1
0

simple.cpp 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cmath>
  4. #include <cstdio>
  5. #include <string>
  6. #include <vector>
  7. static void print_usage(int, char ** argv) {
  8. LOG_TEE("\nexample usage:\n");
  9. LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
  10. LOG_TEE("\n");
  11. }
  12. int main(int argc, char ** argv) {
  13. gpt_params params;
  14. params.prompt = "Hello my name is";
  15. params.n_predict = 32;
  16. auto options = gpt_params_parser_init(params, LLAMA_EXAMPLE_COMMON, print_usage);
  17. if (!gpt_params_parse(argc, argv, params, options)) {
  18. return 1;
  19. }
  20. // total length of the sequence including the prompt
  21. const int n_predict = params.n_predict;
  22. // init LLM
  23. llama_backend_init();
  24. llama_numa_init(params.numa);
  25. // initialize the model
  26. llama_model_params model_params = llama_model_params_from_gpt_params(params);
  27. llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
  28. if (model == NULL) {
  29. fprintf(stderr , "%s: error: unable to load model\n" , __func__);
  30. return 1;
  31. }
  32. // initialize the context
  33. llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
  34. llama_context * ctx = llama_new_context_with_model(model, ctx_params);
  35. if (ctx == NULL) {
  36. fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
  37. return 1;
  38. }
  39. auto sparams = llama_sampler_chain_default_params();
  40. sparams.no_perf = false;
  41. llama_sampler * smpl = llama_sampler_chain_init(sparams);
  42. llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
  43. // tokenize the prompt
  44. std::vector<llama_token> tokens_list;
  45. tokens_list = ::llama_tokenize(ctx, params.prompt, true);
  46. const int n_ctx = llama_n_ctx(ctx);
  47. const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
  48. LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
  49. // make sure the KV cache is big enough to hold all the prompt and generated tokens
  50. if (n_kv_req > n_ctx) {
  51. LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
  52. LOG_TEE("%s: either reduce n_predict or increase n_ctx\n", __func__);
  53. return 1;
  54. }
  55. // print the prompt token-by-token
  56. fprintf(stderr, "\n");
  57. for (auto id : tokens_list) {
  58. fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
  59. }
  60. fflush(stderr);
  61. // create a llama_batch with size 512
  62. // we use this object to submit token data for decoding
  63. llama_batch batch = llama_batch_init(512, 0, 1);
  64. // evaluate the initial prompt
  65. for (size_t i = 0; i < tokens_list.size(); i++) {
  66. llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
  67. }
  68. // llama_decode will output logits only for the last token of the prompt
  69. batch.logits[batch.n_tokens - 1] = true;
  70. if (llama_decode(ctx, batch) != 0) {
  71. LOG_TEE("%s: llama_decode() failed\n", __func__);
  72. return 1;
  73. }
  74. // main loop
  75. int n_cur = batch.n_tokens;
  76. int n_decode = 0;
  77. const auto t_main_start = ggml_time_us();
  78. while (n_cur <= n_predict) {
  79. // sample the next token
  80. {
  81. const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
  82. // is it an end of generation?
  83. if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
  84. LOG_TEE("\n");
  85. break;
  86. }
  87. LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
  88. fflush(stdout);
  89. // prepare the next batch
  90. llama_batch_clear(batch);
  91. // push this new token for next evaluation
  92. llama_batch_add(batch, new_token_id, n_cur, { 0 }, true);
  93. n_decode += 1;
  94. }
  95. n_cur += 1;
  96. // evaluate the current batch with the transformer model
  97. if (llama_decode(ctx, batch)) {
  98. fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
  99. return 1;
  100. }
  101. }
  102. LOG_TEE("\n");
  103. const auto t_main_end = ggml_time_us();
  104. LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
  105. __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
  106. LOG_TEE("\n");
  107. llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
  108. llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
  109. fprintf(stderr, "\n");
  110. llama_batch_free(batch);
  111. llama_sampler_free(smpl);
  112. llama_free(ctx);
  113. llama_free_model(model);
  114. llama_backend_free();
  115. return 0;
  116. }