convert_hf_to_gguf.py 267 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. class ModelType(IntEnum):
  35. TEXT = 1
  36. VISION = 2
  37. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  38. class ModelBase:
  39. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  40. ModelType.TEXT: {},
  41. ModelType.VISION: {},
  42. }
  43. dir_model: Path
  44. ftype: gguf.LlamaFileType
  45. fname_out: Path
  46. is_big_endian: bool
  47. endianess: gguf.GGUFEndian
  48. use_temp_file: bool
  49. lazy: bool
  50. part_names: list[str]
  51. is_safetensors: bool
  52. hparams: dict[str, Any]
  53. block_count: int
  54. tensor_map: gguf.TensorNameMap
  55. tensor_names: set[str] | None
  56. gguf_writer: gguf.GGUFWriter
  57. model_name: str | None
  58. metadata_override: Path | None
  59. dir_model_card: Path
  60. remote_hf_model_id: str | None
  61. # subclasses should define this!
  62. model_arch: gguf.MODEL_ARCH
  63. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  64. use_temp_file: bool = False, eager: bool = False,
  65. metadata_override: Path | None = None, model_name: str | None = None,
  66. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  67. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  68. if type(self) is ModelBase or \
  69. type(self) is TextModel or \
  70. type(self) is VisionModel:
  71. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  72. self.dir_model = dir_model
  73. self.ftype = ftype
  74. self.fname_out = fname_out
  75. self.is_big_endian = is_big_endian
  76. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  77. self.use_temp_file = use_temp_file
  78. self.lazy = not eager or (remote_hf_model_id is not None)
  79. self.remote_hf_model_id = remote_hf_model_id
  80. if remote_hf_model_id is not None:
  81. self.is_safetensors = True
  82. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  83. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  84. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  85. self.tensor_names = set(name for name in remote_tensors.keys())
  86. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  87. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  88. self.get_tensors = get_remote_tensors
  89. else:
  90. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  91. self.is_safetensors = len(self.part_names) > 0
  92. if not self.is_safetensors:
  93. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  94. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  95. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  96. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. )
  260. )
  261. or not new_name.endswith(".weight")
  262. ):
  263. data_qtype = gguf.GGMLQuantizationType.F32
  264. if data_qtype is False and any(
  265. self.match_model_tensor_name(new_name, key, bid)
  266. for key in (
  267. gguf.MODEL_TENSOR.TOKEN_EMBD,
  268. gguf.MODEL_TENSOR.OUTPUT,
  269. )
  270. ):
  271. if self.ftype in (
  272. gguf.LlamaFileType.MOSTLY_TQ1_0,
  273. gguf.LlamaFileType.MOSTLY_TQ2_0,
  274. ):
  275. # TODO: use Q4_K and Q6_K
  276. data_qtype = gguf.GGMLQuantizationType.F16
  277. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  278. if isinstance(data_qtype, bool):
  279. if self.ftype == gguf.LlamaFileType.ALL_F32:
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  282. data_qtype = gguf.GGMLQuantizationType.F16
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  284. data_qtype = gguf.GGMLQuantizationType.BF16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  286. data_qtype = gguf.GGMLQuantizationType.Q8_0
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  288. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  291. else:
  292. raise ValueError(f"Unknown file type: {self.ftype.name}")
  293. try:
  294. data = gguf.quants.quantize(data, data_qtype)
  295. except gguf.QuantError as e:
  296. logger.warning("%s, %s", e, "falling back to F16")
  297. data_qtype = gguf.GGMLQuantizationType.F16
  298. data = gguf.quants.quantize(data, data_qtype)
  299. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  300. # reverse shape to make it similar to the internal ggml dimension order
  301. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  302. # n_dims is implicit in the shape
  303. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  304. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  305. def set_type(self):
  306. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  307. def prepare_metadata(self, vocab_only: bool):
  308. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  309. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  310. # If we are using HF model id, set the metadata name to the model id
  311. if self.remote_hf_model_id:
  312. self.metadata.name = self.remote_hf_model_id
  313. # Fallback to model directory name if metadata name is still missing
  314. if self.metadata.name is None:
  315. self.metadata.name = self.dir_model.name
  316. # Generate parameter weight class (useful for leader boards) if not yet determined
  317. if self.metadata.size_label is None and total_params > 0:
  318. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  319. self.set_type()
  320. logger.info("Set meta model")
  321. self.metadata.set_gguf_meta_model(self.gguf_writer)
  322. logger.info("Set model parameters")
  323. self.set_gguf_parameters()
  324. logger.info("Set model quantization version")
  325. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  326. def write_vocab(self):
  327. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  328. def write(self):
  329. self.prepare_tensors()
  330. self.prepare_metadata(vocab_only=False)
  331. self.gguf_writer.write_header_to_file(path=self.fname_out)
  332. self.gguf_writer.write_kv_data_to_file()
  333. self.gguf_writer.write_tensors_to_file(progress=True)
  334. self.gguf_writer.close()
  335. @staticmethod
  336. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  337. part_names: list[str] = []
  338. for filename in os.listdir(dir_model):
  339. if filename.startswith(prefix) and filename.endswith(suffix):
  340. part_names.append(filename)
  341. part_names.sort()
  342. return part_names
  343. @staticmethod
  344. def load_hparams(dir_model: Path):
  345. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  346. hparams = json.load(f)
  347. architectures = hparams.get("architectures")
  348. if "text_config" in hparams:
  349. hparams = {**hparams, **hparams["text_config"]}
  350. if architectures is not None:
  351. # preserve "architectures" from root level config
  352. hparams["architectures"] = architectures
  353. return hparams
  354. @classmethod
  355. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  356. assert names
  357. def func(modelcls: AnyModel) -> AnyModel:
  358. model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
  359. for name in names:
  360. cls._model_classes[model_type][name] = modelcls
  361. return modelcls
  362. return func
  363. @classmethod
  364. def print_registered_models(cls):
  365. for model_type, model_classes in cls._model_classes.items():
  366. logger.error(f"{model_type.name} models:")
  367. for name in sorted(model_classes.keys()):
  368. logger.error(f" - {name}")
  369. @classmethod
  370. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  371. try:
  372. return cls._model_classes[model_type][arch]
  373. except KeyError:
  374. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  375. class TextModel(ModelBase):
  376. @classmethod
  377. def __init_subclass__(cls):
  378. # can't use an abstract property, because overriding it without type errors
  379. # would require using decorated functions instead of simply defining the property
  380. if "model_arch" not in cls.__dict__:
  381. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  382. def set_vocab(self):
  383. self._set_vocab_gpt2()
  384. def prepare_metadata(self, vocab_only: bool):
  385. super().prepare_metadata(vocab_only=vocab_only)
  386. total_params = self.gguf_writer.get_total_parameter_count()[0]
  387. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  388. output_type: str = self.ftype.name.partition("_")[2]
  389. # Filename Output
  390. if self.fname_out.is_dir():
  391. # Generate default filename based on model specification and available metadata
  392. if not vocab_only:
  393. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  394. else:
  395. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  396. # Use the default filename
  397. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  398. else:
  399. # Output path is a custom defined templated filename
  400. # Note: `not is_dir()` is used because `.is_file()` will not detect
  401. # file template strings as it doesn't actually exist as a file
  402. # Process templated file name with the output ftype, useful with the "auto" ftype
  403. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  404. logger.info("Set model tokenizer")
  405. self.set_vocab()
  406. def set_gguf_parameters(self):
  407. self.gguf_writer.add_block_count(self.block_count)
  408. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  409. self.gguf_writer.add_context_length(n_ctx)
  410. logger.info(f"gguf: context length = {n_ctx}")
  411. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  412. self.gguf_writer.add_embedding_length(n_embd)
  413. logger.info(f"gguf: embedding length = {n_embd}")
  414. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  415. self.gguf_writer.add_feed_forward_length(n_ff)
  416. logger.info(f"gguf: feed forward length = {n_ff}")
  417. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  418. self.gguf_writer.add_head_count(n_head)
  419. logger.info(f"gguf: head count = {n_head}")
  420. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  421. self.gguf_writer.add_head_count_kv(n_head_kv)
  422. logger.info(f"gguf: key-value head count = {n_head_kv}")
  423. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  424. self.gguf_writer.add_rope_freq_base(rope_theta)
  425. logger.info(f"gguf: rope theta = {rope_theta}")
  426. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  427. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  428. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  429. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  430. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  431. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  432. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  433. self.gguf_writer.add_expert_count(n_experts)
  434. logger.info(f"gguf: expert count = {n_experts}")
  435. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  436. self.gguf_writer.add_expert_used_count(n_experts_used)
  437. logger.info(f"gguf: experts used count = {n_experts_used}")
  438. if (head_dim := self.hparams.get("head_dim")) is not None:
  439. self.gguf_writer.add_key_length(head_dim)
  440. self.gguf_writer.add_value_length(head_dim)
  441. self.gguf_writer.add_file_type(self.ftype)
  442. logger.info(f"gguf: file type = {self.ftype}")
  443. def write_vocab(self):
  444. if len(self.gguf_writer.tensors) != 1:
  445. raise ValueError('Splitting the vocabulary is not supported')
  446. self.prepare_metadata(vocab_only=True)
  447. self.gguf_writer.write_header_to_file(path=self.fname_out)
  448. self.gguf_writer.write_kv_data_to_file()
  449. self.gguf_writer.close()
  450. def does_token_look_special(self, token: str | bytes) -> bool:
  451. if isinstance(token, (bytes, bytearray)):
  452. token_text = token.decode(encoding="utf-8")
  453. elif isinstance(token, memoryview):
  454. token_text = token.tobytes().decode(encoding="utf-8")
  455. else:
  456. token_text = token
  457. # Some models mark some added tokens which ought to be control tokens as not special.
  458. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  459. seems_special = token_text in (
  460. "<pad>", # deepseek-coder
  461. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  462. )
  463. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  464. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  465. # TODO: should these be marked as UNUSED instead? (maybe not)
  466. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  467. return seems_special
  468. # used for GPT-2 BPE and WordPiece vocabs
  469. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  470. tokens: list[str] = []
  471. toktypes: list[int] = []
  472. from transformers import AutoTokenizer
  473. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  474. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  475. assert max(tokenizer.vocab.values()) < vocab_size
  476. tokpre = self.get_vocab_base_pre(tokenizer)
  477. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  478. added_vocab = tokenizer.get_added_vocab()
  479. added_tokens_decoder = tokenizer.added_tokens_decoder
  480. for i in range(vocab_size):
  481. if i not in reverse_vocab:
  482. tokens.append(f"[PAD{i}]")
  483. toktypes.append(gguf.TokenType.UNUSED)
  484. else:
  485. token: str = reverse_vocab[i]
  486. if token in added_vocab:
  487. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  488. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  489. if not added_tokens_decoder[i].normalized:
  490. previous_token = token
  491. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  492. if previous_token != token:
  493. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  494. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  495. toktypes.append(gguf.TokenType.CONTROL)
  496. else:
  497. # NOTE: this was added for Gemma.
  498. # Encoding and decoding the tokens above isn't sufficient for this case.
  499. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  500. toktypes.append(gguf.TokenType.USER_DEFINED)
  501. else:
  502. toktypes.append(gguf.TokenType.NORMAL)
  503. tokens.append(token)
  504. return tokens, toktypes, tokpre
  505. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  506. # do not modify it manually!
  507. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  508. # Marker: Start get_vocab_base_pre
  509. def get_vocab_base_pre(self, tokenizer) -> str:
  510. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  511. # is specific for the BPE pre-tokenizer used by the model
  512. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  513. # use in llama.cpp to implement the same pre-tokenizer
  514. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  515. chktok = tokenizer.encode(chktxt)
  516. chkhsh = sha256(str(chktok).encode()).hexdigest()
  517. logger.debug(f"chktok: {chktok}")
  518. logger.debug(f"chkhsh: {chkhsh}")
  519. res = None
  520. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  521. # or pull the latest version of the model from Huggingface
  522. # don't edit the hashes manually!
  523. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  524. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  525. res = "llama-bpe"
  526. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  527. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  528. res = "deepseek-llm"
  529. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  530. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  531. res = "deepseek-coder"
  532. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  533. # ref: https://huggingface.co/tiiuae/falcon-7b
  534. res = "falcon"
  535. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  536. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  537. res = "falcon3"
  538. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  539. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  540. res = "bert-bge"
  541. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  542. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  543. res = "bert-bge-large"
  544. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  545. # ref: https://huggingface.co/mosaicml/mpt-7b
  546. res = "mpt"
  547. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  548. # ref: https://huggingface.co/bigcode/starcoder2-3b
  549. res = "starcoder"
  550. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  551. # ref: https://huggingface.co/openai-community/gpt2
  552. res = "gpt-2"
  553. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  554. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  555. res = "stablelm2"
  556. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  557. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  558. res = "refact"
  559. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  560. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  561. res = "command-r"
  562. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  563. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  564. res = "qwen2"
  565. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  566. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  567. res = "olmo"
  568. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  569. # ref: https://huggingface.co/databricks/dbrx-base
  570. res = "dbrx"
  571. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  572. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  573. res = "jina-v1-en"
  574. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  575. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  576. res = "jina-v2-en"
  577. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  578. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  579. res = "jina-v2-es"
  580. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  581. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  582. res = "jina-v2-de"
  583. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  584. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  585. res = "smaug-bpe"
  586. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  587. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  588. res = "poro-chat"
  589. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  590. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  591. res = "jina-v2-code"
  592. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  593. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  594. res = "chatglm-bpe"
  595. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  596. # ref: https://huggingface.co/LumiOpen/Viking-7B
  597. res = "viking"
  598. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  599. # ref: https://huggingface.co/core42/jais-13b
  600. res = "jais"
  601. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  602. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  603. res = "codeshell"
  604. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  605. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  606. res = "tekken"
  607. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  608. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  609. res = "smollm"
  610. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  611. # ref: https://huggingface.co/bigscience/bloom
  612. res = "bloom"
  613. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  614. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  615. res = "gpt3-finnish"
  616. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  617. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  618. res = "exaone"
  619. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  620. # ref: https://huggingface.co/microsoft/phi-2
  621. res = "phi-2"
  622. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  623. # ref: https://huggingface.co/facebook/chameleon-7b
  624. res = "chameleon"
  625. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  626. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  627. res = "minerva-7b"
  628. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  629. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  630. res = "roberta-bpe"
  631. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  632. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  633. res = "gigachat"
  634. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  635. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  636. res = "megrez"
  637. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  638. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  639. res = "deepseek-v3"
  640. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  641. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  642. res = "deepseek-r1-qwen"
  643. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  644. # ref: https://huggingface.co/Xenova/gpt-4o
  645. res = "gpt-4o"
  646. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  647. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  648. res = "superbpe"
  649. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  650. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  651. res = "trillion"
  652. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  653. # ref: https://huggingface.co/inclusionAI/Ling-lite
  654. res = "bailingmoe"
  655. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  656. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  657. res = "llama4"
  658. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  659. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  660. res = "glm4"
  661. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  662. # ref: https://huggingface.co/mistral-community/pixtral-12b
  663. res = "pixtral"
  664. if res is None:
  665. logger.warning("\n")
  666. logger.warning("**************************************************************************************")
  667. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  668. logger.warning("** There are 2 possible reasons for this:")
  669. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  670. logger.warning("** - the pre-tokenization config has changed upstream")
  671. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  672. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  673. logger.warning("**")
  674. logger.warning(f"** chkhsh: {chkhsh}")
  675. logger.warning("**************************************************************************************")
  676. logger.warning("\n")
  677. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  678. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  679. logger.debug(f"chkhsh: {chkhsh}")
  680. return res
  681. # Marker: End get_vocab_base_pre
  682. def _set_vocab_none(self) -> None:
  683. self.gguf_writer.add_tokenizer_model("none")
  684. def _set_vocab_gpt2(self) -> None:
  685. tokens, toktypes, tokpre = self.get_vocab_base()
  686. self.gguf_writer.add_tokenizer_model("gpt2")
  687. self.gguf_writer.add_tokenizer_pre(tokpre)
  688. self.gguf_writer.add_token_list(tokens)
  689. self.gguf_writer.add_token_types(toktypes)
  690. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  691. special_vocab.add_to_gguf(self.gguf_writer)
  692. def _set_vocab_qwen(self):
  693. dir_model = self.dir_model
  694. hparams = self.hparams
  695. tokens: list[str] = []
  696. toktypes: list[int] = []
  697. from transformers import AutoTokenizer
  698. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  699. vocab_size = hparams["vocab_size"]
  700. assert max(tokenizer.get_vocab().values()) < vocab_size
  701. tokpre = self.get_vocab_base_pre(tokenizer)
  702. merges = []
  703. vocab = {}
  704. mergeable_ranks = tokenizer.mergeable_ranks
  705. for token, rank in mergeable_ranks.items():
  706. vocab[QwenModel.token_bytes_to_string(token)] = rank
  707. if len(token) == 1:
  708. continue
  709. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  710. assert len(merged) == 2
  711. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  712. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  713. added_vocab = tokenizer.special_tokens
  714. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  715. for i in range(vocab_size):
  716. if i not in reverse_vocab:
  717. tokens.append(f"[PAD{i}]")
  718. toktypes.append(gguf.TokenType.UNUSED)
  719. elif reverse_vocab[i] in added_vocab:
  720. tokens.append(reverse_vocab[i])
  721. toktypes.append(gguf.TokenType.CONTROL)
  722. else:
  723. tokens.append(reverse_vocab[i])
  724. toktypes.append(gguf.TokenType.NORMAL)
  725. self.gguf_writer.add_tokenizer_model("gpt2")
  726. self.gguf_writer.add_tokenizer_pre(tokpre)
  727. self.gguf_writer.add_token_list(tokens)
  728. self.gguf_writer.add_token_types(toktypes)
  729. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  730. special_vocab.merges = merges
  731. # only add special tokens when they were not already loaded from config.json
  732. if len(special_vocab.special_token_ids) == 0:
  733. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  734. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  735. # this one is usually not in config.json anyway
  736. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  737. special_vocab.add_to_gguf(self.gguf_writer)
  738. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  739. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  740. self.gguf_writer.add_tokenizer_model("llama")
  741. self.gguf_writer.add_tokenizer_pre("default")
  742. self.gguf_writer.add_token_list(tokens)
  743. self.gguf_writer.add_token_scores(scores)
  744. self.gguf_writer.add_token_types(toktypes)
  745. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  746. special_vocab.add_to_gguf(self.gguf_writer)
  747. def _create_vocab_sentencepiece(self):
  748. from sentencepiece import SentencePieceProcessor
  749. tokenizer_path = self.dir_model / 'tokenizer.model'
  750. if not tokenizer_path.is_file():
  751. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  752. tokenizer = SentencePieceProcessor()
  753. tokenizer.LoadFromFile(str(tokenizer_path))
  754. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  755. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  756. scores: list[float] = [-10000.0] * vocab_size
  757. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  758. for token_id in range(tokenizer.vocab_size()):
  759. piece = tokenizer.IdToPiece(token_id)
  760. text = piece.encode("utf-8")
  761. score = tokenizer.GetScore(token_id)
  762. toktype = SentencePieceTokenTypes.NORMAL
  763. if tokenizer.IsUnknown(token_id):
  764. toktype = SentencePieceTokenTypes.UNKNOWN
  765. elif tokenizer.IsControl(token_id):
  766. toktype = SentencePieceTokenTypes.CONTROL
  767. elif tokenizer.IsUnused(token_id):
  768. toktype = SentencePieceTokenTypes.UNUSED
  769. elif tokenizer.IsByte(token_id):
  770. toktype = SentencePieceTokenTypes.BYTE
  771. tokens[token_id] = text
  772. scores[token_id] = score
  773. toktypes[token_id] = toktype
  774. added_tokens_file = self.dir_model / 'added_tokens.json'
  775. if added_tokens_file.is_file():
  776. with open(added_tokens_file, "r", encoding="utf-8") as f:
  777. added_tokens_json = json.load(f)
  778. for key in added_tokens_json:
  779. token_id = added_tokens_json[key]
  780. if token_id >= vocab_size:
  781. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  782. continue
  783. tokens[token_id] = key.encode("utf-8")
  784. scores[token_id] = -1000.0
  785. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  786. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  787. if tokenizer_config_file.is_file():
  788. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  789. tokenizer_config_json = json.load(f)
  790. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  791. for token_id, token_data in added_tokens_decoder.items():
  792. token_id = int(token_id)
  793. token: str = token_data["content"]
  794. if token_id >= vocab_size:
  795. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  796. continue
  797. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  798. if tokens[token_id] != token.encode("utf-8"):
  799. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  800. if token_data.get("special") or self.does_token_look_special(token):
  801. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  802. else:
  803. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  804. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  805. scores[token_id] = -1000.0
  806. tokens[token_id] = token.encode("utf-8")
  807. if vocab_size > len(tokens):
  808. pad_count = vocab_size - len(tokens)
  809. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  810. for i in range(1, pad_count + 1):
  811. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  812. scores.append(-1000.0)
  813. toktypes.append(SentencePieceTokenTypes.UNUSED)
  814. return tokens, scores, toktypes
  815. def _set_vocab_llama_hf(self):
  816. vocab = gguf.LlamaHfVocab(self.dir_model)
  817. tokens = []
  818. scores = []
  819. toktypes = []
  820. for text, score, toktype in vocab.all_tokens():
  821. tokens.append(text)
  822. scores.append(score)
  823. toktypes.append(toktype)
  824. assert len(tokens) == vocab.vocab_size
  825. self.gguf_writer.add_tokenizer_model("llama")
  826. self.gguf_writer.add_tokenizer_pre("default")
  827. self.gguf_writer.add_token_list(tokens)
  828. self.gguf_writer.add_token_scores(scores)
  829. self.gguf_writer.add_token_types(toktypes)
  830. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  831. special_vocab.add_to_gguf(self.gguf_writer)
  832. def _set_vocab_rwkv_world(self):
  833. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  834. vocab_size = self.hparams.get("vocab_size", 65536)
  835. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  836. toktypes: list[int] = [gguf.TokenType.CONTROL]
  837. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  838. lines = f.readlines()
  839. for line in lines:
  840. parts = line.split(' ')
  841. assert len(parts) >= 3
  842. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  843. token = token.encode("utf-8") if isinstance(token, str) else token
  844. assert isinstance(token, bytes)
  845. assert len(token) == token_len
  846. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  847. tokens.append(token_text.encode("utf-8"))
  848. toktypes.append(gguf.TokenType.NORMAL)
  849. remainder = vocab_size - len(tokens)
  850. assert remainder >= 0
  851. for i in range(len(tokens), vocab_size):
  852. tokens.append(f"[PAD{i}]".encode("utf-8"))
  853. toktypes.append(gguf.TokenType.UNUSED)
  854. self.gguf_writer.add_tokenizer_model("rwkv")
  855. self.gguf_writer.add_token_list(tokens)
  856. self.gguf_writer.add_token_types(toktypes)
  857. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  858. special_vocab.chat_template = "rwkv-world"
  859. # hack: Add '\n\n' as the EOT token to make it chat normally
  860. special_vocab._set_special_token("eot", 261)
  861. special_vocab.add_to_gguf(self.gguf_writer)
  862. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  863. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  864. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  865. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  866. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  867. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  868. assert field # tokenizer model
  869. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  870. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  871. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  872. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  873. assert field # token list
  874. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  875. if model_name == "llama-spm":
  876. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  877. assert field # token scores
  878. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  879. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  880. assert field # token types
  881. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  882. if model_name != "llama-spm":
  883. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  884. assert field # token merges
  885. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  886. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  887. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  888. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  889. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  890. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  891. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  892. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  893. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  894. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  895. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  896. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  897. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  898. class VisionModel(ModelBase):
  899. model_arch = gguf.MODEL_ARCH.CLIP_VISION
  900. n_text_embd = 0
  901. preprocessor_config: dict[str, Any]
  902. global_config: dict[str, Any]
  903. def __init__(self, *args, **kwargs):
  904. super().__init__(*args, **kwargs)
  905. if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
  906. raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
  907. # small hack to correct the number of layers
  908. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, 128)
  909. self.n_embd_text = self.find_hparam(["hidden_size", "n_embd"])
  910. assert self.n_embd_text > 0, "n_embd not found in hparams"
  911. if "vision_config" not in self.hparams:
  912. raise ValueError("vision_config not found in hparams")
  913. # move vision config to the top level, while preserving the original hparams in global_config
  914. self.global_config = self.hparams
  915. self.hparams = self.hparams["vision_config"]
  916. # load preprocessor config
  917. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  918. self.preprocessor_config = json.load(f)
  919. def set_type(self):
  920. self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
  921. def set_gguf_parameters(self):
  922. self.gguf_writer.add_file_type(self.ftype)
  923. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  924. self.gguf_writer.add_vision_has_vision_encoder(True)
  925. # vision config
  926. self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
  927. self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
  928. self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
  929. self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
  930. self.gguf_writer.add_vision_block_count(self.find_hparam(["num_hidden_layers"]))
  931. self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
  932. # preprocessor config
  933. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  934. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_mean"])
  935. def write_vocab(self):
  936. raise ValueError("VisionModel does not support vocab writing")
  937. @ModelBase.register("GPTNeoXForCausalLM")
  938. class GPTNeoXModel(TextModel):
  939. model_arch = gguf.MODEL_ARCH.GPTNEOX
  940. def set_gguf_parameters(self):
  941. block_count = self.hparams["num_hidden_layers"]
  942. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  943. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  944. self.gguf_writer.add_block_count(block_count)
  945. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  946. self.gguf_writer.add_rope_dimension_count(
  947. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  948. )
  949. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  950. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  951. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  952. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  953. del bid # unused
  954. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  955. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  956. tensors: list[tuple[str, Tensor]] = []
  957. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  958. # Map bloom-style qkv_linear to gpt-style qkv_linear
  959. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  960. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  961. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  962. data_torch = torch.cat(
  963. (
  964. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  965. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  966. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  967. ),
  968. dim=0,
  969. )
  970. logger.info("re-format attention.linear_qkv.weight")
  971. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  972. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  973. data_torch = torch.cat(
  974. (
  975. qkv_bias[:, 0, :].reshape((n_embed,)),
  976. qkv_bias[:, 1, :].reshape((n_embed,)),
  977. qkv_bias[:, 2, :].reshape((n_embed,)),
  978. ),
  979. dim=0,
  980. )
  981. logger.info("re-format attention.linear_qkv.bias")
  982. tensors.append((self.map_tensor_name(name), data_torch))
  983. return tensors
  984. @ModelBase.register("BloomForCausalLM", "BloomModel")
  985. class BloomModel(TextModel):
  986. model_arch = gguf.MODEL_ARCH.BLOOM
  987. def set_gguf_parameters(self):
  988. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  989. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  990. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  991. self.gguf_writer.add_embedding_length(n_embed)
  992. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  993. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  994. self.gguf_writer.add_head_count(n_head)
  995. self.gguf_writer.add_head_count_kv(n_head)
  996. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  997. self.gguf_writer.add_file_type(self.ftype)
  998. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  999. del bid # unused
  1000. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1001. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1002. name = re.sub(r'transformer\.', '', name)
  1003. tensors: list[tuple[str, Tensor]] = []
  1004. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1005. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1006. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1007. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1008. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1009. data_torch = torch.cat(
  1010. (
  1011. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1012. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1013. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1014. ),
  1015. dim=0,
  1016. )
  1017. logger.info("re-format attention.linear_qkv.weight")
  1018. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1019. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1020. data_torch = torch.cat(
  1021. (
  1022. qkv_bias[:, 0, :].reshape((n_embed,)),
  1023. qkv_bias[:, 1, :].reshape((n_embed,)),
  1024. qkv_bias[:, 2, :].reshape((n_embed,)),
  1025. ),
  1026. dim=0,
  1027. )
  1028. logger.info("re-format attention.linear_qkv.bias")
  1029. tensors.append((self.map_tensor_name(name), data_torch))
  1030. return tensors
  1031. @ModelBase.register("MPTForCausalLM")
  1032. class MPTModel(TextModel):
  1033. model_arch = gguf.MODEL_ARCH.MPT
  1034. def set_vocab(self):
  1035. try:
  1036. self._set_vocab_gpt2()
  1037. except Exception:
  1038. # Fallback for SEA-LION model
  1039. self._set_vocab_sentencepiece()
  1040. self.gguf_writer.add_add_bos_token(False)
  1041. self.gguf_writer.add_pad_token_id(3)
  1042. self.gguf_writer.add_eos_token_id(1)
  1043. self.gguf_writer.add_unk_token_id(0)
  1044. def set_gguf_parameters(self):
  1045. block_count = self.hparams["n_layers"]
  1046. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1047. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1048. self.gguf_writer.add_block_count(block_count)
  1049. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1050. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1051. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1052. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1053. self.gguf_writer.add_layer_norm_eps(1e-5)
  1054. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1055. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1056. if self.hparams["attn_config"]["alibi"]:
  1057. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1058. else:
  1059. self.gguf_writer.add_max_alibi_bias(0.0)
  1060. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1061. del bid # unused
  1062. if "scales" in name:
  1063. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1064. new_name = new_name.replace("scales", "act.scales")
  1065. else:
  1066. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1067. return [(new_name, data_torch)]
  1068. @ModelBase.register("OrionForCausalLM")
  1069. class OrionModel(TextModel):
  1070. model_arch = gguf.MODEL_ARCH.ORION
  1071. def set_vocab(self):
  1072. self._set_vocab_sentencepiece()
  1073. def set_gguf_parameters(self):
  1074. block_count = self.hparams["num_hidden_layers"]
  1075. head_count = self.hparams["num_attention_heads"]
  1076. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1077. ctx_length = 0
  1078. if "max_sequence_length" in self.hparams:
  1079. ctx_length = self.hparams["max_sequence_length"]
  1080. elif "max_position_embeddings" in self.hparams:
  1081. ctx_length = self.hparams["max_position_embeddings"]
  1082. elif "model_max_length" in self.hparams:
  1083. ctx_length = self.hparams["model_max_length"]
  1084. else:
  1085. raise ValueError("gguf: can not find ctx length parameter.")
  1086. self.gguf_writer.add_file_type(self.ftype)
  1087. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1088. self.gguf_writer.add_context_length(ctx_length)
  1089. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1090. self.gguf_writer.add_block_count(block_count)
  1091. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1092. self.gguf_writer.add_head_count(head_count)
  1093. self.gguf_writer.add_head_count_kv(head_count_kv)
  1094. # note: config provides rms norm but it is actually layer norm
  1095. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1096. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1097. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1098. class BaichuanModel(TextModel):
  1099. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1100. def set_vocab(self):
  1101. self._set_vocab_sentencepiece()
  1102. def set_gguf_parameters(self):
  1103. block_count = self.hparams["num_hidden_layers"]
  1104. head_count = self.hparams["num_attention_heads"]
  1105. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1106. ctx_length = 0
  1107. if "max_sequence_length" in self.hparams:
  1108. ctx_length = self.hparams["max_sequence_length"]
  1109. elif "max_position_embeddings" in self.hparams:
  1110. ctx_length = self.hparams["max_position_embeddings"]
  1111. elif "model_max_length" in self.hparams:
  1112. ctx_length = self.hparams["model_max_length"]
  1113. else:
  1114. raise ValueError("gguf: can not find ctx length parameter.")
  1115. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1116. self.gguf_writer.add_context_length(ctx_length)
  1117. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1118. self.gguf_writer.add_block_count(block_count)
  1119. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1120. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1121. self.gguf_writer.add_head_count(head_count)
  1122. self.gguf_writer.add_head_count_kv(head_count_kv)
  1123. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1124. self.gguf_writer.add_file_type(self.ftype)
  1125. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1126. if self.hparams["rope_scaling"].get("type") == "linear":
  1127. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1128. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1130. head_count = self.hparams["num_attention_heads"]
  1131. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1132. tensors: list[tuple[str, Tensor]] = []
  1133. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1134. logger.info(f"Unpacking and permuting layer {bid}")
  1135. tensors = [
  1136. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1137. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1138. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1139. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1140. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1141. self._reverse_hf_part(data_torch, 2)),
  1142. ]
  1143. else:
  1144. tensors = [(self.map_tensor_name(name), data_torch)]
  1145. return tensors
  1146. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1147. if n_kv_head is not None and n_head != n_kv_head:
  1148. n_head //= n_kv_head
  1149. return (
  1150. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1151. .swapaxes(1, 2)
  1152. .reshape(weights.shape)
  1153. )
  1154. def _reverse_hf_permute_part(
  1155. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1156. ) -> Tensor:
  1157. r = weights.shape[0] // 3
  1158. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1159. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1160. r = weights.shape[0] // 3
  1161. return weights[r * n_part:r * n_part + r, ...]
  1162. @ModelBase.register("XverseForCausalLM")
  1163. class XverseModel(TextModel):
  1164. model_arch = gguf.MODEL_ARCH.XVERSE
  1165. def set_vocab(self):
  1166. assert (self.dir_model / "tokenizer.json").is_file()
  1167. dir_model = self.dir_model
  1168. hparams = self.hparams
  1169. tokens: list[bytes] = []
  1170. toktypes: list[int] = []
  1171. from transformers import AutoTokenizer
  1172. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1173. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1174. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1175. # because vocab_size is the count of items, and indexes start at 0.
  1176. max_vocab_index = max(tokenizer.get_vocab().values())
  1177. if max_vocab_index >= vocab_size:
  1178. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1179. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1180. added_vocab = tokenizer.get_added_vocab()
  1181. for token_id in range(vocab_size):
  1182. token_text = reverse_vocab[token_id].encode('utf-8')
  1183. # replace "\x00" to string with length > 0
  1184. if token_text == b"\x00":
  1185. toktype = gguf.TokenType.BYTE # special
  1186. token_text = f"<{token_text}>".encode('utf-8')
  1187. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1188. toktype = gguf.TokenType.BYTE # special
  1189. elif reverse_vocab[token_id] in added_vocab:
  1190. if tokenizer.added_tokens_decoder[token_id].special:
  1191. toktype = gguf.TokenType.CONTROL
  1192. else:
  1193. toktype = gguf.TokenType.USER_DEFINED
  1194. else:
  1195. toktype = gguf.TokenType.NORMAL
  1196. tokens.append(token_text)
  1197. toktypes.append(toktype)
  1198. self.gguf_writer.add_tokenizer_model("llama")
  1199. self.gguf_writer.add_tokenizer_pre("default")
  1200. self.gguf_writer.add_token_list(tokens)
  1201. self.gguf_writer.add_token_types(toktypes)
  1202. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1203. special_vocab.add_to_gguf(self.gguf_writer)
  1204. def set_gguf_parameters(self):
  1205. block_count = self.hparams["num_hidden_layers"]
  1206. head_count = self.hparams["num_attention_heads"]
  1207. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1208. ctx_length = 0
  1209. if "max_sequence_length" in self.hparams:
  1210. ctx_length = self.hparams["max_sequence_length"]
  1211. elif "max_position_embeddings" in self.hparams:
  1212. ctx_length = self.hparams["max_position_embeddings"]
  1213. elif "model_max_length" in self.hparams:
  1214. ctx_length = self.hparams["model_max_length"]
  1215. else:
  1216. raise ValueError("gguf: can not find ctx length parameter.")
  1217. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1218. self.gguf_writer.add_context_length(ctx_length)
  1219. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1220. self.gguf_writer.add_block_count(block_count)
  1221. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1222. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1223. self.gguf_writer.add_head_count(head_count)
  1224. self.gguf_writer.add_head_count_kv(head_count_kv)
  1225. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1226. self.gguf_writer.add_file_type(self.ftype)
  1227. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1228. if self.hparams["rope_scaling"].get("type") == "linear":
  1229. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1230. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1231. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1232. del bid # unused
  1233. head_count = self.hparams["num_attention_heads"]
  1234. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1235. # HF models permute some of the tensors, so we need to undo that
  1236. if name.endswith("q_proj.weight"):
  1237. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1238. if name.endswith("k_proj.weight"):
  1239. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1240. return [(self.map_tensor_name(name), data_torch)]
  1241. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1242. if n_kv_head is not None and n_head != n_kv_head:
  1243. n_head //= n_kv_head
  1244. return (
  1245. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1246. .swapaxes(1, 2)
  1247. .reshape(weights.shape)
  1248. )
  1249. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1250. class FalconModel(TextModel):
  1251. model_arch = gguf.MODEL_ARCH.FALCON
  1252. def set_gguf_parameters(self):
  1253. block_count = self.hparams.get("num_hidden_layers")
  1254. if block_count is None:
  1255. block_count = self.hparams["n_layer"] # old name
  1256. n_head = self.hparams.get("num_attention_heads")
  1257. if n_head is None:
  1258. n_head = self.hparams["n_head"] # old name
  1259. n_head_kv = self.hparams.get("num_kv_heads")
  1260. if n_head_kv is None:
  1261. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1262. self.gguf_writer.add_context_length(2048) # not in config.json
  1263. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1264. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1265. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1266. self.gguf_writer.add_block_count(block_count)
  1267. self.gguf_writer.add_head_count(n_head)
  1268. self.gguf_writer.add_head_count_kv(n_head_kv)
  1269. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1270. self.gguf_writer.add_file_type(self.ftype)
  1271. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1272. del bid # unused
  1273. # QKV tensor transform
  1274. # The original query_key_value tensor contains n_head_kv "kv groups",
  1275. # each consisting of n_head/n_head_kv query weights followed by one key
  1276. # and one value weight (shared by all query heads in the kv group).
  1277. # This layout makes it a big pain to work with in GGML.
  1278. # So we rearrange them here,, so that we have n_head query weights
  1279. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1280. # in contiguous fashion.
  1281. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1282. if "query_key_value" in name:
  1283. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1284. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1285. head_dim = self.hparams["hidden_size"] // n_head
  1286. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1287. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1288. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1289. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1290. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1291. return [(self.map_tensor_name(name), data_torch)]
  1292. @ModelBase.register("GPTBigCodeForCausalLM")
  1293. class StarCoderModel(TextModel):
  1294. model_arch = gguf.MODEL_ARCH.STARCODER
  1295. def set_gguf_parameters(self):
  1296. block_count = self.hparams["n_layer"]
  1297. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1298. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1299. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1300. self.gguf_writer.add_block_count(block_count)
  1301. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1302. self.gguf_writer.add_head_count_kv(1)
  1303. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1304. self.gguf_writer.add_file_type(self.ftype)
  1305. @ModelBase.register("GPTRefactForCausalLM")
  1306. class RefactModel(TextModel):
  1307. model_arch = gguf.MODEL_ARCH.REFACT
  1308. def set_vocab(self):
  1309. super().set_vocab()
  1310. # TODO: how to determine special FIM tokens automatically?
  1311. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1312. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1313. special_vocab._set_special_token("prefix", 1)
  1314. special_vocab._set_special_token("suffix", 3)
  1315. special_vocab._set_special_token("middle", 2)
  1316. special_vocab.chat_template = None # do not add it twice
  1317. special_vocab.add_to_gguf(self.gguf_writer)
  1318. def set_gguf_parameters(self):
  1319. hidden_dim = self.hparams["n_embd"]
  1320. inner_dim = 4 * hidden_dim
  1321. hidden_dim = int(2 * inner_dim / 3)
  1322. multiple_of = 256
  1323. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1324. block_count = self.hparams["n_layer"]
  1325. # refact uses Alibi. So this is from config.json which might be used by training.
  1326. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1327. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1328. self.gguf_writer.add_feed_forward_length(ff_dim)
  1329. self.gguf_writer.add_block_count(block_count)
  1330. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1331. self.gguf_writer.add_head_count_kv(1)
  1332. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1333. self.gguf_writer.add_file_type(self.ftype)
  1334. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1335. hidden_dim = self.hparams["n_embd"]
  1336. inner_dim = 4 * hidden_dim
  1337. hidden_dim = int(2 * inner_dim / 3)
  1338. multiple_of = 256
  1339. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1340. n_head = self.hparams["n_head"]
  1341. n_head_kv = 1
  1342. head_dim = self.hparams["n_embd"] // n_head
  1343. tensors: list[tuple[str, Tensor]] = []
  1344. if bid is not None:
  1345. if name == f"transformer.h.{bid}.attn.kv.weight":
  1346. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1347. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1348. elif name == f"transformer.h.{bid}.attn.q.weight":
  1349. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1350. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1351. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1352. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1353. if len(tensors) == 0:
  1354. tensors.append((self.map_tensor_name(name), data_torch))
  1355. return tensors
  1356. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1357. class StableLMModel(TextModel):
  1358. model_arch = gguf.MODEL_ARCH.STABLELM
  1359. def set_vocab(self):
  1360. if (self.dir_model / "tokenizer.json").is_file():
  1361. self._set_vocab_gpt2()
  1362. else:
  1363. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1364. self._set_vocab_qwen()
  1365. def set_gguf_parameters(self):
  1366. hparams = self.hparams
  1367. block_count = hparams["num_hidden_layers"]
  1368. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1369. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1370. self.gguf_writer.add_block_count(block_count)
  1371. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1372. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1373. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1374. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1375. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1376. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1377. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1378. self.gguf_writer.add_file_type(self.ftype)
  1379. _q_norms: list[dict[str, Tensor]] | None = None
  1380. _k_norms: list[dict[str, Tensor]] | None = None
  1381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1382. n_head = self.hparams["num_attention_heads"]
  1383. n_kv_head = self.hparams["num_key_value_heads"]
  1384. if name.find("q_layernorm.norms") != -1:
  1385. assert bid is not None
  1386. if self._q_norms is None:
  1387. self._q_norms = [{} for _ in range(self.block_count)]
  1388. self._q_norms[bid][name] = data_torch
  1389. if len(self._q_norms[bid]) >= n_head:
  1390. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1391. else:
  1392. return []
  1393. if name.find("k_layernorm.norms") != -1:
  1394. assert bid is not None
  1395. if self._k_norms is None:
  1396. self._k_norms = [{} for _ in range(self.block_count)]
  1397. self._k_norms[bid][name] = data_torch
  1398. if len(self._k_norms[bid]) >= n_kv_head:
  1399. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1400. else:
  1401. return []
  1402. return [(self.map_tensor_name(name), data_torch)]
  1403. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1404. datas: list[Tensor] = []
  1405. # extract the norms in order
  1406. for xid in range(n_head):
  1407. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1408. datas.append(norms[ename])
  1409. del norms[ename]
  1410. data_torch = torch.stack(datas, dim=0)
  1411. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1412. new_name = self.map_tensor_name(merged_name)
  1413. return [(new_name, data_torch)]
  1414. def prepare_tensors(self):
  1415. super().prepare_tensors()
  1416. if self._q_norms is not None or self._k_norms is not None:
  1417. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1418. norms = (
  1419. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1420. ) + (
  1421. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1422. )
  1423. if len(norms) > 0:
  1424. raise ValueError(f"Unprocessed norms: {norms}")
  1425. @ModelBase.register(
  1426. "LLaMAForCausalLM",
  1427. "LlamaForCausalLM",
  1428. "MistralForCausalLM",
  1429. "MixtralForCausalLM",
  1430. "Idefics3ForConditionalGeneration",
  1431. "SmolVLMForConditionalGeneration",
  1432. "LlavaForConditionalGeneration")
  1433. class LlamaModel(TextModel):
  1434. model_arch = gguf.MODEL_ARCH.LLAMA
  1435. undo_permute = True
  1436. def __init__(self, *args, **kwargs):
  1437. super().__init__(*args, **kwargs)
  1438. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1439. if self.hparams["architectures"][0] == "SmolVLMForConditionalGeneration":
  1440. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1441. # fix for Pixtral, missing `num_attention_heads` in config.json
  1442. if self.hparams["architectures"][0] == "LlavaForConditionalGeneration" \
  1443. and self.hparams.get("model_type") == "mistral":
  1444. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1445. def set_vocab(self):
  1446. try:
  1447. self._set_vocab_sentencepiece()
  1448. except FileNotFoundError:
  1449. try:
  1450. self._set_vocab_llama_hf()
  1451. except (FileNotFoundError, TypeError):
  1452. # Llama 3
  1453. self._set_vocab_gpt2()
  1454. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1455. if self.hparams.get("vocab_size", 32000) == 32016:
  1456. special_vocab = gguf.SpecialVocab(
  1457. self.dir_model, load_merges=False,
  1458. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1459. )
  1460. special_vocab._set_special_token("prefix", 32007)
  1461. special_vocab._set_special_token("suffix", 32008)
  1462. special_vocab._set_special_token("middle", 32009)
  1463. special_vocab._set_special_token("eot", 32010)
  1464. special_vocab.add_to_gguf(self.gguf_writer)
  1465. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1466. if tokenizer_config_file.is_file():
  1467. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1468. tokenizer_config_json = json.load(f)
  1469. if "add_prefix_space" in tokenizer_config_json:
  1470. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1471. # Apply to granite small models only
  1472. if self.hparams.get("vocab_size", 32000) == 49152:
  1473. self.gguf_writer.add_add_bos_token(False)
  1474. def set_gguf_parameters(self):
  1475. super().set_gguf_parameters()
  1476. hparams = self.hparams
  1477. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1478. if "head_dim" in hparams:
  1479. rope_dim = hparams["head_dim"]
  1480. else:
  1481. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1482. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1483. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1484. if self.hparams["rope_scaling"].get("type") == "linear":
  1485. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1486. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1487. @staticmethod
  1488. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1489. if n_head_kv is not None and n_head != n_head_kv:
  1490. n_head = n_head_kv
  1491. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1492. .swapaxes(1, 2)
  1493. .reshape(weights.shape))
  1494. _experts: list[dict[str, Tensor]] | None = None
  1495. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1496. n_head = self.hparams["num_attention_heads"]
  1497. n_kv_head = self.hparams.get("num_key_value_heads")
  1498. is_vision_tensor = "vision_tower" in name \
  1499. or "vision_model" in name \
  1500. or "model.connector" in name \
  1501. or "multi_modal_projector" in name
  1502. if is_vision_tensor:
  1503. return [] # skip vision tensors
  1504. elif name.startswith("model.text_model"):
  1505. name = name.replace("text_model.", "") # for SmolVLM
  1506. elif name.startswith("language_model."):
  1507. name = name.replace("language_model.", "") # for the rest
  1508. if self.undo_permute:
  1509. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1510. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1511. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1512. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1513. # process the experts separately
  1514. if name.find("block_sparse_moe.experts") != -1:
  1515. n_experts = self.hparams["num_local_experts"]
  1516. assert bid is not None
  1517. if self._experts is None:
  1518. self._experts = [{} for _ in range(self.block_count)]
  1519. self._experts[bid][name] = data_torch
  1520. if len(self._experts[bid]) >= n_experts * 3:
  1521. tensors: list[tuple[str, Tensor]] = []
  1522. # merge the experts into a single 3d tensor
  1523. for wid in ["w1", "w2", "w3"]:
  1524. datas: list[Tensor] = []
  1525. for xid in range(n_experts):
  1526. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1527. datas.append(self._experts[bid][ename])
  1528. del self._experts[bid][ename]
  1529. data_torch = torch.stack(datas, dim=0)
  1530. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1531. new_name = self.map_tensor_name(merged_name)
  1532. tensors.append((new_name, data_torch))
  1533. return tensors
  1534. else:
  1535. return []
  1536. return [(self.map_tensor_name(name), data_torch)]
  1537. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1538. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1539. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1540. base = self.hparams.get("rope_theta", 10000.0)
  1541. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1542. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1543. factor = rope_scaling.get("factor", 8.0)
  1544. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1545. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1546. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1547. low_freq_wavelen = old_context_len / low_freq_factor
  1548. high_freq_wavelen = old_context_len / high_freq_factor
  1549. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1550. rope_factors = []
  1551. for freq in freqs:
  1552. wavelen = 2 * math.pi / freq
  1553. if wavelen < high_freq_wavelen:
  1554. rope_factors.append(1)
  1555. elif wavelen > low_freq_wavelen:
  1556. rope_factors.append(factor)
  1557. else:
  1558. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1559. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1560. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1561. def prepare_tensors(self):
  1562. super().prepare_tensors()
  1563. if self._experts is not None:
  1564. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1565. experts = [k for d in self._experts for k in d.keys()]
  1566. if len(experts) > 0:
  1567. raise ValueError(f"Unprocessed experts: {experts}")
  1568. @ModelBase.register("LlavaForConditionalGeneration")
  1569. class LlavaVisionModel(VisionModel):
  1570. img_break_tok_id = -1
  1571. def __init__(self, *args, **kwargs):
  1572. super().__init__(*args, **kwargs)
  1573. if self.hparams["model_type"] == "pixtral":
  1574. # fix missing config.json values
  1575. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1576. self.hparams["num_hidden_layers"] = self.hparams.get("num_hidden_layers", 24)
  1577. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 4096)
  1578. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1024)
  1579. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1580. self.img_break_tok_id = 12 # see tokenizer_config.json
  1581. else:
  1582. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1583. def set_gguf_parameters(self):
  1584. super().set_gguf_parameters()
  1585. hparams = self.hparams
  1586. if hparams["model_type"] == "pixtral":
  1587. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1588. # default values below are taken from HF tranformers code
  1589. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1590. self.gguf_writer.add_vision_use_silu(True)
  1591. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1592. del bid # unused
  1593. n_head = self.hparams["num_attention_heads"]
  1594. n_kv_head = n_head
  1595. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1596. # process vision tensors
  1597. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1598. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1599. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1600. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1601. return [(self.map_tensor_name(name), data_torch)]
  1602. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1603. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1604. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1605. img_break_embd = data_torch[self.img_break_tok_id]
  1606. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1607. return [(self.map_tensor_name(name), img_break_embd)]
  1608. return [] # skip other tensors
  1609. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1610. class SmolVLMModel(VisionModel):
  1611. def __init__(self, *args, **kwargs):
  1612. super().__init__(*args, **kwargs)
  1613. # fix for SmolVLM2, missing some keys in config.json
  1614. # default values are taken from transformers code
  1615. if self.hparams["model_type"] == "smolvlm_vision":
  1616. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1617. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1618. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1619. self.hparams["num_hidden_layers"] = self.hparams.get("num_hidden_layers", 12)
  1620. def set_gguf_parameters(self):
  1621. super().set_gguf_parameters()
  1622. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1623. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1624. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1625. self.gguf_writer.add_vision_use_gelu(True)
  1626. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1627. del bid, new_name, n_dims # unused
  1628. if ".embeddings." in name:
  1629. return gguf.GGMLQuantizationType.F32
  1630. return False
  1631. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1632. del bid # unused
  1633. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1634. if is_vision_tensor:
  1635. return [(self.map_tensor_name(name), data_torch)]
  1636. return [] # skip other tensors
  1637. @ModelBase.register("Llama4ForConditionalGeneration")
  1638. class Llama4Model(LlamaModel):
  1639. model_arch = gguf.MODEL_ARCH.LLAMA4
  1640. undo_permute = False
  1641. def __init__(self, *args, **kwargs):
  1642. super().__init__(*args, **kwargs)
  1643. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1644. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1645. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1646. def set_vocab(self):
  1647. self._set_vocab_gpt2()
  1648. self.gguf_writer.add_add_bos_token(True)
  1649. def set_gguf_parameters(self):
  1650. super().set_gguf_parameters()
  1651. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1652. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1653. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1654. # split the gate_up into gate and up
  1655. if "gate_up_proj" in name:
  1656. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1657. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1658. dim_half = data_torch.shape[-1] // 2
  1659. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1660. return [
  1661. (self.map_tensor_name(name_gate), gate_proj_weight),
  1662. (self.map_tensor_name(name_up), up_proj_weight)
  1663. ]
  1664. if name.endswith("down_proj"):
  1665. name += ".weight"
  1666. data_torch = data_torch.transpose(-1, -2)
  1667. if "multi_modal_projector" in name or "vision_model" in name:
  1668. return []
  1669. return super().modify_tensors(data_torch, name, bid)
  1670. @ModelBase.register("Mistral3ForConditionalGeneration")
  1671. class Mistral3Model(LlamaModel):
  1672. model_arch = gguf.MODEL_ARCH.LLAMA
  1673. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1674. name = name.replace("language_model.", "")
  1675. if "multi_modal_projector" in name or "vision_tower" in name:
  1676. return []
  1677. return super().modify_tensors(data_torch, name, bid)
  1678. @ModelBase.register("DeciLMForCausalLM")
  1679. class DeciModel(TextModel):
  1680. model_arch = gguf.MODEL_ARCH.DECI
  1681. @staticmethod
  1682. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1683. # DeciLM-specific code
  1684. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1685. return DeciModel._find_multiple(intermediate_size, 256)
  1686. @staticmethod
  1687. def _find_multiple(n: int, k: int) -> int:
  1688. # DeciLM-specific code
  1689. if n % k == 0:
  1690. return n
  1691. return n + k - (n % k)
  1692. def __init__(self, *args, **kwargs):
  1693. super().__init__(*args, **kwargs)
  1694. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1695. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1696. assert self.block_count == len(_block_configs)
  1697. self._num_kv_heads = list()
  1698. self._num_heads = list()
  1699. _ffn_multipliers = list()
  1700. # ***linear attention layer***
  1701. # if n_heads_in_group is None and replace_with_linear is True
  1702. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1703. # ***attention-free layer***
  1704. # if n_heads_in_group is None and replace_with_linear is False
  1705. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1706. # ***normal attention-layer***
  1707. # if n_heads_in_group is not None, then
  1708. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1709. # _num_heads[il] is num_attention_head
  1710. for il in range(len(_block_configs)):
  1711. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1712. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1713. self._num_kv_heads.append(0)
  1714. self._num_heads.append(self.hparams["num_attention_heads"])
  1715. else:
  1716. self._num_kv_heads.append(0)
  1717. self._num_heads.append(0)
  1718. else:
  1719. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1720. self._num_heads.append(self.hparams["num_attention_heads"])
  1721. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1722. assert self.block_count == len(self._num_kv_heads)
  1723. assert self.block_count == len(self._num_heads)
  1724. assert self.block_count == len(_ffn_multipliers)
  1725. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1726. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1727. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1728. self._ffn_dims: list[int] = [
  1729. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1730. for multiplier in _ffn_multipliers
  1731. ]
  1732. def set_vocab(self):
  1733. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1734. # eos_token from '|eot_id|' to '|end_of_text|'
  1735. if self.hparams.get("vocab_size", 128256) == 128256:
  1736. tokens, toktypes, tokpre = self.get_vocab_base()
  1737. self.gguf_writer.add_tokenizer_model("gpt2")
  1738. self.gguf_writer.add_tokenizer_pre(tokpre)
  1739. self.gguf_writer.add_token_list(tokens)
  1740. self.gguf_writer.add_token_types(toktypes)
  1741. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1742. special_vocab.add_to_gguf(self.gguf_writer)
  1743. else:
  1744. # DeciLM-7B
  1745. self._set_vocab_llama_hf()
  1746. def set_gguf_parameters(self):
  1747. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1748. assert self.block_count == len(self._num_kv_heads)
  1749. assert self.block_count == len(self._num_heads)
  1750. assert self.block_count == len(self._ffn_dims)
  1751. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1752. self.gguf_writer.add_rope_freq_base(rope_theta)
  1753. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1754. self.gguf_writer.add_head_count(self._num_heads)
  1755. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1756. self.gguf_writer.add_block_count(self.block_count)
  1757. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1758. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1759. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1760. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1761. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1762. self.gguf_writer.add_file_type(self.ftype)
  1763. else: # DeciLM-7B
  1764. super().set_gguf_parameters()
  1765. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1766. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1767. assert self.block_count == len(self._num_kv_heads)
  1768. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1769. hparams = self.hparams
  1770. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1771. if "head_dim" in hparams:
  1772. rope_dim = hparams["head_dim"]
  1773. else:
  1774. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1775. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1776. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1777. if self.hparams["rope_scaling"].get("type") == "linear":
  1778. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1779. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1780. @staticmethod
  1781. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1782. if n_head_kv is not None and n_head != n_head_kv:
  1783. n_head = n_head_kv
  1784. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1785. .swapaxes(1, 2)
  1786. .reshape(weights.shape))
  1787. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1788. n_head = self.hparams["num_attention_heads"]
  1789. if bid is not None:
  1790. if "num_key_value_heads_per_layer" in self.hparams:
  1791. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1792. elif "block_configs" in self.hparams:
  1793. n_kv_head = self._num_kv_heads[bid]
  1794. n_head = self._num_heads[bid]
  1795. else:
  1796. n_kv_head = self.hparams.get("num_key_value_heads")
  1797. else:
  1798. n_kv_head = self.hparams.get("num_key_value_heads")
  1799. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1800. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1801. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1802. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1803. return [(self.map_tensor_name(name), data_torch)]
  1804. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1805. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1806. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1807. base = self.hparams.get("rope_theta", 10000.0)
  1808. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1809. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1810. factor = rope_scaling.get("factor", 8.0)
  1811. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1812. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1813. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1814. low_freq_wavelen = old_context_len / low_freq_factor
  1815. high_freq_wavelen = old_context_len / high_freq_factor
  1816. assert low_freq_wavelen != high_freq_wavelen
  1817. rope_factors = []
  1818. for freq in freqs:
  1819. wavelen = 2 * math.pi / freq
  1820. if wavelen < high_freq_wavelen:
  1821. rope_factors.append(1)
  1822. elif wavelen > low_freq_wavelen:
  1823. rope_factors.append(factor)
  1824. else:
  1825. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1826. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1827. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1828. def prepare_tensors(self):
  1829. super().prepare_tensors()
  1830. @ModelBase.register("BitnetForCausalLM")
  1831. class BitnetModel(TextModel):
  1832. model_arch = gguf.MODEL_ARCH.BITNET
  1833. def set_vocab(self):
  1834. self._set_vocab_sentencepiece()
  1835. def set_gguf_parameters(self):
  1836. super().set_gguf_parameters()
  1837. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1838. self.gguf_writer.add_rope_scaling_factor(1.0)
  1839. def weight_quant(self, weight: Tensor) -> Tensor:
  1840. dtype = weight.dtype
  1841. weight = weight.float()
  1842. scale = weight.abs().mean().clamp(min=1e-5)
  1843. iscale = 1 / scale
  1844. # TODO: multiply by the scale directly instead of inverting it twice
  1845. # (this is also unnecessarily doubly inverted upstream)
  1846. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1847. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1848. return result.type(dtype)
  1849. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1850. new_name = self.map_tensor_name(name)
  1851. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1852. gguf.MODEL_TENSOR.ATTN_Q,
  1853. gguf.MODEL_TENSOR.ATTN_K,
  1854. gguf.MODEL_TENSOR.ATTN_V,
  1855. gguf.MODEL_TENSOR.ATTN_OUT,
  1856. gguf.MODEL_TENSOR.FFN_UP,
  1857. gguf.MODEL_TENSOR.FFN_DOWN,
  1858. gguf.MODEL_TENSOR.FFN_GATE,
  1859. ]):
  1860. # transform weight into 1/0/-1 (in fp32)
  1861. data_torch = self.weight_quant(data_torch)
  1862. yield (new_name, data_torch)
  1863. @ModelBase.register("GrokForCausalLM")
  1864. class GrokModel(TextModel):
  1865. model_arch = gguf.MODEL_ARCH.GROK
  1866. def set_vocab(self):
  1867. self._set_vocab_sentencepiece()
  1868. def __init__(self, *args, **kwargs):
  1869. super().__init__(*args, **kwargs)
  1870. def set_gguf_parameters(self):
  1871. super().set_gguf_parameters()
  1872. _experts: list[dict[str, Tensor]] | None = None
  1873. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1874. # process the experts separately
  1875. if name.find(".moe.") != -1:
  1876. n_experts = self.hparams["num_local_experts"]
  1877. assert bid is not None
  1878. if self._experts is None:
  1879. self._experts = [{} for _ in range(self.block_count)]
  1880. self._experts[bid][name] = data_torch
  1881. if len(self._experts[bid]) >= n_experts * 3:
  1882. tensors: list[tuple[str, Tensor]] = []
  1883. # merge the experts into a single 3d tensor
  1884. for wid in ["linear", "linear_1", "linear_v"]:
  1885. datas: list[Tensor] = []
  1886. for xid in range(n_experts):
  1887. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1888. datas.append(self._experts[bid][ename])
  1889. del self._experts[bid][ename]
  1890. data_torch = torch.stack(datas, dim=0)
  1891. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1892. new_name = self.map_tensor_name(merged_name)
  1893. tensors.append((new_name, data_torch))
  1894. return tensors
  1895. else:
  1896. return []
  1897. return [(self.map_tensor_name(name), data_torch)]
  1898. @ModelBase.register("DbrxForCausalLM")
  1899. class DbrxModel(TextModel):
  1900. model_arch = gguf.MODEL_ARCH.DBRX
  1901. def set_gguf_parameters(self):
  1902. ffn_config = self.hparams["ffn_config"]
  1903. attn_config = self.hparams["attn_config"]
  1904. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1905. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1906. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1907. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1908. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1909. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1910. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1911. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1912. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1913. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1914. self.gguf_writer.add_layer_norm_eps(1e-5)
  1915. self.gguf_writer.add_file_type(self.ftype)
  1916. logger.info(f"gguf: file type = {self.ftype}")
  1917. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1918. del bid # unused
  1919. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1920. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1921. n_embd = self.hparams["d_model"]
  1922. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1923. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1924. # But llama.cpp moe graph works differently
  1925. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1926. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1927. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1928. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1929. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1930. experts = False
  1931. for exp_tensor_name in exp_tensor_names.keys():
  1932. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1933. experts = True
  1934. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1935. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1936. data_torch = data_torch.permute(*permute_tensor)
  1937. break
  1938. # map tensor names
  1939. # In MoE models the ffn tensors are typically most of the model weights,
  1940. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1941. # Every other model has the weight names ending in .weight,
  1942. # let's assume that is the convention which is not the case for dbrx:
  1943. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1944. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1945. return [(new_name, data_torch)]
  1946. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1947. del name, new_name, bid # unused
  1948. return n_dims > 1
  1949. @ModelBase.register("MiniCPMForCausalLM")
  1950. class MiniCPMModel(TextModel):
  1951. model_arch = gguf.MODEL_ARCH.MINICPM
  1952. def set_gguf_parameters(self):
  1953. super().set_gguf_parameters()
  1954. embedding_scale = float(self.hparams["scale_emb"])
  1955. self.gguf_writer.add_embedding_scale(embedding_scale)
  1956. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1957. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1958. self.gguf_writer.add_residual_scale(residual_scale)
  1959. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1960. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1961. self.gguf_writer.add_logit_scale(logit_scale)
  1962. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1963. if self.hparams.get("rope_scaling") is not None:
  1964. if self.hparams["rope_scaling"].get("type") == "longrope":
  1965. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1966. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1967. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1968. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1969. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1970. if rope_scaling is not None:
  1971. long_factors = rope_scaling.get('long_factor', None)
  1972. short_factors = rope_scaling.get('short_factor', None)
  1973. if long_factors is None or short_factors is None:
  1974. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1975. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1976. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1977. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1978. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1979. def set_vocab(self):
  1980. self._set_vocab_sentencepiece()
  1981. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1982. del bid # unused
  1983. n_head = self.hparams["num_attention_heads"]
  1984. n_kv_head = self.hparams.get("num_key_value_heads")
  1985. # HF models permute some of the tensors, so we need to undo that
  1986. if name.endswith(("q_proj.weight")):
  1987. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1988. if name.endswith(("k_proj.weight")):
  1989. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1990. return [(self.map_tensor_name(name), data_torch)]
  1991. @ModelBase.register("MiniCPM3ForCausalLM")
  1992. class MiniCPM3Model(TextModel):
  1993. model_arch = gguf.MODEL_ARCH.MINICPM3
  1994. def set_gguf_parameters(self):
  1995. hparams = self.hparams
  1996. self.gguf_writer.add_file_type(self.ftype)
  1997. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1998. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1999. self.gguf_writer.add_block_count(self.block_count)
  2000. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2001. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2002. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2003. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2004. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2005. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2006. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2007. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2008. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2009. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2010. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2011. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2012. if rope_scaling is not None:
  2013. rope_dims = self.hparams["qk_rope_head_dim"]
  2014. long_factors = rope_scaling.get('long_factor', None)
  2015. short_factors = rope_scaling.get('short_factor', None)
  2016. if long_factors is None or short_factors is None:
  2017. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2018. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2019. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2020. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2021. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2022. def set_vocab(self):
  2023. self._set_vocab_sentencepiece()
  2024. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2025. if n_kv_head is not None and n_head != n_kv_head:
  2026. n_head //= n_kv_head
  2027. return (
  2028. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2029. .swapaxes(1, 2)
  2030. .reshape(weights.shape)
  2031. )
  2032. @ModelBase.register("QWenLMHeadModel")
  2033. class QwenModel(TextModel):
  2034. model_arch = gguf.MODEL_ARCH.QWEN
  2035. @staticmethod
  2036. def token_bytes_to_string(b):
  2037. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2038. byte_encoder = bytes_to_unicode()
  2039. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2040. @staticmethod
  2041. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2042. parts = [bytes([b]) for b in token]
  2043. while True:
  2044. min_idx = None
  2045. min_rank = None
  2046. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2047. rank = mergeable_ranks.get(pair[0] + pair[1])
  2048. if rank is not None and (min_rank is None or rank < min_rank):
  2049. min_idx = i
  2050. min_rank = rank
  2051. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2052. break
  2053. assert min_idx is not None
  2054. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2055. return parts
  2056. def set_vocab(self):
  2057. self._set_vocab_qwen()
  2058. def set_gguf_parameters(self):
  2059. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2060. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2061. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2062. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2063. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2064. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2065. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2066. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2067. self.gguf_writer.add_file_type(self.ftype)
  2068. @ModelBase.register("Qwen2ForCausalLM")
  2069. class Qwen2Model(TextModel):
  2070. model_arch = gguf.MODEL_ARCH.QWEN2
  2071. def set_vocab(self):
  2072. try:
  2073. self._set_vocab_sentencepiece()
  2074. except FileNotFoundError:
  2075. self._set_vocab_gpt2()
  2076. def set_gguf_parameters(self):
  2077. super().set_gguf_parameters()
  2078. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2079. if self.hparams["rope_scaling"].get("type") == "yarn":
  2080. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2081. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2082. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2083. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2084. class Qwen2VLModel(TextModel):
  2085. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2086. def set_gguf_parameters(self):
  2087. super().set_gguf_parameters()
  2088. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2089. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2090. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2091. def set_vocab(self):
  2092. try:
  2093. self._set_vocab_sentencepiece()
  2094. except FileNotFoundError:
  2095. self._set_vocab_gpt2()
  2096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2097. del bid # unused
  2098. if name.startswith("visual."):
  2099. # skip visual tensors
  2100. return []
  2101. return [(self.map_tensor_name(name), data_torch)]
  2102. @ModelBase.register("WavTokenizerDec")
  2103. class WavTokenizerDecModel(TextModel):
  2104. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2105. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2106. del bid # unused
  2107. if \
  2108. name.endswith("codebook.cluster_size") or \
  2109. name.endswith("codebook.embed_avg") or \
  2110. name.endswith("codebook.inited"):
  2111. logger.debug(f"Skipping {name!r}")
  2112. return []
  2113. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2114. return [(self.map_tensor_name(name), data_torch)]
  2115. def set_vocab(self):
  2116. self._set_vocab_none()
  2117. def set_gguf_parameters(self):
  2118. super().set_gguf_parameters()
  2119. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2120. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2121. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2122. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2123. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2124. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2125. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2126. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2127. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2128. self.gguf_writer.add_causal_attention(False)
  2129. @ModelBase.register("Qwen2MoeForCausalLM")
  2130. class Qwen2MoeModel(TextModel):
  2131. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2132. def set_gguf_parameters(self):
  2133. super().set_gguf_parameters()
  2134. if (n_experts := self.hparams.get("num_experts")) is not None:
  2135. self.gguf_writer.add_expert_count(n_experts)
  2136. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2137. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2138. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2139. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2140. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2141. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2142. _experts: list[dict[str, Tensor]] | None = None
  2143. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2144. # process the experts separately
  2145. if name.find("experts") != -1:
  2146. n_experts = self.hparams["num_experts"]
  2147. assert bid is not None
  2148. if self._experts is None:
  2149. self._experts = [{} for _ in range(self.block_count)]
  2150. self._experts[bid][name] = data_torch
  2151. if len(self._experts[bid]) >= n_experts * 3:
  2152. tensors: list[tuple[str, Tensor]] = []
  2153. # merge the experts into a single 3d tensor
  2154. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2155. datas: list[Tensor] = []
  2156. for xid in range(n_experts):
  2157. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2158. datas.append(self._experts[bid][ename])
  2159. del self._experts[bid][ename]
  2160. data_torch = torch.stack(datas, dim=0)
  2161. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2162. new_name = self.map_tensor_name(merged_name)
  2163. tensors.append((new_name, data_torch))
  2164. return tensors
  2165. else:
  2166. return []
  2167. return [(self.map_tensor_name(name), data_torch)]
  2168. def prepare_tensors(self):
  2169. super().prepare_tensors()
  2170. if self._experts is not None:
  2171. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2172. experts = [k for d in self._experts for k in d.keys()]
  2173. if len(experts) > 0:
  2174. raise ValueError(f"Unprocessed experts: {experts}")
  2175. @ModelBase.register("Qwen3ForCausalLM")
  2176. class Qwen3Model(Qwen2Model):
  2177. model_arch = gguf.MODEL_ARCH.QWEN3
  2178. @ModelBase.register("Qwen3MoeForCausalLM")
  2179. class Qwen3MoeModel(Qwen2MoeModel):
  2180. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2181. @ModelBase.register("GPT2LMHeadModel")
  2182. class GPT2Model(TextModel):
  2183. model_arch = gguf.MODEL_ARCH.GPT2
  2184. def set_gguf_parameters(self):
  2185. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2186. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2187. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2188. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2189. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2190. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2191. self.gguf_writer.add_file_type(self.ftype)
  2192. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2193. del bid # unused
  2194. tensors: list[tuple[str, Tensor]] = []
  2195. # we don't need these
  2196. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2197. return tensors
  2198. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2199. data_torch = data_torch.transpose(1, 0)
  2200. new_name = self.map_tensor_name(name)
  2201. tensors.append((new_name, data_torch))
  2202. return tensors
  2203. @ModelBase.register("PhiForCausalLM")
  2204. class Phi2Model(TextModel):
  2205. model_arch = gguf.MODEL_ARCH.PHI2
  2206. def set_gguf_parameters(self):
  2207. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2208. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2209. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2210. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2211. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2212. self.gguf_writer.add_embedding_length(n_embd)
  2213. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2214. self.gguf_writer.add_block_count(block_count)
  2215. self.gguf_writer.add_head_count(n_head)
  2216. self.gguf_writer.add_head_count_kv(n_head)
  2217. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2218. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2219. self.gguf_writer.add_file_type(self.ftype)
  2220. self.gguf_writer.add_add_bos_token(False)
  2221. @ModelBase.register("Phi3ForCausalLM")
  2222. class Phi3MiniModel(TextModel):
  2223. model_arch = gguf.MODEL_ARCH.PHI3
  2224. def set_vocab(self):
  2225. # Phi-4 model uses GPT2Tokenizer
  2226. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2227. if tokenizer_config_file.is_file():
  2228. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2229. tokenizer_config_json = json.load(f)
  2230. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2231. if tokenizer_class == 'GPT2Tokenizer':
  2232. return self._set_vocab_gpt2()
  2233. from sentencepiece import SentencePieceProcessor
  2234. tokenizer_path = self.dir_model / 'tokenizer.model'
  2235. if not tokenizer_path.is_file():
  2236. raise ValueError(f'Error: Missing {tokenizer_path}')
  2237. tokenizer = SentencePieceProcessor()
  2238. tokenizer.LoadFromFile(str(tokenizer_path))
  2239. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2240. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2241. scores: list[float] = [-10000.0] * vocab_size
  2242. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2243. for token_id in range(tokenizer.vocab_size()):
  2244. piece = tokenizer.IdToPiece(token_id)
  2245. text = piece.encode("utf-8")
  2246. score = tokenizer.GetScore(token_id)
  2247. toktype = SentencePieceTokenTypes.NORMAL
  2248. if tokenizer.IsUnknown(token_id):
  2249. toktype = SentencePieceTokenTypes.UNKNOWN
  2250. elif tokenizer.IsControl(token_id):
  2251. toktype = SentencePieceTokenTypes.CONTROL
  2252. elif tokenizer.IsUnused(token_id):
  2253. toktype = SentencePieceTokenTypes.UNUSED
  2254. elif tokenizer.IsByte(token_id):
  2255. toktype = SentencePieceTokenTypes.BYTE
  2256. tokens[token_id] = text
  2257. scores[token_id] = score
  2258. toktypes[token_id] = toktype
  2259. added_tokens_file = self.dir_model / 'added_tokens.json'
  2260. if added_tokens_file.is_file():
  2261. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2262. added_tokens_json = json.load(f)
  2263. for key in added_tokens_json:
  2264. token_id = added_tokens_json[key]
  2265. if token_id >= vocab_size:
  2266. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2267. continue
  2268. tokens[token_id] = key.encode("utf-8")
  2269. scores[token_id] = -1000.0
  2270. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2271. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2272. if tokenizer_config_file.is_file():
  2273. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2274. tokenizer_config_json = json.load(f)
  2275. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2276. for token_id, foken_data in added_tokens_decoder.items():
  2277. token_id = int(token_id)
  2278. token = foken_data["content"].encode("utf-8")
  2279. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2280. if tokens[token_id] != token:
  2281. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2282. tokens[token_id] = token
  2283. scores[token_id] = -1000.0
  2284. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2285. if foken_data.get("special"):
  2286. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2287. tokenizer_file = self.dir_model / 'tokenizer.json'
  2288. if tokenizer_file.is_file():
  2289. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2290. tokenizer_json = json.load(f)
  2291. added_tokens = tokenizer_json.get("added_tokens", [])
  2292. for foken_data in added_tokens:
  2293. token_id = int(foken_data["id"])
  2294. token = foken_data["content"].encode("utf-8")
  2295. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2296. if tokens[token_id] != token:
  2297. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2298. tokens[token_id] = token
  2299. scores[token_id] = -1000.0
  2300. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2301. if foken_data.get("special"):
  2302. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2303. self.gguf_writer.add_tokenizer_model("llama")
  2304. self.gguf_writer.add_tokenizer_pre("default")
  2305. self.gguf_writer.add_token_list(tokens)
  2306. self.gguf_writer.add_token_scores(scores)
  2307. self.gguf_writer.add_token_types(toktypes)
  2308. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2309. special_vocab.add_to_gguf(self.gguf_writer)
  2310. def set_gguf_parameters(self):
  2311. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2312. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2313. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2314. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2315. rms_eps = self.find_hparam(["rms_norm_eps"])
  2316. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2317. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2318. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2319. rope_dims = int(rot_pct * n_embd) // n_head
  2320. self.gguf_writer.add_context_length(max_pos_embds)
  2321. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2322. self.gguf_writer.add_embedding_length(n_embd)
  2323. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2324. self.gguf_writer.add_block_count(block_count)
  2325. self.gguf_writer.add_head_count(n_head)
  2326. self.gguf_writer.add_head_count_kv(n_head_kv)
  2327. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2328. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2329. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2330. self.gguf_writer.add_file_type(self.ftype)
  2331. sliding_window = self.hparams.get("sliding_window")
  2332. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2333. if sliding_window is None:
  2334. sliding_window = 0
  2335. self.gguf_writer.add_sliding_window(sliding_window)
  2336. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2337. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2338. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2339. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2340. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2341. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2342. rope_dims = int(rot_pct * n_embd) // n_head
  2343. # write rope scaling for long context (128k) model
  2344. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2345. if rope_scaling is None:
  2346. return
  2347. scale = max_pos_embds / orig_max_pos_embds
  2348. rope_scaling_type = rope_scaling.get('type', '').lower()
  2349. if len(rope_scaling_type) == 0:
  2350. raise KeyError('Missing the required key rope_scaling.type')
  2351. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2352. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2353. elif rope_scaling_type == 'yarn':
  2354. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2355. else:
  2356. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2357. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2358. long_factors = rope_scaling.get('long_factor', None)
  2359. short_factors = rope_scaling.get('short_factor', None)
  2360. if long_factors is None or short_factors is None:
  2361. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2362. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2363. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2364. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2365. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2366. @ModelBase.register("PhiMoEForCausalLM")
  2367. class PhiMoeModel(Phi3MiniModel):
  2368. model_arch = gguf.MODEL_ARCH.PHIMOE
  2369. _experts: list[dict[str, Tensor]] | None = None
  2370. def set_gguf_parameters(self):
  2371. super().set_gguf_parameters()
  2372. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2373. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2374. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2375. # process the experts separately
  2376. if name.find("block_sparse_moe.experts") != -1:
  2377. n_experts = self.hparams["num_local_experts"]
  2378. assert bid is not None
  2379. if self._experts is None:
  2380. self._experts = [{} for _ in range(self.block_count)]
  2381. self._experts[bid][name] = data_torch
  2382. if len(self._experts[bid]) >= n_experts * 3:
  2383. tensors: list[tuple[str, Tensor]] = []
  2384. # merge the experts into a single 3d tensor
  2385. for w_name in ["w1", "w2", "w3"]:
  2386. datas: list[Tensor] = []
  2387. for xid in range(n_experts):
  2388. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2389. datas.append(self._experts[bid][ename])
  2390. del self._experts[bid][ename]
  2391. data_torch = torch.stack(datas, dim=0)
  2392. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2393. new_name = self.map_tensor_name(merged_name)
  2394. tensors.append((new_name, data_torch))
  2395. return tensors
  2396. else:
  2397. return []
  2398. return [(self.map_tensor_name(name), data_torch)]
  2399. def prepare_tensors(self):
  2400. super().prepare_tensors()
  2401. if self._experts is not None:
  2402. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2403. experts = [k for d in self._experts for k in d.keys()]
  2404. if len(experts) > 0:
  2405. raise ValueError(f"Unprocessed experts: {experts}")
  2406. @ModelBase.register("PlamoForCausalLM")
  2407. class PlamoModel(TextModel):
  2408. model_arch = gguf.MODEL_ARCH.PLAMO
  2409. def set_vocab(self):
  2410. self._set_vocab_sentencepiece()
  2411. def set_gguf_parameters(self):
  2412. hparams = self.hparams
  2413. block_count = hparams["num_hidden_layers"]
  2414. self.gguf_writer.add_context_length(4096) # not in config.json
  2415. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2416. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2417. self.gguf_writer.add_block_count(block_count)
  2418. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2419. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2420. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2421. self.gguf_writer.add_file_type(self.ftype)
  2422. def shuffle_attn_q_weight(self, data_torch):
  2423. assert data_torch.size() == (5120, 5120)
  2424. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2425. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2426. data_torch = torch.reshape(data_torch, (5120, 5120))
  2427. return data_torch
  2428. def shuffle_attn_output_weight(self, data_torch):
  2429. assert data_torch.size() == (5120, 5120)
  2430. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2431. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2432. data_torch = torch.reshape(data_torch, (5120, 5120))
  2433. return data_torch
  2434. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2435. del bid # unused
  2436. new_name = self.map_tensor_name(name)
  2437. # shuffle for broadcasting of gqa in ggml_mul_mat
  2438. if new_name.endswith("attn_q.weight"):
  2439. data_torch = self.shuffle_attn_q_weight(data_torch)
  2440. elif new_name.endswith("attn_output.weight"):
  2441. data_torch = self.shuffle_attn_output_weight(data_torch)
  2442. return [(new_name, data_torch)]
  2443. @ModelBase.register("CodeShellForCausalLM")
  2444. class CodeShellModel(TextModel):
  2445. model_arch = gguf.MODEL_ARCH.CODESHELL
  2446. def set_gguf_parameters(self):
  2447. block_count = self.hparams["n_layer"]
  2448. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2449. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2450. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2451. self.gguf_writer.add_block_count(block_count)
  2452. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2453. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2454. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2455. self.gguf_writer.add_file_type(self.ftype)
  2456. self.gguf_writer.add_rope_freq_base(10000.0)
  2457. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2458. self.gguf_writer.add_rope_scaling_factor(1.0)
  2459. _has_tok_embd = False
  2460. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2461. del bid # unused
  2462. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2463. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2464. new_name = self.map_tensor_name(name)
  2465. # assuming token_embd.weight is seen before output.weight
  2466. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2467. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2468. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2469. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2470. self.tensor_names.remove("transformer.wte.weight")
  2471. elif new_name == tok_embd_name:
  2472. self._has_tok_embd = True
  2473. return [(new_name, data_torch)]
  2474. @ModelBase.register("InternLM2ForCausalLM")
  2475. class InternLM2Model(TextModel):
  2476. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2477. def set_vocab(self):
  2478. # (TODO): Is there a better way?
  2479. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2480. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2481. # recognized as an empty string in C++.
  2482. from sentencepiece import SentencePieceProcessor
  2483. from sentencepiece import sentencepiece_model_pb2 as model
  2484. tokenizer_path = self.dir_model / 'tokenizer.model'
  2485. tokens: list[bytes] = []
  2486. scores: list[float] = []
  2487. toktypes: list[int] = []
  2488. if not tokenizer_path.is_file():
  2489. logger.error(f'Error: Missing {tokenizer_path}')
  2490. sys.exit(1)
  2491. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2492. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2493. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2494. tokenizer = SentencePieceProcessor()
  2495. tokenizer.LoadFromFile(str(tokenizer_path))
  2496. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2497. for token_id in range(vocab_size):
  2498. piece = tokenizer.IdToPiece(token_id)
  2499. text = piece.encode("utf-8")
  2500. score = tokenizer.GetScore(token_id)
  2501. if text == b"\x00":
  2502. # (TODO): fixme
  2503. # Hack here and replace the \x00 characters.
  2504. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2505. text = "🐉".encode("utf-8")
  2506. toktype = SentencePieceTokenTypes.NORMAL
  2507. if tokenizer.IsUnknown(token_id):
  2508. toktype = SentencePieceTokenTypes.UNKNOWN
  2509. elif tokenizer.IsControl(token_id):
  2510. toktype = SentencePieceTokenTypes.CONTROL
  2511. elif tokenizer.IsUnused(token_id):
  2512. toktype = SentencePieceTokenTypes.UNUSED
  2513. elif tokenizer.IsByte(token_id):
  2514. toktype = SentencePieceTokenTypes.BYTE
  2515. # take care of ununsed raw token
  2516. if piece.startswith('[UNUSED'):
  2517. toktype = SentencePieceTokenTypes.UNUSED
  2518. tokens.append(text)
  2519. scores.append(score)
  2520. toktypes.append(toktype)
  2521. added_tokens_file = self.dir_model / 'added_tokens.json'
  2522. if added_tokens_file.is_file():
  2523. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2524. added_tokens_json = json.load(f)
  2525. for key in added_tokens_json:
  2526. tokens.append(key.encode("utf-8"))
  2527. scores.append(-1000.0)
  2528. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2529. chat_eos_token = '<|im_end|>'
  2530. chat_eos_token_id = None
  2531. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2532. if tokenizer_config_file.is_file():
  2533. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2534. tokenizer_config_json = json.load(f)
  2535. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2536. for token_id, foken_data in added_tokens_decoder.items():
  2537. token_id = int(token_id)
  2538. token = foken_data["content"]
  2539. if token == chat_eos_token:
  2540. chat_eos_token_id = token_id
  2541. token = token.encode("utf-8")
  2542. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2543. if tokens[token_id] != token:
  2544. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2545. tokens[token_id] = token
  2546. scores[token_id] = -1000.0
  2547. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2548. if foken_data.get("special"):
  2549. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2550. tokenizer_file = self.dir_model / 'tokenizer.json'
  2551. if tokenizer_file.is_file():
  2552. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2553. tokenizer_json = json.load(f)
  2554. added_tokens = tokenizer_json.get("added_tokens", [])
  2555. for foken_data in added_tokens:
  2556. token_id = int(foken_data["id"])
  2557. token = foken_data["content"]
  2558. if token == chat_eos_token:
  2559. chat_eos_token_id = token_id
  2560. token = token.encode("utf-8")
  2561. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2562. if tokens[token_id] != token:
  2563. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2564. tokens[token_id] = token
  2565. scores[token_id] = -1000.0
  2566. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2567. if foken_data.get("special"):
  2568. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2569. self.gguf_writer.add_tokenizer_model("llama")
  2570. self.gguf_writer.add_tokenizer_pre("default")
  2571. self.gguf_writer.add_token_list(tokens)
  2572. self.gguf_writer.add_token_scores(scores)
  2573. self.gguf_writer.add_token_types(toktypes)
  2574. self.gguf_writer.add_add_space_prefix(add_prefix)
  2575. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2576. old_eos = special_vocab.special_token_ids["eos"]
  2577. if chat_eos_token_id is not None:
  2578. # For the chat model, we replace the eos with '<|im_end|>'.
  2579. # TODO: this is a hack, should be fixed
  2580. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2581. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2582. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2583. " in chat mode so that the conversation can end normally.")
  2584. special_vocab.add_to_gguf(self.gguf_writer)
  2585. def set_gguf_parameters(self):
  2586. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2587. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2588. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2589. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2590. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2591. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2592. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2593. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2594. self.gguf_writer.add_file_type(self.ftype)
  2595. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2596. if self.hparams["rope_scaling"].get("type") == "linear":
  2597. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2598. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2599. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2600. num_heads = self.hparams["num_attention_heads"]
  2601. num_kv_heads = self.hparams["num_key_value_heads"]
  2602. n_embd = self.hparams["hidden_size"]
  2603. q_per_kv = num_heads // num_kv_heads
  2604. head_dim = n_embd // num_heads
  2605. num_groups = num_heads // q_per_kv
  2606. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2607. qkv = data_torch
  2608. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2609. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2610. # The model weights of q and k equire additional reshape.
  2611. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2612. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2613. v = v.reshape((-1, v.shape[-1]))
  2614. return [
  2615. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2616. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2617. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2618. ]
  2619. else:
  2620. return [(self.map_tensor_name(name), data_torch)]
  2621. @ModelBase.register("InternLM3ForCausalLM")
  2622. class InternLM3Model(TextModel):
  2623. model_arch = gguf.MODEL_ARCH.LLAMA
  2624. def set_vocab(self):
  2625. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2626. self.gguf_writer.add_tokenizer_model("llama")
  2627. self.gguf_writer.add_tokenizer_pre("default")
  2628. self.gguf_writer.add_token_list(tokens)
  2629. self.gguf_writer.add_token_scores(scores)
  2630. self.gguf_writer.add_token_types(toktypes)
  2631. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2632. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2633. if tokenizer_config_file.is_file():
  2634. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2635. tokenizer_config_json = json.load(f)
  2636. if "add_prefix_space" in tokenizer_config_json:
  2637. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2638. if "added_tokens_decoder" in tokenizer_config_json:
  2639. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2640. if token_data.get("special"):
  2641. token_id = int(token_id)
  2642. token = token_data["content"]
  2643. special_vocab._set_special_token(token, token_id)
  2644. # update eos token
  2645. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2646. special_vocab.special_token_ids["eos"] = token_id
  2647. special_vocab.add_to_gguf(self.gguf_writer)
  2648. def set_gguf_parameters(self):
  2649. super().set_gguf_parameters()
  2650. hparams = self.hparams
  2651. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2652. if "head_dim" in hparams:
  2653. rope_dim = hparams["head_dim"]
  2654. else:
  2655. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2656. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2657. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2658. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2659. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2660. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2661. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2662. n_head = self.hparams["num_attention_heads"]
  2663. n_kv_head = self.hparams.get("num_key_value_heads")
  2664. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2665. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2666. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2667. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2668. return [(self.map_tensor_name(name), data_torch)]
  2669. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2670. class BertModel(TextModel):
  2671. model_arch = gguf.MODEL_ARCH.BERT
  2672. def __init__(self, *args, **kwargs):
  2673. super().__init__(*args, **kwargs)
  2674. self.vocab_size = None
  2675. def set_gguf_parameters(self):
  2676. super().set_gguf_parameters()
  2677. self.gguf_writer.add_causal_attention(False)
  2678. # get pooling path
  2679. pooling_path = None
  2680. module_path = self.dir_model / "modules.json"
  2681. if module_path.is_file():
  2682. with open(module_path, encoding="utf-8") as f:
  2683. modules = json.load(f)
  2684. for mod in modules:
  2685. if mod["type"] == "sentence_transformers.models.Pooling":
  2686. pooling_path = mod["path"]
  2687. break
  2688. # get pooling type
  2689. if pooling_path is not None:
  2690. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2691. pooling = json.load(f)
  2692. if pooling["pooling_mode_mean_tokens"]:
  2693. pooling_type = gguf.PoolingType.MEAN
  2694. elif pooling["pooling_mode_cls_token"]:
  2695. pooling_type = gguf.PoolingType.CLS
  2696. else:
  2697. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2698. self.gguf_writer.add_pooling_type(pooling_type)
  2699. def set_vocab(self):
  2700. tokens, toktypes, tokpre = self.get_vocab_base()
  2701. self.vocab_size = len(tokens)
  2702. # we need this to validate the size of the token_type embeddings
  2703. # though currently we are passing all zeros to the token_type embeddings
  2704. # "Sequence A" or "Sequence B"
  2705. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2706. # convert to phantom space vocab
  2707. def phantom(tok):
  2708. if tok.startswith("[") and tok.endswith("]"):
  2709. return tok
  2710. if tok.startswith("##"):
  2711. return tok[2:]
  2712. return "\u2581" + tok
  2713. tokens = list(map(phantom, tokens))
  2714. # add vocab to gguf
  2715. self.gguf_writer.add_tokenizer_model("bert")
  2716. self.gguf_writer.add_tokenizer_pre(tokpre)
  2717. self.gguf_writer.add_token_list(tokens)
  2718. self.gguf_writer.add_token_types(toktypes)
  2719. # handle special tokens
  2720. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2721. special_vocab.add_to_gguf(self.gguf_writer)
  2722. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2723. del bid # unused
  2724. if name.startswith("bert."):
  2725. name = name[5:]
  2726. if name.endswith(".gamma"):
  2727. name = name[:-6] + ".weight"
  2728. if name.endswith(".beta"):
  2729. name = name[:-5] + ".bias"
  2730. # we are only using BERT for embeddings so we don't need the pooling layer
  2731. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2732. return [] # we don't need these
  2733. if name.startswith("cls.predictions"):
  2734. return []
  2735. if name.startswith("cls.seq_relationship"):
  2736. return []
  2737. return [(self.map_tensor_name(name), data_torch)]
  2738. @ModelBase.register("RobertaModel")
  2739. class RobertaModel(BertModel):
  2740. model_arch = gguf.MODEL_ARCH.BERT
  2741. def __init__(self, *args, **kwargs):
  2742. super().__init__(*args, **kwargs)
  2743. # we need the pad_token_id to know how to chop down position_embd matrix
  2744. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2745. self._position_offset = 1 + pad_token_id
  2746. if "max_position_embeddings" in self.hparams:
  2747. self.hparams["max_position_embeddings"] -= self._position_offset
  2748. else:
  2749. self._position_offset = None
  2750. def set_vocab(self):
  2751. """Support BPE tokenizers for roberta models"""
  2752. bpe_tok_path = self.dir_model / "tokenizer.json"
  2753. if bpe_tok_path.exists():
  2754. self._set_vocab_gpt2()
  2755. self.gguf_writer.add_add_bos_token(True)
  2756. self.gguf_writer.add_add_eos_token(True)
  2757. # we need this to validate the size of the token_type embeddings
  2758. # though currently we are passing all zeros to the token_type embeddings
  2759. # "Sequence A" or "Sequence B"
  2760. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2761. else:
  2762. return super().set_vocab()
  2763. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2764. # if name starts with "roberta.", remove the prefix
  2765. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2766. if name.startswith("roberta."):
  2767. name = name[8:]
  2768. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2769. if name == "embeddings.position_embeddings.weight":
  2770. if self._position_offset is not None:
  2771. data_torch = data_torch[self._position_offset:,:]
  2772. return super().modify_tensors(data_torch, name, bid)
  2773. @ModelBase.register("NomicBertModel")
  2774. class NomicBertModel(BertModel):
  2775. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2776. def __init__(self, *args, **kwargs):
  2777. super().__init__(*args, **kwargs)
  2778. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2779. self.hparams["n_ctx"] = 2048
  2780. # SwigLU activation
  2781. assert self.hparams["activation_function"] == "swiglu"
  2782. # this doesn't do anything in the HF version
  2783. assert self.hparams["causal"] is False
  2784. # no bias tensors
  2785. assert self.hparams["qkv_proj_bias"] is False
  2786. assert self.hparams["mlp_fc1_bias"] is False
  2787. assert self.hparams["mlp_fc2_bias"] is False
  2788. # norm at end of layer
  2789. assert self.hparams["prenorm"] is False
  2790. # standard RoPE
  2791. assert self.hparams["rotary_emb_fraction"] == 1.0
  2792. assert self.hparams["rotary_emb_interleaved"] is False
  2793. assert self.hparams["rotary_emb_scale_base"] is None
  2794. def set_gguf_parameters(self):
  2795. super().set_gguf_parameters()
  2796. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2797. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2798. class XLMRobertaModel(BertModel):
  2799. model_arch = gguf.MODEL_ARCH.BERT
  2800. def __init__(self, *args, **kwargs):
  2801. super().__init__(*args, **kwargs)
  2802. # we need the pad_token_id to know how to chop down position_embd matrix
  2803. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2804. self._position_offset = 1 + pad_token_id
  2805. if "max_position_embeddings" in self.hparams:
  2806. self.hparams["max_position_embeddings"] -= self._position_offset
  2807. else:
  2808. self._position_offset = None
  2809. def set_vocab(self):
  2810. # to avoid TypeError: Descriptors cannot be created directly
  2811. # exception when importing sentencepiece_model_pb2
  2812. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2813. from sentencepiece import SentencePieceProcessor
  2814. from sentencepiece import sentencepiece_model_pb2 as model
  2815. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2816. if not tokenizer_path.is_file():
  2817. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2818. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2819. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2820. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2821. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2822. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2823. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2824. tokenizer = SentencePieceProcessor()
  2825. tokenizer.LoadFromFile(str(tokenizer_path))
  2826. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2827. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2828. scores: list[float] = [-10000.0] * vocab_size
  2829. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2830. for token_id in range(tokenizer.vocab_size()):
  2831. piece = tokenizer.IdToPiece(token_id)
  2832. text = piece.encode("utf-8")
  2833. score = tokenizer.GetScore(token_id)
  2834. toktype = SentencePieceTokenTypes.NORMAL
  2835. if tokenizer.IsUnknown(token_id):
  2836. toktype = SentencePieceTokenTypes.UNKNOWN
  2837. elif tokenizer.IsControl(token_id):
  2838. toktype = SentencePieceTokenTypes.CONTROL
  2839. elif tokenizer.IsUnused(token_id):
  2840. toktype = SentencePieceTokenTypes.UNUSED
  2841. elif tokenizer.IsByte(token_id):
  2842. toktype = SentencePieceTokenTypes.BYTE
  2843. tokens[token_id] = text
  2844. scores[token_id] = score
  2845. toktypes[token_id] = toktype
  2846. if vocab_size > len(tokens):
  2847. pad_count = vocab_size - len(tokens)
  2848. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2849. for i in range(1, pad_count + 1):
  2850. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2851. scores.append(-1000.0)
  2852. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2853. # realign tokens (see HF tokenizer code)
  2854. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2855. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2856. toktypes = [
  2857. SentencePieceTokenTypes.CONTROL,
  2858. SentencePieceTokenTypes.CONTROL,
  2859. SentencePieceTokenTypes.CONTROL,
  2860. SentencePieceTokenTypes.UNKNOWN,
  2861. ] + toktypes[3:-1]
  2862. self.gguf_writer.add_tokenizer_model("t5")
  2863. self.gguf_writer.add_tokenizer_pre("default")
  2864. self.gguf_writer.add_token_list(tokens)
  2865. self.gguf_writer.add_token_scores(scores)
  2866. self.gguf_writer.add_token_types(toktypes)
  2867. self.gguf_writer.add_add_space_prefix(add_prefix)
  2868. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2869. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2870. if precompiled_charsmap:
  2871. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2872. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2873. special_vocab.add_to_gguf(self.gguf_writer)
  2874. self.gguf_writer.add_add_bos_token(True)
  2875. self.gguf_writer.add_add_eos_token(True)
  2876. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2877. # if name starts with "roberta.", remove the prefix
  2878. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2879. if name.startswith("roberta."):
  2880. name = name[8:]
  2881. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2882. if name == "embeddings.position_embeddings.weight":
  2883. if self._position_offset is not None:
  2884. data_torch = data_torch[self._position_offset:,:]
  2885. return super().modify_tensors(data_torch, name, bid)
  2886. @ModelBase.register("GemmaForCausalLM")
  2887. class GemmaModel(TextModel):
  2888. model_arch = gguf.MODEL_ARCH.GEMMA
  2889. def set_vocab(self):
  2890. self._set_vocab_sentencepiece()
  2891. # TODO: these special tokens should be exported only for the CodeGemma family
  2892. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2893. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2894. special_vocab._set_special_token("prefix", 67)
  2895. special_vocab._set_special_token("suffix", 69)
  2896. special_vocab._set_special_token("middle", 68)
  2897. special_vocab._set_special_token("fsep", 70)
  2898. special_vocab._set_special_token("eot", 107)
  2899. special_vocab.chat_template = None # do not add it twice
  2900. special_vocab.add_to_gguf(self.gguf_writer)
  2901. self.gguf_writer.add_add_space_prefix(False)
  2902. def set_gguf_parameters(self):
  2903. hparams = self.hparams
  2904. block_count = hparams["num_hidden_layers"]
  2905. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2906. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2907. self.gguf_writer.add_block_count(block_count)
  2908. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2909. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2910. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2911. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2912. self.gguf_writer.add_key_length(hparams["head_dim"])
  2913. self.gguf_writer.add_value_length(hparams["head_dim"])
  2914. self.gguf_writer.add_file_type(self.ftype)
  2915. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2916. del bid # unused
  2917. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2918. # To prevent errors, skip loading lm_head.weight.
  2919. if name == "lm_head.weight":
  2920. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2921. return []
  2922. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2923. if name.endswith("norm.weight"):
  2924. data_torch = data_torch + 1
  2925. return [(self.map_tensor_name(name), data_torch)]
  2926. @ModelBase.register("Gemma2ForCausalLM")
  2927. class Gemma2Model(TextModel):
  2928. model_arch = gguf.MODEL_ARCH.GEMMA2
  2929. def set_vocab(self):
  2930. self._set_vocab_sentencepiece()
  2931. self.gguf_writer.add_add_space_prefix(False)
  2932. def set_gguf_parameters(self):
  2933. hparams = self.hparams
  2934. block_count = hparams["num_hidden_layers"]
  2935. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2936. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2937. self.gguf_writer.add_block_count(block_count)
  2938. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2939. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2940. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2941. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2942. self.gguf_writer.add_key_length(hparams["head_dim"])
  2943. self.gguf_writer.add_value_length(hparams["head_dim"])
  2944. self.gguf_writer.add_file_type(self.ftype)
  2945. self.gguf_writer.add_attn_logit_softcapping(
  2946. self.hparams["attn_logit_softcapping"]
  2947. )
  2948. self.gguf_writer.add_final_logit_softcapping(
  2949. self.hparams["final_logit_softcapping"]
  2950. )
  2951. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2952. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2953. del bid # unused
  2954. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2955. # To prevent errors, skip loading lm_head.weight.
  2956. if name == "lm_head.weight":
  2957. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2958. return []
  2959. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2960. if name.endswith("norm.weight"):
  2961. data_torch = data_torch + 1
  2962. return [(self.map_tensor_name(name), data_torch)]
  2963. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2964. class Gemma3Model(TextModel):
  2965. model_arch = gguf.MODEL_ARCH.GEMMA3
  2966. def set_vocab(self):
  2967. self._set_vocab_sentencepiece()
  2968. self.gguf_writer.add_add_space_prefix(False)
  2969. def set_gguf_parameters(self):
  2970. hparams = self.hparams
  2971. block_count = hparams["num_hidden_layers"]
  2972. # some default values are not specified in the hparams
  2973. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  2974. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2975. self.gguf_writer.add_block_count(block_count)
  2976. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2977. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  2978. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  2979. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  2980. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  2981. self.gguf_writer.add_file_type(self.ftype)
  2982. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  2983. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  2984. assert hparams.get("attn_logit_softcapping") is None
  2985. assert hparams.get("final_logit_softcapping") is None
  2986. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  2987. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  2988. if hparams.get("rope_scaling") is not None:
  2989. assert hparams["rope_scaling"]["rope_type"] == "linear"
  2990. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  2991. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2992. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  2993. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2994. del bid # unused
  2995. if name.startswith("language_model."):
  2996. name = name.replace("language_model.", "")
  2997. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2998. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  2999. return [] # skip vision tensors
  3000. # remove OOV (out-of-vocabulary) rows in token_embd
  3001. if "embed_tokens.weight" in name:
  3002. vocab = self._create_vocab_sentencepiece()
  3003. tokens = vocab[0]
  3004. data_torch = data_torch[:len(tokens)]
  3005. # ref code in Gemma3RMSNorm
  3006. # output = output * (1.0 + self.weight.float())
  3007. if name.endswith("norm.weight"):
  3008. data_torch = data_torch + 1
  3009. return [(self.map_tensor_name(name), data_torch)]
  3010. @ModelBase.register("Gemma3ForConditionalGeneration")
  3011. class Gemma3VisionModel(VisionModel):
  3012. def set_gguf_parameters(self):
  3013. super().set_gguf_parameters()
  3014. hparams = self.hparams
  3015. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
  3016. # default values below are taken from HF tranformers code
  3017. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3018. self.gguf_writer.add_vision_use_gelu(True)
  3019. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3020. del bid, new_name, n_dims # unused
  3021. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3022. if "input_projection" in name:
  3023. return gguf.GGMLQuantizationType.F16
  3024. if ".embeddings." in name:
  3025. return gguf.GGMLQuantizationType.F32
  3026. return False
  3027. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3028. del bid # unused
  3029. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3030. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3031. # process vision tensors
  3032. name = name.replace("_weight", ".weight")
  3033. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3034. # the other norm values are part of SigLIP model, and they are already correct
  3035. # ref code: Gemma3RMSNorm
  3036. if "soft_emb_norm.weight" in name:
  3037. logger.info(f"Correcting norm value for '{name}'")
  3038. data_torch = data_torch + 1
  3039. return [(self.map_tensor_name(name), data_torch)]
  3040. return [] # skip other tensors
  3041. @ModelBase.register("Starcoder2ForCausalLM")
  3042. class StarCoder2Model(TextModel):
  3043. model_arch = gguf.MODEL_ARCH.STARCODER2
  3044. @ModelBase.register("Rwkv6ForCausalLM")
  3045. class Rwkv6Model(TextModel):
  3046. model_arch = gguf.MODEL_ARCH.RWKV6
  3047. def set_vocab(self):
  3048. self._set_vocab_rwkv_world()
  3049. def set_gguf_parameters(self):
  3050. block_count = self.hparams["num_hidden_layers"]
  3051. head_size = self.hparams["head_size"]
  3052. hidden_size = self.hparams["hidden_size"]
  3053. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3054. rescale_every_n_layers = self.hparams["rescale_every"]
  3055. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3056. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3057. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3058. # RWKV isn't context limited
  3059. self.gguf_writer.add_context_length(1048576)
  3060. self.gguf_writer.add_embedding_length(hidden_size)
  3061. self.gguf_writer.add_block_count(block_count)
  3062. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3063. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3064. self.gguf_writer.add_wkv_head_size(head_size)
  3065. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3066. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3067. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3068. self.gguf_writer.add_file_type(self.ftype)
  3069. # required by llama.cpp, unused
  3070. self.gguf_writer.add_head_count(0)
  3071. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3072. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3073. new_name = self.map_tensor_name(name)
  3074. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3075. new_name += ".weight"
  3076. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3077. data_torch = data_torch.transpose(0, 1)
  3078. if new_name.endswith("time_mix_w2.weight"):
  3079. data_torch = data_torch.permute(0, 2, 1)
  3080. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3081. data_torch = data_torch.squeeze()
  3082. try:
  3083. rescale_every_n_layers = self.hparams["rescale_every"]
  3084. if rescale_every_n_layers > 0:
  3085. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3086. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3087. except KeyError:
  3088. pass
  3089. # concat time_mix_lerp weights to reduce some cpu overhead
  3090. # also reduces the number of tensors in the model
  3091. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3092. try:
  3093. self.lerp_weights[bid][new_name] = data_torch
  3094. except KeyError:
  3095. self.lerp_weights[bid] = {new_name: data_torch}
  3096. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3097. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3098. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3099. yield (new_name, data)
  3100. return
  3101. yield (new_name, data_torch)
  3102. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3103. class RWKV6Qwen2Model(Rwkv6Model):
  3104. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3105. def set_vocab(self):
  3106. try:
  3107. self._set_vocab_sentencepiece()
  3108. except FileNotFoundError:
  3109. self._set_vocab_gpt2()
  3110. def set_gguf_parameters(self):
  3111. block_count = self.hparams["num_hidden_layers"]
  3112. num_attention_heads = self.hparams["num_attention_heads"]
  3113. num_key_value_heads = self.hparams["num_key_value_heads"]
  3114. hidden_size = self.hparams["hidden_size"]
  3115. head_size = hidden_size // num_attention_heads
  3116. rms_norm_eps = self.hparams["rms_norm_eps"]
  3117. intermediate_size = self.hparams["intermediate_size"]
  3118. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3119. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3120. # RWKV isn't context limited
  3121. self.gguf_writer.add_context_length(1048576)
  3122. self.gguf_writer.add_embedding_length(hidden_size)
  3123. self.gguf_writer.add_block_count(block_count)
  3124. self.gguf_writer.add_wkv_head_size(head_size)
  3125. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3126. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3127. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3128. self.gguf_writer.add_file_type(self.ftype)
  3129. # special parameters for time_mixing in RWKV6QWEN2
  3130. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3131. self.gguf_writer.add_token_shift_count(1)
  3132. # RWKV6QWEN2 use grouped key/value like GQA
  3133. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3134. # required by llama.cpp, unused
  3135. self.gguf_writer.add_head_count(0)
  3136. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3137. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3138. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3139. data = data.view(5, -1, data.shape[-1])
  3140. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3141. # permute them here to avoid code changes
  3142. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3143. if "w2" in new_name:
  3144. data = data.view(5, -1, data.shape[-1])
  3145. yield (new_name, data)
  3146. continue
  3147. yield (new_name, data)
  3148. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3149. class Rwkv7Model(TextModel):
  3150. model_arch = gguf.MODEL_ARCH.RWKV7
  3151. def set_vocab(self):
  3152. self._set_vocab_rwkv_world()
  3153. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3154. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3155. def set_gguf_parameters(self):
  3156. block_count = self.hparams["num_hidden_layers"]
  3157. try:
  3158. head_size = self.hparams["head_size"]
  3159. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3160. except KeyError:
  3161. head_size = self.hparams["head_dim"]
  3162. layer_norm_eps = self.hparams["norm_eps"]
  3163. hidden_size = self.hparams["hidden_size"]
  3164. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3165. # ICLR: In-Context-Learning-Rate
  3166. try:
  3167. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3168. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3169. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3170. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3171. except KeyError:
  3172. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3173. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3174. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3175. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3176. # RWKV isn't context limited
  3177. self.gguf_writer.add_context_length(1048576)
  3178. self.gguf_writer.add_embedding_length(hidden_size)
  3179. self.gguf_writer.add_block_count(block_count)
  3180. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3181. self.gguf_writer.add_wkv_head_size(head_size)
  3182. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3183. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3184. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3185. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3186. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3187. self.gguf_writer.add_file_type(self.ftype)
  3188. # required by llama.cpp, unused
  3189. self.gguf_writer.add_head_count(0)
  3190. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3191. lora_needs_transpose: bool = True
  3192. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3193. # unify tensor names here to make life easier
  3194. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3195. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3196. name = name.replace("time_mixer.", "")
  3197. # lora layer names in fla-hub's impl
  3198. if "_lora.lora" in name:
  3199. self.lora_needs_transpose = False
  3200. name = name.replace("_lora.lora.0.weight", "1.weight")
  3201. name = name.replace("_lora.lora.2.weight", "2.weight")
  3202. name = name.replace("_lora.lora.2.bias", "0.weight")
  3203. name = name.replace("feed_forward_norm", "ln2")
  3204. name = name.replace("g_norm", "ln_x")
  3205. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3206. # some models have dummy v0/v1/v2 on first layer while others don't
  3207. # ignore them all since they are not used
  3208. return
  3209. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3210. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3211. if bid is not None and "attention.x_" in name:
  3212. if "attention.x_x" in name:
  3213. # already concatenated
  3214. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3215. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3216. yield (new_name, data)
  3217. else:
  3218. try:
  3219. self.lerp_weights[bid][name] = data_torch
  3220. except KeyError:
  3221. self.lerp_weights[bid] = {name: data_torch}
  3222. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3223. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3224. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3225. yield (new_name, data)
  3226. return
  3227. else:
  3228. data_torch = data_torch.squeeze()
  3229. new_name = self.map_tensor_name(name)
  3230. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3231. new_name += ".weight"
  3232. if self.lora_needs_transpose and any(
  3233. new_name.endswith(t) for t in [
  3234. "time_mix_w1.weight", "time_mix_w2.weight",
  3235. "time_mix_a1.weight", "time_mix_a2.weight",
  3236. "time_mix_v1.weight", "time_mix_v2.weight",
  3237. "time_mix_g1.weight", "time_mix_g2.weight",
  3238. ]
  3239. ):
  3240. data_torch = data_torch.transpose(0, 1)
  3241. if 'r_k' in new_name:
  3242. data_torch = data_torch.flatten()
  3243. if bid == 0 and "time_mix_a" in new_name:
  3244. # dummy v0/v1/v2 on first layer
  3245. # easist way to make llama happy
  3246. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3247. yield (new_name, data_torch)
  3248. @ModelBase.register("RwkvHybridForCausalLM")
  3249. class ARwkv7Model(Rwkv7Model):
  3250. model_arch = gguf.MODEL_ARCH.ARWKV7
  3251. def set_vocab(self):
  3252. try:
  3253. self._set_vocab_sentencepiece()
  3254. except FileNotFoundError:
  3255. self._set_vocab_gpt2()
  3256. def set_gguf_parameters(self):
  3257. block_count = self.hparams["num_hidden_layers"]
  3258. hidden_size = self.hparams["hidden_size"]
  3259. head_size = self.hparams["head_size"]
  3260. rms_norm_eps = self.hparams["rms_norm_eps"]
  3261. intermediate_size = self.hparams["intermediate_size"]
  3262. wkv_has_gate = self.hparams["wkv_has_gate"]
  3263. assert self.hparams["wkv_version"] == 7
  3264. # ICLR: In-Context-Learning-Rate
  3265. lora_rank_decay = 64
  3266. lora_rank_iclr = 64
  3267. lora_rank_value_residual_mix = 32
  3268. lora_rank_gate = 128 if wkv_has_gate else 0
  3269. # RWKV isn't context limited
  3270. self.gguf_writer.add_context_length(1048576)
  3271. self.gguf_writer.add_embedding_length(hidden_size)
  3272. self.gguf_writer.add_block_count(block_count)
  3273. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3274. self.gguf_writer.add_wkv_head_size(head_size)
  3275. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3276. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3277. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3278. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3279. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3280. self.gguf_writer.add_file_type(self.ftype)
  3281. self.gguf_writer.add_token_shift_count(1)
  3282. # required by llama.cpp, unused
  3283. self.gguf_writer.add_head_count(0)
  3284. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3285. class MambaModel(TextModel):
  3286. model_arch = gguf.MODEL_ARCH.MAMBA
  3287. def set_vocab(self):
  3288. vocab_size = self.hparams["vocab_size"]
  3289. # Round vocab size to next multiple of 8
  3290. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3291. # pad using ceiling division
  3292. # ref: https://stackoverflow.com/a/17511341/22827863
  3293. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3294. self.hparams["vocab_size"] = vocab_size
  3295. if (self.dir_model / "tokenizer.json").is_file():
  3296. self._set_vocab_gpt2()
  3297. elif (self.dir_model / "tokenizer.model").is_file():
  3298. self._set_vocab_sentencepiece()
  3299. else:
  3300. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3301. self._set_vocab_builtin("gpt-neox", vocab_size)
  3302. def set_gguf_parameters(self):
  3303. d_model = self.find_hparam(["hidden_size", "d_model"])
  3304. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3305. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3306. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3307. # ceiling division
  3308. # ref: https://stackoverflow.com/a/17511341/22827863
  3309. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3310. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3311. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3312. use_dt_b_c_norm = False
  3313. # For falconmamba we do apply RMS norm on B / DT and C layers
  3314. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3315. use_dt_b_c_norm = True
  3316. # Fail early for models which don't have a block expansion factor of 2
  3317. assert d_inner == 2 * d_model
  3318. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3319. self.gguf_writer.add_embedding_length(d_model)
  3320. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3321. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3322. self.gguf_writer.add_block_count(self.block_count)
  3323. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3324. self.gguf_writer.add_ssm_inner_size(d_inner)
  3325. self.gguf_writer.add_ssm_state_size(d_state)
  3326. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3327. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3328. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3329. self.gguf_writer.add_file_type(self.ftype)
  3330. _tok_embd = None
  3331. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3332. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3333. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3334. new_name = self.map_tensor_name(name)
  3335. if name.endswith(".A_log"):
  3336. logger.debug("A_log --> A ==> " + new_name)
  3337. data_torch = -torch.exp(data_torch)
  3338. # [4 1 8192 1] -> [4 8192 1 1]
  3339. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3340. data_torch = data_torch.squeeze()
  3341. # assuming token_embd.weight is seen before output.weight
  3342. if self._tok_embd is not None and new_name == output_name:
  3343. if torch.equal(self._tok_embd, data_torch):
  3344. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3345. return []
  3346. elif new_name == tok_embd_name:
  3347. self._tok_embd = data_torch
  3348. return [(new_name, data_torch)]
  3349. @ModelBase.register("CohereForCausalLM")
  3350. class CommandR2Model(TextModel):
  3351. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3352. def __init__(self, *args, **kwargs):
  3353. super().__init__(*args, **kwargs)
  3354. # max_position_embeddings = 8192 in config.json but model was actually
  3355. # trained on 128k context length
  3356. # aya-23 models don't have model_max_length specified
  3357. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3358. def set_gguf_parameters(self):
  3359. super().set_gguf_parameters()
  3360. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3361. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3362. @ModelBase.register("Cohere2ForCausalLM")
  3363. class Cohere2Model(TextModel):
  3364. model_arch = gguf.MODEL_ARCH.COHERE2
  3365. def set_gguf_parameters(self):
  3366. super().set_gguf_parameters()
  3367. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3368. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3369. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3370. rotary_pct = self.hparams["rotary_pct"]
  3371. hidden_size = self.hparams["hidden_size"]
  3372. num_attention_heads = self.hparams["num_attention_heads"]
  3373. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3374. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3375. @ModelBase.register("OlmoForCausalLM")
  3376. @ModelBase.register("OLMoForCausalLM")
  3377. class OlmoModel(TextModel):
  3378. model_arch = gguf.MODEL_ARCH.OLMO
  3379. def set_gguf_parameters(self):
  3380. super().set_gguf_parameters()
  3381. self.gguf_writer.add_layer_norm_eps(1e-5)
  3382. clip_qkv = self.hparams.get("clip_qkv")
  3383. if clip_qkv is not None:
  3384. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3385. # Same as super class, but permuting q_proj, k_proj
  3386. # Copied from: LlamaModel
  3387. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3388. del bid # unused
  3389. n_head = self.hparams["num_attention_heads"]
  3390. n_kv_head = self.hparams.get("num_key_value_heads")
  3391. if name.endswith("q_proj.weight"):
  3392. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3393. if name.endswith("k_proj.weight"):
  3394. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3395. return [(self.map_tensor_name(name), data_torch)]
  3396. @ModelBase.register("Olmo2ForCausalLM")
  3397. class Olmo2Model(TextModel):
  3398. model_arch = gguf.MODEL_ARCH.OLMO2
  3399. @ModelBase.register("OlmoeForCausalLM")
  3400. class OlmoeModel(TextModel):
  3401. model_arch = gguf.MODEL_ARCH.OLMOE
  3402. def set_gguf_parameters(self):
  3403. super().set_gguf_parameters()
  3404. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3405. if (n_experts := self.hparams.get("num_experts")) is not None:
  3406. self.gguf_writer.add_expert_count(n_experts)
  3407. _experts: list[dict[str, Tensor]] | None = None
  3408. # Copied from: Qwen2MoeModel
  3409. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3410. # process the experts separately
  3411. if name.find("experts") != -1:
  3412. n_experts = self.hparams["num_experts"]
  3413. assert bid is not None
  3414. if self._experts is None:
  3415. self._experts = [{} for _ in range(self.block_count)]
  3416. self._experts[bid][name] = data_torch
  3417. if len(self._experts[bid]) >= n_experts * 3:
  3418. tensors: list[tuple[str, Tensor]] = []
  3419. # merge the experts into a single 3d tensor
  3420. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3421. datas: list[Tensor] = []
  3422. for xid in range(n_experts):
  3423. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3424. datas.append(self._experts[bid][ename])
  3425. del self._experts[bid][ename]
  3426. data_torch = torch.stack(datas, dim=0)
  3427. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3428. new_name = self.map_tensor_name(merged_name)
  3429. tensors.append((new_name, data_torch))
  3430. return tensors
  3431. else:
  3432. return []
  3433. return [(self.map_tensor_name(name), data_torch)]
  3434. # Copied from: Qwen2MoeModel
  3435. def prepare_tensors(self):
  3436. super().prepare_tensors()
  3437. if self._experts is not None:
  3438. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3439. experts = [k for d in self._experts for k in d.keys()]
  3440. if len(experts) > 0:
  3441. raise ValueError(f"Unprocessed experts: {experts}")
  3442. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3443. class JinaBertV2Model(BertModel):
  3444. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3445. def __init__(self, *args, **kwargs):
  3446. super().__init__(*args, **kwargs)
  3447. self.intermediate_size = self.hparams["intermediate_size"]
  3448. def get_tensors(self):
  3449. for name, data in super().get_tensors():
  3450. if 'gated_layer' in name:
  3451. d1 = data[:self.intermediate_size, :]
  3452. name1 = name.replace('gated_layers', 'gated_layers_w')
  3453. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3454. d2 = data[self.intermediate_size:, :]
  3455. name2 = name.replace('gated_layers', 'gated_layers_v')
  3456. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3457. yield name1, d1
  3458. yield name2, d2
  3459. continue
  3460. yield name, data
  3461. def set_vocab(self):
  3462. tokenizer_class = 'BertTokenizer'
  3463. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3464. tokenizer_class = json.load(f)['tokenizer_class']
  3465. if tokenizer_class == 'BertTokenizer':
  3466. super().set_vocab()
  3467. elif tokenizer_class == 'RobertaTokenizer':
  3468. self._set_vocab_gpt2()
  3469. self.gguf_writer.add_token_type_count(2)
  3470. else:
  3471. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3472. self.gguf_writer.add_add_bos_token(True)
  3473. self.gguf_writer.add_add_eos_token(True)
  3474. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3475. # if name starts with "bert.", remove the prefix
  3476. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3477. if name.startswith("bert."):
  3478. name = name[5:]
  3479. return super().modify_tensors(data_torch, name, bid)
  3480. @ModelBase.register("OpenELMForCausalLM")
  3481. class OpenELMModel(TextModel):
  3482. model_arch = gguf.MODEL_ARCH.OPENELM
  3483. @staticmethod
  3484. def _make_divisible(v: float | int, divisor: int) -> int:
  3485. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3486. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3487. # Make sure that round down does not go down by more than 10%.
  3488. if new_v < 0.9 * v:
  3489. new_v += divisor
  3490. return new_v
  3491. def __init__(self, *args, **kwargs):
  3492. super().__init__(*args, **kwargs)
  3493. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3494. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3495. self._n_embd: int = self.hparams["model_dim"]
  3496. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3497. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3498. self._ffn_dims: list[int] = [
  3499. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3500. for multiplier in ffn_multipliers
  3501. ]
  3502. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3503. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3504. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3505. def set_vocab(self):
  3506. try:
  3507. self._set_vocab_sentencepiece()
  3508. except FileNotFoundError:
  3509. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3510. def set_gguf_parameters(self):
  3511. n_embd = self._n_embd
  3512. head_dim = self.hparams["head_dim"]
  3513. rot_pct = 1.0
  3514. assert self.block_count == len(self._num_kv_heads)
  3515. assert self.block_count == len(self._num_query_heads)
  3516. assert self.block_count == len(self._ffn_dims)
  3517. self.gguf_writer.add_block_count(self.block_count)
  3518. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3519. self.gguf_writer.add_embedding_length(n_embd)
  3520. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3521. self.gguf_writer.add_head_count(self._num_query_heads)
  3522. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3523. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3524. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3525. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3526. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3527. self.gguf_writer.add_key_length(head_dim)
  3528. self.gguf_writer.add_value_length(head_dim)
  3529. self.gguf_writer.add_file_type(self.ftype)
  3530. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3531. if "n_layers" in keys:
  3532. return self.hparams["num_transformer_layers"]
  3533. return super().find_hparam(keys, optional)
  3534. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3535. # split ff
  3536. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3537. ff_dim = self._ffn_dims[bid]
  3538. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3539. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3540. return
  3541. yield (self.map_tensor_name(name), data_torch)
  3542. @ModelBase.register("ArcticForCausalLM")
  3543. class ArcticModel(TextModel):
  3544. model_arch = gguf.MODEL_ARCH.ARCTIC
  3545. def set_vocab(self):
  3546. # The reason for using a custom implementation here is that the
  3547. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3548. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3549. from sentencepiece import SentencePieceProcessor
  3550. tokenizer_path = self.dir_model / 'tokenizer.model'
  3551. if not tokenizer_path.is_file():
  3552. logger.error(f'Error: Missing {tokenizer_path}')
  3553. sys.exit(1)
  3554. # Read the whole vocabulary from the tokenizer.model file
  3555. tokenizer = SentencePieceProcessor()
  3556. tokenizer.LoadFromFile(str(tokenizer_path))
  3557. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3558. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3559. scores: list[float] = [-10000.0] * vocab_size
  3560. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3561. for token_id in range(tokenizer.vocab_size()):
  3562. piece = tokenizer.IdToPiece(token_id)
  3563. text = piece.encode("utf-8")
  3564. score = tokenizer.GetScore(token_id)
  3565. toktype = SentencePieceTokenTypes.NORMAL
  3566. if tokenizer.IsUnknown(token_id):
  3567. toktype = SentencePieceTokenTypes.UNKNOWN
  3568. elif tokenizer.IsControl(token_id):
  3569. toktype = SentencePieceTokenTypes.CONTROL
  3570. elif tokenizer.IsUnused(token_id):
  3571. toktype = SentencePieceTokenTypes.UNUSED
  3572. elif tokenizer.IsByte(token_id):
  3573. toktype = SentencePieceTokenTypes.BYTE
  3574. tokens[token_id] = text
  3575. scores[token_id] = score
  3576. toktypes[token_id] = toktype
  3577. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3578. # of information about added/redefined tokens and modify them accordingly.
  3579. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3580. if tokenizer_config_file.is_file():
  3581. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3582. tokenizer_config_json = json.load(f)
  3583. if "added_tokens_decoder" in tokenizer_config_json:
  3584. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3585. for token_id, token_json in added_tokens_decoder.items():
  3586. token_id = int(token_id)
  3587. if token_id >= vocab_size:
  3588. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3589. continue
  3590. token_content = token_json["content"]
  3591. token_type = SentencePieceTokenTypes.USER_DEFINED
  3592. token_score = -10000.0
  3593. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3594. # Set the score to 0.0 as in the original tokenizer.model
  3595. if ("special" in token_json) and token_json["special"]:
  3596. if token_content == tokenizer_config_json["unk_token"]:
  3597. token_type = SentencePieceTokenTypes.UNKNOWN
  3598. else:
  3599. token_type = SentencePieceTokenTypes.CONTROL
  3600. token_score = 0.0
  3601. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3602. tokens[token_id] = token_content.encode("utf-8")
  3603. toktypes[token_id] = token_type
  3604. scores[token_id] = token_score
  3605. self.gguf_writer.add_tokenizer_model("llama")
  3606. self.gguf_writer.add_tokenizer_pre("default")
  3607. self.gguf_writer.add_token_list(tokens)
  3608. self.gguf_writer.add_token_scores(scores)
  3609. self.gguf_writer.add_token_types(toktypes)
  3610. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3611. special_vocab.add_to_gguf(self.gguf_writer)
  3612. def set_gguf_parameters(self):
  3613. super().set_gguf_parameters()
  3614. hparams = self.hparams
  3615. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3616. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3617. _experts: list[dict[str, Tensor]] | None = None
  3618. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3619. n_head = self.hparams["num_attention_heads"]
  3620. n_kv_head = self.hparams.get("num_key_value_heads")
  3621. if name.endswith("q_proj.weight"):
  3622. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3623. if name.endswith("k_proj.weight"):
  3624. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3625. # process the experts separately
  3626. if name.find("block_sparse_moe.experts") != -1:
  3627. n_experts = self.hparams["num_local_experts"]
  3628. assert bid is not None
  3629. if self._experts is None:
  3630. self._experts = [{} for _ in range(self.block_count)]
  3631. self._experts[bid][name] = data_torch
  3632. if len(self._experts[bid]) >= n_experts * 3:
  3633. tensors: list[tuple[str, Tensor]] = []
  3634. # merge the experts into a single 3d tensor
  3635. for wid in ["w1", "w2", "w3"]:
  3636. datas: list[Tensor] = []
  3637. for xid in range(n_experts):
  3638. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3639. datas.append(self._experts[bid][ename])
  3640. del self._experts[bid][ename]
  3641. data_torch = torch.stack(datas, dim=0)
  3642. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3643. new_name = self.map_tensor_name(merged_name)
  3644. tensors.append((new_name, data_torch))
  3645. return tensors
  3646. else:
  3647. return []
  3648. return [(self.map_tensor_name(name), data_torch)]
  3649. def prepare_tensors(self):
  3650. super().prepare_tensors()
  3651. if self._experts is not None:
  3652. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3653. experts = [k for d in self._experts for k in d.keys()]
  3654. if len(experts) > 0:
  3655. raise ValueError(f"Unprocessed experts: {experts}")
  3656. @ModelBase.register("DeepseekForCausalLM")
  3657. class DeepseekModel(TextModel):
  3658. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3659. def set_vocab(self):
  3660. try:
  3661. self._set_vocab_sentencepiece()
  3662. except FileNotFoundError:
  3663. self._set_vocab_gpt2()
  3664. def set_gguf_parameters(self):
  3665. super().set_gguf_parameters()
  3666. hparams = self.hparams
  3667. if "head_dim" in hparams:
  3668. rope_dim = hparams["head_dim"]
  3669. else:
  3670. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3671. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3672. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3673. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3674. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3675. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3676. self.gguf_writer.add_expert_weights_scale(1.0)
  3677. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3678. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3679. _experts: list[dict[str, Tensor]] | None = None
  3680. @staticmethod
  3681. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3682. if n_head_kv is not None and n_head != n_head_kv:
  3683. n_head = n_head_kv
  3684. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3685. .swapaxes(1, 2)
  3686. .reshape(weights.shape))
  3687. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3688. n_head = self.hparams["num_attention_heads"]
  3689. n_kv_head = self.hparams.get("num_key_value_heads")
  3690. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3691. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3692. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3693. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3694. # process the experts separately
  3695. if name.find("mlp.experts") != -1:
  3696. n_experts = self.hparams["n_routed_experts"]
  3697. assert bid is not None
  3698. if self._experts is None:
  3699. self._experts = [{} for _ in range(self.block_count)]
  3700. self._experts[bid][name] = data_torch
  3701. if len(self._experts[bid]) >= n_experts * 3:
  3702. tensors: list[tuple[str, Tensor]] = []
  3703. # merge the experts into a single 3d tensor
  3704. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3705. datas: list[Tensor] = []
  3706. for xid in range(n_experts):
  3707. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3708. datas.append(self._experts[bid][ename])
  3709. del self._experts[bid][ename]
  3710. data_torch = torch.stack(datas, dim=0)
  3711. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3712. new_name = self.map_tensor_name(merged_name)
  3713. tensors.append((new_name, data_torch))
  3714. return tensors
  3715. else:
  3716. return []
  3717. return [(self.map_tensor_name(name), data_torch)]
  3718. def prepare_tensors(self):
  3719. super().prepare_tensors()
  3720. if self._experts is not None:
  3721. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3722. experts = [k for d in self._experts for k in d.keys()]
  3723. if len(experts) > 0:
  3724. raise ValueError(f"Unprocessed experts: {experts}")
  3725. @ModelBase.register("DeepseekV2ForCausalLM")
  3726. @ModelBase.register("DeepseekV3ForCausalLM")
  3727. class DeepseekV2Model(TextModel):
  3728. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3729. def set_vocab(self):
  3730. self._set_vocab_gpt2()
  3731. def set_gguf_parameters(self):
  3732. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  3733. self.hparams["num_key_value_heads"] = 1
  3734. super().set_gguf_parameters()
  3735. hparams = self.hparams
  3736. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3737. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3738. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3739. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3740. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3741. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  3742. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  3743. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  3744. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3745. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  3746. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3747. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3748. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3749. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3750. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3751. if hparams["scoring_func"] == "sigmoid":
  3752. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3753. elif hparams["scoring_func"] == "softmax":
  3754. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3755. else:
  3756. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3757. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3758. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3759. if self.hparams["rope_scaling"].get("type") == "yarn":
  3760. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3761. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3762. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3763. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3764. _experts: list[dict[str, Tensor]] | None = None
  3765. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3766. # rename e_score_correction_bias tensors
  3767. if name.endswith("e_score_correction_bias"):
  3768. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3769. # skip Multi-Token Prediction (MTP) layers
  3770. block_count = self.hparams["num_hidden_layers"]
  3771. match = re.match(r"model.layers.(\d+)", name)
  3772. if match and int(match.group(1)) >= block_count:
  3773. return []
  3774. # process the experts separately
  3775. if name.find("mlp.experts") != -1:
  3776. n_experts = self.hparams["n_routed_experts"]
  3777. assert bid is not None
  3778. if self._experts is None:
  3779. self._experts = [{} for _ in range(self.block_count)]
  3780. self._experts[bid][name] = data_torch
  3781. if len(self._experts[bid]) >= n_experts * 3:
  3782. tensors: list[tuple[str, Tensor]] = []
  3783. # merge the experts into a single 3d tensor
  3784. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3785. datas: list[Tensor] = []
  3786. for xid in range(n_experts):
  3787. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3788. datas.append(self._experts[bid][ename])
  3789. del self._experts[bid][ename]
  3790. data_torch = torch.stack(datas, dim=0)
  3791. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3792. new_name = self.map_tensor_name(merged_name)
  3793. tensors.append((new_name, data_torch))
  3794. return tensors
  3795. else:
  3796. return []
  3797. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  3798. if name.endswith("kv_b_proj.weight"):
  3799. name_kb = name.replace("kv_b_proj", "k_b_proj")
  3800. name_vb = name.replace("kv_b_proj", "v_b_proj")
  3801. n_head_kv = self.hparams["num_key_value_heads"]
  3802. v_head_dim = self.hparams["v_head_dim"]
  3803. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  3804. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  3805. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  3806. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  3807. k_b = k_b.transpose(1, 2)
  3808. return [
  3809. (self.map_tensor_name(name_kb), k_b),
  3810. (self.map_tensor_name(name_vb), v_b)
  3811. ]
  3812. return [(self.map_tensor_name(name), data_torch)]
  3813. def prepare_tensors(self):
  3814. super().prepare_tensors()
  3815. if self._experts is not None:
  3816. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3817. experts = [k for d in self._experts for k in d.keys()]
  3818. if len(experts) > 0:
  3819. raise ValueError(f"Unprocessed experts: {experts}")
  3820. @ModelBase.register("PLMForCausalLM")
  3821. class PLMModel(TextModel):
  3822. model_arch = gguf.MODEL_ARCH.PLM
  3823. def set_vocab(self):
  3824. self._set_vocab_gpt2()
  3825. def set_gguf_parameters(self):
  3826. super().set_gguf_parameters()
  3827. hparams = self.hparams
  3828. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3829. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3830. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3831. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3832. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3833. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3834. return [(self.map_tensor_name(name), data_torch)]
  3835. def prepare_tensors(self):
  3836. super().prepare_tensors()
  3837. @ModelBase.register("T5WithLMHeadModel")
  3838. @ModelBase.register("T5ForConditionalGeneration")
  3839. @ModelBase.register("MT5ForConditionalGeneration")
  3840. @ModelBase.register("UMT5ForConditionalGeneration")
  3841. class T5Model(TextModel):
  3842. model_arch = gguf.MODEL_ARCH.T5
  3843. def __init__(self, *args, **kwargs):
  3844. super().__init__(*args, **kwargs)
  3845. self.shared_token_embeddings_found = False
  3846. def set_vocab(self):
  3847. # to avoid TypeError: Descriptors cannot be created directly
  3848. # exception when importing sentencepiece_model_pb2
  3849. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3850. from sentencepiece import SentencePieceProcessor
  3851. from sentencepiece import sentencepiece_model_pb2 as model
  3852. tokenizer_path = self.dir_model / 'tokenizer.model'
  3853. # many older models use spiece.model tokenizer model filename
  3854. if not tokenizer_path.is_file():
  3855. tokenizer_path = self.dir_model / 'spiece.model'
  3856. if not tokenizer_path.is_file():
  3857. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3858. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3859. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3860. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3861. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3862. # assure the tokenizer model file name is correct
  3863. assert tokenizer_path.name == 'tokenizer.model'
  3864. return self._set_vocab_sentencepiece()
  3865. else:
  3866. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3867. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3868. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3869. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3870. tokenizer = SentencePieceProcessor()
  3871. tokenizer.LoadFromFile(str(tokenizer_path))
  3872. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3873. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3874. scores: list[float] = [-10000.0] * vocab_size
  3875. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3876. for token_id in range(tokenizer.vocab_size()):
  3877. piece = tokenizer.IdToPiece(token_id)
  3878. text = piece.encode("utf-8")
  3879. score = tokenizer.GetScore(token_id)
  3880. toktype = SentencePieceTokenTypes.NORMAL
  3881. if tokenizer.IsUnknown(token_id):
  3882. toktype = SentencePieceTokenTypes.UNKNOWN
  3883. elif tokenizer.IsControl(token_id):
  3884. toktype = SentencePieceTokenTypes.CONTROL
  3885. elif tokenizer.IsUnused(token_id):
  3886. toktype = SentencePieceTokenTypes.UNUSED
  3887. elif tokenizer.IsByte(token_id):
  3888. toktype = SentencePieceTokenTypes.BYTE
  3889. tokens[token_id] = text
  3890. scores[token_id] = score
  3891. toktypes[token_id] = toktype
  3892. added_tokens_file = self.dir_model / 'added_tokens.json'
  3893. if added_tokens_file.is_file():
  3894. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3895. added_tokens_json = json.load(f)
  3896. for key in added_tokens_json:
  3897. token_id = added_tokens_json[key]
  3898. if token_id >= vocab_size:
  3899. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3900. continue
  3901. tokens[token_id] = key.encode("utf-8")
  3902. scores[token_id] = -1000.0
  3903. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3904. if vocab_size > len(tokens):
  3905. pad_count = vocab_size - len(tokens)
  3906. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3907. for i in range(1, pad_count + 1):
  3908. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3909. scores.append(-1000.0)
  3910. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3911. self.gguf_writer.add_tokenizer_model("t5")
  3912. self.gguf_writer.add_tokenizer_pre("default")
  3913. self.gguf_writer.add_token_list(tokens)
  3914. self.gguf_writer.add_token_scores(scores)
  3915. self.gguf_writer.add_token_types(toktypes)
  3916. self.gguf_writer.add_add_space_prefix(add_prefix)
  3917. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3918. if precompiled_charsmap:
  3919. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3920. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3921. special_vocab.add_to_gguf(self.gguf_writer)
  3922. self.gguf_writer.add_add_bos_token(False)
  3923. self.gguf_writer.add_add_eos_token(True)
  3924. def set_gguf_parameters(self):
  3925. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3926. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3927. n_ctx = 512
  3928. self.gguf_writer.add_context_length(n_ctx)
  3929. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3930. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3931. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3932. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3933. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3934. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3935. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3936. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3937. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3938. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3939. self.gguf_writer.add_file_type(self.ftype)
  3940. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3941. del bid # unused
  3942. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3943. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3944. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3945. # and decoder and ignore the remaining ones.
  3946. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3947. if not self.shared_token_embeddings_found:
  3948. name = "shared.weight"
  3949. self.shared_token_embeddings_found = True
  3950. else:
  3951. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3952. return []
  3953. return [(self.map_tensor_name(name), data_torch)]
  3954. @ModelBase.register("T5EncoderModel")
  3955. class T5EncoderModel(TextModel):
  3956. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3957. def __init__(self, *args, **kwargs):
  3958. super().__init__(*args, **kwargs)
  3959. self.shared_token_embeddings_found = False
  3960. def set_vocab(self):
  3961. # to avoid TypeError: Descriptors cannot be created directly
  3962. # exception when importing sentencepiece_model_pb2
  3963. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3964. from sentencepiece import SentencePieceProcessor
  3965. from sentencepiece import sentencepiece_model_pb2 as model
  3966. tokenizer_path = self.dir_model / 'tokenizer.model'
  3967. # many older models use spiece.model tokenizer model filename
  3968. if not tokenizer_path.is_file():
  3969. tokenizer_path = self.dir_model / 'spiece.model'
  3970. if not tokenizer_path.is_file():
  3971. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3972. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3973. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3974. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3975. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3976. # assure the tokenizer model file name is correct
  3977. assert tokenizer_path.name == 'tokenizer.model'
  3978. return self._set_vocab_sentencepiece()
  3979. else:
  3980. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3981. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3982. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3983. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3984. tokenizer = SentencePieceProcessor()
  3985. tokenizer.LoadFromFile(str(tokenizer_path))
  3986. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3987. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3988. scores: list[float] = [-10000.0] * vocab_size
  3989. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3990. for token_id in range(tokenizer.vocab_size()):
  3991. piece = tokenizer.IdToPiece(token_id)
  3992. text = piece.encode("utf-8")
  3993. score = tokenizer.GetScore(token_id)
  3994. toktype = SentencePieceTokenTypes.NORMAL
  3995. if tokenizer.IsUnknown(token_id):
  3996. toktype = SentencePieceTokenTypes.UNKNOWN
  3997. elif tokenizer.IsControl(token_id):
  3998. toktype = SentencePieceTokenTypes.CONTROL
  3999. elif tokenizer.IsUnused(token_id):
  4000. toktype = SentencePieceTokenTypes.UNUSED
  4001. elif tokenizer.IsByte(token_id):
  4002. toktype = SentencePieceTokenTypes.BYTE
  4003. tokens[token_id] = text
  4004. scores[token_id] = score
  4005. toktypes[token_id] = toktype
  4006. added_tokens_file = self.dir_model / 'added_tokens.json'
  4007. if added_tokens_file.is_file():
  4008. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4009. added_tokens_json = json.load(f)
  4010. for key in added_tokens_json:
  4011. token_id = added_tokens_json[key]
  4012. if token_id >= vocab_size:
  4013. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4014. continue
  4015. tokens[token_id] = key.encode("utf-8")
  4016. scores[token_id] = -1000.0
  4017. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4018. if vocab_size > len(tokens):
  4019. pad_count = vocab_size - len(tokens)
  4020. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4021. for i in range(1, pad_count + 1):
  4022. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4023. scores.append(-1000.0)
  4024. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4025. self.gguf_writer.add_tokenizer_model("t5")
  4026. self.gguf_writer.add_tokenizer_pre("default")
  4027. self.gguf_writer.add_token_list(tokens)
  4028. self.gguf_writer.add_token_scores(scores)
  4029. self.gguf_writer.add_token_types(toktypes)
  4030. self.gguf_writer.add_add_space_prefix(add_prefix)
  4031. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4032. if precompiled_charsmap:
  4033. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4034. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4035. special_vocab.add_to_gguf(self.gguf_writer)
  4036. self.gguf_writer.add_add_bos_token(False)
  4037. self.gguf_writer.add_add_eos_token(True)
  4038. def set_gguf_parameters(self):
  4039. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4040. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4041. n_ctx = 512
  4042. self.gguf_writer.add_context_length(n_ctx)
  4043. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4044. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4045. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4046. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4047. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4048. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4049. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4050. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4051. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4052. self.gguf_writer.add_file_type(self.ftype)
  4053. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4054. del bid # unused
  4055. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4056. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4057. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4058. # and decoder and ignore the remaining ones.
  4059. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4060. if not self.shared_token_embeddings_found:
  4061. name = "shared.weight"
  4062. self.shared_token_embeddings_found = True
  4063. else:
  4064. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4065. return []
  4066. return [(self.map_tensor_name(name), data_torch)]
  4067. @ModelBase.register("JAISLMHeadModel")
  4068. class JaisModel(TextModel):
  4069. model_arch = gguf.MODEL_ARCH.JAIS
  4070. def __init__(self, *args, **kwargs):
  4071. super().__init__(*args, **kwargs)
  4072. # SwigLU activation
  4073. assert self.hparams["activation_function"] == "swiglu"
  4074. # ALiBi position embedding
  4075. assert self.hparams["position_embedding_type"] == "alibi"
  4076. # Embeddings scale
  4077. self.embeddings_scale = 1.0
  4078. if 'mup_embeddings_scale' in self.hparams:
  4079. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4080. elif 'embeddings_scale' in self.hparams:
  4081. self.embeddings_scale = self.hparams['embeddings_scale']
  4082. else:
  4083. assert False
  4084. self.width_scale = 1.0
  4085. if 'mup_output_alpha' in self.hparams:
  4086. assert 'mup_width_scale' in self.hparams
  4087. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4088. elif 'width_scale' in self.hparams:
  4089. self.width_scale = self.hparams['width_scale']
  4090. else:
  4091. assert False
  4092. self.max_alibi_bias = 8.0
  4093. def set_vocab(self):
  4094. self._set_vocab_gpt2()
  4095. def set_gguf_parameters(self):
  4096. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4097. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4098. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4099. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4100. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4101. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4102. self.gguf_writer.add_file_type(self.ftype)
  4103. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4104. del bid # unused
  4105. tensors: list[tuple[str, Tensor]] = []
  4106. # we don't need these
  4107. if name.endswith((".attn.bias")):
  4108. return tensors
  4109. if name.endswith(("relative_pe.slopes")):
  4110. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4111. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4112. # but Jais's PyTorch model simply precalculates the slope values and places them
  4113. # in relative_pes.slopes
  4114. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4115. first_val = float(data_torch[0].item())
  4116. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4117. return tensors
  4118. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4119. data_torch = data_torch.transpose(1, 0)
  4120. new_name = self.map_tensor_name(name)
  4121. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4122. tensors.append((new_name, data_torch * self.embeddings_scale))
  4123. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4124. tensors.append((new_name, data_torch * self.width_scale))
  4125. else:
  4126. tensors.append((new_name, data_torch))
  4127. return tensors
  4128. def prepare_tensors(self):
  4129. super().prepare_tensors()
  4130. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4131. @ModelBase.register("Glm4ForCausalLM")
  4132. class Glm4Model(TextModel):
  4133. model_arch = gguf.MODEL_ARCH.GLM4
  4134. def set_vocab(self):
  4135. from transformers import AutoTokenizer
  4136. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4137. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4138. tokens, toktypes, tokpre = self.get_vocab_base()
  4139. self.gguf_writer.add_tokenizer_model("gpt2")
  4140. self.gguf_writer.add_tokenizer_pre(tokpre)
  4141. self.gguf_writer.add_token_list(tokens)
  4142. self.gguf_writer.add_token_types(toktypes)
  4143. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4144. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4145. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4146. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4147. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4148. special_vocab.add_to_gguf(self.gguf_writer)
  4149. def set_gguf_parameters(self):
  4150. super().set_gguf_parameters()
  4151. rope_dim = self.hparams["head_dim"]
  4152. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4153. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  4154. if self.hparams["rope_scaling"].get("type") == "yarn":
  4155. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4156. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  4157. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  4158. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4159. class ChatGLMModel(TextModel):
  4160. model_arch = gguf.MODEL_ARCH.CHATGLM
  4161. def set_vocab_chatglm3(self):
  4162. dir_model = self.dir_model
  4163. hparams = self.hparams
  4164. tokens: list[bytes] = []
  4165. toktypes: list[int] = []
  4166. scores: list[float] = []
  4167. from transformers import AutoTokenizer
  4168. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4169. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4170. assert max(tokenizer.get_vocab().values()) < vocab_size
  4171. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4172. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4173. for token_id in range(vocab_size):
  4174. piece = tokenizer._convert_id_to_token(token_id)
  4175. if token_id == 0:
  4176. piece = "<unk>"
  4177. elif token_id == 1:
  4178. piece = "<bos>"
  4179. elif token_id == 2:
  4180. piece = "<eos>"
  4181. text = piece.encode("utf-8")
  4182. score = 0.0
  4183. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4184. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4185. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4186. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4187. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4188. if piece in special_tokens:
  4189. toktype = SentencePieceTokenTypes.CONTROL
  4190. elif len(piece) == 0:
  4191. text = f"[PAD{token_id}]".encode("utf-8")
  4192. toktype = SentencePieceTokenTypes.UNUSED
  4193. else:
  4194. toktype = SentencePieceTokenTypes.USER_DEFINED
  4195. tokens.append(text)
  4196. scores.append(score)
  4197. toktypes.append(toktype)
  4198. continue
  4199. toktype = SentencePieceTokenTypes.NORMAL
  4200. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4201. toktype = SentencePieceTokenTypes.UNKNOWN
  4202. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4203. toktype = SentencePieceTokenTypes.CONTROL
  4204. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4205. toktype = SentencePieceTokenTypes.UNUSED
  4206. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4207. toktype = SentencePieceTokenTypes.BYTE
  4208. tokens.append(text)
  4209. scores.append(score)
  4210. toktypes.append(toktype)
  4211. self.gguf_writer.add_tokenizer_model("llama")
  4212. # glm3 needs prefix and suffix formatted as:
  4213. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4214. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4215. self.gguf_writer.add_token_list(tokens)
  4216. self.gguf_writer.add_token_scores(scores)
  4217. self.gguf_writer.add_token_types(toktypes)
  4218. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4219. special_vocab.add_to_gguf(self.gguf_writer)
  4220. @staticmethod
  4221. def token_bytes_to_string(b):
  4222. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4223. byte_encoder = bytes_to_unicode()
  4224. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4225. @staticmethod
  4226. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4227. parts = [bytes([b]) for b in token]
  4228. while True:
  4229. min_idx = None
  4230. min_rank = None
  4231. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4232. rank = mergeable_ranks.get(pair[0] + pair[1])
  4233. if rank is not None and (min_rank is None or rank < min_rank):
  4234. min_idx = i
  4235. min_rank = rank
  4236. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4237. break
  4238. assert min_idx is not None
  4239. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4240. return parts
  4241. def set_vocab(self):
  4242. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4243. self.set_vocab_chatglm3()
  4244. return
  4245. dir_model = self.dir_model
  4246. hparams = self.hparams
  4247. tokens: list[str] = []
  4248. toktypes: list[int] = []
  4249. from transformers import AutoTokenizer
  4250. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4251. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4252. assert max(tokenizer.get_vocab().values()) < vocab_size
  4253. tokens, toktypes, tokpre = self.get_vocab_base()
  4254. self.gguf_writer.add_tokenizer_model("gpt2")
  4255. self.gguf_writer.add_tokenizer_pre(tokpre)
  4256. self.gguf_writer.add_token_list(tokens)
  4257. self.gguf_writer.add_token_types(toktypes)
  4258. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4259. # only add special tokens when they were not already loaded from config.json
  4260. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4261. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4262. # this one is usually not in config.json anyway
  4263. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4264. special_vocab.add_to_gguf(self.gguf_writer)
  4265. def set_gguf_parameters(self):
  4266. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4267. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4268. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4269. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4270. self.gguf_writer.add_embedding_length(n_embed)
  4271. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4272. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4273. self.gguf_writer.add_head_count(n_head)
  4274. self.gguf_writer.add_head_count_kv(n_head_kv)
  4275. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4276. self.gguf_writer.add_file_type(self.ftype)
  4277. if "attention_dim" in self.hparams:
  4278. rope_dim = self.hparams["attention_dim"]
  4279. else:
  4280. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4281. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4282. self.gguf_writer.add_add_bos_token(False)
  4283. rope_freq = 10000
  4284. if "rope_ratio" in self.hparams:
  4285. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4286. self.gguf_writer.add_rope_freq_base(rope_freq)
  4287. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4288. del bid # unused
  4289. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4290. return []
  4291. name = name.removeprefix("transformer.")
  4292. return [(self.map_tensor_name(name), data_torch)]
  4293. @ModelBase.register("NemotronForCausalLM")
  4294. class NemotronModel(TextModel):
  4295. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4296. def set_vocab(self):
  4297. self._set_vocab_sentencepiece()
  4298. self.gguf_writer.add_pad_token_id(0)
  4299. self.gguf_writer.add_unk_token_id(1)
  4300. def set_gguf_parameters(self):
  4301. super().set_gguf_parameters()
  4302. hparams = self.hparams
  4303. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4304. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4305. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4306. # * Partial RoPE
  4307. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4308. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4309. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4310. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4311. # * RopeScaling for Nemotron
  4312. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4313. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4314. else:
  4315. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4316. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4317. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4318. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4319. # model.layers.{l}.input_layernorm.weight
  4320. # model.layers.{l}.post_attention_layernorm.weight
  4321. # model.norm.weight
  4322. if name.endswith("norm.weight"):
  4323. data_torch = data_torch + 1
  4324. return [(self.map_tensor_name(name), data_torch)]
  4325. @ModelBase.register("ExaoneForCausalLM")
  4326. class ExaoneModel(TextModel):
  4327. model_arch = gguf.MODEL_ARCH.EXAONE
  4328. def set_gguf_parameters(self):
  4329. hparams = self.hparams
  4330. assert (hparams["activation_function"] == "silu")
  4331. max_position_embeddings = hparams["max_position_embeddings"]
  4332. embed_dim = hparams["hidden_size"]
  4333. num_heads = hparams["num_attention_heads"]
  4334. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4335. layer_norm_eps = hparams["layer_norm_epsilon"]
  4336. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4337. num_layers = hparams["num_layers"]
  4338. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4339. # attention_dropout_rate = hparams["attention_dropout"]
  4340. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4341. # embed_dropout_rate = hparams["embed_dropout"]
  4342. self.gguf_writer.add_embedding_length(embed_dim)
  4343. self.gguf_writer.add_head_count(num_heads)
  4344. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4345. self.gguf_writer.add_context_length(max_position_embeddings)
  4346. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4347. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4348. self.gguf_writer.add_block_count(num_layers)
  4349. self.gguf_writer.add_file_type(self.ftype)
  4350. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4351. self.gguf_writer.add_rope_freq_base(rope_theta)
  4352. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4353. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4354. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4355. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4356. if hparams["rope_scaling"].get("type") == "linear":
  4357. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4358. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4359. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4360. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4361. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4362. base = self.hparams.get("rope_theta", 10000.0)
  4363. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4364. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4365. factor = rope_scaling.get("factor", 8.0)
  4366. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4367. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4368. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4369. low_freq_wavelen = old_context_len / low_freq_factor
  4370. high_freq_wavelen = old_context_len / high_freq_factor
  4371. assert low_freq_wavelen != high_freq_wavelen
  4372. rope_factors = []
  4373. for freq in freqs:
  4374. wavelen = 2 * math.pi / freq
  4375. if wavelen < high_freq_wavelen:
  4376. rope_factors.append(1)
  4377. elif wavelen > low_freq_wavelen:
  4378. rope_factors.append(factor)
  4379. else:
  4380. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4381. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4382. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4383. @ModelBase.register("GraniteForCausalLM")
  4384. class GraniteModel(LlamaModel):
  4385. """Conversion for IBM's GraniteForCausalLM"""
  4386. model_arch = gguf.MODEL_ARCH.GRANITE
  4387. def set_gguf_parameters(self):
  4388. """Granite uses standard llama parameters with the following differences:
  4389. - No head_dim support
  4390. - New multiplier params:
  4391. - attention_scale
  4392. - embedding_scale
  4393. - residual_scale
  4394. - logits_scaling
  4395. """
  4396. if head_dim := self.hparams.pop("head_dim", None):
  4397. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4398. super().set_gguf_parameters()
  4399. # NOTE: Convert _multiplier params to _scale params for naming
  4400. # consistency
  4401. if attention_scale := self.hparams.get("attention_multiplier"):
  4402. self.gguf_writer.add_attention_scale(attention_scale)
  4403. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4404. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4405. self.gguf_writer.add_embedding_scale(embedding_scale)
  4406. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4407. if residual_scale := self.hparams.get("residual_multiplier"):
  4408. self.gguf_writer.add_residual_scale(residual_scale)
  4409. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4410. if logits_scale := self.hparams.get("logits_scaling"):
  4411. self.gguf_writer.add_logit_scale(logits_scale)
  4412. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4413. @ModelBase.register("GraniteMoeForCausalLM")
  4414. class GraniteMoeModel(GraniteModel):
  4415. """Conversion for IBM's GraniteMoeForCausalLM"""
  4416. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4417. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4418. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4419. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4420. the hidden size that is then split during forward. To keep compatibility
  4421. with existing mixtral support, we pull them apart here.
  4422. """
  4423. if name.endswith("block_sparse_moe.input_linear.weight"):
  4424. ffn_dim = self.hparams["intermediate_size"]
  4425. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4426. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4427. return [
  4428. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4429. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4430. ]
  4431. return super().modify_tensors(data_torch, name, bid)
  4432. @ModelBase.register("BailingMoeForCausalLM")
  4433. class BailingMoeModel(TextModel):
  4434. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4435. def set_vocab(self):
  4436. self._set_vocab_gpt2()
  4437. def set_gguf_parameters(self):
  4438. super().set_gguf_parameters()
  4439. hparams = self.hparams
  4440. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4441. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4442. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4443. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4444. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4445. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4446. self.gguf_writer.add_expert_weights_scale(1.0)
  4447. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4448. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4449. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4450. _experts: list[dict[str, Tensor]] | None = None
  4451. @staticmethod
  4452. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4453. if n_head_kv is not None and n_head != n_head_kv:
  4454. n_head = n_head_kv
  4455. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4456. .swapaxes(1, 2)
  4457. .reshape(weights.shape))
  4458. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4459. n_head = self.hparams["num_attention_heads"]
  4460. n_kv_head = self.hparams.get("num_key_value_heads")
  4461. n_embd = self.hparams["hidden_size"]
  4462. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4463. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4464. if name.endswith("attention.dense.weight"):
  4465. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4466. elif name.endswith("query_key_value.weight"):
  4467. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4468. return [
  4469. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4470. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4471. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4472. ]
  4473. elif name.find("mlp.experts") != -1:
  4474. n_experts = self.hparams["num_experts"]
  4475. assert bid is not None
  4476. tensors: list[tuple[str, Tensor]] = []
  4477. if self._experts is None:
  4478. self._experts = [{} for _ in range(self.block_count)]
  4479. self._experts[bid][name] = data_torch
  4480. if len(self._experts[bid]) >= n_experts * 3:
  4481. # merge the experts into a single 3d tensor
  4482. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4483. datas: list[Tensor] = []
  4484. for xid in range(n_experts):
  4485. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4486. datas.append(self._experts[bid][ename])
  4487. del self._experts[bid][ename]
  4488. data_torch = torch.stack(datas, dim=0)
  4489. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4490. new_name = self.map_tensor_name(merged_name)
  4491. tensors.append((new_name, data_torch))
  4492. return tensors
  4493. new_name = self.map_tensor_name(name)
  4494. if new_name == output_name and self.hparams.get("norm_head"):
  4495. data_torch = data_torch.float()
  4496. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4497. return [(new_name, data_torch)]
  4498. def prepare_tensors(self):
  4499. super().prepare_tensors()
  4500. if self._experts is not None:
  4501. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4502. experts = [k for d in self._experts for k in d.keys()]
  4503. if len(experts) > 0:
  4504. raise ValueError(f"Unprocessed experts: {experts}")
  4505. @ModelBase.register("ChameleonForConditionalGeneration")
  4506. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4507. class ChameleonModel(TextModel):
  4508. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4509. def set_gguf_parameters(self):
  4510. super().set_gguf_parameters()
  4511. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4512. def set_vocab(self):
  4513. self._set_vocab_gpt2()
  4514. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4515. # ignore image tokenizer for now
  4516. # TODO: remove this once image support is implemented for Chameleon
  4517. if name.startswith("model.vqmodel"):
  4518. return []
  4519. n_head = self.hparams["num_attention_heads"]
  4520. n_kv_head = self.hparams.get("num_key_value_heads")
  4521. hidden_dim = self.hparams.get("hidden_size")
  4522. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4523. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4524. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4525. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4526. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4527. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4528. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4529. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4530. return [(self.map_tensor_name(name), data_torch)]
  4531. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4532. @staticmethod
  4533. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4534. head_dim = hidden_dim // n_heads
  4535. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4536. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4537. return data_torch
  4538. ###### CONVERSION LOGIC ######
  4539. # tree of lazy tensors
  4540. class LazyTorchTensor(gguf.LazyBase):
  4541. _tensor_type = torch.Tensor
  4542. # to keep the type-checker happy
  4543. dtype: torch.dtype
  4544. shape: torch.Size
  4545. # only used when converting a torch.Tensor to a np.ndarray
  4546. _dtype_map: dict[torch.dtype, type] = {
  4547. torch.float16: np.float16,
  4548. torch.float32: np.float32,
  4549. }
  4550. # used for safetensors slices
  4551. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4552. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4553. _dtype_str_map: dict[str, torch.dtype] = {
  4554. "F64": torch.float64,
  4555. "F32": torch.float32,
  4556. "BF16": torch.bfloat16,
  4557. "F16": torch.float16,
  4558. # "U64": torch.uint64,
  4559. "I64": torch.int64,
  4560. # "U32": torch.uint32,
  4561. "I32": torch.int32,
  4562. # "U16": torch.uint16,
  4563. "I16": torch.int16,
  4564. "U8": torch.uint8,
  4565. "I8": torch.int8,
  4566. "BOOL": torch.bool,
  4567. "F8_E4M3": torch.float8_e4m3fn,
  4568. "F8_E5M2": torch.float8_e5m2,
  4569. }
  4570. def numpy(self) -> gguf.LazyNumpyTensor:
  4571. dtype = self._dtype_map[self.dtype]
  4572. return gguf.LazyNumpyTensor(
  4573. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4574. args=(self,),
  4575. func=(lambda s: s.numpy())
  4576. )
  4577. @classmethod
  4578. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4579. return torch.empty(size=shape, dtype=dtype, device="meta")
  4580. @classmethod
  4581. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4582. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4583. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4584. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4585. return cast(torch.Tensor, lazy)
  4586. @classmethod
  4587. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4588. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4589. shape = remote_tensor.shape
  4590. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4591. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4592. return cast(torch.Tensor, lazy)
  4593. @classmethod
  4594. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4595. del types # unused
  4596. if kwargs is None:
  4597. kwargs = {}
  4598. if func is torch.Tensor.numpy:
  4599. return args[0].numpy()
  4600. return cls._wrap_fn(func)(*args, **kwargs)
  4601. def parse_args() -> argparse.Namespace:
  4602. parser = argparse.ArgumentParser(
  4603. description="Convert a huggingface model to a GGML compatible file")
  4604. parser.add_argument(
  4605. "--vocab-only", action="store_true",
  4606. help="extract only the vocab",
  4607. )
  4608. parser.add_argument(
  4609. "--outfile", type=Path,
  4610. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4611. )
  4612. parser.add_argument(
  4613. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4614. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4615. )
  4616. parser.add_argument(
  4617. "--bigendian", action="store_true",
  4618. help="model is executed on big endian machine",
  4619. )
  4620. parser.add_argument(
  4621. "model", type=Path,
  4622. help="directory containing model file",
  4623. nargs="?",
  4624. )
  4625. parser.add_argument(
  4626. "--use-temp-file", action="store_true",
  4627. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4628. )
  4629. parser.add_argument(
  4630. "--no-lazy", action="store_true",
  4631. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4632. )
  4633. parser.add_argument(
  4634. "--model-name", type=str, default=None,
  4635. help="name of the model",
  4636. )
  4637. parser.add_argument(
  4638. "--verbose", action="store_true",
  4639. help="increase output verbosity",
  4640. )
  4641. parser.add_argument(
  4642. "--split-max-tensors", type=int, default=0,
  4643. help="max tensors in each split",
  4644. )
  4645. parser.add_argument(
  4646. "--split-max-size", type=str, default="0",
  4647. help="max size per split N(M|G)",
  4648. )
  4649. parser.add_argument(
  4650. "--dry-run", action="store_true",
  4651. help="only print out a split plan and exit, without writing any new files",
  4652. )
  4653. parser.add_argument(
  4654. "--no-tensor-first-split", action="store_true",
  4655. help="do not add tensors to the first split (disabled by default)"
  4656. )
  4657. parser.add_argument(
  4658. "--metadata", type=Path,
  4659. help="Specify the path for an authorship metadata override file"
  4660. )
  4661. parser.add_argument(
  4662. "--print-supported-models", action="store_true",
  4663. help="Print the supported models"
  4664. )
  4665. parser.add_argument(
  4666. "--remote", action="store_true",
  4667. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  4668. )
  4669. parser.add_argument(
  4670. "--mmproj", action="store_true",
  4671. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  4672. )
  4673. args = parser.parse_args()
  4674. if not args.print_supported_models and args.model is None:
  4675. parser.error("the following arguments are required: model")
  4676. return args
  4677. def split_str_to_n_bytes(split_str: str) -> int:
  4678. if split_str.endswith("K"):
  4679. n = int(split_str[:-1]) * 1000
  4680. elif split_str.endswith("M"):
  4681. n = int(split_str[:-1]) * 1000 * 1000
  4682. elif split_str.endswith("G"):
  4683. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4684. elif split_str.isnumeric():
  4685. n = int(split_str)
  4686. else:
  4687. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4688. if n < 0:
  4689. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4690. return n
  4691. def main() -> None:
  4692. args = parse_args()
  4693. if args.print_supported_models:
  4694. logger.error("Supported models:")
  4695. ModelBase.print_registered_models()
  4696. sys.exit(0)
  4697. if args.verbose:
  4698. logging.basicConfig(level=logging.DEBUG)
  4699. else:
  4700. logging.basicConfig(level=logging.INFO)
  4701. dir_model = args.model
  4702. if args.remote:
  4703. from huggingface_hub import snapshot_download
  4704. local_dir = snapshot_download(
  4705. repo_id=str(dir_model),
  4706. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  4707. dir_model = Path(local_dir)
  4708. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  4709. if not dir_model.is_dir():
  4710. logger.error(f'Error: {args.model} is not a directory')
  4711. sys.exit(1)
  4712. ftype_map: dict[str, gguf.LlamaFileType] = {
  4713. "f32": gguf.LlamaFileType.ALL_F32,
  4714. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4715. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4716. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4717. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4718. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4719. "auto": gguf.LlamaFileType.GUESSED,
  4720. }
  4721. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4722. if args.use_temp_file and is_split:
  4723. logger.error("Error: Cannot use temp file when splitting")
  4724. sys.exit(1)
  4725. if args.outfile is not None:
  4726. fname_out = args.outfile
  4727. elif args.remote:
  4728. # if remote, use the model ID as the output file name
  4729. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  4730. else:
  4731. fname_out = dir_model
  4732. logger.info(f"Loading model: {dir_model.name}")
  4733. hparams = ModelBase.load_hparams(dir_model)
  4734. if args.mmproj:
  4735. if "mmproj" not in fname_out.name:
  4736. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  4737. with torch.inference_mode():
  4738. output_type = ftype_map[args.outtype]
  4739. model_architecture = hparams["architectures"][0]
  4740. model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
  4741. try:
  4742. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  4743. except NotImplementedError:
  4744. logger.error(f"Model {model_architecture} is not supported")
  4745. sys.exit(1)
  4746. model_instance = model_class(dir_model, output_type, fname_out,
  4747. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4748. eager=args.no_lazy,
  4749. metadata_override=args.metadata, model_name=args.model_name,
  4750. split_max_tensors=args.split_max_tensors,
  4751. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4752. small_first_shard=args.no_tensor_first_split,
  4753. remote_hf_model_id=str(args.model) if args.remote else None)
  4754. if args.vocab_only:
  4755. logger.info("Exporting model vocab...")
  4756. model_instance.write_vocab()
  4757. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4758. else:
  4759. logger.info("Exporting model...")
  4760. model_instance.write()
  4761. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4762. logger.info(f"Model successfully exported to {out_path}")
  4763. if __name__ == '__main__':
  4764. main()