  4521. float max) {
  4522. bool is_node = false;
  4523. if (a->grad) {
  4524. GGML_ASSERT(false); // TODO: implement backward
  4525. is_node = true;
  4526. }
  4527. // TODO: when implement backward, fix this:
  4528. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4529. float params[] = { min, max };
  4530. ggml_set_op_params(result, params, sizeof(params));
  4531. result->op = GGML_OP_CLAMP;
  4532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4533. result->src[0] = a;
  4534. return result;
  4535. }
  4536. // ggml_conv_1d
  4537. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4538. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4539. }
  4540. GGML_API struct ggml_tensor * ggml_conv_1d(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a,
  4543. struct ggml_tensor * b,
  4544. int s0,
  4545. int p0,
  4546. int d0) {
  4547. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4548. struct ggml_tensor * result =
  4549. ggml_mul_mat(ctx,
  4550. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4551. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4552. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4553. return result;
  4554. }
  4555. // ggml_conv_1d_ph
  4556. struct ggml_tensor* ggml_conv_1d_ph(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a,
  4559. struct ggml_tensor * b,
  4560. int s,
  4561. int d) {
  4562. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4563. }
  4564. // ggml_conv_transpose_1d
  4565. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4566. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4567. }
  4568. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a,
  4571. struct ggml_tensor * b,
  4572. int s0,
  4573. int p0,
  4574. int d0) {
  4575. GGML_ASSERT(ggml_is_matrix(b));
  4576. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4577. GGML_ASSERT(a->ne[3] == 1);
  4578. GGML_ASSERT(p0 == 0);
  4579. GGML_ASSERT(d0 == 1);
  4580. bool is_node = false;
  4581. if (a->grad || b->grad) {
  4582. GGML_ASSERT(false); // TODO: implement backward
  4583. is_node = true;
  4584. }
  4585. const int64_t ne[4] = {
  4586. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4587. a->ne[1], b->ne[2], 1,
  4588. };
  4589. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4590. int32_t params[] = { s0, p0, d0 };
  4591. ggml_set_op_params(result, params, sizeof(params));
  4592. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4594. result->src[0] = a;
  4595. result->src[1] = b;
  4596. return result;
  4597. }
  4598. // ggml_conv_depthwise
  4599. struct ggml_tensor * ggml_conv_depthwise_2d(
  4600. struct ggml_context * ctx,
  4601. struct ggml_tensor * a,
  4602. struct ggml_tensor * b,
  4603. int s0,
  4604. int s1,
  4605. int p0,
  4606. int p1,
  4607. int d0,
  4608. int d1) {
  4609. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4610. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4611. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4612. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4613. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4614. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4615. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4616. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4617. return result;
  4618. }
  4619. // ggml_conv_2d
  4620. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4621. // a: [OC,IC, KH, KW]
  4622. // b: [N, IC, IH, IW]
  4623. // result: [N, OH, OW, IC*KH*KW]
  4624. struct ggml_tensor * ggml_im2col(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. struct ggml_tensor * b,
  4628. int s0,
  4629. int s1,
  4630. int p0,
  4631. int p1,
  4632. int d0,
  4633. int d1,
  4634. bool is_2D,
  4635. enum ggml_type dst_type) {
  4636. if(is_2D) {
  4637. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4638. } else {
  4639. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4640. }
  4641. bool is_node = false;
  4642. if (a->grad || b->grad) {
  4643. GGML_ASSERT(false); // TODO: implement backward
  4644. is_node = true;
  4645. }
  4646. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4647. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4648. const int64_t ne[4] = {
  4649. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4650. OW,
  4651. is_2D ? OH : b->ne[2],
  4652. is_2D ? b->ne[3] : 1,
  4653. };
  4654. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4655. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4656. ggml_set_op_params(result, params, sizeof(params));
  4657. result->op = GGML_OP_IM2COL;
  4658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4659. result->src[0] = a;
  4660. result->src[1] = b;
  4661. return result;
  4662. }
  4663. // a: [OC,IC, KH, KW]
  4664. // b: [N, IC, IH, IW]
  4665. // result: [N, OC, OH, OW]
  4666. struct ggml_tensor * ggml_conv_2d(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * a,
  4669. struct ggml_tensor * b,
  4670. int s0,
  4671. int s1,
  4672. int p0,
  4673. int p1,
  4674. int d0,
  4675. int d1) {
  4676. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4677. struct ggml_tensor * result =
  4678. ggml_mul_mat(ctx,
  4679. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4680. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4681. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4682. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4683. return result;
  4684. }
  4685. // ggml_conv_2d_sk_p0
  4686. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a,
  4689. struct ggml_tensor * b) {
  4690. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4691. }
  4692. // ggml_conv_2d_s1_ph
  4693. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. struct ggml_tensor * b) {
  4697. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4698. }
  4699. // ggml_conv_transpose_2d_p0
  4700. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4701. return (ins - 1) * s - 2 * p + ks;
  4702. }
  4703. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. struct ggml_tensor * b,
  4707. int stride) {
  4708. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4709. bool is_node = false;
  4710. if (a->grad || b->grad) {
  4711. GGML_ASSERT(false); // TODO: implement backward
  4712. is_node = true;
  4713. }
  4714. const int64_t ne[4] = {
  4715. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4716. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4717. a->ne[2], b->ne[3],
  4718. };
  4719. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4720. ggml_set_op_params_i32(result, 0, stride);
  4721. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4723. result->src[0] = a;
  4724. result->src[1] = b;
  4725. return result;
  4726. }
  4727. // ggml_pool_*
  4728. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4729. return (ins + 2 * p - ks) / s + 1;
  4730. }
  4731. // ggml_pool_1d
  4732. struct ggml_tensor * ggml_pool_1d(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a,
  4735. enum ggml_op_pool op,
  4736. int k0,
  4737. int s0,
  4738. int p0) {
  4739. bool is_node = false;
  4740. if (a->grad) {
  4741. GGML_ASSERT(false); // TODO: implement backward
  4742. is_node = true;
  4743. }
  4744. const int64_t ne[2] = {
  4745. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4746. a->ne[1],
  4747. };
  4748. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4749. int32_t params[] = { op, k0, s0, p0 };
  4750. ggml_set_op_params(result, params, sizeof(params));
  4751. result->op = GGML_OP_POOL_1D;
  4752. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4753. result->src[0] = a;
  4754. return result;
  4755. }
  4756. // ggml_pool_2d
  4757. struct ggml_tensor * ggml_pool_2d(
  4758. struct ggml_context * ctx,
  4759. struct ggml_tensor * a,
  4760. enum ggml_op_pool op,
  4761. int k0,
  4762. int k1,
  4763. int s0,
  4764. int s1,
  4765. float p0,
  4766. float p1) {
  4767. bool is_node = false;
  4768. if (a->grad) {
  4769. GGML_ASSERT(false); // TODO: implement backward
  4770. is_node = true;
  4771. }
  4772. struct ggml_tensor * result;
  4773. const int64_t ne[3] = {
  4774. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4775. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4776. a->ne[2],
  4777. };
  4778. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4779. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4780. ggml_set_op_params(result, params, sizeof(params));
  4781. result->op = GGML_OP_POOL_2D;
  4782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4783. result->src[0] = a;
  4784. return result;
  4785. }
  4786. // ggml_upscale
  4787. static struct ggml_tensor * ggml_upscale_impl(
  4788. struct ggml_context * ctx,
  4789. struct ggml_tensor * a,
  4790. int scale_factor) {
  4791. bool is_node = false;
  4792. if (a->grad) {
  4793. GGML_ASSERT(false); // TODO: implement backward
  4794. is_node = true;
  4795. }
  4796. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4797. a->ne[0] * scale_factor,
  4798. a->ne[1] * scale_factor,
  4799. a->ne[2], a->ne[3]);
  4800. result->op = GGML_OP_UPSCALE;
  4801. result->op_params[0] = scale_factor;
  4802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4803. result->src[0] = a;
  4804. return result;
  4805. }
  4806. struct ggml_tensor * ggml_pad(
  4807. struct ggml_context * ctx,
  4808. struct ggml_tensor * a,
  4809. int p0, int p1, int p2, int p3) {
  4810. bool is_node = false;
  4811. if (a->grad) {
  4812. GGML_ASSERT(false); // TODO: implement backward
  4813. is_node = true;
  4814. }
  4815. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4816. a->ne[0] + p0,
  4817. a->ne[1] + p1,
  4818. a->ne[2] + p2,
  4819. a->ne[3] + p3);
  4820. result->op = GGML_OP_PAD;
  4821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4822. result->src[0] = a;
  4823. return result;
  4824. }
  4825. struct ggml_tensor * ggml_upscale(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. int scale_factor) {
  4829. return ggml_upscale_impl(ctx, a, scale_factor);
  4830. }
  4831. // ggml_argsort
  4832. struct ggml_tensor * ggml_argsort(
  4833. struct ggml_context * ctx,
  4834. struct ggml_tensor * a,
  4835. enum ggml_sort_order order) {
  4836. bool is_node = false;
  4837. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4838. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4839. result->op = GGML_OP_ARGSORT;
  4840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4841. result->src[0] = a;
  4842. return result;
  4843. }
  4844. // ggml_top_k
  4845. struct ggml_tensor * ggml_top_k(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. int k) {
  4849. GGML_ASSERT(a->ne[0] >= k);
  4850. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  4851. result = ggml_view_4d(ctx, result,
  4852. k, result->ne[1], result->ne[2], result->ne[3],
  4853. result->nb[1], result->nb[2], result->nb[3],
  4854. 0);
  4855. return result;
  4856. }
  4857. // ggml_flash_attn
  4858. struct ggml_tensor * ggml_flash_attn(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * q,
  4861. struct ggml_tensor * k,
  4862. struct ggml_tensor * v,
  4863. bool masked) {
  4864. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4865. // TODO: check if vT can be multiplied by (k*qT)
  4866. bool is_node = false;
  4867. if (q->grad || k->grad || v->grad) {
  4868. is_node = true;
  4869. }
  4870. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4871. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4872. int32_t t = masked ? 1 : 0;
  4873. ggml_set_op_params(result, &t, sizeof(t));
  4874. result->op = GGML_OP_FLASH_ATTN;
  4875. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4876. result->src[0] = q;
  4877. result->src[1] = k;
  4878. result->src[2] = v;
  4879. return result;
  4880. }
  4881. // ggml_flash_ff
  4882. struct ggml_tensor * ggml_flash_ff(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. struct ggml_tensor * b0,
  4886. struct ggml_tensor * b1,
  4887. struct ggml_tensor * c0,
  4888. struct ggml_tensor * c1) {
  4889. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4890. // TODO: more checks
  4891. bool is_node = false;
  4892. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4893. is_node = true;
  4894. }
  4895. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4896. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4897. result->op = GGML_OP_FLASH_FF;
  4898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4899. result->src[0] = a;
  4900. result->src[1] = b0;
  4901. result->src[2] = b1;
  4902. result->src[3] = c0;
  4903. result->src[4] = c1;
  4904. return result;
  4905. }
  4906. // ggml_flash_attn_back
  4907. struct ggml_tensor * ggml_flash_attn_back(
  4908. struct ggml_context * ctx,
  4909. struct ggml_tensor * q,
  4910. struct ggml_tensor * k,
  4911. struct ggml_tensor * v,
  4912. struct ggml_tensor * d,
  4913. bool masked) {
  4914. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4915. // TODO: check if vT can be multiplied by (k*qT)
  4916. // d shape [D,N,ne2,ne3]
  4917. // q shape [D,N,ne2,ne3]
  4918. // k shape [D,M,kvne2,ne3]
  4919. // v shape [M,D,kvne2,ne3]
  4920. const int64_t D = q->ne[0];
  4921. const int64_t N = q->ne[1];
  4922. const int64_t M = k->ne[1];
  4923. const int64_t ne2 = q->ne[2];
  4924. const int64_t ne3 = q->ne[3];
  4925. const int64_t kvne2 = k->ne[2];
  4926. GGML_ASSERT(k->ne[0] == D);
  4927. GGML_ASSERT(v->ne[0] == M);
  4928. GGML_ASSERT(v->ne[1] == D);
  4929. GGML_ASSERT(d->ne[0] == D);
  4930. GGML_ASSERT(d->ne[1] == N);
  4931. GGML_ASSERT(k->ne[2] == kvne2);
  4932. GGML_ASSERT(k->ne[3] == ne3);
  4933. GGML_ASSERT(v->ne[2] == kvne2);
  4934. GGML_ASSERT(v->ne[3] == ne3);
  4935. GGML_ASSERT(d->ne[2] == ne2);
  4936. GGML_ASSERT(d->ne[3] == ne3);
  4937. GGML_ASSERT(ne2 % kvne2 == 0);
  4938. bool is_node = false;
  4939. if (q->grad || k->grad || v->grad) {
  4940. // when using this operation (in backwards pass) these grads are set.
  4941. // we don't want to create (big) grad of our result, so is_node is false.
  4942. is_node = false;
  4943. }
  4944. // store gradients of q, k and v as continuous tensors concatenated in result.
  4945. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4946. const int64_t elem_q = ggml_nelements(q);
  4947. const int64_t elem_k = ggml_nelements(k);
  4948. const int64_t elem_v = ggml_nelements(v);
  4949. enum ggml_type result_type = GGML_TYPE_F32;
  4950. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4951. const size_t tsize = ggml_type_size(result_type);
  4952. const size_t offs_q = 0;
  4953. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4954. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4955. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4956. const size_t nelements = (end + tsize - 1)/tsize;
  4957. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4958. int32_t masked_i = masked ? 1 : 0;
  4959. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4960. result->op = GGML_OP_FLASH_ATTN_BACK;
  4961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4962. result->src[0] = q;
  4963. result->src[1] = k;
  4964. result->src[2] = v;
  4965. result->src[3] = d;
  4966. return result;
  4967. }
  4968. // ggml_win_part
  4969. struct ggml_tensor * ggml_win_part(
  4970. struct ggml_context * ctx,
  4971. struct ggml_tensor * a,
  4972. int w) {
  4973. GGML_ASSERT(a->ne[3] == 1);
  4974. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4975. bool is_node = false;
  4976. if (a->grad) {
  4977. GGML_ASSERT(false); // TODO: implement backward
  4978. is_node = true;
  4979. }
  4980. // padding
  4981. const int px = (w - a->ne[1]%w)%w;
  4982. const int py = (w - a->ne[2]%w)%w;
  4983. const int npx = (px + a->ne[1])/w;
  4984. const int npy = (py + a->ne[2])/w;
  4985. const int np = npx*npy;
  4986. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4987. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4988. int32_t params[] = { npx, npy, w };
  4989. ggml_set_op_params(result, params, sizeof(params));
  4990. result->op = GGML_OP_WIN_PART;
  4991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4992. result->src[0] = a;
  4993. return result;
  4994. }
  4995. // ggml_win_unpart
  4996. struct ggml_tensor * ggml_win_unpart(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a,
  4999. int w0,
  5000. int h0,
  5001. int w) {
  5002. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5003. bool is_node = false;
  5004. if (a->grad) {
  5005. GGML_ASSERT(false); // TODO: implement backward
  5006. is_node = true;
  5007. }
  5008. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5009. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5010. int32_t params[] = { w };
  5011. ggml_set_op_params(result, params, sizeof(params));
  5012. result->op = GGML_OP_WIN_UNPART;
  5013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5014. result->src[0] = a;
  5015. return result;
  5016. }
  5017. // ggml_get_rel_pos
  5018. struct ggml_tensor * ggml_get_rel_pos(
  5019. struct ggml_context * ctx,
  5020. struct ggml_tensor * a,
  5021. int qh,
  5022. int kh) {
  5023. GGML_ASSERT(qh == kh);
  5024. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5025. bool is_node = false;
  5026. if (a->grad) {
  5027. GGML_ASSERT(false); // TODO: implement backward
  5028. is_node = true;
  5029. }
  5030. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5031. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5032. result->op = GGML_OP_GET_REL_POS;
  5033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5034. result->src[0] = a;
  5035. return result;
  5036. }
  5037. // ggml_add_rel_pos
  5038. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a,
  5041. struct ggml_tensor * pw,
  5042. struct ggml_tensor * ph,
  5043. bool inplace) {
  5044. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5045. GGML_ASSERT(ggml_is_contiguous(a));
  5046. GGML_ASSERT(ggml_is_contiguous(pw));
  5047. GGML_ASSERT(ggml_is_contiguous(ph));
  5048. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5049. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5050. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5051. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5052. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5053. bool is_node = false;
  5054. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5055. is_node = true;
  5056. }
  5057. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5058. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5059. result->op = GGML_OP_ADD_REL_POS;
  5060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5061. result->src[0] = a;
  5062. result->src[1] = pw;
  5063. result->src[2] = ph;
  5064. return result;
  5065. }
  5066. struct ggml_tensor * ggml_add_rel_pos(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a,
  5069. struct ggml_tensor * pw,
  5070. struct ggml_tensor * ph) {
  5071. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5072. }
  5073. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a,
  5076. struct ggml_tensor * pw,
  5077. struct ggml_tensor * ph) {
  5078. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5079. }
  5080. // gmml_unary
  5081. static struct ggml_tensor * ggml_unary_impl(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. enum ggml_unary_op op,
  5085. bool inplace) {
  5086. bool is_node = false;
  5087. if (!inplace && (a->grad)) {
  5088. is_node = true;
  5089. }
  5090. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5091. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5092. result->op = GGML_OP_UNARY;
  5093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5094. result->src[0] = a;
  5095. return result;
  5096. }
  5097. struct ggml_tensor * ggml_unary(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. enum ggml_unary_op op) {
  5101. return ggml_unary_impl(ctx, a, op, false);
  5102. }
  5103. struct ggml_tensor * ggml_unary_inplace(
  5104. struct ggml_context * ctx,
  5105. struct ggml_tensor * a,
  5106. enum ggml_unary_op op) {
  5107. return ggml_unary_impl(ctx, a, op, true);
  5108. }
  5109. // ggml_map_unary
  5110. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5111. struct ggml_context * ctx,
  5112. struct ggml_tensor * a,
  5113. const ggml_unary_op_f32_t fun,
  5114. bool inplace) {
  5115. bool is_node = false;
  5116. if (!inplace && a->grad) {
  5117. is_node = true;
  5118. }
  5119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5120. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5121. result->op = GGML_OP_MAP_UNARY;
  5122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5123. result->src[0] = a;
  5124. return result;
  5125. }
  5126. struct ggml_tensor * ggml_map_unary_f32(
  5127. struct ggml_context * ctx,
  5128. struct ggml_tensor * a,
  5129. const ggml_unary_op_f32_t fun) {
  5130. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5131. }
  5132. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5133. struct ggml_context * ctx,
  5134. struct ggml_tensor * a,
  5135. const ggml_unary_op_f32_t fun) {
  5136. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5137. }
  5138. // ggml_map_binary
  5139. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5140. struct ggml_context * ctx,
  5141. struct ggml_tensor * a,
  5142. struct ggml_tensor * b,
  5143. const ggml_binary_op_f32_t fun,
  5144. bool inplace) {
  5145. GGML_ASSERT(ggml_are_same_shape(a, b));
  5146. bool is_node = false;
  5147. if (!inplace && (a->grad || b->grad)) {
  5148. is_node = true;
  5149. }
  5150. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5151. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5152. result->op = GGML_OP_MAP_BINARY;
  5153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5154. result->src[0] = a;
  5155. result->src[1] = b;
  5156. return result;
  5157. }
  5158. struct ggml_tensor * ggml_map_binary_f32(
  5159. struct ggml_context * ctx,
  5160. struct ggml_tensor * a,
  5161. struct ggml_tensor * b,
  5162. const ggml_binary_op_f32_t fun) {
  5163. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5164. }
  5165. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5166. struct ggml_context * ctx,
  5167. struct ggml_tensor * a,
  5168. struct ggml_tensor * b,
  5169. const ggml_binary_op_f32_t fun) {
  5170. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5171. }
  5172. // ggml_map_custom1_f32
  5173. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. const ggml_custom1_op_f32_t fun,
  5177. bool inplace) {
  5178. bool is_node = false;
  5179. if (!inplace && a->grad) {
  5180. is_node = true;
  5181. }
  5182. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5183. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5184. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5186. result->src[0] = a;
  5187. return result;
  5188. }
  5189. struct ggml_tensor * ggml_map_custom1_f32(
  5190. struct ggml_context * ctx,
  5191. struct ggml_tensor * a,
  5192. const ggml_custom1_op_f32_t fun) {
  5193. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5194. }
  5195. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5196. struct ggml_context * ctx,
  5197. struct ggml_tensor * a,
  5198. const ggml_custom1_op_f32_t fun) {
  5199. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5200. }
  5201. // ggml_map_custom2_f32
  5202. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5203. struct ggml_context * ctx,
  5204. struct ggml_tensor * a,
  5205. struct ggml_tensor * b,
  5206. const ggml_custom2_op_f32_t fun,
  5207. bool inplace) {
  5208. bool is_node = false;
  5209. if (!inplace && (a->grad || b->grad)) {
  5210. is_node = true;
  5211. }
  5212. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5213. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5214. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5216. result->src[0] = a;
  5217. result->src[1] = b;
  5218. return result;
  5219. }
  5220. struct ggml_tensor * ggml_map_custom2_f32(
  5221. struct ggml_context * ctx,
  5222. struct ggml_tensor * a,
  5223. struct ggml_tensor * b,
  5224. const ggml_custom2_op_f32_t fun) {
  5225. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5226. }
  5227. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5228. struct ggml_context * ctx,
  5229. struct ggml_tensor * a,
  5230. struct ggml_tensor * b,
  5231. const ggml_custom2_op_f32_t fun) {
  5232. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5233. }
  5234. // ggml_map_custom3_f32
  5235. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5236. struct ggml_context * ctx,
  5237. struct ggml_tensor * a,
  5238. struct ggml_tensor * b,
  5239. struct ggml_tensor * c,
  5240. const ggml_custom3_op_f32_t fun,
  5241. bool inplace) {
  5242. bool is_node = false;
  5243. if (!inplace && (a->grad || b->grad || c->grad)) {
  5244. is_node = true;
  5245. }
  5246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5247. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5248. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5249. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5250. result->src[0] = a;
  5251. result->src[1] = b;
  5252. result->src[2] = c;
  5253. return result;
  5254. }
  5255. struct ggml_tensor * ggml_map_custom3_f32(
  5256. struct ggml_context * ctx,
  5257. struct ggml_tensor * a,
  5258. struct ggml_tensor * b,
  5259. struct ggml_tensor * c,
  5260. const ggml_custom3_op_f32_t fun) {
  5261. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5262. }
  5263. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5264. struct ggml_context * ctx,
  5265. struct ggml_tensor * a,
  5266. struct ggml_tensor * b,
  5267. struct ggml_tensor * c,
  5268. const ggml_custom3_op_f32_t fun) {
  5269. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5270. }
  5271. // ggml_map_custom1
  5272. struct ggml_map_custom1_op_params {
  5273. ggml_custom1_op_t fun;
  5274. int n_tasks;
  5275. void * userdata;
  5276. };
  5277. static struct ggml_tensor * ggml_map_custom1_impl(
  5278. struct ggml_context * ctx,
  5279. struct ggml_tensor * a,
  5280. const ggml_custom1_op_t fun,
  5281. int n_tasks,
  5282. void * userdata,
  5283. bool inplace) {
  5284. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5285. bool is_node = false;
  5286. if (!inplace && a->grad) {
  5287. is_node = true;
  5288. }
  5289. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5290. struct ggml_map_custom1_op_params params = {
  5291. /*.fun =*/ fun,
  5292. /*.n_tasks =*/ n_tasks,
  5293. /*.userdata =*/ userdata
  5294. };
  5295. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5296. result->op = GGML_OP_MAP_CUSTOM1;
  5297. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5298. result->src[0] = a;
  5299. return result;
  5300. }
  5301. struct ggml_tensor * ggml_map_custom1(
  5302. struct ggml_context * ctx,
  5303. struct ggml_tensor * a,
  5304. const ggml_custom1_op_t fun,
  5305. int n_tasks,
  5306. void * userdata) {
  5307. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5308. }
  5309. struct ggml_tensor * ggml_map_custom1_inplace(
  5310. struct ggml_context * ctx,
  5311. struct ggml_tensor * a,
  5312. const ggml_custom1_op_t fun,
  5313. int n_tasks,
  5314. void * userdata) {
  5315. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5316. }
  5317. // ggml_map_custom2
  5318. struct ggml_map_custom2_op_params {
  5319. ggml_custom2_op_t fun;
  5320. int n_tasks;
  5321. void * userdata;
  5322. };
  5323. static struct ggml_tensor * ggml_map_custom2_impl(
  5324. struct ggml_context * ctx,
  5325. struct ggml_tensor * a,
  5326. struct ggml_tensor * b,
  5327. const ggml_custom2_op_t fun,
  5328. int n_tasks,
  5329. void * userdata,
  5330. bool inplace) {
  5331. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5332. bool is_node = false;
  5333. if (!inplace && (a->grad || b->grad)) {
  5334. is_node = true;
  5335. }
  5336. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5337. struct ggml_map_custom2_op_params params = {
  5338. /*.fun =*/ fun,
  5339. /*.n_tasks =*/ n_tasks,
  5340. /*.userdata =*/ userdata
  5341. };
  5342. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5343. result->op = GGML_OP_MAP_CUSTOM2;
  5344. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5345. result->src[0] = a;
  5346. result->src[1] = b;
  5347. return result;
  5348. }
  5349. struct ggml_tensor * ggml_map_custom2(
  5350. struct ggml_context * ctx,
  5351. struct ggml_tensor * a,
  5352. struct ggml_tensor * b,
  5353. const ggml_custom2_op_t fun,
  5354. int n_tasks,
  5355. void * userdata) {
  5356. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5357. }
  5358. struct ggml_tensor * ggml_map_custom2_inplace(
  5359. struct ggml_context * ctx,
  5360. struct ggml_tensor * a,
  5361. struct ggml_tensor * b,
  5362. const ggml_custom2_op_t fun,
  5363. int n_tasks,
  5364. void * userdata) {
  5365. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5366. }
  5367. // ggml_map_custom3
  5368. struct ggml_map_custom3_op_params {
  5369. ggml_custom3_op_t fun;
  5370. int n_tasks;
  5371. void * userdata;
  5372. };
  5373. static struct ggml_tensor * ggml_map_custom3_impl(
  5374. struct ggml_context * ctx,
  5375. struct ggml_tensor * a,
  5376. struct ggml_tensor * b,
  5377. struct ggml_tensor * c,
  5378. const ggml_custom3_op_t fun,
  5379. int n_tasks,
  5380. void * userdata,
  5381. bool inplace) {
  5382. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5383. bool is_node = false;
  5384. if (!inplace && (a->grad || b->grad || c->grad)) {
  5385. is_node = true;
  5386. }
  5387. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5388. struct ggml_map_custom3_op_params params = {
  5389. /*.fun =*/ fun,
  5390. /*.n_tasks =*/ n_tasks,
  5391. /*.userdata =*/ userdata
  5392. };
  5393. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5394. result->op = GGML_OP_MAP_CUSTOM3;
  5395. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5396. result->src[0] = a;
  5397. result->src[1] = b;
  5398. result->src[2] = c;
  5399. return result;
  5400. }
  5401. struct ggml_tensor * ggml_map_custom3(
  5402. struct ggml_context * ctx,
  5403. struct ggml_tensor * a,
  5404. struct ggml_tensor * b,
  5405. struct ggml_tensor * c,
  5406. const ggml_custom3_op_t fun,
  5407. int n_tasks,
  5408. void * userdata) {
  5409. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5410. }
  5411. struct ggml_tensor * ggml_map_custom3_inplace(
  5412. struct ggml_context * ctx,
  5413. struct ggml_tensor * a,
  5414. struct ggml_tensor * b,
  5415. struct ggml_tensor * c,
  5416. const ggml_custom3_op_t fun,
  5417. int n_tasks,
  5418. void * userdata) {
  5419. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5420. }
  5421. // ggml_cross_entropy_loss
  5422. struct ggml_tensor * ggml_cross_entropy_loss(
  5423. struct ggml_context * ctx,
  5424. struct ggml_tensor * a,
  5425. struct ggml_tensor * b) {
  5426. GGML_ASSERT(ggml_are_same_shape(a, b));
  5427. bool is_node = false;
  5428. if (a->grad || b->grad) {
  5429. is_node = true;
  5430. }
  5431. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5432. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5434. result->src[0] = a;
  5435. result->src[1] = b;
  5436. return result;
  5437. }
  5438. // ggml_cross_entropy_loss_back
  5439. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5440. struct ggml_context * ctx,
  5441. struct ggml_tensor * a,
  5442. struct ggml_tensor * b,
  5443. struct ggml_tensor * c) {
  5444. GGML_ASSERT(ggml_are_same_shape(a, b));
  5445. GGML_ASSERT(ggml_is_scalar(c));
  5446. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5447. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5448. result->grad = NULL;
  5449. result->src[0] = a;
  5450. result->src[1] = b;
  5451. result->src[2] = c;
  5452. return result;
  5453. }
  5454. ////////////////////////////////////////////////////////////////////////////////
  5455. void ggml_set_param(
  5456. struct ggml_context * ctx,
  5457. struct ggml_tensor * tensor) {
  5458. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5459. GGML_ASSERT(tensor->grad == NULL);
  5460. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5461. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5462. }
  5463. // ggml_compute_forward_dup
  5464. static void ggml_compute_forward_dup_same_cont(
  5465. const struct ggml_compute_params * params,
  5466. struct ggml_tensor * dst) {
  5467. const struct ggml_tensor * src0 = dst->src[0];
  5468. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5469. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5470. GGML_ASSERT(src0->type == dst->type);
  5471. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5472. return;
  5473. }
  5474. const size_t nb00 = src0->nb[0];
  5475. const size_t nb0 = dst->nb[0];
  5476. const int ith = params->ith; // thread index
  5477. const int nth = params->nth; // number of threads
  5478. // parallelize by elements
  5479. const int ne = ggml_nelements(dst);
  5480. const int dr = (ne + nth - 1) / nth;
  5481. const int ie0 = dr * ith;
  5482. const int ie1 = MIN(ie0 + dr, ne);
  5483. if (ie0 < ie1) {
  5484. memcpy(
  5485. ((char *) dst->data + ie0*nb0),
  5486. ((char *) src0->data + ie0*nb00),
  5487. (ie1 - ie0) * ggml_type_size(src0->type));
  5488. }
  5489. }
  5490. static void ggml_compute_forward_dup_f16(
  5491. const struct ggml_compute_params * params,
  5492. struct ggml_tensor * dst) {
  5493. const struct ggml_tensor * src0 = dst->src[0];
  5494. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5495. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5496. return;
  5497. }
  5498. GGML_TENSOR_UNARY_OP_LOCALS
  5499. const int ith = params->ith; // thread index
  5500. const int nth = params->nth; // number of threads
  5501. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5502. ggml_compute_forward_dup_same_cont(params, dst);
  5503. return;
  5504. }
  5505. // parallelize by rows
  5506. const int nr = ne01;
  5507. // number of rows per thread
  5508. const int dr = (nr + nth - 1) / nth;
  5509. // row range for this thread
  5510. const int ir0 = dr * ith;
  5511. const int ir1 = MIN(ir0 + dr, nr);
  5512. if (src0->type == dst->type &&
  5513. ne00 == ne0 &&
  5514. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5515. // copy by rows
  5516. const size_t rs = ne00*nb00;
  5517. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5518. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5519. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5520. memcpy(
  5521. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5522. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5523. rs);
  5524. }
  5525. }
  5526. }
  5527. return;
  5528. }
  5529. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5530. if (ggml_is_contiguous(dst)) {
  5531. if (nb00 == sizeof(ggml_fp16_t)) {
  5532. if (dst->type == GGML_TYPE_F16) {
  5533. size_t id = 0;
  5534. const size_t rs = ne00 * nb00;
  5535. char * dst_ptr = (char *) dst->data;
  5536. for (int i03 = 0; i03 < ne03; i03++) {
  5537. for (int i02 = 0; i02 < ne02; i02++) {
  5538. id += rs * ir0;
  5539. for (int i01 = ir0; i01 < ir1; i01++) {
  5540. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5541. memcpy(dst_ptr + id, src0_ptr, rs);
  5542. id += rs;
  5543. }
  5544. id += rs * (ne01 - ir1);
  5545. }
  5546. }
  5547. } else if (dst->type == GGML_TYPE_F32) {
  5548. size_t id = 0;
  5549. float * dst_ptr = (float *) dst->data;
  5550. for (int i03 = 0; i03 < ne03; i03++) {
  5551. for (int i02 = 0; i02 < ne02; i02++) {
  5552. id += ne00 * ir0;
  5553. for (int i01 = ir0; i01 < ir1; i01++) {
  5554. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5555. for (int i00 = 0; i00 < ne00; i00++) {
  5556. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5557. id++;
  5558. }
  5559. }
  5560. id += ne00 * (ne01 - ir1);
  5561. }
  5562. }
  5563. } else if (type_traits[dst->type].from_float) {
  5564. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5565. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5566. size_t id = 0;
  5567. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5568. char * dst_ptr = (char *) dst->data;
  5569. for (int i03 = 0; i03 < ne03; i03++) {
  5570. for (int i02 = 0; i02 < ne02; i02++) {
  5571. id += rs * ir0;
  5572. for (int i01 = ir0; i01 < ir1; i01++) {
  5573. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5574. for (int i00 = 0; i00 < ne00; i00++) {
  5575. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5576. }
  5577. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5578. id += rs;
  5579. }
  5580. id += rs * (ne01 - ir1);
  5581. }
  5582. }
  5583. } else {
  5584. GGML_ASSERT(false); // TODO: implement
  5585. }
  5586. } else {
  5587. //printf("%s: this is not optimal - fix me\n", __func__);
  5588. if (dst->type == GGML_TYPE_F32) {
  5589. size_t id = 0;
  5590. float * dst_ptr = (float *) dst->data;
  5591. for (int i03 = 0; i03 < ne03; i03++) {
  5592. for (int i02 = 0; i02 < ne02; i02++) {
  5593. id += ne00 * ir0;
  5594. for (int i01 = ir0; i01 < ir1; i01++) {
  5595. for (int i00 = 0; i00 < ne00; i00++) {
  5596. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5597. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5598. id++;
  5599. }
  5600. }
  5601. id += ne00 * (ne01 - ir1);
  5602. }
  5603. }
  5604. } else if (dst->type == GGML_TYPE_F16) {
  5605. size_t id = 0;
  5606. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5607. for (int i03 = 0; i03 < ne03; i03++) {
  5608. for (int i02 = 0; i02 < ne02; i02++) {
  5609. id += ne00 * ir0;
  5610. for (int i01 = ir0; i01 < ir1; i01++) {
  5611. for (int i00 = 0; i00 < ne00; i00++) {
  5612. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5613. dst_ptr[id] = *src0_ptr;
  5614. id++;
  5615. }
  5616. }
  5617. id += ne00 * (ne01 - ir1);
  5618. }
  5619. }
  5620. } else {
  5621. GGML_ASSERT(false); // TODO: implement
  5622. }
  5623. }
  5624. return;
  5625. }
  5626. // dst counters
  5627. int64_t i10 = 0;
  5628. int64_t i11 = 0;
  5629. int64_t i12 = 0;
  5630. int64_t i13 = 0;
  5631. if (dst->type == GGML_TYPE_F16) {
  5632. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5633. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5634. i10 += ne00 * ir0;
  5635. while (i10 >= ne0) {
  5636. i10 -= ne0;
  5637. if (++i11 == ne1) {
  5638. i11 = 0;
  5639. if (++i12 == ne2) {
  5640. i12 = 0;
  5641. if (++i13 == ne3) {
  5642. i13 = 0;
  5643. }
  5644. }
  5645. }
  5646. }
  5647. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5648. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5649. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5650. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5651. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5652. if (++i10 == ne00) {
  5653. i10 = 0;
  5654. if (++i11 == ne01) {
  5655. i11 = 0;
  5656. if (++i12 == ne02) {
  5657. i12 = 0;
  5658. if (++i13 == ne03) {
  5659. i13 = 0;
  5660. }
  5661. }
  5662. }
  5663. }
  5664. }
  5665. }
  5666. i10 += ne00 * (ne01 - ir1);
  5667. while (i10 >= ne0) {
  5668. i10 -= ne0;
  5669. if (++i11 == ne1) {
  5670. i11 = 0;
  5671. if (++i12 == ne2) {
  5672. i12 = 0;
  5673. if (++i13 == ne3) {
  5674. i13 = 0;
  5675. }
  5676. }
  5677. }
  5678. }
  5679. }
  5680. }
  5681. } else if (dst->type == GGML_TYPE_F32) {
  5682. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5683. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5684. i10 += ne00 * ir0;
  5685. while (i10 >= ne0) {
  5686. i10 -= ne0;
  5687. if (++i11 == ne1) {
  5688. i11 = 0;
  5689. if (++i12 == ne2) {
  5690. i12 = 0;
  5691. if (++i13 == ne3) {
  5692. i13 = 0;
  5693. }
  5694. }
  5695. }
  5696. }
  5697. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5698. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5699. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5700. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5701. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5702. if (++i10 == ne0) {
  5703. i10 = 0;
  5704. if (++i11 == ne1) {
  5705. i11 = 0;
  5706. if (++i12 == ne2) {
  5707. i12 = 0;
  5708. if (++i13 == ne3) {
  5709. i13 = 0;
  5710. }
  5711. }
  5712. }
  5713. }
  5714. }
  5715. }
  5716. i10 += ne00 * (ne01 - ir1);
  5717. while (i10 >= ne0) {
  5718. i10 -= ne0;
  5719. if (++i11 == ne1) {
  5720. i11 = 0;
  5721. if (++i12 == ne2) {
  5722. i12 = 0;
  5723. if (++i13 == ne3) {
  5724. i13 = 0;
  5725. }
  5726. }
  5727. }
  5728. }
  5729. }
  5730. }
  5731. } else {
  5732. GGML_ASSERT(false); // TODO: implement
  5733. }
  5734. }
  5735. static void ggml_compute_forward_dup_f32(
  5736. const struct ggml_compute_params * params,
  5737. struct ggml_tensor * dst) {
  5738. const struct ggml_tensor * src0 = dst->src[0];
  5739. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5740. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5741. return;
  5742. }
  5743. GGML_TENSOR_UNARY_OP_LOCALS
  5744. const int ith = params->ith; // thread index
  5745. const int nth = params->nth; // number of threads
  5746. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5747. ggml_compute_forward_dup_same_cont(params, dst);
  5748. return;
  5749. }
  5750. // parallelize by rows
  5751. const int nr = ne01;
  5752. // number of rows per thread
  5753. const int dr = (nr + nth - 1) / nth;
  5754. // row range for this thread
  5755. const int ir0 = dr * ith;
  5756. const int ir1 = MIN(ir0 + dr, nr);
  5757. if (src0->type == dst->type &&
  5758. ne00 == ne0 &&
  5759. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5760. // copy by rows
  5761. const size_t rs = ne00*nb00;
  5762. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5763. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5764. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5765. memcpy(
  5766. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5767. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5768. rs);
  5769. }
  5770. }
  5771. }
  5772. return;
  5773. }
  5774. if (ggml_is_contiguous(dst)) {
  5775. // TODO: simplify
  5776. if (nb00 == sizeof(float)) {
  5777. if (dst->type == GGML_TYPE_F32) {
  5778. size_t id = 0;
  5779. const size_t rs = ne00 * nb00;
  5780. char * dst_ptr = (char *) dst->data;
  5781. for (int i03 = 0; i03 < ne03; i03++) {
  5782. for (int i02 = 0; i02 < ne02; i02++) {
  5783. id += rs * ir0;
  5784. for (int i01 = ir0; i01 < ir1; i01++) {
  5785. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5786. memcpy(dst_ptr + id, src0_ptr, rs);
  5787. id += rs;
  5788. }
  5789. id += rs * (ne01 - ir1);
  5790. }
  5791. }
  5792. } else if (type_traits[dst->type].from_float) {
  5793. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5794. size_t id = 0;
  5795. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5796. char * dst_ptr = (char *) dst->data;
  5797. for (int i03 = 0; i03 < ne03; i03++) {
  5798. for (int i02 = 0; i02 < ne02; i02++) {
  5799. id += rs * ir0;
  5800. for (int i01 = ir0; i01 < ir1; i01++) {
  5801. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5802. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5803. id += rs;
  5804. }
  5805. id += rs * (ne01 - ir1);
  5806. }
  5807. }
  5808. } else {
  5809. GGML_ASSERT(false); // TODO: implement
  5810. }
  5811. } else {
  5812. //printf("%s: this is not optimal - fix me\n", __func__);
  5813. if (dst->type == GGML_TYPE_F32) {
  5814. size_t id = 0;
  5815. float * dst_ptr = (float *) dst->data;
  5816. for (int i03 = 0; i03 < ne03; i03++) {
  5817. for (int i02 = 0; i02 < ne02; i02++) {
  5818. id += ne00 * ir0;
  5819. for (int i01 = ir0; i01 < ir1; i01++) {
  5820. for (int i00 = 0; i00 < ne00; i00++) {
  5821. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5822. dst_ptr[id] = *src0_ptr;
  5823. id++;
  5824. }
  5825. }
  5826. id += ne00 * (ne01 - ir1);
  5827. }
  5828. }
  5829. } else if (dst->type == GGML_TYPE_F16) {
  5830. size_t id = 0;
  5831. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5832. for (int i03 = 0; i03 < ne03; i03++) {
  5833. for (int i02 = 0; i02 < ne02; i02++) {
  5834. id += ne00 * ir0;
  5835. for (int i01 = ir0; i01 < ir1; i01++) {
  5836. for (int i00 = 0; i00 < ne00; i00++) {
  5837. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5838. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5839. id++;
  5840. }
  5841. }
  5842. id += ne00 * (ne01 - ir1);
  5843. }
  5844. }
  5845. } else {
  5846. GGML_ASSERT(false); // TODO: implement
  5847. }
  5848. }
  5849. return;
  5850. }
  5851. // dst counters
  5852. int64_t i10 = 0;
  5853. int64_t i11 = 0;
  5854. int64_t i12 = 0;
  5855. int64_t i13 = 0;
  5856. if (dst->type == GGML_TYPE_F32) {
  5857. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5858. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5859. i10 += ne00 * ir0;
  5860. while (i10 >= ne0) {
  5861. i10 -= ne0;
  5862. if (++i11 == ne1) {
  5863. i11 = 0;
  5864. if (++i12 == ne2) {
  5865. i12 = 0;
  5866. if (++i13 == ne3) {
  5867. i13 = 0;
  5868. }
  5869. }
  5870. }
  5871. }
  5872. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5873. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5874. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5875. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5876. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5877. if (++i10 == ne0) {
  5878. i10 = 0;
  5879. if (++i11 == ne1) {
  5880. i11 = 0;
  5881. if (++i12 == ne2) {
  5882. i12 = 0;
  5883. if (++i13 == ne3) {
  5884. i13 = 0;
  5885. }
  5886. }
  5887. }
  5888. }
  5889. }
  5890. }
  5891. i10 += ne00 * (ne01 - ir1);
  5892. while (i10 >= ne0) {
  5893. i10 -= ne0;
  5894. if (++i11 == ne1) {
  5895. i11 = 0;
  5896. if (++i12 == ne2) {
  5897. i12 = 0;
  5898. if (++i13 == ne3) {
  5899. i13 = 0;
  5900. }
  5901. }
  5902. }
  5903. }
  5904. }
  5905. }
  5906. } else if (dst->type == GGML_TYPE_F16) {
  5907. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5908. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5909. i10 += ne00 * ir0;
  5910. while (i10 >= ne0) {
  5911. i10 -= ne0;
  5912. if (++i11 == ne1) {
  5913. i11 = 0;
  5914. if (++i12 == ne2) {
  5915. i12 = 0;
  5916. if (++i13 == ne3) {
  5917. i13 = 0;
  5918. }
  5919. }
  5920. }
  5921. }
  5922. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5923. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5924. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5925. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5926. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5927. if (++i10 == ne0) {
  5928. i10 = 0;
  5929. if (++i11 == ne1) {
  5930. i11 = 0;
  5931. if (++i12 == ne2) {
  5932. i12 = 0;
  5933. if (++i13 == ne3) {
  5934. i13 = 0;
  5935. }
  5936. }
  5937. }
  5938. }
  5939. }
  5940. }
  5941. i10 += ne00 * (ne01 - ir1);
  5942. while (i10 >= ne0) {
  5943. i10 -= ne0;
  5944. if (++i11 == ne1) {
  5945. i11 = 0;
  5946. if (++i12 == ne2) {
  5947. i12 = 0;
  5948. if (++i13 == ne3) {
  5949. i13 = 0;
  5950. }
  5951. }
  5952. }
  5953. }
  5954. }
  5955. }
  5956. } else {
  5957. GGML_ASSERT(false); // TODO: implement
  5958. }
  5959. }
  5960. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5961. static void ggml_compute_forward_dup_bytes(
  5962. const struct ggml_compute_params * params,
  5963. struct ggml_tensor * dst) {
  5964. const struct ggml_tensor * src0 = dst->src[0];
  5965. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5966. GGML_ASSERT(src0->type == dst->type);
  5967. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5968. return;
  5969. }
  5970. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5971. ggml_compute_forward_dup_same_cont(params, dst);
  5972. return;
  5973. }
  5974. GGML_TENSOR_UNARY_OP_LOCALS;
  5975. const size_t type_size = ggml_type_size(src0->type);
  5976. const int ith = params->ith; // thread index
  5977. const int nth = params->nth; // number of threads
  5978. // parallelize by rows
  5979. const int nr = ne01;
  5980. // number of rows per thread
  5981. const int dr = (nr + nth - 1) / nth;
  5982. // row range for this thread
  5983. const int ir0 = dr * ith;
  5984. const int ir1 = MIN(ir0 + dr, nr);
  5985. if (src0->type == dst->type &&
  5986. ne00 == ne0 &&
  5987. nb00 == type_size && nb0 == type_size) {
  5988. // copy by rows
  5989. const size_t rs = ne00 * type_size;
  5990. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5991. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5992. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5993. memcpy(
  5994. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5995. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5996. rs);
  5997. }
  5998. }
  5999. }
  6000. return;
  6001. }
  6002. if (ggml_is_contiguous(dst)) {
  6003. size_t id = 0;
  6004. char * dst_ptr = (char *) dst->data;
  6005. const size_t rs = ne00 * type_size;
  6006. if (nb00 == type_size) {
  6007. // src0 is contigous on first dimension, copy by rows
  6008. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6009. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6010. id += rs * ir0;
  6011. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6012. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6013. memcpy(dst_ptr + id, src0_ptr, rs);
  6014. id += rs;
  6015. }
  6016. id += rs * (ne01 - ir1);
  6017. }
  6018. }
  6019. } else {
  6020. //printf("%s: this is not optimal - fix me\n", __func__);
  6021. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6022. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6023. id += rs * ir0;
  6024. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6025. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6026. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6027. memcpy(dst_ptr + id, src0_ptr, type_size);
  6028. id += type_size;
  6029. }
  6030. }
  6031. id += rs * (ne01 - ir1);
  6032. }
  6033. }
  6034. }
  6035. return;
  6036. }
  6037. // dst counters
  6038. int64_t i10 = 0;
  6039. int64_t i11 = 0;
  6040. int64_t i12 = 0;
  6041. int64_t i13 = 0;
  6042. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6043. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6044. i10 += ne00 * ir0;
  6045. while (i10 >= ne0) {
  6046. i10 -= ne0;
  6047. if (++i11 == ne1) {
  6048. i11 = 0;
  6049. if (++i12 == ne2) {
  6050. i12 = 0;
  6051. if (++i13 == ne3) {
  6052. i13 = 0;
  6053. }
  6054. }
  6055. }
  6056. }
  6057. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6058. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6059. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6060. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6061. memcpy(dst_ptr, src0_ptr, type_size);
  6062. if (++i10 == ne0) {
  6063. i10 = 0;
  6064. if (++i11 == ne1) {
  6065. i11 = 0;
  6066. if (++i12 == ne2) {
  6067. i12 = 0;
  6068. if (++i13 == ne3) {
  6069. i13 = 0;
  6070. }
  6071. }
  6072. }
  6073. }
  6074. }
  6075. }
  6076. i10 += ne00 * (ne01 - ir1);
  6077. while (i10 >= ne0) {
  6078. i10 -= ne0;
  6079. if (++i11 == ne1) {
  6080. i11 = 0;
  6081. if (++i12 == ne2) {
  6082. i12 = 0;
  6083. if (++i13 == ne3) {
  6084. i13 = 0;
  6085. }
  6086. }
  6087. }
  6088. }
  6089. }
  6090. }
  6091. }
  6092. static void ggml_compute_forward_dup(
  6093. const struct ggml_compute_params * params,
  6094. struct ggml_tensor * dst) {
  6095. const struct ggml_tensor * src0 = dst->src[0];
  6096. if (src0->type == dst->type) {
  6097. ggml_compute_forward_dup_bytes(params, dst);
  6098. return;
  6099. }
  6100. switch (src0->type) {
  6101. case GGML_TYPE_F16:
  6102. {
  6103. ggml_compute_forward_dup_f16(params, dst);
  6104. } break;
  6105. case GGML_TYPE_F32:
  6106. {
  6107. ggml_compute_forward_dup_f32(params, dst);
  6108. } break;
  6109. default:
  6110. {
  6111. GGML_ASSERT(false);
  6112. } break;
  6113. }
  6114. }
  6115. // ggml_compute_forward_add
  6116. static void ggml_compute_forward_add_f32(
  6117. const struct ggml_compute_params * params,
  6118. struct ggml_tensor * dst) {
  6119. const struct ggml_tensor * src0 = dst->src[0];
  6120. const struct ggml_tensor * src1 = dst->src[1];
  6121. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6122. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6123. return;
  6124. }
  6125. const int ith = params->ith;
  6126. const int nth = params->nth;
  6127. #ifdef GGML_USE_CLBLAST
  6128. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6129. // TODO: OpenCL kernel support full broadcast
  6130. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6131. if (ith == 0) {
  6132. ggml_cl_add(src0, src1, dst);
  6133. }
  6134. return;
  6135. }
  6136. #endif
  6137. const int nr = ggml_nrows(src0);
  6138. GGML_TENSOR_BINARY_OP_LOCALS
  6139. GGML_ASSERT( nb0 == sizeof(float));
  6140. GGML_ASSERT(nb00 == sizeof(float));
  6141. // rows per thread
  6142. const int dr = (nr + nth - 1)/nth;
  6143. // row range for this thread
  6144. const int ir0 = dr*ith;
  6145. const int ir1 = MIN(ir0 + dr, nr);
  6146. if (nb10 == sizeof(float)) {
  6147. for (int ir = ir0; ir < ir1; ++ir) {
  6148. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6149. const int64_t i03 = ir/(ne02*ne01);
  6150. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6151. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6152. const int64_t i13 = i03 % ne13;
  6153. const int64_t i12 = i02 % ne12;
  6154. const int64_t i11 = i01 % ne11;
  6155. const int64_t nr0 = ne00 / ne10;
  6156. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6157. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6158. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6159. for (int64_t r = 0; r < nr0; ++r) {
  6160. #ifdef GGML_USE_ACCELERATE
  6161. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6162. #else
  6163. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6164. #endif
  6165. }
  6166. }
  6167. } else {
  6168. // src1 is not contiguous
  6169. for (int ir = ir0; ir < ir1; ++ir) {
  6170. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6171. const int64_t i03 = ir/(ne02*ne01);
  6172. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6173. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6174. const int64_t i13 = i03 % ne13;
  6175. const int64_t i12 = i02 % ne12;
  6176. const int64_t i11 = i01 % ne11;
  6177. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6178. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6179. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6180. const int64_t i10 = i0 % ne10;
  6181. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6182. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6183. }
  6184. }
  6185. }
  6186. }
  6187. static void ggml_compute_forward_add_f16_f32(
  6188. const struct ggml_compute_params * params,
  6189. struct ggml_tensor * dst) {
  6190. const struct ggml_tensor * src0 = dst->src[0];
  6191. const struct ggml_tensor * src1 = dst->src[1];
  6192. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6193. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6194. return;
  6195. }
  6196. const int ith = params->ith;
  6197. const int nth = params->nth;
  6198. const int nr = ggml_nrows(src0);
  6199. GGML_TENSOR_BINARY_OP_LOCALS
  6200. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6201. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6202. if (dst->type == GGML_TYPE_F32) {
  6203. GGML_ASSERT( nb0 == sizeof(float));
  6204. }
  6205. else {
  6206. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6207. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6208. }
  6209. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6210. // rows per thread
  6211. const int dr = (nr + nth - 1)/nth;
  6212. // row range for this thread
  6213. const int ir0 = dr*ith;
  6214. const int ir1 = MIN(ir0 + dr, nr);
  6215. if (nb10 == sizeof(float)) {
  6216. if (dst->type == GGML_TYPE_F16) {
  6217. for (int ir = ir0; ir < ir1; ++ir) {
  6218. // src0, src1 and dst are same shape => same indices
  6219. const int i3 = ir/(ne2*ne1);
  6220. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6221. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6222. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6223. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6224. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6225. for (int i = 0; i < ne0; i++) {
  6226. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6227. }
  6228. }
  6229. } else {
  6230. for (int ir = ir0; ir < ir1; ++ir) {
  6231. // src0, src1 and dst are same shape => same indices
  6232. const int i3 = ir/(ne2*ne1);
  6233. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6234. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6235. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6236. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6237. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6238. for (int i = 0; i < ne0; i++) {
  6239. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6240. }
  6241. }
  6242. }
  6243. }
  6244. else {
  6245. // src1 is not contiguous
  6246. GGML_ASSERT(false);
  6247. }
  6248. }
  6249. static void ggml_compute_forward_add_f16_f16(
  6250. const struct ggml_compute_params * params,
  6251. struct ggml_tensor * dst) {
  6252. const struct ggml_tensor * src0 = dst->src[0];
  6253. const struct ggml_tensor * src1 = dst->src[1];
  6254. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6255. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6256. return;
  6257. }
  6258. const int ith = params->ith;
  6259. const int nth = params->nth;
  6260. const int nr = ggml_nrows(src0);
  6261. GGML_TENSOR_BINARY_OP_LOCALS
  6262. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6263. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6264. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6265. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6266. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6267. // rows per thread
  6268. const int dr = (nr + nth - 1)/nth;
  6269. // row range for this thread
  6270. const int ir0 = dr*ith;
  6271. const int ir1 = MIN(ir0 + dr, nr);
  6272. if (nb10 == sizeof(ggml_fp16_t)) {
  6273. for (int ir = ir0; ir < ir1; ++ir) {
  6274. // src0, src1 and dst are same shape => same indices
  6275. const int i3 = ir/(ne2*ne1);
  6276. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6277. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6278. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6279. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6280. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6281. for (int i = 0; i < ne0; i++) {
  6282. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6283. }
  6284. }
  6285. }
  6286. else {
  6287. // src1 is not contiguous
  6288. GGML_ASSERT(false);
  6289. }
  6290. }
  6291. static void ggml_compute_forward_add_q_f32(
  6292. const struct ggml_compute_params * params,
  6293. struct ggml_tensor * dst) {
  6294. const struct ggml_tensor * src0 = dst->src[0];
  6295. const struct ggml_tensor * src1 = dst->src[1];
  6296. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6297. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6298. return;
  6299. }
  6300. const int nr = ggml_nrows(src0);
  6301. GGML_TENSOR_BINARY_OP_LOCALS
  6302. const int ith = params->ith;
  6303. const int nth = params->nth;
  6304. const enum ggml_type type = src0->type;
  6305. const enum ggml_type dtype = dst->type;
  6306. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6307. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6308. // we don't support permuted src0 or src1
  6309. GGML_ASSERT(nb00 == ggml_type_size(type));
  6310. GGML_ASSERT(nb10 == sizeof(float));
  6311. // dst cannot be transposed or permuted
  6312. GGML_ASSERT(nb0 <= nb1);
  6313. GGML_ASSERT(nb1 <= nb2);
  6314. GGML_ASSERT(nb2 <= nb3);
  6315. GGML_ASSERT(ggml_is_quantized(src0->type));
  6316. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6317. // rows per thread
  6318. const int dr = (nr + nth - 1)/nth;
  6319. // row range for this thread
  6320. const int ir0 = dr*ith;
  6321. const int ir1 = MIN(ir0 + dr, nr);
  6322. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6323. for (int ir = ir0; ir < ir1; ++ir) {
  6324. // src0 indices
  6325. const int i03 = ir/(ne02*ne01);
  6326. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6327. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6328. // src1 and dst are same shape as src0 => same indices
  6329. const int i13 = i03;
  6330. const int i12 = i02;
  6331. const int i11 = i01;
  6332. const int i3 = i03;
  6333. const int i2 = i02;
  6334. const int i1 = i01;
  6335. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6336. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6337. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6338. assert(ne00 % 32 == 0);
  6339. // unquantize row from src0 to temp buffer
  6340. dequantize_row_q(src0_row, wdata, ne00);
  6341. // add src1
  6342. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6343. // quantize row to dst
  6344. if (quantize_row_q != NULL) {
  6345. quantize_row_q(wdata, dst_row, ne00);
  6346. } else {
  6347. memcpy(dst_row, wdata, ne0*nb0);
  6348. }
  6349. }
  6350. }
  6351. static void ggml_compute_forward_add(
  6352. const struct ggml_compute_params * params,
  6353. struct ggml_tensor * dst) {
  6354. const struct ggml_tensor * src0 = dst->src[0];
  6355. const struct ggml_tensor * src1 = dst->src[1];
  6356. switch (src0->type) {
  6357. case GGML_TYPE_F32:
  6358. {
  6359. if (src1->type == GGML_TYPE_F32) {
  6360. ggml_compute_forward_add_f32(params, dst);
  6361. }
  6362. else {
  6363. GGML_ASSERT(false);
  6364. }
  6365. } break;
  6366. case GGML_TYPE_F16:
  6367. {
  6368. if (src1->type == GGML_TYPE_F16) {
  6369. ggml_compute_forward_add_f16_f16(params, dst);
  6370. }
  6371. else if (src1->type == GGML_TYPE_F32) {
  6372. ggml_compute_forward_add_f16_f32(params, dst);
  6373. }
  6374. else {
  6375. GGML_ASSERT(false);
  6376. }
  6377. } break;
  6378. case GGML_TYPE_Q4_0:
  6379. case GGML_TYPE_Q4_1:
  6380. case GGML_TYPE_Q5_0:
  6381. case GGML_TYPE_Q5_1:
  6382. case GGML_TYPE_Q8_0:
  6383. case GGML_TYPE_Q2_K:
  6384. case GGML_TYPE_Q3_K:
  6385. case GGML_TYPE_Q4_K:
  6386. case GGML_TYPE_Q5_K:
  6387. case GGML_TYPE_Q6_K:
  6388. case GGML_TYPE_IQ2_XXS:
  6389. case GGML_TYPE_IQ2_XS:
  6390. case GGML_TYPE_IQ3_XXS:
  6391. case GGML_TYPE_IQ1_S:
  6392. case GGML_TYPE_IQ4_NL:
  6393. case GGML_TYPE_IQ4_XS:
  6394. case GGML_TYPE_IQ3_S:
  6395. case GGML_TYPE_IQ2_S:
  6396. {
  6397. ggml_compute_forward_add_q_f32(params, dst);
  6398. } break;
  6399. default:
  6400. {
  6401. GGML_ASSERT(false);
  6402. } break;
  6403. }
  6404. }
  6405. // ggml_compute_forward_add1
  6406. static void ggml_compute_forward_add1_f32(
  6407. const struct ggml_compute_params * params,
  6408. struct ggml_tensor * dst) {
  6409. const struct ggml_tensor * src0 = dst->src[0];
  6410. const struct ggml_tensor * src1 = dst->src[1];
  6411. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6412. GGML_ASSERT(ggml_is_scalar(src1));
  6413. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6414. return;
  6415. }
  6416. const int ith = params->ith;
  6417. const int nth = params->nth;
  6418. const int nr = ggml_nrows(src0);
  6419. GGML_TENSOR_UNARY_OP_LOCALS
  6420. GGML_ASSERT( nb0 == sizeof(float));
  6421. GGML_ASSERT(nb00 == sizeof(float));
  6422. // rows per thread
  6423. const int dr = (nr + nth - 1)/nth;
  6424. // row range for this thread
  6425. const int ir0 = dr*ith;
  6426. const int ir1 = MIN(ir0 + dr, nr);
  6427. for (int ir = ir0; ir < ir1; ++ir) {
  6428. // src0 and dst are same shape => same indices
  6429. const int i3 = ir/(ne2*ne1);
  6430. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6431. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6432. #ifdef GGML_USE_ACCELERATE
  6433. UNUSED(ggml_vec_add1_f32);
  6434. vDSP_vadd(
  6435. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6436. (float *) ((char *) src1->data), 0,
  6437. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6438. ne0);
  6439. #else
  6440. ggml_vec_add1_f32(ne0,
  6441. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6442. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6443. *(float *) src1->data);
  6444. #endif
  6445. }
  6446. }
  6447. static void ggml_compute_forward_add1_f16_f32(
  6448. const struct ggml_compute_params * params,
  6449. struct ggml_tensor * dst) {
  6450. const struct ggml_tensor * src0 = dst->src[0];
  6451. const struct ggml_tensor * src1 = dst->src[1];
  6452. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6453. GGML_ASSERT(ggml_is_scalar(src1));
  6454. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6455. return;
  6456. }
  6457. // scalar to add
  6458. const float v = *(float *) src1->data;
  6459. const int ith = params->ith;
  6460. const int nth = params->nth;
  6461. const int nr = ggml_nrows(src0);
  6462. GGML_TENSOR_UNARY_OP_LOCALS
  6463. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6464. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6465. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6466. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6467. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6468. // rows per thread
  6469. const int dr = (nr + nth - 1)/nth;
  6470. // row range for this thread
  6471. const int ir0 = dr*ith;
  6472. const int ir1 = MIN(ir0 + dr, nr);
  6473. for (int ir = ir0; ir < ir1; ++ir) {
  6474. // src0 and dst are same shape => same indices
  6475. const int i3 = ir/(ne2*ne1);
  6476. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6477. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6478. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6479. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6480. for (int i = 0; i < ne0; i++) {
  6481. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6482. }
  6483. }
  6484. }
  6485. static void ggml_compute_forward_add1_f16_f16(
  6486. const struct ggml_compute_params * params,
  6487. struct ggml_tensor * dst) {
  6488. const struct ggml_tensor * src0 = dst->src[0];
  6489. const struct ggml_tensor * src1 = dst->src[1];
  6490. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6491. GGML_ASSERT(ggml_is_scalar(src1));
  6492. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6493. return;
  6494. }
  6495. // scalar to add
  6496. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6497. const int ith = params->ith;
  6498. const int nth = params->nth;
  6499. const int nr = ggml_nrows(src0);
  6500. GGML_TENSOR_UNARY_OP_LOCALS
  6501. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6502. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6503. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6504. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6505. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6506. // rows per thread
  6507. const int dr = (nr + nth - 1)/nth;
  6508. // row range for this thread
  6509. const int ir0 = dr*ith;
  6510. const int ir1 = MIN(ir0 + dr, nr);
  6511. for (int ir = ir0; ir < ir1; ++ir) {
  6512. // src0 and dst are same shape => same indices
  6513. const int i3 = ir/(ne2*ne1);
  6514. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6515. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6516. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6517. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6518. for (int i = 0; i < ne0; i++) {
  6519. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6520. }
  6521. }
  6522. }
  6523. static void ggml_compute_forward_add1_q_f32(
  6524. const struct ggml_compute_params * params,
  6525. struct ggml_tensor * dst) {
  6526. const struct ggml_tensor * src0 = dst->src[0];
  6527. const struct ggml_tensor * src1 = dst->src[1];
  6528. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6529. GGML_ASSERT(ggml_is_scalar(src1));
  6530. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6531. return;
  6532. }
  6533. // scalar to add
  6534. const float v = *(float *) src1->data;
  6535. const int ith = params->ith;
  6536. const int nth = params->nth;
  6537. const int nr = ggml_nrows(src0);
  6538. GGML_TENSOR_UNARY_OP_LOCALS
  6539. const enum ggml_type type = src0->type;
  6540. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6541. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6542. // we don't support permuted src0
  6543. GGML_ASSERT(nb00 == ggml_type_size(type));
  6544. // dst cannot be transposed or permuted
  6545. GGML_ASSERT(nb0 <= nb1);
  6546. GGML_ASSERT(nb1 <= nb2);
  6547. GGML_ASSERT(nb2 <= nb3);
  6548. GGML_ASSERT(ggml_is_quantized(src0->type));
  6549. GGML_ASSERT(dst->type == src0->type);
  6550. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6551. // rows per thread
  6552. const int dr = (nr + nth - 1)/nth;
  6553. // row range for this thread
  6554. const int ir0 = dr*ith;
  6555. const int ir1 = MIN(ir0 + dr, nr);
  6556. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6557. for (int ir = ir0; ir < ir1; ++ir) {
  6558. // src0 and dst are same shape => same indices
  6559. const int i3 = ir/(ne2*ne1);
  6560. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6561. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6562. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6563. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6564. assert(ne0 % 32 == 0);
  6565. // unquantize row from src0 to temp buffer
  6566. dequantize_row_q(src0_row, wdata, ne0);
  6567. // add src1
  6568. ggml_vec_acc1_f32(ne0, wdata, v);
  6569. // quantize row to dst
  6570. quantize_row_q(wdata, dst_row, ne0);
  6571. }
  6572. }
  6573. static void ggml_compute_forward_add1(
  6574. const struct ggml_compute_params * params,
  6575. struct ggml_tensor * dst) {
  6576. const struct ggml_tensor * src0 = dst->src[0];
  6577. const struct ggml_tensor * src1 = dst->src[1];
  6578. switch (src0->type) {
  6579. case GGML_TYPE_F32:
  6580. {
  6581. ggml_compute_forward_add1_f32(params, dst);
  6582. } break;
  6583. case GGML_TYPE_F16:
  6584. {
  6585. if (src1->type == GGML_TYPE_F16) {
  6586. ggml_compute_forward_add1_f16_f16(params, dst);
  6587. }
  6588. else if (src1->type == GGML_TYPE_F32) {
  6589. ggml_compute_forward_add1_f16_f32(params, dst);
  6590. }
  6591. else {
  6592. GGML_ASSERT(false);
  6593. }
  6594. } break;
  6595. case GGML_TYPE_Q4_0:
  6596. case GGML_TYPE_Q4_1:
  6597. case GGML_TYPE_Q5_0:
  6598. case GGML_TYPE_Q5_1:
  6599. case GGML_TYPE_Q8_0:
  6600. case GGML_TYPE_Q8_1:
  6601. case GGML_TYPE_Q2_K:
  6602. case GGML_TYPE_Q3_K:
  6603. case GGML_TYPE_Q4_K:
  6604. case GGML_TYPE_Q5_K:
  6605. case GGML_TYPE_Q6_K:
  6606. case GGML_TYPE_IQ2_XXS:
  6607. case GGML_TYPE_IQ2_XS:
  6608. case GGML_TYPE_IQ3_XXS:
  6609. case GGML_TYPE_IQ1_S:
  6610. case GGML_TYPE_IQ4_NL:
  6611. case GGML_TYPE_IQ4_XS:
  6612. case GGML_TYPE_IQ3_S:
  6613. case GGML_TYPE_IQ2_S:
  6614. {
  6615. ggml_compute_forward_add1_q_f32(params, dst);
  6616. } break;
  6617. default:
  6618. {
  6619. GGML_ASSERT(false);
  6620. } break;
  6621. }
  6622. }
  6623. // ggml_compute_forward_acc
  6624. static void ggml_compute_forward_acc_f32(
  6625. const struct ggml_compute_params * params,
  6626. struct ggml_tensor * dst) {
  6627. const struct ggml_tensor * src0 = dst->src[0];
  6628. const struct ggml_tensor * src1 = dst->src[1];
  6629. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6630. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6631. // view src0 and dst with these strides and data offset inbytes during acc
  6632. // nb0 is implicitly element_size because src0 and dst are contiguous
  6633. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6634. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6635. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6636. size_t offset = ((int32_t *) dst->op_params)[3];
  6637. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6638. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6639. if (params->ith != 0) {
  6640. return;
  6641. }
  6642. // memcpy needs to be synchronized across threads to avoid race conditions.
  6643. // => do it in INIT phase
  6644. memcpy(
  6645. ((char *) dst->data),
  6646. ((char *) src0->data),
  6647. ggml_nbytes(dst));
  6648. }
  6649. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6650. return;
  6651. }
  6652. const int ith = params->ith;
  6653. const int nth = params->nth;
  6654. const int nr = ggml_nrows(src1);
  6655. const int nc = src1->ne[0];
  6656. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6657. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6658. // src0 and dst as viewed during acc
  6659. const size_t nb0 = ggml_element_size(src0);
  6660. const size_t nb00 = nb0;
  6661. const size_t nb01 = nb1;
  6662. const size_t nb02 = nb2;
  6663. const size_t nb03 = nb3;
  6664. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6665. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6666. GGML_ASSERT(nb10 == sizeof(float));
  6667. // rows per thread
  6668. const int dr = (nr + nth - 1)/nth;
  6669. // row range for this thread
  6670. const int ir0 = dr*ith;
  6671. const int ir1 = MIN(ir0 + dr, nr);
  6672. for (int ir = ir0; ir < ir1; ++ir) {
  6673. // src0 and dst are viewed with shape of src1 and offset
  6674. // => same indices
  6675. const int i3 = ir/(ne12*ne11);
  6676. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6677. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6678. #ifdef GGML_USE_ACCELERATE
  6679. vDSP_vadd(
  6680. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6681. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6682. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6683. #else
  6684. ggml_vec_add_f32(nc,
  6685. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6686. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6687. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6688. #endif
  6689. }
  6690. }
  6691. static void ggml_compute_forward_acc(
  6692. const struct ggml_compute_params * params,
  6693. struct ggml_tensor * dst) {
  6694. const struct ggml_tensor * src0 = dst->src[0];
  6695. switch (src0->type) {
  6696. case GGML_TYPE_F32:
  6697. {
  6698. ggml_compute_forward_acc_f32(params, dst);
  6699. } break;
  6700. case GGML_TYPE_F16:
  6701. case GGML_TYPE_Q4_0:
  6702. case GGML_TYPE_Q4_1:
  6703. case GGML_TYPE_Q5_0:
  6704. case GGML_TYPE_Q5_1:
  6705. case GGML_TYPE_Q8_0:
  6706. case GGML_TYPE_Q8_1:
  6707. case GGML_TYPE_Q2_K:
  6708. case GGML_TYPE_Q3_K:
  6709. case GGML_TYPE_Q4_K:
  6710. case GGML_TYPE_Q5_K:
  6711. case GGML_TYPE_Q6_K:
  6712. case GGML_TYPE_IQ2_XXS:
  6713. case GGML_TYPE_IQ2_XS:
  6714. case GGML_TYPE_IQ3_XXS:
  6715. case GGML_TYPE_IQ1_S:
  6716. case GGML_TYPE_IQ4_NL:
  6717. case GGML_TYPE_IQ4_XS:
  6718. case GGML_TYPE_IQ3_S:
  6719. case GGML_TYPE_IQ2_S:
  6720. default:
  6721. {
  6722. GGML_ASSERT(false);
  6723. } break;
  6724. }
  6725. }
  6726. // ggml_compute_forward_sub
  6727. static void ggml_compute_forward_sub_f32(
  6728. const struct ggml_compute_params * params,
  6729. struct ggml_tensor * dst) {
  6730. const struct ggml_tensor * src0 = dst->src[0];
  6731. const struct ggml_tensor * src1 = dst->src[1];
  6732. assert(params->ith == 0);
  6733. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6734. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6735. return;
  6736. }
  6737. const int nr = ggml_nrows(src0);
  6738. GGML_TENSOR_BINARY_OP_LOCALS
  6739. GGML_ASSERT( nb0 == sizeof(float));
  6740. GGML_ASSERT(nb00 == sizeof(float));
  6741. if (nb10 == sizeof(float)) {
  6742. for (int ir = 0; ir < nr; ++ir) {
  6743. // src0, src1 and dst are same shape => same indices
  6744. const int i3 = ir/(ne2*ne1);
  6745. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6746. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6747. #ifdef GGML_USE_ACCELERATE
  6748. vDSP_vsub(
  6749. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6750. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6751. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6752. ne0);
  6753. #else
  6754. ggml_vec_sub_f32(ne0,
  6755. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6756. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6757. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6758. #endif
  6759. // }
  6760. // }
  6761. }
  6762. } else {
  6763. // src1 is not contiguous
  6764. for (int ir = 0; ir < nr; ++ir) {
  6765. // src0, src1 and dst are same shape => same indices
  6766. const int i3 = ir/(ne2*ne1);
  6767. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6768. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6769. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6770. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6771. for (int i0 = 0; i0 < ne0; i0++) {
  6772. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6773. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6774. }
  6775. }
  6776. }
  6777. }
  6778. static void ggml_compute_forward_sub(
  6779. const struct ggml_compute_params * params,
  6780. struct ggml_tensor * dst) {
  6781. const struct ggml_tensor * src0 = dst->src[0];
  6782. switch (src0->type) {
  6783. case GGML_TYPE_F32:
  6784. {
  6785. ggml_compute_forward_sub_f32(params, dst);
  6786. } break;
  6787. default:
  6788. {
  6789. GGML_ASSERT(false);
  6790. } break;
  6791. }
  6792. }
  6793. // ggml_compute_forward_mul
  6794. static void ggml_compute_forward_mul_f32(
  6795. const struct ggml_compute_params * params,
  6796. struct ggml_tensor * dst) {
  6797. const struct ggml_tensor * src0 = dst->src[0];
  6798. const struct ggml_tensor * src1 = dst->src[1];
  6799. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6800. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6801. return;
  6802. }
  6803. const int ith = params->ith;
  6804. const int nth = params->nth;
  6805. #if defined(GGML_USE_CLBLAST)
  6806. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6807. // TODO: OpenCL kernel support full broadcast
  6808. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6809. if (ith == 0) {
  6810. ggml_cl_mul(src0, src1, dst);
  6811. }
  6812. return;
  6813. }
  6814. #endif
  6815. const int64_t nr = ggml_nrows(src0);
  6816. GGML_TENSOR_BINARY_OP_LOCALS
  6817. GGML_ASSERT( nb0 == sizeof(float));
  6818. GGML_ASSERT(nb00 == sizeof(float));
  6819. if (nb10 == sizeof(float)) {
  6820. for (int64_t ir = ith; ir < nr; ir += nth) {
  6821. // src0 and dst are same shape => same indices
  6822. const int64_t i03 = ir/(ne02*ne01);
  6823. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6824. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6825. const int64_t i13 = i03 % ne13;
  6826. const int64_t i12 = i02 % ne12;
  6827. const int64_t i11 = i01 % ne11;
  6828. const int64_t nr0 = ne00 / ne10;
  6829. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6830. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6831. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6832. for (int64_t r = 0 ; r < nr0; ++r) {
  6833. #ifdef GGML_USE_ACCELERATE
  6834. UNUSED(ggml_vec_mul_f32);
  6835. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6836. #else
  6837. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6838. #endif
  6839. }
  6840. }
  6841. } else {
  6842. // src1 is not contiguous
  6843. for (int64_t ir = ith; ir < nr; ir += nth) {
  6844. // src0 and dst are same shape => same indices
  6845. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6846. const int64_t i03 = ir/(ne02*ne01);
  6847. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6848. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6849. const int64_t i13 = i03 % ne13;
  6850. const int64_t i12 = i02 % ne12;
  6851. const int64_t i11 = i01 % ne11;
  6852. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6853. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6854. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6855. const int64_t i10 = i0 % ne10;
  6856. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6857. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6858. }
  6859. }
  6860. }
  6861. }
  6862. static void ggml_compute_forward_mul(
  6863. const struct ggml_compute_params * params,
  6864. struct ggml_tensor * dst) {
  6865. const struct ggml_tensor * src0 = dst->src[0];
  6866. const struct ggml_tensor * src1 = dst->src[1];
  6867. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6868. switch (src0->type) {
  6869. case GGML_TYPE_F32:
  6870. {
  6871. ggml_compute_forward_mul_f32(params, dst);
  6872. } break;
  6873. default:
  6874. {
  6875. GGML_ASSERT(false);
  6876. } break;
  6877. }
  6878. }
  6879. // ggml_compute_forward_div
  6880. static void ggml_compute_forward_div_f32(
  6881. const struct ggml_compute_params * params,
  6882. struct ggml_tensor * dst) {
  6883. const struct ggml_tensor * src0 = dst->src[0];
  6884. const struct ggml_tensor * src1 = dst->src[1];
  6885. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6886. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6887. return;
  6888. }
  6889. const int ith = params->ith;
  6890. const int nth = params->nth;
  6891. const int64_t nr = ggml_nrows(src0);
  6892. GGML_TENSOR_BINARY_OP_LOCALS
  6893. GGML_ASSERT( nb0 == sizeof(float));
  6894. GGML_ASSERT(nb00 == sizeof(float));
  6895. if (nb10 == sizeof(float)) {
  6896. for (int64_t ir = ith; ir < nr; ir += nth) {
  6897. // src0 and dst are same shape => same indices
  6898. const int64_t i03 = ir/(ne02*ne01);
  6899. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6900. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6901. const int64_t i13 = i03 % ne13;
  6902. const int64_t i12 = i02 % ne12;
  6903. const int64_t i11 = i01 % ne11;
  6904. const int64_t nr0 = ne00 / ne10;
  6905. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6906. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6907. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6908. for (int64_t r = 0; r < nr0; ++r) {
  6909. #ifdef GGML_USE_ACCELERATE
  6910. UNUSED(ggml_vec_div_f32);
  6911. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6912. #else
  6913. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6914. #endif
  6915. }
  6916. }
  6917. } else {
  6918. // src1 is not contiguous
  6919. for (int64_t ir = ith; ir < nr; ir += nth) {
  6920. // src0 and dst are same shape => same indices
  6921. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6922. const int64_t i03 = ir/(ne02*ne01);
  6923. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6924. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6925. const int64_t i13 = i03 % ne13;
  6926. const int64_t i12 = i02 % ne12;
  6927. const int64_t i11 = i01 % ne11;
  6928. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6929. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6930. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6931. const int64_t i10 = i0 % ne10;
  6932. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6933. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6934. }
  6935. }
  6936. }
  6937. }
  6938. static void ggml_compute_forward_div(
  6939. const struct ggml_compute_params * params,
  6940. struct ggml_tensor * dst) {
  6941. const struct ggml_tensor * src0 = dst->src[0];
  6942. switch (src0->type) {
  6943. case GGML_TYPE_F32:
  6944. {
  6945. ggml_compute_forward_div_f32(params, dst);
  6946. } break;
  6947. default:
  6948. {
  6949. GGML_ASSERT(false);
  6950. } break;
  6951. }
  6952. }
  6953. // ggml_compute_forward_sqr
  6954. static void ggml_compute_forward_sqr_f32(
  6955. const struct ggml_compute_params * params,
  6956. struct ggml_tensor * dst) {
  6957. const struct ggml_tensor * src0 = dst->src[0];
  6958. assert(params->ith == 0);
  6959. assert(ggml_are_same_shape(src0, dst));
  6960. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6961. return;
  6962. }
  6963. const int n = ggml_nrows(src0);
  6964. const int nc = src0->ne[0];
  6965. assert( dst->nb[0] == sizeof(float));
  6966. assert(src0->nb[0] == sizeof(float));
  6967. for (int i = 0; i < n; i++) {
  6968. ggml_vec_sqr_f32(nc,
  6969. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6970. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6971. }
  6972. }
  6973. static void ggml_compute_forward_sqr(
  6974. const struct ggml_compute_params * params,
  6975. struct ggml_tensor * dst) {
  6976. const struct ggml_tensor * src0 = dst->src[0];
  6977. switch (src0->type) {
  6978. case GGML_TYPE_F32:
  6979. {
  6980. ggml_compute_forward_sqr_f32(params, dst);
  6981. } break;
  6982. default:
  6983. {
  6984. GGML_ASSERT(false);
  6985. } break;
  6986. }
  6987. }
  6988. // ggml_compute_forward_sqrt
  6989. static void ggml_compute_forward_sqrt_f32(
  6990. const struct ggml_compute_params * params,
  6991. struct ggml_tensor * dst) {
  6992. const struct ggml_tensor * src0 = dst->src[0];
  6993. assert(params->ith == 0);
  6994. assert(ggml_are_same_shape(src0, dst));
  6995. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6996. return;
  6997. }
  6998. const int n = ggml_nrows(src0);
  6999. const int nc = src0->ne[0];
  7000. assert( dst->nb[0] == sizeof(float));
  7001. assert(src0->nb[0] == sizeof(float));
  7002. for (int i = 0; i < n; i++) {
  7003. ggml_vec_sqrt_f32(nc,
  7004. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7005. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7006. }
  7007. }
  7008. static void ggml_compute_forward_sqrt(
  7009. const struct ggml_compute_params * params,
  7010. struct ggml_tensor * dst) {
  7011. const struct ggml_tensor * src0 = dst->src[0];
  7012. switch (src0->type) {
  7013. case GGML_TYPE_F32:
  7014. {
  7015. ggml_compute_forward_sqrt_f32(params, dst);
  7016. } break;
  7017. default:
  7018. {
  7019. GGML_ASSERT(false);
  7020. } break;
  7021. }
  7022. }
  7023. // ggml_compute_forward_log
  7024. static void ggml_compute_forward_log_f32(
  7025. const struct ggml_compute_params * params,
  7026. struct ggml_tensor * dst) {
  7027. const struct ggml_tensor * src0 = dst->src[0];
  7028. GGML_ASSERT(params->ith == 0);
  7029. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7030. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7031. return;
  7032. }
  7033. const int n = ggml_nrows(src0);
  7034. const int nc = src0->ne[0];
  7035. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7036. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7037. for (int i = 0; i < n; i++) {
  7038. ggml_vec_log_f32(nc,
  7039. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7040. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7041. }
  7042. }
  7043. static void ggml_compute_forward_log(
  7044. const struct ggml_compute_params * params,
  7045. struct ggml_tensor * dst) {
  7046. const struct ggml_tensor * src0 = dst->src[0];
  7047. switch (src0->type) {
  7048. case GGML_TYPE_F32:
  7049. {
  7050. ggml_compute_forward_log_f32(params, dst);
  7051. } break;
  7052. default:
  7053. {
  7054. GGML_ASSERT(false);
  7055. } break;
  7056. }
  7057. }
  7058. // ggml_compute_forward_sum
  7059. static void ggml_compute_forward_sum_f32(
  7060. const struct ggml_compute_params * params,
  7061. struct ggml_tensor * dst) {
  7062. const struct ggml_tensor * src0 = dst->src[0];
  7063. assert(params->ith == 0);
  7064. assert(ggml_is_scalar(dst));
  7065. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7066. return;
  7067. }
  7068. assert(ggml_is_scalar(dst));
  7069. assert(src0->nb[0] == sizeof(float));
  7070. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7071. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7072. ggml_float sum = 0;
  7073. ggml_float row_sum = 0;
  7074. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7075. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7076. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7077. ggml_vec_sum_f32_ggf(ne00,
  7078. &row_sum,
  7079. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7080. sum += row_sum;
  7081. }
  7082. }
  7083. }
  7084. ((float *) dst->data)[0] = sum;
  7085. }
  7086. static void ggml_compute_forward_sum_f16(
  7087. const struct ggml_compute_params * params,
  7088. struct ggml_tensor * dst) {
  7089. const struct ggml_tensor * src0 = dst->src[0];
  7090. assert(params->ith == 0);
  7091. assert(ggml_is_scalar(dst));
  7092. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7093. return;
  7094. }
  7095. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7096. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7097. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7098. float sum = 0;
  7099. float row_sum = 0;
  7100. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7101. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7102. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7103. ggml_vec_sum_f16_ggf(ne00,
  7104. &row_sum,
  7105. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7106. sum += row_sum;
  7107. }
  7108. }
  7109. }
  7110. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7111. }
  7112. static void ggml_compute_forward_sum(
  7113. const struct ggml_compute_params * params,
  7114. struct ggml_tensor * dst) {
  7115. const struct ggml_tensor * src0 = dst->src[0];
  7116. switch (src0->type) {
  7117. case GGML_TYPE_F32:
  7118. {
  7119. ggml_compute_forward_sum_f32(params, dst);
  7120. } break;
  7121. case GGML_TYPE_F16:
  7122. {
  7123. ggml_compute_forward_sum_f16(params, dst);
  7124. } break;
  7125. default:
  7126. {
  7127. GGML_ASSERT(false);
  7128. } break;
  7129. }
  7130. }
  7131. // ggml_compute_forward_sum_rows
  7132. static void ggml_compute_forward_sum_rows_f32(
  7133. const struct ggml_compute_params * params,
  7134. struct ggml_tensor * dst) {
  7135. const struct ggml_tensor * src0 = dst->src[0];
  7136. GGML_ASSERT(params->ith == 0);
  7137. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7138. return;
  7139. }
  7140. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7141. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7142. GGML_TENSOR_UNARY_OP_LOCALS
  7143. GGML_ASSERT(ne0 == 1);
  7144. GGML_ASSERT(ne1 == ne01);
  7145. GGML_ASSERT(ne2 == ne02);
  7146. GGML_ASSERT(ne3 == ne03);
  7147. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7148. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7149. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7150. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7151. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7152. float row_sum = 0;
  7153. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7154. dst_row[0] = row_sum;
  7155. }
  7156. }
  7157. }
  7158. }
  7159. static void ggml_compute_forward_sum_rows(
  7160. const struct ggml_compute_params * params,
  7161. struct ggml_tensor * dst) {
  7162. const struct ggml_tensor * src0 = dst->src[0];
  7163. switch (src0->type) {
  7164. case GGML_TYPE_F32:
  7165. {
  7166. ggml_compute_forward_sum_rows_f32(params, dst);
  7167. } break;
  7168. default:
  7169. {
  7170. GGML_ASSERT(false);
  7171. } break;
  7172. }
  7173. }
  7174. // ggml_compute_forward_mean
  7175. static void ggml_compute_forward_mean_f32(
  7176. const struct ggml_compute_params * params,
  7177. struct ggml_tensor * dst) {
  7178. const struct ggml_tensor * src0 = dst->src[0];
  7179. assert(params->ith == 0);
  7180. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7181. return;
  7182. }
  7183. assert(src0->nb[0] == sizeof(float));
  7184. GGML_TENSOR_UNARY_OP_LOCALS
  7185. assert(ne0 == 1);
  7186. assert(ne1 == ne01);
  7187. assert(ne2 == ne02);
  7188. assert(ne3 == ne03);
  7189. UNUSED(ne0);
  7190. UNUSED(ne1);
  7191. UNUSED(ne2);
  7192. UNUSED(ne3);
  7193. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7194. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7195. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7196. ggml_vec_sum_f32(ne00,
  7197. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7198. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7199. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7200. }
  7201. }
  7202. }
  7203. }
  7204. static void ggml_compute_forward_mean(
  7205. const struct ggml_compute_params * params,
  7206. struct ggml_tensor * dst) {
  7207. const struct ggml_tensor * src0 = dst->src[0];
  7208. switch (src0->type) {
  7209. case GGML_TYPE_F32:
  7210. {
  7211. ggml_compute_forward_mean_f32(params, dst);
  7212. } break;
  7213. default:
  7214. {
  7215. GGML_ASSERT(false);
  7216. } break;
  7217. }
  7218. }
  7219. // ggml_compute_forward_argmax
  7220. static void ggml_compute_forward_argmax_f32(
  7221. const struct ggml_compute_params * params,
  7222. struct ggml_tensor * dst) {
  7223. const struct ggml_tensor * src0 = dst->src[0];
  7224. assert(params->ith == 0);
  7225. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7226. return;
  7227. }
  7228. assert(src0->nb[0] == sizeof(float));
  7229. assert(dst->nb[0] == sizeof(float));
  7230. const int64_t ne00 = src0->ne[0];
  7231. const int64_t ne01 = src0->ne[1];
  7232. const size_t nb01 = src0->nb[1];
  7233. const size_t nb0 = dst->nb[0];
  7234. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7235. float * src = (float *) ((char *) src0->data + i1*nb01);
  7236. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7237. int v = 0;
  7238. ggml_vec_argmax_f32(ne00, &v, src);
  7239. dst_[0] = v;
  7240. }
  7241. }
  7242. static void ggml_compute_forward_argmax(
  7243. const struct ggml_compute_params * params,
  7244. struct ggml_tensor * dst) {
  7245. const struct ggml_tensor * src0 = dst->src[0];
  7246. switch (src0->type) {
  7247. case GGML_TYPE_F32:
  7248. {
  7249. ggml_compute_forward_argmax_f32(params, dst);
  7250. } break;
  7251. default:
  7252. {
  7253. GGML_ASSERT(false);
  7254. } break;
  7255. }
  7256. }
  7257. // ggml_compute_forward_repeat
  7258. static void ggml_compute_forward_repeat_f32(
  7259. const struct ggml_compute_params * params,
  7260. struct ggml_tensor * dst) {
  7261. const struct ggml_tensor * src0 = dst->src[0];
  7262. GGML_ASSERT(params->ith == 0);
  7263. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7264. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7265. return;
  7266. }
  7267. GGML_TENSOR_UNARY_OP_LOCALS
  7268. // guaranteed to be an integer due to the check in ggml_can_repeat
  7269. const int nr0 = (int)(ne0/ne00);
  7270. const int nr1 = (int)(ne1/ne01);
  7271. const int nr2 = (int)(ne2/ne02);
  7272. const int nr3 = (int)(ne3/ne03);
  7273. // TODO: support for transposed / permuted tensors
  7274. GGML_ASSERT(nb0 == sizeof(float));
  7275. GGML_ASSERT(nb00 == sizeof(float));
  7276. // TODO: maybe this is not optimal?
  7277. for (int i3 = 0; i3 < nr3; i3++) {
  7278. for (int k3 = 0; k3 < ne03; k3++) {
  7279. for (int i2 = 0; i2 < nr2; i2++) {
  7280. for (int k2 = 0; k2 < ne02; k2++) {
  7281. for (int i1 = 0; i1 < nr1; i1++) {
  7282. for (int k1 = 0; k1 < ne01; k1++) {
  7283. for (int i0 = 0; i0 < nr0; i0++) {
  7284. ggml_vec_cpy_f32(ne00,
  7285. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7286. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7287. }
  7288. }
  7289. }
  7290. }
  7291. }
  7292. }
  7293. }
  7294. }
  7295. static void ggml_compute_forward_repeat_f16(
  7296. const struct ggml_compute_params * params,
  7297. struct ggml_tensor * dst) {
  7298. const struct ggml_tensor * src0 = dst->src[0];
  7299. GGML_ASSERT(params->ith == 0);
  7300. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7301. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7302. return;
  7303. }
  7304. GGML_TENSOR_UNARY_OP_LOCALS
  7305. // guaranteed to be an integer due to the check in ggml_can_repeat
  7306. const int nr0 = (int)(ne0/ne00);
  7307. const int nr1 = (int)(ne1/ne01);
  7308. const int nr2 = (int)(ne2/ne02);
  7309. const int nr3 = (int)(ne3/ne03);
  7310. // TODO: support for transposed / permuted tensors
  7311. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7312. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7313. // TODO: maybe this is not optimal?
  7314. for (int i3 = 0; i3 < nr3; i3++) {
  7315. for (int k3 = 0; k3 < ne03; k3++) {
  7316. for (int i2 = 0; i2 < nr2; i2++) {
  7317. for (int k2 = 0; k2 < ne02; k2++) {
  7318. for (int i1 = 0; i1 < nr1; i1++) {
  7319. for (int k1 = 0; k1 < ne01; k1++) {
  7320. for (int i0 = 0; i0 < nr0; i0++) {
  7321. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7322. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7323. // ggml_vec_cpy_f16(ne00, y, x)
  7324. for (int i = 0; i < ne00; ++i) {
  7325. y[i] = x[i];
  7326. }
  7327. }
  7328. }
  7329. }
  7330. }
  7331. }
  7332. }
  7333. }
  7334. }
  7335. static void ggml_compute_forward_repeat(
  7336. const struct ggml_compute_params * params,
  7337. struct ggml_tensor * dst) {
  7338. const struct ggml_tensor * src0 = dst->src[0];
  7339. switch (src0->type) {
  7340. case GGML_TYPE_F16:
  7341. case GGML_TYPE_I16:
  7342. {
  7343. ggml_compute_forward_repeat_f16(params, dst);
  7344. } break;
  7345. case GGML_TYPE_F32:
  7346. case GGML_TYPE_I32:
  7347. {
  7348. ggml_compute_forward_repeat_f32(params, dst);
  7349. } break;
  7350. default:
  7351. {
  7352. GGML_ASSERT(false);
  7353. } break;
  7354. }
  7355. }
  7356. // ggml_compute_forward_repeat_back
  7357. static void ggml_compute_forward_repeat_back_f32(
  7358. const struct ggml_compute_params * params,
  7359. struct ggml_tensor * dst) {
  7360. const struct ggml_tensor * src0 = dst->src[0];
  7361. GGML_ASSERT(params->ith == 0);
  7362. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7363. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7364. return;
  7365. }
  7366. GGML_TENSOR_UNARY_OP_LOCALS
  7367. // guaranteed to be an integer due to the check in ggml_can_repeat
  7368. const int nr0 = (int)(ne00/ne0);
  7369. const int nr1 = (int)(ne01/ne1);
  7370. const int nr2 = (int)(ne02/ne2);
  7371. const int nr3 = (int)(ne03/ne3);
  7372. // TODO: support for transposed / permuted tensors
  7373. GGML_ASSERT(nb0 == sizeof(float));
  7374. GGML_ASSERT(nb00 == sizeof(float));
  7375. if (ggml_is_contiguous(dst)) {
  7376. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7377. } else {
  7378. for (int k3 = 0; k3 < ne3; k3++) {
  7379. for (int k2 = 0; k2 < ne2; k2++) {
  7380. for (int k1 = 0; k1 < ne1; k1++) {
  7381. ggml_vec_set_f32(ne0,
  7382. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7383. 0);
  7384. }
  7385. }
  7386. }
  7387. }
  7388. // TODO: maybe this is not optimal?
  7389. for (int i3 = 0; i3 < nr3; i3++) {
  7390. for (int k3 = 0; k3 < ne3; k3++) {
  7391. for (int i2 = 0; i2 < nr2; i2++) {
  7392. for (int k2 = 0; k2 < ne2; k2++) {
  7393. for (int i1 = 0; i1 < nr1; i1++) {
  7394. for (int k1 = 0; k1 < ne1; k1++) {
  7395. for (int i0 = 0; i0 < nr0; i0++) {
  7396. ggml_vec_acc_f32(ne0,
  7397. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7398. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7399. }
  7400. }
  7401. }
  7402. }
  7403. }
  7404. }
  7405. }
  7406. }
  7407. static void ggml_compute_forward_repeat_back(
  7408. const struct ggml_compute_params * params,
  7409. struct ggml_tensor * dst) {
  7410. const struct ggml_tensor * src0 = dst->src[0];
  7411. switch (src0->type) {
  7412. case GGML_TYPE_F32:
  7413. {
  7414. ggml_compute_forward_repeat_back_f32(params, dst);
  7415. } break;
  7416. default:
  7417. {
  7418. GGML_ASSERT(false);
  7419. } break;
  7420. }
  7421. }
  7422. // ggml_compute_forward_concat
  7423. static void ggml_compute_forward_concat_f32(
  7424. const struct ggml_compute_params * params,
  7425. struct ggml_tensor * dst) {
  7426. const struct ggml_tensor * src0 = dst->src[0];
  7427. const struct ggml_tensor * src1 = dst->src[1];
  7428. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7429. return;
  7430. }
  7431. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7432. const int ith = params->ith;
  7433. const int nth = params->nth;
  7434. GGML_TENSOR_BINARY_OP_LOCALS
  7435. // TODO: support for transposed / permuted tensors
  7436. GGML_ASSERT(nb0 == sizeof(float));
  7437. GGML_ASSERT(nb00 == sizeof(float));
  7438. GGML_ASSERT(nb10 == sizeof(float));
  7439. for (int i3 = 0; i3 < ne3; i3++) {
  7440. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7441. if (i2 < ne02) { // src0
  7442. for (int i1 = 0; i1 < ne1; i1++) {
  7443. for (int i0 = 0; i0 < ne0; i0++) {
  7444. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7445. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7446. *y = *x;
  7447. }
  7448. }
  7449. } // src1
  7450. else {
  7451. for (int i1 = 0; i1 < ne1; i1++) {
  7452. for (int i0 = 0; i0 < ne0; i0++) {
  7453. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7454. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7455. *y = *x;
  7456. }
  7457. }
  7458. }
  7459. }
  7460. }
  7461. }
  7462. static void ggml_compute_forward_concat(
  7463. const struct ggml_compute_params* params,
  7464. struct ggml_tensor* dst) {
  7465. const struct ggml_tensor * src0 = dst->src[0];
  7466. switch (src0->type) {
  7467. case GGML_TYPE_F32:
  7468. case GGML_TYPE_I32:
  7469. {
  7470. ggml_compute_forward_concat_f32(params, dst);
  7471. } break;
  7472. default:
  7473. {
  7474. GGML_ASSERT(false);
  7475. } break;
  7476. }
  7477. }
  7478. // ggml_compute_forward_abs
  7479. static void ggml_compute_forward_abs_f32(
  7480. const struct ggml_compute_params * params,
  7481. struct ggml_tensor * dst) {
  7482. const struct ggml_tensor * src0 = dst->src[0];
  7483. assert(params->ith == 0);
  7484. assert(ggml_are_same_shape(src0, dst));
  7485. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7486. return;
  7487. }
  7488. const int n = ggml_nrows(src0);
  7489. const int nc = src0->ne[0];
  7490. assert(dst->nb[0] == sizeof(float));
  7491. assert(src0->nb[0] == sizeof(float));
  7492. for (int i = 0; i < n; i++) {
  7493. ggml_vec_abs_f32(nc,
  7494. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7495. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7496. }
  7497. }
  7498. static void ggml_compute_forward_abs(
  7499. const struct ggml_compute_params * params,
  7500. struct ggml_tensor * dst) {
  7501. const struct ggml_tensor * src0 = dst->src[0];
  7502. switch (src0->type) {
  7503. case GGML_TYPE_F32:
  7504. {
  7505. ggml_compute_forward_abs_f32(params, dst);
  7506. } break;
  7507. default:
  7508. {
  7509. GGML_ASSERT(false);
  7510. } break;
  7511. }
  7512. }
  7513. // ggml_compute_forward_sgn
  7514. static void ggml_compute_forward_sgn_f32(
  7515. const struct ggml_compute_params * params,
  7516. struct ggml_tensor * dst) {
  7517. const struct ggml_tensor * src0 = dst->src[0];
  7518. assert(params->ith == 0);
  7519. assert(ggml_are_same_shape(src0, dst));
  7520. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7521. return;
  7522. }
  7523. const int n = ggml_nrows(src0);
  7524. const int nc = src0->ne[0];
  7525. assert(dst->nb[0] == sizeof(float));
  7526. assert(src0->nb[0] == sizeof(float));
  7527. for (int i = 0; i < n; i++) {
  7528. ggml_vec_sgn_f32(nc,
  7529. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7530. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7531. }
  7532. }
  7533. static void ggml_compute_forward_sgn(
  7534. const struct ggml_compute_params * params,
  7535. struct ggml_tensor * dst) {
  7536. const struct ggml_tensor * src0 = dst->src[0];
  7537. switch (src0->type) {
  7538. case GGML_TYPE_F32:
  7539. {
  7540. ggml_compute_forward_sgn_f32(params, dst);
  7541. } break;
  7542. default:
  7543. {
  7544. GGML_ASSERT(false);
  7545. } break;
  7546. }
  7547. }
  7548. // ggml_compute_forward_neg
  7549. static void ggml_compute_forward_neg_f32(
  7550. const struct ggml_compute_params * params,
  7551. struct ggml_tensor * dst) {
  7552. const struct ggml_tensor * src0 = dst->src[0];
  7553. assert(params->ith == 0);
  7554. assert(ggml_are_same_shape(src0, dst));
  7555. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7556. return;
  7557. }
  7558. const int n = ggml_nrows(src0);
  7559. const int nc = src0->ne[0];
  7560. assert(dst->nb[0] == sizeof(float));
  7561. assert(src0->nb[0] == sizeof(float));
  7562. for (int i = 0; i < n; i++) {
  7563. ggml_vec_neg_f32(nc,
  7564. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7565. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7566. }
  7567. }
  7568. static void ggml_compute_forward_neg(
  7569. const struct ggml_compute_params * params,
  7570. struct ggml_tensor * dst) {
  7571. const struct ggml_tensor * src0 = dst->src[0];
  7572. switch (src0->type) {
  7573. case GGML_TYPE_F32:
  7574. {
  7575. ggml_compute_forward_neg_f32(params, dst);
  7576. } break;
  7577. default:
  7578. {
  7579. GGML_ASSERT(false);
  7580. } break;
  7581. }
  7582. }
  7583. // ggml_compute_forward_step
  7584. static void ggml_compute_forward_step_f32(
  7585. const struct ggml_compute_params * params,
  7586. struct ggml_tensor * dst) {
  7587. const struct ggml_tensor * src0 = dst->src[0];
  7588. assert(params->ith == 0);
  7589. assert(ggml_are_same_shape(src0, dst));
  7590. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7591. return;
  7592. }
  7593. const int n = ggml_nrows(src0);
  7594. const int nc = src0->ne[0];
  7595. assert(dst->nb[0] == sizeof(float));
  7596. assert(src0->nb[0] == sizeof(float));
  7597. for (int i = 0; i < n; i++) {
  7598. ggml_vec_step_f32(nc,
  7599. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7600. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7601. }
  7602. }
  7603. static void ggml_compute_forward_step(
  7604. const struct ggml_compute_params * params,
  7605. struct ggml_tensor * dst) {
  7606. const struct ggml_tensor * src0 = dst->src[0];
  7607. switch (src0->type) {
  7608. case GGML_TYPE_F32:
  7609. {
  7610. ggml_compute_forward_step_f32(params, dst);
  7611. } break;
  7612. default:
  7613. {
  7614. GGML_ASSERT(false);
  7615. } break;
  7616. }
  7617. }
  7618. // ggml_compute_forward_tanh
  7619. static void ggml_compute_forward_tanh_f32(
  7620. const struct ggml_compute_params * params,
  7621. struct ggml_tensor * dst) {
  7622. const struct ggml_tensor * src0 = dst->src[0];
  7623. assert(params->ith == 0);
  7624. assert(ggml_are_same_shape(src0, dst));
  7625. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7626. return;
  7627. }
  7628. const int n = ggml_nrows(src0);
  7629. const int nc = src0->ne[0];
  7630. assert(dst->nb[0] == sizeof(float));
  7631. assert(src0->nb[0] == sizeof(float));
  7632. for (int i = 0; i < n; i++) {
  7633. ggml_vec_tanh_f32(nc,
  7634. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7635. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7636. }
  7637. }
  7638. static void ggml_compute_forward_tanh(
  7639. const struct ggml_compute_params * params,
  7640. struct ggml_tensor * dst) {
  7641. const struct ggml_tensor * src0 = dst->src[0];
  7642. switch (src0->type) {
  7643. case GGML_TYPE_F32:
  7644. {
  7645. ggml_compute_forward_tanh_f32(params, dst);
  7646. } break;
  7647. default:
  7648. {
  7649. GGML_ASSERT(false);
  7650. } break;
  7651. }
  7652. }
  7653. // ggml_compute_forward_elu
  7654. static void ggml_compute_forward_elu_f32(
  7655. const struct ggml_compute_params * params,
  7656. struct ggml_tensor * dst) {
  7657. const struct ggml_tensor * src0 = dst->src[0];
  7658. assert(params->ith == 0);
  7659. assert(ggml_are_same_shape(src0, dst));
  7660. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7661. return;
  7662. }
  7663. const int n = ggml_nrows(src0);
  7664. const int nc = src0->ne[0];
  7665. assert(dst->nb[0] == sizeof(float));
  7666. assert(src0->nb[0] == sizeof(float));
  7667. for (int i = 0; i < n; i++) {
  7668. ggml_vec_elu_f32(nc,
  7669. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7670. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7671. }
  7672. }
  7673. static void ggml_compute_forward_elu(
  7674. const struct ggml_compute_params * params,
  7675. struct ggml_tensor * dst) {
  7676. const struct ggml_tensor * src0 = dst->src[0];
  7677. switch (src0->type) {
  7678. case GGML_TYPE_F32:
  7679. {
  7680. ggml_compute_forward_elu_f32(params, dst);
  7681. } break;
  7682. default:
  7683. {
  7684. GGML_ASSERT(false);
  7685. } break;
  7686. }
  7687. }
  7688. // ggml_compute_forward_relu
  7689. static void ggml_compute_forward_relu_f32(
  7690. const struct ggml_compute_params * params,
  7691. struct ggml_tensor * dst) {
  7692. const struct ggml_tensor * src0 = dst->src[0];
  7693. assert(params->ith == 0);
  7694. assert(ggml_are_same_shape(src0, dst));
  7695. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7696. return;
  7697. }
  7698. const int n = ggml_nrows(src0);
  7699. const int nc = src0->ne[0];
  7700. assert(dst->nb[0] == sizeof(float));
  7701. assert(src0->nb[0] == sizeof(float));
  7702. for (int i = 0; i < n; i++) {
  7703. ggml_vec_relu_f32(nc,
  7704. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7705. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7706. }
  7707. }
  7708. static void ggml_compute_forward_relu(
  7709. const struct ggml_compute_params * params,
  7710. struct ggml_tensor * dst) {
  7711. const struct ggml_tensor * src0 = dst->src[0];
  7712. switch (src0->type) {
  7713. case GGML_TYPE_F32:
  7714. {
  7715. ggml_compute_forward_relu_f32(params, dst);
  7716. } break;
  7717. default:
  7718. {
  7719. GGML_ASSERT(false);
  7720. } break;
  7721. }
  7722. }
  7723. // ggml_compute_forward_gelu
  7724. static void ggml_compute_forward_gelu_f32(
  7725. const struct ggml_compute_params * params,
  7726. struct ggml_tensor * dst) {
  7727. const struct ggml_tensor * src0 = dst->src[0];
  7728. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7729. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7730. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7731. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7732. return;
  7733. }
  7734. const int ith = params->ith;
  7735. const int nth = params->nth;
  7736. const int nc = src0->ne[0];
  7737. const int nr = ggml_nrows(src0);
  7738. // rows per thread
  7739. const int dr = (nr + nth - 1)/nth;
  7740. // row range for this thread
  7741. const int ir0 = dr*ith;
  7742. const int ir1 = MIN(ir0 + dr, nr);
  7743. for (int i1 = ir0; i1 < ir1; i1++) {
  7744. ggml_vec_gelu_f32(nc,
  7745. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7746. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7747. #ifndef NDEBUG
  7748. for (int k = 0; k < nc; k++) {
  7749. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7750. UNUSED(x);
  7751. assert(!isnan(x));
  7752. assert(!isinf(x));
  7753. }
  7754. #endif
  7755. }
  7756. }
  7757. static void ggml_compute_forward_gelu(
  7758. const struct ggml_compute_params * params,
  7759. struct ggml_tensor * dst) {
  7760. const struct ggml_tensor * src0 = dst->src[0];
  7761. switch (src0->type) {
  7762. case GGML_TYPE_F32:
  7763. {
  7764. ggml_compute_forward_gelu_f32(params, dst);
  7765. } break;
  7766. default:
  7767. {
  7768. GGML_ASSERT(false);
  7769. } break;
  7770. }
  7771. }
  7772. // ggml_compute_forward_gelu_quick
  7773. static void ggml_compute_forward_gelu_quick_f32(
  7774. const struct ggml_compute_params * params,
  7775. struct ggml_tensor * dst) {
  7776. const struct ggml_tensor * src0 = dst->src[0];
  7777. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7778. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7779. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7780. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7781. return;
  7782. }
  7783. const int ith = params->ith;
  7784. const int nth = params->nth;
  7785. const int nc = src0->ne[0];
  7786. const int nr = ggml_nrows(src0);
  7787. // rows per thread
  7788. const int dr = (nr + nth - 1)/nth;
  7789. // row range for this thread
  7790. const int ir0 = dr*ith;
  7791. const int ir1 = MIN(ir0 + dr, nr);
  7792. for (int i1 = ir0; i1 < ir1; i1++) {
  7793. ggml_vec_gelu_quick_f32(nc,
  7794. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7795. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7796. #ifndef NDEBUG
  7797. for (int k = 0; k < nc; k++) {
  7798. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7799. UNUSED(x);
  7800. assert(!isnan(x));
  7801. assert(!isinf(x));
  7802. }
  7803. #endif
  7804. }
  7805. }
  7806. static void ggml_compute_forward_gelu_quick(
  7807. const struct ggml_compute_params * params,
  7808. struct ggml_tensor * dst) {
  7809. const struct ggml_tensor * src0 = dst->src[0];
  7810. switch (src0->type) {
  7811. case GGML_TYPE_F32:
  7812. {
  7813. ggml_compute_forward_gelu_quick_f32(params, dst);
  7814. } break;
  7815. default:
  7816. {
  7817. GGML_ASSERT(false);
  7818. } break;
  7819. }
  7820. }
  7821. // ggml_compute_forward_silu
  7822. static void ggml_compute_forward_silu_f32(
  7823. const struct ggml_compute_params * params,
  7824. struct ggml_tensor * dst) {
  7825. const struct ggml_tensor * src0 = dst->src[0];
  7826. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7827. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7828. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7829. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7830. return;
  7831. }
  7832. const int ith = params->ith;
  7833. const int nth = params->nth;
  7834. const int nc = src0->ne[0];
  7835. const int nr = ggml_nrows(src0);
  7836. // rows per thread
  7837. const int dr = (nr + nth - 1)/nth;
  7838. // row range for this thread
  7839. const int ir0 = dr*ith;
  7840. const int ir1 = MIN(ir0 + dr, nr);
  7841. for (int i1 = ir0; i1 < ir1; i1++) {
  7842. ggml_vec_silu_f32(nc,
  7843. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7844. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7845. #ifndef NDEBUG
  7846. for (int k = 0; k < nc; k++) {
  7847. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7848. UNUSED(x);
  7849. assert(!isnan(x));
  7850. assert(!isinf(x));
  7851. }
  7852. #endif
  7853. }
  7854. }
  7855. static void ggml_compute_forward_silu(
  7856. const struct ggml_compute_params * params,
  7857. struct ggml_tensor * dst) {
  7858. const struct ggml_tensor * src0 = dst->src[0];
  7859. switch (src0->type) {
  7860. case GGML_TYPE_F32:
  7861. {
  7862. ggml_compute_forward_silu_f32(params, dst);
  7863. } break;
  7864. default:
  7865. {
  7866. GGML_ASSERT(false);
  7867. } break;
  7868. }
  7869. }
  7870. // ggml_compute_forward_leaky_relu
  7871. static void ggml_compute_forward_leaky_relu_f32(
  7872. const struct ggml_compute_params * params,
  7873. struct ggml_tensor * dst) {
  7874. const struct ggml_tensor * src0 = dst->src[0];
  7875. assert(params->ith == 0);
  7876. assert(ggml_are_same_shape(src0, dst));
  7877. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7878. return;
  7879. }
  7880. const int n = ggml_nrows(src0);
  7881. const int nc = src0->ne[0];
  7882. float negative_slope;
  7883. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7884. assert(dst->nb[0] == sizeof(float));
  7885. assert(src0->nb[0] == sizeof(float));
  7886. for (int i = 0; i < n; i++) {
  7887. ggml_vec_leaky_relu_f32(nc,
  7888. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7889. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7890. }
  7891. }
  7892. static void ggml_compute_forward_leaky_relu(
  7893. const struct ggml_compute_params * params,
  7894. struct ggml_tensor * dst) {
  7895. const struct ggml_tensor * src0 = dst->src[0];
  7896. switch (src0->type) {
  7897. case GGML_TYPE_F32:
  7898. {
  7899. ggml_compute_forward_leaky_relu_f32(params, dst);
  7900. } break;
  7901. default:
  7902. {
  7903. GGML_ASSERT(false);
  7904. } break;
  7905. }
  7906. }
  7907. // ggml_compute_forward_silu_back
  7908. static void ggml_compute_forward_silu_back_f32(
  7909. const struct ggml_compute_params * params,
  7910. struct ggml_tensor * dst) {
  7911. const struct ggml_tensor * src0 = dst->src[0];
  7912. const struct ggml_tensor * grad = dst->src[1];
  7913. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7914. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7915. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7916. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7917. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7918. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7919. return;
  7920. }
  7921. const int ith = params->ith;
  7922. const int nth = params->nth;
  7923. const int nc = src0->ne[0];
  7924. const int nr = ggml_nrows(src0);
  7925. // rows per thread
  7926. const int dr = (nr + nth - 1)/nth;
  7927. // row range for this thread
  7928. const int ir0 = dr*ith;
  7929. const int ir1 = MIN(ir0 + dr, nr);
  7930. for (int i1 = ir0; i1 < ir1; i1++) {
  7931. ggml_vec_silu_backward_f32(nc,
  7932. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7933. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7934. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7935. #ifndef NDEBUG
  7936. for (int k = 0; k < nc; k++) {
  7937. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7938. UNUSED(x);
  7939. assert(!isnan(x));
  7940. assert(!isinf(x));
  7941. }
  7942. #endif
  7943. }
  7944. }
  7945. static void ggml_compute_forward_silu_back(
  7946. const struct ggml_compute_params * params,
  7947. struct ggml_tensor * dst) {
  7948. const struct ggml_tensor * src0 = dst->src[0];
  7949. switch (src0->type) {
  7950. case GGML_TYPE_F32:
  7951. {
  7952. ggml_compute_forward_silu_back_f32(params, dst);
  7953. } break;
  7954. default:
  7955. {
  7956. GGML_ASSERT(false);
  7957. } break;
  7958. }
  7959. }
  7960. static void ggml_compute_forward_hardswish_f32(
  7961. const struct ggml_compute_params * params,
  7962. struct ggml_tensor * dst) {
  7963. const struct ggml_tensor * src0 = dst->src[0];
  7964. assert(params->ith == 0);
  7965. assert(ggml_are_same_shape(src0, dst));
  7966. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7967. return;
  7968. }
  7969. const int n = ggml_nrows(src0);
  7970. const int nc = src0->ne[0];
  7971. assert(dst->nb[0] == sizeof(float));
  7972. assert(src0->nb[0] == sizeof(float));
  7973. for (int i = 0; i < n; i++) {
  7974. ggml_vec_hardswish_f32(nc,
  7975. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7976. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7977. }
  7978. }
  7979. static void ggml_compute_forward_hardswish(
  7980. const struct ggml_compute_params * params,
  7981. struct ggml_tensor * dst) {
  7982. const struct ggml_tensor * src0 = dst->src[0];
  7983. switch (src0->type) {
  7984. case GGML_TYPE_F32:
  7985. {
  7986. ggml_compute_forward_hardswish_f32(params, dst);
  7987. } break;
  7988. default:
  7989. {
  7990. GGML_ASSERT(false);
  7991. } break;
  7992. }
  7993. }
  7994. static void ggml_compute_forward_hardsigmoid_f32(
  7995. const struct ggml_compute_params * params,
  7996. struct ggml_tensor * dst) {
  7997. const struct ggml_tensor * src0 = dst->src[0];
  7998. assert(params->ith == 0);
  7999. assert(ggml_are_same_shape(src0, dst));
  8000. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8001. return;
  8002. }
  8003. const int n = ggml_nrows(src0);
  8004. const int nc = src0->ne[0];
  8005. assert(dst->nb[0] == sizeof(float));
  8006. assert(src0->nb[0] == sizeof(float));
  8007. for (int i = 0; i < n; i++) {
  8008. ggml_vec_hardsigmoid_f32(nc,
  8009. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8010. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8011. }
  8012. }
  8013. static void ggml_compute_forward_hardsigmoid(
  8014. const struct ggml_compute_params * params,
  8015. struct ggml_tensor * dst) {
  8016. const struct ggml_tensor * src0 = dst->src[0];
  8017. switch (src0->type) {
  8018. case GGML_TYPE_F32:
  8019. {
  8020. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8021. } break;
  8022. default:
  8023. {
  8024. GGML_ASSERT(false);
  8025. } break;
  8026. }
  8027. }
  8028. // ggml_compute_forward_norm
  8029. static void ggml_compute_forward_norm_f32(
  8030. const struct ggml_compute_params * params,
  8031. struct ggml_tensor * dst) {
  8032. const struct ggml_tensor * src0 = dst->src[0];
  8033. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8034. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8035. return;
  8036. }
  8037. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8038. const int ith = params->ith;
  8039. const int nth = params->nth;
  8040. GGML_TENSOR_UNARY_OP_LOCALS
  8041. float eps;
  8042. memcpy(&eps, dst->op_params, sizeof(float));
  8043. GGML_ASSERT(eps > 0.0f);
  8044. // TODO: optimize
  8045. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8046. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8047. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8048. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8049. ggml_float sum = 0.0;
  8050. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8051. sum += (ggml_float)x[i00];
  8052. }
  8053. float mean = sum/ne00;
  8054. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8055. ggml_float sum2 = 0.0;
  8056. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8057. float v = x[i00] - mean;
  8058. y[i00] = v;
  8059. sum2 += (ggml_float)(v*v);
  8060. }
  8061. float variance = sum2/ne00;
  8062. const float scale = 1.0f/sqrtf(variance + eps);
  8063. ggml_vec_scale_f32(ne00, y, scale);
  8064. }
  8065. }
  8066. }
  8067. }
  8068. static void ggml_compute_forward_norm(
  8069. const struct ggml_compute_params * params,
  8070. struct ggml_tensor * dst) {
  8071. const struct ggml_tensor * src0 = dst->src[0];
  8072. switch (src0->type) {
  8073. case GGML_TYPE_F32:
  8074. {
  8075. ggml_compute_forward_norm_f32(params, dst);
  8076. } break;
  8077. default:
  8078. {
  8079. GGML_ASSERT(false);
  8080. } break;
  8081. }
  8082. }
  8083. // ggml_compute_forward_group_rms_norm
  8084. static void ggml_compute_forward_rms_norm_f32(
  8085. const struct ggml_compute_params * params,
  8086. struct ggml_tensor * dst) {
  8087. const struct ggml_tensor * src0 = dst->src[0];
  8088. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8089. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8090. return;
  8091. }
  8092. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8093. const int ith = params->ith;
  8094. const int nth = params->nth;
  8095. GGML_TENSOR_UNARY_OP_LOCALS
  8096. float eps;
  8097. memcpy(&eps, dst->op_params, sizeof(float));
  8098. GGML_ASSERT(eps > 0.0f);
  8099. // TODO: optimize
  8100. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8101. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8102. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8103. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8104. ggml_float sum = 0.0;
  8105. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8106. sum += (ggml_float)(x[i00] * x[i00]);
  8107. }
  8108. const float mean = sum/ne00;
  8109. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8110. memcpy(y, x, ne00 * sizeof(float));
  8111. // for (int i00 = 0; i00 < ne00; i00++) {
  8112. // y[i00] = x[i00];
  8113. // }
  8114. const float scale = 1.0f/sqrtf(mean + eps);
  8115. ggml_vec_scale_f32(ne00, y, scale);
  8116. }
  8117. }
  8118. }
  8119. }
  8120. static void ggml_compute_forward_rms_norm(
  8121. const struct ggml_compute_params * params,
  8122. struct ggml_tensor * dst) {
  8123. const struct ggml_tensor * src0 = dst->src[0];
  8124. switch (src0->type) {
  8125. case GGML_TYPE_F32:
  8126. {
  8127. ggml_compute_forward_rms_norm_f32(params, dst);
  8128. } break;
  8129. default:
  8130. {
  8131. GGML_ASSERT(false);
  8132. } break;
  8133. }
  8134. }
  8135. static void ggml_compute_forward_rms_norm_back_f32(
  8136. const struct ggml_compute_params * params,
  8137. struct ggml_tensor * dst) {
  8138. const struct ggml_tensor * src0 = dst->src[0];
  8139. const struct ggml_tensor * src1 = dst->src[1];
  8140. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8141. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8142. return;
  8143. }
  8144. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8145. const int ith = params->ith;
  8146. const int nth = params->nth;
  8147. GGML_TENSOR_BINARY_OP_LOCALS
  8148. float eps;
  8149. memcpy(&eps, dst->op_params, sizeof(float));
  8150. // TODO: optimize
  8151. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8152. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8153. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8154. // src1 is same shape as src0 => same indices
  8155. const int64_t i11 = i01;
  8156. const int64_t i12 = i02;
  8157. const int64_t i13 = i03;
  8158. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8159. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8160. ggml_float sum_xx = 0.0;
  8161. ggml_float sum_xdz = 0.0;
  8162. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8163. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8164. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8165. }
  8166. //const float mean = (float)(sum_xx)/ne00;
  8167. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8168. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8169. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8170. // we could cache rms from forward pass to improve performance.
  8171. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8172. //const float rms = sqrtf(mean_eps);
  8173. const float rrms = 1.0f / sqrtf(mean_eps);
  8174. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8175. {
  8176. // z = rms_norm(x)
  8177. //
  8178. // rms_norm(src0) =
  8179. // scale(
  8180. // src0,
  8181. // div(
  8182. // 1,
  8183. // sqrt(
  8184. // add(
  8185. // scale(
  8186. // sum(
  8187. // sqr(
  8188. // src0)),
  8189. // (1.0/N)),
  8190. // eps))));
  8191. // postorder:
  8192. // ## op args grad
  8193. // 00 param src0 grad[#00]
  8194. // 01 const 1
  8195. // 02 sqr (#00) grad[#02]
  8196. // 03 sum (#02) grad[#03]
  8197. // 04 const 1/N
  8198. // 05 scale (#03, #04) grad[#05]
  8199. // 06 const eps
  8200. // 07 add (#05, #06) grad[#07]
  8201. // 08 sqrt (#07) grad[#08]
  8202. // 09 div (#01,#08) grad[#09]
  8203. // 10 scale (#00,#09) grad[#10]
  8204. //
  8205. // backward pass, given grad[#10]
  8206. // #10: scale
  8207. // grad[#00] += scale(grad[#10],#09)
  8208. // grad[#09] += sum(mul(grad[#10],#00))
  8209. // #09: div
  8210. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8211. // #08: sqrt
  8212. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8213. // #07: add
  8214. // grad[#05] += grad[#07]
  8215. // #05: scale
  8216. // grad[#03] += scale(grad[#05],#04)
  8217. // #03: sum
  8218. // grad[#02] += repeat(grad[#03], #02)
  8219. // #02:
  8220. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8221. //
  8222. // substitute and simplify:
  8223. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8224. // grad[#02] = repeat(grad[#03], #02)
  8225. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8226. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8227. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8228. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8229. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8230. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8231. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8232. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8233. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8234. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8235. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8236. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8237. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8238. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8239. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8240. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8241. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8242. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8243. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8244. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8245. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8246. // a = b*c + d*e
  8247. // a = b*c*f/f + d*e*f/f
  8248. // a = (b*c*f + d*e*f)*(1/f)
  8249. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8250. // a = (b + d*e/c)*c
  8251. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8252. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8253. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8254. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8255. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8256. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8257. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8258. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8259. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8260. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8261. }
  8262. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8263. // post-order:
  8264. // dx := x
  8265. // dx := scale(dx,-mean_xdz/mean_eps)
  8266. // dx := add(dx, dz)
  8267. // dx := scale(dx, rrms)
  8268. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8269. ggml_vec_cpy_f32 (ne00, dx, x);
  8270. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8271. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8272. ggml_vec_acc_f32 (ne00, dx, dz);
  8273. ggml_vec_scale_f32(ne00, dx, rrms);
  8274. }
  8275. }
  8276. }
  8277. }
  8278. static void ggml_compute_forward_rms_norm_back(
  8279. const struct ggml_compute_params * params,
  8280. struct ggml_tensor * dst) {
  8281. const struct ggml_tensor * src0 = dst->src[0];
  8282. switch (src0->type) {
  8283. case GGML_TYPE_F32:
  8284. {
  8285. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8286. } break;
  8287. default:
  8288. {
  8289. GGML_ASSERT(false);
  8290. } break;
  8291. }
  8292. }
  8293. // ggml_compute_forward_group_norm
  8294. static void ggml_compute_forward_group_norm_f32(
  8295. const struct ggml_compute_params * params,
  8296. struct ggml_tensor * dst) {
  8297. const struct ggml_tensor * src0 = dst->src[0];
  8298. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8299. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8300. return;
  8301. }
  8302. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8303. const int ith = params->ith;
  8304. const int nth = params->nth;
  8305. GGML_TENSOR_UNARY_OP_LOCALS
  8306. const float eps = 1e-6f; // TODO: make this a parameter
  8307. // TODO: optimize
  8308. int n_channels = src0->ne[2];
  8309. int n_groups = dst->op_params[0];
  8310. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8311. for (int i = ith; i < n_groups; i+=nth) {
  8312. int start = i * n_channels_per_group;
  8313. int end = start + n_channels_per_group;
  8314. if (end > n_channels) {
  8315. end = n_channels;
  8316. }
  8317. int step = end - start;
  8318. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8319. ggml_float sum = 0.0;
  8320. for (int64_t i02 = start; i02 < end; i02++) {
  8321. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8322. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8323. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8324. sum += (ggml_float)x[i00];
  8325. }
  8326. }
  8327. }
  8328. float mean = sum / (ne00 * ne01 * step);
  8329. ggml_float sum2 = 0.0;
  8330. for (int64_t i02 = start; i02 < end; i02++) {
  8331. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8332. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8333. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8334. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8335. float v = x[i00] - mean;
  8336. y[i00] = v;
  8337. sum2 += (ggml_float)(v * v);
  8338. }
  8339. }
  8340. }
  8341. float variance = sum2 / (ne00 * ne01 * step);
  8342. const float scale = 1.0f / sqrtf(variance + eps);
  8343. for (int64_t i02 = start; i02 < end; i02++) {
  8344. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8345. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8346. ggml_vec_scale_f32(ne00, y, scale);
  8347. }
  8348. }
  8349. }
  8350. }
  8351. }
  8352. static void ggml_compute_forward_group_norm(
  8353. const struct ggml_compute_params * params,
  8354. struct ggml_tensor * dst) {
  8355. const struct ggml_tensor * src0 = dst->src[0];
  8356. switch (src0->type) {
  8357. case GGML_TYPE_F32:
  8358. {
  8359. ggml_compute_forward_group_norm_f32(params, dst);
  8360. } break;
  8361. default:
  8362. {
  8363. GGML_ASSERT(false);
  8364. } break;
  8365. }
  8366. }
  8367. // ggml_compute_forward_mul_mat
  8368. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8369. // helper function to determine if it is better to use BLAS or not
  8370. // for large matrices, BLAS is faster
  8371. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8372. const struct ggml_tensor * src0 = dst->src[0];
  8373. const struct ggml_tensor * src1 = dst->src[1];
  8374. //const int64_t ne00 = src0->ne[0];
  8375. //const int64_t ne01 = src0->ne[1];
  8376. const int64_t ne10 = src1->ne[0];
  8377. const int64_t ne0 = dst->ne[0];
  8378. const int64_t ne1 = dst->ne[1];
  8379. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8380. // all the experts for each batch element and the processing would become incredibly slow
  8381. // TODO: find the optimal values for these
  8382. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8383. ggml_is_contiguous(src0) &&
  8384. ggml_is_contiguous(src1) &&
  8385. //src0->type == GGML_TYPE_F32 &&
  8386. src1->type == GGML_TYPE_F32 &&
  8387. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8388. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8389. return true;
  8390. }
  8391. return false;
  8392. }
  8393. #endif
  8394. static void ggml_compute_forward_mul_mat(
  8395. const struct ggml_compute_params * params,
  8396. struct ggml_tensor * dst) {
  8397. const struct ggml_tensor * src0 = dst->src[0];
  8398. const struct ggml_tensor * src1 = dst->src[1];
  8399. int64_t t0 = ggml_perf_time_us();
  8400. UNUSED(t0);
  8401. GGML_TENSOR_BINARY_OP_LOCALS
  8402. const int ith = params->ith;
  8403. const int nth = params->nth;
  8404. const enum ggml_type type = src0->type;
  8405. const bool src1_cont = ggml_is_contiguous(src1);
  8406. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8407. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8408. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8409. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8410. GGML_ASSERT(ne0 == ne01);
  8411. GGML_ASSERT(ne1 == ne11);
  8412. GGML_ASSERT(ne2 == ne12);
  8413. GGML_ASSERT(ne3 == ne13);
  8414. // we don't support permuted src0 or src1
  8415. GGML_ASSERT(nb00 == ggml_type_size(type));
  8416. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8417. // dst cannot be transposed or permuted
  8418. GGML_ASSERT(nb0 == sizeof(float));
  8419. GGML_ASSERT(nb0 <= nb1);
  8420. GGML_ASSERT(nb1 <= nb2);
  8421. GGML_ASSERT(nb2 <= nb3);
  8422. // broadcast factors
  8423. const int64_t r2 = ne12/ne02;
  8424. const int64_t r3 = ne13/ne03;
  8425. // nb01 >= nb00 - src0 is not transposed
  8426. // compute by src0 rows
  8427. #if defined(GGML_USE_CLBLAST)
  8428. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8429. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8430. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8431. }
  8432. return;
  8433. }
  8434. #endif
  8435. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8436. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8437. const int64_t ne_plane = ne01*ne00;
  8438. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8439. UNUSED(desired_wsize);
  8440. if (params->type == GGML_TASK_TYPE_INIT) {
  8441. if (type != GGML_TYPE_F32) {
  8442. assert(params->wsize >= desired_wsize);
  8443. // parallelize by src0 rows
  8444. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8445. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8446. // broadcast src0 into src1 across 2nd,3rd dimension
  8447. const int64_t i03 = i13/r3;
  8448. const int64_t i02 = i12/r2;
  8449. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8450. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8451. ggml_to_float_t const to_float = type_traits[type].to_float;
  8452. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8453. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8454. }
  8455. }
  8456. }
  8457. }
  8458. return;
  8459. }
  8460. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8461. return;
  8462. }
  8463. // perform sgemm, parallelization controlled by blas lib
  8464. if (ith != 0) {
  8465. return;
  8466. }
  8467. //const int64_t tgemm0 = ggml_perf_time_us();
  8468. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8469. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8470. const int64_t i03 = i13/r3;
  8471. const int64_t i02 = i12/r2;
  8472. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8473. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8474. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8475. if (type != GGML_TYPE_F32) {
  8476. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8477. }
  8478. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8479. ne1, ne01, ne10,
  8480. 1.0f, y, ne10,
  8481. x, ne00,
  8482. 0.0f, d, ne01);
  8483. }
  8484. }
  8485. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8486. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8487. return;
  8488. }
  8489. #endif
  8490. if (params->type == GGML_TASK_TYPE_INIT) {
  8491. if (ith != 0) {
  8492. return;
  8493. }
  8494. if (src1->type != vec_dot_type) {
  8495. char * wdata = params->wdata;
  8496. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8497. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8498. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8499. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8500. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8501. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8502. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8503. wdata += row_size;
  8504. }
  8505. }
  8506. }
  8507. }
  8508. return;
  8509. }
  8510. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8511. return;
  8512. }
  8513. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8514. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8515. const int64_t nr0 = ne01; // src0 rows
  8516. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8517. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8518. // distribute the thread work across the inner or outer loop based on which one is larger
  8519. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8520. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8521. const int64_t ith0 = ith % nth0;
  8522. const int64_t ith1 = ith / nth0;
  8523. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8524. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8525. const int64_t ir010 = dr0*ith0;
  8526. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8527. const int64_t ir110 = dr1*ith1;
  8528. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8529. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8530. // threads with no work simply yield (not sure if it helps)
  8531. if (ir010 >= ir011 || ir110 >= ir111) {
  8532. sched_yield();
  8533. return;
  8534. }
  8535. assert(ne12 % ne02 == 0);
  8536. assert(ne13 % ne03 == 0);
  8537. // block-tiling attempt
  8538. const int64_t blck_0 = 16;
  8539. const int64_t blck_1 = 16;
  8540. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8541. int64_t nrc = vec_dot_num_rows;
  8542. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8543. // this check can be removed once they are extended to support odd numbered rows/cols too
  8544. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8545. nrc = 1;
  8546. }
  8547. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8548. // attempt to reduce false-sharing (does not seem to make a difference)
  8549. // 16 * 2, accounting for mmla kernels
  8550. float tmp[32];
  8551. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8552. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8553. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8554. const int64_t i13 = (ir1/(ne12*ne1));
  8555. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8556. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8557. // broadcast src0 into src1
  8558. const int64_t i03 = i13/r3;
  8559. const int64_t i02 = i12/r2;
  8560. const int64_t i1 = i11;
  8561. const int64_t i2 = i12;
  8562. const int64_t i3 = i13;
  8563. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8564. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8565. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8566. // the original src1 data pointer, so we should index using the indices directly
  8567. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8568. const char * src1_col = (const char *) wdata +
  8569. (src1_cont || src1->type != vec_dot_type
  8570. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8571. : (i11*nb11 + i12*nb12 + i13*nb13));
  8572. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8573. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8574. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8575. //}
  8576. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8577. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8578. }
  8579. for (int cn = 0; cn < nrc; ++cn) {
  8580. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8581. }
  8582. }
  8583. }
  8584. }
  8585. }
  8586. // ggml_compute_forward_mul_mat_id
  8587. static void ggml_compute_forward_mul_mat_id(
  8588. const struct ggml_compute_params * params,
  8589. struct ggml_tensor * dst) {
  8590. const struct ggml_tensor * ids = dst->src[0];
  8591. const struct ggml_tensor * src1 = dst->src[1];
  8592. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8593. GGML_TENSOR_BINARY_OP_LOCALS
  8594. const int ith = params->ith;
  8595. const int nth = params->nth;
  8596. const enum ggml_type type = src0->type;
  8597. const bool src1_cont = ggml_is_contiguous(src1);
  8598. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8599. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8600. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8601. GGML_ASSERT(ne0 == ne01);
  8602. GGML_ASSERT(ne1 == ne11);
  8603. GGML_ASSERT(ne2 == ne12);
  8604. GGML_ASSERT(ne3 == ne13);
  8605. // we don't support permuted src0 or src1
  8606. GGML_ASSERT(nb00 == ggml_type_size(type));
  8607. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8608. // dst cannot be transposed or permuted
  8609. GGML_ASSERT(nb0 == sizeof(float));
  8610. GGML_ASSERT(nb0 <= nb1);
  8611. GGML_ASSERT(nb1 <= nb2);
  8612. GGML_ASSERT(nb2 <= nb3);
  8613. // broadcast factors
  8614. const int64_t r2 = ne12/ne02;
  8615. const int64_t r3 = ne13/ne03;
  8616. // row groups
  8617. const int id = ggml_get_op_params_i32(dst, 0);
  8618. const int n_as = ggml_get_op_params_i32(dst, 1);
  8619. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8620. (char *) params->wdata :
  8621. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8622. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8623. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8624. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8625. if (params->type == GGML_TASK_TYPE_INIT) {
  8626. if (ith != 0) {
  8627. return;
  8628. }
  8629. char * wdata = params->wdata;
  8630. if (src1->type != vec_dot_type) {
  8631. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8632. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8633. assert(src1->type == GGML_TYPE_F32);
  8634. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8635. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8636. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8637. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8638. wdata += row_size;
  8639. }
  8640. }
  8641. }
  8642. }
  8643. // initialize matrix_row_counts
  8644. GGML_ASSERT(wdata == wdata_src1_end);
  8645. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8646. // group rows by src0 matrix
  8647. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8648. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8649. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8650. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8651. matrix_row_counts[row_id] += 1;
  8652. }
  8653. return;
  8654. }
  8655. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8656. return;
  8657. }
  8658. // compute each matrix multiplication in sequence
  8659. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8660. const int64_t cne1 = matrix_row_counts[cur_a];
  8661. if (cne1 == 0) {
  8662. continue;
  8663. }
  8664. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8665. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8666. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8667. const int64_t nr0 = ne01; // src0 rows
  8668. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8669. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8670. // distribute the thread work across the inner or outer loop based on which one is larger
  8671. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8672. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8673. const int64_t ith0 = ith % nth0;
  8674. const int64_t ith1 = ith / nth0;
  8675. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8676. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8677. const int64_t ir010 = dr0*ith0;
  8678. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8679. const int64_t ir110 = dr1*ith1;
  8680. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8681. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8682. // threads with no work simply yield (not sure if it helps)
  8683. if (ir010 >= ir011 || ir110 >= ir111) {
  8684. sched_yield();
  8685. continue;
  8686. }
  8687. assert(ne12 % ne02 == 0);
  8688. assert(ne13 % ne03 == 0);
  8689. // block-tiling attempt
  8690. const int64_t blck_0 = 16;
  8691. const int64_t blck_1 = 16;
  8692. // attempt to reduce false-sharing (does not seem to make a difference)
  8693. float tmp[16];
  8694. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8695. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8696. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8697. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8698. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8699. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8700. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8701. // broadcast src0 into src1
  8702. const int64_t i03 = i13/r3;
  8703. const int64_t i02 = i12/r2;
  8704. const int64_t i1 = i11;
  8705. const int64_t i2 = i12;
  8706. const int64_t i3 = i13;
  8707. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8708. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8709. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8710. // the original src1 data pointer, so we should index using the indices directly
  8711. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8712. const char * src1_col = (const char *) wdata +
  8713. (src1_cont || src1->type != vec_dot_type
  8714. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8715. : (i11*nb11 + i12*nb12 + i13*nb13));
  8716. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8717. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8718. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8719. //}
  8720. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8721. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8722. }
  8723. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8724. }
  8725. }
  8726. }
  8727. }
  8728. #undef MMID_MATRIX_ROW
  8729. }
  8730. // ggml_compute_forward_out_prod
  8731. static void ggml_compute_forward_out_prod_f32(
  8732. const struct ggml_compute_params * params,
  8733. struct ggml_tensor * dst) {
  8734. const struct ggml_tensor * src0 = dst->src[0];
  8735. const struct ggml_tensor * src1 = dst->src[1];
  8736. // int64_t t0 = ggml_perf_time_us();
  8737. // UNUSED(t0);
  8738. GGML_TENSOR_BINARY_OP_LOCALS
  8739. const int ith = params->ith;
  8740. const int nth = params->nth;
  8741. GGML_ASSERT(ne0 == ne00);
  8742. GGML_ASSERT(ne1 == ne10);
  8743. GGML_ASSERT(ne2 == ne02);
  8744. GGML_ASSERT(ne02 == ne12);
  8745. GGML_ASSERT(ne3 == ne13);
  8746. GGML_ASSERT(ne03 == ne13);
  8747. // we don't support permuted src0 or src1
  8748. GGML_ASSERT(nb00 == sizeof(float));
  8749. // dst cannot be transposed or permuted
  8750. GGML_ASSERT(nb0 == sizeof(float));
  8751. // GGML_ASSERT(nb0 <= nb1);
  8752. // GGML_ASSERT(nb1 <= nb2);
  8753. // GGML_ASSERT(nb2 <= nb3);
  8754. // nb01 >= nb00 - src0 is not transposed
  8755. // compute by src0 rows
  8756. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8757. // TODO: #if defined(GGML_USE_CLBLAST)
  8758. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8759. bool use_blas = ggml_is_matrix(src0) &&
  8760. ggml_is_matrix(src1) &&
  8761. ggml_is_contiguous(src0) &&
  8762. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8763. #endif
  8764. if (params->type == GGML_TASK_TYPE_INIT) {
  8765. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8766. if (use_blas) {
  8767. return;
  8768. }
  8769. #endif
  8770. if (ith != 0) {
  8771. return;
  8772. }
  8773. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8774. return;
  8775. }
  8776. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8777. return;
  8778. }
  8779. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8780. if (use_blas) {
  8781. if (params->ith != 0) { // All threads other than the first do no work.
  8782. return;
  8783. }
  8784. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8785. // src0: (k,n)
  8786. // src1: (k,m)
  8787. // dst: (m,n)
  8788. //
  8789. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8790. // Also expressed as (major,minor)
  8791. // a: (m,k): so src1 transposed
  8792. // b: (k,n): so src0
  8793. // c: (m,n)
  8794. //
  8795. // However, if ggml_is_transposed(src1) is true, then
  8796. // src1->data already contains a transposed version, so sgemm mustn't
  8797. // transpose it further.
  8798. int n = src0->ne[0];
  8799. int k = src0->ne[1];
  8800. int m = src1->ne[0];
  8801. int transposeA, lda;
  8802. if (!ggml_is_transposed(src1)) {
  8803. transposeA = CblasTrans;
  8804. lda = m;
  8805. } else {
  8806. transposeA = CblasNoTrans;
  8807. lda = k;
  8808. }
  8809. float * a = (float *) ((char *) src1->data);
  8810. float * b = (float *) ((char *) src0->data);
  8811. float * c = (float *) ((char *) dst->data);
  8812. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8813. return;
  8814. }
  8815. #endif
  8816. // dst[:,:,:,:] = 0
  8817. // for i2,i3:
  8818. // for i1:
  8819. // for i01:
  8820. // for i0:
  8821. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8822. // parallelize by last three dimensions
  8823. // total rows in dst
  8824. const int64_t nr = ne1*ne2*ne3;
  8825. // rows per thread
  8826. const int64_t dr = (nr + nth - 1)/nth;
  8827. // row range for this thread
  8828. const int64_t ir0 = dr*ith;
  8829. const int64_t ir1 = MIN(ir0 + dr, nr);
  8830. // block-tiling attempt
  8831. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8832. const int64_t blck_1 = 16;
  8833. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8834. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8835. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8836. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8837. for (int64_t ir = bir; ir < bir1; ++ir) {
  8838. // dst indices
  8839. const int64_t i3 = ir/(ne2*ne1);
  8840. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8841. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8842. const int64_t i02 = i2;
  8843. const int64_t i03 = i3;
  8844. //const int64_t i10 = i1;
  8845. const int64_t i12 = i2;
  8846. const int64_t i13 = i3;
  8847. #if GGML_VEC_MAD_UNROLL > 2
  8848. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8849. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8850. const int64_t i11 = i01;
  8851. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8852. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8853. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8854. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8855. }
  8856. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8857. const int64_t i11 = i01;
  8858. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8859. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8860. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8861. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8862. }
  8863. #else
  8864. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8865. const int64_t i11 = i01;
  8866. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8867. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8868. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8869. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8870. }
  8871. #endif
  8872. }
  8873. }
  8874. }
  8875. //int64_t t1 = ggml_perf_time_us();
  8876. //static int64_t acc = 0;
  8877. //acc += t1 - t0;
  8878. //if (t1 - t0 > 10) {
  8879. // printf("\n");
  8880. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8881. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8882. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8883. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8884. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8885. //}
  8886. }
  8887. static void ggml_compute_forward_out_prod_q_f32(
  8888. const struct ggml_compute_params * params,
  8889. struct ggml_tensor * dst) {
  8890. const struct ggml_tensor * src0 = dst->src[0];
  8891. const struct ggml_tensor * src1 = dst->src[1];
  8892. // int64_t t0 = ggml_perf_time_us();
  8893. // UNUSED(t0);
  8894. GGML_TENSOR_BINARY_OP_LOCALS;
  8895. const int ith = params->ith;
  8896. const int nth = params->nth;
  8897. const enum ggml_type type = src0->type;
  8898. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8899. GGML_ASSERT(ne02 == ne12);
  8900. GGML_ASSERT(ne03 == ne13);
  8901. GGML_ASSERT(ne2 == ne12);
  8902. GGML_ASSERT(ne3 == ne13);
  8903. // we don't support permuted src0 dim0
  8904. GGML_ASSERT(nb00 == ggml_type_size(type));
  8905. // dst dim0 cannot be transposed or permuted
  8906. GGML_ASSERT(nb0 == sizeof(float));
  8907. // GGML_ASSERT(nb0 <= nb1);
  8908. // GGML_ASSERT(nb1 <= nb2);
  8909. // GGML_ASSERT(nb2 <= nb3);
  8910. GGML_ASSERT(ne0 == ne00);
  8911. GGML_ASSERT(ne1 == ne10);
  8912. GGML_ASSERT(ne2 == ne02);
  8913. GGML_ASSERT(ne3 == ne03);
  8914. // nb01 >= nb00 - src0 is not transposed
  8915. // compute by src0 rows
  8916. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8917. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8918. if (params->type == GGML_TASK_TYPE_INIT) {
  8919. if (ith != 0) {
  8920. return;
  8921. }
  8922. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8923. return;
  8924. }
  8925. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8926. return;
  8927. }
  8928. // parallelize by last three dimensions
  8929. // total rows in dst
  8930. const int64_t nr = ne1*ne2*ne3;
  8931. // rows per thread
  8932. const int64_t dr = (nr + nth - 1)/nth;
  8933. // row range for this thread
  8934. const int64_t ir0 = dr*ith;
  8935. const int64_t ir1 = MIN(ir0 + dr, nr);
  8936. // dst[:,:,:,:] = 0
  8937. // for i2,i3:
  8938. // for i1:
  8939. // for i01:
  8940. // for i0:
  8941. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8942. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8943. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8944. // dst indices
  8945. const int64_t i3 = ir/(ne2*ne1);
  8946. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8947. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8948. const int64_t i02 = i2;
  8949. const int64_t i03 = i3;
  8950. //const int64_t i10 = i1;
  8951. const int64_t i12 = i2;
  8952. const int64_t i13 = i3;
  8953. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8954. const int64_t i11 = i01;
  8955. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8956. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8957. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8958. dequantize_row_q(s0, wdata, ne0);
  8959. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8960. }
  8961. }
  8962. //int64_t t1 = ggml_perf_time_us();
  8963. //static int64_t acc = 0;
  8964. //acc += t1 - t0;
  8965. //if (t1 - t0 > 10) {
  8966. // printf("\n");
  8967. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8968. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8969. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8970. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8971. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8972. //}
  8973. }
  8974. static void ggml_compute_forward_out_prod(
  8975. const struct ggml_compute_params * params,
  8976. struct ggml_tensor * dst) {
  8977. const struct ggml_tensor * src0 = dst->src[0];
  8978. switch (src0->type) {
  8979. case GGML_TYPE_Q4_0:
  8980. case GGML_TYPE_Q4_1:
  8981. case GGML_TYPE_Q5_0:
  8982. case GGML_TYPE_Q5_1:
  8983. case GGML_TYPE_Q8_0:
  8984. case GGML_TYPE_Q2_K:
  8985. case GGML_TYPE_Q3_K:
  8986. case GGML_TYPE_Q4_K:
  8987. case GGML_TYPE_Q5_K:
  8988. case GGML_TYPE_Q6_K:
  8989. case GGML_TYPE_IQ2_XXS:
  8990. case GGML_TYPE_IQ2_XS:
  8991. case GGML_TYPE_IQ3_XXS:
  8992. case GGML_TYPE_IQ1_S:
  8993. case GGML_TYPE_IQ4_NL:
  8994. case GGML_TYPE_IQ4_XS:
  8995. case GGML_TYPE_IQ3_S:
  8996. case GGML_TYPE_IQ2_S:
  8997. {
  8998. ggml_compute_forward_out_prod_q_f32(params, dst);
  8999. } break;
  9000. case GGML_TYPE_F16:
  9001. {
  9002. GGML_ASSERT(false); // todo
  9003. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9004. } break;
  9005. case GGML_TYPE_F32:
  9006. {
  9007. ggml_compute_forward_out_prod_f32(params, dst);
  9008. } break;
  9009. default:
  9010. {
  9011. GGML_ASSERT(false);
  9012. } break;
  9013. }
  9014. }
  9015. // ggml_compute_forward_scale
  9016. static void ggml_compute_forward_scale_f32(
  9017. const struct ggml_compute_params * params,
  9018. struct ggml_tensor * dst) {
  9019. const struct ggml_tensor * src0 = dst->src[0];
  9020. GGML_ASSERT(ggml_is_contiguous(src0));
  9021. GGML_ASSERT(ggml_is_contiguous(dst));
  9022. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9023. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9024. return;
  9025. }
  9026. // scale factor
  9027. float v;
  9028. memcpy(&v, dst->op_params, sizeof(float));
  9029. const int ith = params->ith;
  9030. const int nth = params->nth;
  9031. const int nc = src0->ne[0];
  9032. const int nr = ggml_nrows(src0);
  9033. // rows per thread
  9034. const int dr = (nr + nth - 1)/nth;
  9035. // row range for this thread
  9036. const int ir0 = dr*ith;
  9037. const int ir1 = MIN(ir0 + dr, nr);
  9038. const size_t nb01 = src0->nb[1];
  9039. const size_t nb1 = dst->nb[1];
  9040. for (int i1 = ir0; i1 < ir1; i1++) {
  9041. if (dst->data != src0->data) {
  9042. // src0 is same shape as dst => same indices
  9043. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9044. }
  9045. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9046. }
  9047. }
  9048. static void ggml_compute_forward_scale(
  9049. const struct ggml_compute_params * params,
  9050. struct ggml_tensor * dst) {
  9051. const struct ggml_tensor * src0 = dst->src[0];
  9052. switch (src0->type) {
  9053. case GGML_TYPE_F32:
  9054. {
  9055. ggml_compute_forward_scale_f32(params, dst);
  9056. } break;
  9057. default:
  9058. {
  9059. GGML_ASSERT(false);
  9060. } break;
  9061. }
  9062. }
  9063. // ggml_compute_forward_set
  9064. static void ggml_compute_forward_set_f32(
  9065. const struct ggml_compute_params * params,
  9066. struct ggml_tensor * dst) {
  9067. const struct ggml_tensor * src0 = dst->src[0];
  9068. const struct ggml_tensor * src1 = dst->src[1];
  9069. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9070. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9071. // view src0 and dst with these strides and data offset inbytes during set
  9072. // nb0 is implicitly element_size because src0 and dst are contiguous
  9073. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9074. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9075. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9076. size_t offset = ((int32_t *) dst->op_params)[3];
  9077. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9078. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9079. if (params->ith != 0) {
  9080. return;
  9081. }
  9082. // memcpy needs to be synchronized across threads to avoid race conditions.
  9083. // => do it in INIT phase
  9084. memcpy(
  9085. ((char *) dst->data),
  9086. ((char *) src0->data),
  9087. ggml_nbytes(dst));
  9088. }
  9089. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9090. return;
  9091. }
  9092. const int ith = params->ith;
  9093. const int nth = params->nth;
  9094. const int nr = ggml_nrows(src1);
  9095. const int nc = src1->ne[0];
  9096. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9097. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9098. // src0 and dst as viewed during set
  9099. const size_t nb0 = ggml_element_size(src0);
  9100. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9101. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9102. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9103. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9104. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9105. GGML_ASSERT(nb10 == sizeof(float));
  9106. // rows per thread
  9107. const int dr = (nr + nth - 1)/nth;
  9108. // row range for this thread
  9109. const int ir0 = dr*ith;
  9110. const int ir1 = MIN(ir0 + dr, nr);
  9111. for (int ir = ir0; ir < ir1; ++ir) {
  9112. // src0 and dst are viewed with shape of src1 and offset
  9113. // => same indices
  9114. const int i3 = ir/(ne12*ne11);
  9115. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9116. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9117. ggml_vec_cpy_f32(nc,
  9118. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9119. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9120. }
  9121. }
  9122. static void ggml_compute_forward_set(
  9123. const struct ggml_compute_params * params,
  9124. struct ggml_tensor * dst) {
  9125. const struct ggml_tensor * src0 = dst->src[0];
  9126. switch (src0->type) {
  9127. case GGML_TYPE_F32:
  9128. {
  9129. ggml_compute_forward_set_f32(params, dst);
  9130. } break;
  9131. case GGML_TYPE_F16:
  9132. case GGML_TYPE_Q4_0:
  9133. case GGML_TYPE_Q4_1:
  9134. case GGML_TYPE_Q5_0:
  9135. case GGML_TYPE_Q5_1:
  9136. case GGML_TYPE_Q8_0:
  9137. case GGML_TYPE_Q8_1:
  9138. case GGML_TYPE_Q2_K:
  9139. case GGML_TYPE_Q3_K:
  9140. case GGML_TYPE_Q4_K:
  9141. case GGML_TYPE_Q5_K:
  9142. case GGML_TYPE_Q6_K:
  9143. case GGML_TYPE_IQ2_XXS:
  9144. case GGML_TYPE_IQ2_XS:
  9145. case GGML_TYPE_IQ3_XXS:
  9146. case GGML_TYPE_IQ1_S:
  9147. case GGML_TYPE_IQ4_NL:
  9148. case GGML_TYPE_IQ4_XS:
  9149. case GGML_TYPE_IQ3_S:
  9150. case GGML_TYPE_IQ2_S:
  9151. default:
  9152. {
  9153. GGML_ASSERT(false);
  9154. } break;
  9155. }
  9156. }
  9157. // ggml_compute_forward_cpy
  9158. static void ggml_compute_forward_cpy(
  9159. const struct ggml_compute_params * params,
  9160. struct ggml_tensor * dst) {
  9161. ggml_compute_forward_dup(params, dst);
  9162. }
  9163. // ggml_compute_forward_cont
  9164. static void ggml_compute_forward_cont(
  9165. const struct ggml_compute_params * params,
  9166. struct ggml_tensor * dst) {
  9167. ggml_compute_forward_dup(params, dst);
  9168. }
  9169. // ggml_compute_forward_reshape
  9170. static void ggml_compute_forward_reshape(
  9171. const struct ggml_compute_params * params,
  9172. struct ggml_tensor * dst) {
  9173. // NOP
  9174. UNUSED(params);
  9175. UNUSED(dst);
  9176. }
  9177. // ggml_compute_forward_view
  9178. static void ggml_compute_forward_view(
  9179. const struct ggml_compute_params * params,
  9180. const struct ggml_tensor * dst) {
  9181. // NOP
  9182. UNUSED(params);
  9183. UNUSED(dst);
  9184. }
  9185. // ggml_compute_forward_permute
  9186. static void ggml_compute_forward_permute(
  9187. const struct ggml_compute_params * params,
  9188. const struct ggml_tensor * dst) {
  9189. // NOP
  9190. UNUSED(params);
  9191. UNUSED(dst);
  9192. }
  9193. // ggml_compute_forward_transpose
  9194. static void ggml_compute_forward_transpose(
  9195. const struct ggml_compute_params * params,
  9196. const struct ggml_tensor * dst) {
  9197. // NOP
  9198. UNUSED(params);
  9199. UNUSED(dst);
  9200. }
  9201. // ggml_compute_forward_get_rows
  9202. static void ggml_compute_forward_get_rows_q(
  9203. const struct ggml_compute_params * params,
  9204. struct ggml_tensor * dst) {
  9205. const struct ggml_tensor * src0 = dst->src[0];
  9206. const struct ggml_tensor * src1 = dst->src[1];
  9207. assert(params->ith == 0);
  9208. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9209. return;
  9210. }
  9211. GGML_TENSOR_BINARY_OP_LOCALS
  9212. const int64_t nc = ne00;
  9213. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9214. const enum ggml_type type = src0->type;
  9215. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9216. assert(ne0 == nc);
  9217. assert(ne02 == ne11);
  9218. assert(nb00 == ggml_type_size(type));
  9219. assert(ggml_nrows(dst) == nr);
  9220. // TODO: multi-thread
  9221. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9222. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9223. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9224. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9225. dequantize_row_q(
  9226. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9227. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9228. }
  9229. }
  9230. }
  9231. }
  9232. static void ggml_compute_forward_get_rows_f16(
  9233. const struct ggml_compute_params * params,
  9234. struct ggml_tensor * dst) {
  9235. const struct ggml_tensor * src0 = dst->src[0];
  9236. const struct ggml_tensor * src1 = dst->src[1];
  9237. assert(params->ith == 0);
  9238. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9239. return;
  9240. }
  9241. GGML_TENSOR_BINARY_OP_LOCALS
  9242. const int64_t nc = ne00;
  9243. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9244. assert(ne0 == nc);
  9245. assert(ne02 == ne11);
  9246. assert(nb00 == sizeof(ggml_fp16_t));
  9247. assert(ggml_nrows(dst) == nr);
  9248. // TODO: multi-thread
  9249. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9250. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9251. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9252. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9253. ggml_fp16_to_fp32_row(
  9254. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9255. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9256. }
  9257. }
  9258. }
  9259. }
  9260. static void ggml_compute_forward_get_rows_f32(
  9261. const struct ggml_compute_params * params,
  9262. struct ggml_tensor * dst) {
  9263. const struct ggml_tensor * src0 = dst->src[0];
  9264. const struct ggml_tensor * src1 = dst->src[1];
  9265. assert(params->ith == 0);
  9266. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9267. return;
  9268. }
  9269. GGML_TENSOR_BINARY_OP_LOCALS
  9270. const int64_t nc = ne00;
  9271. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9272. assert(ne0 == nc);
  9273. assert(ne02 == ne11);
  9274. assert(nb00 == sizeof(float));
  9275. assert(ggml_nrows(dst) == nr);
  9276. // TODO: multi-thread
  9277. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9278. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9279. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9280. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9281. ggml_vec_cpy_f32(nc,
  9282. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9283. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9284. }
  9285. }
  9286. }
  9287. }
  9288. static void ggml_compute_forward_get_rows(
  9289. const struct ggml_compute_params * params,
  9290. struct ggml_tensor * dst) {
  9291. const struct ggml_tensor * src0 = dst->src[0];
  9292. switch (src0->type) {
  9293. case GGML_TYPE_Q4_0:
  9294. case GGML_TYPE_Q4_1:
  9295. case GGML_TYPE_Q5_0:
  9296. case GGML_TYPE_Q5_1:
  9297. case GGML_TYPE_Q8_0:
  9298. case GGML_TYPE_Q8_1:
  9299. case GGML_TYPE_Q2_K:
  9300. case GGML_TYPE_Q3_K:
  9301. case GGML_TYPE_Q4_K:
  9302. case GGML_TYPE_Q5_K:
  9303. case GGML_TYPE_Q6_K:
  9304. case GGML_TYPE_IQ2_XXS:
  9305. case GGML_TYPE_IQ2_XS:
  9306. case GGML_TYPE_IQ3_XXS:
  9307. case GGML_TYPE_IQ1_S:
  9308. case GGML_TYPE_IQ4_NL:
  9309. case GGML_TYPE_IQ4_XS:
  9310. case GGML_TYPE_IQ3_S:
  9311. case GGML_TYPE_IQ2_S:
  9312. {
  9313. ggml_compute_forward_get_rows_q(params, dst);
  9314. } break;
  9315. case GGML_TYPE_F16:
  9316. {
  9317. ggml_compute_forward_get_rows_f16(params, dst);
  9318. } break;
  9319. case GGML_TYPE_F32:
  9320. case GGML_TYPE_I32:
  9321. {
  9322. ggml_compute_forward_get_rows_f32(params, dst);
  9323. } break;
  9324. default:
  9325. {
  9326. GGML_ASSERT(false);
  9327. } break;
  9328. }
  9329. //static bool first = true;
  9330. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9331. //if (first) {
  9332. // first = false;
  9333. //} else {
  9334. // for (int k = 0; k < dst->ne[1]; ++k) {
  9335. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9336. // for (int i = 0; i < 16; ++i) {
  9337. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9338. // }
  9339. // printf("\n");
  9340. // }
  9341. // printf("\n");
  9342. // }
  9343. // printf("\n");
  9344. // exit(0);
  9345. //}
  9346. }
  9347. // ggml_compute_forward_get_rows_back
  9348. static void ggml_compute_forward_get_rows_back_f32_f16(
  9349. const struct ggml_compute_params * params,
  9350. struct ggml_tensor * dst) {
  9351. const struct ggml_tensor * src0 = dst->src[0];
  9352. const struct ggml_tensor * src1 = dst->src[1];
  9353. GGML_ASSERT(params->ith == 0);
  9354. GGML_ASSERT(ggml_is_contiguous(dst));
  9355. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9356. if (params->type == GGML_TASK_TYPE_INIT) {
  9357. if (params->ith != 0) {
  9358. return;
  9359. }
  9360. memset(dst->data, 0, ggml_nbytes(dst));
  9361. }
  9362. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9363. return;
  9364. }
  9365. const int nc = src0->ne[0];
  9366. const int nr = ggml_nelements(src1);
  9367. GGML_ASSERT( dst->ne[0] == nc);
  9368. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9369. for (int i = 0; i < nr; ++i) {
  9370. const int r = ((int32_t *) src1->data)[i];
  9371. for (int j = 0; j < nc; ++j) {
  9372. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9373. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9374. }
  9375. }
  9376. }
  9377. static void ggml_compute_forward_get_rows_back_f32(
  9378. const struct ggml_compute_params * params,
  9379. struct ggml_tensor * dst) {
  9380. const struct ggml_tensor * src0 = dst->src[0];
  9381. const struct ggml_tensor * src1 = dst->src[1];
  9382. GGML_ASSERT(params->ith == 0);
  9383. GGML_ASSERT(ggml_is_contiguous(dst));
  9384. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9385. if (params->type == GGML_TASK_TYPE_INIT) {
  9386. if (params->ith != 0) {
  9387. return;
  9388. }
  9389. memset(dst->data, 0, ggml_nbytes(dst));
  9390. }
  9391. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9392. return;
  9393. }
  9394. const int nc = src0->ne[0];
  9395. const int nr = ggml_nelements(src1);
  9396. GGML_ASSERT( dst->ne[0] == nc);
  9397. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9398. for (int i = 0; i < nr; ++i) {
  9399. const int r = ((int32_t *) src1->data)[i];
  9400. ggml_vec_add_f32(nc,
  9401. (float *) ((char *) dst->data + r*dst->nb[1]),
  9402. (float *) ((char *) dst->data + r*dst->nb[1]),
  9403. (float *) ((char *) src0->data + i*src0->nb[1]));
  9404. }
  9405. }
  9406. static void ggml_compute_forward_get_rows_back(
  9407. const struct ggml_compute_params * params,
  9408. struct ggml_tensor * dst) {
  9409. const struct ggml_tensor * src0 = dst->src[0];
  9410. switch (src0->type) {
  9411. case GGML_TYPE_F16:
  9412. {
  9413. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9414. } break;
  9415. case GGML_TYPE_F32:
  9416. {
  9417. ggml_compute_forward_get_rows_back_f32(params, dst);
  9418. } break;
  9419. default:
  9420. {
  9421. GGML_ASSERT(false);
  9422. } break;
  9423. }
  9424. //static bool first = true;
  9425. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9426. //if (first) {
  9427. // first = false;
  9428. //} else {
  9429. // for (int k = 0; k < dst->ne[1]; ++k) {
  9430. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9431. // for (int i = 0; i < 16; ++i) {
  9432. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9433. // }
  9434. // printf("\n");
  9435. // }
  9436. // printf("\n");
  9437. // }
  9438. // printf("\n");
  9439. // exit(0);
  9440. //}
  9441. }
  9442. // ggml_compute_forward_diag
  9443. static void ggml_compute_forward_diag_f32(
  9444. const struct ggml_compute_params * params,
  9445. struct ggml_tensor * dst) {
  9446. const struct ggml_tensor * src0 = dst->src[0];
  9447. GGML_ASSERT(params->ith == 0);
  9448. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9449. return;
  9450. }
  9451. // TODO: handle transposed/permuted matrices
  9452. GGML_TENSOR_UNARY_OP_LOCALS
  9453. GGML_ASSERT(ne00 == ne0);
  9454. GGML_ASSERT(ne00 == ne1);
  9455. GGML_ASSERT(ne01 == 1);
  9456. GGML_ASSERT(ne02 == ne2);
  9457. GGML_ASSERT(ne03 == ne3);
  9458. GGML_ASSERT(nb00 == sizeof(float));
  9459. GGML_ASSERT(nb0 == sizeof(float));
  9460. for (int i3 = 0; i3 < ne3; i3++) {
  9461. for (int i2 = 0; i2 < ne2; i2++) {
  9462. for (int i1 = 0; i1 < ne1; i1++) {
  9463. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9464. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9465. for (int i0 = 0; i0 < i1; i0++) {
  9466. d[i0] = 0;
  9467. }
  9468. d[i1] = s[i1];
  9469. for (int i0 = i1+1; i0 < ne0; i0++) {
  9470. d[i0] = 0;
  9471. }
  9472. }
  9473. }
  9474. }
  9475. }
  9476. static void ggml_compute_forward_diag(
  9477. const struct ggml_compute_params * params,
  9478. struct ggml_tensor * dst) {
  9479. const struct ggml_tensor * src0 = dst->src[0];
  9480. switch (src0->type) {
  9481. case GGML_TYPE_F32:
  9482. {
  9483. ggml_compute_forward_diag_f32(params, dst);
  9484. } break;
  9485. default:
  9486. {
  9487. GGML_ASSERT(false);
  9488. } break;
  9489. }
  9490. }
  9491. // ggml_compute_forward_diag_mask_inf
  9492. static void ggml_compute_forward_diag_mask_f32(
  9493. const struct ggml_compute_params * params,
  9494. struct ggml_tensor * dst,
  9495. const float value) {
  9496. const struct ggml_tensor * src0 = dst->src[0];
  9497. const int ith = params->ith;
  9498. const int nth = params->nth;
  9499. const int n_past = ((int32_t *) dst->op_params)[0];
  9500. const bool inplace = src0->data == dst->data;
  9501. GGML_ASSERT(n_past >= 0);
  9502. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9503. if (ith != 0) {
  9504. return;
  9505. }
  9506. // memcpy needs to be synchronized across threads to avoid race conditions.
  9507. // => do it in INIT phase
  9508. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9509. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9510. memcpy(
  9511. ((char *) dst->data),
  9512. ((char *) src0->data),
  9513. ggml_nbytes(dst));
  9514. }
  9515. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9516. return;
  9517. }
  9518. // TODO: handle transposed/permuted matrices
  9519. const int n = ggml_nrows(src0);
  9520. const int nc = src0->ne[0];
  9521. const int nr = src0->ne[1];
  9522. const int nz = n/nr;
  9523. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9524. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9525. for (int k = 0; k < nz; k++) {
  9526. for (int j = ith; j < nr; j += nth) {
  9527. for (int i = n_past; i < nc; i++) {
  9528. if (i > n_past + j) {
  9529. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9530. }
  9531. }
  9532. }
  9533. }
  9534. }
  9535. static void ggml_compute_forward_diag_mask_inf(
  9536. const struct ggml_compute_params * params,
  9537. struct ggml_tensor * dst) {
  9538. const struct ggml_tensor * src0 = dst->src[0];
  9539. switch (src0->type) {
  9540. case GGML_TYPE_F32:
  9541. {
  9542. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9543. } break;
  9544. default:
  9545. {
  9546. GGML_ASSERT(false);
  9547. } break;
  9548. }
  9549. }
  9550. static void ggml_compute_forward_diag_mask_zero(
  9551. const struct ggml_compute_params * params,
  9552. struct ggml_tensor * dst) {
  9553. const struct ggml_tensor * src0 = dst->src[0];
  9554. switch (src0->type) {
  9555. case GGML_TYPE_F32:
  9556. {
  9557. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9558. } break;
  9559. default:
  9560. {
  9561. GGML_ASSERT(false);
  9562. } break;
  9563. }
  9564. }
  9565. // ggml_compute_forward_soft_max
  9566. static void ggml_compute_forward_soft_max_f32(
  9567. const struct ggml_compute_params * params,
  9568. struct ggml_tensor * dst) {
  9569. const struct ggml_tensor * src0 = dst->src[0];
  9570. const struct ggml_tensor * src1 = dst->src[1];
  9571. const struct ggml_tensor * src2 = dst->src[2];
  9572. assert(ggml_is_contiguous(dst));
  9573. assert(ggml_are_same_shape(src0, dst));
  9574. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9575. return;
  9576. }
  9577. float scale = 1.0f;
  9578. float max_bias = 0.0f;
  9579. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9580. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9581. // TODO: handle transposed/permuted matrices
  9582. const int ith = params->ith;
  9583. const int nth = params->nth;
  9584. GGML_TENSOR_UNARY_OP_LOCALS
  9585. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9586. // TODO: is this supposed to be ceil instead of floor?
  9587. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9588. const uint32_t n_head_kv = ne02;
  9589. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9590. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9591. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9592. const int nc = src0->ne[0];
  9593. const int nr = ggml_nrows(src0);
  9594. // rows per thread
  9595. const int dr = (nr + nth - 1)/nth;
  9596. // row range for this thread
  9597. const int ir0 = dr*ith;
  9598. const int ir1 = MIN(ir0 + dr, nr);
  9599. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9600. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9601. float * pos = src2 ? (float *) src2->data : src0->data;
  9602. for (int i1 = ir0; i1 < ir1; i1++) {
  9603. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9604. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9605. // broadcast the mask across rows
  9606. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9607. ggml_vec_cpy_f32 (nc, wp, sp);
  9608. ggml_vec_scale_f32(nc, wp, scale);
  9609. if (mp) {
  9610. ggml_vec_acc_f32(nc, wp, mp);
  9611. }
  9612. // ALiBi bias
  9613. if (max_bias > 0.0f) {
  9614. const uint32_t h = (i1/ne01)%ne02; // head
  9615. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9616. for (int i = 0; i < nc; i++) {
  9617. wp[i] = wp[i] + slope*pos[i];
  9618. }
  9619. }
  9620. #ifndef NDEBUG
  9621. for (int i = 0; i < nc; ++i) {
  9622. //printf("p[%d] = %f\n", i, p[i]);
  9623. assert(!isnan(wp[i]));
  9624. }
  9625. #endif
  9626. float max = -INFINITY;
  9627. ggml_vec_max_f32(nc, &max, wp);
  9628. ggml_float sum = 0.0;
  9629. uint16_t scvt;
  9630. for (int i = 0; i < nc; i++) {
  9631. if (wp[i] == -INFINITY) {
  9632. dp[i] = 0.0f;
  9633. } else {
  9634. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9635. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9636. memcpy(&scvt, &s, sizeof(scvt));
  9637. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9638. sum += (ggml_float)val;
  9639. dp[i] = val;
  9640. }
  9641. }
  9642. assert(sum > 0.0);
  9643. sum = 1.0/sum;
  9644. ggml_vec_scale_f32(nc, dp, sum);
  9645. #ifndef NDEBUG
  9646. for (int i = 0; i < nc; ++i) {
  9647. assert(!isnan(dp[i]));
  9648. assert(!isinf(dp[i]));
  9649. }
  9650. #endif
  9651. }
  9652. }
  9653. static void ggml_compute_forward_soft_max(
  9654. const struct ggml_compute_params * params,
  9655. struct ggml_tensor * dst) {
  9656. const struct ggml_tensor * src0 = dst->src[0];
  9657. switch (src0->type) {
  9658. case GGML_TYPE_F32:
  9659. {
  9660. ggml_compute_forward_soft_max_f32(params, dst);
  9661. } break;
  9662. default:
  9663. {
  9664. GGML_ASSERT(false);
  9665. } break;
  9666. }
  9667. }
  9668. // ggml_compute_forward_soft_max_back
  9669. static void ggml_compute_forward_soft_max_back_f32(
  9670. const struct ggml_compute_params * params,
  9671. struct ggml_tensor * dst) {
  9672. const struct ggml_tensor * src0 = dst->src[0];
  9673. const struct ggml_tensor * src1 = dst->src[1];
  9674. GGML_ASSERT(ggml_is_contiguous(src0));
  9675. GGML_ASSERT(ggml_is_contiguous(src1));
  9676. GGML_ASSERT(ggml_is_contiguous(dst));
  9677. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9678. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9679. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9680. return;
  9681. }
  9682. // TODO: handle transposed/permuted matrices
  9683. const int ith = params->ith;
  9684. const int nth = params->nth;
  9685. const int nc = src0->ne[0];
  9686. const int nr = ggml_nrows(src0);
  9687. // rows per thread
  9688. const int dr = (nr + nth - 1)/nth;
  9689. // row range for this thread
  9690. const int ir0 = dr*ith;
  9691. const int ir1 = MIN(ir0 + dr, nr);
  9692. for (int i1 = ir0; i1 < ir1; i1++) {
  9693. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9694. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9695. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9696. #ifndef NDEBUG
  9697. for (int i = 0; i < nc; ++i) {
  9698. //printf("p[%d] = %f\n", i, p[i]);
  9699. assert(!isnan(dy[i]));
  9700. assert(!isnan(y[i]));
  9701. }
  9702. #endif
  9703. // Jii = yi - yi*yi
  9704. // Jij = -yi*yj
  9705. // J = diag(y)-y.T*y
  9706. // dx = J * dy
  9707. // dxk = sum_i(Jki * dyi)
  9708. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9709. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9710. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9711. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9712. // dxk = -yk * dot(y, dy) + yk*dyk
  9713. // dxk = yk * (- dot(y, dy) + dyk)
  9714. // dxk = yk * (dyk - dot(y, dy))
  9715. //
  9716. // post-order:
  9717. // dot_y_dy := dot(y, dy)
  9718. // dx := dy
  9719. // dx := dx - dot_y_dy
  9720. // dx := dx * y
  9721. // linear runtime, no additional memory
  9722. float dot_y_dy = 0;
  9723. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9724. ggml_vec_cpy_f32 (nc, dx, dy);
  9725. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9726. ggml_vec_mul_f32 (nc, dx, dx, y);
  9727. #ifndef NDEBUG
  9728. for (int i = 0; i < nc; ++i) {
  9729. assert(!isnan(dx[i]));
  9730. assert(!isinf(dx[i]));
  9731. }
  9732. #endif
  9733. }
  9734. }
  9735. static void ggml_compute_forward_soft_max_back(
  9736. const struct ggml_compute_params * params,
  9737. struct ggml_tensor * dst) {
  9738. const struct ggml_tensor * src0 = dst->src[0];
  9739. switch (src0->type) {
  9740. case GGML_TYPE_F32:
  9741. {
  9742. ggml_compute_forward_soft_max_back_f32(params, dst);
  9743. } break;
  9744. default:
  9745. {
  9746. GGML_ASSERT(false);
  9747. } break;
  9748. }
  9749. }
  9750. // ggml_compute_forward_alibi
  9751. static void ggml_compute_forward_alibi_f32(
  9752. const struct ggml_compute_params * params,
  9753. struct ggml_tensor * dst) {
  9754. const struct ggml_tensor * src0 = dst->src[0];
  9755. assert(params->ith == 0);
  9756. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9757. return;
  9758. }
  9759. //const int n_past = ((int32_t *) dst->op_params)[0];
  9760. const int n_head = ((int32_t *) dst->op_params)[1];
  9761. float max_bias;
  9762. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9763. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9764. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9765. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9766. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9767. const int64_t n = ggml_nrows(src0);
  9768. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9769. const size_t nb0 = src0->nb[0];
  9770. const size_t nb1 = src0->nb[1];
  9771. const size_t nb2 = src0->nb[2];
  9772. //const int nb3 = src0->nb[3];
  9773. GGML_ASSERT(nb0 == sizeof(float));
  9774. GGML_ASSERT(n_head == ne2);
  9775. // add alibi to src0 (KQ_scaled)
  9776. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9777. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9778. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9779. for (int64_t k = 0; k < ne2_ne3; k++) {
  9780. // TODO: k*nb2 or k*nb3
  9781. float m_k;
  9782. if (k < n_heads_log2_floor) {
  9783. m_k = powf(m0, k + 1);
  9784. } else {
  9785. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9786. }
  9787. for (int64_t i = 0; i < ne0; i++) {
  9788. for (int64_t j = 0; j < ne1; j++) {
  9789. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9790. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9791. pdst[0] = i * m_k + src[0];
  9792. }
  9793. }
  9794. }
  9795. }
  9796. static void ggml_compute_forward_alibi_f16(
  9797. const struct ggml_compute_params * params,
  9798. struct ggml_tensor * dst) {
  9799. const struct ggml_tensor * src0 = dst->src[0];
  9800. assert(params->ith == 0);
  9801. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9802. return;
  9803. }
  9804. //const int n_past = ((int32_t *) dst->op_params)[0];
  9805. const int n_head = ((int32_t *) dst->op_params)[1];
  9806. float max_bias;
  9807. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9808. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9809. const int ne1 = src0->ne[1]; // seq_len_without_past
  9810. const int ne2 = src0->ne[2]; // n_head -> this is k
  9811. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9812. const int n = ggml_nrows(src0);
  9813. const int ne2_ne3 = n/ne1; // ne2*ne3
  9814. const int nb0 = src0->nb[0];
  9815. const int nb1 = src0->nb[1];
  9816. const int nb2 = src0->nb[2];
  9817. //const int nb3 = src0->nb[3];
  9818. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9819. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9820. GGML_ASSERT(n_head == ne2);
  9821. // add alibi to src0 (KQ_scaled)
  9822. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9823. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9824. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9825. for (int k = 0; k < ne2_ne3; k++) {
  9826. // TODO: k*nb2 or k*nb3
  9827. float m_k;
  9828. if (k < n_heads_log2_floor) {
  9829. m_k = powf(m0, k + 1);
  9830. } else {
  9831. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9832. }
  9833. for (int i = 0; i < ne0; i++) {
  9834. for (int j = 0; j < ne1; j++) {
  9835. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9836. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9837. // we return F32
  9838. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9839. }
  9840. }
  9841. }
  9842. }
  9843. static void ggml_compute_forward_alibi(
  9844. const struct ggml_compute_params * params,
  9845. struct ggml_tensor * dst) {
  9846. const struct ggml_tensor * src0 = dst->src[0];
  9847. switch (src0->type) {
  9848. case GGML_TYPE_F16:
  9849. {
  9850. ggml_compute_forward_alibi_f16(params, dst);
  9851. } break;
  9852. case GGML_TYPE_F32:
  9853. {
  9854. ggml_compute_forward_alibi_f32(params, dst);
  9855. } break;
  9856. case GGML_TYPE_Q4_0:
  9857. case GGML_TYPE_Q4_1:
  9858. case GGML_TYPE_Q5_0:
  9859. case GGML_TYPE_Q5_1:
  9860. case GGML_TYPE_Q8_0:
  9861. case GGML_TYPE_Q8_1:
  9862. case GGML_TYPE_Q2_K:
  9863. case GGML_TYPE_Q3_K:
  9864. case GGML_TYPE_Q4_K:
  9865. case GGML_TYPE_Q5_K:
  9866. case GGML_TYPE_Q6_K:
  9867. case GGML_TYPE_IQ2_XXS:
  9868. case GGML_TYPE_IQ2_XS:
  9869. case GGML_TYPE_IQ3_XXS:
  9870. case GGML_TYPE_IQ1_S:
  9871. case GGML_TYPE_IQ4_NL:
  9872. case GGML_TYPE_IQ4_XS:
  9873. case GGML_TYPE_IQ3_S:
  9874. case GGML_TYPE_IQ2_S:
  9875. case GGML_TYPE_Q8_K:
  9876. case GGML_TYPE_I8:
  9877. case GGML_TYPE_I16:
  9878. case GGML_TYPE_I32:
  9879. case GGML_TYPE_COUNT:
  9880. {
  9881. GGML_ASSERT(false);
  9882. } break;
  9883. }
  9884. }
  9885. // ggml_compute_forward_clamp
  9886. static void ggml_compute_forward_clamp_f32(
  9887. const struct ggml_compute_params * params,
  9888. struct ggml_tensor * dst) {
  9889. const struct ggml_tensor * src0 = dst->src[0];
  9890. assert(params->ith == 0);
  9891. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9892. return;
  9893. }
  9894. float min;
  9895. float max;
  9896. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9897. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9898. const int ith = params->ith;
  9899. const int nth = params->nth;
  9900. const int n = ggml_nrows(src0);
  9901. const int nc = src0->ne[0];
  9902. const size_t nb00 = src0->nb[0];
  9903. const size_t nb01 = src0->nb[1];
  9904. const size_t nb0 = dst->nb[0];
  9905. const size_t nb1 = dst->nb[1];
  9906. GGML_ASSERT( nb0 == sizeof(float));
  9907. GGML_ASSERT(nb00 == sizeof(float));
  9908. for (int j = ith; j < n; j += nth) {
  9909. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9910. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9911. for (int i = 0; i < nc; i++) {
  9912. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9913. }
  9914. }
  9915. }
  9916. static void ggml_compute_forward_clamp(
  9917. const struct ggml_compute_params * params,
  9918. struct ggml_tensor * dst) {
  9919. const struct ggml_tensor * src0 = dst->src[0];
  9920. switch (src0->type) {
  9921. case GGML_TYPE_F32:
  9922. {
  9923. ggml_compute_forward_clamp_f32(params, dst);
  9924. } break;
  9925. case GGML_TYPE_F16:
  9926. case GGML_TYPE_Q4_0:
  9927. case GGML_TYPE_Q4_1:
  9928. case GGML_TYPE_Q5_0:
  9929. case GGML_TYPE_Q5_1:
  9930. case GGML_TYPE_Q8_0:
  9931. case GGML_TYPE_Q8_1:
  9932. case GGML_TYPE_Q2_K:
  9933. case GGML_TYPE_Q3_K:
  9934. case GGML_TYPE_Q4_K:
  9935. case GGML_TYPE_Q5_K:
  9936. case GGML_TYPE_Q6_K:
  9937. case GGML_TYPE_IQ2_XXS:
  9938. case GGML_TYPE_IQ2_XS:
  9939. case GGML_TYPE_IQ3_XXS:
  9940. case GGML_TYPE_IQ1_S:
  9941. case GGML_TYPE_IQ4_NL:
  9942. case GGML_TYPE_IQ4_XS:
  9943. case GGML_TYPE_IQ3_S:
  9944. case GGML_TYPE_IQ2_S:
  9945. case GGML_TYPE_Q8_K:
  9946. case GGML_TYPE_I8:
  9947. case GGML_TYPE_I16:
  9948. case GGML_TYPE_I32:
  9949. case GGML_TYPE_COUNT:
  9950. {
  9951. GGML_ASSERT(false);
  9952. } break;
  9953. }
  9954. }
  9955. // ggml_compute_forward_rope
  9956. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9957. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9958. return 1 - MIN(1, MAX(0, y));
  9959. }
  9960. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9961. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9962. static void rope_yarn(
  9963. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9964. float * cos_theta, float * sin_theta
  9965. ) {
  9966. // Get n-d rotational scaling corrected for extrapolation
  9967. float theta_interp = freq_scale * theta_extrap;
  9968. float theta = theta_interp;
  9969. if (ext_factor != 0.0f) {
  9970. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9971. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9972. // Get n-d magnitude scaling corrected for interpolation
  9973. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9974. }
  9975. *cos_theta = cosf(theta) * mscale;
  9976. *sin_theta = sinf(theta) * mscale;
  9977. }
  9978. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9979. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9980. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9981. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9982. }
  9983. static void ggml_rope_cache_init(
  9984. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9985. float * cache, float sin_sign, float theta_scale
  9986. ) {
  9987. float theta = theta_base;
  9988. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9989. rope_yarn(
  9990. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9991. );
  9992. cache[i0 + 1] *= sin_sign;
  9993. theta *= theta_scale;
  9994. }
  9995. }
  9996. GGML_CALL void ggml_rope_yarn_corr_dims(
  9997. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9998. ) {
  9999. // start and end correction dims
  10000. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10001. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10002. dims[0] = MAX(0, start);
  10003. dims[1] = MIN(n_dims - 1, end);
  10004. }
  10005. static void ggml_compute_forward_rope_f32(
  10006. const struct ggml_compute_params * params,
  10007. struct ggml_tensor * dst,
  10008. const bool forward) {
  10009. const struct ggml_tensor * src0 = dst->src[0];
  10010. const struct ggml_tensor * src1 = dst->src[1];
  10011. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10012. return;
  10013. }
  10014. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10015. // these two only relevant for xPos RoPE:
  10016. float xpos_base;
  10017. bool xpos_down;
  10018. //const int n_past = ((int32_t *) dst->op_params)[0];
  10019. const int n_dims = ((int32_t *) dst->op_params)[1];
  10020. const int mode = ((int32_t *) dst->op_params)[2];
  10021. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10022. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10023. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10024. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10025. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10026. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10027. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10028. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10029. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10030. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10031. GGML_TENSOR_UNARY_OP_LOCALS
  10032. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10033. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10034. GGML_ASSERT(nb00 == sizeof(float));
  10035. const int ith = params->ith;
  10036. const int nth = params->nth;
  10037. const int nr = ggml_nrows(dst);
  10038. GGML_ASSERT(n_dims <= ne0);
  10039. GGML_ASSERT(n_dims % 2 == 0);
  10040. // rows per thread
  10041. const int dr = (nr + nth - 1)/nth;
  10042. // row range for this thread
  10043. const int ir0 = dr*ith;
  10044. const int ir1 = MIN(ir0 + dr, nr);
  10045. // row index used to determine which thread to use
  10046. int ir = 0;
  10047. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10048. const float inv_ndims = -1.f/n_dims;
  10049. float corr_dims[2];
  10050. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10051. const bool is_neox = mode & 2;
  10052. const bool is_glm = mode & 4;
  10053. // backward process uses inverse rotation by cos and sin.
  10054. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10055. // this essentially just switches the sign of sin.
  10056. const float sin_sign = forward ? 1.0f : -1.0f;
  10057. const int32_t * pos = (const int32_t *) src1->data;
  10058. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10059. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10060. const int64_t p = pos[i2];
  10061. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10062. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10063. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10064. }
  10065. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10066. if (ir++ < ir0) continue;
  10067. if (ir > ir1) break;
  10068. float theta_base = (float)p;
  10069. if (is_glm) {
  10070. theta_base = MIN(p, n_ctx - 2);
  10071. float block_theta = MAX(p - (n_ctx - 2), 0);
  10072. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10073. const float cos_theta = cosf(theta_base);
  10074. const float sin_theta = sinf(theta_base) * sin_sign;
  10075. const float cos_block_theta = cosf(block_theta);
  10076. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10077. theta_base *= theta_scale;
  10078. block_theta *= theta_scale;
  10079. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10080. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10081. const float x0 = src[0];
  10082. const float x1 = src[n_dims/2];
  10083. const float x2 = src[n_dims];
  10084. const float x3 = src[n_dims/2*3];
  10085. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10086. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10087. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10088. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10089. }
  10090. } else if (!is_neox) {
  10091. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10092. const float cos_theta = cache[i0 + 0];
  10093. const float sin_theta = cache[i0 + 1];
  10094. // zeta scaling for xPos only:
  10095. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10096. if (xpos_down) zeta = 1.0f / zeta;
  10097. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10098. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10099. const float x0 = src[0];
  10100. const float x1 = src[1];
  10101. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10102. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10103. }
  10104. } else {
  10105. // TODO: this might be wrong for ne0 != n_dims - need double check
  10106. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10107. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10108. theta_base *= freq_scale;
  10109. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10110. if (ic < n_dims) {
  10111. const int64_t ib = 0;
  10112. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10113. float cur_rot = inv_ndims * ic - ib;
  10114. float cos_theta, sin_theta;
  10115. rope_yarn(
  10116. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10117. &cos_theta, &sin_theta
  10118. );
  10119. sin_theta *= sin_sign;
  10120. theta_base *= theta_scale;
  10121. const int64_t i0 = ib*n_dims + ic/2;
  10122. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10123. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10124. const float x0 = src[0];
  10125. const float x1 = src[n_dims/2];
  10126. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10127. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10128. } else {
  10129. const int64_t i0 = ic;
  10130. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10131. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10132. dst_data[0] = src[0];
  10133. dst_data[1] = src[1];
  10134. }
  10135. }
  10136. }
  10137. }
  10138. }
  10139. }
  10140. }
  10141. static void ggml_compute_forward_rope_f16(
  10142. const struct ggml_compute_params * params,
  10143. struct ggml_tensor * dst,
  10144. const bool forward) {
  10145. const struct ggml_tensor * src0 = dst->src[0];
  10146. const struct ggml_tensor * src1 = dst->src[1];
  10147. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10148. return;
  10149. }
  10150. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10151. //const int n_past = ((int32_t *) dst->op_params)[0];
  10152. const int n_dims = ((int32_t *) dst->op_params)[1];
  10153. const int mode = ((int32_t *) dst->op_params)[2];
  10154. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10155. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10156. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10157. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10158. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10159. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10160. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10161. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10162. GGML_TENSOR_UNARY_OP_LOCALS
  10163. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10164. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10165. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10166. const int ith = params->ith;
  10167. const int nth = params->nth;
  10168. const int nr = ggml_nrows(dst);
  10169. GGML_ASSERT(n_dims <= ne0);
  10170. GGML_ASSERT(n_dims % 2 == 0);
  10171. // rows per thread
  10172. const int dr = (nr + nth - 1)/nth;
  10173. // row range for this thread
  10174. const int ir0 = dr*ith;
  10175. const int ir1 = MIN(ir0 + dr, nr);
  10176. // row index used to determine which thread to use
  10177. int ir = 0;
  10178. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10179. const float inv_ndims = -1.f/n_dims;
  10180. float corr_dims[2];
  10181. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10182. const bool is_neox = mode & 2;
  10183. const bool is_glm = mode & 4;
  10184. // backward process uses inverse rotation by cos and sin.
  10185. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10186. // this essentially just switches the sign of sin.
  10187. const float sin_sign = forward ? 1.0f : -1.0f;
  10188. const int32_t * pos = (const int32_t *) src1->data;
  10189. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10190. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10191. const int64_t p = pos[i2];
  10192. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10193. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10194. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10195. }
  10196. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10197. if (ir++ < ir0) continue;
  10198. if (ir > ir1) break;
  10199. float theta_base = (float)p;
  10200. if (is_glm) {
  10201. theta_base = MIN(p, n_ctx - 2);
  10202. float block_theta = MAX(p - (n_ctx - 2), 0);
  10203. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10204. const float cos_theta = cosf(theta_base);
  10205. const float sin_theta = sinf(theta_base) * sin_sign;
  10206. const float cos_block_theta = cosf(block_theta);
  10207. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10208. theta_base *= theta_scale;
  10209. block_theta *= theta_scale;
  10210. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10211. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10212. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10213. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10214. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10215. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10216. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10217. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10218. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10219. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10220. }
  10221. } else if (!is_neox) {
  10222. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10223. const float cos_theta = cache[i0 + 0];
  10224. const float sin_theta = cache[i0 + 1];
  10225. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10226. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10227. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10228. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10229. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10230. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10231. }
  10232. } else {
  10233. // TODO: this might be wrong for ne0 != n_dims - need double check
  10234. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10235. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10236. theta_base *= freq_scale;
  10237. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10238. if (ic < n_dims) {
  10239. const int64_t ib = 0;
  10240. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10241. float cur_rot = inv_ndims * ic - ib;
  10242. float cos_theta, sin_theta;
  10243. rope_yarn(
  10244. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10245. &cos_theta, &sin_theta
  10246. );
  10247. sin_theta *= sin_sign;
  10248. theta_base *= theta_scale;
  10249. const int64_t i0 = ib*n_dims + ic/2;
  10250. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10251. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10252. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10253. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10254. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10255. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10256. } else {
  10257. const int64_t i0 = ic;
  10258. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10259. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10260. dst_data[0] = src[0];
  10261. dst_data[1] = src[1];
  10262. }
  10263. }
  10264. }
  10265. }
  10266. }
  10267. }
  10268. }
  10269. static void ggml_compute_forward_rope(
  10270. const struct ggml_compute_params * params,
  10271. struct ggml_tensor * dst) {
  10272. const struct ggml_tensor * src0 = dst->src[0];
  10273. switch (src0->type) {
  10274. case GGML_TYPE_F16:
  10275. {
  10276. ggml_compute_forward_rope_f16(params, dst, true);
  10277. } break;
  10278. case GGML_TYPE_F32:
  10279. {
  10280. ggml_compute_forward_rope_f32(params, dst, true);
  10281. } break;
  10282. default:
  10283. {
  10284. GGML_ASSERT(false);
  10285. } break;
  10286. }
  10287. }
  10288. // ggml_compute_forward_rope_back
  10289. static void ggml_compute_forward_rope_back(
  10290. const struct ggml_compute_params * params,
  10291. struct ggml_tensor * dst) {
  10292. const struct ggml_tensor * src0 = dst->src[0];
  10293. switch (src0->type) {
  10294. case GGML_TYPE_F16:
  10295. {
  10296. ggml_compute_forward_rope_f16(params, dst, false);
  10297. } break;
  10298. case GGML_TYPE_F32:
  10299. {
  10300. ggml_compute_forward_rope_f32(params, dst, false);
  10301. } break;
  10302. default:
  10303. {
  10304. GGML_ASSERT(false);
  10305. } break;
  10306. }
  10307. }
  10308. // ggml_compute_forward_conv_transpose_1d
  10309. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10310. const struct ggml_compute_params * params,
  10311. struct ggml_tensor * dst) {
  10312. const struct ggml_tensor * src0 = dst->src[0];
  10313. const struct ggml_tensor * src1 = dst->src[1];
  10314. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10315. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10316. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10317. int64_t t0 = ggml_perf_time_us();
  10318. UNUSED(t0);
  10319. GGML_TENSOR_BINARY_OP_LOCALS
  10320. const int ith = params->ith;
  10321. const int nth = params->nth;
  10322. const int nk = ne00*ne01*ne02;
  10323. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10324. GGML_ASSERT(nb10 == sizeof(float));
  10325. if (params->type == GGML_TASK_TYPE_INIT) {
  10326. if (ith != 0) {
  10327. return;
  10328. }
  10329. memset(params->wdata, 0, params->wsize);
  10330. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10331. {
  10332. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10333. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10334. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10335. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10336. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10337. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10338. dst_data[i00*ne02 + i02] = src[i00];
  10339. }
  10340. }
  10341. }
  10342. }
  10343. // permute source data (src1) from (L x Cin) to (Cin x L)
  10344. {
  10345. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10346. ggml_fp16_t * dst_data = wdata;
  10347. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10348. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10349. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10350. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10351. }
  10352. }
  10353. }
  10354. // need to zero dst since we are accumulating into it
  10355. memset(dst->data, 0, ggml_nbytes(dst));
  10356. return;
  10357. }
  10358. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10359. return;
  10360. }
  10361. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10362. // total rows in dst
  10363. const int nr = ne1;
  10364. // rows per thread
  10365. const int dr = (nr + nth - 1)/nth;
  10366. // row range for this thread
  10367. const int ir0 = dr*ith;
  10368. const int ir1 = MIN(ir0 + dr, nr);
  10369. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10370. ggml_fp16_t * const wdata_src = wdata + nk;
  10371. for (int i1 = ir0; i1 < ir1; i1++) {
  10372. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10373. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10374. for (int i10 = 0; i10 < ne10; i10++) {
  10375. const int i1n = i10*ne11;
  10376. for (int i00 = 0; i00 < ne00; i00++) {
  10377. float v = 0;
  10378. ggml_vec_dot_f16(ne02, &v, 0,
  10379. (ggml_fp16_t *) wdata_src + i1n, 0,
  10380. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10381. dst_data[i10*s0 + i00] += v;
  10382. }
  10383. }
  10384. }
  10385. }
  10386. static void ggml_compute_forward_conv_transpose_1d_f32(
  10387. const struct ggml_compute_params * params,
  10388. struct ggml_tensor * dst) {
  10389. const struct ggml_tensor * src0 = dst->src[0];
  10390. const struct ggml_tensor * src1 = dst->src[1];
  10391. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10392. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10393. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10394. int64_t t0 = ggml_perf_time_us();
  10395. UNUSED(t0);
  10396. GGML_TENSOR_BINARY_OP_LOCALS
  10397. const int ith = params->ith;
  10398. const int nth = params->nth;
  10399. const int nk = ne00*ne01*ne02;
  10400. GGML_ASSERT(nb00 == sizeof(float));
  10401. GGML_ASSERT(nb10 == sizeof(float));
  10402. if (params->type == GGML_TASK_TYPE_INIT) {
  10403. if (ith != 0) {
  10404. return;
  10405. }
  10406. memset(params->wdata, 0, params->wsize);
  10407. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10408. {
  10409. float * const wdata = (float *) params->wdata + 0;
  10410. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10411. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10412. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10413. float * dst_data = wdata + i01*ne00*ne02;
  10414. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10415. dst_data[i00*ne02 + i02] = src[i00];
  10416. }
  10417. }
  10418. }
  10419. }
  10420. // prepare source data (src1)
  10421. {
  10422. float * const wdata = (float *) params->wdata + nk;
  10423. float * dst_data = wdata;
  10424. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10425. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10426. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10427. dst_data[i10*ne11 + i11] = src[i10];
  10428. }
  10429. }
  10430. }
  10431. // need to zero dst since we are accumulating into it
  10432. memset(dst->data, 0, ggml_nbytes(dst));
  10433. return;
  10434. }
  10435. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10436. return;
  10437. }
  10438. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10439. // total rows in dst
  10440. const int nr = ne1;
  10441. // rows per thread
  10442. const int dr = (nr + nth - 1)/nth;
  10443. // row range for this thread
  10444. const int ir0 = dr*ith;
  10445. const int ir1 = MIN(ir0 + dr, nr);
  10446. float * const wdata = (float *) params->wdata + 0;
  10447. float * const wdata_src = wdata + nk;
  10448. for (int i1 = ir0; i1 < ir1; i1++) {
  10449. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10450. float * wdata_kernel = wdata + i1*ne02*ne00;
  10451. for (int i10 = 0; i10 < ne10; i10++) {
  10452. const int i1n = i10*ne11;
  10453. for (int i00 = 0; i00 < ne00; i00++) {
  10454. float v = 0;
  10455. ggml_vec_dot_f32(ne02, &v, 0,
  10456. wdata_src + i1n, 0,
  10457. wdata_kernel + i00*ne02, 0, 1);
  10458. dst_data[i10*s0 + i00] += v;
  10459. }
  10460. }
  10461. }
  10462. }
  10463. static void ggml_compute_forward_conv_transpose_1d(
  10464. const struct ggml_compute_params * params,
  10465. struct ggml_tensor * dst) {
  10466. const struct ggml_tensor * src0 = dst->src[0];
  10467. switch (src0->type) {
  10468. case GGML_TYPE_F16:
  10469. {
  10470. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10471. } break;
  10472. case GGML_TYPE_F32:
  10473. {
  10474. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10475. } break;
  10476. default:
  10477. {
  10478. GGML_ASSERT(false);
  10479. } break;
  10480. }
  10481. }
  10482. // src0: kernel [OC, IC, KH, KW]
  10483. // src1: image [N, IC, IH, IW]
  10484. // dst: result [N, OH, OW, IC*KH*KW]
  10485. static void ggml_compute_forward_im2col_f32(
  10486. const struct ggml_compute_params * params,
  10487. struct ggml_tensor * dst) {
  10488. const struct ggml_tensor * src0 = dst->src[0];
  10489. const struct ggml_tensor * src1 = dst->src[1];
  10490. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10491. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10492. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10493. int64_t t0 = ggml_perf_time_us();
  10494. UNUSED(t0);
  10495. GGML_TENSOR_BINARY_OP_LOCALS;
  10496. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10497. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10498. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10499. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10500. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10501. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10502. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10503. const int ith = params->ith;
  10504. const int nth = params->nth;
  10505. const int64_t N = is_2D ? ne13 : ne12;
  10506. const int64_t IC = is_2D ? ne12 : ne11;
  10507. const int64_t IH = is_2D ? ne11 : 1;
  10508. const int64_t IW = ne10;
  10509. const int64_t KH = is_2D ? ne01 : 1;
  10510. const int64_t KW = ne00;
  10511. const int64_t OH = is_2D ? ne2 : 1;
  10512. const int64_t OW = ne1;
  10513. int ofs0 = is_2D ? nb13 : nb12;
  10514. int ofs1 = is_2D ? nb12 : nb11;
  10515. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10516. GGML_ASSERT(nb10 == sizeof(float));
  10517. if (params->type == GGML_TASK_TYPE_INIT) {
  10518. return;
  10519. }
  10520. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10521. return;
  10522. }
  10523. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10524. {
  10525. float * const wdata = (float *) dst->data;
  10526. for (int64_t in = 0; in < N; in++) {
  10527. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10528. for (int64_t iow = 0; iow < OW; iow++) {
  10529. for (int64_t iic = ith; iic < IC; iic += nth) {
  10530. // micro kernel
  10531. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10532. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10533. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10534. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10535. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10536. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10537. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10538. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10539. } else {
  10540. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10541. }
  10542. }
  10543. }
  10544. }
  10545. }
  10546. }
  10547. }
  10548. }
  10549. }
  10550. // src0: kernel [OC, IC, KH, KW]
  10551. // src1: image [N, IC, IH, IW]
  10552. // dst: result [N, OH, OW, IC*KH*KW]
  10553. static void ggml_compute_forward_im2col_f16(
  10554. const struct ggml_compute_params * params,
  10555. struct ggml_tensor * dst) {
  10556. const struct ggml_tensor * src0 = dst->src[0];
  10557. const struct ggml_tensor * src1 = dst->src[1];
  10558. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10559. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10560. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10561. int64_t t0 = ggml_perf_time_us();
  10562. UNUSED(t0);
  10563. GGML_TENSOR_BINARY_OP_LOCALS;
  10564. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10565. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10566. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10567. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10568. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10569. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10570. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10571. const int ith = params->ith;
  10572. const int nth = params->nth;
  10573. const int64_t N = is_2D ? ne13 : ne12;
  10574. const int64_t IC = is_2D ? ne12 : ne11;
  10575. const int64_t IH = is_2D ? ne11 : 1;
  10576. const int64_t IW = ne10;
  10577. const int64_t KH = is_2D ? ne01 : 1;
  10578. const int64_t KW = ne00;
  10579. const int64_t OH = is_2D ? ne2 : 1;
  10580. const int64_t OW = ne1;
  10581. int ofs0 = is_2D ? nb13 : nb12;
  10582. int ofs1 = is_2D ? nb12 : nb11;
  10583. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10584. GGML_ASSERT(nb10 == sizeof(float));
  10585. if (params->type == GGML_TASK_TYPE_INIT) {
  10586. return;
  10587. }
  10588. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10589. return;
  10590. }
  10591. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10592. {
  10593. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10594. for (int64_t in = 0; in < N; in++) {
  10595. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10596. for (int64_t iow = 0; iow < OW; iow++) {
  10597. for (int64_t iic = ith; iic < IC; iic += nth) {
  10598. // micro kernel
  10599. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10600. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10601. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10602. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10603. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10604. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10605. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10606. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10607. } else {
  10608. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10609. }
  10610. }
  10611. }
  10612. }
  10613. }
  10614. }
  10615. }
  10616. }
  10617. }
  10618. static void ggml_compute_forward_im2col(
  10619. const struct ggml_compute_params * params,
  10620. struct ggml_tensor * dst) {
  10621. switch (dst->type) {
  10622. case GGML_TYPE_F16:
  10623. {
  10624. ggml_compute_forward_im2col_f16(params, dst);
  10625. } break;
  10626. case GGML_TYPE_F32:
  10627. {
  10628. ggml_compute_forward_im2col_f32(params, dst);
  10629. } break;
  10630. default:
  10631. {
  10632. GGML_ASSERT(false);
  10633. } break;
  10634. }
  10635. }
  10636. // ggml_compute_forward_conv_transpose_2d
  10637. static void ggml_compute_forward_conv_transpose_2d(
  10638. const struct ggml_compute_params * params,
  10639. struct ggml_tensor * dst) {
  10640. const struct ggml_tensor * src0 = dst->src[0];
  10641. const struct ggml_tensor * src1 = dst->src[1];
  10642. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10643. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10644. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10645. int64_t t0 = ggml_perf_time_us();
  10646. UNUSED(t0);
  10647. GGML_TENSOR_BINARY_OP_LOCALS
  10648. const int ith = params->ith;
  10649. const int nth = params->nth;
  10650. const int nk = ne00*ne01*ne02*ne03;
  10651. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10652. GGML_ASSERT(nb10 == sizeof(float));
  10653. if (params->type == GGML_TASK_TYPE_INIT) {
  10654. if (ith != 0) {
  10655. return;
  10656. }
  10657. memset(params->wdata, 0, params->wsize);
  10658. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10659. {
  10660. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10661. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10662. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10663. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10664. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10665. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10666. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10667. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10668. }
  10669. }
  10670. }
  10671. }
  10672. }
  10673. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10674. {
  10675. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10676. for (int i12 = 0; i12 < ne12; i12++) {
  10677. for (int i11 = 0; i11 < ne11; i11++) {
  10678. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10679. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10680. for (int i10 = 0; i10 < ne10; i10++) {
  10681. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10682. }
  10683. }
  10684. }
  10685. }
  10686. memset(dst->data, 0, ggml_nbytes(dst));
  10687. return;
  10688. }
  10689. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10690. return;
  10691. }
  10692. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10693. // total patches in dst
  10694. const int np = ne2;
  10695. // patches per thread
  10696. const int dp = (np + nth - 1)/nth;
  10697. // patch range for this thread
  10698. const int ip0 = dp*ith;
  10699. const int ip1 = MIN(ip0 + dp, np);
  10700. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10701. ggml_fp16_t * const wdata_src = wdata + nk;
  10702. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10703. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10704. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10705. for (int i11 = 0; i11 < ne11; i11++) {
  10706. for (int i10 = 0; i10 < ne10; i10++) {
  10707. const int i1n = i11*ne10*ne12 + i10*ne12;
  10708. for (int i01 = 0; i01 < ne01; i01++) {
  10709. for (int i00 = 0; i00 < ne00; i00++) {
  10710. float v = 0;
  10711. ggml_vec_dot_f16(ne03, &v, 0,
  10712. wdata_src + i1n, 0,
  10713. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10714. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10715. }
  10716. }
  10717. }
  10718. }
  10719. }
  10720. }
  10721. // ggml_compute_forward_pool_1d_sk_p0
  10722. static void ggml_compute_forward_pool_1d_sk_p0(
  10723. const struct ggml_compute_params * params,
  10724. const enum ggml_op_pool op,
  10725. const int k,
  10726. struct ggml_tensor * dst) {
  10727. const struct ggml_tensor * src = dst->src[0];
  10728. assert(src->type == GGML_TYPE_F32);
  10729. assert(params->ith == 0);
  10730. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10731. return;
  10732. }
  10733. const char * cdata = (const char *)src->data;
  10734. const char * const data_end = cdata + ggml_nbytes(src);
  10735. float * drow = (float *)dst->data;
  10736. const int64_t rs = dst->ne[0];
  10737. while (cdata < data_end) {
  10738. const float * const srow = (const float *)cdata;
  10739. int j = 0;
  10740. for (int64_t i = 0; i < rs; ++i) {
  10741. switch (op) {
  10742. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10743. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10744. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10745. }
  10746. for (int ki = 0; ki < k; ++ki) {
  10747. switch (op) {
  10748. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10749. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10750. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10751. }
  10752. ++j;
  10753. }
  10754. switch (op) {
  10755. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10756. case GGML_OP_POOL_MAX: break;
  10757. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10758. }
  10759. }
  10760. cdata += src->nb[1];
  10761. drow += rs;
  10762. }
  10763. }
  10764. // ggml_compute_forward_pool_1d
  10765. static void ggml_compute_forward_pool_1d(
  10766. const struct ggml_compute_params * params,
  10767. struct ggml_tensor * dst) {
  10768. const int32_t * opts = (const int32_t *)dst->op_params;
  10769. enum ggml_op_pool op = opts[0];
  10770. const int k0 = opts[1];
  10771. const int s0 = opts[2];
  10772. const int p0 = opts[3];
  10773. GGML_ASSERT(p0 == 0); // padding not supported
  10774. GGML_ASSERT(k0 == s0); // only s = k supported
  10775. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  10776. }
  10777. // ggml_compute_forward_pool_2d
  10778. static void ggml_compute_forward_pool_2d(
  10779. const struct ggml_compute_params * params,
  10780. struct ggml_tensor * dst) {
  10781. const struct ggml_tensor * src = dst->src[0];
  10782. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10783. GGML_ASSERT(params->ith == 0);
  10784. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10785. return;
  10786. }
  10787. const int32_t * opts = (const int32_t *)dst->op_params;
  10788. enum ggml_op_pool op = opts[0];
  10789. const int k0 = opts[1];
  10790. const int k1 = opts[2];
  10791. const int s0 = opts[3];
  10792. const int s1 = opts[4];
  10793. const int p0 = opts[5];
  10794. const int p1 = opts[6];
  10795. const char * cdata = (const char*)src->data;
  10796. const char * const data_end = cdata + ggml_nbytes(src);
  10797. const int64_t px = dst->ne[0];
  10798. const int64_t py = dst->ne[1];
  10799. const int64_t pa = px * py;
  10800. float * dplane = (float *)dst->data;
  10801. const int ka = k0 * k1;
  10802. const int offset0 = -p0;
  10803. const int offset1 = -p1;
  10804. while (cdata < data_end) {
  10805. for (int oy = 0; oy < py; ++oy) {
  10806. float * const drow = dplane + oy * px;
  10807. for (int ox = 0; ox < px; ++ox) {
  10808. float * const out = drow + ox;
  10809. switch (op) {
  10810. case GGML_OP_POOL_AVG: *out = 0; break;
  10811. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10812. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10813. }
  10814. const int ix = offset0 + ox * s0;
  10815. const int iy = offset1 + oy * s1;
  10816. for (int ky = 0; ky < k1; ++ky) {
  10817. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10818. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10819. for (int kx = 0; kx < k0; ++kx) {
  10820. int j = ix + kx;
  10821. if (j < 0 || j >= src->ne[0]) continue;
  10822. switch (op) {
  10823. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10824. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10825. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10826. }
  10827. }
  10828. }
  10829. switch (op) {
  10830. case GGML_OP_POOL_AVG: *out /= ka; break;
  10831. case GGML_OP_POOL_MAX: break;
  10832. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10833. }
  10834. }
  10835. }
  10836. cdata += src->nb[2];
  10837. dplane += pa;
  10838. }
  10839. }
  10840. // ggml_compute_forward_upscale
  10841. static void ggml_compute_forward_upscale_f32(
  10842. const struct ggml_compute_params * params,
  10843. struct ggml_tensor * dst) {
  10844. const struct ggml_tensor * src0 = dst->src[0];
  10845. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10846. return;
  10847. }
  10848. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10849. const int ith = params->ith;
  10850. const int nth = params->nth;
  10851. GGML_TENSOR_UNARY_OP_LOCALS
  10852. const int scale_factor = dst->op_params[0];
  10853. // TODO: optimize
  10854. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10855. const int64_t i03 = i3;
  10856. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10857. const int64_t i02 = i2;
  10858. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10859. const int64_t i01 = i1 / scale_factor;
  10860. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10861. const int64_t i00 = i0 / scale_factor;
  10862. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10863. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10864. *y = *x;
  10865. }
  10866. }
  10867. }
  10868. }
  10869. }
  10870. static void ggml_compute_forward_upscale(
  10871. const struct ggml_compute_params * params,
  10872. struct ggml_tensor * dst) {
  10873. const struct ggml_tensor * src0 = dst->src[0];
  10874. switch (src0->type) {
  10875. case GGML_TYPE_F32:
  10876. {
  10877. ggml_compute_forward_upscale_f32(params, dst);
  10878. } break;
  10879. default:
  10880. {
  10881. GGML_ASSERT(false);
  10882. } break;
  10883. }
  10884. }
  10885. // ggml_compute_forward_pad
  10886. static void ggml_compute_forward_pad_f32(
  10887. const struct ggml_compute_params * params,
  10888. struct ggml_tensor * dst) {
  10889. const struct ggml_tensor * src0 = dst->src[0];
  10890. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10891. return;
  10892. }
  10893. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10894. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10895. const int ith = params->ith;
  10896. const int nth = params->nth;
  10897. GGML_TENSOR_UNARY_OP_LOCALS
  10898. float * dst_ptr = (float *) dst->data;
  10899. // TODO: optimize
  10900. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10901. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10902. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10903. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10904. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10905. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10906. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10907. dst_ptr[dst_idx] = *src_ptr;
  10908. } else {
  10909. dst_ptr[dst_idx] = 0;
  10910. }
  10911. }
  10912. }
  10913. }
  10914. }
  10915. }
  10916. static void ggml_compute_forward_pad(
  10917. const struct ggml_compute_params * params,
  10918. struct ggml_tensor * dst) {
  10919. const struct ggml_tensor * src0 = dst->src[0];
  10920. switch (src0->type) {
  10921. case GGML_TYPE_F32:
  10922. {
  10923. ggml_compute_forward_pad_f32(params, dst);
  10924. } break;
  10925. default:
  10926. {
  10927. GGML_ASSERT(false);
  10928. } break;
  10929. }
  10930. }
  10931. // ggml_compute_forward_argsort
  10932. static void ggml_compute_forward_argsort_f32(
  10933. const struct ggml_compute_params * params,
  10934. struct ggml_tensor * dst) {
  10935. const struct ggml_tensor * src0 = dst->src[0];
  10936. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10937. return;
  10938. }
  10939. GGML_TENSOR_UNARY_OP_LOCALS
  10940. GGML_ASSERT(nb0 == sizeof(float));
  10941. const int ith = params->ith;
  10942. const int nth = params->nth;
  10943. const int64_t nr = ggml_nrows(src0);
  10944. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10945. for (int64_t i = ith; i < nr; i += nth) {
  10946. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10947. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10948. for (int64_t j = 0; j < ne0; j++) {
  10949. dst_data[j] = j;
  10950. }
  10951. // C doesn't have a functional sort, so we do a bubble sort instead
  10952. for (int64_t j = 0; j < ne0; j++) {
  10953. for (int64_t k = j + 1; k < ne0; k++) {
  10954. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10955. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10956. int32_t tmp = dst_data[j];
  10957. dst_data[j] = dst_data[k];
  10958. dst_data[k] = tmp;
  10959. }
  10960. }
  10961. }
  10962. }
  10963. }
  10964. static void ggml_compute_forward_argsort(
  10965. const struct ggml_compute_params * params,
  10966. struct ggml_tensor * dst) {
  10967. const struct ggml_tensor * src0 = dst->src[0];
  10968. switch (src0->type) {
  10969. case GGML_TYPE_F32:
  10970. {
  10971. ggml_compute_forward_argsort_f32(params, dst);
  10972. } break;
  10973. default:
  10974. {
  10975. GGML_ASSERT(false);
  10976. } break;
  10977. }
  10978. }
  10979. // ggml_compute_forward_flash_attn
  10980. static void ggml_compute_forward_flash_attn_f32(
  10981. const struct ggml_compute_params * params,
  10982. const bool masked,
  10983. struct ggml_tensor * dst) {
  10984. const struct ggml_tensor * q = dst->src[0];
  10985. const struct ggml_tensor * k = dst->src[1];
  10986. const struct ggml_tensor * v = dst->src[2];
  10987. int64_t t0 = ggml_perf_time_us();
  10988. UNUSED(t0);
  10989. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10990. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10991. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10992. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10993. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10994. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10995. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10996. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10997. const int ith = params->ith;
  10998. const int nth = params->nth;
  10999. const int64_t D = neq0;
  11000. const int64_t N = neq1;
  11001. const int64_t P = nek1 - N;
  11002. const int64_t M = P + N;
  11003. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11004. GGML_ASSERT(ne0 == D);
  11005. GGML_ASSERT(ne1 == N);
  11006. GGML_ASSERT(P >= 0);
  11007. GGML_ASSERT(nbq0 == sizeof(float));
  11008. GGML_ASSERT(nbk0 == sizeof(float));
  11009. GGML_ASSERT(nbv0 == sizeof(float));
  11010. GGML_ASSERT(neq0 == D);
  11011. GGML_ASSERT(nek0 == D);
  11012. GGML_ASSERT(nev1 == D);
  11013. GGML_ASSERT(neq1 == N);
  11014. GGML_ASSERT(nek1 == N + P);
  11015. GGML_ASSERT(nev1 == D);
  11016. // dst cannot be transposed or permuted
  11017. GGML_ASSERT(nb0 == sizeof(float));
  11018. GGML_ASSERT(nb0 <= nb1);
  11019. GGML_ASSERT(nb1 <= nb2);
  11020. GGML_ASSERT(nb2 <= nb3);
  11021. if (params->type == GGML_TASK_TYPE_INIT) {
  11022. return;
  11023. }
  11024. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11025. return;
  11026. }
  11027. // parallelize by q rows using ggml_vec_dot_f32
  11028. // total rows in q
  11029. const int nr = neq1*neq2*neq3;
  11030. // rows per thread
  11031. const int dr = (nr + nth - 1)/nth;
  11032. // row range for this thread
  11033. const int ir0 = dr*ith;
  11034. const int ir1 = MIN(ir0 + dr, nr);
  11035. const float scale = 1.0f/sqrtf(D);
  11036. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11037. for (int ir = ir0; ir < ir1; ++ir) {
  11038. // q indices
  11039. const int iq3 = ir/(neq2*neq1);
  11040. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11041. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11042. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11043. for (int i = M; i < Mup; ++i) {
  11044. S[i] = -INFINITY;
  11045. }
  11046. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11047. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11048. // k indices
  11049. const int ik3 = iq3;
  11050. const int ik2 = iq2 % nek2;
  11051. const int ik1 = ic;
  11052. // S indices
  11053. const int i1 = ik1;
  11054. ggml_vec_dot_f32(neq0,
  11055. S + i1, 0,
  11056. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11057. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11058. }
  11059. // scale
  11060. ggml_vec_scale_f32(masked_begin, S, scale);
  11061. for (int64_t i = masked_begin; i < M; i++) {
  11062. S[i] = -INFINITY;
  11063. }
  11064. // softmax
  11065. // exclude known -INF S[..] values from max and loop
  11066. // dont forget to set their SW values to zero
  11067. {
  11068. float max = -INFINITY;
  11069. ggml_vec_max_f32(masked_begin, &max, S);
  11070. ggml_float sum = 0.0;
  11071. {
  11072. #ifdef GGML_SOFT_MAX_ACCELERATE
  11073. max = -max;
  11074. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11075. vvexpf(S, S, &Mup);
  11076. ggml_vec_sum_f32(Mup, &sum, S);
  11077. #else
  11078. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11079. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11080. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11081. if (i >= masked_begin) {
  11082. break;
  11083. }
  11084. float * SS = S + i;
  11085. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11086. if (i + j >= masked_begin) {
  11087. break;
  11088. } else if (SS[j] == -INFINITY) {
  11089. SS[j] = 0.0f;
  11090. } else {
  11091. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11092. const float val = expf(SS[j] - max);
  11093. #else
  11094. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11095. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11096. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11097. #endif
  11098. sump[j] += (ggml_float)val;
  11099. SS[j] = val;
  11100. }
  11101. }
  11102. }
  11103. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11104. sum += sump[i];
  11105. }
  11106. #endif
  11107. }
  11108. assert(sum > 0.0);
  11109. sum = 1.0/sum;
  11110. ggml_vec_scale_f32(masked_begin, S, sum);
  11111. #ifndef NDEBUG
  11112. for (int i = 0; i < masked_begin; ++i) {
  11113. assert(!isnan(S[i]));
  11114. assert(!isinf(S[i]));
  11115. }
  11116. #endif
  11117. }
  11118. for (int64_t ic = 0; ic < nev1; ++ic) {
  11119. // dst indices
  11120. const int i1 = iq1;
  11121. const int i2 = iq2;
  11122. const int i3 = iq3;
  11123. // v indices
  11124. const int iv2 = iq2 % nev2;
  11125. const int iv3 = iq3;
  11126. ggml_vec_dot_f32(masked_begin,
  11127. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11128. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11129. S, 0, 1);
  11130. }
  11131. }
  11132. }
  11133. static void ggml_compute_forward_flash_attn_f16(
  11134. const struct ggml_compute_params * params,
  11135. const bool masked,
  11136. struct ggml_tensor * dst) {
  11137. const struct ggml_tensor * q = dst->src[0];
  11138. const struct ggml_tensor * k = dst->src[1];
  11139. const struct ggml_tensor * v = dst->src[2];
  11140. int64_t t0 = ggml_perf_time_us();
  11141. UNUSED(t0);
  11142. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11143. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11144. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11145. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11146. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11147. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11148. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11149. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11150. const int ith = params->ith;
  11151. const int nth = params->nth;
  11152. const int64_t D = neq0;
  11153. const int64_t N = neq1;
  11154. const int64_t P = nek1 - N;
  11155. const int64_t M = P + N;
  11156. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11157. GGML_ASSERT(ne0 == D);
  11158. GGML_ASSERT(ne1 == N);
  11159. GGML_ASSERT(P >= 0);
  11160. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11161. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11162. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11163. GGML_ASSERT(neq0 == D);
  11164. GGML_ASSERT(nek0 == D);
  11165. GGML_ASSERT(nev1 == D);
  11166. GGML_ASSERT(neq1 == N);
  11167. GGML_ASSERT(nek1 == N + P);
  11168. GGML_ASSERT(nev1 == D);
  11169. // dst cannot be transposed or permuted
  11170. GGML_ASSERT(nb0 == sizeof(float));
  11171. GGML_ASSERT(nb0 <= nb1);
  11172. GGML_ASSERT(nb1 <= nb2);
  11173. GGML_ASSERT(nb2 <= nb3);
  11174. if (params->type == GGML_TASK_TYPE_INIT) {
  11175. return;
  11176. }
  11177. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11178. return;
  11179. }
  11180. // parallelize by q rows using ggml_vec_dot_f32
  11181. // total rows in q
  11182. const int nr = neq1*neq2*neq3;
  11183. // rows per thread
  11184. const int dr = (nr + nth - 1)/nth;
  11185. // row range for this thread
  11186. const int ir0 = dr*ith;
  11187. const int ir1 = MIN(ir0 + dr, nr);
  11188. const float scale = 1.0f/sqrtf(D);
  11189. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11190. for (int ir = ir0; ir < ir1; ++ir) {
  11191. // q indices
  11192. const int iq3 = ir/(neq2*neq1);
  11193. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11194. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11195. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11196. for (int i = M; i < Mup; ++i) {
  11197. S[i] = -INFINITY;
  11198. }
  11199. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11200. for (int64_t ic = 0; ic < nek1; ++ic) {
  11201. // k indices
  11202. const int ik3 = iq3;
  11203. const int ik2 = iq2 % nek2;
  11204. const int ik1 = ic;
  11205. // S indices
  11206. const int i1 = ik1;
  11207. ggml_vec_dot_f16(neq0,
  11208. S + i1, 0,
  11209. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11210. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11211. }
  11212. } else {
  11213. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11214. // k indices
  11215. const int ik3 = iq3;
  11216. const int ik2 = iq2 % nek2;
  11217. const int ik1 = ic;
  11218. // S indices
  11219. const int i1 = ik1;
  11220. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11221. S + i1,
  11222. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11223. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11224. }
  11225. }
  11226. // scale
  11227. ggml_vec_scale_f32(nek1, S, scale);
  11228. if (masked) {
  11229. for (int64_t i = P; i < M; i++) {
  11230. if (i > P + iq1) {
  11231. S[i] = -INFINITY;
  11232. }
  11233. }
  11234. }
  11235. // softmax
  11236. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11237. // dont forget to set their S values to zero
  11238. {
  11239. float max = -INFINITY;
  11240. ggml_vec_max_f32(M, &max, S);
  11241. ggml_float sum = 0.0;
  11242. {
  11243. #ifdef GGML_SOFT_MAX_ACCELERATE
  11244. max = -max;
  11245. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11246. vvexpf(S, S, &Mup);
  11247. ggml_vec_sum_f32(Mup, &sum, S);
  11248. #else
  11249. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11250. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11251. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11252. float * SS = S + i;
  11253. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11254. if (SS[j] == -INFINITY) {
  11255. SS[j] = 0.0f;
  11256. } else {
  11257. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11258. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11259. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11260. sump[j] += (ggml_float)val;
  11261. SS[j] = val;
  11262. }
  11263. }
  11264. }
  11265. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11266. sum += sump[i];
  11267. }
  11268. #endif
  11269. }
  11270. assert(sum > 0.0);
  11271. sum = 1.0/sum;
  11272. ggml_vec_scale_f32(M, S, sum);
  11273. #ifndef NDEBUG
  11274. for (int i = 0; i < M; ++i) {
  11275. assert(!isnan(S[i]));
  11276. assert(!isinf(S[i]));
  11277. }
  11278. #endif
  11279. }
  11280. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11281. for (int64_t i = 0; i < M; i++) {
  11282. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11283. }
  11284. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11285. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11286. for (int64_t ic = 0; ic < nev1; ++ic) {
  11287. // dst indices
  11288. const int i1 = iq1;
  11289. const int i2 = iq2;
  11290. const int i3 = iq3;
  11291. // v indices
  11292. const int iv2 = iq2 % nev2;
  11293. const int iv3 = iq3;
  11294. ggml_vec_dot_f16(nev0,
  11295. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11296. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11297. S16, 0, 1);
  11298. }
  11299. } else {
  11300. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11301. // dst indices
  11302. const int i1 = iq1;
  11303. const int i2 = iq2;
  11304. const int i3 = iq3;
  11305. // v indices
  11306. const int iv2 = iq2 % nev2;
  11307. const int iv3 = iq3;
  11308. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11309. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11310. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11311. S16);
  11312. }
  11313. }
  11314. }
  11315. }
  11316. static void ggml_compute_forward_flash_attn(
  11317. const struct ggml_compute_params * params,
  11318. const bool masked,
  11319. struct ggml_tensor * dst) {
  11320. const struct ggml_tensor * q = dst->src[0];
  11321. switch (q->type) {
  11322. case GGML_TYPE_F16:
  11323. {
  11324. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11325. } break;
  11326. case GGML_TYPE_F32:
  11327. {
  11328. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11329. } break;
  11330. default:
  11331. {
  11332. GGML_ASSERT(false);
  11333. } break;
  11334. }
  11335. }
  11336. // ggml_compute_forward_flash_ff
  11337. static void ggml_compute_forward_flash_ff_f16(
  11338. const struct ggml_compute_params * params,
  11339. struct ggml_tensor * dst) {
  11340. const struct ggml_tensor * a = dst->src[0]; // F16
  11341. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11342. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11343. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11344. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11345. int64_t t0 = ggml_perf_time_us();
  11346. UNUSED(t0);
  11347. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11348. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11349. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11350. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11351. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11352. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11353. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11354. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11355. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11356. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11357. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11358. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11359. const int ith = params->ith;
  11360. const int nth = params->nth;
  11361. const int64_t D = nea0;
  11362. //const int64_t N = nea1;
  11363. const int64_t M = neb01;
  11364. GGML_ASSERT(ne0 == nea0);
  11365. GGML_ASSERT(ne1 == nea1);
  11366. GGML_ASSERT(ne2 == nea2);
  11367. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11368. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11369. GGML_ASSERT(nbb10 == sizeof(float));
  11370. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11371. GGML_ASSERT(nbc10 == sizeof(float));
  11372. GGML_ASSERT(neb00 == D);
  11373. GGML_ASSERT(neb01 == M);
  11374. GGML_ASSERT(neb10 == M);
  11375. GGML_ASSERT(neb11 == 1);
  11376. GGML_ASSERT(nec00 == M);
  11377. GGML_ASSERT(nec01 == D);
  11378. GGML_ASSERT(nec10 == D);
  11379. GGML_ASSERT(nec11 == 1);
  11380. // dst cannot be transposed or permuted
  11381. GGML_ASSERT(nb0 == sizeof(float));
  11382. GGML_ASSERT(nb0 <= nb1);
  11383. GGML_ASSERT(nb1 <= nb2);
  11384. GGML_ASSERT(nb2 <= nb3);
  11385. if (params->type == GGML_TASK_TYPE_INIT) {
  11386. return;
  11387. }
  11388. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11389. return;
  11390. }
  11391. // parallelize by a rows using ggml_vec_dot_f32
  11392. // total rows in a
  11393. const int nr = nea1*nea2*nea3;
  11394. // rows per thread
  11395. const int dr = (nr + nth - 1)/nth;
  11396. // row range for this thread
  11397. const int ir0 = dr*ith;
  11398. const int ir1 = MIN(ir0 + dr, nr);
  11399. for (int ir = ir0; ir < ir1; ++ir) {
  11400. // a indices
  11401. const int ia3 = ir/(nea2*nea1);
  11402. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11403. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11404. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11405. for (int64_t ic = 0; ic < neb01; ++ic) {
  11406. // b0 indices
  11407. const int ib03 = ia3;
  11408. const int ib02 = ia2;
  11409. const int ib01 = ic;
  11410. // S indices
  11411. const int i1 = ib01;
  11412. ggml_vec_dot_f16(nea0,
  11413. S + i1, 0,
  11414. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11415. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11416. }
  11417. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11418. //ggml_vec_gelu_f32(neb01, S, S);
  11419. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11420. for (int64_t i = 0; i < M; i++) {
  11421. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11422. }
  11423. ggml_vec_gelu_f16(neb01, S16, S16);
  11424. {
  11425. // dst indices
  11426. const int i1 = ia1;
  11427. const int i2 = ia2;
  11428. const int i3 = ia3;
  11429. for (int64_t ic = 0; ic < nec01; ++ic) {
  11430. ggml_vec_dot_f16(neb01,
  11431. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11432. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11433. S16, 0, 1);
  11434. }
  11435. ggml_vec_add_f32(nec01,
  11436. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11437. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11438. (float *) c1->data);
  11439. }
  11440. }
  11441. }
  11442. static void ggml_compute_forward_flash_ff(
  11443. const struct ggml_compute_params * params,
  11444. struct ggml_tensor * dst) {
  11445. const struct ggml_tensor * b0 = dst->src[1];
  11446. switch (b0->type) {
  11447. case GGML_TYPE_F16:
  11448. {
  11449. ggml_compute_forward_flash_ff_f16(params, dst);
  11450. } break;
  11451. case GGML_TYPE_F32:
  11452. {
  11453. GGML_ASSERT(false); // TODO
  11454. } break;
  11455. default:
  11456. {
  11457. GGML_ASSERT(false);
  11458. } break;
  11459. }
  11460. }
  11461. // ggml_compute_forward_flash_attn_back
  11462. static void ggml_compute_forward_flash_attn_back_f32(
  11463. const struct ggml_compute_params * params,
  11464. const bool masked,
  11465. struct ggml_tensor * dst) {
  11466. const struct ggml_tensor * q = dst->src[0];
  11467. const struct ggml_tensor * k = dst->src[1];
  11468. const struct ggml_tensor * v = dst->src[2];
  11469. const struct ggml_tensor * d = dst->src[3];
  11470. int64_t t0 = ggml_perf_time_us();
  11471. UNUSED(t0);
  11472. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11473. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11474. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11475. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11476. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11477. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11478. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11479. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11480. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11481. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11482. const int ith = params->ith;
  11483. const int nth = params->nth;
  11484. const int64_t D = neq0;
  11485. const int64_t N = neq1;
  11486. const int64_t P = nek1 - N;
  11487. const int64_t M = P + N;
  11488. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11489. const int mxDM = MAX(D, Mup);
  11490. // GGML_ASSERT(ne0 == D);
  11491. // GGML_ASSERT(ne1 == N);
  11492. GGML_ASSERT(P >= 0);
  11493. GGML_ASSERT(nbq0 == sizeof(float));
  11494. GGML_ASSERT(nbk0 == sizeof(float));
  11495. GGML_ASSERT(nbv0 == sizeof(float));
  11496. GGML_ASSERT(neq0 == D);
  11497. GGML_ASSERT(nek0 == D);
  11498. GGML_ASSERT(nev1 == D);
  11499. GGML_ASSERT(ned0 == D);
  11500. GGML_ASSERT(neq1 == N);
  11501. GGML_ASSERT(nek1 == N + P);
  11502. GGML_ASSERT(nev1 == D);
  11503. GGML_ASSERT(ned1 == N);
  11504. // dst cannot be transposed or permuted
  11505. GGML_ASSERT(nb0 == sizeof(float));
  11506. GGML_ASSERT(nb0 <= nb1);
  11507. GGML_ASSERT(nb1 <= nb2);
  11508. GGML_ASSERT(nb2 <= nb3);
  11509. if (params->type == GGML_TASK_TYPE_INIT) {
  11510. if (ith == 0) {
  11511. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11512. }
  11513. return;
  11514. }
  11515. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11516. return;
  11517. }
  11518. const int64_t elem_q = ggml_nelements(q);
  11519. const int64_t elem_k = ggml_nelements(k);
  11520. enum ggml_type result_type = dst->type;
  11521. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11522. const size_t tsize = ggml_type_size(result_type);
  11523. const size_t offs_q = 0;
  11524. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11525. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11526. void * grad_q = (char *) dst->data;
  11527. void * grad_k = (char *) dst->data + offs_k;
  11528. void * grad_v = (char *) dst->data + offs_v;
  11529. const size_t nbgq1 = nb0*neq0;
  11530. const size_t nbgq2 = nb0*neq0*neq1;
  11531. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11532. const size_t nbgk1 = nb0*nek0;
  11533. const size_t nbgk2 = nb0*nek0*nek1;
  11534. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11535. const size_t nbgv1 = nb0*nev0;
  11536. const size_t nbgv2 = nb0*nev0*nev1;
  11537. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11538. // parallelize by k rows using ggml_vec_dot_f32
  11539. // total rows in k
  11540. const int nr = nek2*nek3;
  11541. // rows per thread
  11542. const int dr = (nr + nth - 1)/nth;
  11543. // row range for this thread
  11544. const int ir0 = dr*ith;
  11545. const int ir1 = MIN(ir0 + dr, nr);
  11546. const float scale = 1.0f/sqrtf(D);
  11547. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11548. // how often k2 (and v2) is repeated in q2
  11549. int nrep = neq2/nek2;
  11550. for (int ir = ir0; ir < ir1; ++ir) {
  11551. // q indices
  11552. const int ik3 = ir/(nek2);
  11553. const int ik2 = ir - ik3*nek2;
  11554. const int iq3 = ik3;
  11555. const int id3 = ik3;
  11556. const int iv3 = ik3;
  11557. const int iv2 = ik2;
  11558. for (int irep = 0; irep < nrep; ++irep) {
  11559. const int iq2 = ik2 + irep*nek2;
  11560. const int id2 = iq2;
  11561. // (ik2 + irep*nek2) % nek2 == ik2
  11562. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11563. const int id1 = iq1;
  11564. // not sure about CACHE_LINE_SIZE_F32..
  11565. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11566. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11567. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11568. for (int i = M; i < Mup; ++i) {
  11569. S[i] = -INFINITY;
  11570. }
  11571. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11572. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11573. // k indices
  11574. const int ik1 = ic;
  11575. // S indices
  11576. const int i1 = ik1;
  11577. ggml_vec_dot_f32(neq0,
  11578. S + i1, 0,
  11579. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11580. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11581. }
  11582. // scale
  11583. ggml_vec_scale_f32(masked_begin, S, scale);
  11584. for (int64_t i = masked_begin; i < M; i++) {
  11585. S[i] = -INFINITY;
  11586. }
  11587. // softmax
  11588. // exclude known -INF S[..] values from max and loop
  11589. // dont forget to set their SM values to zero
  11590. {
  11591. float max = -INFINITY;
  11592. ggml_vec_max_f32(masked_begin, &max, S);
  11593. ggml_float sum = 0.0;
  11594. {
  11595. #ifdef GGML_SOFT_MAX_ACCELERATE
  11596. max = -max;
  11597. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11598. vvexpf(SM, SM, &Mup);
  11599. ggml_vec_sum_f32(Mup, &sum, SM);
  11600. #else
  11601. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11602. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11603. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11604. if (i >= masked_begin) {
  11605. break;
  11606. }
  11607. float * SR = S + i;
  11608. float * SW = SM + i;
  11609. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11610. if (i + j >= masked_begin) {
  11611. break;
  11612. } else if (SR[j] == -INFINITY) {
  11613. SW[j] = 0.0f;
  11614. } else {
  11615. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11616. const float val = expf(SR[j] - max);
  11617. #else
  11618. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11619. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11620. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11621. #endif
  11622. sump[j] += (ggml_float)val;
  11623. SW[j] = val;
  11624. }
  11625. }
  11626. }
  11627. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11628. sum += sump[i];
  11629. }
  11630. #endif
  11631. }
  11632. assert(sum > 0.0);
  11633. sum = 1.0/sum;
  11634. ggml_vec_scale_f32(masked_begin, SM, sum);
  11635. }
  11636. // step-by-step explanation
  11637. {
  11638. // forward-process shape grads from backward process
  11639. // parallel_for ik2,ik3:
  11640. // for irep:
  11641. // iq2 = ik2 + irep*nek2
  11642. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11643. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11644. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11645. // for iq1:
  11646. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11647. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11648. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11649. // S0 = -Inf [D,1,1,1]
  11650. // ~S1[i] = dot(kcur[:D,i], qcur)
  11651. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11652. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11653. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11654. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11655. // ~S5[i] = dot(vcur[:,i], S4)
  11656. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11657. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11658. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11659. // dst backward-/ grad[dst] = d
  11660. //
  11661. // output gradients with their dependencies:
  11662. //
  11663. // grad[kcur] = grad[S1].T @ qcur
  11664. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11665. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11666. // grad[S4] = grad[S5] @ vcur
  11667. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11668. // grad[qcur] = grad[S1] @ kcur
  11669. // grad[vcur] = grad[S5].T @ S4
  11670. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11671. //
  11672. // in post-order:
  11673. //
  11674. // S1 = qcur @ kcur.T
  11675. // S2 = S1 * scale
  11676. // S3 = diag_mask_inf(S2, P)
  11677. // S4 = softmax(S3)
  11678. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11679. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11680. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11681. // grad[qcur] = grad[S1] @ kcur
  11682. // grad[kcur] = grad[S1].T @ qcur
  11683. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11684. //
  11685. // using less variables (SM=S4):
  11686. //
  11687. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11688. // SM = softmax(S)
  11689. // S = d[:D,iq1,iq2,iq3] @ vcur
  11690. // dot_SM_gradSM = dot(SM, S)
  11691. // S = SM * (S - dot(SM, S))
  11692. // S = diag_mask_zero(S, P) * scale
  11693. //
  11694. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11695. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11696. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11697. }
  11698. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11699. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11700. // for ic:
  11701. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11702. // exclude known future zero S[..] values from operation
  11703. ggml_vec_set_f32(masked_begin, S, 0);
  11704. for (int64_t ic = 0; ic < D; ++ic) {
  11705. ggml_vec_mad_f32(masked_begin,
  11706. S,
  11707. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11708. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11709. }
  11710. // S = SM * (S - dot(SM, S))
  11711. float dot_SM_gradSM = 0;
  11712. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11713. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11714. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11715. // S = diag_mask_zero(S, P) * scale
  11716. // already done by above ggml_vec_set_f32
  11717. // exclude known zero S[..] values from operation
  11718. ggml_vec_scale_f32(masked_begin, S, scale);
  11719. // S shape [M,1]
  11720. // SM shape [M,1]
  11721. // kcur shape [D,M]
  11722. // qcur shape [D,1]
  11723. // vcur shape [M,D]
  11724. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11725. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11726. // for ic:
  11727. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11728. // exclude known zero S[..] values from loop
  11729. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11730. ggml_vec_mad_f32(D,
  11731. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11732. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11733. S[ic]);
  11734. }
  11735. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11736. // for ic:
  11737. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11738. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11739. // exclude known zero S[..] values from loop
  11740. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11741. ggml_vec_mad_f32(D,
  11742. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11743. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11744. S[ic]);
  11745. }
  11746. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11747. // for ic:
  11748. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11749. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11750. // exclude known zero SM[..] values from mad
  11751. for (int64_t ic = 0; ic < D; ++ic) {
  11752. ggml_vec_mad_f32(masked_begin,
  11753. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11754. SM,
  11755. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11756. }
  11757. }
  11758. }
  11759. }
  11760. }
  11761. static void ggml_compute_forward_flash_attn_back(
  11762. const struct ggml_compute_params * params,
  11763. const bool masked,
  11764. struct ggml_tensor * dst) {
  11765. const struct ggml_tensor * q = dst->src[0];
  11766. switch (q->type) {
  11767. case GGML_TYPE_F32:
  11768. {
  11769. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  11770. } break;
  11771. default:
  11772. {
  11773. GGML_ASSERT(false);
  11774. } break;
  11775. }
  11776. }
  11777. // ggml_compute_forward_win_part
  11778. static void ggml_compute_forward_win_part_f32(
  11779. const struct ggml_compute_params * params,
  11780. struct ggml_tensor * dst) {
  11781. const struct ggml_tensor * src0 = dst->src[0];
  11782. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11783. return;
  11784. }
  11785. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11786. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11787. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11788. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11789. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11790. assert(ne00 == ne0);
  11791. assert(ne3 == nep0*nep1);
  11792. // TODO: optimize / multi-thread
  11793. for (int py = 0; py < nep1; ++py) {
  11794. for (int px = 0; px < nep0; ++px) {
  11795. const int64_t i3 = py*nep0 + px;
  11796. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11797. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11798. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11799. const int64_t i02 = py*w + i2;
  11800. const int64_t i01 = px*w + i1;
  11801. const int64_t i00 = i0;
  11802. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11803. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11804. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11805. ((float *) dst->data)[i] = 0.0f;
  11806. } else {
  11807. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11808. }
  11809. }
  11810. }
  11811. }
  11812. }
  11813. }
  11814. }
  11815. static void ggml_compute_forward_win_part(
  11816. const struct ggml_compute_params * params,
  11817. struct ggml_tensor * dst) {
  11818. const struct ggml_tensor * src0 = dst->src[0];
  11819. switch (src0->type) {
  11820. case GGML_TYPE_F32:
  11821. {
  11822. ggml_compute_forward_win_part_f32(params, dst);
  11823. } break;
  11824. default:
  11825. {
  11826. GGML_ASSERT(false);
  11827. } break;
  11828. }
  11829. }
  11830. // ggml_compute_forward_win_unpart
  11831. static void ggml_compute_forward_win_unpart_f32(
  11832. const struct ggml_compute_params * params,
  11833. struct ggml_tensor * dst) {
  11834. const struct ggml_tensor * src0 = dst->src[0];
  11835. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11836. return;
  11837. }
  11838. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11839. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11840. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11841. // padding
  11842. const int px = (w - ne1%w)%w;
  11843. //const int py = (w - ne2%w)%w;
  11844. const int npx = (px + ne1)/w;
  11845. //const int npy = (py + ne2)/w;
  11846. assert(ne0 == ne00);
  11847. // TODO: optimize / multi-thread
  11848. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11849. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11850. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11851. const int ip2 = i2/w;
  11852. const int ip1 = i1/w;
  11853. const int64_t i02 = i2%w;
  11854. const int64_t i01 = i1%w;
  11855. const int64_t i00 = i0;
  11856. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11857. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11858. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11859. }
  11860. }
  11861. }
  11862. }
  11863. static void ggml_compute_forward_win_unpart(
  11864. const struct ggml_compute_params * params,
  11865. struct ggml_tensor * dst) {
  11866. const struct ggml_tensor * src0 = dst->src[0];
  11867. switch (src0->type) {
  11868. case GGML_TYPE_F32:
  11869. {
  11870. ggml_compute_forward_win_unpart_f32(params, dst);
  11871. } break;
  11872. default:
  11873. {
  11874. GGML_ASSERT(false);
  11875. } break;
  11876. }
  11877. }
  11878. //gmml_compute_forward_unary
  11879. static void ggml_compute_forward_unary(
  11880. const struct ggml_compute_params * params,
  11881. struct ggml_tensor * dst) {
  11882. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11883. switch (op) {
  11884. case GGML_UNARY_OP_ABS:
  11885. {
  11886. ggml_compute_forward_abs(params, dst);
  11887. } break;
  11888. case GGML_UNARY_OP_SGN:
  11889. {
  11890. ggml_compute_forward_sgn(params, dst);
  11891. } break;
  11892. case GGML_UNARY_OP_NEG:
  11893. {
  11894. ggml_compute_forward_neg(params, dst);
  11895. } break;
  11896. case GGML_UNARY_OP_STEP:
  11897. {
  11898. ggml_compute_forward_step(params, dst);
  11899. } break;
  11900. case GGML_UNARY_OP_TANH:
  11901. {
  11902. ggml_compute_forward_tanh(params, dst);
  11903. } break;
  11904. case GGML_UNARY_OP_ELU:
  11905. {
  11906. ggml_compute_forward_elu(params, dst);
  11907. } break;
  11908. case GGML_UNARY_OP_RELU:
  11909. {
  11910. ggml_compute_forward_relu(params, dst);
  11911. } break;
  11912. case GGML_UNARY_OP_GELU:
  11913. {
  11914. ggml_compute_forward_gelu(params, dst);
  11915. } break;
  11916. case GGML_UNARY_OP_GELU_QUICK:
  11917. {
  11918. ggml_compute_forward_gelu_quick(params, dst);
  11919. } break;
  11920. case GGML_UNARY_OP_SILU:
  11921. {
  11922. ggml_compute_forward_silu(params, dst);
  11923. } break;
  11924. case GGML_UNARY_OP_HARDSWISH:
  11925. {
  11926. ggml_compute_forward_hardswish(params, dst);
  11927. } break;
  11928. case GGML_UNARY_OP_HARDSIGMOID:
  11929. {
  11930. ggml_compute_forward_hardsigmoid(params, dst);
  11931. } break;
  11932. default:
  11933. {
  11934. GGML_ASSERT(false);
  11935. } break;
  11936. }
  11937. }
  11938. // ggml_compute_forward_get_rel_pos
  11939. static void ggml_compute_forward_get_rel_pos_f16(
  11940. const struct ggml_compute_params * params,
  11941. struct ggml_tensor * dst) {
  11942. const struct ggml_tensor * src0 = dst->src[0];
  11943. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11944. return;
  11945. }
  11946. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11947. GGML_TENSOR_UNARY_OP_LOCALS
  11948. const int64_t w = ne1;
  11949. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11950. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11951. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11952. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11953. const int64_t pos = (w - i1 - 1) + i2;
  11954. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11955. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11956. }
  11957. }
  11958. }
  11959. }
  11960. static void ggml_compute_forward_get_rel_pos(
  11961. const struct ggml_compute_params * params,
  11962. struct ggml_tensor * dst) {
  11963. const struct ggml_tensor * src0 = dst->src[0];
  11964. switch (src0->type) {
  11965. case GGML_TYPE_F16:
  11966. {
  11967. ggml_compute_forward_get_rel_pos_f16(params, dst);
  11968. } break;
  11969. default:
  11970. {
  11971. GGML_ASSERT(false);
  11972. } break;
  11973. }
  11974. }
  11975. // ggml_compute_forward_add_rel_pos
  11976. static void ggml_compute_forward_add_rel_pos_f32(
  11977. const struct ggml_compute_params * params,
  11978. struct ggml_tensor * dst) {
  11979. const struct ggml_tensor * src0 = dst->src[0];
  11980. const struct ggml_tensor * src1 = dst->src[1];
  11981. const struct ggml_tensor * src2 = dst->src[2];
  11982. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11983. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  11984. if (params->ith != 0) {
  11985. return;
  11986. }
  11987. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11988. return;
  11989. }
  11990. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11991. return;
  11992. }
  11993. int64_t t0 = ggml_perf_time_us();
  11994. UNUSED(t0);
  11995. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11996. float * src1_data = (float *) src1->data;
  11997. float * src2_data = (float *) src2->data;
  11998. float * dst_data = (float *) dst->data;
  11999. const int64_t ne10 = src1->ne[0];
  12000. const int64_t ne11 = src1->ne[1];
  12001. const int64_t ne12 = src1->ne[2];
  12002. const int64_t ne13 = src1->ne[3];
  12003. const int ith = params->ith;
  12004. const int nth = params->nth;
  12005. // total patches in dst
  12006. const int np = ne13;
  12007. // patches per thread
  12008. const int dp = (np + nth - 1)/nth;
  12009. // patch range for this thread
  12010. const int ip0 = dp*ith;
  12011. const int ip1 = MIN(ip0 + dp, np);
  12012. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12013. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12014. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12015. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12016. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12017. const int64_t jp0 = jp1 + i10;
  12018. const float src1_e = src1_data[jp0];
  12019. const float src2_e = src2_data[jp0];
  12020. const int64_t jdh = jp0 * ne10;
  12021. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12022. for (int64_t j = 0; j < ne10; ++j) {
  12023. dst_data[jdh + j ] += src2_e;
  12024. dst_data[jdw + j*ne10] += src1_e;
  12025. }
  12026. }
  12027. }
  12028. }
  12029. }
  12030. }
  12031. static void ggml_compute_forward_add_rel_pos(
  12032. const struct ggml_compute_params * params,
  12033. struct ggml_tensor * dst) {
  12034. const struct ggml_tensor * src0 = dst->src[0];
  12035. switch (src0->type) {
  12036. case GGML_TYPE_F32:
  12037. {
  12038. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12039. } break;
  12040. default:
  12041. {
  12042. GGML_ASSERT(false);
  12043. } break;
  12044. }
  12045. }
  12046. // ggml_compute_forward_map_unary
  12047. static void ggml_compute_forward_map_unary_f32(
  12048. const struct ggml_compute_params * params,
  12049. struct ggml_tensor * dst,
  12050. const ggml_unary_op_f32_t fun) {
  12051. const struct ggml_tensor * src0 = dst->src[0];
  12052. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12053. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12054. return;
  12055. }
  12056. const int n = ggml_nrows(src0);
  12057. const int nc = src0->ne[0];
  12058. assert( dst->nb[0] == sizeof(float));
  12059. assert(src0->nb[0] == sizeof(float));
  12060. for (int i = 0; i < n; i++) {
  12061. fun(nc,
  12062. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12063. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12064. }
  12065. }
  12066. static void ggml_compute_forward_map_unary(
  12067. const struct ggml_compute_params * params,
  12068. struct ggml_tensor * dst,
  12069. const ggml_unary_op_f32_t fun) {
  12070. const struct ggml_tensor * src0 = dst->src[0];
  12071. switch (src0->type) {
  12072. case GGML_TYPE_F32:
  12073. {
  12074. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12075. } break;
  12076. default:
  12077. {
  12078. GGML_ASSERT(false);
  12079. } break;
  12080. }
  12081. }
  12082. // ggml_compute_forward_map_binary
  12083. static void ggml_compute_forward_map_binary_f32(
  12084. const struct ggml_compute_params * params,
  12085. struct ggml_tensor * dst,
  12086. const ggml_binary_op_f32_t fun) {
  12087. const struct ggml_tensor * src0 = dst->src[0];
  12088. const struct ggml_tensor * src1 = dst->src[1];
  12089. assert(params->ith == 0);
  12090. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12091. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12092. return;
  12093. }
  12094. const int n = ggml_nrows(src0);
  12095. const int nc = src0->ne[0];
  12096. assert( dst->nb[0] == sizeof(float));
  12097. assert(src0->nb[0] == sizeof(float));
  12098. assert(src1->nb[0] == sizeof(float));
  12099. for (int i = 0; i < n; i++) {
  12100. fun(nc,
  12101. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12102. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12103. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12104. }
  12105. }
  12106. static void ggml_compute_forward_map_binary(
  12107. const struct ggml_compute_params * params,
  12108. struct ggml_tensor * dst,
  12109. const ggml_binary_op_f32_t fun) {
  12110. const struct ggml_tensor * src0 = dst->src[0];
  12111. switch (src0->type) {
  12112. case GGML_TYPE_F32:
  12113. {
  12114. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12115. } break;
  12116. default:
  12117. {
  12118. GGML_ASSERT(false);
  12119. } break;
  12120. }
  12121. }
  12122. // ggml_compute_forward_map_custom1
  12123. static void ggml_compute_forward_map_custom1_f32(
  12124. const struct ggml_compute_params * params,
  12125. struct ggml_tensor * dst,
  12126. const ggml_custom1_op_f32_t fun) {
  12127. const struct ggml_tensor * a = dst->src[0];
  12128. assert(params->ith == 0);
  12129. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12130. return;
  12131. }
  12132. fun(dst, a);
  12133. }
  12134. // ggml_compute_forward_map_custom2
  12135. static void ggml_compute_forward_map_custom2_f32(
  12136. const struct ggml_compute_params * params,
  12137. struct ggml_tensor * dst,
  12138. const ggml_custom2_op_f32_t fun) {
  12139. const struct ggml_tensor * a = dst->src[0];
  12140. const struct ggml_tensor * b = dst->src[1];
  12141. assert(params->ith == 0);
  12142. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12143. return;
  12144. }
  12145. fun(dst, a, b);
  12146. }
  12147. // ggml_compute_forward_map_custom3
  12148. static void ggml_compute_forward_map_custom3_f32(
  12149. const struct ggml_compute_params * params,
  12150. struct ggml_tensor * dst,
  12151. const ggml_custom3_op_f32_t fun) {
  12152. const struct ggml_tensor * a = dst->src[0];
  12153. const struct ggml_tensor * b = dst->src[1];
  12154. const struct ggml_tensor * c = dst->src[1];
  12155. assert(params->ith == 0);
  12156. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12157. return;
  12158. }
  12159. fun(dst, a, b, c);
  12160. }
  12161. // ggml_compute_forward_map_custom1
  12162. static void ggml_compute_forward_map_custom1(
  12163. const struct ggml_compute_params * params,
  12164. struct ggml_tensor * dst) {
  12165. const struct ggml_tensor * a = dst->src[0];
  12166. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12167. return;
  12168. }
  12169. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12170. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12171. }
  12172. // ggml_compute_forward_map_custom2
  12173. static void ggml_compute_forward_map_custom2(
  12174. const struct ggml_compute_params * params,
  12175. struct ggml_tensor * dst) {
  12176. const struct ggml_tensor * a = dst->src[0];
  12177. const struct ggml_tensor * b = dst->src[1];
  12178. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12179. return;
  12180. }
  12181. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12182. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12183. }
  12184. // ggml_compute_forward_map_custom3
  12185. static void ggml_compute_forward_map_custom3(
  12186. const struct ggml_compute_params * params,
  12187. struct ggml_tensor * dst) {
  12188. const struct ggml_tensor * a = dst->src[0];
  12189. const struct ggml_tensor * b = dst->src[1];
  12190. const struct ggml_tensor * c = dst->src[2];
  12191. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12192. return;
  12193. }
  12194. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12195. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12196. }
  12197. // ggml_compute_forward_cross_entropy_loss
  12198. static void ggml_compute_forward_cross_entropy_loss_f32(
  12199. const struct ggml_compute_params * params,
  12200. struct ggml_tensor * dst) {
  12201. const struct ggml_tensor * src0 = dst->src[0];
  12202. const struct ggml_tensor * src1 = dst->src[1];
  12203. GGML_ASSERT(ggml_is_contiguous(src0));
  12204. GGML_ASSERT(ggml_is_contiguous(src1));
  12205. GGML_ASSERT(ggml_is_scalar(dst));
  12206. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12207. const int ith = params->ith;
  12208. const int nth = params->nth;
  12209. float * sums = (float *) params->wdata;
  12210. // TODO: handle transposed/permuted matrices
  12211. const int nc = src0->ne[0];
  12212. const int nr = ggml_nrows(src0);
  12213. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12214. if (params->type == GGML_TASK_TYPE_INIT) {
  12215. if (ith == 0) {
  12216. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12217. }
  12218. return;
  12219. }
  12220. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12221. if (ith == 0) {
  12222. float * dp = (float *) dst->data;
  12223. ggml_vec_sum_f32(nth, dp, sums);
  12224. dp[0] *= -1.0f / (float) nr;
  12225. }
  12226. return;
  12227. }
  12228. const double eps = 1e-9;
  12229. // rows per thread
  12230. const int dr = (nr + nth - 1)/nth;
  12231. // row range for this thread
  12232. const int ir0 = dr*ith;
  12233. const int ir1 = MIN(ir0 + dr, nr);
  12234. for (int i1 = ir0; i1 < ir1; i1++) {
  12235. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12236. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12237. float * st = ((float *) params->wdata) + nth + ith*nc;
  12238. #ifndef NDEBUG
  12239. for (int i = 0; i < nc; ++i) {
  12240. //printf("p[%d] = %f\n", i, p[i]);
  12241. assert(!isnan(s0[i]));
  12242. assert(!isnan(s1[i]));
  12243. }
  12244. #endif
  12245. // soft_max
  12246. ggml_float sum = 0.0;
  12247. {
  12248. float max = -INFINITY;
  12249. ggml_vec_max_f32(nc, &max, s0);
  12250. uint16_t scvt; UNUSED(scvt);
  12251. for (int i = 0; i < nc; i++) {
  12252. if (s0[i] == -INFINITY) {
  12253. st[i] = 0.0f;
  12254. } else {
  12255. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12256. const float s = s0[i] - max;
  12257. const float val = expf(s);
  12258. #else
  12259. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12260. memcpy(&scvt, &s, sizeof(scvt));
  12261. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12262. #endif
  12263. sum += (ggml_float)val;
  12264. st[i] = val;
  12265. }
  12266. }
  12267. assert(sum > 0.0);
  12268. // sum = 1.0/sum;
  12269. }
  12270. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12271. sum = (1.0 - eps) / sum;
  12272. ggml_vec_scale_f32(nc, st, sum);
  12273. ggml_vec_add1_f32(nc, st, st, eps);
  12274. ggml_vec_log_f32(nc, st, st);
  12275. ggml_vec_mul_f32(nc, st, st, s1);
  12276. float st_sum = 0;
  12277. ggml_vec_sum_f32(nc, &st_sum, st);
  12278. sums[ith] += st_sum;
  12279. #ifndef NDEBUG
  12280. for (int i = 0; i < nc; ++i) {
  12281. assert(!isnan(st[i]));
  12282. assert(!isinf(st[i]));
  12283. }
  12284. #endif
  12285. }
  12286. }
  12287. static void ggml_compute_forward_cross_entropy_loss(
  12288. const struct ggml_compute_params * params,
  12289. struct ggml_tensor * dst) {
  12290. const struct ggml_tensor * src0 = dst->src[0];
  12291. switch (src0->type) {
  12292. case GGML_TYPE_F32:
  12293. {
  12294. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12295. } break;
  12296. default:
  12297. {
  12298. GGML_ASSERT(false);
  12299. } break;
  12300. }
  12301. }
  12302. // ggml_compute_forward_cross_entropy_loss_back
  12303. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12304. const struct ggml_compute_params * params,
  12305. struct ggml_tensor * dst) {
  12306. const struct ggml_tensor * src0 = dst->src[0];
  12307. const struct ggml_tensor * src1 = dst->src[1];
  12308. const struct ggml_tensor * opt0 = dst->src[2];
  12309. GGML_ASSERT(ggml_is_contiguous(dst));
  12310. GGML_ASSERT(ggml_is_contiguous(src0));
  12311. GGML_ASSERT(ggml_is_contiguous(src1));
  12312. GGML_ASSERT(ggml_is_contiguous(opt0));
  12313. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12314. const int64_t ith = params->ith;
  12315. const int64_t nth = params->nth;
  12316. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12317. return;
  12318. }
  12319. const double eps = 1e-9;
  12320. // TODO: handle transposed/permuted matrices
  12321. const int64_t nc = src0->ne[0];
  12322. const int64_t nr = ggml_nrows(src0);
  12323. // rows per thread
  12324. const int64_t dr = (nr + nth - 1)/nth;
  12325. // row range for this thread
  12326. const int64_t ir0 = dr*ith;
  12327. const int64_t ir1 = MIN(ir0 + dr, nr);
  12328. float * d = (float *) opt0->data;
  12329. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12330. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12331. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12332. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12333. #ifndef NDEBUG
  12334. for (int i = 0; i < nc; ++i) {
  12335. //printf("p[%d] = %f\n", i, p[i]);
  12336. assert(!isnan(s0[i]));
  12337. assert(!isnan(s1[i]));
  12338. }
  12339. #endif
  12340. // soft_max
  12341. ggml_float sum = 0.0;
  12342. {
  12343. float max = -INFINITY;
  12344. ggml_vec_max_f32(nc, &max, s0);
  12345. uint16_t scvt; UNUSED(scvt);
  12346. for (int i = 0; i < nc; i++) {
  12347. if (s0[i] == -INFINITY) {
  12348. ds0[i] = 0.0f;
  12349. } else {
  12350. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12351. const float s = s0[i] - max;
  12352. const float val = expf(s);
  12353. #else
  12354. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12355. memcpy(&scvt, &s, sizeof(scvt));
  12356. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12357. #endif
  12358. sum += (ggml_float)val;
  12359. ds0[i] = val;
  12360. }
  12361. }
  12362. assert(sum > 0.0);
  12363. sum = (1.0 - eps)/sum;
  12364. }
  12365. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12366. ggml_vec_scale_f32(nc, ds0, sum);
  12367. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12368. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12369. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12370. #ifndef NDEBUG
  12371. for (int i = 0; i < nc; ++i) {
  12372. assert(!isnan(ds0[i]));
  12373. assert(!isinf(ds0[i]));
  12374. }
  12375. #endif
  12376. }
  12377. }
  12378. static void ggml_compute_forward_cross_entropy_loss_back(
  12379. const struct ggml_compute_params * params,
  12380. struct ggml_tensor * dst) {
  12381. const struct ggml_tensor * src0 = dst->src[0];
  12382. switch (src0->type) {
  12383. case GGML_TYPE_F32:
  12384. {
  12385. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12386. } break;
  12387. default:
  12388. {
  12389. GGML_ASSERT(false);
  12390. } break;
  12391. }
  12392. }
  12393. /////////////////////////////////
  12394. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12395. GGML_ASSERT(params);
  12396. if (tensor->op == GGML_OP_NONE) {
  12397. return;
  12398. }
  12399. #ifdef GGML_USE_CUBLAS
  12400. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12401. if (skip_cpu) {
  12402. return;
  12403. }
  12404. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12405. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12406. #elif defined(GGML_USE_VULKAN)
  12407. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12408. #ifdef GGML_VULKAN_CHECK_RESULTS
  12409. if (skip_cpu) {
  12410. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12411. }
  12412. #endif
  12413. if (skip_cpu) {
  12414. return;
  12415. }
  12416. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12417. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12418. #endif // GGML_USE_CUBLAS
  12419. #ifdef GGML_USE_SYCL
  12420. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12421. if (skip_cpu) {
  12422. return;
  12423. }
  12424. #endif // GGML_USE_SYCL
  12425. switch (tensor->op) {
  12426. case GGML_OP_DUP:
  12427. {
  12428. ggml_compute_forward_dup(params, tensor);
  12429. } break;
  12430. case GGML_OP_ADD:
  12431. {
  12432. ggml_compute_forward_add(params, tensor);
  12433. } break;
  12434. case GGML_OP_ADD1:
  12435. {
  12436. ggml_compute_forward_add1(params, tensor);
  12437. } break;
  12438. case GGML_OP_ACC:
  12439. {
  12440. ggml_compute_forward_acc(params, tensor);
  12441. } break;
  12442. case GGML_OP_SUB:
  12443. {
  12444. ggml_compute_forward_sub(params, tensor);
  12445. } break;
  12446. case GGML_OP_MUL:
  12447. {
  12448. ggml_compute_forward_mul(params, tensor);
  12449. } break;
  12450. case GGML_OP_DIV:
  12451. {
  12452. ggml_compute_forward_div(params, tensor);
  12453. } break;
  12454. case GGML_OP_SQR:
  12455. {
  12456. ggml_compute_forward_sqr(params, tensor);
  12457. } break;
  12458. case GGML_OP_SQRT:
  12459. {
  12460. ggml_compute_forward_sqrt(params, tensor);
  12461. } break;
  12462. case GGML_OP_LOG:
  12463. {
  12464. ggml_compute_forward_log(params, tensor);
  12465. } break;
  12466. case GGML_OP_SUM:
  12467. {
  12468. ggml_compute_forward_sum(params, tensor);
  12469. } break;
  12470. case GGML_OP_SUM_ROWS:
  12471. {
  12472. ggml_compute_forward_sum_rows(params, tensor);
  12473. } break;
  12474. case GGML_OP_MEAN:
  12475. {
  12476. ggml_compute_forward_mean(params, tensor);
  12477. } break;
  12478. case GGML_OP_ARGMAX:
  12479. {
  12480. ggml_compute_forward_argmax(params, tensor);
  12481. } break;
  12482. case GGML_OP_REPEAT:
  12483. {
  12484. ggml_compute_forward_repeat(params, tensor);
  12485. } break;
  12486. case GGML_OP_REPEAT_BACK:
  12487. {
  12488. ggml_compute_forward_repeat_back(params, tensor);
  12489. } break;
  12490. case GGML_OP_CONCAT:
  12491. {
  12492. ggml_compute_forward_concat(params, tensor);
  12493. } break;
  12494. case GGML_OP_SILU_BACK:
  12495. {
  12496. ggml_compute_forward_silu_back(params, tensor);
  12497. } break;
  12498. case GGML_OP_NORM:
  12499. {
  12500. ggml_compute_forward_norm(params, tensor);
  12501. } break;
  12502. case GGML_OP_RMS_NORM:
  12503. {
  12504. ggml_compute_forward_rms_norm(params, tensor);
  12505. } break;
  12506. case GGML_OP_RMS_NORM_BACK:
  12507. {
  12508. ggml_compute_forward_rms_norm_back(params, tensor);
  12509. } break;
  12510. case GGML_OP_GROUP_NORM:
  12511. {
  12512. ggml_compute_forward_group_norm(params, tensor);
  12513. } break;
  12514. case GGML_OP_MUL_MAT:
  12515. {
  12516. ggml_compute_forward_mul_mat(params, tensor);
  12517. } break;
  12518. case GGML_OP_MUL_MAT_ID:
  12519. {
  12520. ggml_compute_forward_mul_mat_id(params, tensor);
  12521. } break;
  12522. case GGML_OP_OUT_PROD:
  12523. {
  12524. ggml_compute_forward_out_prod(params, tensor);
  12525. } break;
  12526. case GGML_OP_SCALE:
  12527. {
  12528. ggml_compute_forward_scale(params, tensor);
  12529. } break;
  12530. case GGML_OP_SET:
  12531. {
  12532. ggml_compute_forward_set(params, tensor);
  12533. } break;
  12534. case GGML_OP_CPY:
  12535. {
  12536. ggml_compute_forward_cpy(params, tensor);
  12537. } break;
  12538. case GGML_OP_CONT:
  12539. {
  12540. ggml_compute_forward_cont(params, tensor);
  12541. } break;
  12542. case GGML_OP_RESHAPE:
  12543. {
  12544. ggml_compute_forward_reshape(params, tensor);
  12545. } break;
  12546. case GGML_OP_VIEW:
  12547. {
  12548. ggml_compute_forward_view(params, tensor);
  12549. } break;
  12550. case GGML_OP_PERMUTE:
  12551. {
  12552. ggml_compute_forward_permute(params, tensor);
  12553. } break;
  12554. case GGML_OP_TRANSPOSE:
  12555. {
  12556. ggml_compute_forward_transpose(params, tensor);
  12557. } break;
  12558. case GGML_OP_GET_ROWS:
  12559. {
  12560. ggml_compute_forward_get_rows(params, tensor);
  12561. } break;
  12562. case GGML_OP_GET_ROWS_BACK:
  12563. {
  12564. ggml_compute_forward_get_rows_back(params, tensor);
  12565. } break;
  12566. case GGML_OP_DIAG:
  12567. {
  12568. ggml_compute_forward_diag(params, tensor);
  12569. } break;
  12570. case GGML_OP_DIAG_MASK_INF:
  12571. {
  12572. ggml_compute_forward_diag_mask_inf(params, tensor);
  12573. } break;
  12574. case GGML_OP_DIAG_MASK_ZERO:
  12575. {
  12576. ggml_compute_forward_diag_mask_zero(params, tensor);
  12577. } break;
  12578. case GGML_OP_SOFT_MAX:
  12579. {
  12580. ggml_compute_forward_soft_max(params, tensor);
  12581. } break;
  12582. case GGML_OP_SOFT_MAX_BACK:
  12583. {
  12584. ggml_compute_forward_soft_max_back(params, tensor);
  12585. } break;
  12586. case GGML_OP_ROPE:
  12587. {
  12588. ggml_compute_forward_rope(params, tensor);
  12589. } break;
  12590. case GGML_OP_ROPE_BACK:
  12591. {
  12592. ggml_compute_forward_rope_back(params, tensor);
  12593. } break;
  12594. case GGML_OP_ALIBI:
  12595. {
  12596. ggml_compute_forward_alibi(params, tensor);
  12597. } break;
  12598. case GGML_OP_CLAMP:
  12599. {
  12600. ggml_compute_forward_clamp(params, tensor);
  12601. } break;
  12602. case GGML_OP_CONV_TRANSPOSE_1D:
  12603. {
  12604. ggml_compute_forward_conv_transpose_1d(params, tensor);
  12605. } break;
  12606. case GGML_OP_IM2COL:
  12607. {
  12608. ggml_compute_forward_im2col(params, tensor);
  12609. } break;
  12610. case GGML_OP_CONV_TRANSPOSE_2D:
  12611. {
  12612. ggml_compute_forward_conv_transpose_2d(params, tensor);
  12613. } break;
  12614. case GGML_OP_POOL_1D:
  12615. {
  12616. ggml_compute_forward_pool_1d(params, tensor);
  12617. } break;
  12618. case GGML_OP_POOL_2D:
  12619. {
  12620. ggml_compute_forward_pool_2d(params, tensor);
  12621. } break;
  12622. case GGML_OP_UPSCALE:
  12623. {
  12624. ggml_compute_forward_upscale(params, tensor);
  12625. } break;
  12626. case GGML_OP_PAD:
  12627. {
  12628. ggml_compute_forward_pad(params, tensor);
  12629. } break;
  12630. case GGML_OP_ARGSORT:
  12631. {
  12632. ggml_compute_forward_argsort(params, tensor);
  12633. } break;
  12634. case GGML_OP_LEAKY_RELU:
  12635. {
  12636. ggml_compute_forward_leaky_relu(params, tensor);
  12637. } break;
  12638. case GGML_OP_FLASH_ATTN:
  12639. {
  12640. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12641. GGML_ASSERT(t == 0 || t == 1);
  12642. const bool masked = t != 0;
  12643. ggml_compute_forward_flash_attn(params, masked, tensor);
  12644. } break;
  12645. case GGML_OP_FLASH_FF:
  12646. {
  12647. ggml_compute_forward_flash_ff(params, tensor);
  12648. } break;
  12649. case GGML_OP_FLASH_ATTN_BACK:
  12650. {
  12651. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12652. GGML_ASSERT(t == 0 || t == 1);
  12653. bool masked = t != 0;
  12654. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  12655. } break;
  12656. case GGML_OP_WIN_PART:
  12657. {
  12658. ggml_compute_forward_win_part(params, tensor);
  12659. } break;
  12660. case GGML_OP_WIN_UNPART:
  12661. {
  12662. ggml_compute_forward_win_unpart(params, tensor);
  12663. } break;
  12664. case GGML_OP_UNARY:
  12665. {
  12666. ggml_compute_forward_unary(params, tensor);
  12667. } break;
  12668. case GGML_OP_GET_REL_POS:
  12669. {
  12670. ggml_compute_forward_get_rel_pos(params, tensor);
  12671. } break;
  12672. case GGML_OP_ADD_REL_POS:
  12673. {
  12674. ggml_compute_forward_add_rel_pos(params, tensor);
  12675. } break;
  12676. case GGML_OP_MAP_UNARY:
  12677. {
  12678. ggml_unary_op_f32_t fun;
  12679. memcpy(&fun, tensor->op_params, sizeof(fun));
  12680. ggml_compute_forward_map_unary(params, tensor, fun);
  12681. }
  12682. break;
  12683. case GGML_OP_MAP_BINARY:
  12684. {
  12685. ggml_binary_op_f32_t fun;
  12686. memcpy(&fun, tensor->op_params, sizeof(fun));
  12687. ggml_compute_forward_map_binary(params, tensor, fun);
  12688. }
  12689. break;
  12690. case GGML_OP_MAP_CUSTOM1_F32:
  12691. {
  12692. ggml_custom1_op_f32_t fun;
  12693. memcpy(&fun, tensor->op_params, sizeof(fun));
  12694. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  12695. }
  12696. break;
  12697. case GGML_OP_MAP_CUSTOM2_F32:
  12698. {
  12699. ggml_custom2_op_f32_t fun;
  12700. memcpy(&fun, tensor->op_params, sizeof(fun));
  12701. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  12702. }
  12703. break;
  12704. case GGML_OP_MAP_CUSTOM3_F32:
  12705. {
  12706. ggml_custom3_op_f32_t fun;
  12707. memcpy(&fun, tensor->op_params, sizeof(fun));
  12708. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  12709. }
  12710. break;
  12711. case GGML_OP_MAP_CUSTOM1:
  12712. {
  12713. ggml_compute_forward_map_custom1(params, tensor);
  12714. }
  12715. break;
  12716. case GGML_OP_MAP_CUSTOM2:
  12717. {
  12718. ggml_compute_forward_map_custom2(params, tensor);
  12719. }
  12720. break;
  12721. case GGML_OP_MAP_CUSTOM3:
  12722. {
  12723. ggml_compute_forward_map_custom3(params, tensor);
  12724. }
  12725. break;
  12726. case GGML_OP_CROSS_ENTROPY_LOSS:
  12727. {
  12728. ggml_compute_forward_cross_entropy_loss(params, tensor);
  12729. }
  12730. break;
  12731. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12732. {
  12733. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  12734. }
  12735. break;
  12736. case GGML_OP_NONE:
  12737. {
  12738. // nop
  12739. } break;
  12740. case GGML_OP_COUNT:
  12741. {
  12742. GGML_ASSERT(false);
  12743. } break;
  12744. }
  12745. }
  12746. ////////////////////////////////////////////////////////////////////////////////
  12747. static size_t ggml_hash_size(size_t min_sz) {
  12748. // next primes after powers of two
  12749. static const size_t primes[] = {
  12750. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12751. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12752. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12753. 16777259, 33554467, 67108879, 134217757, 268435459,
  12754. 536870923, 1073741827, 2147483659
  12755. };
  12756. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12757. // find the smallest prime that is larger or equal to min_sz
  12758. size_t l = 0;
  12759. size_t r = n_primes;
  12760. while (l < r) {
  12761. size_t m = (l + r)/2;
  12762. if (primes[m] < min_sz) {
  12763. l = m + 1;
  12764. } else {
  12765. r = m;
  12766. }
  12767. }
  12768. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12769. return sz;
  12770. }
  12771. static size_t ggml_hash(const void * p) {
  12772. return (size_t)p;
  12773. }
  12774. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12775. size_t h = ggml_hash(key) % hash_set.size;
  12776. // linear probing
  12777. size_t i = h;
  12778. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12779. i = (i + 1) % hash_set.size;
  12780. if (i == h) {
  12781. // visited all hash table entries -> not found
  12782. return GGML_HASHTABLE_FULL;
  12783. }
  12784. }
  12785. return i;
  12786. }
  12787. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12788. size_t i = ggml_hash_find(hash_set, key);
  12789. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12790. }
  12791. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12792. size_t i = ggml_hash_find(hash_set, key);
  12793. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12794. if (hash_set.keys[i] == key) {
  12795. return GGML_HASHTABLE_ALREADY_EXISTS;
  12796. }
  12797. // insert
  12798. GGML_ASSERT(hash_set.keys[i] == NULL);
  12799. hash_set.keys[i] = key;
  12800. return i;
  12801. }
  12802. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12803. size_t i = ggml_hash_find(hash_set, key);
  12804. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12805. hash_set.keys[i] = key;
  12806. return i;
  12807. }
  12808. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12809. size = ggml_hash_size(size);
  12810. struct ggml_hash_set result;
  12811. result.size = size;
  12812. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12813. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12814. return result;
  12815. }
  12816. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12817. GGML_FREE(hash_set.keys);
  12818. }
  12819. struct hash_map {
  12820. struct ggml_hash_set set;
  12821. struct ggml_tensor ** vals;
  12822. };
  12823. static struct hash_map * ggml_new_hash_map(size_t size) {
  12824. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12825. result->set = ggml_hash_set_new(size);
  12826. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12827. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12828. return result;
  12829. }
  12830. static void ggml_hash_map_free(struct hash_map * map) {
  12831. ggml_hash_set_free(map->set);
  12832. GGML_FREE(map->vals);
  12833. GGML_FREE(map);
  12834. }
  12835. // gradient checkpointing
  12836. static struct ggml_tensor * ggml_recompute_graph_node(
  12837. struct ggml_context * ctx,
  12838. struct ggml_cgraph * graph,
  12839. struct hash_map * replacements,
  12840. struct ggml_tensor * node) {
  12841. if (node == NULL) {
  12842. return NULL;
  12843. }
  12844. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  12845. return node;
  12846. }
  12847. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12848. return node;
  12849. }
  12850. int count_children = 0;
  12851. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12852. if (node->src[k]) {
  12853. ++count_children;
  12854. }
  12855. }
  12856. if (count_children == 0) {
  12857. return node;
  12858. }
  12859. size_t i = ggml_hash_find(replacements->set, node);
  12860. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12861. if (replacements->set.keys[i] == node) {
  12862. return replacements->vals[i];
  12863. }
  12864. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12865. // insert clone into replacements
  12866. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12867. replacements->set.keys[i] = node;
  12868. replacements->vals[i] = clone;
  12869. clone->op = node->op;
  12870. clone->grad = node->grad;
  12871. clone->flags = node->flags;
  12872. clone->extra = node->extra;
  12873. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12874. clone->nb[k] = node->nb[k];
  12875. }
  12876. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12877. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12878. }
  12879. if (node->view_src != NULL) {
  12880. clone->data = (node->view_src->data == NULL)
  12881. ? NULL // view_src not yet allocated
  12882. : (char *) node->view_src->data // view_src already allocated
  12883. + node->view_offs;
  12884. clone->view_src = node->view_src;
  12885. clone->view_offs = node->view_offs;
  12886. }
  12887. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12888. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12889. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12890. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12891. return clone;
  12892. }
  12893. void ggml_build_backward_gradient_checkpointing(
  12894. struct ggml_context * ctx,
  12895. struct ggml_cgraph * gf,
  12896. struct ggml_cgraph * gb,
  12897. struct ggml_cgraph * gb_tmp,
  12898. struct ggml_tensor * * checkpoints,
  12899. int n_checkpoints) {
  12900. ggml_graph_cpy(gf, gb_tmp);
  12901. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12902. if (n_checkpoints <= 0) {
  12903. ggml_graph_cpy(gb_tmp, gb);
  12904. return;
  12905. }
  12906. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12907. // insert checkpoints in replacements
  12908. for (int i = 0; i < n_checkpoints; ++i) {
  12909. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12910. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12911. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12912. replacements->set.keys[k] = checkpoints[i];
  12913. replacements->vals[k] = checkpoints[i];
  12914. }
  12915. ggml_graph_cpy(gf, gb);
  12916. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12917. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12918. // by recomputing them from checkpoints
  12919. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12920. struct ggml_tensor * node = gb_tmp->nodes[i];
  12921. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12922. // insert new tensors recomputing src, reusing already made replacements,
  12923. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12924. // recurse for input tensors,
  12925. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12926. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12927. }
  12928. // insert rewritten backward node with replacements made into resulting backward graph gb
  12929. ggml_build_forward_expand(gb, node);
  12930. }
  12931. ggml_hash_map_free(replacements);
  12932. }
  12933. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12934. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12935. if (ggml_hash_contains(zero_table, a)) {
  12936. return b;
  12937. } else {
  12938. return ggml_add_impl(ctx, a, b, false);
  12939. }
  12940. }
  12941. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12942. if (ggml_hash_contains(zero_table, a)) {
  12943. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12944. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12945. } else {
  12946. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12947. }
  12948. }
  12949. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12950. if (ggml_hash_contains(zero_table, a)) {
  12951. return ggml_repeat(ctx, b, a);
  12952. } else {
  12953. return ggml_add1_impl(ctx, a, b, false);
  12954. }
  12955. }
  12956. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12957. if (ggml_hash_contains(zero_table, a)) {
  12958. return ggml_neg(ctx, b);
  12959. } else {
  12960. return ggml_sub_impl(ctx, a, b, false);
  12961. }
  12962. }
  12963. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12964. struct ggml_tensor * src0 = tensor->src[0];
  12965. struct ggml_tensor * src1 = tensor->src[1];
  12966. switch (tensor->op) {
  12967. case GGML_OP_DUP:
  12968. {
  12969. if (src0->grad) {
  12970. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12971. }
  12972. } break;
  12973. case GGML_OP_ADD:
  12974. {
  12975. if (src0->grad) {
  12976. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12977. }
  12978. if (src1->grad) {
  12979. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12980. }
  12981. } break;
  12982. case GGML_OP_ADD1:
  12983. {
  12984. if (src0->grad) {
  12985. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12986. }
  12987. if (src1->grad) {
  12988. src1->grad = ggml_add_or_set(ctx,
  12989. src1->grad,
  12990. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12991. zero_table);
  12992. }
  12993. } break;
  12994. case GGML_OP_ACC:
  12995. {
  12996. if (src0->grad) {
  12997. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12998. }
  12999. if (src1->grad) {
  13000. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13001. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13002. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13003. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13004. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13005. tensor->grad,
  13006. src1->grad->ne[0],
  13007. src1->grad->ne[1],
  13008. src1->grad->ne[2],
  13009. src1->grad->ne[3],
  13010. nb1, nb2, nb3, offset);
  13011. src1->grad =
  13012. ggml_add_or_set(ctx,
  13013. src1->grad,
  13014. ggml_reshape(ctx,
  13015. ggml_cont(ctx, tensor_grad_view),
  13016. src1->grad),
  13017. zero_table);
  13018. }
  13019. } break;
  13020. case GGML_OP_SUB:
  13021. {
  13022. if (src0->grad) {
  13023. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13024. }
  13025. if (src1->grad) {
  13026. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13027. }
  13028. } break;
  13029. case GGML_OP_MUL:
  13030. {
  13031. if (src0->grad) {
  13032. src0->grad =
  13033. ggml_add_or_set(ctx,
  13034. src0->grad,
  13035. ggml_mul(ctx, src1, tensor->grad),
  13036. zero_table);
  13037. }
  13038. if (src1->grad) {
  13039. src1->grad =
  13040. ggml_add_or_set(ctx,
  13041. src1->grad,
  13042. ggml_mul(ctx, src0, tensor->grad),
  13043. zero_table);
  13044. }
  13045. } break;
  13046. case GGML_OP_DIV:
  13047. {
  13048. if (src0->grad) {
  13049. src0->grad =
  13050. ggml_add_or_set(ctx,
  13051. src0->grad,
  13052. ggml_div(ctx, tensor->grad, src1),
  13053. zero_table);
  13054. }
  13055. if (src1->grad) {
  13056. src1->grad =
  13057. ggml_sub_or_set(ctx,
  13058. src1->grad,
  13059. ggml_mul(ctx,
  13060. tensor->grad,
  13061. ggml_div(ctx, tensor, src1)),
  13062. zero_table);
  13063. }
  13064. } break;
  13065. case GGML_OP_SQR:
  13066. {
  13067. if (src0->grad) {
  13068. src0->grad =
  13069. ggml_add_or_set(ctx,
  13070. src0->grad,
  13071. ggml_scale(ctx,
  13072. ggml_mul(ctx, src0, tensor->grad),
  13073. 2.0f),
  13074. zero_table);
  13075. }
  13076. } break;
  13077. case GGML_OP_SQRT:
  13078. {
  13079. if (src0->grad) {
  13080. src0->grad =
  13081. ggml_add_or_set(ctx,
  13082. src0->grad,
  13083. ggml_scale(ctx,
  13084. ggml_div(ctx,
  13085. tensor->grad,
  13086. tensor),
  13087. 0.5f),
  13088. zero_table);
  13089. }
  13090. } break;
  13091. case GGML_OP_LOG:
  13092. {
  13093. if (src0->grad) {
  13094. src0->grad =
  13095. ggml_add_or_set(ctx,
  13096. src0->grad,
  13097. ggml_div(ctx,
  13098. tensor->grad,
  13099. src0),
  13100. zero_table);
  13101. }
  13102. } break;
  13103. case GGML_OP_SUM:
  13104. {
  13105. if (src0->grad) {
  13106. src0->grad =
  13107. ggml_add1_or_set(ctx,
  13108. src0->grad,
  13109. tensor->grad,
  13110. zero_table);
  13111. }
  13112. } break;
  13113. case GGML_OP_SUM_ROWS:
  13114. {
  13115. if (src0->grad) {
  13116. src0->grad =
  13117. ggml_add_or_set(ctx,
  13118. src0->grad,
  13119. ggml_repeat(ctx,
  13120. tensor->grad,
  13121. src0->grad),
  13122. zero_table);
  13123. }
  13124. } break;
  13125. case GGML_OP_MEAN:
  13126. case GGML_OP_ARGMAX:
  13127. {
  13128. GGML_ASSERT(false); // TODO: implement
  13129. } break;
  13130. case GGML_OP_REPEAT:
  13131. {
  13132. // necessary for llama
  13133. if (src0->grad) {
  13134. src0->grad = ggml_add_or_set(ctx,
  13135. src0->grad,
  13136. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13137. zero_table);
  13138. }
  13139. } break;
  13140. case GGML_OP_REPEAT_BACK:
  13141. {
  13142. if (src0->grad) {
  13143. // TODO: test this
  13144. src0->grad = ggml_add_or_set(ctx,
  13145. src0->grad,
  13146. ggml_repeat(ctx, tensor->grad, src0->grad),
  13147. zero_table);
  13148. }
  13149. } break;
  13150. case GGML_OP_CONCAT:
  13151. {
  13152. GGML_ASSERT(false); // TODO: implement
  13153. } break;
  13154. case GGML_OP_SILU_BACK:
  13155. {
  13156. GGML_ASSERT(false); // TODO: not implemented
  13157. } break;
  13158. case GGML_OP_NORM:
  13159. {
  13160. GGML_ASSERT(false); // TODO: not implemented
  13161. } break;
  13162. case GGML_OP_RMS_NORM:
  13163. {
  13164. // necessary for llama
  13165. if (src0->grad) {
  13166. float eps;
  13167. memcpy(&eps, tensor->op_params, sizeof(float));
  13168. src0->grad = ggml_add_or_set(ctx,
  13169. src0->grad,
  13170. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13171. zero_table);
  13172. }
  13173. } break;
  13174. case GGML_OP_RMS_NORM_BACK:
  13175. {
  13176. GGML_ASSERT(false); // TODO: not implemented
  13177. } break;
  13178. case GGML_OP_GROUP_NORM:
  13179. {
  13180. GGML_ASSERT(false); // TODO: not implemented
  13181. } break;
  13182. case GGML_OP_MUL_MAT:
  13183. {
  13184. // https://cs231n.github.io/optimization-2/#staged
  13185. // # forward pass
  13186. // s0 = np.random.randn(5, 10)
  13187. // s1 = np.random.randn(10, 3)
  13188. // t = s0.dot(s1)
  13189. // # now suppose we had the gradient on t from above in the circuit
  13190. // dt = np.random.randn(*t.shape) # same shape as t
  13191. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13192. // ds1 = t.T.dot(dt)
  13193. // tensor.shape [m,p,qq,rr]
  13194. // src0.shape [n,m,q1,r1]
  13195. // src1.shape [n,p,qq,rr]
  13196. // necessary for llama
  13197. if (src0->grad) {
  13198. struct ggml_tensor * s1_tg =
  13199. ggml_out_prod(ctx, // [n,m,qq,rr]
  13200. src1, // [n,p,qq,rr]
  13201. tensor->grad); // [m,p,qq,rr]
  13202. const int64_t qq = s1_tg->ne[2];
  13203. const int64_t rr = s1_tg->ne[3];
  13204. const int64_t q1 = src0->ne[2];
  13205. const int64_t r1 = src0->ne[3];
  13206. const bool ne2_broadcasted = qq > q1;
  13207. const bool ne3_broadcasted = rr > r1;
  13208. if (ne2_broadcasted || ne3_broadcasted) {
  13209. // sum broadcast repetitions of s1_tg into shape of src0
  13210. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13211. }
  13212. src0->grad =
  13213. ggml_add_or_set(ctx,
  13214. src0->grad, // [n,m,q1,r1]
  13215. s1_tg, // [n,m,q1,r1]
  13216. zero_table);
  13217. }
  13218. if (src1->grad) {
  13219. src1->grad =
  13220. ggml_add_or_set(ctx,
  13221. src1->grad, // [n,p,qq,rr]
  13222. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13223. // ggml_cont(ctx, // [m,n,q1,r1]
  13224. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13225. // tensor->grad), // [m,p,qq,rr]
  13226. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13227. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13228. // // and then use ggml_out_prod
  13229. ggml_out_prod(ctx, // [n,p,qq,rr]
  13230. src0, // [n,m,q1,r1]
  13231. ggml_transpose(ctx, // [p,m,qq,rr]
  13232. tensor->grad)), // [m,p,qq,rr]
  13233. zero_table);
  13234. }
  13235. } break;
  13236. case GGML_OP_MUL_MAT_ID:
  13237. {
  13238. GGML_ASSERT(false); // TODO: not implemented
  13239. } break;
  13240. case GGML_OP_OUT_PROD:
  13241. {
  13242. GGML_ASSERT(false); // TODO: not implemented
  13243. } break;
  13244. case GGML_OP_SCALE:
  13245. {
  13246. // necessary for llama
  13247. if (src0->grad) {
  13248. float s;
  13249. memcpy(&s, tensor->op_params, sizeof(float));
  13250. src0->grad =
  13251. ggml_add_or_set(ctx,
  13252. src0->grad,
  13253. ggml_scale_impl(ctx, tensor->grad, s, false),
  13254. zero_table);
  13255. }
  13256. } break;
  13257. case GGML_OP_SET:
  13258. {
  13259. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13260. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13261. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13262. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13263. struct ggml_tensor * tensor_grad_view = NULL;
  13264. if (src0->grad || src1->grad) {
  13265. GGML_ASSERT(src0->type == tensor->type);
  13266. GGML_ASSERT(tensor->grad->type == tensor->type);
  13267. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13268. tensor_grad_view = ggml_view_4d(ctx,
  13269. tensor->grad,
  13270. src1->grad->ne[0],
  13271. src1->grad->ne[1],
  13272. src1->grad->ne[2],
  13273. src1->grad->ne[3],
  13274. nb1, nb2, nb3, offset);
  13275. }
  13276. if (src0->grad) {
  13277. src0->grad = ggml_add_or_set(ctx,
  13278. src0->grad,
  13279. ggml_acc_impl(ctx,
  13280. tensor->grad,
  13281. ggml_neg(ctx, tensor_grad_view),
  13282. nb1, nb2, nb3, offset, false),
  13283. zero_table);
  13284. }
  13285. if (src1->grad) {
  13286. src1->grad =
  13287. ggml_add_or_set(ctx,
  13288. src1->grad,
  13289. ggml_reshape(ctx,
  13290. ggml_cont(ctx, tensor_grad_view),
  13291. src1->grad),
  13292. zero_table);
  13293. }
  13294. } break;
  13295. case GGML_OP_CPY:
  13296. {
  13297. // necessary for llama
  13298. // cpy overwrites value of src1 by src0 and returns view(src1)
  13299. // the overwriting is mathematically equivalent to:
  13300. // tensor = src0 * 1 + src1 * 0
  13301. if (src0->grad) {
  13302. // dsrc0 = dtensor * 1
  13303. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13304. }
  13305. if (src1->grad) {
  13306. // dsrc1 = dtensor * 0 -> noop
  13307. }
  13308. } break;
  13309. case GGML_OP_CONT:
  13310. {
  13311. // same as cpy
  13312. if (src0->grad) {
  13313. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13314. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13315. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13316. }
  13317. } break;
  13318. case GGML_OP_RESHAPE:
  13319. {
  13320. // necessary for llama
  13321. if (src0->grad) {
  13322. src0->grad =
  13323. ggml_add_or_set(ctx, src0->grad,
  13324. ggml_reshape(ctx,
  13325. ggml_is_contiguous(tensor->grad)
  13326. ? tensor->grad
  13327. : ggml_cont(ctx, tensor->grad),
  13328. src0->grad),
  13329. zero_table);
  13330. }
  13331. } break;
  13332. case GGML_OP_VIEW:
  13333. {
  13334. // necessary for llama
  13335. if (src0->grad) {
  13336. size_t offset;
  13337. memcpy(&offset, tensor->op_params, sizeof(offset));
  13338. size_t nb1 = tensor->nb[1];
  13339. size_t nb2 = tensor->nb[2];
  13340. size_t nb3 = tensor->nb[3];
  13341. if (src0->type != src0->grad->type) {
  13342. // gradient is typically F32, but src0 could be other type
  13343. size_t ng = ggml_element_size(src0->grad);
  13344. size_t n0 = ggml_element_size(src0);
  13345. GGML_ASSERT(offset % n0 == 0);
  13346. GGML_ASSERT(nb1 % n0 == 0);
  13347. GGML_ASSERT(nb2 % n0 == 0);
  13348. GGML_ASSERT(nb3 % n0 == 0);
  13349. offset = (offset / n0) * ng;
  13350. nb1 = (nb1 / n0) * ng;
  13351. nb2 = (nb2 / n0) * ng;
  13352. nb3 = (nb3 / n0) * ng;
  13353. }
  13354. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13355. }
  13356. } break;
  13357. case GGML_OP_PERMUTE:
  13358. {
  13359. // necessary for llama
  13360. if (src0->grad) {
  13361. int32_t * axes = (int32_t *) tensor->op_params;
  13362. int axis0 = axes[0] & 0x3;
  13363. int axis1 = axes[1] & 0x3;
  13364. int axis2 = axes[2] & 0x3;
  13365. int axis3 = axes[3] & 0x3;
  13366. int axes_backward[4] = {0,0,0,0};
  13367. axes_backward[axis0] = 0;
  13368. axes_backward[axis1] = 1;
  13369. axes_backward[axis2] = 2;
  13370. axes_backward[axis3] = 3;
  13371. src0->grad =
  13372. ggml_add_or_set(ctx, src0->grad,
  13373. ggml_permute(ctx,
  13374. tensor->grad,
  13375. axes_backward[0],
  13376. axes_backward[1],
  13377. axes_backward[2],
  13378. axes_backward[3]),
  13379. zero_table);
  13380. }
  13381. } break;
  13382. case GGML_OP_TRANSPOSE:
  13383. {
  13384. // necessary for llama
  13385. if (src0->grad) {
  13386. src0->grad =
  13387. ggml_add_or_set(ctx, src0->grad,
  13388. ggml_transpose(ctx, tensor->grad),
  13389. zero_table);
  13390. }
  13391. } break;
  13392. case GGML_OP_GET_ROWS:
  13393. {
  13394. // necessary for llama (only for tokenizer)
  13395. if (src0->grad) {
  13396. src0->grad =
  13397. ggml_add_or_set(ctx, src0->grad,
  13398. // last ggml_get_rows_back argument src0->grad is only
  13399. // necessary to setup correct output shape
  13400. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13401. zero_table);
  13402. }
  13403. if (src1->grad) {
  13404. // noop
  13405. }
  13406. } break;
  13407. case GGML_OP_GET_ROWS_BACK:
  13408. {
  13409. GGML_ASSERT(false); // TODO: not implemented
  13410. } break;
  13411. case GGML_OP_DIAG:
  13412. {
  13413. GGML_ASSERT(false); // TODO: not implemented
  13414. } break;
  13415. case GGML_OP_DIAG_MASK_INF:
  13416. {
  13417. // necessary for llama
  13418. if (src0->grad) {
  13419. const int n_past = ((int32_t *) tensor->op_params)[0];
  13420. src0->grad =
  13421. ggml_add_or_set(ctx, src0->grad,
  13422. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13423. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13424. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13425. zero_table);
  13426. }
  13427. } break;
  13428. case GGML_OP_DIAG_MASK_ZERO:
  13429. {
  13430. // necessary for llama
  13431. if (src0->grad) {
  13432. const int n_past = ((int32_t *) tensor->op_params)[0];
  13433. src0->grad =
  13434. ggml_add_or_set(ctx, src0->grad,
  13435. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13436. zero_table);
  13437. }
  13438. } break;
  13439. case GGML_OP_SOFT_MAX:
  13440. {
  13441. // necessary for llama
  13442. if (src0->grad) {
  13443. src0->grad =
  13444. ggml_add_or_set(ctx, src0->grad,
  13445. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13446. zero_table);
  13447. }
  13448. } break;
  13449. case GGML_OP_SOFT_MAX_BACK:
  13450. {
  13451. GGML_ASSERT(false); // TODO: not implemented
  13452. } break;
  13453. case GGML_OP_ROPE:
  13454. {
  13455. // necessary for llama
  13456. if (src0->grad) {
  13457. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13458. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13459. const int mode = ((int32_t *) tensor->op_params)[2];
  13460. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13461. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13462. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13463. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13464. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13465. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13466. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13467. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13468. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13469. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13470. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13471. src0->grad = ggml_add_or_set(ctx,
  13472. src0->grad,
  13473. ggml_rope_back(ctx,
  13474. tensor->grad,
  13475. src1,
  13476. n_dims,
  13477. mode,
  13478. n_ctx,
  13479. n_orig_ctx,
  13480. freq_base,
  13481. freq_scale,
  13482. ext_factor,
  13483. attn_factor,
  13484. beta_fast,
  13485. beta_slow,
  13486. xpos_base,
  13487. xpos_down),
  13488. zero_table);
  13489. }
  13490. } break;
  13491. case GGML_OP_ROPE_BACK:
  13492. {
  13493. if (src0->grad) {
  13494. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13495. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13496. const int mode = ((int32_t *) tensor->op_params)[2];
  13497. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13498. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13499. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13500. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13501. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13502. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13503. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13504. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13505. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13506. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13507. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13508. src0->grad = ggml_add_or_set(ctx,
  13509. src0->grad,
  13510. ggml_rope_impl(ctx,
  13511. tensor->grad,
  13512. src1,
  13513. n_dims,
  13514. mode,
  13515. n_ctx,
  13516. n_orig_ctx,
  13517. freq_base,
  13518. freq_scale,
  13519. ext_factor,
  13520. attn_factor,
  13521. beta_fast,
  13522. beta_slow,
  13523. xpos_base,
  13524. xpos_down,
  13525. false),
  13526. zero_table);
  13527. }
  13528. } break;
  13529. case GGML_OP_ALIBI:
  13530. {
  13531. GGML_ASSERT(false); // TODO: not implemented
  13532. } break;
  13533. case GGML_OP_CLAMP:
  13534. {
  13535. GGML_ASSERT(false); // TODO: not implemented
  13536. } break;
  13537. case GGML_OP_CONV_TRANSPOSE_1D:
  13538. {
  13539. GGML_ASSERT(false); // TODO: not implemented
  13540. } break;
  13541. case GGML_OP_IM2COL:
  13542. {
  13543. GGML_ASSERT(false); // TODO: not implemented
  13544. } break;
  13545. case GGML_OP_CONV_TRANSPOSE_2D:
  13546. {
  13547. GGML_ASSERT(false); // TODO: not implemented
  13548. } break;
  13549. case GGML_OP_POOL_1D:
  13550. {
  13551. GGML_ASSERT(false); // TODO: not implemented
  13552. } break;
  13553. case GGML_OP_POOL_2D:
  13554. {
  13555. GGML_ASSERT(false); // TODO: not implemented
  13556. } break;
  13557. case GGML_OP_UPSCALE:
  13558. {
  13559. GGML_ASSERT(false); // TODO: not implemented
  13560. } break;
  13561. case GGML_OP_PAD:
  13562. {
  13563. GGML_ASSERT(false); // TODO: not implemented
  13564. } break;
  13565. case GGML_OP_ARGSORT:
  13566. {
  13567. GGML_ASSERT(false); // TODO: not implemented
  13568. } break;
  13569. case GGML_OP_LEAKY_RELU:
  13570. {
  13571. GGML_ASSERT(false); // TODO: not implemented
  13572. } break;
  13573. case GGML_OP_FLASH_ATTN:
  13574. {
  13575. struct ggml_tensor * flash_grad = NULL;
  13576. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13577. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13578. GGML_ASSERT(t == 0 || t == 1);
  13579. bool masked = t != 0;
  13580. flash_grad =
  13581. ggml_flash_attn_back(ctx,
  13582. src0,
  13583. src1,
  13584. tensor->src[2],
  13585. tensor->grad,
  13586. masked);
  13587. }
  13588. struct ggml_tensor * src2 = tensor->src[2];
  13589. const int64_t elem_q = ggml_nelements(src0);
  13590. const int64_t elem_k = ggml_nelements(src1);
  13591. const int64_t elem_v = ggml_nelements(src2);
  13592. enum ggml_type result_type = flash_grad->type;
  13593. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13594. const size_t tsize = ggml_type_size(result_type);
  13595. const size_t offs_q = 0;
  13596. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13597. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13598. if (src0->grad) {
  13599. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13600. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13601. src0->grad = ggml_add_or_set(ctx,
  13602. src0->grad,
  13603. grad_q,
  13604. zero_table);
  13605. }
  13606. if (src1->grad) {
  13607. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13608. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13609. src1->grad = ggml_add_or_set(ctx,
  13610. src1->grad,
  13611. grad_k,
  13612. zero_table);
  13613. }
  13614. if (src2->grad) {
  13615. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13616. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13617. src2->grad = ggml_add_or_set(ctx,
  13618. src2->grad,
  13619. grad_v,
  13620. zero_table);
  13621. }
  13622. } break;
  13623. case GGML_OP_FLASH_FF:
  13624. {
  13625. GGML_ASSERT(false); // not supported
  13626. } break;
  13627. case GGML_OP_FLASH_ATTN_BACK:
  13628. {
  13629. GGML_ASSERT(false); // not supported
  13630. } break;
  13631. case GGML_OP_WIN_PART:
  13632. case GGML_OP_WIN_UNPART:
  13633. case GGML_OP_UNARY:
  13634. {
  13635. switch (ggml_get_unary_op(tensor)) {
  13636. case GGML_UNARY_OP_ABS:
  13637. {
  13638. if (src0->grad) {
  13639. src0->grad =
  13640. ggml_add_or_set(ctx,
  13641. src0->grad,
  13642. ggml_mul(ctx,
  13643. ggml_sgn(ctx, src0),
  13644. tensor->grad),
  13645. zero_table);
  13646. }
  13647. } break;
  13648. case GGML_UNARY_OP_SGN:
  13649. {
  13650. if (src0->grad) {
  13651. // noop
  13652. }
  13653. } break;
  13654. case GGML_UNARY_OP_NEG:
  13655. {
  13656. if (src0->grad) {
  13657. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13658. }
  13659. } break;
  13660. case GGML_UNARY_OP_STEP:
  13661. {
  13662. if (src0->grad) {
  13663. // noop
  13664. }
  13665. } break;
  13666. case GGML_UNARY_OP_TANH:
  13667. {
  13668. GGML_ASSERT(false); // TODO: not implemented
  13669. } break;
  13670. case GGML_UNARY_OP_ELU:
  13671. {
  13672. GGML_ASSERT(false); // TODO: not implemented
  13673. } break;
  13674. case GGML_UNARY_OP_RELU:
  13675. {
  13676. if (src0->grad) {
  13677. src0->grad = ggml_add_or_set(ctx,
  13678. src0->grad,
  13679. ggml_mul(ctx,
  13680. ggml_step(ctx, src0),
  13681. tensor->grad),
  13682. zero_table);
  13683. }
  13684. } break;
  13685. case GGML_UNARY_OP_GELU:
  13686. {
  13687. GGML_ASSERT(false); // TODO: not implemented
  13688. } break;
  13689. case GGML_UNARY_OP_GELU_QUICK:
  13690. {
  13691. GGML_ASSERT(false); // TODO: not implemented
  13692. } break;
  13693. case GGML_UNARY_OP_SILU:
  13694. {
  13695. // necessary for llama
  13696. if (src0->grad) {
  13697. src0->grad = ggml_add_or_set(ctx,
  13698. src0->grad,
  13699. ggml_silu_back(ctx, src0, tensor->grad),
  13700. zero_table);
  13701. }
  13702. } break;
  13703. default:
  13704. GGML_ASSERT(false);
  13705. }
  13706. } break;
  13707. case GGML_OP_GET_REL_POS:
  13708. case GGML_OP_ADD_REL_POS:
  13709. case GGML_OP_MAP_UNARY:
  13710. case GGML_OP_MAP_BINARY:
  13711. case GGML_OP_MAP_CUSTOM1_F32:
  13712. case GGML_OP_MAP_CUSTOM2_F32:
  13713. case GGML_OP_MAP_CUSTOM3_F32:
  13714. case GGML_OP_MAP_CUSTOM1:
  13715. case GGML_OP_MAP_CUSTOM2:
  13716. case GGML_OP_MAP_CUSTOM3:
  13717. {
  13718. GGML_ASSERT(false); // not supported
  13719. } break;
  13720. case GGML_OP_CROSS_ENTROPY_LOSS:
  13721. {
  13722. if (src0->grad) {
  13723. src0->grad = ggml_add_or_set(ctx,
  13724. src0->grad,
  13725. ggml_cross_entropy_loss_back(ctx,
  13726. src0,
  13727. src1,
  13728. tensor->grad),
  13729. zero_table);
  13730. }
  13731. } break;
  13732. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13733. {
  13734. GGML_ASSERT(false); // not supported
  13735. } break;
  13736. case GGML_OP_NONE:
  13737. {
  13738. // nop
  13739. } break;
  13740. case GGML_OP_COUNT:
  13741. {
  13742. GGML_ASSERT(false);
  13743. } break;
  13744. }
  13745. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13746. if (tensor->src[i] && tensor->src[i]->grad) {
  13747. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13748. }
  13749. }
  13750. }
  13751. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13752. if (node->grad == NULL) {
  13753. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13754. // it can also happen during forward pass, if the user performs computations with constants
  13755. if (node->op != GGML_OP_NONE) {
  13756. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13757. }
  13758. }
  13759. // check if already visited
  13760. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13761. return;
  13762. }
  13763. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13764. const int k =
  13765. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13766. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13767. /* unknown order, just fall back to using i*/ i;
  13768. if (node->src[k]) {
  13769. ggml_visit_parents(cgraph, node->src[k]);
  13770. }
  13771. }
  13772. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13773. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13774. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13775. if (strlen(node->name) == 0) {
  13776. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13777. }
  13778. cgraph->leafs[cgraph->n_leafs] = node;
  13779. cgraph->n_leafs++;
  13780. } else {
  13781. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13782. if (strlen(node->name) == 0) {
  13783. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13784. }
  13785. cgraph->nodes[cgraph->n_nodes] = node;
  13786. if (cgraph->grads) {
  13787. cgraph->grads[cgraph->n_nodes] = node->grad;
  13788. }
  13789. cgraph->n_nodes++;
  13790. }
  13791. }
  13792. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13793. if (!expand) {
  13794. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13795. ggml_graph_clear(cgraph);
  13796. }
  13797. const int n0 = cgraph->n_nodes;
  13798. UNUSED(n0);
  13799. ggml_visit_parents(cgraph, tensor);
  13800. const int n_new = cgraph->n_nodes - n0;
  13801. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13802. if (n_new > 0) {
  13803. // the last added node should always be starting point
  13804. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13805. }
  13806. }
  13807. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13808. ggml_build_forward_impl(cgraph, tensor, true);
  13809. }
  13810. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13811. GGML_ASSERT(gf->n_nodes > 0);
  13812. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13813. if (keep) {
  13814. for (int i = 0; i < gf->n_nodes; i++) {
  13815. struct ggml_tensor * node = gf->nodes[i];
  13816. if (node->grad) {
  13817. node->grad = ggml_dup_tensor(ctx, node);
  13818. gf->grads[i] = node->grad;
  13819. }
  13820. }
  13821. }
  13822. // remember original gradients which start with zero values
  13823. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13824. for (int i = 0; i < gf->n_nodes; i++) {
  13825. if (gf->grads[i]) {
  13826. ggml_hash_insert(zero_table, gf->grads[i]);
  13827. }
  13828. }
  13829. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13830. struct ggml_tensor * node = gf->nodes[i];
  13831. // inplace operations to add gradients are not created by ggml_compute_backward
  13832. // use allocator to automatically make inplace operations
  13833. if (node->grad) {
  13834. ggml_compute_backward(ctx, node, zero_table);
  13835. }
  13836. }
  13837. for (int i = 0; i < gf->n_nodes; i++) {
  13838. struct ggml_tensor * node = gf->nodes[i];
  13839. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13840. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13841. ggml_build_forward_expand(gb, node->grad);
  13842. }
  13843. }
  13844. ggml_hash_set_free(zero_table);
  13845. }
  13846. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13847. size_t nbytes = sizeof(struct ggml_cgraph);
  13848. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13849. if (grads) {
  13850. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13851. }
  13852. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13853. return nbytes;
  13854. }
  13855. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13856. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13857. }
  13858. size_t ggml_graph_overhead(void) {
  13859. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13860. }
  13861. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13862. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13863. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  13864. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13865. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13866. size_t hash_size = ggml_hash_size(size * 2);
  13867. struct ggml_tensor ** nodes_ptr = data_start;
  13868. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13869. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13870. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13871. // check that we allocated the correct amount of memory
  13872. assert(obj_size == (size_t) (
  13873. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13874. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13875. *cgraph = (struct ggml_cgraph) {
  13876. /*.size =*/ size,
  13877. /*.n_nodes =*/ 0,
  13878. /*.n_leafs =*/ 0,
  13879. /*.nodes =*/ nodes_ptr,
  13880. /*.grads =*/ grads_ptr,
  13881. /*.leafs =*/ leafs_ptr,
  13882. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13883. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13884. /*.perf_runs =*/ 0,
  13885. /*.perf_cycles =*/ 0,
  13886. /*.perf_time_us =*/ 0,
  13887. };
  13888. return cgraph;
  13889. }
  13890. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13891. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13892. }
  13893. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13894. struct ggml_cgraph cgraph = {
  13895. /*.size =*/ 0,
  13896. /*.n_nodes =*/ i1 - i0,
  13897. /*.n_leafs =*/ 0,
  13898. /*.nodes =*/ cgraph0->nodes + i0,
  13899. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13900. /*.leafs =*/ NULL,
  13901. /*.hash_table =*/ { 0, NULL },
  13902. /*.order =*/ cgraph0->order,
  13903. /*.perf_runs =*/ 0,
  13904. /*.perf_cycles =*/ 0,
  13905. /*.perf_time_us =*/ 0,
  13906. };
  13907. return cgraph;
  13908. }
  13909. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13910. GGML_ASSERT(dst->size >= src->n_leafs);
  13911. GGML_ASSERT(dst->size >= src->n_nodes);
  13912. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13913. dst->n_leafs = src->n_leafs;
  13914. dst->n_nodes = src->n_nodes;
  13915. dst->order = src->order;
  13916. for (int i = 0; i < src->n_leafs; ++i) {
  13917. dst->leafs[i] = src->leafs[i];
  13918. }
  13919. for (int i = 0; i < src->n_nodes; ++i) {
  13920. dst->nodes[i] = src->nodes[i];
  13921. }
  13922. if (src->grads) {
  13923. GGML_ASSERT(dst->grads != NULL);
  13924. for (int i = 0; i < src->n_nodes; ++i) {
  13925. dst->grads[i] = src->grads[i];
  13926. }
  13927. }
  13928. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13929. if (src->visited_hash_table.keys[i]) {
  13930. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13931. }
  13932. }
  13933. }
  13934. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13935. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13936. ggml_graph_cpy(cgraph, result);
  13937. return result;
  13938. }
  13939. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13940. GGML_ASSERT(cgraph->grads != NULL);
  13941. for (int i = 0; i < cgraph->n_nodes; i++) {
  13942. struct ggml_tensor * grad = cgraph->grads[i];
  13943. if (grad) {
  13944. ggml_set_zero(grad);
  13945. }
  13946. }
  13947. }
  13948. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13949. cgraph->n_leafs = 0;
  13950. cgraph->n_nodes = 0;
  13951. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13952. }
  13953. //
  13954. // thread data
  13955. //
  13956. // synchronization is done via busy loops
  13957. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13958. //
  13959. #ifdef __APPLE__
  13960. //#include <os/lock.h>
  13961. //
  13962. //typedef os_unfair_lock ggml_lock_t;
  13963. //
  13964. //#define ggml_lock_init(x) UNUSED(x)
  13965. //#define ggml_lock_destroy(x) UNUSED(x)
  13966. //#define ggml_lock_lock os_unfair_lock_lock
  13967. //#define ggml_lock_unlock os_unfair_lock_unlock
  13968. //
  13969. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13970. typedef int ggml_lock_t;
  13971. #define ggml_lock_init(x) UNUSED(x)
  13972. #define ggml_lock_destroy(x) UNUSED(x)
  13973. #define ggml_lock_lock(x) UNUSED(x)
  13974. #define ggml_lock_unlock(x) UNUSED(x)
  13975. #define GGML_LOCK_INITIALIZER 0
  13976. typedef pthread_t ggml_thread_t;
  13977. #define ggml_thread_create pthread_create
  13978. #define ggml_thread_join pthread_join
  13979. #else
  13980. //typedef pthread_spinlock_t ggml_lock_t;
  13981. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13982. //#define ggml_lock_destroy pthread_spin_destroy
  13983. //#define ggml_lock_lock pthread_spin_lock
  13984. //#define ggml_lock_unlock pthread_spin_unlock
  13985. typedef int ggml_lock_t;
  13986. #define ggml_lock_init(x) UNUSED(x)
  13987. #define ggml_lock_destroy(x) UNUSED(x)
  13988. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13989. #define ggml_lock_lock(x) _mm_pause()
  13990. #else
  13991. #define ggml_lock_lock(x) UNUSED(x)
  13992. #endif
  13993. #define ggml_lock_unlock(x) UNUSED(x)
  13994. #define GGML_LOCK_INITIALIZER 0
  13995. typedef pthread_t ggml_thread_t;
  13996. #define ggml_thread_create pthread_create
  13997. #define ggml_thread_join pthread_join
  13998. #endif
  13999. // Android's libc implementation "bionic" does not support setting affinity
  14000. #if defined(__gnu_linux__)
  14001. static void set_numa_thread_affinity(int thread_n) {
  14002. if (!ggml_is_numa()) {
  14003. return;
  14004. }
  14005. int node_num;
  14006. int rv;
  14007. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14008. switch(g_state.numa.numa_strategy) {
  14009. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14010. // run thread on node_num thread_n / (threads per node)
  14011. node_num = thread_n % g_state.numa.n_nodes;
  14012. break;
  14013. case GGML_NUMA_STRATEGY_ISOLATE:
  14014. // run thread on current_node
  14015. node_num = g_state.numa.current_node;
  14016. break;
  14017. case GGML_NUMA_STRATEGY_NUMACTL:
  14018. // use the cpuset that numactl gave us
  14019. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14020. if (rv) {
  14021. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14022. }
  14023. return;
  14024. default:
  14025. return;
  14026. }
  14027. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14028. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14029. CPU_ZERO_S(setsize, cpus);
  14030. for (size_t i = 0; i < node->n_cpus; ++i) {
  14031. CPU_SET_S(node->cpus[i], setsize, cpus);
  14032. }
  14033. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14034. if (rv) {
  14035. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14036. }
  14037. CPU_FREE(cpus);
  14038. }
  14039. static void clear_numa_thread_affinity(void) {
  14040. if (!ggml_is_numa()) {
  14041. return;
  14042. }
  14043. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14044. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14045. CPU_ZERO_S(setsize, cpus);
  14046. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14047. CPU_SET_S(i, setsize, cpus);
  14048. }
  14049. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14050. if (rv) {
  14051. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14052. }
  14053. CPU_FREE(cpus);
  14054. }
  14055. #else
  14056. // TODO: Windows etc.
  14057. // (the linux implementation may also work on BSD, someone should test)
  14058. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14059. static void clear_numa_thread_affinity(void) {}
  14060. #endif
  14061. struct ggml_compute_state_shared {
  14062. const struct ggml_cgraph * cgraph;
  14063. const struct ggml_cplan * cplan;
  14064. int64_t perf_node_start_cycles;
  14065. int64_t perf_node_start_time_us;
  14066. const int n_threads;
  14067. // synchronization primitives
  14068. atomic_int n_active; // num active threads
  14069. atomic_int node_n; // active graph node
  14070. atomic_int node_task; // active graph node task phase
  14071. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14072. void * abort_callback_data;
  14073. };
  14074. struct ggml_compute_state {
  14075. ggml_thread_t thrd;
  14076. int ith;
  14077. struct ggml_compute_state_shared * shared;
  14078. };
  14079. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14080. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14081. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14082. node->perf_runs++;
  14083. node->perf_cycles += cycles_cur;
  14084. node->perf_time_us += time_us_cur;
  14085. }
  14086. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  14087. int n_tasks = 0;
  14088. switch (node->op) {
  14089. case GGML_OP_CPY:
  14090. case GGML_OP_DUP:
  14091. case GGML_OP_ADD:
  14092. case GGML_OP_ADD1:
  14093. case GGML_OP_ACC:
  14094. {
  14095. n_tasks = n_threads;
  14096. } break;
  14097. case GGML_OP_SUB:
  14098. case GGML_OP_SQR:
  14099. case GGML_OP_SQRT:
  14100. case GGML_OP_LOG:
  14101. case GGML_OP_SUM:
  14102. case GGML_OP_SUM_ROWS:
  14103. case GGML_OP_MEAN:
  14104. case GGML_OP_ARGMAX:
  14105. case GGML_OP_REPEAT:
  14106. case GGML_OP_REPEAT_BACK:
  14107. case GGML_OP_LEAKY_RELU:
  14108. {
  14109. n_tasks = 1;
  14110. } break;
  14111. case GGML_OP_UNARY:
  14112. switch (ggml_get_unary_op(node)) {
  14113. case GGML_UNARY_OP_ABS:
  14114. case GGML_UNARY_OP_SGN:
  14115. case GGML_UNARY_OP_NEG:
  14116. case GGML_UNARY_OP_STEP:
  14117. case GGML_UNARY_OP_TANH:
  14118. case GGML_UNARY_OP_ELU:
  14119. case GGML_UNARY_OP_RELU:
  14120. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14121. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14122. {
  14123. n_tasks = 1;
  14124. } break;
  14125. case GGML_UNARY_OP_GELU:
  14126. case GGML_UNARY_OP_GELU_QUICK:
  14127. case GGML_UNARY_OP_SILU:
  14128. {
  14129. n_tasks = n_threads;
  14130. } break;
  14131. default:
  14132. GGML_ASSERT(false);
  14133. }
  14134. break;
  14135. case GGML_OP_SILU_BACK:
  14136. case GGML_OP_MUL:
  14137. case GGML_OP_DIV:
  14138. case GGML_OP_NORM:
  14139. case GGML_OP_RMS_NORM:
  14140. case GGML_OP_RMS_NORM_BACK:
  14141. case GGML_OP_GROUP_NORM:
  14142. case GGML_OP_CONCAT:
  14143. {
  14144. n_tasks = n_threads;
  14145. } break;
  14146. case GGML_OP_MUL_MAT:
  14147. {
  14148. n_tasks = n_threads;
  14149. // TODO: use different scheduling for different matrix sizes
  14150. //const int nr0 = ggml_nrows(node->src[0]);
  14151. //const int nr1 = ggml_nrows(node->src[1]);
  14152. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14153. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14154. } break;
  14155. case GGML_OP_MUL_MAT_ID:
  14156. {
  14157. n_tasks = n_threads;
  14158. } break;
  14159. case GGML_OP_OUT_PROD:
  14160. {
  14161. n_tasks = n_threads;
  14162. } break;
  14163. case GGML_OP_SCALE:
  14164. case GGML_OP_SET:
  14165. case GGML_OP_CONT:
  14166. case GGML_OP_RESHAPE:
  14167. case GGML_OP_VIEW:
  14168. case GGML_OP_PERMUTE:
  14169. case GGML_OP_TRANSPOSE:
  14170. case GGML_OP_GET_ROWS:
  14171. case GGML_OP_GET_ROWS_BACK:
  14172. case GGML_OP_DIAG:
  14173. {
  14174. n_tasks = 1;
  14175. } break;
  14176. case GGML_OP_DIAG_MASK_ZERO:
  14177. case GGML_OP_DIAG_MASK_INF:
  14178. case GGML_OP_SOFT_MAX_BACK:
  14179. case GGML_OP_ROPE:
  14180. case GGML_OP_ROPE_BACK:
  14181. case GGML_OP_ADD_REL_POS:
  14182. {
  14183. n_tasks = n_threads;
  14184. } break;
  14185. case GGML_OP_ALIBI:
  14186. {
  14187. n_tasks = 1; //TODO
  14188. } break;
  14189. case GGML_OP_CLAMP:
  14190. {
  14191. n_tasks = 1; //TODO
  14192. } break;
  14193. case GGML_OP_SOFT_MAX:
  14194. {
  14195. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14196. } break;
  14197. case GGML_OP_CONV_TRANSPOSE_1D:
  14198. {
  14199. n_tasks = n_threads;
  14200. } break;
  14201. case GGML_OP_IM2COL:
  14202. {
  14203. n_tasks = n_threads;
  14204. } break;
  14205. case GGML_OP_CONV_TRANSPOSE_2D:
  14206. {
  14207. n_tasks = n_threads;
  14208. } break;
  14209. case GGML_OP_POOL_1D:
  14210. case GGML_OP_POOL_2D:
  14211. {
  14212. n_tasks = 1;
  14213. } break;
  14214. case GGML_OP_UPSCALE:
  14215. {
  14216. n_tasks = n_threads;
  14217. } break;
  14218. case GGML_OP_PAD:
  14219. {
  14220. n_tasks = n_threads;
  14221. } break;
  14222. case GGML_OP_ARGSORT:
  14223. {
  14224. n_tasks = n_threads;
  14225. } break;
  14226. case GGML_OP_FLASH_ATTN:
  14227. {
  14228. n_tasks = n_threads;
  14229. } break;
  14230. case GGML_OP_FLASH_FF:
  14231. {
  14232. n_tasks = n_threads;
  14233. } break;
  14234. case GGML_OP_FLASH_ATTN_BACK:
  14235. {
  14236. n_tasks = n_threads;
  14237. } break;
  14238. case GGML_OP_WIN_PART:
  14239. case GGML_OP_WIN_UNPART:
  14240. case GGML_OP_GET_REL_POS:
  14241. case GGML_OP_MAP_UNARY:
  14242. case GGML_OP_MAP_BINARY:
  14243. case GGML_OP_MAP_CUSTOM1_F32:
  14244. case GGML_OP_MAP_CUSTOM2_F32:
  14245. case GGML_OP_MAP_CUSTOM3_F32:
  14246. {
  14247. n_tasks = 1;
  14248. } break;
  14249. case GGML_OP_MAP_CUSTOM1:
  14250. {
  14251. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14252. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14253. n_tasks = n_threads;
  14254. } else {
  14255. n_tasks = MIN(p->n_tasks, n_threads);
  14256. }
  14257. } break;
  14258. case GGML_OP_MAP_CUSTOM2:
  14259. {
  14260. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14261. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14262. n_tasks = n_threads;
  14263. } else {
  14264. n_tasks = MIN(p->n_tasks, n_threads);
  14265. }
  14266. } break;
  14267. case GGML_OP_MAP_CUSTOM3:
  14268. {
  14269. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14270. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14271. n_tasks = n_threads;
  14272. } else {
  14273. n_tasks = MIN(p->n_tasks, n_threads);
  14274. }
  14275. } break;
  14276. case GGML_OP_CROSS_ENTROPY_LOSS:
  14277. {
  14278. n_tasks = n_threads;
  14279. } break;
  14280. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14281. {
  14282. n_tasks = n_threads;
  14283. } break;
  14284. case GGML_OP_NONE:
  14285. {
  14286. n_tasks = 1;
  14287. } break;
  14288. case GGML_OP_COUNT:
  14289. {
  14290. GGML_ASSERT(false);
  14291. } break;
  14292. default:
  14293. {
  14294. fprintf(stderr, "%s: op not implemented: ", __func__);
  14295. if (node->op < GGML_OP_COUNT) {
  14296. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14297. } else {
  14298. fprintf(stderr, "%d\n", node->op);
  14299. }
  14300. GGML_ASSERT(false);
  14301. } break;
  14302. }
  14303. assert(n_tasks > 0);
  14304. return n_tasks;
  14305. }
  14306. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14307. // wait for other threads to finish
  14308. const int last_node_n = * node_n;
  14309. while (true) {
  14310. if (do_yield) {
  14311. sched_yield();
  14312. }
  14313. * node_n = atomic_load(&state->shared->node_n);
  14314. if (* node_n != last_node_n) break;
  14315. }
  14316. }
  14317. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14318. // wait for other threads to finish
  14319. const int last_task_phase = * task_phase;
  14320. while (true) {
  14321. if (do_yield) {
  14322. sched_yield();
  14323. }
  14324. * task_phase = atomic_load(&state->shared->node_task);
  14325. if (* task_phase != last_task_phase) break;
  14326. }
  14327. }
  14328. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14329. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14330. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14331. const struct ggml_cplan * cplan = state->shared->cplan;
  14332. const int n_threads = state->shared->n_threads;
  14333. set_numa_thread_affinity(state->ith);
  14334. int node_n = -1;
  14335. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14336. while (true) {
  14337. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14338. state->shared->node_n += 1;
  14339. return (thread_ret_t) GGML_EXIT_ABORTED;
  14340. }
  14341. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14342. // all other threads are finished and spinning
  14343. // do finalize and init here so we don't have synchronize again
  14344. struct ggml_compute_params params = {
  14345. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14346. /*.ith =*/ 0,
  14347. /*.nth =*/ 0,
  14348. /*.wsize =*/ cplan->work_size,
  14349. /*.wdata =*/ cplan->work_data,
  14350. };
  14351. if (node_n != -1) {
  14352. /* FINALIZE */
  14353. struct ggml_tensor * node = cgraph->nodes[node_n];
  14354. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14355. params.nth = ggml_get_n_tasks(node, n_threads);
  14356. ggml_compute_forward(&params, node);
  14357. }
  14358. ggml_graph_compute_perf_stats_node(node, state->shared);
  14359. }
  14360. // distribute new work or execute it direct if 1T
  14361. while (++node_n < cgraph->n_nodes) {
  14362. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14363. struct ggml_tensor * node = cgraph->nodes[node_n];
  14364. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14365. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14366. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14367. params.nth = n_tasks;
  14368. if (n_tasks == 1) {
  14369. /* INIT */
  14370. if (GGML_OP_HAS_INIT[node->op]) {
  14371. params.type = GGML_TASK_TYPE_INIT;
  14372. ggml_compute_forward(&params, node);
  14373. }
  14374. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14375. // they do something more efficient than spinning (?)
  14376. params.type = GGML_TASK_TYPE_COMPUTE;
  14377. ggml_compute_forward(&params, node);
  14378. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14379. params.type = GGML_TASK_TYPE_FINALIZE;
  14380. ggml_compute_forward(&params, node);
  14381. }
  14382. ggml_graph_compute_perf_stats_node(node, state->shared);
  14383. } else {
  14384. break;
  14385. }
  14386. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14387. break;
  14388. }
  14389. }
  14390. task_phase = GGML_TASK_TYPE_INIT;
  14391. atomic_store(&state->shared->n_active, n_threads);
  14392. atomic_store(&state->shared->node_n, node_n);
  14393. atomic_store(&state->shared->node_task, task_phase);
  14394. } else {
  14395. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14396. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14397. }
  14398. // check if we should stop
  14399. if (node_n >= cgraph->n_nodes) break;
  14400. /* INIT & COMPUTE */
  14401. struct ggml_tensor * node = cgraph->nodes[node_n];
  14402. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14403. struct ggml_compute_params params = {
  14404. /*.type =*/ GGML_TASK_TYPE_INIT,
  14405. /*.ith =*/ state->ith,
  14406. /*.nth =*/ n_tasks,
  14407. /*.wsize =*/ cplan->work_size,
  14408. /*.wdata =*/ cplan->work_data,
  14409. };
  14410. if (state->ith < n_tasks) {
  14411. if (GGML_OP_HAS_INIT[node->op]) {
  14412. ggml_compute_forward(&params, node);
  14413. }
  14414. }
  14415. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14416. task_phase = GGML_TASK_TYPE_COMPUTE;
  14417. atomic_store(&state->shared->n_active, n_threads);
  14418. atomic_store(&state->shared->node_task, task_phase);
  14419. }
  14420. else {
  14421. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14422. // depending on the workload and the operating system.
  14423. // since it is not clear what is the best approach, it should potentially become user-configurable
  14424. // ref: https://github.com/ggerganov/ggml/issues/291
  14425. // UPD: adding the do_yield flag seems to resolve the issue universally
  14426. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14427. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14428. }
  14429. if (state->ith < n_tasks) {
  14430. params.type = GGML_TASK_TYPE_COMPUTE;
  14431. ggml_compute_forward(&params, node);
  14432. }
  14433. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14434. task_phase = GGML_TASK_TYPE_FINALIZE;
  14435. atomic_store(&state->shared->n_active, n_threads);
  14436. atomic_store(&state->shared->node_task, task_phase);
  14437. }
  14438. else {
  14439. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14440. }
  14441. }
  14442. return GGML_EXIT_SUCCESS;
  14443. }
  14444. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14445. if (n_threads <= 0) {
  14446. n_threads = GGML_DEFAULT_N_THREADS;
  14447. }
  14448. size_t work_size = 0;
  14449. struct ggml_cplan cplan;
  14450. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14451. int max_tasks = 1;
  14452. // thread scheduling for the different operations + work buffer size estimation
  14453. for (int i = 0; i < cgraph->n_nodes; i++) {
  14454. struct ggml_tensor * node = cgraph->nodes[i];
  14455. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14456. max_tasks = MAX(max_tasks, n_tasks);
  14457. size_t cur = 0;
  14458. switch (node->op) {
  14459. case GGML_OP_CPY:
  14460. case GGML_OP_DUP:
  14461. {
  14462. if (ggml_is_quantized(node->type)) {
  14463. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14464. }
  14465. } break;
  14466. case GGML_OP_ADD:
  14467. case GGML_OP_ADD1:
  14468. {
  14469. if (ggml_is_quantized(node->src[0]->type)) {
  14470. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14471. }
  14472. } break;
  14473. case GGML_OP_ACC:
  14474. {
  14475. if (ggml_is_quantized(node->src[0]->type)) {
  14476. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14477. }
  14478. } break;
  14479. case GGML_OP_MUL_MAT:
  14480. {
  14481. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14482. #if defined(GGML_USE_CLBLAST)
  14483. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14484. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14485. } else
  14486. #endif
  14487. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14488. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14489. if (node->src[0]->type != GGML_TYPE_F32) {
  14490. // here we need memory for fully dequantized matrix from src0
  14491. // take into account that src0 can be broadcasted into src1[2,3]
  14492. cur = ggml_type_size(GGML_TYPE_F32)
  14493. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14494. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14495. }
  14496. } else
  14497. #endif
  14498. if (node->src[1]->type != vec_dot_type) {
  14499. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14500. }
  14501. } break;
  14502. case GGML_OP_MUL_MAT_ID:
  14503. {
  14504. cur = 0;
  14505. const struct ggml_tensor * src0 = node->src[2];
  14506. const struct ggml_tensor * src1 = node->src[1];
  14507. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14508. if (src1->type != vec_dot_type) {
  14509. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14510. }
  14511. const int n_as = ggml_get_op_params_i32(node, 1);
  14512. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14513. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14514. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14515. } break;
  14516. case GGML_OP_OUT_PROD:
  14517. {
  14518. if (ggml_is_quantized(node->src[0]->type)) {
  14519. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14520. }
  14521. } break;
  14522. case GGML_OP_SOFT_MAX:
  14523. case GGML_OP_ROPE:
  14524. {
  14525. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14526. } break;
  14527. case GGML_OP_CONV_TRANSPOSE_1D:
  14528. {
  14529. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14530. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14531. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14532. const int64_t ne00 = node->src[0]->ne[0]; // K
  14533. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14534. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14535. const int64_t ne10 = node->src[1]->ne[0]; // L
  14536. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14537. if (node->src[0]->type == GGML_TYPE_F16 &&
  14538. node->src[1]->type == GGML_TYPE_F32) {
  14539. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14540. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14541. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14542. node->src[1]->type == GGML_TYPE_F32) {
  14543. cur += sizeof(float)*ne00*ne01*ne02;
  14544. cur += sizeof(float)*ne10*ne11;
  14545. } else {
  14546. GGML_ASSERT(false);
  14547. }
  14548. } break;
  14549. case GGML_OP_CONV_TRANSPOSE_2D:
  14550. {
  14551. const int64_t ne00 = node->src[0]->ne[0]; // W
  14552. const int64_t ne01 = node->src[0]->ne[1]; // H
  14553. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14554. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14555. const int64_t ne10 = node->src[1]->ne[0]; // W
  14556. const int64_t ne11 = node->src[1]->ne[1]; // H
  14557. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14558. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14559. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14560. } break;
  14561. case GGML_OP_FLASH_ATTN:
  14562. {
  14563. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14564. if (node->src[1]->type == GGML_TYPE_F32) {
  14565. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14566. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14567. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14568. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14569. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14570. }
  14571. } break;
  14572. case GGML_OP_FLASH_FF:
  14573. {
  14574. if (node->src[1]->type == GGML_TYPE_F32) {
  14575. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14576. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14577. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14578. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14579. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14580. }
  14581. } break;
  14582. case GGML_OP_FLASH_ATTN_BACK:
  14583. {
  14584. const int64_t D = node->src[0]->ne[0];
  14585. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14586. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14587. if (node->src[1]->type == GGML_TYPE_F32) {
  14588. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14589. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14590. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14591. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14592. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14593. }
  14594. } break;
  14595. case GGML_OP_CROSS_ENTROPY_LOSS:
  14596. {
  14597. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14598. } break;
  14599. case GGML_OP_COUNT:
  14600. {
  14601. GGML_ASSERT(false);
  14602. } break;
  14603. default:
  14604. break;
  14605. }
  14606. work_size = MAX(work_size, cur);
  14607. }
  14608. if (work_size > 0) {
  14609. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14610. }
  14611. cplan.n_threads = MIN(max_tasks, n_threads);
  14612. cplan.work_size = work_size;
  14613. cplan.work_data = NULL;
  14614. return cplan;
  14615. }
  14616. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14617. {
  14618. GGML_ASSERT(cplan);
  14619. GGML_ASSERT(cplan->n_threads > 0);
  14620. if (cplan->work_size > 0) {
  14621. GGML_ASSERT(cplan->work_data);
  14622. }
  14623. }
  14624. #ifdef GGML_USE_VULKAN
  14625. for (int i = 0; i < cgraph->n_nodes; i++) {
  14626. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14627. }
  14628. ggml_vk_preallocate_buffers_cpu_assist();
  14629. for (int i = 0; i < cgraph->n_nodes; i++) {
  14630. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14631. }
  14632. #endif
  14633. const int n_threads = cplan->n_threads;
  14634. struct ggml_compute_state_shared state_shared = {
  14635. /*.cgraph =*/ cgraph,
  14636. /*.cgraph_plan =*/ cplan,
  14637. /*.perf_node_start_cycles =*/ 0,
  14638. /*.perf_node_start_time_us =*/ 0,
  14639. /*.n_threads =*/ n_threads,
  14640. /*.n_active =*/ n_threads,
  14641. /*.node_n =*/ -1,
  14642. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  14643. /*.abort_callback =*/ NULL,
  14644. /*.abort_callback_data =*/ NULL,
  14645. };
  14646. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14647. // create thread pool
  14648. if (n_threads > 1) {
  14649. for (int j = 1; j < n_threads; ++j) {
  14650. workers[j] = (struct ggml_compute_state) {
  14651. .thrd = 0,
  14652. .ith = j,
  14653. .shared = &state_shared,
  14654. };
  14655. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14656. GGML_ASSERT(rc == 0);
  14657. UNUSED(rc);
  14658. }
  14659. }
  14660. workers[0].ith = 0;
  14661. workers[0].shared = &state_shared;
  14662. const int64_t perf_start_cycles = ggml_perf_cycles();
  14663. const int64_t perf_start_time_us = ggml_perf_time_us();
  14664. // this is a work thread too
  14665. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14666. // don't leave affinity set on the main thread
  14667. clear_numa_thread_affinity();
  14668. // join or kill thread pool
  14669. if (n_threads > 1) {
  14670. for (int j = 1; j < n_threads; j++) {
  14671. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14672. GGML_ASSERT(rc == 0);
  14673. }
  14674. }
  14675. #ifdef GGML_USE_VULKAN
  14676. ggml_vk_graph_cleanup_cpu_assist();
  14677. #endif
  14678. // performance stats (graph)
  14679. {
  14680. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14681. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14682. cgraph->perf_runs++;
  14683. cgraph->perf_cycles += perf_cycles_cur;
  14684. cgraph->perf_time_us += perf_time_us_cur;
  14685. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14686. __func__, cgraph->perf_runs,
  14687. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14688. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14689. (double) perf_time_us_cur / 1000.0,
  14690. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14691. }
  14692. return compute_status;
  14693. }
  14694. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14695. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14696. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  14697. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14698. ggml_graph_compute(cgraph, &cplan);
  14699. }
  14700. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14701. for (int i = 0; i < cgraph->n_leafs; i++) {
  14702. struct ggml_tensor * leaf = cgraph->leafs[i];
  14703. if (strcmp(leaf->name, name) == 0) {
  14704. return leaf;
  14705. }
  14706. }
  14707. for (int i = 0; i < cgraph->n_nodes; i++) {
  14708. struct ggml_tensor * node = cgraph->nodes[i];
  14709. if (strcmp(node->name, name) == 0) {
  14710. return node;
  14711. }
  14712. }
  14713. return NULL;
  14714. }
  14715. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14716. const int64_t * ne = tensor->ne;
  14717. const size_t * nb = tensor->nb;
  14718. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14719. ggml_type_name(tensor->type),
  14720. ggml_op_name (tensor->op),
  14721. ggml_n_dims(tensor),
  14722. ne[0], ne[1], ne[2], ne[3],
  14723. nb[0], nb[1], nb[2], nb[3],
  14724. tensor->data,
  14725. tensor->name);
  14726. }
  14727. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14728. const int64_t * ne = tensor->ne;
  14729. const size_t * nb = tensor->nb;
  14730. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14731. arg,
  14732. ggml_type_name(tensor->type),
  14733. ggml_op_name (tensor->op),
  14734. ggml_n_dims(tensor),
  14735. ne[0], ne[1], ne[2], ne[3],
  14736. nb[0], nb[1], nb[2], nb[3],
  14737. tensor->data,
  14738. tensor->name);
  14739. }
  14740. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14741. uint64_t size_eval = 0;
  14742. // compute size of intermediate results
  14743. // TODO: does not take into account scratch buffers !!!!
  14744. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14745. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14746. }
  14747. // print
  14748. {
  14749. FILE * fout = stdout;
  14750. fprintf(fout, "\n");
  14751. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14752. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14753. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14754. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14755. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14756. // header
  14757. fprintf(fout, "\n");
  14758. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14759. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14760. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14761. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14762. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14763. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14764. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14765. }
  14766. // header
  14767. fprintf(fout, "\n");
  14768. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14769. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14770. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14771. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14772. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14773. if (cgraph->nodes[i]->src[j]) {
  14774. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14775. }
  14776. }
  14777. fprintf(fout, "\n");
  14778. }
  14779. fprintf(fout, "\n");
  14780. }
  14781. // write binary data
  14782. {
  14783. FILE * fout = fopen(fname, "wb");
  14784. if (!fout) {
  14785. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14786. return;
  14787. }
  14788. // header
  14789. {
  14790. const uint32_t magic = GGML_FILE_MAGIC;
  14791. const uint32_t version = GGML_FILE_VERSION;
  14792. const uint32_t n_leafs = cgraph->n_leafs;
  14793. const uint32_t n_nodes = cgraph->n_nodes;
  14794. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14795. fwrite(&version, sizeof(uint32_t), 1, fout);
  14796. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14797. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14798. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14799. }
  14800. // leafs
  14801. {
  14802. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14803. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14804. const uint32_t type = tensor->type;
  14805. const uint32_t op = tensor->op;
  14806. fwrite(&type, sizeof(uint32_t), 1, fout);
  14807. fwrite(&op, sizeof(uint32_t), 1, fout);
  14808. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14809. const uint64_t ne = tensor->ne[j];
  14810. const uint64_t nb = tensor->nb[j];
  14811. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14812. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14813. }
  14814. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14815. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14816. // dump the data
  14817. // TODO: pad this to 32 byte boundary
  14818. {
  14819. const size_t size = ggml_nbytes(tensor);
  14820. fwrite(tensor->data, sizeof(char), size, fout);
  14821. }
  14822. }
  14823. }
  14824. // nodes
  14825. {
  14826. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14827. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14828. const uint32_t type = tensor->type;
  14829. const uint32_t op = tensor->op;
  14830. fwrite(&type, sizeof(uint32_t), 1, fout);
  14831. fwrite(&op, sizeof(uint32_t), 1, fout);
  14832. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14833. const uint64_t ne = tensor->ne[j];
  14834. const uint64_t nb = tensor->nb[j];
  14835. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14836. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14837. }
  14838. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14839. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14840. // output the op arguments
  14841. {
  14842. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14843. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14844. args[j] = tensor->src[j];
  14845. }
  14846. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14847. if (args[j]) {
  14848. int32_t idx = -1;
  14849. // check if leaf
  14850. {
  14851. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14852. if (args[j] == cgraph->leafs[k]) {
  14853. idx = k;
  14854. break;
  14855. }
  14856. }
  14857. }
  14858. // check if node
  14859. if (idx == -1) {
  14860. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14861. if (args[j] == cgraph->nodes[k]) {
  14862. idx = cgraph->n_leafs + k;
  14863. break;
  14864. }
  14865. }
  14866. }
  14867. if (idx == -1) {
  14868. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14869. fclose(fout);
  14870. return;
  14871. }
  14872. fwrite(&idx, sizeof(int32_t), 1, fout);
  14873. } else {
  14874. const int32_t nul = -1;
  14875. fwrite(&nul, sizeof(int32_t), 1, fout);
  14876. }
  14877. }
  14878. }
  14879. }
  14880. }
  14881. fclose(fout);
  14882. }
  14883. }
  14884. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14885. assert(*ctx_data == NULL);
  14886. assert(*ctx_eval == NULL);
  14887. struct ggml_cgraph * result = NULL;
  14888. struct ggml_tensor * data = NULL;
  14889. // read file into data
  14890. {
  14891. FILE * fin = fopen(fname, "rb");
  14892. if (!fin) {
  14893. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14894. return result;
  14895. }
  14896. size_t fsize = 0;
  14897. fseek(fin, 0, SEEK_END);
  14898. fsize = ftell(fin);
  14899. fseek(fin, 0, SEEK_SET);
  14900. // create the data context
  14901. {
  14902. const size_t overhead = 1*ggml_tensor_overhead();
  14903. struct ggml_init_params params = {
  14904. .mem_size = fsize + overhead,
  14905. .mem_buffer = NULL,
  14906. .no_alloc = false,
  14907. };
  14908. *ctx_data = ggml_init(params);
  14909. if (!*ctx_data) {
  14910. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14911. fclose(fin);
  14912. return result;
  14913. }
  14914. }
  14915. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14916. {
  14917. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14918. if (ret != fsize) {
  14919. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14920. fclose(fin);
  14921. return result;
  14922. }
  14923. }
  14924. fclose(fin);
  14925. }
  14926. // populate result
  14927. {
  14928. char * ptr = (char *) data->data;
  14929. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14930. if (magic != GGML_FILE_MAGIC) {
  14931. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14932. return result;
  14933. }
  14934. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14935. if (version != GGML_FILE_VERSION) {
  14936. fprintf(stderr, "%s: invalid version number\n", __func__);
  14937. return result;
  14938. }
  14939. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14940. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14941. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14942. const int graph_size = MAX(n_leafs, n_nodes);
  14943. // create the data context
  14944. {
  14945. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14946. struct ggml_init_params params = {
  14947. .mem_size = size_eval + overhead,
  14948. .mem_buffer = NULL,
  14949. .no_alloc = true,
  14950. };
  14951. *ctx_eval = ggml_init(params);
  14952. if (!*ctx_eval) {
  14953. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14954. return result;
  14955. }
  14956. }
  14957. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14958. result->n_leafs = n_leafs;
  14959. result->n_nodes = n_nodes;
  14960. // leafs
  14961. {
  14962. uint32_t type;
  14963. uint32_t op;
  14964. for (uint32_t i = 0; i < n_leafs; ++i) {
  14965. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14966. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14967. int64_t ne[GGML_MAX_DIMS];
  14968. size_t nb[GGML_MAX_DIMS];
  14969. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14970. uint64_t ne_cur;
  14971. uint64_t nb_cur;
  14972. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14973. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14974. ne[j] = ne_cur;
  14975. nb[j] = nb_cur;
  14976. }
  14977. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14978. tensor->op = (enum ggml_op) op;
  14979. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14980. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14981. tensor->data = (void *) ptr;
  14982. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14983. tensor->nb[j] = nb[j];
  14984. }
  14985. result->leafs[i] = tensor;
  14986. ptr += ggml_nbytes(tensor);
  14987. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14988. }
  14989. }
  14990. ggml_set_no_alloc(*ctx_eval, false);
  14991. // nodes
  14992. {
  14993. uint32_t type;
  14994. uint32_t op;
  14995. for (uint32_t i = 0; i < n_nodes; ++i) {
  14996. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14997. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14998. enum ggml_op eop = (enum ggml_op) op;
  14999. int64_t ne[GGML_MAX_DIMS];
  15000. size_t nb[GGML_MAX_DIMS];
  15001. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15002. uint64_t ne_cur;
  15003. uint64_t nb_cur;
  15004. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15005. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15006. ne[j] = ne_cur;
  15007. nb[j] = nb_cur;
  15008. }
  15009. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15010. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15011. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15012. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15013. // parse args
  15014. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15015. const int32_t arg_idx = ptr_arg_idx[j];
  15016. if (arg_idx == -1) {
  15017. continue;
  15018. }
  15019. if (arg_idx < result->n_leafs) {
  15020. args[j] = result->leafs[arg_idx];
  15021. } else {
  15022. args[j] = result->nodes[arg_idx - result->n_leafs];
  15023. }
  15024. }
  15025. // create the tensor
  15026. // "view" operations are handled differently
  15027. // TODO: handle inplace ops - currently a copy is always made
  15028. struct ggml_tensor * tensor = NULL;
  15029. switch (eop) {
  15030. // TODO: implement other view ops
  15031. case GGML_OP_RESHAPE:
  15032. {
  15033. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15034. } break;
  15035. case GGML_OP_VIEW:
  15036. {
  15037. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15038. size_t offs;
  15039. memcpy(&offs, ptr_op_params, sizeof(offs));
  15040. tensor->data = ((char *) tensor->data) + offs;
  15041. } break;
  15042. case GGML_OP_TRANSPOSE:
  15043. {
  15044. tensor = ggml_transpose(*ctx_eval, args[0]);
  15045. } break;
  15046. case GGML_OP_PERMUTE:
  15047. {
  15048. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15049. } break;
  15050. default:
  15051. {
  15052. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15053. tensor->op = eop;
  15054. } break;
  15055. }
  15056. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15057. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15058. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15059. tensor->nb[j] = nb[j];
  15060. }
  15061. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15062. tensor->src[j] = args[j];
  15063. }
  15064. result->nodes[i] = tensor;
  15065. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15066. }
  15067. }
  15068. }
  15069. return result;
  15070. }
  15071. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15072. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15073. GGML_PRINT("=== GRAPH ===\n");
  15074. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15075. for (int i = 0; i < cgraph->n_nodes; i++) {
  15076. struct ggml_tensor * node = cgraph->nodes[i];
  15077. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15078. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15079. i,
  15080. node->ne[0], node->ne[1], node->ne[2],
  15081. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15082. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15083. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15084. (double) node->perf_time_us / 1000.0,
  15085. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15086. }
  15087. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15088. for (int i = 0; i < cgraph->n_leafs; i++) {
  15089. struct ggml_tensor * node = cgraph->leafs[i];
  15090. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15091. i,
  15092. node->ne[0], node->ne[1],
  15093. ggml_op_name(node->op),
  15094. ggml_get_name(node));
  15095. }
  15096. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15097. if (perf_total_per_op_us[i] == 0) {
  15098. continue;
  15099. }
  15100. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15101. }
  15102. GGML_PRINT("========================================\n");
  15103. }
  15104. // check if node is part of the graph
  15105. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15106. if (cgraph == NULL) {
  15107. return true;
  15108. }
  15109. for (int i = 0; i < cgraph->n_nodes; i++) {
  15110. if (cgraph->nodes[i] == node) {
  15111. return true;
  15112. }
  15113. }
  15114. return false;
  15115. }
  15116. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15117. for (int i = 0; i < cgraph->n_nodes; i++) {
  15118. struct ggml_tensor * parent = cgraph->nodes[i];
  15119. if (parent->grad == node) {
  15120. return parent;
  15121. }
  15122. }
  15123. return NULL;
  15124. }
  15125. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15126. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15127. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15128. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15129. gparent0 ? (void *) gparent0 : (void *) parent,
  15130. gparent0 ? "g" : "x",
  15131. gparent ? (void *) gparent : (void *) node,
  15132. gparent ? "g" : "x",
  15133. gparent ? "empty" : "vee",
  15134. gparent ? "dashed" : "solid",
  15135. label);
  15136. }
  15137. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15138. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15139. (void *) parent, "x",
  15140. (void *) node, "x",
  15141. label);
  15142. }
  15143. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15144. char color[16];
  15145. FILE * fp = fopen(filename, "w");
  15146. GGML_ASSERT(fp);
  15147. fprintf(fp, "digraph G {\n");
  15148. fprintf(fp, " newrank = true;\n");
  15149. fprintf(fp, " rankdir = LR;\n");
  15150. for (int i = 0; i < gb->n_nodes; i++) {
  15151. struct ggml_tensor * node = gb->nodes[i];
  15152. if (ggml_graph_get_parent(gb, node) != NULL) {
  15153. continue;
  15154. }
  15155. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15156. snprintf(color, sizeof(color), "yellow");
  15157. } else if (node->grad) {
  15158. if (ggml_graph_find(gf, node)) {
  15159. snprintf(color, sizeof(color), "green");
  15160. } else {
  15161. snprintf(color, sizeof(color), "lightblue");
  15162. }
  15163. } else {
  15164. snprintf(color, sizeof(color), "white");
  15165. }
  15166. fprintf(fp, " \"%p\" [ "
  15167. "style = filled; fillcolor = %s; shape = record; "
  15168. "label=\"",
  15169. (void *) node, color);
  15170. if (strlen(node->name) > 0) {
  15171. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15172. } else {
  15173. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15174. }
  15175. if (ggml_is_matrix(node)) {
  15176. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15177. } else {
  15178. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15179. }
  15180. if (node->grad) {
  15181. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15182. } else {
  15183. fprintf(fp, "\"; ]\n");
  15184. }
  15185. }
  15186. for (int i = 0; i < gb->n_leafs; i++) {
  15187. struct ggml_tensor * node = gb->leafs[i];
  15188. snprintf(color, sizeof(color), "pink");
  15189. fprintf(fp, " \"%p\" [ "
  15190. "style = filled; fillcolor = %s; shape = record; "
  15191. "label=\"<x>",
  15192. (void *) node, color);
  15193. if (strlen(node->name) > 0) {
  15194. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15195. } else {
  15196. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15197. }
  15198. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15199. if (ggml_nelements(node) < 5) {
  15200. fprintf(fp, " | (");
  15201. for (int j = 0; j < ggml_nelements(node); j++) {
  15202. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15203. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15204. }
  15205. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15206. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15207. }
  15208. else {
  15209. fprintf(fp, "#");
  15210. }
  15211. if (j < ggml_nelements(node) - 1) {
  15212. fprintf(fp, ", ");
  15213. }
  15214. }
  15215. fprintf(fp, ")");
  15216. }
  15217. fprintf(fp, "\"; ]\n");
  15218. }
  15219. for (int i = 0; i < gb->n_nodes; i++) {
  15220. struct ggml_tensor * node = gb->nodes[i];
  15221. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15222. if (node->src[j]) {
  15223. char label[16];
  15224. snprintf(label, sizeof(label), "src %d", j);
  15225. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15226. }
  15227. }
  15228. }
  15229. for (int i = 0; i < gb->n_leafs; i++) {
  15230. struct ggml_tensor * node = gb->leafs[i];
  15231. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15232. if (node->src[j]) {
  15233. char label[16];
  15234. snprintf(label, sizeof(label), "src %d", j);
  15235. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15236. }
  15237. }
  15238. }
  15239. fprintf(fp, "}\n");
  15240. fclose(fp);
  15241. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15242. }
  15243. ////////////////////////////////////////////////////////////////////////////////
  15244. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15245. int i = 0;
  15246. for (int p = 0; p < np; ++p) {
  15247. const int64_t ne = ggml_nelements(ps[p]) ;
  15248. // TODO: add function to set tensor from array
  15249. for (int64_t j = 0; j < ne; ++j) {
  15250. ggml_set_f32_1d(ps[p], j, x[i++]);
  15251. }
  15252. }
  15253. }
  15254. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15255. int i = 0;
  15256. for (int p = 0; p < np; ++p) {
  15257. const int64_t ne = ggml_nelements(ps[p]) ;
  15258. // TODO: add function to get all elements at once
  15259. for (int64_t j = 0; j < ne; ++j) {
  15260. x[i++] = ggml_get_f32_1d(ps[p], j);
  15261. }
  15262. }
  15263. }
  15264. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15265. int64_t i = 0;
  15266. for (int p = 0; p < np; ++p) {
  15267. const int64_t ne = ggml_nelements(ps[p]) ;
  15268. // TODO: add function to get all elements at once
  15269. for (int64_t j = 0; j < ne; ++j) {
  15270. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15271. }
  15272. }
  15273. }
  15274. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15275. int64_t i = 0;
  15276. for (int p = 0; p < np; ++p) {
  15277. const int64_t ne = ggml_nelements(ps[p]) ;
  15278. // TODO: add function to get all elements at once
  15279. for (int64_t j = 0; j < ne; ++j) {
  15280. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15281. }
  15282. }
  15283. }
  15284. //
  15285. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15286. //
  15287. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15288. //
  15289. static enum ggml_opt_result ggml_opt_adam(
  15290. struct ggml_context * ctx,
  15291. struct ggml_opt_context * opt,
  15292. struct ggml_opt_params params,
  15293. struct ggml_tensor * f,
  15294. struct ggml_cgraph * gf,
  15295. struct ggml_cgraph * gb,
  15296. ggml_opt_callback callback,
  15297. void * callback_data) {
  15298. GGML_ASSERT(ggml_is_scalar(f));
  15299. // these will store the parameters we want to optimize
  15300. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15301. int np = 0;
  15302. int64_t nx = 0;
  15303. for (int i = 0; i < gf->n_nodes; ++i) {
  15304. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15305. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15306. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15307. ps[np++] = gf->nodes[i];
  15308. nx += ggml_nelements(gf->nodes[i]);
  15309. }
  15310. }
  15311. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15312. int iter = opt->iter;
  15313. ggml_opt_init(opt->ctx, opt, params, nx);
  15314. opt->iter = iter;
  15315. }
  15316. // constants
  15317. float sched = params.adam.sched;
  15318. const float alpha = params.adam.alpha;
  15319. const float decay = params.adam.decay * alpha;
  15320. const float beta1 = params.adam.beta1;
  15321. const float beta2 = params.adam.beta2;
  15322. const float eps = params.adam.eps;
  15323. const float gclip = params.adam.gclip;
  15324. const int decay_min_ndim = params.adam.decay_min_ndim;
  15325. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15326. const float accum_norm = 1.0f / (float) n_accum;
  15327. float * g = opt->adam.g->data; // gradients
  15328. float * m = opt->adam.m->data; // first moment
  15329. float * v = opt->adam.v->data; // second moment
  15330. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15331. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15332. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15333. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15334. bool cancel = false;
  15335. // compute the function value
  15336. float fx = 0;
  15337. ggml_set_zero(opt->adam.g);
  15338. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15339. if (callback) {
  15340. callback(callback_data, accum_step, &sched, &cancel);
  15341. if (cancel) {
  15342. return GGML_OPT_RESULT_CANCEL;
  15343. }
  15344. }
  15345. // ggml_graph_reset (gf);
  15346. ggml_set_f32 (f->grad, 1.0f);
  15347. ggml_graph_compute(gb, &cplan);
  15348. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15349. fx += ggml_get_f32_1d(f, 0);
  15350. }
  15351. fx *= accum_norm;
  15352. opt->adam.fx_prev = fx;
  15353. opt->adam.fx_best = opt->adam.fx_prev;
  15354. if (pf) {
  15355. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15356. }
  15357. opt->loss_before = opt->adam.fx_prev;
  15358. opt->loss_after = opt->adam.fx_prev;
  15359. // initialize
  15360. if (opt->just_initialized) {
  15361. opt->adam.n_no_improvement = 0;
  15362. opt->just_initialized = false;
  15363. }
  15364. float * fx_best = &opt->adam.fx_best;
  15365. float * fx_prev = &opt->adam.fx_prev;
  15366. int * n_no_improvement = &opt->adam.n_no_improvement;
  15367. int iter0 = opt->iter;
  15368. // run the optimizer
  15369. for (int t = 0; t < params.adam.n_iter; ++t) {
  15370. opt->iter = iter0 + t + 1;
  15371. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15372. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15373. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15374. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15375. for (int i = 0; i < np; ++i) {
  15376. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15377. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15378. }
  15379. const int64_t t_start_wall = ggml_time_us();
  15380. const int64_t t_start_cpu = ggml_cycles();
  15381. UNUSED(t_start_wall);
  15382. UNUSED(t_start_cpu);
  15383. {
  15384. float gnorm = 1.0f;
  15385. if (gclip > 0.0f) {
  15386. // gradient clipping
  15387. ggml_float sum = 0.0;
  15388. for (int64_t i = 0; i < nx; ++i) {
  15389. sum += (ggml_float)(g[i]*g[i]);
  15390. }
  15391. ggml_float norm = sqrt(sum);
  15392. if (norm > (ggml_float) gclip) {
  15393. gnorm = (float) ((ggml_float) gclip / norm);
  15394. }
  15395. }
  15396. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15397. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15398. int64_t i = 0;
  15399. for (int p = 0; p < np; ++p) {
  15400. const int64_t ne = ggml_nelements(ps[p]);
  15401. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15402. for (int64_t j = 0; j < ne; ++j) {
  15403. float x = ggml_get_f32_1d(ps[p], j);
  15404. float g_ = g[i]*gnorm;
  15405. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15406. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15407. float mh = m[i]*beta1h;
  15408. float vh = v[i]*beta2h;
  15409. vh = sqrtf(vh) + eps;
  15410. x = x*(1.0f - p_decay) - mh/vh;
  15411. ggml_set_f32_1d(ps[p], j, x);
  15412. ++i;
  15413. }
  15414. }
  15415. }
  15416. fx = 0;
  15417. ggml_set_zero(opt->adam.g);
  15418. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15419. if (callback) {
  15420. callback(callback_data, accum_step, &sched, &cancel);
  15421. if (cancel) {
  15422. return GGML_OPT_RESULT_CANCEL;;
  15423. }
  15424. }
  15425. // ggml_graph_reset (gf);
  15426. ggml_set_f32 (f->grad, 1.0f);
  15427. ggml_graph_compute(gb, &cplan);
  15428. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15429. fx += ggml_get_f32_1d(f, 0);
  15430. }
  15431. fx *= accum_norm;
  15432. opt->loss_after = fx;
  15433. // check convergence
  15434. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15435. GGML_PRINT_DEBUG("converged\n");
  15436. return GGML_OPT_RESULT_OK;
  15437. }
  15438. // delta-based convergence test
  15439. if (pf != NULL) {
  15440. // need at least params.past iterations to start checking for convergence
  15441. if (params.past <= iter0 + t) {
  15442. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15443. if (fabsf(rate) < params.delta) {
  15444. return GGML_OPT_RESULT_OK;
  15445. }
  15446. }
  15447. pf[(iter0 + t)%params.past] = fx;
  15448. }
  15449. // check for improvement
  15450. if (params.max_no_improvement > 0) {
  15451. if (fx_best[0] > fx) {
  15452. fx_best[0] = fx;
  15453. n_no_improvement[0] = 0;
  15454. } else {
  15455. ++n_no_improvement[0];
  15456. if (n_no_improvement[0] >= params.max_no_improvement) {
  15457. return GGML_OPT_RESULT_OK;
  15458. }
  15459. }
  15460. }
  15461. fx_prev[0] = fx;
  15462. {
  15463. const int64_t t_end_cpu = ggml_cycles();
  15464. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15465. UNUSED(t_end_cpu);
  15466. const int64_t t_end_wall = ggml_time_us();
  15467. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15468. UNUSED(t_end_wall);
  15469. }
  15470. }
  15471. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15472. }
  15473. //
  15474. // L-BFGS
  15475. //
  15476. // the L-BFGS implementation below is based on the following implementation:
  15477. //
  15478. // https://github.com/chokkan/liblbfgs
  15479. //
  15480. struct ggml_lbfgs_iteration_data {
  15481. float alpha;
  15482. float ys;
  15483. float * s;
  15484. float * y;
  15485. };
  15486. static enum ggml_opt_result linesearch_backtracking(
  15487. const struct ggml_opt_params * params,
  15488. int nx,
  15489. float * x,
  15490. float * fx,
  15491. float * g,
  15492. float * d,
  15493. float * step,
  15494. const float * xp,
  15495. struct ggml_tensor * f,
  15496. struct ggml_cgraph * gb,
  15497. struct ggml_cplan * cplan,
  15498. const int np,
  15499. struct ggml_tensor * ps[],
  15500. bool * cancel,
  15501. ggml_opt_callback callback,
  15502. void * callback_data) {
  15503. int count = 0;
  15504. float width = 0.0f;
  15505. float dg = 0.0f;
  15506. float finit = 0.0f;
  15507. float dginit = 0.0f;
  15508. float dgtest = 0.0f;
  15509. const float dec = 0.5f;
  15510. const float inc = 2.1f;
  15511. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15512. const float accum_norm = 1.0f / (float) n_accum;
  15513. if (*step <= 0.f) {
  15514. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15515. }
  15516. // compute the initial gradient in the search direction
  15517. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15518. // make sure that d points to a descent direction
  15519. if (0 < dginit) {
  15520. return GGML_LINESEARCH_FAIL;
  15521. }
  15522. // initialize local variables
  15523. finit = *fx;
  15524. dgtest = params->lbfgs.ftol*dginit;
  15525. while (true) {
  15526. ggml_vec_cpy_f32(nx, x, xp);
  15527. ggml_vec_mad_f32(nx, x, d, *step);
  15528. // evaluate the function and gradient values
  15529. {
  15530. ggml_opt_set_params(np, ps, x);
  15531. *fx = 0;
  15532. memset(g, 0, sizeof(float)*nx);
  15533. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15534. if (callback) {
  15535. // LBFG-S does not support learning rate -> ignore learning schedule
  15536. float sched = 0;
  15537. callback(callback_data, accum_step, &sched, cancel);
  15538. if (*cancel) {
  15539. return GGML_OPT_RESULT_CANCEL;
  15540. }
  15541. }
  15542. // ggml_graph_reset (gf);
  15543. ggml_set_f32 (f->grad, 1.0f);
  15544. ggml_graph_compute(gb, cplan);
  15545. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15546. *fx += ggml_get_f32_1d(f, 0);
  15547. }
  15548. *fx *= accum_norm;
  15549. }
  15550. ++count;
  15551. if (*fx > finit + (*step)*dgtest) {
  15552. width = dec;
  15553. } else {
  15554. // Armijo condition is satisfied
  15555. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15556. return count;
  15557. }
  15558. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15559. // check the Wolfe condition
  15560. if (dg < params->lbfgs.wolfe * dginit) {
  15561. width = inc;
  15562. } else {
  15563. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15564. // regular Wolfe conditions
  15565. return count;
  15566. }
  15567. if(dg > -params->lbfgs.wolfe*dginit) {
  15568. width = dec;
  15569. } else {
  15570. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15571. return count;
  15572. }
  15573. }
  15574. }
  15575. if (*step < params->lbfgs.min_step) {
  15576. return GGML_LINESEARCH_MINIMUM_STEP;
  15577. }
  15578. if (*step > params->lbfgs.max_step) {
  15579. return GGML_LINESEARCH_MAXIMUM_STEP;
  15580. }
  15581. if (params->lbfgs.max_linesearch <= count) {
  15582. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15583. }
  15584. (*step) *= width;
  15585. }
  15586. GGML_ASSERT(false && "line search failed");
  15587. return GGML_LINESEARCH_FAIL;
  15588. }
  15589. static enum ggml_opt_result ggml_opt_lbfgs(
  15590. struct ggml_context * ctx,
  15591. struct ggml_opt_context * opt,
  15592. struct ggml_opt_params params,
  15593. struct ggml_tensor * f,
  15594. struct ggml_cgraph * gf,
  15595. struct ggml_cgraph * gb,
  15596. ggml_opt_callback callback,
  15597. void * callback_data) {
  15598. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15599. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15600. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15601. return GGML_OPT_RESULT_INVALID_WOLFE;
  15602. }
  15603. }
  15604. const int m = params.lbfgs.m;
  15605. // these will store the parameters we want to optimize
  15606. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15607. int np = 0;
  15608. int nx = 0;
  15609. for (int i = 0; i < gf->n_nodes; ++i) {
  15610. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15611. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15612. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15613. ps[np++] = gf->nodes[i];
  15614. nx += ggml_nelements(gf->nodes[i]);
  15615. }
  15616. }
  15617. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15618. int iter = opt->iter;
  15619. ggml_opt_init(ctx, opt, params, nx);
  15620. opt->iter = iter;
  15621. }
  15622. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15623. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15624. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15625. float * x = opt->lbfgs.x->data; // current parameters
  15626. float * xp = opt->lbfgs.xp->data; // previous parameters
  15627. float * g = opt->lbfgs.g->data; // current gradient
  15628. float * gp = opt->lbfgs.gp->data; // previous gradient
  15629. float * d = opt->lbfgs.d->data; // search direction
  15630. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15631. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15632. const float accum_norm = 1.0f / (float) n_accum;
  15633. float fx = 0.0f; // cost function value
  15634. float xnorm = 0.0f; // ||x||
  15635. float gnorm = 0.0f; // ||g||
  15636. // initialize x from the graph nodes
  15637. ggml_opt_get_params(np, ps, x);
  15638. // the L-BFGS memory
  15639. float * lm_alpha = opt->lbfgs.lmal->data;
  15640. float * lm_ys = opt->lbfgs.lmys->data;
  15641. float * lm_s = opt->lbfgs.lms->data;
  15642. float * lm_y = opt->lbfgs.lmy->data;
  15643. bool cancel = false;
  15644. // evaluate the function value and its gradient
  15645. {
  15646. ggml_opt_set_params(np, ps, x);
  15647. fx = 0;
  15648. memset(g, 0, sizeof(float)*nx);
  15649. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15650. if (callback) {
  15651. // LBFG-S does not support learning rate -> ignore learning schedule
  15652. float sched = 0;
  15653. callback(callback_data, accum_step, &sched, &cancel);
  15654. if (cancel) {
  15655. return GGML_OPT_RESULT_CANCEL;
  15656. }
  15657. }
  15658. // ggml_graph_reset (gf);
  15659. ggml_set_f32 (f->grad, 1.0f);
  15660. ggml_graph_compute(gb, &cplan);
  15661. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15662. fx += ggml_get_f32_1d(f, 0);
  15663. }
  15664. fx *= accum_norm;
  15665. opt->loss_before = fx;
  15666. opt->loss_after = fx;
  15667. }
  15668. // search direction = -gradient
  15669. ggml_vec_neg_f32(nx, d, g);
  15670. // ||x||, ||g||
  15671. ggml_vec_norm_f32(nx, &xnorm, x);
  15672. ggml_vec_norm_f32(nx, &gnorm, g);
  15673. if (xnorm < 1.0f) {
  15674. xnorm = 1.0f;
  15675. }
  15676. // already optimized
  15677. if (gnorm/xnorm <= params.lbfgs.eps) {
  15678. return GGML_OPT_RESULT_OK;
  15679. }
  15680. if (opt->just_initialized) {
  15681. if (pf) {
  15682. pf[0] = fx;
  15683. }
  15684. opt->lbfgs.fx_best = fx;
  15685. // initial step
  15686. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15687. opt->lbfgs.j = 0;
  15688. opt->lbfgs.k = 1;
  15689. opt->lbfgs.end = 0;
  15690. opt->lbfgs.n_no_improvement = 0;
  15691. opt->just_initialized = false;
  15692. }
  15693. float * fx_best = &opt->lbfgs.fx_best;
  15694. float * step = &opt->lbfgs.step;
  15695. int * j = &opt->lbfgs.j;
  15696. int * k = &opt->lbfgs.k;
  15697. int * end = &opt->lbfgs.end;
  15698. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15699. int ls = 0;
  15700. int bound = 0;
  15701. float ys = 0.0f;
  15702. float yy = 0.0f;
  15703. float beta = 0.0f;
  15704. int it = 0;
  15705. while (true) {
  15706. // store the current position and gradient vectors
  15707. ggml_vec_cpy_f32(nx, xp, x);
  15708. ggml_vec_cpy_f32(nx, gp, g);
  15709. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15710. // to determine if the optimization should be cancelled
  15711. // this is a simple change, but not doing this atm, since I don't have a nice
  15712. // way to test and don't want to break something with so many changes lined up
  15713. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15714. if (cancel) {
  15715. return GGML_OPT_RESULT_CANCEL;
  15716. }
  15717. if (ls < 0) {
  15718. // linesearch failed - go back to the previous point and return
  15719. ggml_vec_cpy_f32(nx, x, xp);
  15720. ggml_vec_cpy_f32(nx, g, gp);
  15721. return ls;
  15722. }
  15723. opt->loss_after = fx;
  15724. ggml_vec_norm_f32(nx, &xnorm, x);
  15725. ggml_vec_norm_f32(nx, &gnorm, g);
  15726. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15727. if (xnorm < 1.0f) {
  15728. xnorm = 1.0f;
  15729. }
  15730. if (gnorm/xnorm <= params.lbfgs.eps) {
  15731. // converged
  15732. return GGML_OPT_RESULT_OK;
  15733. }
  15734. // delta-based convergence test
  15735. if (pf != NULL) {
  15736. // need at least params.past iterations to start checking for convergence
  15737. if (params.past <= k[0]) {
  15738. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15739. if (fabsf(rate) < params.delta) {
  15740. return GGML_OPT_RESULT_OK;
  15741. }
  15742. }
  15743. pf[k[0]%params.past] = fx;
  15744. }
  15745. // check for improvement
  15746. if (params.max_no_improvement > 0) {
  15747. if (fx < fx_best[0]) {
  15748. fx_best[0] = fx;
  15749. n_no_improvement[0] = 0;
  15750. } else {
  15751. n_no_improvement[0]++;
  15752. if (n_no_improvement[0] >= params.max_no_improvement) {
  15753. return GGML_OPT_RESULT_OK;
  15754. }
  15755. }
  15756. }
  15757. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15758. // reached the maximum number of iterations
  15759. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15760. }
  15761. // update vectors s and y:
  15762. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15763. // y_{k+1} = g_{k+1} - g_{k}.
  15764. //
  15765. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15766. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15767. // compute scalars ys and yy:
  15768. // ys = y^t \cdot s -> 1 / \rho.
  15769. // yy = y^t \cdot y.
  15770. //
  15771. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15772. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15773. lm_ys[end[0]] = ys;
  15774. // find new search direction
  15775. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15776. bound = (m <= k[0]) ? m : k[0];
  15777. k[0]++;
  15778. it++;
  15779. end[0] = (end[0] + 1)%m;
  15780. // initialize search direction with -g
  15781. ggml_vec_neg_f32(nx, d, g);
  15782. j[0] = end[0];
  15783. for (int i = 0; i < bound; ++i) {
  15784. j[0] = (j[0] + m - 1) % m;
  15785. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15786. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15787. lm_alpha[j[0]] /= lm_ys[j[0]];
  15788. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15789. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15790. }
  15791. ggml_vec_scale_f32(nx, d, ys/yy);
  15792. for (int i = 0; i < bound; ++i) {
  15793. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15794. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15795. beta /= lm_ys[j[0]];
  15796. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15797. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15798. j[0] = (j[0] + 1)%m;
  15799. }
  15800. step[0] = 1.0;
  15801. }
  15802. GGML_ASSERT(false && "lbfgs failed");
  15803. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15804. }
  15805. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15806. struct ggml_opt_params result;
  15807. switch (type) {
  15808. case GGML_OPT_TYPE_ADAM:
  15809. {
  15810. result = (struct ggml_opt_params) {
  15811. .type = GGML_OPT_TYPE_ADAM,
  15812. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15813. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15814. .past = 0,
  15815. .delta = 1e-5f,
  15816. .max_no_improvement = 100,
  15817. .print_forward_graph = true,
  15818. .print_backward_graph = true,
  15819. .n_gradient_accumulation = 1,
  15820. .adam = {
  15821. .n_iter = 10000,
  15822. .sched = 1.000f,
  15823. .decay = 0.0f,
  15824. .decay_min_ndim = 2,
  15825. .alpha = 0.001f,
  15826. .beta1 = 0.9f,
  15827. .beta2 = 0.999f,
  15828. .eps = 1e-8f,
  15829. .eps_f = 1e-5f,
  15830. .eps_g = 1e-3f,
  15831. .gclip = 0.0f,
  15832. },
  15833. };
  15834. } break;
  15835. case GGML_OPT_TYPE_LBFGS:
  15836. {
  15837. result = (struct ggml_opt_params) {
  15838. .type = GGML_OPT_TYPE_LBFGS,
  15839. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15840. .n_threads = 1,
  15841. .past = 0,
  15842. .delta = 1e-5f,
  15843. .max_no_improvement = 0,
  15844. .print_forward_graph = true,
  15845. .print_backward_graph = true,
  15846. .n_gradient_accumulation = 1,
  15847. .lbfgs = {
  15848. .m = 6,
  15849. .n_iter = 100,
  15850. .max_linesearch = 20,
  15851. .eps = 1e-5f,
  15852. .ftol = 1e-4f,
  15853. .wolfe = 0.9f,
  15854. .min_step = 1e-20f,
  15855. .max_step = 1e+20f,
  15856. .linesearch = GGML_LINESEARCH_DEFAULT,
  15857. },
  15858. };
  15859. } break;
  15860. }
  15861. return result;
  15862. }
  15863. GGML_API void ggml_opt_init(
  15864. struct ggml_context * ctx,
  15865. struct ggml_opt_context * opt,
  15866. struct ggml_opt_params params,
  15867. int64_t nx) {
  15868. opt->ctx = ctx;
  15869. opt->params = params;
  15870. opt->iter = 0;
  15871. opt->nx = nx;
  15872. opt->just_initialized = true;
  15873. if (opt->ctx == NULL) {
  15874. struct ggml_init_params ctx_opt_params;
  15875. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  15876. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15877. if (opt->params.past > 0) {
  15878. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15879. }
  15880. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  15881. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15882. if (opt->params.past > 0) {
  15883. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15884. }
  15885. }
  15886. ctx_opt_params.mem_buffer = NULL;
  15887. ctx_opt_params.no_alloc = false;
  15888. opt->ctx = ggml_init(ctx_opt_params);
  15889. }
  15890. switch (opt->params.type) {
  15891. case GGML_OPT_TYPE_ADAM:
  15892. {
  15893. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15894. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15895. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15896. opt->adam.pf = params.past > 0
  15897. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15898. : NULL;
  15899. ggml_set_zero(opt->adam.m);
  15900. ggml_set_zero(opt->adam.v);
  15901. if (opt->adam.pf) {
  15902. ggml_set_zero(opt->adam.pf);
  15903. }
  15904. } break;
  15905. case GGML_OPT_TYPE_LBFGS:
  15906. {
  15907. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15908. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15909. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15910. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15911. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15912. opt->lbfgs.pf = params.past > 0
  15913. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15914. : NULL;
  15915. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15916. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15917. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15918. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15919. ggml_set_zero(opt->lbfgs.x);
  15920. ggml_set_zero(opt->lbfgs.xp);
  15921. ggml_set_zero(opt->lbfgs.g);
  15922. ggml_set_zero(opt->lbfgs.gp);
  15923. ggml_set_zero(opt->lbfgs.d);
  15924. if (opt->lbfgs.pf) {
  15925. ggml_set_zero(opt->lbfgs.pf);
  15926. }
  15927. ggml_set_zero(opt->lbfgs.lmal);
  15928. ggml_set_zero(opt->lbfgs.lmys);
  15929. ggml_set_zero(opt->lbfgs.lms);
  15930. ggml_set_zero(opt->lbfgs.lmy);
  15931. } break;
  15932. }
  15933. }
  15934. enum ggml_opt_result ggml_opt(
  15935. struct ggml_context * ctx,
  15936. struct ggml_opt_params params,
  15937. struct ggml_tensor * f) {
  15938. bool free_ctx = false;
  15939. if (ctx == NULL) {
  15940. struct ggml_init_params params_ctx = {
  15941. .mem_size = 16*1024*1024,
  15942. .mem_buffer = NULL,
  15943. .no_alloc = false,
  15944. };
  15945. ctx = ggml_init(params_ctx);
  15946. if (ctx == NULL) {
  15947. return GGML_OPT_RESULT_NO_CONTEXT;
  15948. }
  15949. free_ctx = true;
  15950. }
  15951. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  15952. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15953. ggml_opt_init(ctx, opt, params, 0);
  15954. result = ggml_opt_resume(ctx, opt, f);
  15955. if (free_ctx) {
  15956. ggml_free(ctx);
  15957. }
  15958. return result;
  15959. }
  15960. enum ggml_opt_result ggml_opt_resume(
  15961. struct ggml_context * ctx,
  15962. struct ggml_opt_context * opt,
  15963. struct ggml_tensor * f) {
  15964. // build forward + backward compute graphs
  15965. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15966. ggml_build_forward_expand(gf, f);
  15967. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15968. ggml_build_backward_expand(ctx, gf, gb, true);
  15969. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15970. }
  15971. enum ggml_opt_result ggml_opt_resume_g(
  15972. struct ggml_context * ctx,
  15973. struct ggml_opt_context * opt,
  15974. struct ggml_tensor * f,
  15975. struct ggml_cgraph * gf,
  15976. struct ggml_cgraph * gb,
  15977. ggml_opt_callback callback,
  15978. void * callback_data) {
  15979. // build forward + backward compute graphs
  15980. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  15981. switch (opt->params.type) {
  15982. case GGML_OPT_TYPE_ADAM:
  15983. {
  15984. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15985. } break;
  15986. case GGML_OPT_TYPE_LBFGS:
  15987. {
  15988. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15989. } break;
  15990. }
  15991. if (opt->params.print_forward_graph) {
  15992. ggml_graph_print (gf);
  15993. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15994. }
  15995. if (opt->params.print_backward_graph) {
  15996. ggml_graph_print (gb);
  15997. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15998. }
  15999. return result;
  16000. }
  16001. ////////////////////////////////////////////////////////////////////////////////
  16002. void ggml_set_input(struct ggml_tensor * tensor) {
  16003. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16004. }
  16005. void ggml_set_output(struct ggml_tensor * tensor) {
  16006. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16007. }
  16008. ////////////////////////////////////////////////////////////////////////////////
  16009. void ggml_quantize_init(enum ggml_type type) {
  16010. ggml_critical_section_start();
  16011. switch (type) {
  16012. case GGML_TYPE_IQ2_XXS:
  16013. case GGML_TYPE_IQ2_XS:
  16014. case GGML_TYPE_IQ2_S:
  16015. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16016. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16017. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16018. default: // nothing
  16019. break;
  16020. }
  16021. ggml_critical_section_end();
  16022. }
  16023. void ggml_quantize_free(void) {
  16024. ggml_critical_section_start();
  16025. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16026. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16027. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16028. iq3xs_free_impl(256);
  16029. ggml_critical_section_end();
  16030. }
  16031. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16032. assert(k % QK4_0 == 0);
  16033. const int nb = k / QK4_0;
  16034. for (int b = 0; b < n; b += k) {
  16035. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16036. quantize_row_q4_0_reference(src + b, y, k);
  16037. for (int i = 0; i < nb; i++) {
  16038. for (int j = 0; j < QK4_0; j += 2) {
  16039. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16040. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16041. hist[vi0]++;
  16042. hist[vi1]++;
  16043. }
  16044. }
  16045. }
  16046. return (n/QK4_0*sizeof(block_q4_0));
  16047. }
  16048. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16049. assert(k % QK4_1 == 0);
  16050. const int nb = k / QK4_1;
  16051. for (int b = 0; b < n; b += k) {
  16052. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16053. quantize_row_q4_1_reference(src + b, y, k);
  16054. for (int i = 0; i < nb; i++) {
  16055. for (int j = 0; j < QK4_1; j += 2) {
  16056. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16057. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16058. hist[vi0]++;
  16059. hist[vi1]++;
  16060. }
  16061. }
  16062. }
  16063. return (n/QK4_1*sizeof(block_q4_1));
  16064. }
  16065. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16066. assert(k % QK5_0 == 0);
  16067. const int nb = k / QK5_0;
  16068. for (int b = 0; b < n; b += k) {
  16069. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16070. quantize_row_q5_0_reference(src + b, y, k);
  16071. for (int i = 0; i < nb; i++) {
  16072. uint32_t qh;
  16073. memcpy(&qh, &y[i].qh, sizeof(qh));
  16074. for (int j = 0; j < QK5_0; j += 2) {
  16075. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16076. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16077. // cast to 16 bins
  16078. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16079. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16080. hist[vi0]++;
  16081. hist[vi1]++;
  16082. }
  16083. }
  16084. }
  16085. return (n/QK5_0*sizeof(block_q5_0));
  16086. }
  16087. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16088. assert(k % QK5_1 == 0);
  16089. const int nb = k / QK5_1;
  16090. for (int b = 0; b < n; b += k) {
  16091. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16092. quantize_row_q5_1_reference(src + b, y, k);
  16093. for (int i = 0; i < nb; i++) {
  16094. uint32_t qh;
  16095. memcpy(&qh, &y[i].qh, sizeof(qh));
  16096. for (int j = 0; j < QK5_1; j += 2) {
  16097. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16098. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16099. // cast to 16 bins
  16100. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16101. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16102. hist[vi0]++;
  16103. hist[vi1]++;
  16104. }
  16105. }
  16106. }
  16107. return (n/QK5_1*sizeof(block_q5_1));
  16108. }
  16109. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16110. assert(k % QK8_0 == 0);
  16111. const int nb = k / QK8_0;
  16112. for (int b = 0; b < n; b += k) {
  16113. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16114. quantize_row_q8_0_reference(src + b, y, k);
  16115. for (int i = 0; i < nb; i++) {
  16116. for (int j = 0; j < QK8_0; ++j) {
  16117. const int8_t vi = y[i].qs[j];
  16118. hist[vi/16 + 8]++;
  16119. }
  16120. }
  16121. }
  16122. return (n/QK8_0*sizeof(block_q8_0));
  16123. }
  16124. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16125. return
  16126. type == GGML_TYPE_IQ2_XXS ||
  16127. type == GGML_TYPE_IQ2_XS ||
  16128. type == GGML_TYPE_IQ1_S;
  16129. }
  16130. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16131. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16132. ggml_quantize_init(type); // this is noop if already initialized
  16133. size_t result = 0;
  16134. int n = nrows * n_per_row;
  16135. switch (type) {
  16136. case GGML_TYPE_Q4_0:
  16137. {
  16138. GGML_ASSERT(start % QK4_0 == 0);
  16139. GGML_ASSERT(start % n_per_row == 0);
  16140. size_t start_row = start / n_per_row;
  16141. size_t row_size = ggml_row_size(type, n_per_row);
  16142. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16143. GGML_ASSERT(result == row_size * nrows);
  16144. } break;
  16145. case GGML_TYPE_Q4_1:
  16146. {
  16147. GGML_ASSERT(start % QK4_1 == 0);
  16148. GGML_ASSERT(start % n_per_row == 0);
  16149. size_t start_row = start / n_per_row;
  16150. size_t row_size = ggml_row_size(type, n_per_row);
  16151. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16152. GGML_ASSERT(result == row_size * nrows);
  16153. } break;
  16154. case GGML_TYPE_Q5_0:
  16155. {
  16156. GGML_ASSERT(start % QK5_0 == 0);
  16157. GGML_ASSERT(start % n_per_row == 0);
  16158. size_t start_row = start / n_per_row;
  16159. size_t row_size = ggml_row_size(type, n_per_row);
  16160. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16161. GGML_ASSERT(result == row_size * nrows);
  16162. } break;
  16163. case GGML_TYPE_Q5_1:
  16164. {
  16165. GGML_ASSERT(start % QK5_1 == 0);
  16166. GGML_ASSERT(start % n_per_row == 0);
  16167. size_t start_row = start / n_per_row;
  16168. size_t row_size = ggml_row_size(type, n_per_row);
  16169. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16170. GGML_ASSERT(result == row_size * nrows);
  16171. } break;
  16172. case GGML_TYPE_Q8_0:
  16173. {
  16174. GGML_ASSERT(start % QK8_0 == 0);
  16175. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16176. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16177. } break;
  16178. case GGML_TYPE_Q2_K:
  16179. {
  16180. GGML_ASSERT(start % QK_K == 0);
  16181. GGML_ASSERT(start % n_per_row == 0);
  16182. size_t start_row = start / n_per_row;
  16183. size_t row_size = ggml_row_size(type, n_per_row);
  16184. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16185. GGML_ASSERT(result == row_size * nrows);
  16186. } break;
  16187. case GGML_TYPE_Q3_K:
  16188. {
  16189. GGML_ASSERT(start % QK_K == 0);
  16190. GGML_ASSERT(start % n_per_row == 0);
  16191. size_t start_row = start / n_per_row;
  16192. size_t row_size = ggml_row_size(type, n_per_row);
  16193. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16194. GGML_ASSERT(result == row_size * nrows);
  16195. } break;
  16196. case GGML_TYPE_Q4_K:
  16197. {
  16198. GGML_ASSERT(start % QK_K == 0);
  16199. GGML_ASSERT(start % n_per_row == 0);
  16200. size_t start_row = start / n_per_row;
  16201. size_t row_size = ggml_row_size(type, n_per_row);
  16202. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16203. GGML_ASSERT(result == row_size * nrows);
  16204. } break;
  16205. case GGML_TYPE_Q5_K:
  16206. {
  16207. GGML_ASSERT(start % QK_K == 0);
  16208. GGML_ASSERT(start % n_per_row == 0);
  16209. size_t start_row = start / n_per_row;
  16210. size_t row_size = ggml_row_size(type, n_per_row);
  16211. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16212. GGML_ASSERT(result == row_size * nrows);
  16213. } break;
  16214. case GGML_TYPE_Q6_K:
  16215. {
  16216. GGML_ASSERT(start % QK_K == 0);
  16217. GGML_ASSERT(start % n_per_row == 0);
  16218. size_t start_row = start / n_per_row;
  16219. size_t row_size = ggml_row_size(type, n_per_row);
  16220. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16221. GGML_ASSERT(result == row_size * nrows);
  16222. } break;
  16223. case GGML_TYPE_IQ2_XXS:
  16224. {
  16225. GGML_ASSERT(start % QK_K == 0);
  16226. GGML_ASSERT(start % n_per_row == 0);
  16227. GGML_ASSERT(imatrix);
  16228. size_t start_row = start / n_per_row;
  16229. size_t row_size = ggml_row_size(type, n_per_row);
  16230. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16231. GGML_ASSERT(result == row_size * nrows);
  16232. } break;
  16233. case GGML_TYPE_IQ2_XS:
  16234. {
  16235. GGML_ASSERT(start % QK_K == 0);
  16236. GGML_ASSERT(start % n_per_row == 0);
  16237. GGML_ASSERT(imatrix);
  16238. size_t start_row = start / n_per_row;
  16239. size_t row_size = ggml_row_size(type, n_per_row);
  16240. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16241. GGML_ASSERT(result == row_size * nrows);
  16242. } break;
  16243. case GGML_TYPE_IQ3_XXS:
  16244. {
  16245. GGML_ASSERT(start % QK_K == 0);
  16246. GGML_ASSERT(start % n_per_row == 0);
  16247. size_t start_row = start / n_per_row;
  16248. size_t row_size = ggml_row_size(type, n_per_row);
  16249. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16250. GGML_ASSERT(result == row_size * nrows);
  16251. } break;
  16252. case GGML_TYPE_IQ3_S:
  16253. {
  16254. GGML_ASSERT(start % QK_K == 0);
  16255. GGML_ASSERT(start % n_per_row == 0);
  16256. size_t start_row = start / n_per_row;
  16257. size_t row_size = ggml_row_size(type, n_per_row);
  16258. result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16259. GGML_ASSERT(result == row_size * nrows);
  16260. } break;
  16261. case GGML_TYPE_IQ2_S:
  16262. {
  16263. GGML_ASSERT(start % QK_K == 0);
  16264. GGML_ASSERT(start % n_per_row == 0);
  16265. size_t start_row = start / n_per_row;
  16266. size_t row_size = ggml_row_size(type, n_per_row);
  16267. result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16268. GGML_ASSERT(result == row_size * nrows);
  16269. } break;
  16270. case GGML_TYPE_IQ1_S:
  16271. {
  16272. GGML_ASSERT(start % QK_K == 0);
  16273. GGML_ASSERT(start % n_per_row == 0);
  16274. size_t start_row = start / n_per_row;
  16275. size_t row_size = ggml_row_size(type, n_per_row);
  16276. result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16277. GGML_ASSERT(result == row_size * nrows);
  16278. } break;
  16279. case GGML_TYPE_IQ4_NL:
  16280. #if QK_K == 64
  16281. case GGML_TYPE_IQ4_XS:
  16282. #endif
  16283. {
  16284. GGML_ASSERT(start % QK4_NL == 0);
  16285. GGML_ASSERT(start % n_per_row == 0);
  16286. size_t start_row = start / n_per_row;
  16287. size_t row_size = ggml_row_size(type, n_per_row);
  16288. result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16289. GGML_ASSERT(result == row_size * nrows);
  16290. } break;
  16291. #if QK_K != 64
  16292. case GGML_TYPE_IQ4_XS:
  16293. {
  16294. GGML_ASSERT(start % QK_K == 0);
  16295. GGML_ASSERT(start % n_per_row == 0);
  16296. size_t start_row = start / n_per_row;
  16297. size_t row_size = ggml_row_size(type, n_per_row);
  16298. result = quantize_iq4_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16299. GGML_ASSERT(result == row_size * nrows);
  16300. } break;
  16301. #endif
  16302. case GGML_TYPE_F16:
  16303. {
  16304. size_t elemsize = sizeof(ggml_fp16_t);
  16305. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16306. result = n * elemsize;
  16307. } break;
  16308. case GGML_TYPE_F32:
  16309. {
  16310. size_t elemsize = sizeof(float);
  16311. result = n * elemsize;
  16312. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16313. } break;
  16314. default:
  16315. assert(false);
  16316. }
  16317. return result;
  16318. }
  16319. ////////////////////////////////////////////////////////////////////////////////
  16320. struct gguf_str {
  16321. uint64_t n; // GGUFv2
  16322. char * data;
  16323. };
  16324. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16325. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16326. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16327. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16328. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16329. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16330. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16331. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16332. [GGUF_TYPE_BOOL] = sizeof(bool),
  16333. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16334. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16335. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16336. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16337. [GGUF_TYPE_ARRAY] = 0, // undefined
  16338. };
  16339. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16340. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16341. [GGUF_TYPE_UINT8] = "u8",
  16342. [GGUF_TYPE_INT8] = "i8",
  16343. [GGUF_TYPE_UINT16] = "u16",
  16344. [GGUF_TYPE_INT16] = "i16",
  16345. [GGUF_TYPE_UINT32] = "u32",
  16346. [GGUF_TYPE_INT32] = "i32",
  16347. [GGUF_TYPE_FLOAT32] = "f32",
  16348. [GGUF_TYPE_BOOL] = "bool",
  16349. [GGUF_TYPE_STRING] = "str",
  16350. [GGUF_TYPE_ARRAY] = "arr",
  16351. [GGUF_TYPE_UINT64] = "u64",
  16352. [GGUF_TYPE_INT64] = "i64",
  16353. [GGUF_TYPE_FLOAT64] = "f64",
  16354. };
  16355. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16356. union gguf_value {
  16357. uint8_t uint8;
  16358. int8_t int8;
  16359. uint16_t uint16;
  16360. int16_t int16;
  16361. uint32_t uint32;
  16362. int32_t int32;
  16363. float float32;
  16364. uint64_t uint64;
  16365. int64_t int64;
  16366. double float64;
  16367. bool bool_;
  16368. struct gguf_str str;
  16369. struct {
  16370. enum gguf_type type;
  16371. uint64_t n; // GGUFv2
  16372. void * data;
  16373. } arr;
  16374. };
  16375. struct gguf_kv {
  16376. struct gguf_str key;
  16377. enum gguf_type type;
  16378. union gguf_value value;
  16379. };
  16380. struct gguf_header {
  16381. char magic[4];
  16382. uint32_t version;
  16383. uint64_t n_tensors; // GGUFv2
  16384. uint64_t n_kv; // GGUFv2
  16385. };
  16386. struct gguf_tensor_info {
  16387. struct gguf_str name;
  16388. uint32_t n_dims;
  16389. uint64_t ne[GGML_MAX_DIMS];
  16390. enum ggml_type type;
  16391. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16392. // for writing API
  16393. const void * data;
  16394. size_t size;
  16395. };
  16396. struct gguf_context {
  16397. struct gguf_header header;
  16398. struct gguf_kv * kv;
  16399. struct gguf_tensor_info * infos;
  16400. size_t alignment;
  16401. size_t offset; // offset of `data` from beginning of file
  16402. size_t size; // size of `data` in bytes
  16403. //uint8_t * padding;
  16404. void * data;
  16405. };
  16406. static size_t gguf_type_size(enum gguf_type type) {
  16407. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16408. return GGUF_TYPE_SIZE[type];
  16409. }
  16410. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16411. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16412. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16413. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16414. GGML_ASSERT(info->ne[i] > 0);
  16415. }
  16416. // prevent overflow for total number of elements
  16417. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16418. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16419. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16420. }
  16421. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16422. const size_t n = fread(dst, 1, size, file);
  16423. *offset += n;
  16424. return n == size;
  16425. }
  16426. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16427. p->n = 0;
  16428. p->data = NULL;
  16429. bool ok = true;
  16430. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16431. // early exit if string length is invalid, prevents from integer overflow
  16432. if (p->n == SIZE_MAX) {
  16433. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16434. return false;
  16435. }
  16436. p->data = GGML_CALLOC(p->n + 1, 1);
  16437. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16438. return ok;
  16439. }
  16440. struct gguf_context * gguf_init_empty(void) {
  16441. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16442. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16443. ctx->header.version = GGUF_VERSION;
  16444. ctx->header.n_tensors = 0;
  16445. ctx->header.n_kv = 0;
  16446. ctx->kv = NULL;
  16447. ctx->infos = NULL;
  16448. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16449. ctx->offset = 0;
  16450. ctx->size = 0;
  16451. ctx->data = NULL;
  16452. return ctx;
  16453. }
  16454. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16455. FILE * file = fopen(fname, "rb");
  16456. if (!file) {
  16457. return NULL;
  16458. }
  16459. // offset from start of file
  16460. size_t offset = 0;
  16461. char magic[4];
  16462. // check the magic before making allocations
  16463. {
  16464. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16465. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16466. if (magic[i] != GGUF_MAGIC[i]) {
  16467. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16468. fclose(file);
  16469. return NULL;
  16470. }
  16471. }
  16472. }
  16473. bool ok = true;
  16474. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16475. // read the header
  16476. {
  16477. strncpy(ctx->header.magic, magic, 4);
  16478. ctx->kv = NULL;
  16479. ctx->infos = NULL;
  16480. ctx->data = NULL;
  16481. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16482. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16483. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16484. if (ctx->header.version == 1) {
  16485. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16486. fclose(file);
  16487. gguf_free(ctx);
  16488. return NULL;
  16489. }
  16490. // sanity-checks to prevent from integer/buffer overflows
  16491. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16492. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16493. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16494. if (!ok) {
  16495. fprintf(stderr, "%s: failed to read header\n", __func__);
  16496. fclose(file);
  16497. gguf_free(ctx);
  16498. return NULL;
  16499. }
  16500. }
  16501. // read the kv pairs
  16502. {
  16503. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16504. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16505. struct gguf_kv * kv = &ctx->kv[i];
  16506. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16507. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16508. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16509. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16510. switch (kv->type) {
  16511. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16512. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16513. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16514. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16515. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16516. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16517. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16518. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16519. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16520. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16521. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16522. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16523. case GGUF_TYPE_ARRAY:
  16524. {
  16525. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16526. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16527. switch (kv->value.arr.type) {
  16528. case GGUF_TYPE_UINT8:
  16529. case GGUF_TYPE_INT8:
  16530. case GGUF_TYPE_UINT16:
  16531. case GGUF_TYPE_INT16:
  16532. case GGUF_TYPE_UINT32:
  16533. case GGUF_TYPE_INT32:
  16534. case GGUF_TYPE_FLOAT32:
  16535. case GGUF_TYPE_UINT64:
  16536. case GGUF_TYPE_INT64:
  16537. case GGUF_TYPE_FLOAT64:
  16538. case GGUF_TYPE_BOOL:
  16539. {
  16540. // prevent from integer overflow in the malloc below
  16541. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16542. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16543. fclose(file);
  16544. gguf_free(ctx);
  16545. return NULL;
  16546. }
  16547. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16548. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16549. } break;
  16550. case GGUF_TYPE_STRING:
  16551. {
  16552. // prevent from integer overflow in the malloc below
  16553. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16554. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16555. fclose(file);
  16556. gguf_free(ctx);
  16557. return NULL;
  16558. }
  16559. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16560. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16561. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16562. }
  16563. } break;
  16564. case GGUF_TYPE_ARRAY:
  16565. default: GGML_ASSERT(false && "invalid type"); break;
  16566. }
  16567. } break;
  16568. default: GGML_ASSERT(false && "invalid type");
  16569. }
  16570. if (!ok) {
  16571. break;
  16572. }
  16573. }
  16574. if (!ok) {
  16575. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16576. fclose(file);
  16577. gguf_free(ctx);
  16578. return NULL;
  16579. }
  16580. }
  16581. // read the tensor infos
  16582. {
  16583. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16584. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16585. struct gguf_tensor_info * info = &ctx->infos[i];
  16586. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16587. info->ne[j] = 1;
  16588. }
  16589. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16590. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16591. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16592. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16593. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16594. }
  16595. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16596. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16597. gguf_tensor_info_sanitize(info);
  16598. if (!ok) {
  16599. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16600. fclose(file);
  16601. gguf_free(ctx);
  16602. return NULL;
  16603. }
  16604. }
  16605. }
  16606. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16607. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16608. if (alignment_idx != -1) {
  16609. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16610. }
  16611. // we require the data section to be aligned, so take into account any padding
  16612. {
  16613. const size_t offset_pad = offset % ctx->alignment;
  16614. if (offset_pad != 0) {
  16615. offset += ctx->alignment - offset_pad;
  16616. fseek(file, offset, SEEK_SET);
  16617. }
  16618. }
  16619. // store the current file offset - this is where the data section starts
  16620. ctx->offset = offset;
  16621. // compute the total size of the data section, taking into account the alignment
  16622. {
  16623. ctx->size = 0;
  16624. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16625. struct gguf_tensor_info * info = &ctx->infos[i];
  16626. const int64_t ne =
  16627. (int64_t) info->ne[0] *
  16628. (int64_t) info->ne[1] *
  16629. (int64_t) info->ne[2] *
  16630. (int64_t) info->ne[3];
  16631. if (ne % ggml_blck_size(info->type) != 0) {
  16632. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16633. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16634. fclose(file);
  16635. gguf_free(ctx);
  16636. return NULL;
  16637. }
  16638. const size_t size_cur = ggml_row_size(info->type, ne);
  16639. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16640. }
  16641. }
  16642. // load the tensor data only if requested
  16643. if (params.ctx != NULL) {
  16644. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16645. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16646. // the ggml_tensor structs to the appropriate locations in the binary blob
  16647. // compute the exact size needed for the new ggml_context
  16648. const size_t mem_size =
  16649. params.no_alloc ?
  16650. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16651. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16652. struct ggml_init_params pdata = {
  16653. .mem_size = mem_size,
  16654. .mem_buffer = NULL,
  16655. .no_alloc = params.no_alloc,
  16656. };
  16657. *params.ctx = ggml_init(pdata);
  16658. struct ggml_context * ctx_data = *params.ctx;
  16659. struct ggml_tensor * data = NULL;
  16660. if (!params.no_alloc) {
  16661. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16662. ok = ok && data != NULL;
  16663. // read the binary blob with the tensor data
  16664. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16665. if (!ok) {
  16666. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16667. fclose(file);
  16668. ggml_free(ctx_data);
  16669. gguf_free(ctx);
  16670. return NULL;
  16671. }
  16672. ctx->data = data->data;
  16673. }
  16674. ggml_set_no_alloc(ctx_data, true);
  16675. // create the tensors
  16676. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16677. const int64_t ne[GGML_MAX_DIMS] = {
  16678. ctx->infos[i].ne[0],
  16679. ctx->infos[i].ne[1],
  16680. ctx->infos[i].ne[2],
  16681. ctx->infos[i].ne[3],
  16682. };
  16683. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16684. ok = ok && cur != NULL;
  16685. ggml_set_name(cur, ctx->infos[i].name.data);
  16686. if (!ok) {
  16687. break;
  16688. }
  16689. // point the data member to the appropriate location in the binary blob using the tensor infos
  16690. if (!params.no_alloc) {
  16691. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16692. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16693. }
  16694. }
  16695. if (!ok) {
  16696. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16697. fclose(file);
  16698. ggml_free(ctx_data);
  16699. gguf_free(ctx);
  16700. return NULL;
  16701. }
  16702. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16703. }
  16704. fclose(file);
  16705. return ctx;
  16706. }
  16707. void gguf_free(struct gguf_context * ctx) {
  16708. if (ctx == NULL) {
  16709. return;
  16710. }
  16711. if (ctx->kv) {
  16712. // free string memory - not great..
  16713. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16714. struct gguf_kv * kv = &ctx->kv[i];
  16715. if (kv->key.data) {
  16716. GGML_FREE(kv->key.data);
  16717. }
  16718. if (kv->type == GGUF_TYPE_STRING) {
  16719. if (kv->value.str.data) {
  16720. GGML_FREE(kv->value.str.data);
  16721. }
  16722. }
  16723. if (kv->type == GGUF_TYPE_ARRAY) {
  16724. if (kv->value.arr.data) {
  16725. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16726. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16727. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16728. if (str->data) {
  16729. GGML_FREE(str->data);
  16730. }
  16731. }
  16732. }
  16733. GGML_FREE(kv->value.arr.data);
  16734. }
  16735. }
  16736. }
  16737. GGML_FREE(ctx->kv);
  16738. }
  16739. if (ctx->infos) {
  16740. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16741. struct gguf_tensor_info * info = &ctx->infos[i];
  16742. if (info->name.data) {
  16743. GGML_FREE(info->name.data);
  16744. }
  16745. }
  16746. GGML_FREE(ctx->infos);
  16747. }
  16748. GGML_ALIGNED_FREE(ctx);
  16749. }
  16750. const char * gguf_type_name(enum gguf_type type) {
  16751. return GGUF_TYPE_NAME[type];
  16752. }
  16753. int gguf_get_version(const struct gguf_context * ctx) {
  16754. return ctx->header.version;
  16755. }
  16756. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16757. return ctx->alignment;
  16758. }
  16759. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16760. return ctx->offset;
  16761. }
  16762. void * gguf_get_data(const struct gguf_context * ctx) {
  16763. return ctx->data;
  16764. }
  16765. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16766. return ctx->header.n_kv;
  16767. }
  16768. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16769. // return -1 if key not found
  16770. int keyfound = -1;
  16771. const int n_kv = gguf_get_n_kv(ctx);
  16772. for (int i = 0; i < n_kv; ++i) {
  16773. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16774. keyfound = i;
  16775. break;
  16776. }
  16777. }
  16778. return keyfound;
  16779. }
  16780. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16781. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16782. return ctx->kv[key_id].key.data;
  16783. }
  16784. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16785. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16786. return ctx->kv[key_id].type;
  16787. }
  16788. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16789. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16790. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16791. return ctx->kv[key_id].value.arr.type;
  16792. }
  16793. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16794. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16795. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16796. return ctx->kv[key_id].value.arr.data;
  16797. }
  16798. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16799. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16800. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16801. struct gguf_kv * kv = &ctx->kv[key_id];
  16802. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16803. return str->data;
  16804. }
  16805. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16806. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16807. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16808. return ctx->kv[key_id].value.arr.n;
  16809. }
  16810. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16811. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16812. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16813. return ctx->kv[key_id].value.uint8;
  16814. }
  16815. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16816. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16817. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16818. return ctx->kv[key_id].value.int8;
  16819. }
  16820. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16821. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16822. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16823. return ctx->kv[key_id].value.uint16;
  16824. }
  16825. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16826. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16827. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16828. return ctx->kv[key_id].value.int16;
  16829. }
  16830. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16831. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16832. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16833. return ctx->kv[key_id].value.uint32;
  16834. }
  16835. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16836. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16837. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16838. return ctx->kv[key_id].value.int32;
  16839. }
  16840. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16841. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16842. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16843. return ctx->kv[key_id].value.float32;
  16844. }
  16845. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16846. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16847. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16848. return ctx->kv[key_id].value.uint64;
  16849. }
  16850. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16851. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16852. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16853. return ctx->kv[key_id].value.int64;
  16854. }
  16855. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16856. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16857. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16858. return ctx->kv[key_id].value.float64;
  16859. }
  16860. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16861. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16862. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16863. return ctx->kv[key_id].value.bool_;
  16864. }
  16865. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16866. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16867. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16868. return ctx->kv[key_id].value.str.data;
  16869. }
  16870. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16871. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16872. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16873. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16874. return &ctx->kv[key_id].value;
  16875. }
  16876. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16877. return ctx->header.n_tensors;
  16878. }
  16879. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16880. // return -1 if tensor not found
  16881. int tensorfound = -1;
  16882. const int n_tensors = gguf_get_n_tensors(ctx);
  16883. for (int i = 0; i < n_tensors; ++i) {
  16884. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16885. tensorfound = i;
  16886. break;
  16887. }
  16888. }
  16889. return tensorfound;
  16890. }
  16891. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16892. return ctx->infos[i].offset;
  16893. }
  16894. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16895. return ctx->infos[i].name.data;
  16896. }
  16897. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16898. return ctx->infos[i].type;
  16899. }
  16900. // returns the index
  16901. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16902. const int idx = gguf_find_key(ctx, key);
  16903. if (idx >= 0) {
  16904. return idx;
  16905. }
  16906. const int n_kv = gguf_get_n_kv(ctx);
  16907. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16908. ctx->kv[n_kv].key.n = strlen(key);
  16909. ctx->kv[n_kv].key.data = strdup(key);
  16910. ctx->header.n_kv++;
  16911. return n_kv;
  16912. }
  16913. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16914. const int idx = gguf_get_or_add_key(ctx, key);
  16915. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16916. ctx->kv[idx].value.uint8 = val;
  16917. }
  16918. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16919. const int idx = gguf_get_or_add_key(ctx, key);
  16920. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16921. ctx->kv[idx].value.int8 = val;
  16922. }
  16923. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16924. const int idx = gguf_get_or_add_key(ctx, key);
  16925. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16926. ctx->kv[idx].value.uint16 = val;
  16927. }
  16928. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16929. const int idx = gguf_get_or_add_key(ctx, key);
  16930. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16931. ctx->kv[idx].value.int16 = val;
  16932. }
  16933. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16934. const int idx = gguf_get_or_add_key(ctx, key);
  16935. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16936. ctx->kv[idx].value.uint32 = val;
  16937. }
  16938. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16939. const int idx = gguf_get_or_add_key(ctx, key);
  16940. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16941. ctx->kv[idx].value.int32 = val;
  16942. }
  16943. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16944. const int idx = gguf_get_or_add_key(ctx, key);
  16945. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16946. ctx->kv[idx].value.float32 = val;
  16947. }
  16948. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16949. const int idx = gguf_get_or_add_key(ctx, key);
  16950. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16951. ctx->kv[idx].value.uint64 = val;
  16952. }
  16953. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16954. const int idx = gguf_get_or_add_key(ctx, key);
  16955. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16956. ctx->kv[idx].value.int64 = val;
  16957. }
  16958. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16959. const int idx = gguf_get_or_add_key(ctx, key);
  16960. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16961. ctx->kv[idx].value.float64 = val;
  16962. }
  16963. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16964. const int idx = gguf_get_or_add_key(ctx, key);
  16965. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16966. ctx->kv[idx].value.bool_ = val;
  16967. }
  16968. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16969. const int idx = gguf_get_or_add_key(ctx, key);
  16970. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16971. ctx->kv[idx].value.str.n = strlen(val);
  16972. ctx->kv[idx].value.str.data = strdup(val);
  16973. }
  16974. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16975. const int idx = gguf_get_or_add_key(ctx, key);
  16976. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16977. ctx->kv[idx].value.arr.type = type;
  16978. ctx->kv[idx].value.arr.n = n;
  16979. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16980. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16981. }
  16982. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16983. const int idx = gguf_get_or_add_key(ctx, key);
  16984. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16985. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16986. ctx->kv[idx].value.arr.n = n;
  16987. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16988. for (int i = 0; i < n; i++) {
  16989. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16990. str->n = strlen(data[i]);
  16991. str->data = strdup(data[i]);
  16992. }
  16993. }
  16994. // set or add KV pairs from another context
  16995. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16996. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16997. switch (src->kv[i].type) {
  16998. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16999. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17000. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17001. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17002. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17003. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17004. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17005. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17006. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17007. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17008. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17009. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17010. case GGUF_TYPE_ARRAY:
  17011. {
  17012. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17013. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17014. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17015. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17016. }
  17017. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17018. GGML_FREE((void *)data);
  17019. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17020. GGML_ASSERT(false && "nested arrays not supported");
  17021. } else {
  17022. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17023. }
  17024. } break;
  17025. default: GGML_ASSERT(false && "invalid type"); break;
  17026. }
  17027. }
  17028. }
  17029. void gguf_add_tensor(
  17030. struct gguf_context * ctx,
  17031. const struct ggml_tensor * tensor) {
  17032. const int idx = ctx->header.n_tensors;
  17033. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17034. ctx->infos[idx].name.n = strlen(tensor->name);
  17035. ctx->infos[idx].name.data = strdup(tensor->name);
  17036. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17037. ctx->infos[idx].ne[i] = 1;
  17038. }
  17039. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17040. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17041. ctx->infos[idx].ne[i] = tensor->ne[i];
  17042. }
  17043. ctx->infos[idx].type = tensor->type;
  17044. ctx->infos[idx].offset = 0;
  17045. ctx->infos[idx].data = tensor->data;
  17046. ctx->infos[idx].size = ggml_nbytes(tensor);
  17047. if (ctx->header.n_tensors > 0) {
  17048. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17049. }
  17050. ctx->header.n_tensors++;
  17051. }
  17052. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17053. const int idx = gguf_find_tensor(ctx, name);
  17054. if (idx < 0) {
  17055. GGML_ASSERT(false && "tensor not found");
  17056. }
  17057. ctx->infos[idx].type = type;
  17058. }
  17059. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17060. const int idx = gguf_find_tensor(ctx, name);
  17061. if (idx < 0) {
  17062. GGML_ASSERT(false && "tensor not found");
  17063. }
  17064. ctx->infos[idx].data = data;
  17065. ctx->infos[idx].size = size;
  17066. // update offsets
  17067. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17068. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17069. }
  17070. }
  17071. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17072. // fwrite(&val->n, sizeof(val->n), 1, file);
  17073. // fwrite(val->data, sizeof(char), val->n, file);
  17074. //}
  17075. //
  17076. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17077. // fwrite(val, sizeof(char), size, file);
  17078. //}
  17079. struct gguf_buf {
  17080. void * data;
  17081. size_t size;
  17082. size_t offset;
  17083. };
  17084. static struct gguf_buf gguf_buf_init(size_t size) {
  17085. struct gguf_buf buf = {
  17086. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17087. /*buf.size =*/ size,
  17088. /*buf.offset =*/ 0,
  17089. };
  17090. return buf;
  17091. }
  17092. static void gguf_buf_free(struct gguf_buf buf) {
  17093. if (buf.data) {
  17094. GGML_FREE(buf.data);
  17095. }
  17096. }
  17097. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17098. if (buf->offset + size > buf->size) {
  17099. buf->size = 1.5*(buf->offset + size);
  17100. if (buf->data) {
  17101. buf->data = realloc(buf->data, buf->size);
  17102. }
  17103. }
  17104. }
  17105. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17106. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17107. if (buf->data) {
  17108. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17109. }
  17110. buf->offset += sizeof(val->n);
  17111. if (buf->data) {
  17112. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17113. }
  17114. buf->offset += val->n;
  17115. }
  17116. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17117. gguf_buf_grow(buf, el_size);
  17118. if (buf->data) {
  17119. memcpy((char *) buf->data + buf->offset, val, el_size);
  17120. }
  17121. buf->offset += el_size;
  17122. }
  17123. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17124. // write header
  17125. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17126. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17127. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17128. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17129. // write key-value pairs
  17130. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17131. struct gguf_kv * kv = &ctx->kv[i];
  17132. gguf_bwrite_str(buf, &kv->key);
  17133. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17134. switch (kv->type) {
  17135. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17136. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17137. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17138. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17139. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17140. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17141. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17142. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17143. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17144. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17145. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17146. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17147. case GGUF_TYPE_ARRAY:
  17148. {
  17149. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17150. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17151. switch (kv->value.arr.type) {
  17152. case GGUF_TYPE_UINT8:
  17153. case GGUF_TYPE_INT8:
  17154. case GGUF_TYPE_UINT16:
  17155. case GGUF_TYPE_INT16:
  17156. case GGUF_TYPE_UINT32:
  17157. case GGUF_TYPE_INT32:
  17158. case GGUF_TYPE_FLOAT32:
  17159. case GGUF_TYPE_UINT64:
  17160. case GGUF_TYPE_INT64:
  17161. case GGUF_TYPE_FLOAT64:
  17162. case GGUF_TYPE_BOOL:
  17163. {
  17164. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17165. } break;
  17166. case GGUF_TYPE_STRING:
  17167. {
  17168. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17169. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17170. }
  17171. } break;
  17172. case GGUF_TYPE_ARRAY:
  17173. default: GGML_ASSERT(false && "invalid type"); break;
  17174. }
  17175. } break;
  17176. default: GGML_ASSERT(false && "invalid type");
  17177. }
  17178. }
  17179. // write tensor infos
  17180. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17181. struct gguf_tensor_info * info = &ctx->infos[i];
  17182. gguf_bwrite_str(buf, &info->name);
  17183. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17184. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17185. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17186. }
  17187. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17188. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17189. }
  17190. // we require the data section to be aligned, so take into account any padding
  17191. {
  17192. const size_t offset = buf->offset;
  17193. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17194. if (offset_pad != offset) {
  17195. uint8_t pad = 0;
  17196. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17197. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17198. }
  17199. }
  17200. }
  17201. if (only_meta) {
  17202. return;
  17203. }
  17204. size_t offset = 0;
  17205. // write tensor data
  17206. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17207. struct gguf_tensor_info * info = &ctx->infos[i];
  17208. const size_t size = info->size;
  17209. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17210. gguf_bwrite_el(buf, info->data, size);
  17211. if (size_pad != size) {
  17212. uint8_t pad = 0;
  17213. for (size_t j = 0; j < size_pad - size; ++j) {
  17214. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17215. }
  17216. }
  17217. GGML_ASSERT(offset == info->offset);
  17218. offset += size_pad;
  17219. }
  17220. }
  17221. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17222. FILE * file = fopen(fname, "wb");
  17223. if (!file) {
  17224. GGML_ASSERT(false && "failed to open file for writing");
  17225. }
  17226. struct gguf_buf buf = gguf_buf_init(16*1024);
  17227. gguf_write_to_buf(ctx, &buf, only_meta);
  17228. fwrite(buf.data, 1, buf.offset, file);
  17229. gguf_buf_free(buf);
  17230. fclose(file);
  17231. }
  17232. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17233. // no allocs - only compute size
  17234. struct gguf_buf buf = gguf_buf_init(0);
  17235. gguf_write_to_buf(ctx, &buf, true);
  17236. return buf.offset;
  17237. }
  17238. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17239. struct gguf_buf buf = gguf_buf_init(16*1024);
  17240. gguf_write_to_buf(ctx, &buf, true);
  17241. memcpy(data, buf.data, buf.offset);
  17242. gguf_buf_free(buf);
  17243. }
  17244. ////////////////////////////////////////////////////////////////////////////////
  17245. int ggml_cpu_has_avx(void) {
  17246. #if defined(__AVX__)
  17247. return 1;
  17248. #else
  17249. return 0;
  17250. #endif
  17251. }
  17252. int ggml_cpu_has_avx_vnni(void) {
  17253. #if defined(__AVXVNNI__)
  17254. return 1;
  17255. #else
  17256. return 0;
  17257. #endif
  17258. }
  17259. int ggml_cpu_has_avx2(void) {
  17260. #if defined(__AVX2__)
  17261. return 1;
  17262. #else
  17263. return 0;
  17264. #endif
  17265. }
  17266. int ggml_cpu_has_avx512(void) {
  17267. #if defined(__AVX512F__)
  17268. return 1;
  17269. #else
  17270. return 0;
  17271. #endif
  17272. }
  17273. int ggml_cpu_has_avx512_vbmi(void) {
  17274. #if defined(__AVX512VBMI__)
  17275. return 1;
  17276. #else
  17277. return 0;
  17278. #endif
  17279. }
  17280. int ggml_cpu_has_avx512_vnni(void) {
  17281. #if defined(__AVX512VNNI__)
  17282. return 1;
  17283. #else
  17284. return 0;
  17285. #endif
  17286. }
  17287. int ggml_cpu_has_fma(void) {
  17288. #if defined(__FMA__)
  17289. return 1;
  17290. #else
  17291. return 0;
  17292. #endif
  17293. }
  17294. int ggml_cpu_has_neon(void) {
  17295. #if defined(__ARM_NEON)
  17296. return 1;
  17297. #else
  17298. return 0;
  17299. #endif
  17300. }
  17301. int ggml_cpu_has_arm_fma(void) {
  17302. #if defined(__ARM_FEATURE_FMA)
  17303. return 1;
  17304. #else
  17305. return 0;
  17306. #endif
  17307. }
  17308. int ggml_cpu_has_metal(void) {
  17309. #if defined(GGML_USE_METAL)
  17310. return 1;
  17311. #else
  17312. return 0;
  17313. #endif
  17314. }
  17315. int ggml_cpu_has_f16c(void) {
  17316. #if defined(__F16C__)
  17317. return 1;
  17318. #else
  17319. return 0;
  17320. #endif
  17321. }
  17322. int ggml_cpu_has_fp16_va(void) {
  17323. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17324. return 1;
  17325. #else
  17326. return 0;
  17327. #endif
  17328. }
  17329. int ggml_cpu_has_wasm_simd(void) {
  17330. #if defined(__wasm_simd128__)
  17331. return 1;
  17332. #else
  17333. return 0;
  17334. #endif
  17335. }
  17336. int ggml_cpu_has_blas(void) {
  17337. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17338. return 1;
  17339. #else
  17340. return 0;
  17341. #endif
  17342. }
  17343. int ggml_cpu_has_cublas(void) {
  17344. #if defined(GGML_USE_CUBLAS)
  17345. return 1;
  17346. #else
  17347. return 0;
  17348. #endif
  17349. }
  17350. int ggml_cpu_has_clblast(void) {
  17351. #if defined(GGML_USE_CLBLAST)
  17352. return 1;
  17353. #else
  17354. return 0;
  17355. #endif
  17356. }
  17357. int ggml_cpu_has_vulkan(void) {
  17358. #if defined(GGML_USE_VULKAN)
  17359. return 1;
  17360. #else
  17361. return 0;
  17362. #endif
  17363. }
  17364. int ggml_cpu_has_kompute(void) {
  17365. #if defined(GGML_USE_KOMPUTE)
  17366. return 1;
  17367. #else
  17368. return 0;
  17369. #endif
  17370. }
  17371. int ggml_cpu_has_sycl(void) {
  17372. #if defined(GGML_USE_SYCL)
  17373. return 1;
  17374. #else
  17375. return 0;
  17376. #endif
  17377. }
  17378. int ggml_cpu_has_gpublas(void) {
  17379. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17380. ggml_cpu_has_sycl();
  17381. }
  17382. int ggml_cpu_has_sse3(void) {
  17383. #if defined(__SSE3__)
  17384. return 1;
  17385. #else
  17386. return 0;
  17387. #endif
  17388. }
  17389. int ggml_cpu_has_ssse3(void) {
  17390. #if defined(__SSSE3__)
  17391. return 1;
  17392. #else
  17393. return 0;
  17394. #endif
  17395. }
  17396. int ggml_cpu_has_vsx(void) {
  17397. #if defined(__POWER9_VECTOR__)
  17398. return 1;
  17399. #else
  17400. return 0;
  17401. #endif
  17402. }
  17403. int ggml_cpu_has_matmul_int8(void) {
  17404. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17405. return 1;
  17406. #else
  17407. return 0;
  17408. #endif
  17409. }
  17410. ////////////////////////////////////////////////////////////////////////////////