llama-bench.cpp 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <thread>
  19. #include <vector>
  20. #include "common.h"
  21. #include "ggml.h"
  22. #include "llama.h"
  23. #ifdef _WIN32
  24. # define WIN32_LEAN_AND_MEAN
  25. # ifndef NOMINMAX
  26. # define NOMINMAX
  27. # endif
  28. # include <windows.h>
  29. #endif
  30. // utils
  31. static uint64_t get_time_ns() {
  32. using clock = std::chrono::high_resolution_clock;
  33. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  34. }
  35. static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
  36. if (a.pattern != b.pattern) {
  37. // cString comparison that may be null
  38. if (a.pattern == nullptr || b.pattern == nullptr) {
  39. return false;
  40. }
  41. if (strcmp(a.pattern, b.pattern) != 0) {
  42. return false;
  43. }
  44. }
  45. if (a.buft != b.buft) {
  46. return false;
  47. }
  48. return true;
  49. }
  50. static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
  51. if (a.size() != b.size()) {
  52. return false;
  53. }
  54. for (size_t i = 0; i < a.size(); i++) {
  55. if (!tensor_buft_override_equal(a[i], b[i])) {
  56. return false;
  57. }
  58. }
  59. return true;
  60. }
  61. static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
  62. if (a.size() != b.size()) {
  63. return false;
  64. }
  65. for (size_t i = 0; i < a.size(); i++) {
  66. if (!vec_tensor_buft_override_equal(a[i], b[i])) {
  67. return false;
  68. }
  69. }
  70. return true;
  71. }
  72. template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
  73. std::ostringstream str;
  74. for (size_t i = 0; i < values.size(); i++) {
  75. str << values[i];
  76. if (i < values.size() - 1) {
  77. str << delim;
  78. }
  79. }
  80. return str.str();
  81. }
  82. template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  83. std::vector<std::string> str_values;
  84. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  85. return str_values;
  86. }
  87. template <typename T> static T avg(const std::vector<T> & v) {
  88. if (v.empty()) {
  89. return 0;
  90. }
  91. T sum = std::accumulate(v.begin(), v.end(), T(0));
  92. return sum / (T) v.size();
  93. }
  94. template <typename T> static T stdev(const std::vector<T> & v) {
  95. if (v.size() <= 1) {
  96. return 0;
  97. }
  98. T mean = avg(v);
  99. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  100. T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
  101. return stdev;
  102. }
  103. static std::string get_cpu_info() {
  104. std::vector<std::string> cpu_list;
  105. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  106. auto * dev = ggml_backend_dev_get(i);
  107. auto dev_type = ggml_backend_dev_type(dev);
  108. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  109. cpu_list.push_back(ggml_backend_dev_description(dev));
  110. }
  111. }
  112. return join(cpu_list, ", ");
  113. }
  114. static std::string get_gpu_info() {
  115. std::vector<std::string> gpu_list;
  116. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  117. auto * dev = ggml_backend_dev_get(i);
  118. auto dev_type = ggml_backend_dev_type(dev);
  119. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
  120. gpu_list.push_back(ggml_backend_dev_description(dev));
  121. }
  122. }
  123. return join(gpu_list, ", ");
  124. }
  125. // command line params
  126. enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
  127. static const char * output_format_str(output_formats format) {
  128. switch (format) {
  129. case NONE:
  130. return "none";
  131. case CSV:
  132. return "csv";
  133. case JSON:
  134. return "json";
  135. case JSONL:
  136. return "jsonl";
  137. case MARKDOWN:
  138. return "md";
  139. case SQL:
  140. return "sql";
  141. default:
  142. GGML_ABORT("invalid output format");
  143. }
  144. }
  145. static bool output_format_from_str(const std::string & s, output_formats & format) {
  146. if (s == "none") {
  147. format = NONE;
  148. } else if (s == "csv") {
  149. format = CSV;
  150. } else if (s == "json") {
  151. format = JSON;
  152. } else if (s == "jsonl") {
  153. format = JSONL;
  154. } else if (s == "md") {
  155. format = MARKDOWN;
  156. } else if (s == "sql") {
  157. format = SQL;
  158. } else {
  159. return false;
  160. }
  161. return true;
  162. }
  163. static const char * split_mode_str(llama_split_mode mode) {
  164. switch (mode) {
  165. case LLAMA_SPLIT_MODE_NONE:
  166. return "none";
  167. case LLAMA_SPLIT_MODE_LAYER:
  168. return "layer";
  169. case LLAMA_SPLIT_MODE_ROW:
  170. return "row";
  171. default:
  172. GGML_ABORT("invalid split mode");
  173. }
  174. }
  175. static std::string pair_str(const std::pair<int, int> & p) {
  176. static char buf[32];
  177. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  178. return buf;
  179. }
  180. struct cmd_params {
  181. std::vector<std::string> model;
  182. std::vector<int> n_prompt;
  183. std::vector<int> n_gen;
  184. std::vector<std::pair<int, int>> n_pg;
  185. std::vector<int> n_batch;
  186. std::vector<int> n_ubatch;
  187. std::vector<ggml_type> type_k;
  188. std::vector<ggml_type> type_v;
  189. std::vector<int> n_threads;
  190. std::vector<std::string> cpu_mask;
  191. std::vector<bool> cpu_strict;
  192. std::vector<int> poll;
  193. std::vector<int> n_gpu_layers;
  194. std::vector<std::string> rpc_servers;
  195. std::vector<llama_split_mode> split_mode;
  196. std::vector<int> main_gpu;
  197. std::vector<bool> no_kv_offload;
  198. std::vector<bool> flash_attn;
  199. std::vector<std::vector<float>> tensor_split;
  200. std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
  201. std::vector<bool> use_mmap;
  202. std::vector<bool> embeddings;
  203. ggml_numa_strategy numa;
  204. int reps;
  205. ggml_sched_priority prio;
  206. int delay;
  207. bool verbose;
  208. bool progress;
  209. output_formats output_format;
  210. output_formats output_format_stderr;
  211. };
  212. static const cmd_params cmd_params_defaults = {
  213. /* model */ { "models/7B/ggml-model-q4_0.gguf" },
  214. /* n_prompt */ { 512 },
  215. /* n_gen */ { 128 },
  216. /* n_pg */ {},
  217. /* n_batch */ { 2048 },
  218. /* n_ubatch */ { 512 },
  219. /* type_k */ { GGML_TYPE_F16 },
  220. /* type_v */ { GGML_TYPE_F16 },
  221. /* n_threads */ { cpu_get_num_math() },
  222. /* cpu_mask */ { "0x0" },
  223. /* cpu_strict */ { false },
  224. /* poll */ { 50 },
  225. /* n_gpu_layers */ { 99 },
  226. /* rpc_servers */ { "" },
  227. /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
  228. /* main_gpu */ { 0 },
  229. /* no_kv_offload */ { false },
  230. /* flash_attn */ { false },
  231. /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
  232. /* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{{nullptr,nullptr}} },
  233. /* use_mmap */ { true },
  234. /* embeddings */ { false },
  235. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  236. /* reps */ 5,
  237. /* prio */ GGML_SCHED_PRIO_NORMAL,
  238. /* delay */ 0,
  239. /* verbose */ false,
  240. /* progress */ false,
  241. /* output_format */ MARKDOWN,
  242. /* output_format_stderr */ NONE,
  243. };
  244. static void print_usage(int /* argc */, char ** argv) {
  245. printf("usage: %s [options]\n", argv[0]);
  246. printf("\n");
  247. printf("options:\n");
  248. printf(" -h, --help\n");
  249. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  250. printf(" -p, --n-prompt <n> (default: %s)\n",
  251. join(cmd_params_defaults.n_prompt, ",").c_str());
  252. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  253. printf(" -pg <pp,tg> (default: %s)\n",
  254. join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  255. printf(" -b, --batch-size <n> (default: %s)\n",
  256. join(cmd_params_defaults.n_batch, ",").c_str());
  257. printf(" -ub, --ubatch-size <n> (default: %s)\n",
  258. join(cmd_params_defaults.n_ubatch, ",").c_str());
  259. printf(" -ctk, --cache-type-k <t> (default: %s)\n",
  260. join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  261. printf(" -ctv, --cache-type-v <t> (default: %s)\n",
  262. join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  263. printf(" -t, --threads <n> (default: %s)\n",
  264. join(cmd_params_defaults.n_threads, ",").c_str());
  265. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
  266. join(cmd_params_defaults.cpu_mask, ",").c_str());
  267. printf(" --cpu-strict <0|1> (default: %s)\n",
  268. join(cmd_params_defaults.cpu_strict, ",").c_str());
  269. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  270. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
  271. join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  272. if (llama_supports_rpc()) {
  273. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
  274. join(cmd_params_defaults.rpc_servers, ",").c_str());
  275. }
  276. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
  277. join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  278. printf(" -mg, --main-gpu <i> (default: %s)\n",
  279. join(cmd_params_defaults.main_gpu, ",").c_str());
  280. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
  281. join(cmd_params_defaults.no_kv_offload, ",").c_str());
  282. printf(" -fa, --flash-attn <0|1> (default: %s)\n",
  283. join(cmd_params_defaults.flash_attn, ",").c_str());
  284. printf(" -mmp, --mmap <0|1> (default: %s)\n",
  285. join(cmd_params_defaults.use_mmap, ",").c_str());
  286. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  287. printf(" -embd, --embeddings <0|1> (default: %s)\n",
  288. join(cmd_params_defaults.embeddings, ",").c_str());
  289. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  290. printf(" -ot --override-tensors <tensor name pattern>=<buffer type>;... (default: disabled)\n");
  291. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  292. printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
  293. printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
  294. printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n",
  295. output_format_str(cmd_params_defaults.output_format));
  296. printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n",
  297. output_format_str(cmd_params_defaults.output_format_stderr));
  298. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  299. printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
  300. printf("\n");
  301. printf(
  302. "Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter "
  303. "multiple times.\n");
  304. }
  305. static ggml_type ggml_type_from_name(const std::string & s) {
  306. if (s == "f16") {
  307. return GGML_TYPE_F16;
  308. }
  309. if (s == "bf16") {
  310. return GGML_TYPE_BF16;
  311. }
  312. if (s == "q8_0") {
  313. return GGML_TYPE_Q8_0;
  314. }
  315. if (s == "q4_0") {
  316. return GGML_TYPE_Q4_0;
  317. }
  318. if (s == "q4_1") {
  319. return GGML_TYPE_Q4_1;
  320. }
  321. if (s == "q5_0") {
  322. return GGML_TYPE_Q5_0;
  323. }
  324. if (s == "q5_1") {
  325. return GGML_TYPE_Q5_1;
  326. }
  327. if (s == "iq4_nl") {
  328. return GGML_TYPE_IQ4_NL;
  329. }
  330. return GGML_TYPE_COUNT;
  331. }
  332. static cmd_params parse_cmd_params(int argc, char ** argv) {
  333. cmd_params params;
  334. std::string arg;
  335. bool invalid_param = false;
  336. const std::string arg_prefix = "--";
  337. const char split_delim = ',';
  338. params.verbose = cmd_params_defaults.verbose;
  339. params.output_format = cmd_params_defaults.output_format;
  340. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  341. params.reps = cmd_params_defaults.reps;
  342. params.numa = cmd_params_defaults.numa;
  343. params.prio = cmd_params_defaults.prio;
  344. params.delay = cmd_params_defaults.delay;
  345. params.progress = cmd_params_defaults.progress;
  346. for (int i = 1; i < argc; i++) {
  347. arg = argv[i];
  348. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  349. std::replace(arg.begin(), arg.end(), '_', '-');
  350. }
  351. if (arg == "-h" || arg == "--help") {
  352. print_usage(argc, argv);
  353. exit(0);
  354. } else if (arg == "-m" || arg == "--model") {
  355. if (++i >= argc) {
  356. invalid_param = true;
  357. break;
  358. }
  359. auto p = string_split<std::string>(argv[i], split_delim);
  360. params.model.insert(params.model.end(), p.begin(), p.end());
  361. } else if (arg == "-p" || arg == "--n-prompt") {
  362. if (++i >= argc) {
  363. invalid_param = true;
  364. break;
  365. }
  366. auto p = string_split<int>(argv[i], split_delim);
  367. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  368. } else if (arg == "-n" || arg == "--n-gen") {
  369. if (++i >= argc) {
  370. invalid_param = true;
  371. break;
  372. }
  373. auto p = string_split<int>(argv[i], split_delim);
  374. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  375. } else if (arg == "-pg") {
  376. if (++i >= argc) {
  377. invalid_param = true;
  378. break;
  379. }
  380. auto p = string_split<std::string>(argv[i], ',');
  381. if (p.size() != 2) {
  382. invalid_param = true;
  383. break;
  384. }
  385. params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
  386. } else if (arg == "-b" || arg == "--batch-size") {
  387. if (++i >= argc) {
  388. invalid_param = true;
  389. break;
  390. }
  391. auto p = string_split<int>(argv[i], split_delim);
  392. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  393. } else if (arg == "-ub" || arg == "--ubatch-size") {
  394. if (++i >= argc) {
  395. invalid_param = true;
  396. break;
  397. }
  398. auto p = string_split<int>(argv[i], split_delim);
  399. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  400. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  401. if (++i >= argc) {
  402. invalid_param = true;
  403. break;
  404. }
  405. auto p = string_split<std::string>(argv[i], split_delim);
  406. std::vector<ggml_type> types;
  407. for (const auto & t : p) {
  408. ggml_type gt = ggml_type_from_name(t);
  409. if (gt == GGML_TYPE_COUNT) {
  410. invalid_param = true;
  411. break;
  412. }
  413. types.push_back(gt);
  414. }
  415. if (invalid_param) {
  416. break;
  417. }
  418. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  419. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  420. if (++i >= argc) {
  421. invalid_param = true;
  422. break;
  423. }
  424. auto p = string_split<std::string>(argv[i], split_delim);
  425. std::vector<ggml_type> types;
  426. for (const auto & t : p) {
  427. ggml_type gt = ggml_type_from_name(t);
  428. if (gt == GGML_TYPE_COUNT) {
  429. invalid_param = true;
  430. break;
  431. }
  432. types.push_back(gt);
  433. }
  434. if (invalid_param) {
  435. break;
  436. }
  437. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  438. } else if (arg == "-t" || arg == "--threads") {
  439. if (++i >= argc) {
  440. invalid_param = true;
  441. break;
  442. }
  443. auto p = string_split<int>(argv[i], split_delim);
  444. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  445. } else if (arg == "-C" || arg == "--cpu-mask") {
  446. if (++i >= argc) {
  447. invalid_param = true;
  448. break;
  449. }
  450. auto p = string_split<std::string>(argv[i], split_delim);
  451. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  452. } else if (arg == "--cpu-strict") {
  453. if (++i >= argc) {
  454. invalid_param = true;
  455. break;
  456. }
  457. auto p = string_split<bool>(argv[i], split_delim);
  458. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  459. } else if (arg == "--poll") {
  460. if (++i >= argc) {
  461. invalid_param = true;
  462. break;
  463. }
  464. auto p = string_split<int>(argv[i], split_delim);
  465. params.poll.insert(params.poll.end(), p.begin(), p.end());
  466. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  467. if (++i >= argc) {
  468. invalid_param = true;
  469. break;
  470. }
  471. auto p = string_split<int>(argv[i], split_delim);
  472. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  473. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  474. if (++i >= argc) {
  475. invalid_param = true;
  476. break;
  477. }
  478. params.rpc_servers.push_back(argv[i]);
  479. } else if (arg == "-sm" || arg == "--split-mode") {
  480. if (++i >= argc) {
  481. invalid_param = true;
  482. break;
  483. }
  484. auto p = string_split<std::string>(argv[i], split_delim);
  485. std::vector<llama_split_mode> modes;
  486. for (const auto & m : p) {
  487. llama_split_mode mode;
  488. if (m == "none") {
  489. mode = LLAMA_SPLIT_MODE_NONE;
  490. } else if (m == "layer") {
  491. mode = LLAMA_SPLIT_MODE_LAYER;
  492. } else if (m == "row") {
  493. mode = LLAMA_SPLIT_MODE_ROW;
  494. } else {
  495. invalid_param = true;
  496. break;
  497. }
  498. modes.push_back(mode);
  499. }
  500. if (invalid_param) {
  501. break;
  502. }
  503. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  504. } else if (arg == "-mg" || arg == "--main-gpu") {
  505. if (++i >= argc) {
  506. invalid_param = true;
  507. break;
  508. }
  509. params.main_gpu = string_split<int>(argv[i], split_delim);
  510. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  511. if (++i >= argc) {
  512. invalid_param = true;
  513. break;
  514. }
  515. auto p = string_split<bool>(argv[i], split_delim);
  516. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  517. } else if (arg == "--numa") {
  518. if (++i >= argc) {
  519. invalid_param = true;
  520. break;
  521. } else {
  522. std::string value(argv[i]);
  523. /**/ if (value == "distribute" || value == "") {
  524. params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
  525. } else if (value == "isolate") {
  526. params.numa = GGML_NUMA_STRATEGY_ISOLATE;
  527. } else if (value == "numactl") {
  528. params.numa = GGML_NUMA_STRATEGY_NUMACTL;
  529. } else {
  530. invalid_param = true;
  531. break;
  532. }
  533. }
  534. } else if (arg == "-fa" || arg == "--flash-attn") {
  535. if (++i >= argc) {
  536. invalid_param = true;
  537. break;
  538. }
  539. auto p = string_split<bool>(argv[i], split_delim);
  540. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  541. } else if (arg == "-mmp" || arg == "--mmap") {
  542. if (++i >= argc) {
  543. invalid_param = true;
  544. break;
  545. }
  546. auto p = string_split<bool>(argv[i], split_delim);
  547. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  548. } else if (arg == "-embd" || arg == "--embeddings") {
  549. if (++i >= argc) {
  550. invalid_param = true;
  551. break;
  552. }
  553. auto p = string_split<bool>(argv[i], split_delim);
  554. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  555. } else if (arg == "-ts" || arg == "--tensor-split") {
  556. if (++i >= argc) {
  557. invalid_param = true;
  558. break;
  559. }
  560. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  561. // split string by ; and /
  562. const std::regex regex{ R"([;/]+)" };
  563. std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
  564. std::vector<std::string> split_arg{ it, {} };
  565. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  566. std::vector<float> tensor_split(llama_max_devices());
  567. for (size_t i = 0; i < llama_max_devices(); ++i) {
  568. if (i < split_arg.size()) {
  569. tensor_split[i] = std::stof(split_arg[i]);
  570. } else {
  571. tensor_split[i] = 0.0f;
  572. }
  573. }
  574. params.tensor_split.push_back(tensor_split);
  575. }
  576. } else if (arg == "-ot" || arg == "--override-tensor") {
  577. if (++i >= argc) {
  578. invalid_param = true;
  579. break;
  580. }
  581. auto value = argv[i];
  582. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  583. if (buft_list.empty()) {
  584. // enumerate all the devices and add their buffer types to the list
  585. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  586. auto * dev = ggml_backend_dev_get(i);
  587. auto * buft = ggml_backend_dev_buffer_type(dev);
  588. if (buft) {
  589. buft_list[ggml_backend_buft_name(buft)] = buft;
  590. }
  591. }
  592. }
  593. auto override_group_span_len = std::strcspn(value, ",");
  594. bool last_group = false;
  595. do {
  596. if (override_group_span_len == 0) {
  597. // Adds an empty override-tensors for an empty span
  598. params.tensor_buft_overrides.push_back({{}});
  599. if (value[override_group_span_len] == '\0') {
  600. value = &value[override_group_span_len];
  601. last_group = true;
  602. } else {
  603. value = &value[override_group_span_len + 1];
  604. override_group_span_len = std::strcspn(value, ",");
  605. }
  606. continue;
  607. }
  608. // Stamps null terminators into the argv
  609. // value for this option to avoid the
  610. // memory leak present in the implementation
  611. // over in arg.cpp. Acceptable because we
  612. // only parse these args once in this program.
  613. auto override_group = value;
  614. if (value[override_group_span_len] == '\0') {
  615. value = &value[override_group_span_len];
  616. last_group = true;
  617. } else {
  618. value[override_group_span_len] = '\0';
  619. value = &value[override_group_span_len + 1];
  620. }
  621. std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
  622. auto override_span_len = std::strcspn(override_group, ";");
  623. while (override_span_len > 0) {
  624. auto override = override_group;
  625. if (override_group[override_span_len] != '\0') {
  626. override_group[override_span_len] = '\0';
  627. override_group = &override_group[override_span_len + 1];
  628. } else {
  629. override_group = &override_group[override_span_len];
  630. }
  631. auto tensor_name_span_len = std::strcspn(override, "=");
  632. if (tensor_name_span_len >= override_span_len) {
  633. invalid_param = true;
  634. break;
  635. }
  636. override[tensor_name_span_len] = '\0';
  637. auto tensor_name = override;
  638. auto buffer_type = &override[tensor_name_span_len + 1];
  639. if (buft_list.find(buffer_type) == buft_list.end()) {
  640. printf("Available buffer types:\n");
  641. for (const auto & it : buft_list) {
  642. printf(" %s\n", ggml_backend_buft_name(it.second));
  643. }
  644. invalid_param = true;
  645. break;
  646. }
  647. group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
  648. override_span_len = std::strcspn(override_group, ";");
  649. }
  650. if (invalid_param) {
  651. break;
  652. }
  653. group_tensor_buft_overrides.push_back({nullptr,nullptr});
  654. params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
  655. override_group_span_len = std::strcspn(value, ",");
  656. } while (!last_group);
  657. } else if (arg == "-r" || arg == "--repetitions") {
  658. if (++i >= argc) {
  659. invalid_param = true;
  660. break;
  661. }
  662. params.reps = std::stoi(argv[i]);
  663. } else if (arg == "--prio") {
  664. if (++i >= argc) {
  665. invalid_param = true;
  666. break;
  667. }
  668. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  669. } else if (arg == "--delay") {
  670. if (++i >= argc) {
  671. invalid_param = true;
  672. break;
  673. }
  674. params.delay = std::stoi(argv[i]);
  675. } else if (arg == "-o" || arg == "--output") {
  676. if (++i >= argc) {
  677. invalid_param = true;
  678. break;
  679. }
  680. invalid_param = !output_format_from_str(argv[i], params.output_format);
  681. } else if (arg == "-oe" || arg == "--output-err") {
  682. if (++i >= argc) {
  683. invalid_param = true;
  684. break;
  685. }
  686. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  687. } else if (arg == "-v" || arg == "--verbose") {
  688. params.verbose = true;
  689. } else if (arg == "--progress") {
  690. params.progress = true;
  691. } else {
  692. invalid_param = true;
  693. break;
  694. }
  695. }
  696. if (invalid_param) {
  697. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  698. print_usage(argc, argv);
  699. exit(1);
  700. }
  701. // set defaults
  702. if (params.model.empty()) {
  703. params.model = cmd_params_defaults.model;
  704. }
  705. if (params.n_prompt.empty()) {
  706. params.n_prompt = cmd_params_defaults.n_prompt;
  707. }
  708. if (params.n_gen.empty()) {
  709. params.n_gen = cmd_params_defaults.n_gen;
  710. }
  711. if (params.n_pg.empty()) {
  712. params.n_pg = cmd_params_defaults.n_pg;
  713. }
  714. if (params.n_batch.empty()) {
  715. params.n_batch = cmd_params_defaults.n_batch;
  716. }
  717. if (params.n_ubatch.empty()) {
  718. params.n_ubatch = cmd_params_defaults.n_ubatch;
  719. }
  720. if (params.type_k.empty()) {
  721. params.type_k = cmd_params_defaults.type_k;
  722. }
  723. if (params.type_v.empty()) {
  724. params.type_v = cmd_params_defaults.type_v;
  725. }
  726. if (params.n_gpu_layers.empty()) {
  727. params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
  728. }
  729. if (params.rpc_servers.empty()) {
  730. params.rpc_servers = cmd_params_defaults.rpc_servers;
  731. }
  732. if (params.split_mode.empty()) {
  733. params.split_mode = cmd_params_defaults.split_mode;
  734. }
  735. if (params.main_gpu.empty()) {
  736. params.main_gpu = cmd_params_defaults.main_gpu;
  737. }
  738. if (params.no_kv_offload.empty()) {
  739. params.no_kv_offload = cmd_params_defaults.no_kv_offload;
  740. }
  741. if (params.flash_attn.empty()) {
  742. params.flash_attn = cmd_params_defaults.flash_attn;
  743. }
  744. if (params.tensor_split.empty()) {
  745. params.tensor_split = cmd_params_defaults.tensor_split;
  746. }
  747. if (params.tensor_buft_overrides.empty()) {
  748. params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
  749. }
  750. if (params.use_mmap.empty()) {
  751. params.use_mmap = cmd_params_defaults.use_mmap;
  752. }
  753. if (params.embeddings.empty()) {
  754. params.embeddings = cmd_params_defaults.embeddings;
  755. }
  756. if (params.n_threads.empty()) {
  757. params.n_threads = cmd_params_defaults.n_threads;
  758. }
  759. if (params.cpu_mask.empty()) {
  760. params.cpu_mask = cmd_params_defaults.cpu_mask;
  761. }
  762. if (params.cpu_strict.empty()) {
  763. params.cpu_strict = cmd_params_defaults.cpu_strict;
  764. }
  765. if (params.poll.empty()) {
  766. params.poll = cmd_params_defaults.poll;
  767. }
  768. return params;
  769. }
  770. struct cmd_params_instance {
  771. std::string model;
  772. int n_prompt;
  773. int n_gen;
  774. int n_batch;
  775. int n_ubatch;
  776. ggml_type type_k;
  777. ggml_type type_v;
  778. int n_threads;
  779. std::string cpu_mask;
  780. bool cpu_strict;
  781. int poll;
  782. int n_gpu_layers;
  783. std::string rpc_servers_str;
  784. llama_split_mode split_mode;
  785. int main_gpu;
  786. bool no_kv_offload;
  787. bool flash_attn;
  788. std::vector<float> tensor_split;
  789. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  790. bool use_mmap;
  791. bool embeddings;
  792. llama_model_params to_llama_mparams() const {
  793. llama_model_params mparams = llama_model_default_params();
  794. mparams.n_gpu_layers = n_gpu_layers;
  795. if (!rpc_servers_str.empty()) {
  796. auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
  797. // add RPC devices
  798. if (!rpc_servers.empty()) {
  799. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  800. if (!rpc_reg) {
  801. fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
  802. exit(1);
  803. }
  804. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  805. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  806. if (!ggml_backend_rpc_add_device_fn) {
  807. fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
  808. exit(1);
  809. }
  810. static std::vector<ggml_backend_dev_t> devices;
  811. devices.clear();
  812. for (const std::string & server : rpc_servers) {
  813. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  814. if (dev) {
  815. devices.push_back(dev);
  816. } else {
  817. fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
  818. exit(1);
  819. }
  820. }
  821. devices.push_back(nullptr);
  822. mparams.devices = devices.data();
  823. }
  824. }
  825. mparams.split_mode = split_mode;
  826. mparams.main_gpu = main_gpu;
  827. mparams.tensor_split = tensor_split.data();
  828. mparams.use_mmap = use_mmap;
  829. if (tensor_buft_overrides.empty()) {
  830. mparams.tensor_buft_overrides = nullptr;
  831. } else {
  832. GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
  833. mparams.tensor_buft_overrides = tensor_buft_overrides.data();
  834. }
  835. return mparams;
  836. }
  837. bool equal_mparams(const cmd_params_instance & other) const {
  838. return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
  839. split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
  840. tensor_split == other.tensor_split && vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
  841. }
  842. llama_context_params to_llama_cparams() const {
  843. llama_context_params cparams = llama_context_default_params();
  844. cparams.n_ctx = n_prompt + n_gen;
  845. cparams.n_batch = n_batch;
  846. cparams.n_ubatch = n_ubatch;
  847. cparams.type_k = type_k;
  848. cparams.type_v = type_v;
  849. cparams.offload_kqv = !no_kv_offload;
  850. cparams.flash_attn = flash_attn;
  851. cparams.embeddings = embeddings;
  852. return cparams;
  853. }
  854. };
  855. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  856. std::vector<cmd_params_instance> instances;
  857. // this ordering minimizes the number of times that each model needs to be reloaded
  858. // clang-format off
  859. for (const auto & m : params.model)
  860. for (const auto & nl : params.n_gpu_layers)
  861. for (const auto & rpc : params.rpc_servers)
  862. for (const auto & sm : params.split_mode)
  863. for (const auto & mg : params.main_gpu)
  864. for (const auto & ts : params.tensor_split)
  865. for (const auto & ot : params.tensor_buft_overrides)
  866. for (const auto & mmp : params.use_mmap)
  867. for (const auto & embd : params.embeddings)
  868. for (const auto & nb : params.n_batch)
  869. for (const auto & nub : params.n_ubatch)
  870. for (const auto & tk : params.type_k)
  871. for (const auto & tv : params.type_v)
  872. for (const auto & nkvo : params.no_kv_offload)
  873. for (const auto & fa : params.flash_attn)
  874. for (const auto & nt : params.n_threads)
  875. for (const auto & cm : params.cpu_mask)
  876. for (const auto & cs : params.cpu_strict)
  877. for (const auto & pl : params.poll) {
  878. for (const auto & n_prompt : params.n_prompt) {
  879. if (n_prompt == 0) {
  880. continue;
  881. }
  882. cmd_params_instance instance = {
  883. /* .model = */ m,
  884. /* .n_prompt = */ n_prompt,
  885. /* .n_gen = */ 0,
  886. /* .n_batch = */ nb,
  887. /* .n_ubatch = */ nub,
  888. /* .type_k = */ tk,
  889. /* .type_v = */ tv,
  890. /* .n_threads = */ nt,
  891. /* .cpu_mask = */ cm,
  892. /* .cpu_strict = */ cs,
  893. /* .poll = */ pl,
  894. /* .n_gpu_layers = */ nl,
  895. /* .rpc_servers = */ rpc,
  896. /* .split_mode = */ sm,
  897. /* .main_gpu = */ mg,
  898. /* .no_kv_offload= */ nkvo,
  899. /* .flash_attn = */ fa,
  900. /* .tensor_split = */ ts,
  901. /* .tensor_buft_overrides = */ ot,
  902. /* .use_mmap = */ mmp,
  903. /* .embeddings = */ embd,
  904. };
  905. instances.push_back(instance);
  906. }
  907. for (const auto & n_gen : params.n_gen) {
  908. if (n_gen == 0) {
  909. continue;
  910. }
  911. cmd_params_instance instance = {
  912. /* .model = */ m,
  913. /* .n_prompt = */ 0,
  914. /* .n_gen = */ n_gen,
  915. /* .n_batch = */ nb,
  916. /* .n_ubatch = */ nub,
  917. /* .type_k = */ tk,
  918. /* .type_v = */ tv,
  919. /* .n_threads = */ nt,
  920. /* .cpu_mask = */ cm,
  921. /* .cpu_strict = */ cs,
  922. /* .poll = */ pl,
  923. /* .n_gpu_layers = */ nl,
  924. /* .rpc_servers = */ rpc,
  925. /* .split_mode = */ sm,
  926. /* .main_gpu = */ mg,
  927. /* .no_kv_offload= */ nkvo,
  928. /* .flash_attn = */ fa,
  929. /* .tensor_split = */ ts,
  930. /* .tensor_buft_overrides = */ ot,
  931. /* .use_mmap = */ mmp,
  932. /* .embeddings = */ embd,
  933. };
  934. instances.push_back(instance);
  935. }
  936. for (const auto & n_pg : params.n_pg) {
  937. if (n_pg.first == 0 && n_pg.second == 0) {
  938. continue;
  939. }
  940. cmd_params_instance instance = {
  941. /* .model = */ m,
  942. /* .n_prompt = */ n_pg.first,
  943. /* .n_gen = */ n_pg.second,
  944. /* .n_batch = */ nb,
  945. /* .n_ubatch = */ nub,
  946. /* .type_k = */ tk,
  947. /* .type_v = */ tv,
  948. /* .n_threads = */ nt,
  949. /* .cpu_mask = */ cm,
  950. /* .cpu_strict = */ cs,
  951. /* .poll = */ pl,
  952. /* .n_gpu_layers = */ nl,
  953. /* .rpc_servers = */ rpc,
  954. /* .split_mode = */ sm,
  955. /* .main_gpu = */ mg,
  956. /* .no_kv_offload= */ nkvo,
  957. /* .flash_attn = */ fa,
  958. /* .tensor_split = */ ts,
  959. /* .tensor_buft_overrides = */ ot,
  960. /* .use_mmap = */ mmp,
  961. /* .embeddings = */ embd,
  962. };
  963. instances.push_back(instance);
  964. }
  965. }
  966. // clang-format on
  967. return instances;
  968. }
  969. struct test {
  970. static const std::string build_commit;
  971. static const int build_number;
  972. const std::string cpu_info;
  973. const std::string gpu_info;
  974. std::string model_filename;
  975. std::string model_type;
  976. uint64_t model_size;
  977. uint64_t model_n_params;
  978. int n_batch;
  979. int n_ubatch;
  980. int n_threads;
  981. std::string cpu_mask;
  982. bool cpu_strict;
  983. int poll;
  984. ggml_type type_k;
  985. ggml_type type_v;
  986. int n_gpu_layers;
  987. llama_split_mode split_mode;
  988. int main_gpu;
  989. bool no_kv_offload;
  990. bool flash_attn;
  991. std::vector<float> tensor_split;
  992. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  993. bool use_mmap;
  994. bool embeddings;
  995. int n_prompt;
  996. int n_gen;
  997. std::string test_time;
  998. std::vector<uint64_t> samples_ns;
  999. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
  1000. cpu_info(get_cpu_info()),
  1001. gpu_info(get_gpu_info()) {
  1002. model_filename = inst.model;
  1003. char buf[128];
  1004. llama_model_desc(lmodel, buf, sizeof(buf));
  1005. model_type = buf;
  1006. model_size = llama_model_size(lmodel);
  1007. model_n_params = llama_model_n_params(lmodel);
  1008. n_batch = inst.n_batch;
  1009. n_ubatch = inst.n_ubatch;
  1010. n_threads = inst.n_threads;
  1011. cpu_mask = inst.cpu_mask;
  1012. cpu_strict = inst.cpu_strict;
  1013. poll = inst.poll;
  1014. type_k = inst.type_k;
  1015. type_v = inst.type_v;
  1016. n_gpu_layers = inst.n_gpu_layers;
  1017. split_mode = inst.split_mode;
  1018. main_gpu = inst.main_gpu;
  1019. no_kv_offload = inst.no_kv_offload;
  1020. flash_attn = inst.flash_attn;
  1021. tensor_split = inst.tensor_split;
  1022. tensor_buft_overrides = inst.tensor_buft_overrides;
  1023. use_mmap = inst.use_mmap;
  1024. embeddings = inst.embeddings;
  1025. n_prompt = inst.n_prompt;
  1026. n_gen = inst.n_gen;
  1027. // RFC 3339 date-time format
  1028. time_t t = time(NULL);
  1029. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  1030. test_time = buf;
  1031. (void) ctx;
  1032. }
  1033. uint64_t avg_ns() const { return ::avg(samples_ns); }
  1034. uint64_t stdev_ns() const { return ::stdev(samples_ns); }
  1035. std::vector<double> get_ts() const {
  1036. int n_tokens = n_prompt + n_gen;
  1037. std::vector<double> ts;
  1038. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
  1039. [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  1040. return ts;
  1041. }
  1042. double avg_ts() const { return ::avg(get_ts()); }
  1043. double stdev_ts() const { return ::stdev(get_ts()); }
  1044. static std::string get_backend() {
  1045. std::vector<std::string> backends;
  1046. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  1047. auto * reg = ggml_backend_reg_get(i);
  1048. std::string name = ggml_backend_reg_name(reg);
  1049. if (name != "CPU") {
  1050. backends.push_back(ggml_backend_reg_name(reg));
  1051. }
  1052. }
  1053. return backends.empty() ? "CPU" : join(backends, ",");
  1054. }
  1055. static const std::vector<std::string> & get_fields() {
  1056. static const std::vector<std::string> fields = {
  1057. "build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
  1058. "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
  1059. "cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
  1060. "split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
  1061. "use_mmap", "embeddings", "n_prompt", "n_gen", "test_time", "avg_ns",
  1062. "stddev_ns", "avg_ts", "stddev_ts",
  1063. };
  1064. return fields;
  1065. }
  1066. enum field_type { STRING, BOOL, INT, FLOAT };
  1067. static field_type get_field_type(const std::string & field) {
  1068. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
  1069. field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
  1070. field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "avg_ns" ||
  1071. field == "stddev_ns") {
  1072. return INT;
  1073. }
  1074. if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
  1075. field == "use_mmap" || field == "embeddings") {
  1076. return BOOL;
  1077. }
  1078. if (field == "avg_ts" || field == "stddev_ts") {
  1079. return FLOAT;
  1080. }
  1081. return STRING;
  1082. }
  1083. std::vector<std::string> get_values() const {
  1084. std::string tensor_split_str;
  1085. std::string tensor_buft_overrides_str;
  1086. int max_nonzero = 0;
  1087. for (size_t i = 0; i < llama_max_devices(); i++) {
  1088. if (tensor_split[i] > 0) {
  1089. max_nonzero = i;
  1090. }
  1091. }
  1092. for (int i = 0; i <= max_nonzero; i++) {
  1093. char buf[32];
  1094. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  1095. tensor_split_str += buf;
  1096. if (i < max_nonzero) {
  1097. tensor_split_str += "/";
  1098. }
  1099. }
  1100. if (tensor_buft_overrides.size() == 1) {
  1101. // Last element of tensor_buft_overrides is always a null pattern
  1102. // so if it is only one element long, it must be a null pattern.
  1103. GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
  1104. tensor_buft_overrides_str += "none";
  1105. } else {
  1106. for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
  1107. // Last element of tensor_buft_overrides is always a null pattern
  1108. if (tensor_buft_overrides[i].pattern == nullptr) {
  1109. tensor_buft_overrides_str += "none";
  1110. } else {
  1111. tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
  1112. tensor_buft_overrides_str += "=";
  1113. tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
  1114. }
  1115. if (i + 2 < tensor_buft_overrides.size()) {
  1116. tensor_buft_overrides_str += ";";
  1117. }
  1118. }
  1119. }
  1120. std::vector<std::string> values = { build_commit,
  1121. std::to_string(build_number),
  1122. cpu_info,
  1123. gpu_info,
  1124. get_backend(),
  1125. model_filename,
  1126. model_type,
  1127. std::to_string(model_size),
  1128. std::to_string(model_n_params),
  1129. std::to_string(n_batch),
  1130. std::to_string(n_ubatch),
  1131. std::to_string(n_threads),
  1132. cpu_mask,
  1133. std::to_string(cpu_strict),
  1134. std::to_string(poll),
  1135. ggml_type_name(type_k),
  1136. ggml_type_name(type_v),
  1137. std::to_string(n_gpu_layers),
  1138. split_mode_str(split_mode),
  1139. std::to_string(main_gpu),
  1140. std::to_string(no_kv_offload),
  1141. std::to_string(flash_attn),
  1142. tensor_split_str,
  1143. tensor_buft_overrides_str,
  1144. std::to_string(use_mmap),
  1145. std::to_string(embeddings),
  1146. std::to_string(n_prompt),
  1147. std::to_string(n_gen),
  1148. test_time,
  1149. std::to_string(avg_ns()),
  1150. std::to_string(stdev_ns()),
  1151. std::to_string(avg_ts()),
  1152. std::to_string(stdev_ts()) };
  1153. return values;
  1154. }
  1155. std::map<std::string, std::string> get_map() const {
  1156. std::map<std::string, std::string> map;
  1157. auto fields = get_fields();
  1158. auto values = get_values();
  1159. std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
  1160. std::make_pair<const std::string &, const std::string &>);
  1161. return map;
  1162. }
  1163. };
  1164. const std::string test::build_commit = LLAMA_COMMIT;
  1165. const int test::build_number = LLAMA_BUILD_NUMBER;
  1166. struct printer {
  1167. virtual ~printer() {}
  1168. FILE * fout;
  1169. virtual void print_header(const cmd_params & params) { (void) params; }
  1170. virtual void print_test(const test & t) = 0;
  1171. virtual void print_footer() {}
  1172. };
  1173. struct csv_printer : public printer {
  1174. static std::string escape_csv(const std::string & field) {
  1175. std::string escaped = "\"";
  1176. for (auto c : field) {
  1177. if (c == '"') {
  1178. escaped += "\"";
  1179. }
  1180. escaped += c;
  1181. }
  1182. escaped += "\"";
  1183. return escaped;
  1184. }
  1185. void print_header(const cmd_params & params) override {
  1186. std::vector<std::string> fields = test::get_fields();
  1187. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1188. (void) params;
  1189. }
  1190. void print_test(const test & t) override {
  1191. std::vector<std::string> values = t.get_values();
  1192. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1193. fprintf(fout, "%s\n", join(values, ",").c_str());
  1194. }
  1195. };
  1196. static std::string escape_json(const std::string & value) {
  1197. std::string escaped;
  1198. for (auto c : value) {
  1199. if (c == '"') {
  1200. escaped += "\\\"";
  1201. } else if (c == '\\') {
  1202. escaped += "\\\\";
  1203. } else if (c <= 0x1f) {
  1204. char buf[8];
  1205. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1206. escaped += buf;
  1207. } else {
  1208. escaped += c;
  1209. }
  1210. }
  1211. return escaped;
  1212. }
  1213. static std::string format_json_value(const std::string & field, const std::string & value) {
  1214. switch (test::get_field_type(field)) {
  1215. case test::STRING:
  1216. return "\"" + escape_json(value) + "\"";
  1217. case test::BOOL:
  1218. return value == "0" ? "false" : "true";
  1219. default:
  1220. return value;
  1221. }
  1222. }
  1223. struct json_printer : public printer {
  1224. bool first = true;
  1225. void print_header(const cmd_params & params) override {
  1226. fprintf(fout, "[\n");
  1227. (void) params;
  1228. }
  1229. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1230. assert(fields.size() == values.size());
  1231. for (size_t i = 0; i < fields.size(); i++) {
  1232. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
  1233. format_json_value(fields.at(i), values.at(i)).c_str());
  1234. }
  1235. }
  1236. void print_test(const test & t) override {
  1237. if (first) {
  1238. first = false;
  1239. } else {
  1240. fprintf(fout, ",\n");
  1241. }
  1242. fprintf(fout, " {\n");
  1243. print_fields(test::get_fields(), t.get_values());
  1244. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1245. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1246. fprintf(fout, " }");
  1247. fflush(fout);
  1248. }
  1249. void print_footer() override { fprintf(fout, "\n]\n"); }
  1250. };
  1251. struct jsonl_printer : public printer {
  1252. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1253. assert(fields.size() == values.size());
  1254. for (size_t i = 0; i < fields.size(); i++) {
  1255. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1256. }
  1257. }
  1258. void print_test(const test & t) override {
  1259. fprintf(fout, "{");
  1260. print_fields(test::get_fields(), t.get_values());
  1261. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1262. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1263. fprintf(fout, "}\n");
  1264. fflush(fout);
  1265. }
  1266. };
  1267. struct markdown_printer : public printer {
  1268. std::vector<std::string> fields;
  1269. static int get_field_width(const std::string & field) {
  1270. if (field == "model") {
  1271. return -30;
  1272. }
  1273. if (field == "t/s") {
  1274. return 20;
  1275. }
  1276. if (field == "size" || field == "params") {
  1277. return 10;
  1278. }
  1279. if (field == "n_gpu_layers") {
  1280. return 3;
  1281. }
  1282. if (field == "n_threads") {
  1283. return 7;
  1284. }
  1285. if (field == "n_batch") {
  1286. return 7;
  1287. }
  1288. if (field == "n_ubatch") {
  1289. return 8;
  1290. }
  1291. if (field == "type_k" || field == "type_v") {
  1292. return 6;
  1293. }
  1294. if (field == "split_mode") {
  1295. return 5;
  1296. }
  1297. if (field == "flash_attn") {
  1298. return 2;
  1299. }
  1300. if (field == "use_mmap") {
  1301. return 4;
  1302. }
  1303. if (field == "test") {
  1304. return 13;
  1305. }
  1306. int width = std::max((int) field.length(), 10);
  1307. if (test::get_field_type(field) == test::STRING) {
  1308. return -width;
  1309. }
  1310. return width;
  1311. }
  1312. static std::string get_field_display_name(const std::string & field) {
  1313. if (field == "n_gpu_layers") {
  1314. return "ngl";
  1315. }
  1316. if (field == "split_mode") {
  1317. return "sm";
  1318. }
  1319. if (field == "n_threads") {
  1320. return "threads";
  1321. }
  1322. if (field == "no_kv_offload") {
  1323. return "nkvo";
  1324. }
  1325. if (field == "flash_attn") {
  1326. return "fa";
  1327. }
  1328. if (field == "use_mmap") {
  1329. return "mmap";
  1330. }
  1331. if (field == "embeddings") {
  1332. return "embd";
  1333. }
  1334. if (field == "tensor_split") {
  1335. return "ts";
  1336. }
  1337. if (field == "tensor_buft_overrides") {
  1338. return "ot";
  1339. }
  1340. return field;
  1341. }
  1342. void print_header(const cmd_params & params) override {
  1343. // select fields to print
  1344. fields.emplace_back("model");
  1345. fields.emplace_back("size");
  1346. fields.emplace_back("params");
  1347. fields.emplace_back("backend");
  1348. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1349. test::get_backend().find("BLAS") != std::string::npos;
  1350. if (!is_cpu_backend) {
  1351. fields.emplace_back("n_gpu_layers");
  1352. }
  1353. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1354. fields.emplace_back("n_threads");
  1355. }
  1356. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1357. fields.emplace_back("cpu_mask");
  1358. }
  1359. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1360. fields.emplace_back("cpu_strict");
  1361. }
  1362. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1363. fields.emplace_back("poll");
  1364. }
  1365. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1366. fields.emplace_back("n_batch");
  1367. }
  1368. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1369. fields.emplace_back("n_ubatch");
  1370. }
  1371. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1372. fields.emplace_back("type_k");
  1373. }
  1374. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1375. fields.emplace_back("type_v");
  1376. }
  1377. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1378. fields.emplace_back("main_gpu");
  1379. }
  1380. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1381. fields.emplace_back("split_mode");
  1382. }
  1383. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1384. fields.emplace_back("no_kv_offload");
  1385. }
  1386. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1387. fields.emplace_back("flash_attn");
  1388. }
  1389. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1390. fields.emplace_back("tensor_split");
  1391. }
  1392. if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
  1393. fields.emplace_back("tensor_buft_overrides");
  1394. }
  1395. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1396. fields.emplace_back("use_mmap");
  1397. }
  1398. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1399. fields.emplace_back("embeddings");
  1400. }
  1401. fields.emplace_back("test");
  1402. fields.emplace_back("t/s");
  1403. fprintf(fout, "|");
  1404. for (const auto & field : fields) {
  1405. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1406. }
  1407. fprintf(fout, "\n");
  1408. fprintf(fout, "|");
  1409. for (const auto & field : fields) {
  1410. int width = get_field_width(field);
  1411. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1412. }
  1413. fprintf(fout, "\n");
  1414. }
  1415. void print_test(const test & t) override {
  1416. std::map<std::string, std::string> vmap = t.get_map();
  1417. fprintf(fout, "|");
  1418. for (const auto & field : fields) {
  1419. std::string value;
  1420. char buf[128];
  1421. if (field == "model") {
  1422. value = t.model_type;
  1423. } else if (field == "size") {
  1424. if (t.model_size < 1024 * 1024 * 1024) {
  1425. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1426. } else {
  1427. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1428. }
  1429. value = buf;
  1430. } else if (field == "params") {
  1431. if (t.model_n_params < 1000 * 1000 * 1000) {
  1432. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1433. } else {
  1434. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1435. }
  1436. value = buf;
  1437. } else if (field == "backend") {
  1438. value = test::get_backend();
  1439. } else if (field == "test") {
  1440. if (t.n_prompt > 0 && t.n_gen == 0) {
  1441. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1442. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1443. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1444. } else {
  1445. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1446. }
  1447. value = buf;
  1448. } else if (field == "t/s") {
  1449. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1450. value = buf;
  1451. } else if (vmap.find(field) != vmap.end()) {
  1452. value = vmap.at(field);
  1453. } else {
  1454. assert(false);
  1455. exit(1);
  1456. }
  1457. int width = get_field_width(field);
  1458. if (field == "t/s") {
  1459. // HACK: the utf-8 character is 2 bytes
  1460. width += 1;
  1461. }
  1462. fprintf(fout, " %*s |", width, value.c_str());
  1463. }
  1464. fprintf(fout, "\n");
  1465. }
  1466. void print_footer() override {
  1467. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1468. }
  1469. };
  1470. struct sql_printer : public printer {
  1471. static std::string get_sql_field_type(const std::string & field) {
  1472. switch (test::get_field_type(field)) {
  1473. case test::STRING:
  1474. return "TEXT";
  1475. case test::BOOL:
  1476. case test::INT:
  1477. return "INTEGER";
  1478. case test::FLOAT:
  1479. return "REAL";
  1480. default:
  1481. assert(false);
  1482. exit(1);
  1483. }
  1484. }
  1485. void print_header(const cmd_params & params) override {
  1486. std::vector<std::string> fields = test::get_fields();
  1487. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1488. for (size_t i = 0; i < fields.size(); i++) {
  1489. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
  1490. i < fields.size() - 1 ? "," : "");
  1491. }
  1492. fprintf(fout, ");\n");
  1493. fprintf(fout, "\n");
  1494. (void) params;
  1495. }
  1496. void print_test(const test & t) override {
  1497. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1498. fprintf(fout, "VALUES (");
  1499. std::vector<std::string> values = t.get_values();
  1500. for (size_t i = 0; i < values.size(); i++) {
  1501. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1502. }
  1503. fprintf(fout, ");\n");
  1504. }
  1505. };
  1506. static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1507. llama_set_n_threads(ctx, n_threads, n_threads);
  1508. const llama_model * model = llama_get_model(ctx);
  1509. const llama_vocab * vocab = llama_model_get_vocab(model);
  1510. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1511. std::vector<llama_token> tokens(n_batch);
  1512. int n_processed = 0;
  1513. while (n_processed < n_prompt) {
  1514. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1515. tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1516. for (int i = 1; i < n_tokens; i++) {
  1517. tokens[i] = std::rand() % n_vocab;
  1518. }
  1519. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1520. n_processed += n_tokens;
  1521. }
  1522. llama_synchronize(ctx);
  1523. }
  1524. static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1525. llama_set_n_threads(ctx, n_threads, n_threads);
  1526. const llama_model * model = llama_get_model(ctx);
  1527. const llama_vocab * vocab = llama_model_get_vocab(model);
  1528. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1529. llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1530. for (int i = 0; i < n_gen; i++) {
  1531. llama_decode(ctx, llama_batch_get_one(&token, 1));
  1532. llama_synchronize(ctx);
  1533. token = std::rand() % n_vocab;
  1534. }
  1535. }
  1536. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1537. (void) level;
  1538. (void) text;
  1539. (void) user_data;
  1540. }
  1541. static std::unique_ptr<printer> create_printer(output_formats format) {
  1542. switch (format) {
  1543. case NONE:
  1544. return nullptr;
  1545. case CSV:
  1546. return std::unique_ptr<printer>(new csv_printer());
  1547. case JSON:
  1548. return std::unique_ptr<printer>(new json_printer());
  1549. case JSONL:
  1550. return std::unique_ptr<printer>(new jsonl_printer());
  1551. case MARKDOWN:
  1552. return std::unique_ptr<printer>(new markdown_printer());
  1553. case SQL:
  1554. return std::unique_ptr<printer>(new sql_printer());
  1555. }
  1556. GGML_ABORT("fatal error");
  1557. }
  1558. int main(int argc, char ** argv) {
  1559. // try to set locale for unicode characters in markdown
  1560. setlocale(LC_CTYPE, ".UTF-8");
  1561. #if !defined(NDEBUG)
  1562. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1563. #endif
  1564. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1565. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1566. #endif
  1567. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1568. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1569. #endif
  1570. cmd_params params = parse_cmd_params(argc, argv);
  1571. // initialize backends
  1572. ggml_backend_load_all();
  1573. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1574. if (!cpu_dev) {
  1575. fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
  1576. return 1;
  1577. }
  1578. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  1579. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
  1580. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
  1581. // initialize llama.cpp
  1582. if (!params.verbose) {
  1583. llama_log_set(llama_null_log_callback, NULL);
  1584. }
  1585. llama_backend_init();
  1586. llama_numa_init(params.numa);
  1587. set_process_priority(params.prio);
  1588. // initialize printer
  1589. std::unique_ptr<printer> p = create_printer(params.output_format);
  1590. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1591. if (p) {
  1592. p->fout = stdout;
  1593. p->print_header(params);
  1594. }
  1595. if (p_err) {
  1596. p_err->fout = stderr;
  1597. p_err->print_header(params);
  1598. }
  1599. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1600. llama_model * lmodel = nullptr;
  1601. const cmd_params_instance * prev_inst = nullptr;
  1602. int params_idx = 0;
  1603. auto params_count = params_instances.size();
  1604. for (const auto & inst : params_instances) {
  1605. params_idx++;
  1606. if (params.progress) {
  1607. fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
  1608. }
  1609. // keep the same model between tests when possible
  1610. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1611. if (lmodel) {
  1612. llama_model_free(lmodel);
  1613. }
  1614. lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1615. if (lmodel == NULL) {
  1616. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1617. return 1;
  1618. }
  1619. prev_inst = &inst;
  1620. }
  1621. llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
  1622. if (ctx == NULL) {
  1623. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1624. llama_model_free(lmodel);
  1625. return 1;
  1626. }
  1627. test t(inst, lmodel, ctx);
  1628. llama_kv_self_clear(ctx);
  1629. // cool off before the test
  1630. if (params.delay) {
  1631. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1632. }
  1633. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1634. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1635. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1636. exit(1);
  1637. }
  1638. tpp.strict_cpu = t.cpu_strict;
  1639. tpp.poll = t.poll;
  1640. tpp.prio = params.prio;
  1641. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  1642. if (!threadpool) {
  1643. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1644. exit(1);
  1645. }
  1646. llama_attach_threadpool(ctx, threadpool, NULL);
  1647. // warmup run
  1648. if (t.n_prompt > 0) {
  1649. if (params.progress) {
  1650. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
  1651. }
  1652. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1653. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1654. }
  1655. if (t.n_gen > 0) {
  1656. if (params.progress) {
  1657. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
  1658. }
  1659. test_gen(ctx, 1, t.n_threads);
  1660. }
  1661. for (int i = 0; i < params.reps; i++) {
  1662. llama_kv_self_clear(ctx);
  1663. uint64_t t_start = get_time_ns();
  1664. if (t.n_prompt > 0) {
  1665. if (params.progress) {
  1666. fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
  1667. i + 1, params.reps);
  1668. }
  1669. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1670. }
  1671. if (t.n_gen > 0) {
  1672. if (params.progress) {
  1673. fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
  1674. i + 1, params.reps);
  1675. }
  1676. test_gen(ctx, t.n_gen, t.n_threads);
  1677. }
  1678. uint64_t t_ns = get_time_ns() - t_start;
  1679. t.samples_ns.push_back(t_ns);
  1680. }
  1681. if (p) {
  1682. p->print_test(t);
  1683. fflush(p->fout);
  1684. }
  1685. if (p_err) {
  1686. p_err->print_test(t);
  1687. fflush(p_err->fout);
  1688. }
  1689. llama_perf_context_print(ctx);
  1690. llama_free(ctx);
  1691. ggml_threadpool_free_fn(threadpool);
  1692. }
  1693. llama_model_free(lmodel);
  1694. if (p) {
  1695. p->print_footer();
  1696. }
  1697. if (p_err) {
  1698. p_err->print_footer();
  1699. }
  1700. llama_backend_free();
  1701. return 0;
  1702. }