ggml.c 411 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #elif defined(GGML_USE_CLBLAST)
  129. #include "ggml-opencl.h"
  130. #endif
  131. #undef MIN
  132. #undef MAX
  133. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  134. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  135. // floating point type used to accumulate sums
  136. typedef double ggml_float;
  137. // 16-bit float
  138. // on Arm, we use __fp16
  139. // on x86, we use uint16_t
  140. #ifdef __ARM_NEON
  141. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  142. //
  143. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  144. //
  145. #include <arm_neon.h>
  146. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  148. #define GGML_FP16_TO_FP32(x) ((float) (x))
  149. #define GGML_FP32_TO_FP16(x) (x)
  150. #else
  151. #ifdef __wasm_simd128__
  152. #include <wasm_simd128.h>
  153. #else
  154. #ifdef __POWER9_VECTOR__
  155. #include <altivec.h>
  156. #undef bool
  157. #define bool _Bool
  158. #else
  159. #include <immintrin.h>
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  285. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  286. #endif
  287. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  288. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  289. // This is also true for POWER9.
  290. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  291. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  292. uint16_t s;
  293. memcpy(&s, &f, sizeof(uint16_t));
  294. return table_f32_f16[s];
  295. }
  296. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  297. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  298. #endif
  299. // note: do not use these inside ggml.c
  300. // these are meant to be used via the ggml.h API
  301. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  302. return (float) GGML_FP16_TO_FP32(x);
  303. }
  304. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  305. return GGML_FP32_TO_FP16(x);
  306. }
  307. //
  308. // timing
  309. //
  310. #if defined(_MSC_VER) || defined(__MINGW32__)
  311. static int64_t timer_freq;
  312. void ggml_time_init(void) {
  313. LARGE_INTEGER frequency;
  314. QueryPerformanceFrequency(&frequency);
  315. timer_freq = frequency.QuadPart;
  316. }
  317. int64_t ggml_time_ms(void) {
  318. LARGE_INTEGER t;
  319. QueryPerformanceCounter(&t);
  320. return (t.QuadPart * 1000) / timer_freq;
  321. }
  322. int64_t ggml_time_us(void) {
  323. LARGE_INTEGER t;
  324. QueryPerformanceCounter(&t);
  325. return (t.QuadPart * 1000000) / timer_freq;
  326. }
  327. #else
  328. void ggml_time_init(void) {}
  329. int64_t ggml_time_ms(void) {
  330. struct timespec ts;
  331. clock_gettime(CLOCK_MONOTONIC, &ts);
  332. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  333. }
  334. int64_t ggml_time_us(void) {
  335. struct timespec ts;
  336. clock_gettime(CLOCK_MONOTONIC, &ts);
  337. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  338. }
  339. #endif
  340. int64_t ggml_cycles(void) {
  341. return clock();
  342. }
  343. int64_t ggml_cycles_per_ms(void) {
  344. return CLOCKS_PER_SEC/1000;
  345. }
  346. #ifdef GGML_PERF
  347. #define ggml_perf_time_ms() ggml_time_ms()
  348. #define ggml_perf_time_us() ggml_time_us()
  349. #define ggml_perf_cycles() ggml_cycles()
  350. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  351. #else
  352. #define ggml_perf_time_ms() 0
  353. #define ggml_perf_time_us() 0
  354. #define ggml_perf_cycles() 0
  355. #define ggml_perf_cycles_per_ms() 0
  356. #endif
  357. //
  358. // cache line
  359. //
  360. #if defined(__cpp_lib_hardware_interference_size)
  361. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  362. #else
  363. #if defined(__POWER9_VECTOR__)
  364. #define CACHE_LINE_SIZE 128
  365. #else
  366. #define CACHE_LINE_SIZE 64
  367. #endif
  368. #endif
  369. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  370. //
  371. // quantization
  372. //
  373. #if __AVX__ || __AVX2__ || __AVX512F__
  374. // Unpack 16 4-bit fields into 16 bytes
  375. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  376. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  377. {
  378. // Load 8 bytes from memory
  379. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  380. // Expand bytes into uint16_t values
  381. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  382. // Unpack values into individual bytes
  383. const __m128i lowMask = _mm_set1_epi8( 0xF );
  384. __m128i high = _mm_andnot_si128( lowMask, bytes );
  385. __m128i low = _mm_and_si128( lowMask, bytes );
  386. high = _mm_slli_epi16( high, 4 );
  387. bytes = _mm_or_si128( low, high );
  388. return bytes;
  389. }
  390. // horizontally add 8 floats
  391. static inline float hsum_float_8(const __m256 x) {
  392. __m128 res = _mm256_extractf128_ps(x, 1);
  393. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  394. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  395. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  396. return _mm_cvtss_f32(res);
  397. }
  398. // horizontally add 8 int32_t
  399. static inline int hsum_i32_8(const __m256i a) {
  400. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  401. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  402. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  403. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  404. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  405. }
  406. // horizontally add 4 int32_t
  407. static inline int hsum_i32_4(const __m128i a) {
  408. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  409. const __m128i sum64 = _mm_add_epi32(hi64, a);
  410. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  411. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  412. }
  413. #if __AVX2__ || __AVX512F__
  414. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  415. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  416. uint32_t x32;
  417. memcpy(&x32, x, sizeof(uint32_t));
  418. const __m256i shuf_mask = _mm256_set_epi64x(
  419. 0x0303030303030303, 0x0202020202020202,
  420. 0x0101010101010101, 0x0000000000000000);
  421. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  422. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  423. bytes = _mm256_or_si256(bytes, bit_mask);
  424. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  425. }
  426. // Unpack 32 4-bit fields into 32 bytes
  427. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  428. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  429. {
  430. // Load 16 bytes from memory
  431. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  432. // Expand bytes into uint16_t values
  433. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  434. // Unpack values into individual bytes
  435. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  436. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  437. __m256i low = _mm256_and_si256( lowMask, bytes );
  438. high = _mm256_slli_epi16( high, 4 );
  439. bytes = _mm256_or_si256( low, high );
  440. return bytes;
  441. }
  442. // add int16_t pairwise and return as float vector
  443. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  444. const __m256i ones = _mm256_set1_epi16(1);
  445. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  446. return _mm256_cvtepi32_ps(summed_pairs);
  447. }
  448. // multiply int8_t, add results pairwise twice and return as float vector
  449. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  450. // Get absolute values of x vectors
  451. const __m256i ax = _mm256_sign_epi8(x, x);
  452. // Sign the values of the y vectors
  453. const __m256i sy = _mm256_sign_epi8(y, x);
  454. #if __AVXVNNI__
  455. const __m256i zero = _mm256_setzero_si256();
  456. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  457. return _mm256_cvtepi32_ps(summed_pairs);
  458. #else
  459. // Perform multiplication and create 16-bit values
  460. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  461. return sum_i16_pairs_float(dot);
  462. #endif
  463. }
  464. static inline __m128i packNibbles( __m256i bytes )
  465. {
  466. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  467. #if __AVX512F__
  468. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  469. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  470. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  471. #else
  472. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  473. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  474. __m256i low = _mm256_and_si256( lowByte, bytes );
  475. high = _mm256_srli_epi16( high, 4 );
  476. bytes = _mm256_or_si256( low, high );
  477. // Compress uint16_t lanes into bytes
  478. __m128i r0 = _mm256_castsi256_si128( bytes );
  479. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  480. return _mm_packus_epi16( r0, r1 );
  481. #endif
  482. }
  483. #else
  484. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  485. {
  486. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  487. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  488. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  489. __m128i low = _mm_and_si128( lowByte, bytes1 );
  490. high = _mm_srli_epi16( high, 4 );
  491. bytes1 = _mm_or_si128( low, high );
  492. high = _mm_andnot_si128( lowByte, bytes2 );
  493. low = _mm_and_si128( lowByte, bytes2 );
  494. high = _mm_srli_epi16( high, 4 );
  495. bytes2 = _mm_or_si128( low, high );
  496. return _mm_packus_epi16( bytes1, bytes2);
  497. }
  498. #endif
  499. #endif // __AVX__ || __AVX2__ || __AVX512F__
  500. #if __ARM_NEON
  501. #if !defined(__aarch64__)
  502. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  503. return
  504. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  505. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  506. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  507. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  508. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  509. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  510. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  511. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  512. }
  513. inline static int16_t vaddvq_s8(int8x16_t v) {
  514. return
  515. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  516. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  517. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  518. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  519. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  520. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  521. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  522. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  523. }
  524. inline static int32_t vaddvq_s16(int16x8_t v) {
  525. return
  526. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  527. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  528. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  529. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  530. }
  531. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  532. return
  533. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  534. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  535. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  536. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  537. }
  538. inline static int32_t vaddvq_s32(int32x4_t v) {
  539. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  540. }
  541. inline static float vaddvq_f32(float32x4_t v) {
  542. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  543. }
  544. float vminvq_f32(float32x4_t v) {
  545. return
  546. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  547. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  548. }
  549. float vmaxvq_f32(float32x4_t v) {
  550. return
  551. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  552. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  553. }
  554. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  555. return vget_low_s8(vcombine_s8(a, b));
  556. }
  557. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  558. return vget_high_s8(vcombine_s8(a, b));
  559. }
  560. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  561. return vget_low_u8(vcombine_u8(a, b));
  562. }
  563. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  564. return vget_high_u8(vcombine_u8(a, b));
  565. }
  566. #endif
  567. #endif
  568. #define QK4_0 32
  569. typedef struct {
  570. float d; // delta
  571. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  572. } block_q4_0;
  573. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  574. #define QK4_1 32
  575. typedef struct {
  576. float d; // delta
  577. float m; // min
  578. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  579. } block_q4_1;
  580. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  581. #define QK4_2 16
  582. typedef struct {
  583. ggml_fp16_t d; // delta
  584. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  585. } block_q4_2;
  586. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  587. #define QK4_3 16
  588. typedef struct {
  589. ggml_fp16_t d; // delta
  590. ggml_fp16_t m; // min
  591. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  592. } block_q4_3;
  593. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  594. #define QK5_0 32
  595. typedef struct {
  596. ggml_fp16_t d; // delta
  597. uint8_t qh[4]; // 5-th bit of quants
  598. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  599. } block_q5_0;
  600. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  601. #define QK5_1 32
  602. typedef struct {
  603. ggml_fp16_t d; // delta
  604. ggml_fp16_t m; // min
  605. uint8_t qh[4]; // 5-th bit of quants
  606. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  607. } block_q5_1;
  608. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  609. #define QK8_0 32
  610. typedef struct {
  611. float d; // delta
  612. int8_t qs[QK8_0]; // quants
  613. } block_q8_0;
  614. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  615. #define QK8_1 32
  616. typedef struct {
  617. float d; // delta
  618. float s0; // d * sum(qs[i]) low
  619. float s1; // d * sum(qs[i]) high
  620. int8_t qs[QK8_1]; // quants
  621. } block_q8_1;
  622. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  623. // reference implementation for deterministic creation of model files
  624. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  625. assert(k % QK4_0 == 0);
  626. const int nb = k / QK4_0;
  627. uint8_t pp[QK4_0/2];
  628. for (int i = 0; i < nb; i++) {
  629. float amax = 0.0f; // absolute max
  630. float max = 0.0f;
  631. for (int l = 0; l < QK4_0; l++) {
  632. const float v = x[i*QK4_0 + l];
  633. if (amax < fabsf(v)) {
  634. amax = fabsf(v);
  635. max = v;
  636. }
  637. }
  638. const float d = max / -8;
  639. const float id = d ? 1.0f/d : 0.0f;
  640. y[i].d = d;
  641. for (int l = 0; l < QK4_0; l += 2) {
  642. const float v0 = x[i*QK4_0 + l + 0]*id;
  643. const float v1 = x[i*QK4_0 + l + 1]*id;
  644. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  645. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  646. assert(vi0 < 16);
  647. assert(vi1 < 16);
  648. pp[l/2] = vi0 | (vi1 << 4);
  649. }
  650. memcpy(y[i].qs, pp, sizeof(pp));
  651. }
  652. }
  653. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  654. assert(k % QK4_0 == 0);
  655. const int nb = k / QK4_0;
  656. block_q4_0 * restrict y = vy;
  657. #if defined(__POWER9_VECTOR__)
  658. const vector float v85 = vec_splats(8.5f);
  659. const vector signed int v15 = vec_splats(15);
  660. for (int i = 0; i < nb; i++) {
  661. float max = 0.0f;
  662. float min = 0.0f;
  663. vector float srcv [8];
  664. vector float maxv[8];
  665. vector float minv[8];
  666. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  667. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  668. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  669. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  670. maxv[0] = vec_max(maxv[0], maxv[2]);
  671. maxv[4] = vec_max(maxv[4], maxv[6]);
  672. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  673. maxv[0] = vec_max(maxv[0], maxv[4]);
  674. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  675. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  676. minv[0] = vec_min(minv[0], minv[2]);
  677. minv[4] = vec_min(minv[4], minv[6]);
  678. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  679. minv[0] = vec_min(minv[0], minv[4]);
  680. max = MAX(
  681. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  682. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  683. min = MIN(
  684. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  685. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  686. const float magnitude = max >= fabsf(min) ? max : min;
  687. const float d = magnitude / -8;
  688. const float id = d ? 1.0/d : 0.0;
  689. y[i].d = d;
  690. const vector float vid = vec_splats(id);
  691. uint8_t * restrict pb = y[i].qs;
  692. for (int l = 0; l < 8; l++) {
  693. const vector float vf = vec_madd(srcv[l], vid, v85);
  694. const vector signed int vi = vec_signed(vf);
  695. const vector signed int vc = vec_min(vi, v15);
  696. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  697. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  698. }
  699. }
  700. #elif __ARM_NEON
  701. for (int i = 0; i < nb; i++) {
  702. float32x4_t srcv [8];
  703. float32x4_t maxv[8];
  704. float32x4_t minv[8];
  705. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  706. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  707. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  708. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  709. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  710. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  711. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  712. const float max = vmaxvq_f32(maxv[0]);
  713. const float min = vminvq_f32(minv[0]);
  714. const float magnitude = max >= fabsf(min) ? max : min;
  715. const float d = magnitude / -8;
  716. const float id = d ? 1.0f/d : 0.0f;
  717. y[i].d = d;
  718. for (int l = 0; l < 8; l++) {
  719. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  720. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  721. const int32x4_t vi = vcvtq_s32_f32(vf);
  722. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  723. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  724. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  725. }
  726. }
  727. #elif defined(__AVX2__)
  728. for (int i = 0; i < nb; i++) {
  729. // Load elements into 4 AVX vectors
  730. __m256 v0 = _mm256_loadu_ps( x );
  731. __m256 v1 = _mm256_loadu_ps( x + 8 );
  732. __m256 v2 = _mm256_loadu_ps( x + 16 );
  733. __m256 v3 = _mm256_loadu_ps( x + 24 );
  734. x += 32;
  735. // Compute max for the block
  736. __m256 max = _mm256_max_ps( v0, v1 );
  737. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  738. max = _mm256_max_ps( max, maxTmp );
  739. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  740. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  741. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  742. const float maxScalar = _mm_cvtss_f32( max4 );
  743. // Compute min for the block
  744. __m256 min = _mm256_min_ps( v0, v1 );
  745. __m256 minTmp = _mm256_min_ps( v2, v3 );
  746. min = _mm256_min_ps( min, minTmp );
  747. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  748. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  749. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  750. const float minScalar = _mm_cvtss_f32( min4 );
  751. // Quantize these floats
  752. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  753. const float d = magnitude / -8.0f;
  754. y[i].d = d;
  755. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  756. const __m256 mul = _mm256_set1_ps( id );
  757. // Apply the multiplier
  758. v0 = _mm256_mul_ps( v0, mul );
  759. v1 = _mm256_mul_ps( v1, mul );
  760. v2 = _mm256_mul_ps( v2, mul );
  761. v3 = _mm256_mul_ps( v3, mul );
  762. // Round to nearest integer
  763. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  764. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  765. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  766. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  767. // Convert floats to integers
  768. __m256i i0 = _mm256_cvtps_epi32( v0 );
  769. __m256i i1 = _mm256_cvtps_epi32( v1 );
  770. __m256i i2 = _mm256_cvtps_epi32( v2 );
  771. __m256i i3 = _mm256_cvtps_epi32( v3 );
  772. // Convert int32 to int16
  773. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  774. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  775. // Convert int16 to int8
  776. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  777. // We got our precious signed bytes, but the order is now wrong
  778. // These AVX2 pack instructions process 16-byte pieces independently
  779. // The following instruction is fixing the order
  780. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  781. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  782. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  783. const __m256i off = _mm256_set1_epi8( 8 );
  784. i0 = _mm256_add_epi8( i0, off );
  785. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  786. i0 = _mm256_min_epi8( i0, maxNibble );
  787. // Compress the vector into 4 bit/value, and store
  788. __m128i res = packNibbles( i0 );
  789. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  790. }
  791. #elif defined(__AVX__)
  792. for (int i = 0; i < nb; i++) {
  793. // Load elements into 4 AVX vectors
  794. __m256 v0 = _mm256_loadu_ps( x );
  795. __m256 v1 = _mm256_loadu_ps( x + 8 );
  796. __m256 v2 = _mm256_loadu_ps( x + 16 );
  797. __m256 v3 = _mm256_loadu_ps( x + 24 );
  798. x += 32;
  799. // Compute max for the block
  800. __m256 max = _mm256_max_ps( v0, v1 );
  801. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  802. max = _mm256_max_ps( max, maxTmp );
  803. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  804. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  805. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  806. const float maxScalar = _mm_cvtss_f32( max4 );
  807. // Compute min for the block
  808. __m256 min = _mm256_min_ps( v0, v1 );
  809. __m256 minTmp = _mm256_min_ps( v2, v3 );
  810. min = _mm256_min_ps( min, minTmp );
  811. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  812. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  813. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  814. const float minScalar = _mm_cvtss_f32( min4 );
  815. // Quantize these floats
  816. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  817. const float d = magnitude / -8.0f;
  818. y[i].d = d;
  819. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  820. const __m256 mul = _mm256_set1_ps( id );
  821. // Apply the multiplier
  822. v0 = _mm256_mul_ps( v0, mul );
  823. v1 = _mm256_mul_ps( v1, mul );
  824. v2 = _mm256_mul_ps( v2, mul );
  825. v3 = _mm256_mul_ps( v3, mul );
  826. // Round to nearest integer
  827. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  828. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  829. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  830. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  831. // Convert floats to integers
  832. __m256i i0 = _mm256_cvtps_epi32( v0 );
  833. __m256i i1 = _mm256_cvtps_epi32( v1 );
  834. __m256i i2 = _mm256_cvtps_epi32( v2 );
  835. __m256i i3 = _mm256_cvtps_epi32( v3 );
  836. // Since we don't have in AVX some necessary functions,
  837. // we split the registers in half and call AVX2 analogs from SSE
  838. __m128i ni0 = _mm256_castsi256_si128( i0 );
  839. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  840. __m128i ni2 = _mm256_castsi256_si128( i1 );
  841. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  842. __m128i ni4 = _mm256_castsi256_si128( i2 );
  843. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  844. __m128i ni6 = _mm256_castsi256_si128( i3 );
  845. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  846. // Convert int32 to int16
  847. ni0 = _mm_packs_epi32( ni0, ni1 );
  848. ni2 = _mm_packs_epi32( ni2, ni3 );
  849. ni4 = _mm_packs_epi32( ni4, ni5 );
  850. ni6 = _mm_packs_epi32( ni6, ni7 );
  851. // Convert int16 to int8
  852. ni0 = _mm_packs_epi16( ni0, ni2 );
  853. ni4 = _mm_packs_epi16( ni4, ni6 );
  854. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  855. const __m128i off = _mm_set1_epi8( 8 );
  856. ni0 = _mm_add_epi8( ni0, off );
  857. ni4 = _mm_add_epi8( ni4, off );
  858. const __m128i maxNibble = _mm_set1_epi8( 15 );
  859. ni0 = _mm_min_epi8( ni0, maxNibble );
  860. ni4 = _mm_min_epi8( ni4, maxNibble );
  861. // Compress the vector into 4 bit/value, and store
  862. __m128i res = packNibbles( ni0, ni4 );
  863. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  864. }
  865. #elif defined(__wasm_simd128__)
  866. for (int i = 0; i < nb; i++) {
  867. float max = 0.0f;
  868. float min = 0.0f;
  869. v128_t srcv [8];
  870. v128_t maxv[8];
  871. v128_t minv[8];
  872. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  873. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  874. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  875. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  876. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  877. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  878. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  879. max = MAX(
  880. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  881. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  882. min = MIN(
  883. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  884. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  885. const float magnitude = max >= fabsf(min) ? max : min;
  886. const float d = magnitude / -8;
  887. const float id = d ? 1.0/d : 0.0;
  888. y[i].d = d;
  889. for (int l = 0; l < 8; l++) {
  890. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  891. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  892. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  893. const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
  894. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  895. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  896. }
  897. }
  898. #else
  899. // scalar
  900. quantize_row_q4_0_reference(x, y, k);
  901. #endif
  902. }
  903. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  904. assert(k % QK4_1 == 0);
  905. const int nb = k / QK4_1;
  906. block_q4_1 * restrict y = vy;
  907. uint8_t pp[QK4_1/2];
  908. for (int i = 0; i < nb; i++) {
  909. float min = FLT_MAX;
  910. float max = -FLT_MAX;
  911. for (int l = 0; l < QK4_1; l++) {
  912. const float v = x[i*QK4_1 + l];
  913. if (v < min) min = v;
  914. if (v > max) max = v;
  915. }
  916. const float d = (max - min) / ((1 << 4) - 1);
  917. const float id = d ? 1.0f/d : 0.0f;
  918. y[i].d = d;
  919. y[i].m = min;
  920. for (int l = 0; l < QK4_1; l += 2) {
  921. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  922. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  923. const uint8_t vi0 = roundf(v0);
  924. const uint8_t vi1 = roundf(v1);
  925. assert(vi0 < 16);
  926. assert(vi1 < 16);
  927. pp[l/2] = vi0 | (vi1 << 4);
  928. }
  929. memcpy(y[i].qs, pp, sizeof(pp));
  930. }
  931. }
  932. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  933. assert(k % QK4_1 == 0);
  934. const int nb = k / QK4_1;
  935. block_q4_1 * restrict y = vy;
  936. #if defined(__AVX2__)
  937. for (int i = 0; i < nb; i++) {
  938. // Load elements into 4 AVX vectors
  939. __m256 v0 = _mm256_loadu_ps( x );
  940. __m256 v1 = _mm256_loadu_ps( x + 8 );
  941. __m256 v2 = _mm256_loadu_ps( x + 16 );
  942. __m256 v3 = _mm256_loadu_ps( x + 24 );
  943. x += 32;
  944. // Compute max for the block
  945. __m256 vmax;
  946. vmax = _mm256_max_ps( v0, v1 );
  947. vmax = _mm256_max_ps( vmax, v2 );
  948. vmax = _mm256_max_ps( vmax, v3 );
  949. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  950. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  951. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  952. const float maxScalar = _mm_cvtss_f32( max4 );
  953. // Compute min for the block
  954. __m256 vmin;
  955. vmin = _mm256_min_ps( v0, v1 );
  956. vmin = _mm256_min_ps( vmin, v2 );
  957. vmin = _mm256_min_ps( vmin, v3 );
  958. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  959. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  960. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  961. const float minScalar = _mm_cvtss_f32( min4 );
  962. // Quantize these floats
  963. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  964. const float id = d ? 1.0f/d : 0.0f;
  965. y[i].m = minScalar;
  966. y[i].d = d;
  967. // x = (x-min)*id
  968. const __m256 mul = _mm256_set1_ps( id );
  969. const __m256 off = _mm256_set1_ps( minScalar );
  970. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  971. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  972. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  973. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  974. // Round to nearest integer
  975. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  976. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  977. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  978. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  979. // Convert floats to integers
  980. __m256i i0 = _mm256_cvtps_epi32( v0 );
  981. __m256i i1 = _mm256_cvtps_epi32( v1 );
  982. __m256i i2 = _mm256_cvtps_epi32( v2 );
  983. __m256i i3 = _mm256_cvtps_epi32( v3 );
  984. // Convert int32 to int16
  985. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  986. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  987. // Convert int16 to int8
  988. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  989. // We got our precious signed bytes, but the order is now wrong
  990. // These AVX2 pack instructions process 16-byte pieces independently
  991. // The following instruction is fixing the order
  992. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  993. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  994. // Compress the vector into 4 bit/value, and store
  995. __m128i res = packNibbles( i0 );
  996. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  997. }
  998. #elif __ARM_NEON
  999. for (int i = 0; i < nb; i++) {
  1000. float32x4_t srcv[8];
  1001. float32x4_t minv[8];
  1002. float32x4_t maxv[8];
  1003. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1004. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1005. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1006. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1007. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1008. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1009. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1010. const float min = vminvq_f32(minv[0]);
  1011. const float max = vmaxvq_f32(maxv[0]);
  1012. const float d = (max - min) / ((1 << 4) - 1);
  1013. const float id = d ? 1.0f/d : 0.0f;
  1014. y[i].d = d;
  1015. y[i].m = min;
  1016. const float32x4_t minv0 = vdupq_n_f32(min);
  1017. for (int l = 0; l < 8; l++) {
  1018. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1019. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1020. const int32x4_t vi = vcvtq_s32_f32(vf);
  1021. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1022. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1023. }
  1024. }
  1025. #else
  1026. // scalar
  1027. quantize_row_q4_1_reference(x, vy, k);
  1028. #endif
  1029. }
  1030. // reference implementation for deterministic creation of model files
  1031. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1032. assert(k % QK4_2 == 0);
  1033. const int nb = k / QK4_2;
  1034. for (int i = 0; i < nb; i++) {
  1035. float amax = 0.0f; // absolute max
  1036. float max = 0.0f;
  1037. for (int l = 0; l < QK4_2; l++) {
  1038. const float v = x[i*QK4_2 + l];
  1039. if (amax < fabsf(v)) {
  1040. amax = fabsf(v);
  1041. max = v;
  1042. }
  1043. }
  1044. const float d = max / -8;
  1045. const float id = d ? 1.0f/d : 0.0f;
  1046. y[i].d = GGML_FP32_TO_FP16(d);
  1047. for (int l = 0; l < QK4_2; l += 2) {
  1048. const float v0 = x[i*QK4_2 + l + 0]*id;
  1049. const float v1 = x[i*QK4_2 + l + 1]*id;
  1050. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1051. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1052. assert(vi0 < 16);
  1053. assert(vi1 < 16);
  1054. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1055. }
  1056. }
  1057. }
  1058. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1059. assert(k % QK4_2 == 0);
  1060. block_q4_2 * restrict y = vy;
  1061. quantize_row_q4_2_reference(x, y, k);
  1062. }
  1063. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1064. assert(k % QK4_3 == 0);
  1065. const int nb = k / QK4_3;
  1066. for (int i = 0; i < nb; i++) {
  1067. float min = FLT_MAX;
  1068. float max = -FLT_MAX;
  1069. for (int l = 0; l < QK4_3; l++) {
  1070. const float v = x[i*QK4_3 + l];
  1071. if (v < min) min = v;
  1072. if (v > max) max = v;
  1073. }
  1074. const float d = (max - min) / ((1 << 4) - 1);
  1075. const float id = d ? 1.0f/d : 0.0f;
  1076. y[i].d = GGML_FP32_TO_FP16(d);
  1077. y[i].m = GGML_FP32_TO_FP16(min);
  1078. for (int l = 0; l < QK4_3; l += 2) {
  1079. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1080. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1081. const uint8_t vi0 = (int) (v0 + 0.5f);
  1082. const uint8_t vi1 = (int) (v1 + 0.5f);
  1083. assert(vi0 < 16);
  1084. assert(vi1 < 16);
  1085. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1086. }
  1087. }
  1088. }
  1089. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1090. assert(k % QK4_3 == 0);
  1091. block_q4_3 * restrict y = vy;
  1092. quantize_row_q4_3_reference(x, y, k);
  1093. }
  1094. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1095. assert(k % QK5_0 == 0);
  1096. const int nb = k / QK5_0;
  1097. for (int i = 0; i < nb; i++) {
  1098. float amax = 0.0f; // absolute max
  1099. float max = 0.0f;
  1100. for (int l = 0; l < QK5_0; l++) {
  1101. const float v = x[i*QK5_0 + l];
  1102. if (amax < fabsf(v)) {
  1103. amax = fabsf(v);
  1104. max = v;
  1105. }
  1106. }
  1107. const float d = max / -16;
  1108. const float id = d ? 1.0f/d : 0.0f;
  1109. y[i].d = GGML_FP32_TO_FP16(d);
  1110. uint32_t qh = 0;
  1111. for (int l = 0; l < QK5_0; l += 2) {
  1112. const float v0 = x[i*QK5_0 + l + 0]*id;
  1113. const float v1 = x[i*QK5_0 + l + 1]*id;
  1114. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1115. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1116. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1117. // get the 5-th bit and store it in qh at the right position
  1118. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1119. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1120. }
  1121. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1122. }
  1123. }
  1124. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1125. assert(k % QK5_0 == 0);
  1126. block_q5_0 * restrict y = vy;
  1127. quantize_row_q5_0_reference(x, y, k);
  1128. }
  1129. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1130. assert(k % QK5_1 == 0);
  1131. const int nb = k / QK5_1;
  1132. for (int i = 0; i < nb; i++) {
  1133. float min = FLT_MAX;
  1134. float max = -FLT_MAX;
  1135. for (int l = 0; l < QK5_1; l++) {
  1136. const float v = x[i*QK5_1 + l];
  1137. if (v < min) min = v;
  1138. if (v > max) max = v;
  1139. }
  1140. const float d = (max - min) / ((1 << 5) - 1);
  1141. const float id = d ? 1.0f/d : 0.0f;
  1142. y[i].d = GGML_FP32_TO_FP16(d);
  1143. y[i].m = GGML_FP32_TO_FP16(min);
  1144. uint32_t qh = 0;
  1145. for (int l = 0; l < QK5_1; l += 2) {
  1146. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1147. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1148. const uint32_t vi0 = (int) (v0 + 0.5f);
  1149. const uint32_t vi1 = (int) (v1 + 0.5f);
  1150. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1151. // get the 5-th bit and store it in qh at the right position
  1152. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1153. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1154. }
  1155. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1156. }
  1157. }
  1158. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1159. assert(k % QK5_1 == 0);
  1160. block_q5_1 * restrict y = vy;
  1161. quantize_row_q5_1_reference(x, y, k);
  1162. }
  1163. // reference implementation for deterministic creation of model files
  1164. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1165. assert(k % QK8_0 == 0);
  1166. const int nb = k / QK8_0;
  1167. for (int i = 0; i < nb; i++) {
  1168. float amax = 0.0f; // absolute max
  1169. for (int l = 0; l < QK8_0; l++) {
  1170. const float v = x[i*QK8_0 + l];
  1171. amax = MAX(amax, fabsf(v));
  1172. }
  1173. const float d = amax / ((1 << 7) - 1);
  1174. const float id = d ? 1.0f/d : 0.0f;
  1175. y[i].d = d;
  1176. for (int l = 0; l < QK8_0; ++l) {
  1177. const float v0 = x[i*QK8_0 + l]*id;
  1178. y[i].qs[l] = roundf(v0);
  1179. }
  1180. }
  1181. }
  1182. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1183. assert(k % QK8_0 == 0);
  1184. block_q8_0 * restrict y = vy;
  1185. quantize_row_q8_0_reference(x, y, k);
  1186. }
  1187. // reference implementation for deterministic creation of model files
  1188. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1189. assert(k % QK8_1 == 0);
  1190. const int nb = k / QK8_1;
  1191. for (int i = 0; i < nb; i++) {
  1192. float amax = 0.0f; // absolute max
  1193. for (int l = 0; l < QK8_1; l++) {
  1194. const float v = x[i*QK8_1 + l];
  1195. amax = MAX(amax, fabsf(v));
  1196. }
  1197. const float d = amax / ((1 << 7) - 1);
  1198. const float id = d ? 1.0f/d : 0.0f;
  1199. y[i].d = d;
  1200. int sum0 = 0;
  1201. int sum1 = 0;
  1202. for (int l = 0; l < QK8_1/2; ++l) {
  1203. const float v0 = x[i*QK8_1 + l]*id;
  1204. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1205. y[i].qs[ l] = roundf(v0);
  1206. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1207. sum0 += y[i].qs[ l];
  1208. sum1 += y[i].qs[QK8_1/2 + l];
  1209. }
  1210. y[i].s0 = d * sum0;
  1211. y[i].s1 = d * sum1;
  1212. }
  1213. }
  1214. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1215. assert(k % QK8_1 == 0);
  1216. const int nb = k / QK8_1;
  1217. block_q8_1 * restrict y = vy;
  1218. #if defined(__ARM_NEON)
  1219. for (int i = 0; i < nb; i++) {
  1220. float32x4_t srcv [8];
  1221. float32x4_t asrcv[8];
  1222. float32x4_t amaxv[8];
  1223. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1224. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1225. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1226. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1227. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1228. const float amax = vmaxvq_f32(amaxv[0]);
  1229. const float d = amax / ((1 << 7) - 1);
  1230. const float id = d ? 1.0f/d : 0.0f;
  1231. y[i].d = d;
  1232. int32x4_t accv0 = vdupq_n_s32(0);
  1233. int32x4_t accv1 = vdupq_n_s32(0);
  1234. // low half
  1235. for (int l = 0; l < 4; l++) {
  1236. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1237. const int32x4_t vi = vcvtnq_s32_f32(v);
  1238. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1239. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1240. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1241. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1242. accv0 = vaddq_s32(accv0, vi);
  1243. }
  1244. // high half
  1245. for (int l = 4; l < 8; l++) {
  1246. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1247. const int32x4_t vi = vcvtnq_s32_f32(v);
  1248. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1249. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1250. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1251. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1252. accv1 = vaddq_s32(accv1, vi);
  1253. }
  1254. const int32_t sum0 = vaddvq_s32(accv0);
  1255. const int32_t sum1 = vaddvq_s32(accv1);
  1256. y[i].s0 = d * sum0;
  1257. y[i].s1 = d * sum1;
  1258. }
  1259. #elif defined(__AVX2__) || defined(__AVX__)
  1260. for (int i = 0; i < nb; i++) {
  1261. // Load elements into 4 AVX vectors
  1262. __m256 v0 = _mm256_loadu_ps( x );
  1263. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1264. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1265. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1266. x += 32;
  1267. // Compute max(abs(e)) for the block
  1268. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1269. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1270. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1271. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1272. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1273. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1274. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1275. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1276. const float maxScalar = _mm_cvtss_f32( max4 );
  1277. // Quantize these floats
  1278. const float d = maxScalar / 127.f;
  1279. y[i].d = d;
  1280. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1281. const __m256 mul = _mm256_set1_ps( id );
  1282. // Apply the multiplier
  1283. v0 = _mm256_mul_ps( v0, mul );
  1284. v1 = _mm256_mul_ps( v1, mul );
  1285. v2 = _mm256_mul_ps( v2, mul );
  1286. v3 = _mm256_mul_ps( v3, mul );
  1287. // Round to nearest integer
  1288. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1289. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1290. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1291. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1292. // Convert floats to integers
  1293. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1294. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1295. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1296. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1297. #if defined(__AVX2__)
  1298. // Compute the sum of the quants and set y[i].s
  1299. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1300. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1301. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1302. // Convert int32 to int16
  1303. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1304. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1305. // Convert int16 to int8
  1306. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1307. // We got our precious signed bytes, but the order is now wrong
  1308. // These AVX2 pack instructions process 16-byte pieces independently
  1309. // The following instruction is fixing the order
  1310. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1311. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1312. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1313. #else
  1314. // Since we don't have in AVX some necessary functions,
  1315. // we split the registers in half and call AVX2 analogs from SSE
  1316. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1317. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1318. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1319. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1320. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1321. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1322. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1323. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1324. // Compute the sum of the quants and set y[i].s
  1325. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1326. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1327. y[i].s0 = d * hsum_i32_4(s0);
  1328. y[i].s1 = d * hsum_i32_4(s1);
  1329. // Convert int32 to int16
  1330. ni0 = _mm_packs_epi32( ni0, ni1 );
  1331. ni2 = _mm_packs_epi32( ni2, ni3 );
  1332. ni4 = _mm_packs_epi32( ni4, ni5 );
  1333. ni6 = _mm_packs_epi32( ni6, ni7 );
  1334. // Convert int16 to int8
  1335. ni0 = _mm_packs_epi16( ni0, ni2 );
  1336. ni4 = _mm_packs_epi16( ni4, ni6 );
  1337. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1338. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1339. #endif
  1340. }
  1341. #else
  1342. // scalar
  1343. quantize_row_q8_1_reference(x, y, k);
  1344. #endif
  1345. }
  1346. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1347. assert(k % QK4_0 == 0);
  1348. const int nb = k / QK4_0;
  1349. const block_q4_0 * restrict x = vx;
  1350. #if defined(__AVX2__)
  1351. for (int i = 0; i < nb; i++) {
  1352. // scale factor
  1353. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1354. const uint8_t * restrict pp = x[i].qs;
  1355. for (int l = 0; l < QK4_0; l += 32) {
  1356. // Load 32x4-bit integers into 32x8-bit integers
  1357. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1358. // Subtract 8 from the integers
  1359. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1360. // Convert to 16-bit int
  1361. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1362. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1363. // Convert to 32-bit int -> float 32
  1364. const __m256 vf[4] = {
  1365. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1366. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1367. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1368. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1369. };
  1370. // Scale and store
  1371. for (int j = 0; j < 4; j++) {
  1372. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1373. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1374. }
  1375. }
  1376. }
  1377. #elif defined(__ARM_NEON)
  1378. for (int i = 0; i < nb; i++) {
  1379. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1380. const uint8_t * restrict pp = x[i].qs;
  1381. for (int l = 0; l < QK4_0; l += 16) {
  1382. // Load 16x4-bit integers into 8x8-bit integers
  1383. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1384. // Expand 4-bit qs to 8-bit bytes
  1385. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1386. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1387. // Convert to signed 8-bit integers
  1388. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1389. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1390. // Subtract 8 from each byte
  1391. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1392. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1393. // Interleave and combine
  1394. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1395. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1396. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1397. // convert to 2x int16x8_t
  1398. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1399. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1400. // convert to 4x float32x4_t
  1401. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1402. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1403. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1404. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1405. // Multiply by d
  1406. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1407. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1408. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1409. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1410. // Store
  1411. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1412. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1413. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1414. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1415. }
  1416. }
  1417. #else
  1418. // scalar
  1419. for (int i = 0; i < nb; i++) {
  1420. const float d = x[i].d;
  1421. const uint8_t * restrict pp = x[i].qs;
  1422. for (int l = 0; l < QK4_0; l += 2) {
  1423. const uint8_t vi = pp[l/2];
  1424. const int8_t vi0 = vi & 0x0F;
  1425. const int8_t vi1 = vi >> 4;
  1426. const float v0 = (vi0 - 8)*d;
  1427. const float v1 = (vi1 - 8)*d;
  1428. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1429. y[i*QK4_0 + l + 0] = v0;
  1430. y[i*QK4_0 + l + 1] = v1;
  1431. assert(!isnan(y[i*QK4_0 + l + 0]));
  1432. assert(!isnan(y[i*QK4_0 + l + 1]));
  1433. }
  1434. }
  1435. #endif
  1436. }
  1437. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1438. assert(k % QK4_1 == 0);
  1439. const int nb = k / QK4_1;
  1440. const block_q4_1 * restrict x = vx;
  1441. #if defined(__AVX2__)
  1442. for (int i = 0; i < nb; i++) {
  1443. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1444. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1445. const uint8_t * restrict pp = x[i].qs;
  1446. for (int l = 0; l < QK4_1; l += 32) {
  1447. // Load 32x4-bit integers into 32x8-bit integers
  1448. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1449. // Convert to 16-bit int
  1450. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1451. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1452. // Convert to 32-bit int -> float 32
  1453. const __m256 vf[4] = {
  1454. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1455. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1456. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1457. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1458. };
  1459. // Scale, add m and store
  1460. for (int j = 0; j < 4; j++) {
  1461. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1462. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1463. }
  1464. }
  1465. }
  1466. #elif defined(__ARM_NEON)
  1467. for (int i = 0; i < nb; i++) {
  1468. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1469. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1470. const uint8_t * restrict pp = x[i].qs;
  1471. for (int l = 0; l < QK4_1; l += 16) {
  1472. // Load 16x4-bit integers into 8x8-bit integers
  1473. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1474. // Expand 4-bit qs to 8-bit bytes
  1475. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1476. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1477. // Interleave and combine
  1478. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1479. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1480. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1481. // convert to 2x uint16x8_t
  1482. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1483. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1484. // convert to 4x float32x4_t
  1485. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1486. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1487. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1488. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1489. // multiply by d and add m
  1490. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1491. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1492. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1493. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1494. // Store
  1495. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1496. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1497. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1498. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1499. }
  1500. }
  1501. #else
  1502. for (int i = 0; i < nb; i++) {
  1503. const float d = x[i].d;
  1504. const float m = x[i].m;
  1505. const uint8_t * restrict pp = x[i].qs;
  1506. for (int l = 0; l < QK4_1; l += 2) {
  1507. const uint8_t vi = pp[l/2];
  1508. const int8_t vi0 = vi & 0x0F;
  1509. const int8_t vi1 = vi >> 4;
  1510. const float v0 = vi0*d + m;
  1511. const float v1 = vi1*d + m;
  1512. y[i*QK4_1 + l + 0] = v0;
  1513. y[i*QK4_1 + l + 1] = v1;
  1514. assert(!isnan(y[i*QK4_1 + l + 0]));
  1515. assert(!isnan(y[i*QK4_1 + l + 1]));
  1516. }
  1517. }
  1518. #endif
  1519. }
  1520. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1521. assert(k % QK4_2 == 0);
  1522. const int nb = k / QK4_2;
  1523. const block_q4_2 * restrict x = vx;
  1524. for (int i = 0; i < nb; i++) {
  1525. const float d = GGML_FP16_TO_FP32(x[i].d);
  1526. const uint8_t * restrict pp = x[i].qs;
  1527. for (int l = 0; l < QK4_2; l += 2) {
  1528. const uint8_t vi = pp[l/2];
  1529. const int8_t vi0 = vi & 0x0F;
  1530. const int8_t vi1 = vi >> 4;
  1531. const float v0 = (vi0 - 8)*d;
  1532. const float v1 = (vi1 - 8)*d;
  1533. y[i*QK4_2 + l + 0] = v0;
  1534. y[i*QK4_2 + l + 1] = v1;
  1535. assert(!isnan(y[i*QK4_2 + l + 0]));
  1536. assert(!isnan(y[i*QK4_2 + l + 1]));
  1537. }
  1538. }
  1539. }
  1540. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1541. assert(k % QK4_3 == 0);
  1542. const int nb = k / QK4_3;
  1543. const block_q4_3 * restrict x = vx;
  1544. for (int i = 0; i < nb; i++) {
  1545. const float d = GGML_FP16_TO_FP32(x[i].d);
  1546. const float m = GGML_FP16_TO_FP32(x[i].m);
  1547. const uint8_t * restrict pp = x[i].qs;
  1548. for (int l = 0; l < QK4_3; l += 2) {
  1549. const uint8_t vi = pp[l/2];
  1550. const int8_t vi0 = vi & 0x0F;
  1551. const int8_t vi1 = vi >> 4;
  1552. const float v0 = vi0*d + m;
  1553. const float v1 = vi1*d + m;
  1554. y[i*QK4_3 + l + 0] = v0;
  1555. y[i*QK4_3 + l + 1] = v1;
  1556. assert(!isnan(y[i*QK4_3 + l + 0]));
  1557. assert(!isnan(y[i*QK4_3 + l + 1]));
  1558. }
  1559. }
  1560. }
  1561. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1562. assert(k % QK5_0 == 0);
  1563. const int nb = k / QK5_0;
  1564. const block_q5_0 * restrict x = vx;
  1565. for (int i = 0; i < nb; i++) {
  1566. const float d = GGML_FP16_TO_FP32(x[i].d);
  1567. const uint8_t * restrict pp = x[i].qs;
  1568. uint32_t qh;
  1569. memcpy(&qh, x[i].qh, sizeof(qh));
  1570. for (int l = 0; l < QK5_0; l += 2) {
  1571. const uint8_t vi = pp[l/2];
  1572. // extract the 5-th bit from qh
  1573. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1574. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1575. const int8_t vi0 = (vi & 0x0F) | vh0;
  1576. const int8_t vi1 = (vi >> 4) | vh1;
  1577. const float v0 = (vi0 - 16)*d;
  1578. const float v1 = (vi1 - 16)*d;
  1579. y[i*QK5_0 + l + 0] = v0;
  1580. y[i*QK5_0 + l + 1] = v1;
  1581. assert(!isnan(y[i*QK5_0 + l + 0]));
  1582. assert(!isnan(y[i*QK5_0 + l + 1]));
  1583. }
  1584. }
  1585. }
  1586. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1587. assert(k % QK5_1 == 0);
  1588. const int nb = k / QK5_1;
  1589. const block_q5_1 * restrict x = vx;
  1590. for (int i = 0; i < nb; i++) {
  1591. const float d = GGML_FP16_TO_FP32(x[i].d);
  1592. const float m = GGML_FP16_TO_FP32(x[i].m);
  1593. const uint8_t * restrict pp = x[i].qs;
  1594. uint32_t qh;
  1595. memcpy(&qh, x[i].qh, sizeof(qh));
  1596. for (int l = 0; l < QK5_1; l += 2) {
  1597. const uint8_t vi = pp[l/2];
  1598. // extract the 5-th bit from qh
  1599. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1600. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1601. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1602. const uint8_t vi1 = (vi >> 4) | vh1;
  1603. const float v0 = vi0*d + m;
  1604. const float v1 = vi1*d + m;
  1605. y[i*QK5_1 + l + 0] = v0;
  1606. y[i*QK5_1 + l + 1] = v1;
  1607. assert(!isnan(y[i*QK5_1 + l + 0]));
  1608. assert(!isnan(y[i*QK5_1 + l + 1]));
  1609. }
  1610. }
  1611. }
  1612. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1613. assert(k % QK8_0 == 0);
  1614. const int nb = k / QK8_0;
  1615. const block_q8_0 * restrict x = vx;
  1616. for (int i = 0; i < nb; i++) {
  1617. const float d = x[i].d;
  1618. const int8_t * restrict pp = x[i].qs;
  1619. for (int l = 0; l < QK8_0; ++l) {
  1620. y[i*QK8_0 + l] = pp[l]*d;
  1621. }
  1622. }
  1623. }
  1624. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1625. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1626. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1627. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1628. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1629. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1630. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1631. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1632. [GGML_TYPE_Q4_0] = {
  1633. .dequantize_row_q = dequantize_row_q4_0,
  1634. .quantize_row_q = quantize_row_q4_0,
  1635. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1636. .quantize_row_q_dot = quantize_row_q8_0,
  1637. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1638. .vec_dot_type = GGML_TYPE_Q8_0,
  1639. },
  1640. [GGML_TYPE_Q4_1] = {
  1641. .dequantize_row_q = dequantize_row_q4_1,
  1642. .quantize_row_q = quantize_row_q4_1,
  1643. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1644. .quantize_row_q_dot = quantize_row_q8_1,
  1645. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1646. .vec_dot_type = GGML_TYPE_Q8_1,
  1647. },
  1648. [GGML_TYPE_Q4_2] = {
  1649. .dequantize_row_q = dequantize_row_q4_2,
  1650. .quantize_row_q = quantize_row_q4_2,
  1651. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1652. .quantize_row_q_dot = quantize_row_q8_0,
  1653. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1654. .vec_dot_type = GGML_TYPE_Q8_0,
  1655. },
  1656. [GGML_TYPE_Q4_3] = {
  1657. .dequantize_row_q = dequantize_row_q4_3,
  1658. .quantize_row_q = quantize_row_q4_3,
  1659. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference,
  1660. .quantize_row_q_dot = quantize_row_q8_1,
  1661. .vec_dot_q = ggml_vec_dot_q4_3_q8_1,
  1662. .vec_dot_type = GGML_TYPE_Q8_1,
  1663. },
  1664. [GGML_TYPE_Q5_0] = {
  1665. .dequantize_row_q = dequantize_row_q5_0,
  1666. .quantize_row_q = quantize_row_q5_0,
  1667. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1668. .quantize_row_q_dot = quantize_row_q8_0,
  1669. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1670. .vec_dot_type = GGML_TYPE_Q8_0,
  1671. },
  1672. [GGML_TYPE_Q5_1] = {
  1673. .dequantize_row_q = dequantize_row_q5_1,
  1674. .quantize_row_q = quantize_row_q5_1,
  1675. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1676. .quantize_row_q_dot = quantize_row_q8_1,
  1677. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1678. .vec_dot_type = GGML_TYPE_Q8_1,
  1679. },
  1680. [GGML_TYPE_Q8_0] = {
  1681. .dequantize_row_q = dequantize_row_q8_0,
  1682. .quantize_row_q = quantize_row_q8_0,
  1683. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1684. .quantize_row_q_dot = quantize_row_q8_0,
  1685. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1686. .vec_dot_type = GGML_TYPE_Q8_0,
  1687. },
  1688. [GGML_TYPE_Q8_1] = {
  1689. .dequantize_row_q = NULL, // TODO
  1690. .quantize_row_q = quantize_row_q8_1,
  1691. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1692. .quantize_row_q_dot = quantize_row_q8_1,
  1693. .vec_dot_q = NULL, // TODO
  1694. .vec_dot_type = GGML_TYPE_Q8_1,
  1695. },
  1696. };
  1697. // For internal test use
  1698. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1699. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1700. return quantize_fns[i];
  1701. }
  1702. //
  1703. // simd mappings
  1704. //
  1705. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1706. // we then implement the fundamental computation operations below using only these macros
  1707. // adding support for new architectures requires to define the corresponding SIMD macros
  1708. //
  1709. // GGML_F32_STEP / GGML_F16_STEP
  1710. // number of elements to process in a single step
  1711. //
  1712. // GGML_F32_EPR / GGML_F16_EPR
  1713. // number of elements to fit in a single register
  1714. //
  1715. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1716. #define GGML_SIMD
  1717. // F32 NEON
  1718. #define GGML_F32_STEP 16
  1719. #define GGML_F32_EPR 4
  1720. #define GGML_F32x4 float32x4_t
  1721. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1722. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1723. #define GGML_F32x4_LOAD vld1q_f32
  1724. #define GGML_F32x4_STORE vst1q_f32
  1725. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1726. #define GGML_F32x4_ADD vaddq_f32
  1727. #define GGML_F32x4_MUL vmulq_f32
  1728. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1729. #define GGML_F32x4_REDUCE(res, x) \
  1730. { \
  1731. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1732. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1733. } \
  1734. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1735. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1736. } \
  1737. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1738. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1739. } \
  1740. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1741. }
  1742. #define GGML_F32_VEC GGML_F32x4
  1743. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1744. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1745. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1746. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1747. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1748. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1749. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1750. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1751. // F16 NEON
  1752. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1753. #define GGML_F16_STEP 32
  1754. #define GGML_F16_EPR 8
  1755. #define GGML_F16x8 float16x8_t
  1756. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1757. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1758. #define GGML_F16x8_LOAD vld1q_f16
  1759. #define GGML_F16x8_STORE vst1q_f16
  1760. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1761. #define GGML_F16x8_ADD vaddq_f16
  1762. #define GGML_F16x8_MUL vmulq_f16
  1763. #define GGML_F16x8_REDUCE(res, x) \
  1764. { \
  1765. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1766. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1767. } \
  1768. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1769. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1770. } \
  1771. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1772. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1773. } \
  1774. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1775. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1776. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1777. }
  1778. #define GGML_F16_VEC GGML_F16x8
  1779. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1780. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1781. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1782. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1783. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1784. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1785. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1786. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1787. #else
  1788. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1789. // and take advantage of the vcvt_ functions to convert to/from FP16
  1790. #define GGML_F16_STEP 16
  1791. #define GGML_F16_EPR 4
  1792. #define GGML_F32Cx4 float32x4_t
  1793. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1794. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1795. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1796. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1797. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1798. #define GGML_F32Cx4_ADD vaddq_f32
  1799. #define GGML_F32Cx4_MUL vmulq_f32
  1800. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1801. #define GGML_F16_VEC GGML_F32Cx4
  1802. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1803. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1804. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1805. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1806. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1807. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1808. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1809. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1810. #endif
  1811. #elif defined(__AVX__)
  1812. #define GGML_SIMD
  1813. // F32 AVX
  1814. #define GGML_F32_STEP 32
  1815. #define GGML_F32_EPR 8
  1816. #define GGML_F32x8 __m256
  1817. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1818. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1819. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1820. #define GGML_F32x8_STORE _mm256_storeu_ps
  1821. #if defined(__FMA__)
  1822. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1823. #else
  1824. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1825. #endif
  1826. #define GGML_F32x8_ADD _mm256_add_ps
  1827. #define GGML_F32x8_MUL _mm256_mul_ps
  1828. #define GGML_F32x8_REDUCE(res, x) \
  1829. { \
  1830. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1831. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1832. } \
  1833. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1834. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1835. } \
  1836. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1837. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1838. } \
  1839. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1840. _mm256_extractf128_ps(x[0], 1)); \
  1841. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1842. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1843. }
  1844. // TODO: is this optimal ?
  1845. #define GGML_F32_VEC GGML_F32x8
  1846. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1847. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1848. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1849. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1850. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1851. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1852. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1853. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1854. // F16 AVX
  1855. #define GGML_F16_STEP 32
  1856. #define GGML_F16_EPR 8
  1857. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1858. #define GGML_F32Cx8 __m256
  1859. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1860. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1861. #if defined(__F16C__)
  1862. // the _mm256_cvt intrinsics require F16C
  1863. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1864. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1865. #else
  1866. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1867. float tmp[8];
  1868. for (int i = 0; i < 8; i++)
  1869. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1870. return _mm256_loadu_ps(tmp);
  1871. }
  1872. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1873. float arr[8];
  1874. _mm256_storeu_ps(arr, y);
  1875. for (int i = 0; i < 8; i++)
  1876. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1877. }
  1878. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1879. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1880. #endif
  1881. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1882. #define GGML_F32Cx8_ADD _mm256_add_ps
  1883. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1884. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1885. #define GGML_F16_VEC GGML_F32Cx8
  1886. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1887. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1888. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1889. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1890. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1891. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1892. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1893. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1894. #elif defined(__POWER9_VECTOR__)
  1895. #define GGML_SIMD
  1896. // F32 POWER9
  1897. #define GGML_F32_STEP 32
  1898. #define GGML_F32_EPR 4
  1899. #define GGML_F32x4 vector float
  1900. #define GGML_F32x4_ZERO 0.0f
  1901. #define GGML_F32x4_SET1 vec_splats
  1902. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1903. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1904. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1905. #define GGML_F32x4_ADD vec_add
  1906. #define GGML_F32x4_MUL vec_mul
  1907. #define GGML_F32x4_REDUCE(res, x) \
  1908. { \
  1909. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1910. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1911. } \
  1912. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1913. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1914. } \
  1915. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1916. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1917. } \
  1918. res = vec_extract(x[0], 0) + \
  1919. vec_extract(x[0], 1) + \
  1920. vec_extract(x[0], 2) + \
  1921. vec_extract(x[0], 3); \
  1922. }
  1923. #define GGML_F32_VEC GGML_F32x4
  1924. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1925. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1926. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1927. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1928. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1929. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1930. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1931. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1932. // F16 POWER9
  1933. #define GGML_F16_STEP GGML_F32_STEP
  1934. #define GGML_F16_EPR GGML_F32_EPR
  1935. #define GGML_F16_VEC GGML_F32x4
  1936. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1937. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1938. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1939. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1940. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1941. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1942. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1943. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1944. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1945. #define GGML_F16_VEC_STORE(p, r, i) \
  1946. if (i & 0x1) \
  1947. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1948. r[i - GGML_ENDIAN_BYTE(0)]), \
  1949. 0, p - GGML_F16_EPR)
  1950. #elif defined(__wasm_simd128__)
  1951. #define GGML_SIMD
  1952. // F32 WASM
  1953. #define GGML_F32_STEP 16
  1954. #define GGML_F32_EPR 4
  1955. #define GGML_F32x4 v128_t
  1956. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1957. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1958. #define GGML_F32x4_LOAD wasm_v128_load
  1959. #define GGML_F32x4_STORE wasm_v128_store
  1960. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1961. #define GGML_F32x4_ADD wasm_f32x4_add
  1962. #define GGML_F32x4_MUL wasm_f32x4_mul
  1963. #define GGML_F32x4_REDUCE(res, x) \
  1964. { \
  1965. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1966. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1967. } \
  1968. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1969. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1970. } \
  1971. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1972. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1973. } \
  1974. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1975. wasm_f32x4_extract_lane(x[0], 1) + \
  1976. wasm_f32x4_extract_lane(x[0], 2) + \
  1977. wasm_f32x4_extract_lane(x[0], 3); \
  1978. }
  1979. #define GGML_F32_VEC GGML_F32x4
  1980. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1981. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1982. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1983. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1984. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1985. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1986. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1987. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1988. // F16 WASM
  1989. #define GGML_F16_STEP 16
  1990. #define GGML_F16_EPR 4
  1991. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1992. float tmp[4];
  1993. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1994. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1995. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1996. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1997. return wasm_v128_load(tmp);
  1998. }
  1999. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  2000. float tmp[4];
  2001. wasm_v128_store(tmp, x);
  2002. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  2003. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  2004. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  2005. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  2006. }
  2007. #define GGML_F16x4 v128_t
  2008. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  2009. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  2010. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  2011. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  2012. #define GGML_F16x4_FMA GGML_F32x4_FMA
  2013. #define GGML_F16x4_ADD wasm_f32x4_add
  2014. #define GGML_F16x4_MUL wasm_f32x4_mul
  2015. #define GGML_F16x4_REDUCE(res, x) \
  2016. { \
  2017. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  2018. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  2019. } \
  2020. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  2021. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  2022. } \
  2023. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  2024. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  2025. } \
  2026. res = wasm_f32x4_extract_lane(x[0], 0) + \
  2027. wasm_f32x4_extract_lane(x[0], 1) + \
  2028. wasm_f32x4_extract_lane(x[0], 2) + \
  2029. wasm_f32x4_extract_lane(x[0], 3); \
  2030. }
  2031. #define GGML_F16_VEC GGML_F16x4
  2032. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  2033. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  2034. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  2035. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  2036. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  2037. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  2038. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  2039. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  2040. #elif defined(__SSE3__)
  2041. #define GGML_SIMD
  2042. // F32 SSE
  2043. #define GGML_F32_STEP 32
  2044. #define GGML_F32_EPR 4
  2045. #define GGML_F32x4 __m128
  2046. #define GGML_F32x4_ZERO _mm_setzero_ps()
  2047. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2048. #define GGML_F32x4_LOAD _mm_loadu_ps
  2049. #define GGML_F32x4_STORE _mm_storeu_ps
  2050. #if defined(__FMA__)
  2051. // TODO: Does this work?
  2052. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2053. #else
  2054. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2055. #endif
  2056. #define GGML_F32x4_ADD _mm_add_ps
  2057. #define GGML_F32x4_MUL _mm_mul_ps
  2058. #define GGML_F32x4_REDUCE(res, x) \
  2059. { \
  2060. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2061. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2062. } \
  2063. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2064. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2065. } \
  2066. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2067. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2068. } \
  2069. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2070. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2071. }
  2072. // TODO: is this optimal ?
  2073. #define GGML_F32_VEC GGML_F32x4
  2074. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2075. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2076. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2077. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2078. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2079. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2080. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2081. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2082. // F16 SSE
  2083. #define GGML_F16_STEP 32
  2084. #define GGML_F16_EPR 4
  2085. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2086. float tmp[4];
  2087. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2088. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2089. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2090. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2091. return _mm_loadu_ps(tmp);
  2092. }
  2093. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2094. float arr[4];
  2095. _mm_storeu_ps(arr, y);
  2096. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2097. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2098. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2099. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2100. }
  2101. #define GGML_F32Cx4 __m128
  2102. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2103. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2104. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2105. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2106. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2107. #define GGML_F32Cx4_ADD _mm_add_ps
  2108. #define GGML_F32Cx4_MUL _mm_mul_ps
  2109. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2110. #define GGML_F16_VEC GGML_F32Cx4
  2111. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2112. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2113. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2114. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2115. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2116. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2117. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2118. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2119. #endif
  2120. // GGML_F32_ARR / GGML_F16_ARR
  2121. // number of registers to use per step
  2122. #ifdef GGML_SIMD
  2123. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2124. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2125. #endif
  2126. //
  2127. // fundamental operations
  2128. //
  2129. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2130. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2131. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2132. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2133. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2134. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2135. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2136. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2137. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2138. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2139. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2140. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2141. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2142. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2143. #ifdef GGML_SIMD
  2144. float sumf = 0.0f;
  2145. const int np = (n & ~(GGML_F32_STEP - 1));
  2146. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2147. GGML_F32_VEC ax[GGML_F32_ARR];
  2148. GGML_F32_VEC ay[GGML_F32_ARR];
  2149. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2150. for (int j = 0; j < GGML_F32_ARR; j++) {
  2151. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2152. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2153. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2154. }
  2155. }
  2156. // reduce sum0..sum3 to sum0
  2157. GGML_F32_VEC_REDUCE(sumf, sum);
  2158. // leftovers
  2159. for (int i = np; i < n; ++i) {
  2160. sumf += x[i]*y[i];
  2161. }
  2162. #else
  2163. // scalar
  2164. ggml_float sumf = 0.0;
  2165. for (int i = 0; i < n; ++i) {
  2166. sumf += (ggml_float)(x[i]*y[i]);
  2167. }
  2168. #endif
  2169. *s = sumf;
  2170. }
  2171. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2172. ggml_float sumf = 0.0;
  2173. #if defined(GGML_SIMD)
  2174. const int np = (n & ~(GGML_F16_STEP - 1));
  2175. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2176. GGML_F16_VEC ax[GGML_F16_ARR];
  2177. GGML_F16_VEC ay[GGML_F16_ARR];
  2178. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2179. for (int j = 0; j < GGML_F16_ARR; j++) {
  2180. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2181. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2182. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2183. }
  2184. }
  2185. // reduce sum0..sum3 to sum0
  2186. GGML_F16_VEC_REDUCE(sumf, sum);
  2187. // leftovers
  2188. for (int i = np; i < n; ++i) {
  2189. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2190. }
  2191. #else
  2192. for (int i = 0; i < n; ++i) {
  2193. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2194. }
  2195. #endif
  2196. *s = sumf;
  2197. }
  2198. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2199. const int nb = n / QK8_0;
  2200. assert(n % QK8_0 == 0);
  2201. assert(nb % 2 == 0);
  2202. const block_q4_0 * restrict x = vx;
  2203. const block_q8_0 * restrict y = vy;
  2204. #if defined(__ARM_NEON)
  2205. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2206. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2207. for (int i = 0; i < nb; i += 2) {
  2208. const block_q4_0 * restrict x0 = &x[i + 0];
  2209. const block_q4_0 * restrict x1 = &x[i + 1];
  2210. const block_q8_0 * restrict y0 = &y[i + 0];
  2211. const block_q8_0 * restrict y1 = &y[i + 1];
  2212. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2213. const int8x16_t s8b = vdupq_n_s8(0x8);
  2214. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2215. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2216. // 4-bit -> 8-bit
  2217. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2218. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2219. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2220. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2221. // sub 8
  2222. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2223. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2224. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2225. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2226. // load y
  2227. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2228. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2229. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2230. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2231. // interleave
  2232. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2233. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2234. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2235. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2236. #if defined(__ARM_FEATURE_DOTPROD)
  2237. // dot product into int32x4_t
  2238. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  2239. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  2240. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2241. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2242. #else
  2243. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2244. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2245. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2246. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2247. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2248. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2249. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2250. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2251. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2252. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2253. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2254. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2255. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2256. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2257. #endif
  2258. }
  2259. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2260. #elif defined(__AVX2__)
  2261. // Initialize accumulator with zeros
  2262. __m256 acc = _mm256_setzero_ps();
  2263. // Main loop
  2264. for (int i = 0; i < nb; ++i) {
  2265. /* Compute combined scale for the block */
  2266. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2267. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2268. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2269. const __m256i off = _mm256_set1_epi8( 8 );
  2270. bx = _mm256_sub_epi8( bx, off );
  2271. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2272. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2273. /* Multiply q with scale and accumulate */
  2274. acc = _mm256_fmadd_ps( d, q, acc );
  2275. }
  2276. *s = hsum_float_8(acc);
  2277. #elif defined(__AVX__)
  2278. // Initialize accumulator with zeros
  2279. __m256 acc = _mm256_setzero_ps();
  2280. // Main loop
  2281. for (int i = 0; i < nb; ++i) {
  2282. // Compute combined scale for the block
  2283. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2284. __m128i i32[2];
  2285. for (int j = 0; j < 2; ++j) {
  2286. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2287. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2288. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2289. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2290. const __m128i off = _mm_set1_epi8( 8 );
  2291. bx = _mm_sub_epi8( bx, off );
  2292. // Get absolute values of x vectors
  2293. const __m128i ax = _mm_sign_epi8(bx, bx);
  2294. // Sign the values of the y vectors
  2295. const __m128i sy = _mm_sign_epi8(by, bx);
  2296. // Perform multiplication and create 16-bit values
  2297. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2298. const __m128i ones = _mm_set1_epi16(1);
  2299. i32[j] = _mm_madd_epi16(ones, dot);
  2300. }
  2301. // Convert int32_t to float
  2302. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2303. // Apply the scale, and accumulate
  2304. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2305. }
  2306. *s = hsum_float_8(acc);
  2307. #else
  2308. // scalar
  2309. float sumf = 0.0;
  2310. for (int i = 0; i < nb; i++) {
  2311. const float d0 = x[i].d;
  2312. const float d1 = y[i].d;
  2313. const uint8_t * restrict p0 = x[i].qs;
  2314. const int8_t * restrict p1 = y[i].qs;
  2315. int sumi = 0;
  2316. for (int j = 0; j < QK8_0/2; j++) {
  2317. const uint8_t v0 = p0[j];
  2318. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2319. const int i1 = (int8_t) (v0 >> 4) - 8;
  2320. const int i2 = p1[2*j + 0];
  2321. const int i3 = p1[2*j + 1];
  2322. sumi += i0*i2 + i1*i3;
  2323. }
  2324. sumf += d0*d1*sumi;
  2325. }
  2326. *s = sumf;
  2327. #endif
  2328. }
  2329. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2330. const int nb = n / QK8_1;
  2331. assert(n % QK8_1 == 0);
  2332. assert(nb % 2 == 0);
  2333. const block_q4_1 * restrict x = vx;
  2334. const block_q8_1 * restrict y = vy;
  2335. // TODO: add AVX / WASM SIMD / etc
  2336. #if defined(__ARM_NEON)
  2337. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2338. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2339. float summs = 0;
  2340. for (int i = 0; i < nb; i += 2) {
  2341. const block_q4_1 * restrict x0 = &x[i + 0];
  2342. const block_q4_1 * restrict x1 = &x[i + 1];
  2343. const block_q8_1 * restrict y0 = &y[i + 0];
  2344. const block_q8_1 * restrict y1 = &y[i + 1];
  2345. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2346. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2347. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2348. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2349. // 4-bit -> 8-bit
  2350. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2351. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2352. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2353. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2354. // interleave
  2355. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2356. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2357. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2358. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2359. // load y
  2360. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2361. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2362. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2363. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2364. #if defined(__ARM_FEATURE_DOTPROD)
  2365. // dot product into int32x4_t
  2366. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2367. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2368. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2369. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2370. #else
  2371. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2372. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2373. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2374. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2375. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2376. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2377. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2378. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2379. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2380. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2381. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2382. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2383. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2384. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2385. #endif
  2386. }
  2387. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2388. #elif defined(__AVX2__)
  2389. // Initialize accumulator with zeros
  2390. __m256 acc = _mm256_setzero_ps();
  2391. float summs = 0;
  2392. // Main loop
  2393. for (int i = 0; i < nb; ++i) {
  2394. const float * d0 = &x[i].d;
  2395. const float * d1 = &y[i].d;
  2396. summs += x[i].m * (y[i].s0 + y[i].s1);
  2397. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2398. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2399. // Compute combined scales
  2400. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2401. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2402. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2403. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2404. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2405. // Accumulate d0*d1*x*y
  2406. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2407. }
  2408. *s = hsum_float_8(acc) + summs;
  2409. #else
  2410. // scalar
  2411. float sumf = 0.0;
  2412. for (int i = 0; i < nb; i++) {
  2413. const float d0 = x[i].d;
  2414. const float m0 = x[i].m;
  2415. const float d1 = y[i].d;
  2416. const uint8_t * restrict p0 = x[i].qs;
  2417. const int8_t * restrict p1 = y[i].qs;
  2418. // TODO: this is very slow ..
  2419. for (int j = 0; j < QK8_1/2; j++) {
  2420. const uint8_t v0 = p0[j];
  2421. const float f0 = d0*(v0 & 0x0F) + m0;
  2422. const float f1 = d0*(v0 >> 4) + m0;
  2423. const float f2 = d1*p1[2*j + 0];
  2424. const float f3 = d1*p1[2*j + 1];
  2425. sumf += f0*f2 + f1*f3;
  2426. }
  2427. }
  2428. *s = sumf;
  2429. #endif
  2430. }
  2431. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2432. const int nb = n / QK8_0;
  2433. assert(n % QK8_0 == 0);
  2434. assert(nb % 2 == 0);
  2435. assert(QK8_0 == 2*QK4_2);
  2436. const block_q4_2 * restrict x = vx;
  2437. const block_q8_0 * restrict y = vy;
  2438. #if defined(__ARM_NEON)
  2439. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2440. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2441. for (int i = 0; i < nb; i += 2) {
  2442. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2443. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2444. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2445. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2446. const block_q8_0 * restrict y0 = &y[i + 0];
  2447. const block_q8_0 * restrict y1 = &y[i + 1];
  2448. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2449. const int8x16_t s8b = vdupq_n_s8(0x8);
  2450. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2451. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2452. // 4-bit -> 8-bit
  2453. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2454. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2455. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2456. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2457. // sub 8
  2458. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2459. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2460. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2461. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2462. // interleave
  2463. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2464. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2465. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2466. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2467. // load y
  2468. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2469. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2470. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2471. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2472. #if defined(__ARM_FEATURE_DOTPROD)
  2473. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2474. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2475. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2476. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2477. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2478. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2479. #else
  2480. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2481. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2482. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2483. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2484. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2485. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2486. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2487. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2488. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2489. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2490. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2491. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2492. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2493. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2494. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2495. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2496. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2497. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2498. #endif
  2499. }
  2500. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2501. #elif defined(__AVX2__)
  2502. // Initialize accumulator with zeros
  2503. __m256 acc = _mm256_setzero_ps();
  2504. // Main loop
  2505. for (int i = 0; i < nb; i++) {
  2506. /* Compute combined scale for the block */
  2507. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2508. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2509. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2510. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2511. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2512. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2513. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2514. const __m256i off = _mm256_set1_epi8(8);
  2515. bx = _mm256_sub_epi8(bx, off);
  2516. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2517. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2518. /* Multiply q with scale and accumulate */
  2519. acc = _mm256_fmadd_ps(d, q, acc);
  2520. }
  2521. *s = hsum_float_8(acc);
  2522. #else
  2523. // scalar
  2524. float sumf = 0.0;
  2525. for (int i = 0; i < nb; i++) {
  2526. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2527. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2528. const int8_t * restrict y0 = y[i].qs;
  2529. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2530. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2531. int sumi_0 = 0;
  2532. int sumi_1 = 0;
  2533. for (int j = 0; j < QK8_0/4; j++) {
  2534. const uint8_t v0 = x0[j];
  2535. const uint8_t v1 = x1[j];
  2536. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2537. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2538. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2539. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2540. const int i2_0 = y0[2*j + 0];
  2541. const int i3_0 = y0[2*j + 1];
  2542. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2543. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2544. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2545. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2546. }
  2547. sumf += (d0 * y[i].d) * sumi_0;
  2548. sumf += (d1 * y[i].d) * sumi_1;
  2549. }
  2550. *s = sumf;
  2551. #endif
  2552. }
  2553. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2554. const int nb = n / QK8_1;
  2555. assert(n % QK8_1 == 0);
  2556. assert(nb % 2 == 0);
  2557. assert(QK8_1 == 2*QK4_3);
  2558. const block_q4_3 * restrict x = vx;
  2559. const block_q8_1 * restrict y = vy;
  2560. #if defined(__ARM_NEON)
  2561. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2562. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2563. float summs0 = 0.0f;
  2564. float summs1 = 0.0f;
  2565. for (int i = 0; i < nb; ++i) {
  2566. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2567. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2568. const block_q8_1 * restrict y0 = &y[i + 0];
  2569. summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
  2570. summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
  2571. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2572. // 4-bit -> 8-bit
  2573. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0x0F)));
  2574. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2575. // interleave
  2576. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2577. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2578. // load y
  2579. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2580. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2581. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2582. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2583. #if defined(__ARM_FEATURE_DOTPROD)
  2584. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2585. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2586. #else
  2587. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2588. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2589. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2590. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2591. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2592. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2593. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2594. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2595. #endif
  2596. }
  2597. *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
  2598. #elif defined(__AVX2__)
  2599. // Initialize accumulator with zeros
  2600. __m256 acc = _mm256_setzero_ps();
  2601. float summs = 0.0f;
  2602. // Main loop
  2603. for (int i = 0; i < nb; i++) {
  2604. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2605. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2606. const __m256 dx = _mm256_set_m128(d1, d0);
  2607. summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0
  2608. + GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1;
  2609. const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2610. const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2611. const __m256i bx = _mm256_set_m128i(bx1, bx0);
  2612. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2613. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2614. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2615. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2616. }
  2617. *s = hsum_float_8(acc) + summs;
  2618. #else
  2619. // scalar
  2620. float sumf = 0.0;
  2621. for (int i = 0; i < nb; i++) {
  2622. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2623. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2624. const int8_t * restrict y0 = y[i].qs;
  2625. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2626. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2627. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2628. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2629. int sxy_0 = 0;
  2630. int sxy_1 = 0;
  2631. for (int j = 0; j < QK8_1/4; j++) {
  2632. const uint8_t v0 = x0[j];
  2633. const uint8_t v1 = x1[j];
  2634. const int x0_0 = v0 & 0x0F;
  2635. const int x1_0 = v0 >> 4;
  2636. const int x0_1 = v1 & 0x0F;
  2637. const int x1_1 = v1 >> 4;
  2638. const int y0_0 = y0[2*j + 0];
  2639. const int y1_0 = y0[2*j + 1];
  2640. const int y0_1 = y0[2*(j + QK8_1/4) + 0];
  2641. const int y1_1 = y0[2*(j + QK8_1/4) + 1];
  2642. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2643. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2644. }
  2645. sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
  2646. }
  2647. *s = sumf;
  2648. #endif
  2649. }
  2650. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2651. const int nb = n / QK8_0;
  2652. assert(n % QK8_0 == 0);
  2653. assert(nb % 2 == 0);
  2654. assert(QK8_0 == QK5_0);
  2655. const block_q5_0 * restrict x = vx;
  2656. const block_q8_0 * restrict y = vy;
  2657. #if defined(__ARM_NEON)
  2658. float32x4_t sumv = vdupq_n_f32(0.0f);
  2659. uint64_t tmp[4];
  2660. for (int i = 0; i < nb; ++i) {
  2661. const block_q5_0 * restrict x0 = &x[i];
  2662. const block_q8_0 * restrict y0 = &y[i];
  2663. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2664. const int8x16_t s16b = vdupq_n_s8(0x10);
  2665. // extract the 5th bit
  2666. uint32_t qh;
  2667. memcpy(&qh, x0->qh, sizeof(qh));
  2668. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2669. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2670. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2671. tmp[3] = table_b2b_u[(qh >> 24) ];
  2672. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2673. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2674. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2675. // 4-bit -> 8-bit
  2676. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2677. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2678. // interleave
  2679. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2680. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2681. // add high bit and sub 16
  2682. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2683. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2684. // load y
  2685. const int8x16_t v1l = vld1q_s8(y0->qs);
  2686. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2687. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2688. #if defined(__ARM_FEATURE_DOTPROD)
  2689. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2690. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2691. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2692. #else
  2693. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2694. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2695. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2696. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2697. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2698. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2699. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2700. #endif
  2701. }
  2702. *s = vaddvq_f32(sumv);
  2703. #elif defined(__AVX2__)
  2704. // Initialize accumulator with zeros
  2705. __m256 acc = _mm256_setzero_ps();
  2706. // Main loop
  2707. for (int i = 0; i < nb; i++) {
  2708. /* Compute combined scale for the block */
  2709. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2710. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2711. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2712. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2713. bx = _mm256_or_si256(bx, bxhi);
  2714. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2715. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2716. /* Multiply q with scale and accumulate */
  2717. acc = _mm256_fmadd_ps(d, q, acc);
  2718. }
  2719. *s = hsum_float_8(acc);
  2720. #else
  2721. // scalar
  2722. float sumf = 0.0;
  2723. for (int i = 0; i < nb; i++) {
  2724. const uint8_t * restrict x0 = x[i].qs;
  2725. const int8_t * restrict y0 = y[i].qs;
  2726. uint32_t qh;
  2727. memcpy(&qh, x[i].qh, sizeof(qh));
  2728. const float d = GGML_FP16_TO_FP32(x[i].d);
  2729. int sxy = 0;
  2730. for (int j = 0; j < QK8_0/2; j++) {
  2731. const uint8_t v0 = x0[j];
  2732. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2733. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2734. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2735. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2736. const int y0_0 = y0[2*j + 0];
  2737. const int y1_0 = y0[2*j + 1];
  2738. sxy += x0_0*y0_0 + x1_0*y1_0;
  2739. }
  2740. sumf += (d*sxy)*y[i].d;
  2741. }
  2742. *s = sumf;
  2743. #endif
  2744. }
  2745. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2746. const int nb = n / QK8_1;
  2747. assert(n % QK8_1 == 0);
  2748. assert(nb % 2 == 0);
  2749. assert(QK8_1 == QK5_1);
  2750. const block_q5_1 * restrict x = vx;
  2751. const block_q8_1 * restrict y = vy;
  2752. #if defined(__ARM_NEON)
  2753. float32x4_t sumv = vdupq_n_f32(0.0f);
  2754. float summs = 0.0f;
  2755. uint64_t tmp[4];
  2756. for (int i = 0; i < nb; ++i) {
  2757. const block_q5_1 * restrict x0 = &x[i];
  2758. const block_q8_1 * restrict y0 = &y[i];
  2759. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2760. // extract the 5th bit
  2761. uint32_t qh;
  2762. memcpy(&qh, x0->qh, sizeof(qh));
  2763. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2764. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2765. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2766. tmp[3] = table_b2b_u[(qh >> 24) ];
  2767. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2768. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2769. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2770. // 4-bit -> 8-bit
  2771. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2772. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2773. // interleave
  2774. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2775. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2776. // add
  2777. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2778. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2779. // load y
  2780. const int8x16_t v1l = vld1q_s8(y0->qs);
  2781. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2782. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2783. #if defined(__ARM_FEATURE_DOTPROD)
  2784. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2785. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2786. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2787. #else
  2788. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2789. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2790. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2791. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2792. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2793. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2794. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2795. #endif
  2796. }
  2797. *s = vaddvq_f32(sumv) + summs;
  2798. #elif defined(__AVX2__)
  2799. // Initialize accumulator with zeros
  2800. __m256 acc = _mm256_setzero_ps();
  2801. float summs = 0.0f;
  2802. // Main loop
  2803. for (int i = 0; i < nb; i++) {
  2804. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2805. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2806. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2807. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2808. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2809. bx = _mm256_or_si256(bx, bxhi);
  2810. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2811. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2812. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2813. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2814. }
  2815. *s = hsum_float_8(acc) + summs;
  2816. #else
  2817. float sumf = 0.0;
  2818. for (int i = 0; i < nb; i++) {
  2819. const uint8_t * restrict x0 = x[i].qs;
  2820. const int8_t * restrict y0 = y[i].qs;
  2821. uint32_t qh;
  2822. memcpy(&qh, x[i].qh, sizeof(qh));
  2823. const float d = GGML_FP16_TO_FP32(x[i].d);
  2824. const float m = GGML_FP16_TO_FP32(x[i].m);
  2825. int sxy = 0;
  2826. for (int j = 0; j < QK8_1/2; j++) {
  2827. const uint8_t v0 = x0[j];
  2828. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2829. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2830. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2831. const int x1_0 = (v0 >> 4) | x1_0h;
  2832. const int y0_0 = y0[2*j + 0];
  2833. const int y1_0 = y0[2*j + 1];
  2834. sxy += x0_0*y0_0 + x1_0*y1_0;
  2835. }
  2836. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2837. }
  2838. *s = sumf;
  2839. #endif
  2840. }
  2841. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2842. const int nb = n / QK8_0;
  2843. assert(n % QK8_0 == 0);
  2844. assert(nb % 2 == 0);
  2845. assert(QK8_0 == QK8_0);
  2846. const block_q8_0 * restrict x = vx;
  2847. const block_q8_0 * restrict y = vy;
  2848. #if defined(__ARM_NEON)
  2849. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2850. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2851. for (int i = 0; i < nb; i += 2) {
  2852. const block_q8_0 * restrict x0 = &x[i + 0];
  2853. const block_q8_0 * restrict x1 = &x[i + 1];
  2854. const block_q8_0 * restrict y0 = &y[i + 0];
  2855. const block_q8_0 * restrict y1 = &y[i + 1];
  2856. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2857. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2858. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2859. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2860. // load y
  2861. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2862. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2863. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2864. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2865. #if defined(__ARM_FEATURE_DOTPROD)
  2866. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2867. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2868. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2869. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2870. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2871. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2872. #else
  2873. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2874. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2875. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2876. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2877. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2878. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2879. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2880. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2881. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2882. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2883. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2884. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2885. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2886. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2887. #endif
  2888. }
  2889. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2890. #elif defined(__AVX2__)
  2891. // Initialize accumulator with zeros
  2892. __m256 acc = _mm256_setzero_ps();
  2893. // Main loop
  2894. for (int i = 0; i < nb; ++i) {
  2895. // Compute combined scale for the block
  2896. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2897. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2898. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2899. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2900. // Multiply q with scale and accumulate
  2901. acc = _mm256_fmadd_ps( d, q, acc );
  2902. }
  2903. *s = hsum_float_8(acc);
  2904. #else
  2905. // scalar
  2906. float sumf = 0.0;
  2907. for (int i = 0; i < nb; i++) {
  2908. const int8_t * restrict x0 = x[i].qs;
  2909. const int8_t * restrict y0 = y[i].qs;
  2910. int sumi = 0;
  2911. for (int j = 0; j < QK8_0; j++) {
  2912. const int v0 = x0[j];
  2913. const int v1 = y0[j];
  2914. sumi += v0*v1;
  2915. }
  2916. sumf += (x[i].d*y[i].d)*sumi;
  2917. }
  2918. *s = sumf;
  2919. #endif
  2920. }
  2921. // compute GGML_VEC_DOT_UNROLL dot products at once
  2922. // xs - x row stride in bytes
  2923. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2924. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2925. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2926. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2927. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2928. }
  2929. #if defined(GGML_SIMD)
  2930. const int np = (n & ~(GGML_F16_STEP - 1));
  2931. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2932. GGML_F16_VEC ax[GGML_F16_ARR];
  2933. GGML_F16_VEC ay[GGML_F16_ARR];
  2934. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2935. for (int j = 0; j < GGML_F16_ARR; j++) {
  2936. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2937. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2938. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2939. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2940. }
  2941. }
  2942. }
  2943. // reduce sum0..sum3 to sum0
  2944. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2945. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2946. }
  2947. // leftovers
  2948. for (int i = np; i < n; ++i) {
  2949. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2950. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2951. }
  2952. }
  2953. #else
  2954. for (int i = 0; i < n; ++i) {
  2955. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2956. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2957. }
  2958. }
  2959. #endif
  2960. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2961. s[i] = sumf[i];
  2962. }
  2963. }
  2964. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2965. #if defined(GGML_SIMD)
  2966. const int np = (n & ~(GGML_F32_STEP - 1));
  2967. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2968. GGML_F32_VEC ax[GGML_F32_ARR];
  2969. GGML_F32_VEC ay[GGML_F32_ARR];
  2970. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2971. for (int j = 0; j < GGML_F32_ARR; j++) {
  2972. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2973. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2974. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2975. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2976. }
  2977. }
  2978. // leftovers
  2979. for (int i = np; i < n; ++i) {
  2980. y[i] += x[i]*v;
  2981. }
  2982. #else
  2983. // scalar
  2984. for (int i = 0; i < n; ++i) {
  2985. y[i] += x[i]*v;
  2986. }
  2987. #endif
  2988. }
  2989. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2990. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2991. #if defined(GGML_SIMD)
  2992. const int np = (n & ~(GGML_F32_STEP - 1));
  2993. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2994. GGML_F32_VEC ay[GGML_F32_ARR];
  2995. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2996. for (int j = 0; j < GGML_F32_ARR; j++) {
  2997. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2998. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2999. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3000. }
  3001. }
  3002. // leftovers
  3003. for (int i = np; i < n; ++i) {
  3004. y[i] *= v;
  3005. }
  3006. #else
  3007. // scalar
  3008. for (int i = 0; i < n; ++i) {
  3009. y[i] *= v;
  3010. }
  3011. #endif
  3012. }
  3013. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3014. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3015. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3016. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3017. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3018. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3019. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3020. static const float GELU_COEF_A = 0.044715f;
  3021. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3022. inline static float ggml_gelu_f32(float x) {
  3023. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3024. }
  3025. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3026. const uint16_t * i16 = (const uint16_t *) x;
  3027. for (int i = 0; i < n; ++i) {
  3028. y[i] = table_gelu_f16[i16[i]];
  3029. }
  3030. }
  3031. #ifdef GGML_GELU_FP16
  3032. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3033. uint16_t t;
  3034. for (int i = 0; i < n; ++i) {
  3035. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3036. memcpy(&t, &fp16, sizeof(uint16_t));
  3037. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3038. }
  3039. }
  3040. #else
  3041. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3042. for (int i = 0; i < n; ++i) {
  3043. y[i] = ggml_gelu_f32(x[i]);
  3044. }
  3045. }
  3046. #endif
  3047. // Sigmoid Linear Unit (SiLU) function
  3048. inline static float ggml_silu_f32(float x) {
  3049. return x/(1.0f + expf(-x));
  3050. }
  3051. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3052. const uint16_t * i16 = (const uint16_t *) x;
  3053. for (int i = 0; i < n; ++i) {
  3054. y[i] = table_silu_f16[i16[i]];
  3055. }
  3056. }
  3057. #ifdef GGML_SILU_FP16
  3058. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3059. uint16_t t;
  3060. for (int i = 0; i < n; ++i) {
  3061. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3062. memcpy(&t, &fp16, sizeof(uint16_t));
  3063. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3064. }
  3065. }
  3066. #else
  3067. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3068. for (int i = 0; i < n; ++i) {
  3069. y[i] = ggml_silu_f32(x[i]);
  3070. }
  3071. }
  3072. #endif
  3073. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3074. #ifndef GGML_USE_ACCELERATE
  3075. ggml_float sum = 0.0;
  3076. for (int i = 0; i < n; ++i) {
  3077. sum += (ggml_float)x[i];
  3078. }
  3079. *s = sum;
  3080. #else
  3081. vDSP_sve(x, 1, s, n);
  3082. #endif
  3083. }
  3084. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3085. ggml_float sum = 0.0;
  3086. for (int i = 0; i < n; ++i) {
  3087. sum += (ggml_float)x[i];
  3088. }
  3089. *s = sum;
  3090. }
  3091. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3092. #ifndef GGML_USE_ACCELERATE
  3093. float max = -INFINITY;
  3094. for (int i = 0; i < n; ++i) {
  3095. max = MAX(max, x[i]);
  3096. }
  3097. *s = max;
  3098. #else
  3099. vDSP_maxv(x, 1, s, n);
  3100. #endif
  3101. }
  3102. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3103. ggml_vec_norm_f32(n, s, x);
  3104. *s = 1.f/(*s);
  3105. }
  3106. //
  3107. // logging
  3108. //
  3109. #if (GGML_DEBUG >= 1)
  3110. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3111. #else
  3112. #define GGML_PRINT_DEBUG(...)
  3113. #endif
  3114. #if (GGML_DEBUG >= 5)
  3115. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3116. #else
  3117. #define GGML_PRINT_DEBUG_5(...)
  3118. #endif
  3119. #if (GGML_DEBUG >= 10)
  3120. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3121. #else
  3122. #define GGML_PRINT_DEBUG_10(...)
  3123. #endif
  3124. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3125. //
  3126. // data types
  3127. //
  3128. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3129. [GGML_TYPE_F32] = 1,
  3130. [GGML_TYPE_F16] = 1,
  3131. [GGML_TYPE_Q4_0] = QK4_0,
  3132. [GGML_TYPE_Q4_1] = QK4_1,
  3133. [GGML_TYPE_Q4_2] = QK4_2,
  3134. [GGML_TYPE_Q4_3] = QK4_3,
  3135. [GGML_TYPE_Q5_0] = QK5_0,
  3136. [GGML_TYPE_Q5_1] = QK5_1,
  3137. [GGML_TYPE_Q8_0] = QK8_0,
  3138. [GGML_TYPE_Q8_1] = QK8_1,
  3139. [GGML_TYPE_I8] = 1,
  3140. [GGML_TYPE_I16] = 1,
  3141. [GGML_TYPE_I32] = 1,
  3142. };
  3143. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3144. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3145. [GGML_TYPE_F32] = sizeof(float),
  3146. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3147. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3148. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3149. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3150. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  3151. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3152. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3153. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3154. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3155. [GGML_TYPE_I8] = sizeof(int8_t),
  3156. [GGML_TYPE_I16] = sizeof(int16_t),
  3157. [GGML_TYPE_I32] = sizeof(int32_t),
  3158. };
  3159. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3160. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3161. [GGML_TYPE_F32] = "f32",
  3162. [GGML_TYPE_F16] = "f16",
  3163. [GGML_TYPE_Q4_0] = "q4_0",
  3164. [GGML_TYPE_Q4_1] = "q4_1",
  3165. [GGML_TYPE_Q4_2] = "q4_2",
  3166. [GGML_TYPE_Q4_3] = "q4_3",
  3167. [GGML_TYPE_Q5_0] = "q5_0",
  3168. [GGML_TYPE_Q5_1] = "q5_1",
  3169. [GGML_TYPE_Q8_0] = "q8_0",
  3170. [GGML_TYPE_Q8_1] = "q8_1",
  3171. [GGML_TYPE_I8] = "i8",
  3172. [GGML_TYPE_I16] = "i16",
  3173. [GGML_TYPE_I32] = "i32",
  3174. };
  3175. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3176. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3177. [GGML_TYPE_F32] = false,
  3178. [GGML_TYPE_F16] = false,
  3179. [GGML_TYPE_Q4_0] = true,
  3180. [GGML_TYPE_Q4_1] = true,
  3181. [GGML_TYPE_Q4_2] = true,
  3182. [GGML_TYPE_Q4_3] = true,
  3183. [GGML_TYPE_Q5_0] = true,
  3184. [GGML_TYPE_Q5_1] = true,
  3185. [GGML_TYPE_Q8_0] = true,
  3186. [GGML_TYPE_Q8_1] = true,
  3187. [GGML_TYPE_I8] = false,
  3188. [GGML_TYPE_I16] = false,
  3189. [GGML_TYPE_I32] = false,
  3190. };
  3191. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3192. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3193. "NONE",
  3194. "DUP",
  3195. "ADD",
  3196. "SUB",
  3197. "MUL",
  3198. "DIV",
  3199. "SQR",
  3200. "SQRT",
  3201. "SUM",
  3202. "MEAN",
  3203. "REPEAT",
  3204. "ABS",
  3205. "SGN",
  3206. "NEG",
  3207. "STEP",
  3208. "RELU",
  3209. "GELU",
  3210. "SILU",
  3211. "NORM",
  3212. "RMS_NORM",
  3213. "MUL_MAT",
  3214. "SCALE",
  3215. "CPY",
  3216. "CONT",
  3217. "RESHAPE",
  3218. "VIEW",
  3219. "PERMUTE",
  3220. "TRANSPOSE",
  3221. "GET_ROWS",
  3222. "DIAG_MASK_INF",
  3223. "SOFT_MAX",
  3224. "ROPE",
  3225. "CONV_1D_1S",
  3226. "CONV_1D_2S",
  3227. "FLASH_ATTN",
  3228. "FLASH_FF",
  3229. "MAP_UNARY",
  3230. "MAP_BINARY",
  3231. };
  3232. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  3233. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3234. "none",
  3235. "x",
  3236. "x+y",
  3237. "x-y",
  3238. "x*y",
  3239. "x/y",
  3240. "x^2",
  3241. "√x",
  3242. "Σx",
  3243. "Σx/n",
  3244. "repeat(x)",
  3245. "abs(x)",
  3246. "sgn(x)",
  3247. "-x",
  3248. "step(x)",
  3249. "relu(x)",
  3250. "gelu(x)",
  3251. "silu(x)",
  3252. "norm(x)",
  3253. "rms_norm(x)",
  3254. "X*Y",
  3255. "x*v",
  3256. "x-\\>y",
  3257. "cont(x)",
  3258. "reshape(x)",
  3259. "view(x)",
  3260. "permute(x)",
  3261. "transpose(x)",
  3262. "get_rows(x)",
  3263. "diag_mask_inf(x)",
  3264. "soft_max(x)",
  3265. "rope(x)",
  3266. "conv_1d_1s(x)",
  3267. "conv_1d_2s(x)",
  3268. "flash_attn(x)",
  3269. "flash_ff(x)",
  3270. "f(x)",
  3271. "f(x,y)",
  3272. };
  3273. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  3274. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3275. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3276. //
  3277. // ggml context
  3278. //
  3279. struct ggml_context {
  3280. size_t mem_size;
  3281. void * mem_buffer;
  3282. bool mem_buffer_owned;
  3283. bool no_alloc;
  3284. int n_objects;
  3285. struct ggml_object * objects_begin;
  3286. struct ggml_object * objects_end;
  3287. struct ggml_scratch scratch;
  3288. struct ggml_scratch scratch_save;
  3289. };
  3290. struct ggml_context_container {
  3291. bool used;
  3292. struct ggml_context context;
  3293. };
  3294. //
  3295. // compute types
  3296. //
  3297. enum ggml_task_type {
  3298. GGML_TASK_INIT = 0,
  3299. GGML_TASK_COMPUTE,
  3300. GGML_TASK_FINALIZE,
  3301. };
  3302. struct ggml_compute_params {
  3303. enum ggml_task_type type;
  3304. int ith, nth;
  3305. // work buffer for all threads
  3306. size_t wsize;
  3307. void * wdata;
  3308. };
  3309. //
  3310. // ggml state
  3311. //
  3312. struct ggml_state {
  3313. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3314. };
  3315. // global state
  3316. static struct ggml_state g_state;
  3317. static atomic_int g_state_barrier = 0;
  3318. // barrier via spin lock
  3319. inline static void ggml_critical_section_start(void) {
  3320. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3321. while (processing > 0) {
  3322. // wait for other threads to finish
  3323. atomic_fetch_sub(&g_state_barrier, 1);
  3324. sched_yield(); // TODO: reconsider this
  3325. processing = atomic_fetch_add(&g_state_barrier, 1);
  3326. }
  3327. }
  3328. // TODO: make this somehow automatically executed
  3329. // some sort of "sentry" mechanism
  3330. inline static void ggml_critical_section_end(void) {
  3331. atomic_fetch_sub(&g_state_barrier, 1);
  3332. }
  3333. ////////////////////////////////////////////////////////////////////////////////
  3334. void ggml_print_object(const struct ggml_object * obj) {
  3335. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3336. obj->offs, obj->size, (const void *) obj->next);
  3337. }
  3338. void ggml_print_objects(const struct ggml_context * ctx) {
  3339. struct ggml_object * obj = ctx->objects_begin;
  3340. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3341. while (obj != NULL) {
  3342. ggml_print_object(obj);
  3343. obj = obj->next;
  3344. }
  3345. GGML_PRINT("%s: --- end ---\n", __func__);
  3346. }
  3347. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3348. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3349. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3350. }
  3351. int ggml_nrows(const struct ggml_tensor * tensor) {
  3352. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3353. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3354. }
  3355. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3356. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3357. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3358. }
  3359. int ggml_blck_size(enum ggml_type type) {
  3360. return GGML_BLCK_SIZE[type];
  3361. }
  3362. size_t ggml_type_size(enum ggml_type type) {
  3363. return GGML_TYPE_SIZE[type];
  3364. }
  3365. float ggml_type_sizef(enum ggml_type type) {
  3366. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3367. }
  3368. const char * ggml_type_name(enum ggml_type type) {
  3369. return GGML_TYPE_NAME[type];
  3370. }
  3371. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3372. return GGML_TYPE_SIZE[tensor->type];
  3373. }
  3374. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3375. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3376. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3377. }
  3378. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3379. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3380. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3381. }
  3382. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3383. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3384. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3385. }
  3386. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3387. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3388. return
  3389. (t0->ne[0] == t1->ne[0]) &&
  3390. (t0->ne[2] == t1->ne[2]) &&
  3391. (t0->ne[3] == t1->ne[3]);
  3392. }
  3393. bool ggml_is_quantized(enum ggml_type type) {
  3394. return GGML_IS_QUANTIZED[type];
  3395. }
  3396. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3397. return tensor->nb[0] > tensor->nb[1];
  3398. }
  3399. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3400. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3401. return
  3402. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3403. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3404. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3405. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3406. }
  3407. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3408. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3409. return
  3410. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3411. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3412. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3413. }
  3414. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3415. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3416. return
  3417. (t0->ne[0] == t1->ne[0] ) &&
  3418. (t0->ne[1] == t1->ne[1] ) &&
  3419. (t0->ne[2] == t1->ne[2] ) &&
  3420. (t0->ne[3] == t1->ne[3] );
  3421. }
  3422. // check if t1 can be represented as a repeatition of t0
  3423. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3424. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3425. return
  3426. (t1->ne[0]%t0->ne[0] == 0) &&
  3427. (t1->ne[1]%t0->ne[1] == 0) &&
  3428. (t1->ne[2]%t0->ne[2] == 0) &&
  3429. (t1->ne[3]%t0->ne[3] == 0);
  3430. }
  3431. static inline int ggml_up32(int n) {
  3432. return (n + 31) & ~31;
  3433. }
  3434. static inline int ggml_up64(int n) {
  3435. return (n + 63) & ~63;
  3436. }
  3437. static inline int ggml_up(int n, int m) {
  3438. // assert m is a power of 2
  3439. GGML_ASSERT((m & (m - 1)) == 0);
  3440. return (n + m - 1) & ~(m - 1);
  3441. }
  3442. // assert that pointer is aligned to GGML_MEM_ALIGN
  3443. #define ggml_assert_aligned(ptr) \
  3444. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3445. ////////////////////////////////////////////////////////////////////////////////
  3446. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3447. // make this function thread safe
  3448. ggml_critical_section_start();
  3449. static bool is_first_call = true;
  3450. if (is_first_call) {
  3451. // initialize time system (required on Windows)
  3452. ggml_time_init();
  3453. // initialize GELU, SILU and EXP F32 tables
  3454. {
  3455. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3456. ggml_fp16_t ii;
  3457. for (int i = 0; i < (1 << 16); ++i) {
  3458. uint16_t ui = i;
  3459. memcpy(&ii, &ui, sizeof(ii));
  3460. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3461. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3462. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3463. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3464. }
  3465. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3466. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3467. }
  3468. // initialize g_state
  3469. {
  3470. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3471. g_state = (struct ggml_state) {
  3472. /*.contexts =*/ { { 0 } },
  3473. };
  3474. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3475. g_state.contexts[i].used = false;
  3476. }
  3477. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3478. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3479. }
  3480. // initialize cuBLAS
  3481. #if defined(GGML_USE_CUBLAS)
  3482. ggml_init_cublas();
  3483. #elif defined(GGML_USE_CLBLAST)
  3484. ggml_cl_init();
  3485. #endif
  3486. is_first_call = false;
  3487. }
  3488. // find non-used context in g_state
  3489. struct ggml_context * ctx = NULL;
  3490. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3491. if (!g_state.contexts[i].used) {
  3492. g_state.contexts[i].used = true;
  3493. ctx = &g_state.contexts[i].context;
  3494. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3495. break;
  3496. }
  3497. }
  3498. if (ctx == NULL) {
  3499. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3500. ggml_critical_section_end();
  3501. return NULL;
  3502. }
  3503. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3504. *ctx = (struct ggml_context) {
  3505. /*.mem_size =*/ mem_size,
  3506. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3507. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3508. /*.no_alloc =*/ params.no_alloc,
  3509. /*.n_objects =*/ 0,
  3510. /*.objects_begin =*/ NULL,
  3511. /*.objects_end =*/ NULL,
  3512. /*.scratch =*/ { 0, 0, NULL, },
  3513. /*.scratch_save =*/ { 0, 0, NULL, },
  3514. };
  3515. GGML_ASSERT(ctx->mem_buffer != NULL);
  3516. ggml_assert_aligned(ctx->mem_buffer);
  3517. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3518. ggml_critical_section_end();
  3519. return ctx;
  3520. }
  3521. void ggml_free(struct ggml_context * ctx) {
  3522. // make this function thread safe
  3523. ggml_critical_section_start();
  3524. bool found = false;
  3525. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3526. if (&g_state.contexts[i].context == ctx) {
  3527. g_state.contexts[i].used = false;
  3528. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3529. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3530. if (ctx->mem_buffer_owned) {
  3531. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3532. }
  3533. found = true;
  3534. break;
  3535. }
  3536. }
  3537. if (!found) {
  3538. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3539. }
  3540. ggml_critical_section_end();
  3541. }
  3542. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3543. return ctx->objects_end->offs + ctx->objects_end->size;
  3544. }
  3545. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3546. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3547. ctx->scratch = scratch;
  3548. return result;
  3549. }
  3550. ////////////////////////////////////////////////////////////////////////////////
  3551. struct ggml_tensor * ggml_new_tensor_impl(
  3552. struct ggml_context * ctx,
  3553. enum ggml_type type,
  3554. int n_dims,
  3555. const int64_t* ne,
  3556. void* data) {
  3557. // always insert objects at the end of the context's memory pool
  3558. struct ggml_object * obj_cur = ctx->objects_end;
  3559. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3560. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3561. const size_t cur_end = cur_offs + cur_size;
  3562. size_t size_needed = 0;
  3563. if (data == NULL && !ctx->no_alloc) {
  3564. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3565. for (int i = 1; i < n_dims; i++) {
  3566. size_needed *= ne[i];
  3567. }
  3568. // align to GGML_MEM_ALIGN
  3569. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3570. }
  3571. char * const mem_buffer = ctx->mem_buffer;
  3572. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3573. if (ctx->scratch.data == NULL || data != NULL) {
  3574. size_needed += sizeof(struct ggml_tensor);
  3575. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3576. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3577. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3578. assert(false);
  3579. return NULL;
  3580. }
  3581. *obj_new = (struct ggml_object) {
  3582. .offs = cur_end + GGML_OBJECT_SIZE,
  3583. .size = size_needed,
  3584. .next = NULL,
  3585. };
  3586. } else {
  3587. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3588. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3589. assert(false);
  3590. return NULL;
  3591. }
  3592. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3593. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3594. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3595. assert(false);
  3596. return NULL;
  3597. }
  3598. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3599. *obj_new = (struct ggml_object) {
  3600. .offs = cur_end + GGML_OBJECT_SIZE,
  3601. .size = sizeof(struct ggml_tensor),
  3602. .next = NULL,
  3603. };
  3604. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3605. ctx->scratch.offs += size_needed;
  3606. }
  3607. if (obj_cur != NULL) {
  3608. obj_cur->next = obj_new;
  3609. } else {
  3610. // this is the first object in this context
  3611. ctx->objects_begin = obj_new;
  3612. }
  3613. ctx->objects_end = obj_new;
  3614. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3615. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3616. ggml_assert_aligned(result);
  3617. *result = (struct ggml_tensor) {
  3618. /*.type =*/ type,
  3619. /*.n_dims =*/ n_dims,
  3620. /*.ne =*/ { 1, 1, 1, 1 },
  3621. /*.nb =*/ { 0, 0, 0, 0 },
  3622. /*.op =*/ GGML_OP_NONE,
  3623. /*.is_param =*/ false,
  3624. /*.grad =*/ NULL,
  3625. /*.src0 =*/ NULL,
  3626. /*.src1 =*/ NULL,
  3627. /*.opt =*/ { NULL },
  3628. /*.n_tasks =*/ 0,
  3629. /*.perf_runs =*/ 0,
  3630. /*.perf_cycles =*/ 0,
  3631. /*.perf_time_us =*/ 0,
  3632. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3633. /*.pad =*/ { 0 },
  3634. };
  3635. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3636. //ggml_assert_aligned(result->data);
  3637. for (int i = 0; i < n_dims; i++) {
  3638. result->ne[i] = ne[i];
  3639. }
  3640. result->nb[0] = GGML_TYPE_SIZE[type];
  3641. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3642. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3643. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3644. }
  3645. ctx->n_objects++;
  3646. return result;
  3647. }
  3648. struct ggml_tensor * ggml_new_tensor(
  3649. struct ggml_context * ctx,
  3650. enum ggml_type type,
  3651. int n_dims,
  3652. const int64_t * ne) {
  3653. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3654. }
  3655. struct ggml_tensor * ggml_new_tensor_1d(
  3656. struct ggml_context * ctx,
  3657. enum ggml_type type,
  3658. int64_t ne0) {
  3659. return ggml_new_tensor(ctx, type, 1, &ne0);
  3660. }
  3661. struct ggml_tensor * ggml_new_tensor_2d(
  3662. struct ggml_context * ctx,
  3663. enum ggml_type type,
  3664. int64_t ne0,
  3665. int64_t ne1) {
  3666. const int64_t ne[2] = { ne0, ne1 };
  3667. return ggml_new_tensor(ctx, type, 2, ne);
  3668. }
  3669. struct ggml_tensor * ggml_new_tensor_3d(
  3670. struct ggml_context * ctx,
  3671. enum ggml_type type,
  3672. int64_t ne0,
  3673. int64_t ne1,
  3674. int64_t ne2) {
  3675. const int64_t ne[3] = { ne0, ne1, ne2 };
  3676. return ggml_new_tensor(ctx, type, 3, ne);
  3677. }
  3678. struct ggml_tensor * ggml_new_tensor_4d(
  3679. struct ggml_context * ctx,
  3680. enum ggml_type type,
  3681. int64_t ne0,
  3682. int64_t ne1,
  3683. int64_t ne2,
  3684. int64_t ne3) {
  3685. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3686. return ggml_new_tensor(ctx, type, 4, ne);
  3687. }
  3688. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3689. ctx->scratch_save = ctx->scratch;
  3690. ctx->scratch.data = NULL;
  3691. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3692. ctx->scratch = ctx->scratch_save;
  3693. ggml_set_i32(result, value);
  3694. return result;
  3695. }
  3696. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3697. ctx->scratch_save = ctx->scratch;
  3698. ctx->scratch.data = NULL;
  3699. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3700. ctx->scratch = ctx->scratch_save;
  3701. ggml_set_f32(result, value);
  3702. return result;
  3703. }
  3704. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3705. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3706. }
  3707. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3708. memset(tensor->data, 0, ggml_nbytes(tensor));
  3709. return tensor;
  3710. }
  3711. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3712. const int n = ggml_nrows(tensor);
  3713. const int nc = tensor->ne[0];
  3714. const size_t n1 = tensor->nb[1];
  3715. char * const data = tensor->data;
  3716. switch (tensor->type) {
  3717. case GGML_TYPE_I8:
  3718. {
  3719. assert(tensor->nb[0] == sizeof(int8_t));
  3720. for (int i = 0; i < n; i++) {
  3721. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3722. }
  3723. } break;
  3724. case GGML_TYPE_I16:
  3725. {
  3726. assert(tensor->nb[0] == sizeof(int16_t));
  3727. for (int i = 0; i < n; i++) {
  3728. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3729. }
  3730. } break;
  3731. case GGML_TYPE_I32:
  3732. {
  3733. assert(tensor->nb[0] == sizeof(int32_t));
  3734. for (int i = 0; i < n; i++) {
  3735. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3736. }
  3737. } break;
  3738. case GGML_TYPE_F16:
  3739. {
  3740. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3741. for (int i = 0; i < n; i++) {
  3742. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3743. }
  3744. } break;
  3745. case GGML_TYPE_F32:
  3746. {
  3747. assert(tensor->nb[0] == sizeof(float));
  3748. for (int i = 0; i < n; i++) {
  3749. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3750. }
  3751. } break;
  3752. default:
  3753. {
  3754. GGML_ASSERT(false);
  3755. } break;
  3756. }
  3757. return tensor;
  3758. }
  3759. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3760. const int n = ggml_nrows(tensor);
  3761. const int nc = tensor->ne[0];
  3762. const size_t n1 = tensor->nb[1];
  3763. char * const data = tensor->data;
  3764. switch (tensor->type) {
  3765. case GGML_TYPE_I8:
  3766. {
  3767. assert(tensor->nb[0] == sizeof(int8_t));
  3768. for (int i = 0; i < n; i++) {
  3769. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3770. }
  3771. } break;
  3772. case GGML_TYPE_I16:
  3773. {
  3774. assert(tensor->nb[0] == sizeof(int16_t));
  3775. for (int i = 0; i < n; i++) {
  3776. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3777. }
  3778. } break;
  3779. case GGML_TYPE_I32:
  3780. {
  3781. assert(tensor->nb[0] == sizeof(int32_t));
  3782. for (int i = 0; i < n; i++) {
  3783. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3784. }
  3785. } break;
  3786. case GGML_TYPE_F16:
  3787. {
  3788. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3789. for (int i = 0; i < n; i++) {
  3790. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3791. }
  3792. } break;
  3793. case GGML_TYPE_F32:
  3794. {
  3795. assert(tensor->nb[0] == sizeof(float));
  3796. for (int i = 0; i < n; i++) {
  3797. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3798. }
  3799. } break;
  3800. default:
  3801. {
  3802. GGML_ASSERT(false);
  3803. } break;
  3804. }
  3805. return tensor;
  3806. }
  3807. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3808. switch (tensor->type) {
  3809. case GGML_TYPE_I8:
  3810. {
  3811. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3812. return ((int8_t *)(tensor->data))[i];
  3813. } break;
  3814. case GGML_TYPE_I16:
  3815. {
  3816. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3817. return ((int16_t *)(tensor->data))[i];
  3818. } break;
  3819. case GGML_TYPE_I32:
  3820. {
  3821. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3822. return ((int32_t *)(tensor->data))[i];
  3823. } break;
  3824. case GGML_TYPE_F16:
  3825. {
  3826. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3827. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3828. } break;
  3829. case GGML_TYPE_F32:
  3830. {
  3831. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3832. return ((float *)(tensor->data))[i];
  3833. } break;
  3834. default:
  3835. {
  3836. GGML_ASSERT(false);
  3837. } break;
  3838. }
  3839. return 0.0f;
  3840. }
  3841. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3842. switch (tensor->type) {
  3843. case GGML_TYPE_I8:
  3844. {
  3845. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3846. ((int8_t *)(tensor->data))[i] = value;
  3847. } break;
  3848. case GGML_TYPE_I16:
  3849. {
  3850. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3851. ((int16_t *)(tensor->data))[i] = value;
  3852. } break;
  3853. case GGML_TYPE_I32:
  3854. {
  3855. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3856. ((int32_t *)(tensor->data))[i] = value;
  3857. } break;
  3858. case GGML_TYPE_F16:
  3859. {
  3860. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3861. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3862. } break;
  3863. case GGML_TYPE_F32:
  3864. {
  3865. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3866. ((float *)(tensor->data))[i] = value;
  3867. } break;
  3868. default:
  3869. {
  3870. GGML_ASSERT(false);
  3871. } break;
  3872. }
  3873. }
  3874. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3875. switch (tensor->type) {
  3876. case GGML_TYPE_I8:
  3877. {
  3878. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3879. return ((int8_t *)(tensor->data))[i];
  3880. } break;
  3881. case GGML_TYPE_I16:
  3882. {
  3883. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3884. return ((int16_t *)(tensor->data))[i];
  3885. } break;
  3886. case GGML_TYPE_I32:
  3887. {
  3888. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3889. return ((int32_t *)(tensor->data))[i];
  3890. } break;
  3891. case GGML_TYPE_F16:
  3892. {
  3893. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3894. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3895. } break;
  3896. case GGML_TYPE_F32:
  3897. {
  3898. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3899. return ((float *)(tensor->data))[i];
  3900. } break;
  3901. default:
  3902. {
  3903. GGML_ASSERT(false);
  3904. } break;
  3905. }
  3906. return 0.0f;
  3907. }
  3908. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3909. switch (tensor->type) {
  3910. case GGML_TYPE_I8:
  3911. {
  3912. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3913. ((int8_t *)(tensor->data))[i] = value;
  3914. } break;
  3915. case GGML_TYPE_I16:
  3916. {
  3917. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3918. ((int16_t *)(tensor->data))[i] = value;
  3919. } break;
  3920. case GGML_TYPE_I32:
  3921. {
  3922. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3923. ((int32_t *)(tensor->data))[i] = value;
  3924. } break;
  3925. case GGML_TYPE_F16:
  3926. {
  3927. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3928. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3929. } break;
  3930. case GGML_TYPE_F32:
  3931. {
  3932. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3933. ((float *)(tensor->data))[i] = value;
  3934. } break;
  3935. default:
  3936. {
  3937. GGML_ASSERT(false);
  3938. } break;
  3939. }
  3940. }
  3941. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3942. return tensor->data;
  3943. }
  3944. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3945. assert(tensor->type == GGML_TYPE_F32);
  3946. return (float *)(tensor->data);
  3947. }
  3948. struct ggml_tensor * ggml_view_tensor(
  3949. struct ggml_context * ctx,
  3950. const struct ggml_tensor * src) {
  3951. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3952. result->nb[0] = src->nb[0];
  3953. result->nb[1] = src->nb[1];
  3954. result->nb[2] = src->nb[2];
  3955. result->nb[3] = src->nb[3];
  3956. return result;
  3957. }
  3958. ////////////////////////////////////////////////////////////////////////////////
  3959. // ggml_dup
  3960. struct ggml_tensor * ggml_dup_impl(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a,
  3963. bool inplace) {
  3964. bool is_node = false;
  3965. if (!inplace && (a->grad)) {
  3966. is_node = true;
  3967. }
  3968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3969. result->op = GGML_OP_DUP;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src0 = a;
  3972. result->src1 = NULL;
  3973. return result;
  3974. }
  3975. struct ggml_tensor * ggml_dup(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a) {
  3978. return ggml_dup_impl(ctx, a, false);
  3979. }
  3980. struct ggml_tensor * ggml_dup_inplace(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a) {
  3983. return ggml_dup_impl(ctx, a, true);
  3984. }
  3985. // ggml_add
  3986. struct ggml_tensor * ggml_add_impl(
  3987. struct ggml_context * ctx,
  3988. struct ggml_tensor * a,
  3989. struct ggml_tensor * b,
  3990. bool inplace) {
  3991. GGML_ASSERT(ggml_are_same_shape(a, b));
  3992. bool is_node = false;
  3993. if (!inplace && (a->grad || b->grad)) {
  3994. is_node = true;
  3995. }
  3996. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3997. result->op = GGML_OP_ADD;
  3998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3999. result->src0 = a;
  4000. result->src1 = b;
  4001. return result;
  4002. }
  4003. struct ggml_tensor * ggml_add(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. struct ggml_tensor * b) {
  4007. return ggml_add_impl(ctx, a, b, false);
  4008. }
  4009. struct ggml_tensor * ggml_add_inplace(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a,
  4012. struct ggml_tensor * b) {
  4013. return ggml_add_impl(ctx, a, b, true);
  4014. }
  4015. // ggml_sub
  4016. struct ggml_tensor * ggml_sub_impl(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a,
  4019. struct ggml_tensor * b,
  4020. bool inplace) {
  4021. GGML_ASSERT(ggml_are_same_shape(a, b));
  4022. bool is_node = false;
  4023. if (!inplace && (a->grad || b->grad)) {
  4024. is_node = true;
  4025. }
  4026. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4027. result->op = GGML_OP_SUB;
  4028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4029. result->src0 = a;
  4030. result->src1 = b;
  4031. return result;
  4032. }
  4033. struct ggml_tensor * ggml_sub(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a,
  4036. struct ggml_tensor * b) {
  4037. return ggml_sub_impl(ctx, a, b, false);
  4038. }
  4039. struct ggml_tensor * ggml_sub_inplace(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. struct ggml_tensor * b) {
  4043. return ggml_sub_impl(ctx, a, b, true);
  4044. }
  4045. // ggml_mul
  4046. struct ggml_tensor * ggml_mul_impl(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a,
  4049. struct ggml_tensor * b,
  4050. bool inplace) {
  4051. GGML_ASSERT(ggml_are_same_shape(a, b));
  4052. bool is_node = false;
  4053. if (!inplace && (a->grad || b->grad)) {
  4054. is_node = true;
  4055. }
  4056. if (inplace) {
  4057. GGML_ASSERT(is_node == false);
  4058. }
  4059. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4060. result->op = GGML_OP_MUL;
  4061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4062. result->src0 = a;
  4063. result->src1 = b;
  4064. return result;
  4065. }
  4066. struct ggml_tensor * ggml_mul(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a,
  4069. struct ggml_tensor * b) {
  4070. return ggml_mul_impl(ctx, a, b, false);
  4071. }
  4072. struct ggml_tensor * ggml_mul_inplace(
  4073. struct ggml_context * ctx,
  4074. struct ggml_tensor * a,
  4075. struct ggml_tensor * b) {
  4076. return ggml_mul_impl(ctx, a, b, true);
  4077. }
  4078. // ggml_div
  4079. struct ggml_tensor * ggml_div_impl(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a,
  4082. struct ggml_tensor * b,
  4083. bool inplace) {
  4084. GGML_ASSERT(ggml_are_same_shape(a, b));
  4085. bool is_node = false;
  4086. if (!inplace && (a->grad || b->grad)) {
  4087. is_node = true;
  4088. }
  4089. if (inplace) {
  4090. GGML_ASSERT(is_node == false);
  4091. }
  4092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4093. result->op = GGML_OP_DIV;
  4094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4095. result->src0 = a;
  4096. result->src1 = b;
  4097. return result;
  4098. }
  4099. struct ggml_tensor * ggml_div(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a,
  4102. struct ggml_tensor * b) {
  4103. return ggml_div_impl(ctx, a, b, false);
  4104. }
  4105. struct ggml_tensor * ggml_div_inplace(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a,
  4108. struct ggml_tensor * b) {
  4109. return ggml_div_impl(ctx, a, b, true);
  4110. }
  4111. // ggml_sqr
  4112. struct ggml_tensor * ggml_sqr_impl(
  4113. struct ggml_context * ctx,
  4114. struct ggml_tensor * a,
  4115. bool inplace) {
  4116. bool is_node = false;
  4117. if (!inplace && (a->grad)) {
  4118. is_node = true;
  4119. }
  4120. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4121. result->op = GGML_OP_SQR;
  4122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4123. result->src0 = a;
  4124. result->src1 = NULL;
  4125. return result;
  4126. }
  4127. struct ggml_tensor * ggml_sqr(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a) {
  4130. return ggml_sqr_impl(ctx, a, false);
  4131. }
  4132. struct ggml_tensor * ggml_sqr_inplace(
  4133. struct ggml_context * ctx,
  4134. struct ggml_tensor * a) {
  4135. return ggml_sqr_impl(ctx, a, true);
  4136. }
  4137. // ggml_sqrt
  4138. struct ggml_tensor * ggml_sqrt_impl(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. bool inplace) {
  4142. bool is_node = false;
  4143. if (!inplace && (a->grad)) {
  4144. is_node = true;
  4145. }
  4146. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4147. result->op = GGML_OP_SQRT;
  4148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4149. result->src0 = a;
  4150. result->src1 = NULL;
  4151. return result;
  4152. }
  4153. struct ggml_tensor * ggml_sqrt(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a) {
  4156. return ggml_sqrt_impl(ctx, a, false);
  4157. }
  4158. struct ggml_tensor * ggml_sqrt_inplace(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a) {
  4161. return ggml_sqrt_impl(ctx, a, true);
  4162. }
  4163. // ggml_sum
  4164. struct ggml_tensor * ggml_sum(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a) {
  4167. bool is_node = false;
  4168. if (a->grad) {
  4169. is_node = true;
  4170. }
  4171. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4172. result->op = GGML_OP_SUM;
  4173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4174. result->src0 = a;
  4175. result->src1 = NULL;
  4176. return result;
  4177. }
  4178. // ggml_mean
  4179. struct ggml_tensor * ggml_mean(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a) {
  4182. bool is_node = false;
  4183. if (a->grad) {
  4184. GGML_ASSERT(false); // TODO: implement
  4185. is_node = true;
  4186. }
  4187. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4188. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4189. result->op = GGML_OP_MEAN;
  4190. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4191. result->src0 = a;
  4192. result->src1 = NULL;
  4193. return result;
  4194. }
  4195. // ggml_repeat
  4196. struct ggml_tensor * ggml_repeat(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a,
  4199. struct ggml_tensor * b) {
  4200. GGML_ASSERT(ggml_can_repeat(a, b));
  4201. bool is_node = false;
  4202. if (a->grad) {
  4203. is_node = true;
  4204. }
  4205. if (ggml_are_same_shape(a, b) && !is_node) {
  4206. return a;
  4207. }
  4208. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4209. result->op = GGML_OP_REPEAT;
  4210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4211. result->src0 = a;
  4212. result->src1 = b;
  4213. return result;
  4214. }
  4215. // ggml_abs
  4216. struct ggml_tensor * ggml_abs_impl(
  4217. struct ggml_context * ctx,
  4218. struct ggml_tensor * a,
  4219. bool inplace) {
  4220. bool is_node = false;
  4221. if (!inplace && (a->grad)) {
  4222. is_node = true;
  4223. }
  4224. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4225. result->op = GGML_OP_ABS;
  4226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4227. result->src0 = a;
  4228. result->src1 = NULL;
  4229. return result;
  4230. }
  4231. struct ggml_tensor * ggml_abs(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a) {
  4234. return ggml_abs_impl(ctx, a, false);
  4235. }
  4236. struct ggml_tensor * ggml_abs_inplace(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a) {
  4239. return ggml_abs_impl(ctx, a, true);
  4240. }
  4241. // ggml_sgn
  4242. struct ggml_tensor * ggml_sgn_impl(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a,
  4245. bool inplace) {
  4246. bool is_node = false;
  4247. if (!inplace && (a->grad)) {
  4248. is_node = true;
  4249. }
  4250. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4251. result->op = GGML_OP_SGN;
  4252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4253. result->src0 = a;
  4254. result->src1 = NULL;
  4255. return result;
  4256. }
  4257. struct ggml_tensor * ggml_sgn(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a) {
  4260. return ggml_sgn_impl(ctx, a, false);
  4261. }
  4262. struct ggml_tensor * ggml_sgn_inplace(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a) {
  4265. return ggml_sgn_impl(ctx, a, true);
  4266. }
  4267. // ggml_neg
  4268. struct ggml_tensor * ggml_neg_impl(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * a,
  4271. bool inplace) {
  4272. bool is_node = false;
  4273. if (!inplace && (a->grad)) {
  4274. is_node = true;
  4275. }
  4276. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4277. result->op = GGML_OP_NEG;
  4278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4279. result->src0 = a;
  4280. result->src1 = NULL;
  4281. return result;
  4282. }
  4283. struct ggml_tensor * ggml_neg(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a) {
  4286. return ggml_neg_impl(ctx, a, false);
  4287. }
  4288. struct ggml_tensor * ggml_neg_inplace(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a) {
  4291. return ggml_neg_impl(ctx, a, true);
  4292. }
  4293. // ggml_step
  4294. struct ggml_tensor * ggml_step_impl(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a,
  4297. bool inplace) {
  4298. bool is_node = false;
  4299. if (!inplace && (a->grad)) {
  4300. is_node = true;
  4301. }
  4302. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4303. result->op = GGML_OP_STEP;
  4304. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4305. result->src0 = a;
  4306. result->src1 = NULL;
  4307. return result;
  4308. }
  4309. struct ggml_tensor * ggml_step(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a) {
  4312. return ggml_step_impl(ctx, a, false);
  4313. }
  4314. struct ggml_tensor * ggml_step_inplace(
  4315. struct ggml_context * ctx,
  4316. struct ggml_tensor * a) {
  4317. return ggml_step_impl(ctx, a, true);
  4318. }
  4319. // ggml_relu
  4320. struct ggml_tensor * ggml_relu_impl(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a,
  4323. bool inplace) {
  4324. bool is_node = false;
  4325. if (!inplace && (a->grad)) {
  4326. is_node = true;
  4327. }
  4328. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4329. result->op = GGML_OP_RELU;
  4330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4331. result->src0 = a;
  4332. result->src1 = NULL;
  4333. return result;
  4334. }
  4335. struct ggml_tensor * ggml_relu(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a) {
  4338. return ggml_relu_impl(ctx, a, false);
  4339. }
  4340. struct ggml_tensor * ggml_relu_inplace(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a) {
  4343. return ggml_relu_impl(ctx, a, true);
  4344. }
  4345. // ggml_gelu
  4346. struct ggml_tensor * ggml_gelu_impl(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a,
  4349. bool inplace) {
  4350. bool is_node = false;
  4351. if (!inplace && (a->grad)) {
  4352. is_node = true;
  4353. }
  4354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4355. result->op = GGML_OP_GELU;
  4356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4357. result->src0 = a;
  4358. result->src1 = NULL;
  4359. return result;
  4360. }
  4361. struct ggml_tensor * ggml_gelu(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a) {
  4364. return ggml_gelu_impl(ctx, a, false);
  4365. }
  4366. struct ggml_tensor * ggml_gelu_inplace(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * a) {
  4369. return ggml_gelu_impl(ctx, a, true);
  4370. }
  4371. // ggml_silu
  4372. struct ggml_tensor * ggml_silu_impl(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a,
  4375. bool inplace) {
  4376. bool is_node = false;
  4377. if (!inplace && (a->grad)) {
  4378. is_node = true;
  4379. }
  4380. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4381. result->op = GGML_OP_SILU;
  4382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4383. result->src0 = a;
  4384. result->src1 = NULL;
  4385. return result;
  4386. }
  4387. struct ggml_tensor * ggml_silu(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a) {
  4390. return ggml_silu_impl(ctx, a, false);
  4391. }
  4392. struct ggml_tensor * ggml_silu_inplace(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a) {
  4395. return ggml_silu_impl(ctx, a, true);
  4396. }
  4397. // ggml_norm
  4398. struct ggml_tensor * ggml_norm_impl(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. bool inplace) {
  4402. bool is_node = false;
  4403. if (!inplace && (a->grad)) {
  4404. GGML_ASSERT(false); // TODO: implement backward
  4405. is_node = true;
  4406. }
  4407. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4408. result->op = GGML_OP_NORM;
  4409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4410. result->src0 = a;
  4411. result->src1 = NULL; // TODO: maybe store epsilon here?
  4412. return result;
  4413. }
  4414. struct ggml_tensor * ggml_norm(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a) {
  4417. return ggml_norm_impl(ctx, a, false);
  4418. }
  4419. struct ggml_tensor * ggml_norm_inplace(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a) {
  4422. return ggml_norm_impl(ctx, a, true);
  4423. }
  4424. struct ggml_tensor * ggml_rms_norm_impl(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a,
  4427. bool inplace) {
  4428. bool is_node = false;
  4429. if (!inplace && (a->grad)) {
  4430. GGML_ASSERT(false); // TODO: implement backward
  4431. is_node = true;
  4432. }
  4433. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4434. result->op = GGML_OP_RMS_NORM;
  4435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4436. result->src0 = a;
  4437. result->src1 = NULL; // TODO: maybe store epsilon here?
  4438. return result;
  4439. }
  4440. struct ggml_tensor * ggml_rms_norm(
  4441. struct ggml_context * ctx,
  4442. struct ggml_tensor * a) {
  4443. return ggml_rms_norm_impl(ctx, a, false);
  4444. }
  4445. struct ggml_tensor * ggml_rms_norm_inplace(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a) {
  4448. return ggml_rms_norm_impl(ctx, a, true);
  4449. }
  4450. // ggml_mul_mat
  4451. struct ggml_tensor * ggml_mul_mat(
  4452. struct ggml_context * ctx,
  4453. struct ggml_tensor * a,
  4454. struct ggml_tensor * b) {
  4455. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4456. GGML_ASSERT(!ggml_is_transposed(a));
  4457. bool is_node = false;
  4458. if (a->grad || b->grad) {
  4459. is_node = true;
  4460. }
  4461. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4462. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4463. result->op = GGML_OP_MUL_MAT;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src0 = a;
  4466. result->src1 = b;
  4467. return result;
  4468. }
  4469. // ggml_scale
  4470. struct ggml_tensor * ggml_scale_impl(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a,
  4473. struct ggml_tensor * b,
  4474. bool inplace) {
  4475. GGML_ASSERT(ggml_is_scalar(b));
  4476. GGML_ASSERT(ggml_is_padded_1d(a));
  4477. bool is_node = false;
  4478. if (!inplace && (a->grad || b->grad)) {
  4479. GGML_ASSERT(false); // TODO: implement backward
  4480. is_node = true;
  4481. }
  4482. // TODO: when implement backward, fix this:
  4483. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4484. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4485. result->op = GGML_OP_SCALE;
  4486. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4487. result->src0 = a;
  4488. result->src1 = b;
  4489. return result;
  4490. }
  4491. struct ggml_tensor * ggml_scale(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. struct ggml_tensor * b) {
  4495. return ggml_scale_impl(ctx, a, b, false);
  4496. }
  4497. struct ggml_tensor * ggml_scale_inplace(
  4498. struct ggml_context * ctx,
  4499. struct ggml_tensor * a,
  4500. struct ggml_tensor * b) {
  4501. return ggml_scale_impl(ctx, a, b, true);
  4502. }
  4503. // ggml_cpy
  4504. struct ggml_tensor * ggml_cpy_impl(
  4505. struct ggml_context * ctx,
  4506. struct ggml_tensor * a,
  4507. struct ggml_tensor * b,
  4508. bool inplace) {
  4509. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4510. bool is_node = false;
  4511. if (!inplace && (a->grad || b->grad)) {
  4512. GGML_ASSERT(false); // TODO: implement backward
  4513. is_node = true;
  4514. }
  4515. // make a view of the destination
  4516. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4517. result->op = GGML_OP_CPY;
  4518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4519. result->src0 = a;
  4520. result->src1 = b;
  4521. return result;
  4522. }
  4523. struct ggml_tensor * ggml_cpy(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. struct ggml_tensor * b) {
  4527. return ggml_cpy_impl(ctx, a, b, false);
  4528. }
  4529. struct ggml_tensor * ggml_cpy_inplace(
  4530. struct ggml_context * ctx,
  4531. struct ggml_tensor * a,
  4532. struct ggml_tensor * b) {
  4533. return ggml_cpy_impl(ctx, a, b, true);
  4534. }
  4535. // ggml_cont
  4536. struct ggml_tensor * ggml_cont_impl(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. bool inplace) {
  4540. bool is_node = false;
  4541. if (!inplace && a->grad) {
  4542. GGML_ASSERT(false); // TODO: implement backward
  4543. is_node = true;
  4544. }
  4545. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4546. result->op = GGML_OP_CONT;
  4547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4548. result->src0 = a;
  4549. result->src1 = NULL;
  4550. return result;
  4551. }
  4552. struct ggml_tensor * ggml_cont(
  4553. struct ggml_context * ctx,
  4554. struct ggml_tensor * a) {
  4555. return ggml_cont_impl(ctx, a, false);
  4556. }
  4557. struct ggml_tensor * ggml_cont_inplace(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a) {
  4560. return ggml_cont_impl(ctx, a, true);
  4561. }
  4562. // ggml_reshape
  4563. struct ggml_tensor * ggml_reshape(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. struct ggml_tensor * b) {
  4567. GGML_ASSERT(ggml_is_contiguous(a));
  4568. GGML_ASSERT(ggml_is_contiguous(b));
  4569. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4570. bool is_node = false;
  4571. if (a->grad || b->grad) {
  4572. GGML_ASSERT(false); // TODO: implement backward
  4573. is_node = true;
  4574. }
  4575. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4576. result->op = GGML_OP_RESHAPE;
  4577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4578. result->src0 = a;
  4579. result->src1 = NULL;
  4580. return result;
  4581. }
  4582. struct ggml_tensor * ggml_reshape_2d(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a,
  4585. int64_t ne0,
  4586. int64_t ne1) {
  4587. GGML_ASSERT(ggml_is_contiguous(a));
  4588. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4589. bool is_node = false;
  4590. if (a->grad) {
  4591. GGML_ASSERT(false); // TODO: implement backward
  4592. is_node = true;
  4593. }
  4594. const int64_t ne[2] = { ne0, ne1 };
  4595. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4596. result->op = GGML_OP_RESHAPE;
  4597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4598. result->src0 = a;
  4599. result->src1 = NULL;
  4600. return result;
  4601. }
  4602. struct ggml_tensor * ggml_reshape_3d(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. int64_t ne0,
  4606. int64_t ne1,
  4607. int64_t ne2) {
  4608. GGML_ASSERT(ggml_is_contiguous(a));
  4609. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4610. bool is_node = false;
  4611. if (a->grad) {
  4612. GGML_ASSERT(false); // TODO: implement backward
  4613. is_node = true;
  4614. }
  4615. const int64_t ne[3] = { ne0, ne1, ne2 };
  4616. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4617. result->op = GGML_OP_RESHAPE;
  4618. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4619. result->src0 = a;
  4620. result->src1 = NULL;
  4621. return result;
  4622. }
  4623. // ggml_view_1d
  4624. struct ggml_tensor * ggml_view_1d(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. int64_t ne0,
  4628. size_t offset) {
  4629. if (a->grad) {
  4630. GGML_ASSERT(false); // gradient propagation is not supported
  4631. }
  4632. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4633. result->op = GGML_OP_VIEW;
  4634. result->grad = NULL;
  4635. result->src0 = a;
  4636. result->src1 = NULL; // TODO: maybe store the offset here?
  4637. return result;
  4638. }
  4639. // ggml_view_2d
  4640. struct ggml_tensor * ggml_view_2d(
  4641. struct ggml_context * ctx,
  4642. struct ggml_tensor * a,
  4643. int64_t ne0,
  4644. int64_t ne1,
  4645. size_t nb1,
  4646. size_t offset) {
  4647. if (a->grad) {
  4648. GGML_ASSERT(false); // gradient propagation is not supported
  4649. }
  4650. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4651. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4652. result->nb[1] = nb1;
  4653. result->nb[2] = result->nb[1]*ne1;
  4654. result->nb[3] = result->nb[2];
  4655. result->op = GGML_OP_VIEW;
  4656. result->grad = NULL;
  4657. result->src0 = a;
  4658. result->src1 = NULL; // TODO: maybe store the offset here?
  4659. return result;
  4660. }
  4661. // ggml_view_3d
  4662. struct ggml_tensor * ggml_view_3d(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. int64_t ne0,
  4666. int64_t ne1,
  4667. int64_t ne2,
  4668. size_t nb1,
  4669. size_t nb2,
  4670. size_t offset) {
  4671. if (a->grad) {
  4672. GGML_ASSERT(false); // gradient propagation is not supported
  4673. }
  4674. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4675. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4676. result->nb[1] = nb1;
  4677. result->nb[2] = nb2;
  4678. result->nb[3] = result->nb[2]*ne2;
  4679. result->op = GGML_OP_VIEW;
  4680. result->grad = NULL;
  4681. result->src0 = a;
  4682. result->src1 = NULL; // TODO: maybe store the offset here?
  4683. return result;
  4684. }
  4685. // ggml_permute
  4686. struct ggml_tensor * ggml_permute(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a,
  4689. int axis0,
  4690. int axis1,
  4691. int axis2,
  4692. int axis3) {
  4693. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4694. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4695. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4696. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4697. GGML_ASSERT(axis0 != axis1);
  4698. GGML_ASSERT(axis0 != axis2);
  4699. GGML_ASSERT(axis0 != axis3);
  4700. GGML_ASSERT(axis1 != axis2);
  4701. GGML_ASSERT(axis1 != axis3);
  4702. GGML_ASSERT(axis2 != axis3);
  4703. bool is_node = false;
  4704. if (a->grad) {
  4705. GGML_ASSERT(false); // TODO: implement backward
  4706. is_node = true;
  4707. }
  4708. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4709. int ne[GGML_MAX_DIMS];
  4710. int nb[GGML_MAX_DIMS];
  4711. ne[axis0] = a->ne[0];
  4712. ne[axis1] = a->ne[1];
  4713. ne[axis2] = a->ne[2];
  4714. ne[axis3] = a->ne[3];
  4715. nb[axis0] = a->nb[0];
  4716. nb[axis1] = a->nb[1];
  4717. nb[axis2] = a->nb[2];
  4718. nb[axis3] = a->nb[3];
  4719. result->ne[0] = ne[0];
  4720. result->ne[1] = ne[1];
  4721. result->ne[2] = ne[2];
  4722. result->ne[3] = ne[3];
  4723. result->nb[0] = nb[0];
  4724. result->nb[1] = nb[1];
  4725. result->nb[2] = nb[2];
  4726. result->nb[3] = nb[3];
  4727. result->op = GGML_OP_PERMUTE;
  4728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4729. result->src0 = a;
  4730. result->src1 = NULL; // TODO: maybe store the permutation here?
  4731. return result;
  4732. }
  4733. // ggml_transpose
  4734. struct ggml_tensor * ggml_transpose(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a) {
  4737. bool is_node = false;
  4738. if (a->grad) {
  4739. GGML_ASSERT(false); // TODO: implement backward
  4740. is_node = true;
  4741. }
  4742. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4743. result->ne[0] = a->ne[1];
  4744. result->ne[1] = a->ne[0];
  4745. result->nb[0] = a->nb[1];
  4746. result->nb[1] = a->nb[0];
  4747. result->op = GGML_OP_TRANSPOSE;
  4748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4749. result->src0 = a;
  4750. result->src1 = NULL;
  4751. return result;
  4752. }
  4753. // ggml_get_rows
  4754. struct ggml_tensor * ggml_get_rows(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. struct ggml_tensor * b) {
  4758. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4759. bool is_node = false;
  4760. if (a->grad || b->grad) {
  4761. GGML_ASSERT(false); // TODO: implement backward
  4762. is_node = true;
  4763. }
  4764. // TODO: implement non F32 return
  4765. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4766. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4767. result->op = GGML_OP_GET_ROWS;
  4768. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4769. result->src0 = a;
  4770. result->src1 = b;
  4771. return result;
  4772. }
  4773. // ggml_diag_mask_inf
  4774. struct ggml_tensor * ggml_diag_mask_inf(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * a,
  4777. int n_past) {
  4778. bool is_node = false;
  4779. if (a->grad) {
  4780. GGML_ASSERT(false); // TODO: implement backward
  4781. is_node = true;
  4782. }
  4783. // TODO: when implement backward, fix this:
  4784. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4785. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4786. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4787. result->op = GGML_OP_DIAG_MASK_INF;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src0 = a;
  4790. result->src1 = b;
  4791. return result;
  4792. }
  4793. // ggml_soft_max
  4794. struct ggml_tensor * ggml_soft_max(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a) {
  4797. bool is_node = false;
  4798. if (a->grad) {
  4799. GGML_ASSERT(false); // TODO: implement backward
  4800. is_node = true;
  4801. }
  4802. // TODO: when implement backward, fix this:
  4803. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4804. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4805. result->op = GGML_OP_SOFT_MAX;
  4806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4807. result->src0 = a;
  4808. result->src1 = NULL;
  4809. return result;
  4810. }
  4811. // ggml_rope
  4812. struct ggml_tensor * ggml_rope(
  4813. struct ggml_context * ctx,
  4814. struct ggml_tensor * a,
  4815. int n_past,
  4816. int n_dims,
  4817. int mode) {
  4818. GGML_ASSERT(n_past >= 0);
  4819. bool is_node = false;
  4820. if (a->grad) {
  4821. GGML_ASSERT(false); // TODO: implement backward
  4822. is_node = true;
  4823. }
  4824. // TODO: when implement backward, fix this:
  4825. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4826. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4827. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4828. ((int32_t *) b->data)[0] = n_past;
  4829. ((int32_t *) b->data)[1] = n_dims;
  4830. ((int32_t *) b->data)[2] = mode;
  4831. result->op = GGML_OP_ROPE;
  4832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4833. result->src0 = a;
  4834. result->src1 = b;
  4835. return result;
  4836. }
  4837. // ggml_conv_1d_1s
  4838. struct ggml_tensor * ggml_conv_1d_1s(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a,
  4841. struct ggml_tensor * b) {
  4842. GGML_ASSERT(ggml_is_matrix(b));
  4843. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4844. GGML_ASSERT(a->ne[3] == 1);
  4845. bool is_node = false;
  4846. if (a->grad || b->grad) {
  4847. GGML_ASSERT(false); // TODO: implement backward
  4848. is_node = true;
  4849. }
  4850. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4851. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4852. result->op = GGML_OP_CONV_1D_1S;
  4853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4854. result->src0 = a;
  4855. result->src1 = b;
  4856. return result;
  4857. }
  4858. // ggml_conv_1d_2s
  4859. struct ggml_tensor * ggml_conv_1d_2s(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. struct ggml_tensor * b) {
  4863. GGML_ASSERT(ggml_is_matrix(b));
  4864. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4865. GGML_ASSERT(a->ne[3] == 1);
  4866. bool is_node = false;
  4867. if (a->grad || b->grad) {
  4868. GGML_ASSERT(false); // TODO: implement backward
  4869. is_node = true;
  4870. }
  4871. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4872. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4873. result->op = GGML_OP_CONV_1D_2S;
  4874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4875. result->src0 = a;
  4876. result->src1 = b;
  4877. return result;
  4878. }
  4879. // ggml_flash_attn
  4880. struct ggml_tensor * ggml_flash_attn(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * q,
  4883. struct ggml_tensor * k,
  4884. struct ggml_tensor * v,
  4885. bool masked) {
  4886. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4887. // TODO: check if vT can be multiplied by (k*qT)
  4888. bool is_node = false;
  4889. if (q->grad || k->grad || v->grad) {
  4890. GGML_ASSERT(false); // TODO: implement backward
  4891. is_node = true;
  4892. }
  4893. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4894. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4895. result->op = GGML_OP_FLASH_ATTN;
  4896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4897. result->src0 = q;
  4898. result->src1 = k;
  4899. result->opt[0] = v;
  4900. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4901. return result;
  4902. }
  4903. // ggml_flash_ff
  4904. struct ggml_tensor * ggml_flash_ff(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. struct ggml_tensor * b0,
  4908. struct ggml_tensor * b1,
  4909. struct ggml_tensor * c0,
  4910. struct ggml_tensor * c1) {
  4911. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4912. // TODO: more checks
  4913. bool is_node = false;
  4914. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4915. GGML_ASSERT(false); // TODO: implement backward
  4916. is_node = true;
  4917. }
  4918. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4919. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4920. result->op = GGML_OP_FLASH_FF;
  4921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4922. result->src0 = a;
  4923. result->src1 = b0;
  4924. result->opt[0] = b1;
  4925. result->opt[1] = c0;
  4926. result->opt[2] = c1;
  4927. return result;
  4928. }
  4929. // ggml_map_unary
  4930. struct ggml_tensor * ggml_map_unary_impl_f32(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. const ggml_unary_op_f32_t fun,
  4934. bool inplace) {
  4935. bool is_node = false;
  4936. if (!inplace && a->grad) {
  4937. is_node = true;
  4938. }
  4939. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4940. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4941. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4942. result->op = GGML_OP_MAP_UNARY;
  4943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4944. result->src0 = a;
  4945. result->opt[0] = addr_tensor;
  4946. return result;
  4947. }
  4948. struct ggml_tensor * ggml_map_unary_f32(
  4949. struct ggml_context * ctx,
  4950. struct ggml_tensor * a,
  4951. const ggml_unary_op_f32_t fun) {
  4952. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4953. }
  4954. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. const ggml_unary_op_f32_t fun) {
  4958. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4959. }
  4960. // ggml_map_binary
  4961. struct ggml_tensor * ggml_map_binary_impl_f32(
  4962. struct ggml_context * ctx,
  4963. struct ggml_tensor * a,
  4964. struct ggml_tensor * b,
  4965. const ggml_binary_op_f32_t fun,
  4966. bool inplace) {
  4967. GGML_ASSERT(ggml_are_same_shape(a, b));
  4968. bool is_node = false;
  4969. if (!inplace && (a->grad || b->grad)) {
  4970. is_node = true;
  4971. }
  4972. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4973. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4974. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4975. result->op = GGML_OP_MAP_BINARY;
  4976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4977. result->src0 = a;
  4978. result->src1 = b;
  4979. result->opt[0] = addr_tensor;
  4980. return result;
  4981. }
  4982. struct ggml_tensor * ggml_map_binary_f32(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. struct ggml_tensor * b,
  4986. const ggml_binary_op_f32_t fun) {
  4987. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4988. }
  4989. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4990. struct ggml_context * ctx,
  4991. struct ggml_tensor * a,
  4992. struct ggml_tensor * b,
  4993. const ggml_binary_op_f32_t fun) {
  4994. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4995. }
  4996. ////////////////////////////////////////////////////////////////////////////////
  4997. void ggml_set_param(
  4998. struct ggml_context * ctx,
  4999. struct ggml_tensor * tensor) {
  5000. tensor->is_param = true;
  5001. GGML_ASSERT(tensor->grad == NULL);
  5002. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5003. }
  5004. // ggml_compute_forward_dup
  5005. static void ggml_compute_forward_dup_f16(
  5006. const struct ggml_compute_params * params,
  5007. const struct ggml_tensor * src0,
  5008. struct ggml_tensor * dst) {
  5009. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5010. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5011. return;
  5012. }
  5013. const int64_t ne00 = src0->ne[0];
  5014. const int64_t ne01 = src0->ne[1];
  5015. const int64_t ne02 = src0->ne[2];
  5016. const int64_t ne03 = src0->ne[3];
  5017. const int64_t ne0 = dst->ne[0];
  5018. const int64_t ne1 = dst->ne[1];
  5019. const int64_t ne2 = dst->ne[2];
  5020. const int64_t ne3 = dst->ne[3];
  5021. const size_t nb00 = src0->nb[0];
  5022. const size_t nb01 = src0->nb[1];
  5023. const size_t nb02 = src0->nb[2];
  5024. const size_t nb03 = src0->nb[3];
  5025. const size_t nb0 = dst->nb[0];
  5026. const size_t nb1 = dst->nb[1];
  5027. const size_t nb2 = dst->nb[2];
  5028. const size_t nb3 = dst->nb[3];
  5029. const int ith = params->ith; // thread index
  5030. const int nth = params->nth; // number of threads
  5031. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5032. // parallelize by elements
  5033. const int ne = ggml_nelements(dst);
  5034. const int dr = (ne + nth - 1) / nth;
  5035. const int ie0 = dr * ith;
  5036. const int ie1 = MIN(ie0 + dr, ne);
  5037. memcpy(
  5038. ((char *) dst->data + ie0*nb0),
  5039. ((char *) src0->data + ie0*nb00),
  5040. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5041. return;
  5042. }
  5043. // parallelize by rows
  5044. const int nr = ne01;
  5045. // number of rows per thread
  5046. const int dr = (nr + nth - 1) / nth;
  5047. // row range for this thread
  5048. const int ir0 = dr * ith;
  5049. const int ir1 = MIN(ir0 + dr, nr);
  5050. if (src0->type == dst->type &&
  5051. ne00 == ne0 &&
  5052. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5053. // copy by rows
  5054. const size_t rs = ne00*nb00;
  5055. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5056. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5057. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5058. memcpy(
  5059. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5060. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5061. rs);
  5062. }
  5063. }
  5064. }
  5065. return;
  5066. }
  5067. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5068. if (ggml_is_contiguous(dst)) {
  5069. if (nb00 == sizeof(ggml_fp16_t)) {
  5070. if (dst->type == GGML_TYPE_F16) {
  5071. size_t id = 0;
  5072. const size_t rs = ne00 * nb00;
  5073. char * dst_ptr = (char *) dst->data;
  5074. for (int i03 = 0; i03 < ne03; i03++) {
  5075. for (int i02 = 0; i02 < ne02; i02++) {
  5076. id += rs * ir0;
  5077. for (int i01 = ir0; i01 < ir1; i01++) {
  5078. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5079. memcpy(dst_ptr + id, src0_ptr, rs);
  5080. id += rs;
  5081. }
  5082. id += rs * (ne01 - ir1);
  5083. }
  5084. }
  5085. } else if (dst->type == GGML_TYPE_F32) {
  5086. size_t id = 0;
  5087. float * dst_ptr = (float *) dst->data;
  5088. for (int i03 = 0; i03 < ne03; i03++) {
  5089. for (int i02 = 0; i02 < ne02; i02++) {
  5090. id += ne00 * ir0;
  5091. for (int i01 = ir0; i01 < ir1; i01++) {
  5092. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5093. for (int i00 = 0; i00 < ne00; i00++) {
  5094. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5095. id++;
  5096. }
  5097. }
  5098. id += ne00 * (ne01 - ir1);
  5099. }
  5100. }
  5101. } else if (ggml_is_quantized(dst->type)) {
  5102. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5103. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5104. size_t id = 0;
  5105. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5106. char * dst_ptr = (char *) dst->data;
  5107. for (int i03 = 0; i03 < ne03; i03++) {
  5108. for (int i02 = 0; i02 < ne02; i02++) {
  5109. id += rs * ir0;
  5110. for (int i01 = ir0; i01 < ir1; i01++) {
  5111. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5112. for (int i00 = 0; i00 < ne00; i00++) {
  5113. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5114. }
  5115. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5116. id += rs;
  5117. }
  5118. id += rs * (ne01 - ir1);
  5119. }
  5120. }
  5121. } else {
  5122. GGML_ASSERT(false); // TODO: implement
  5123. }
  5124. } else {
  5125. //printf("%s: this is not optimal - fix me\n", __func__);
  5126. if (dst->type == GGML_TYPE_F32) {
  5127. size_t id = 0;
  5128. float * dst_ptr = (float *) dst->data;
  5129. for (int i03 = 0; i03 < ne03; i03++) {
  5130. for (int i02 = 0; i02 < ne02; i02++) {
  5131. id += ne00 * ir0;
  5132. for (int i01 = ir0; i01 < ir1; i01++) {
  5133. for (int i00 = 0; i00 < ne00; i00++) {
  5134. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5135. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5136. id++;
  5137. }
  5138. }
  5139. id += ne00 * (ne01 - ir1);
  5140. }
  5141. }
  5142. } else if (dst->type == GGML_TYPE_F16) {
  5143. size_t id = 0;
  5144. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5145. for (int i03 = 0; i03 < ne03; i03++) {
  5146. for (int i02 = 0; i02 < ne02; i02++) {
  5147. id += ne00 * ir0;
  5148. for (int i01 = ir0; i01 < ir1; i01++) {
  5149. for (int i00 = 0; i00 < ne00; i00++) {
  5150. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5151. dst_ptr[id] = *src0_ptr;
  5152. id++;
  5153. }
  5154. }
  5155. id += ne00 * (ne01 - ir1);
  5156. }
  5157. }
  5158. } else {
  5159. GGML_ASSERT(false); // TODO: implement
  5160. }
  5161. }
  5162. return;
  5163. }
  5164. // dst counters
  5165. int64_t i10 = 0;
  5166. int64_t i11 = 0;
  5167. int64_t i12 = 0;
  5168. int64_t i13 = 0;
  5169. if (dst->type == GGML_TYPE_F16) {
  5170. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5171. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5172. i10 += ne00 * ir0;
  5173. while (i10 >= ne0) {
  5174. i10 -= ne0;
  5175. if (++i11 == ne1) {
  5176. i11 = 0;
  5177. if (++i12 == ne2) {
  5178. i12 = 0;
  5179. if (++i13 == ne3) {
  5180. i13 = 0;
  5181. }
  5182. }
  5183. }
  5184. }
  5185. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5186. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5187. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5188. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5189. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5190. if (++i10 == ne00) {
  5191. i10 = 0;
  5192. if (++i11 == ne01) {
  5193. i11 = 0;
  5194. if (++i12 == ne02) {
  5195. i12 = 0;
  5196. if (++i13 == ne03) {
  5197. i13 = 0;
  5198. }
  5199. }
  5200. }
  5201. }
  5202. }
  5203. }
  5204. i10 += ne00 * (ne01 - ir1);
  5205. while (i10 >= ne0) {
  5206. i10 -= ne0;
  5207. if (++i11 == ne1) {
  5208. i11 = 0;
  5209. if (++i12 == ne2) {
  5210. i12 = 0;
  5211. if (++i13 == ne3) {
  5212. i13 = 0;
  5213. }
  5214. }
  5215. }
  5216. }
  5217. }
  5218. }
  5219. } else if (dst->type == GGML_TYPE_F32) {
  5220. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5221. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5222. i10 += ne00 * ir0;
  5223. while (i10 >= ne0) {
  5224. i10 -= ne0;
  5225. if (++i11 == ne1) {
  5226. i11 = 0;
  5227. if (++i12 == ne2) {
  5228. i12 = 0;
  5229. if (++i13 == ne3) {
  5230. i13 = 0;
  5231. }
  5232. }
  5233. }
  5234. }
  5235. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5236. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5237. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5238. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5239. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5240. if (++i10 == ne0) {
  5241. i10 = 0;
  5242. if (++i11 == ne1) {
  5243. i11 = 0;
  5244. if (++i12 == ne2) {
  5245. i12 = 0;
  5246. if (++i13 == ne3) {
  5247. i13 = 0;
  5248. }
  5249. }
  5250. }
  5251. }
  5252. }
  5253. }
  5254. i10 += ne00 * (ne01 - ir1);
  5255. while (i10 >= ne0) {
  5256. i10 -= ne0;
  5257. if (++i11 == ne1) {
  5258. i11 = 0;
  5259. if (++i12 == ne2) {
  5260. i12 = 0;
  5261. if (++i13 == ne3) {
  5262. i13 = 0;
  5263. }
  5264. }
  5265. }
  5266. }
  5267. }
  5268. }
  5269. } else {
  5270. GGML_ASSERT(false); // TODO: implement
  5271. }
  5272. }
  5273. static void ggml_compute_forward_dup_f32(
  5274. const struct ggml_compute_params * params,
  5275. const struct ggml_tensor * src0,
  5276. struct ggml_tensor * dst) {
  5277. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5278. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5279. return;
  5280. }
  5281. const int64_t ne00 = src0->ne[0];
  5282. const int64_t ne01 = src0->ne[1];
  5283. const int64_t ne02 = src0->ne[2];
  5284. const int64_t ne03 = src0->ne[3];
  5285. const int64_t ne0 = dst->ne[0];
  5286. const int64_t ne1 = dst->ne[1];
  5287. const int64_t ne2 = dst->ne[2];
  5288. const int64_t ne3 = dst->ne[3];
  5289. const size_t nb00 = src0->nb[0];
  5290. const size_t nb01 = src0->nb[1];
  5291. const size_t nb02 = src0->nb[2];
  5292. const size_t nb03 = src0->nb[3];
  5293. const size_t nb0 = dst->nb[0];
  5294. const size_t nb1 = dst->nb[1];
  5295. const size_t nb2 = dst->nb[2];
  5296. const size_t nb3 = dst->nb[3];
  5297. const int ith = params->ith; // thread index
  5298. const int nth = params->nth; // number of threads
  5299. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5300. // parallelize by elements
  5301. const int ne = ggml_nelements(dst);
  5302. const int dr = (ne + nth - 1) / nth;
  5303. const int ie0 = dr * ith;
  5304. const int ie1 = MIN(ie0 + dr, ne);
  5305. memcpy(
  5306. ((char *) dst->data + ie0*nb0),
  5307. ((char *) src0->data + ie0*nb00),
  5308. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5309. return;
  5310. }
  5311. // parallelize by rows
  5312. const int nr = ne01;
  5313. // number of rows per thread
  5314. const int dr = (nr + nth - 1) / nth;
  5315. // row range for this thread
  5316. const int ir0 = dr * ith;
  5317. const int ir1 = MIN(ir0 + dr, nr);
  5318. if (src0->type == dst->type &&
  5319. ne00 == ne0 &&
  5320. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5321. // copy by rows
  5322. const size_t rs = ne00*nb00;
  5323. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5324. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5325. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5326. memcpy(
  5327. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5328. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5329. rs);
  5330. }
  5331. }
  5332. }
  5333. return;
  5334. }
  5335. if (ggml_is_contiguous(dst)) {
  5336. // TODO: simplify
  5337. if (nb00 == sizeof(float)) {
  5338. if (dst->type == GGML_TYPE_F32) {
  5339. size_t id = 0;
  5340. const size_t rs = ne00 * nb00;
  5341. char * dst_ptr = (char *) dst->data;
  5342. for (int i03 = 0; i03 < ne03; i03++) {
  5343. for (int i02 = 0; i02 < ne02; i02++) {
  5344. id += rs * ir0;
  5345. for (int i01 = ir0; i01 < ir1; i01++) {
  5346. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5347. memcpy(dst_ptr + id, src0_ptr, rs);
  5348. id += rs;
  5349. }
  5350. id += rs * (ne01 - ir1);
  5351. }
  5352. }
  5353. } else if (dst->type == GGML_TYPE_F16) {
  5354. size_t id = 0;
  5355. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5356. for (int i03 = 0; i03 < ne03; i03++) {
  5357. for (int i02 = 0; i02 < ne02; i02++) {
  5358. id += ne00 * ir0;
  5359. for (int i01 = ir0; i01 < ir1; i01++) {
  5360. for (int i00 = 0; i00 < ne00; i00++) {
  5361. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5362. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5363. id++;
  5364. }
  5365. }
  5366. id += ne00 * (ne01 - ir1);
  5367. }
  5368. }
  5369. } else if (ggml_is_quantized(dst->type)) {
  5370. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5371. size_t id = 0;
  5372. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5373. char * dst_ptr = (char *) dst->data;
  5374. for (int i03 = 0; i03 < ne03; i03++) {
  5375. for (int i02 = 0; i02 < ne02; i02++) {
  5376. id += rs * ir0;
  5377. for (int i01 = ir0; i01 < ir1; i01++) {
  5378. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5379. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5380. id += rs;
  5381. }
  5382. id += rs * (ne01 - ir1);
  5383. }
  5384. }
  5385. } else {
  5386. GGML_ASSERT(false); // TODO: implement
  5387. }
  5388. } else {
  5389. //printf("%s: this is not optimal - fix me\n", __func__);
  5390. if (dst->type == GGML_TYPE_F32) {
  5391. size_t id = 0;
  5392. float * dst_ptr = (float *) dst->data;
  5393. for (int i03 = 0; i03 < ne03; i03++) {
  5394. for (int i02 = 0; i02 < ne02; i02++) {
  5395. id += ne00 * ir0;
  5396. for (int i01 = ir0; i01 < ir1; i01++) {
  5397. for (int i00 = 0; i00 < ne00; i00++) {
  5398. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5399. dst_ptr[id] = *src0_ptr;
  5400. id++;
  5401. }
  5402. }
  5403. id += ne00 * (ne01 - ir1);
  5404. }
  5405. }
  5406. } else if (dst->type == GGML_TYPE_F16) {
  5407. size_t id = 0;
  5408. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5409. for (int i03 = 0; i03 < ne03; i03++) {
  5410. for (int i02 = 0; i02 < ne02; i02++) {
  5411. id += ne00 * ir0;
  5412. for (int i01 = ir0; i01 < ir1; i01++) {
  5413. for (int i00 = 0; i00 < ne00; i00++) {
  5414. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5415. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5416. id++;
  5417. }
  5418. }
  5419. id += ne00 * (ne01 - ir1);
  5420. }
  5421. }
  5422. } else {
  5423. GGML_ASSERT(false); // TODO: implement
  5424. }
  5425. }
  5426. return;
  5427. }
  5428. // dst counters
  5429. int64_t i10 = 0;
  5430. int64_t i11 = 0;
  5431. int64_t i12 = 0;
  5432. int64_t i13 = 0;
  5433. if (dst->type == GGML_TYPE_F32) {
  5434. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5435. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5436. i10 += ne00 * ir0;
  5437. while (i10 >= ne0) {
  5438. i10 -= ne0;
  5439. if (++i11 == ne1) {
  5440. i11 = 0;
  5441. if (++i12 == ne2) {
  5442. i12 = 0;
  5443. if (++i13 == ne3) {
  5444. i13 = 0;
  5445. }
  5446. }
  5447. }
  5448. }
  5449. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5450. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5451. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5452. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5453. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5454. if (++i10 == ne0) {
  5455. i10 = 0;
  5456. if (++i11 == ne1) {
  5457. i11 = 0;
  5458. if (++i12 == ne2) {
  5459. i12 = 0;
  5460. if (++i13 == ne3) {
  5461. i13 = 0;
  5462. }
  5463. }
  5464. }
  5465. }
  5466. }
  5467. }
  5468. i10 += ne00 * (ne01 - ir1);
  5469. while (i10 >= ne0) {
  5470. i10 -= ne0;
  5471. if (++i11 == ne1) {
  5472. i11 = 0;
  5473. if (++i12 == ne2) {
  5474. i12 = 0;
  5475. if (++i13 == ne3) {
  5476. i13 = 0;
  5477. }
  5478. }
  5479. }
  5480. }
  5481. }
  5482. }
  5483. } else if (dst->type == GGML_TYPE_F16) {
  5484. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5485. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5486. i10 += ne00 * ir0;
  5487. while (i10 >= ne0) {
  5488. i10 -= ne0;
  5489. if (++i11 == ne1) {
  5490. i11 = 0;
  5491. if (++i12 == ne2) {
  5492. i12 = 0;
  5493. if (++i13 == ne3) {
  5494. i13 = 0;
  5495. }
  5496. }
  5497. }
  5498. }
  5499. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5500. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5501. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5502. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5503. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5504. if (++i10 == ne0) {
  5505. i10 = 0;
  5506. if (++i11 == ne1) {
  5507. i11 = 0;
  5508. if (++i12 == ne2) {
  5509. i12 = 0;
  5510. if (++i13 == ne3) {
  5511. i13 = 0;
  5512. }
  5513. }
  5514. }
  5515. }
  5516. }
  5517. }
  5518. i10 += ne00 * (ne01 - ir1);
  5519. while (i10 >= ne0) {
  5520. i10 -= ne0;
  5521. if (++i11 == ne1) {
  5522. i11 = 0;
  5523. if (++i12 == ne2) {
  5524. i12 = 0;
  5525. if (++i13 == ne3) {
  5526. i13 = 0;
  5527. }
  5528. }
  5529. }
  5530. }
  5531. }
  5532. }
  5533. } else {
  5534. GGML_ASSERT(false); // TODO: implement
  5535. }
  5536. }
  5537. static void ggml_compute_forward_dup(
  5538. const struct ggml_compute_params * params,
  5539. const struct ggml_tensor * src0,
  5540. struct ggml_tensor * dst) {
  5541. switch (src0->type) {
  5542. case GGML_TYPE_F16:
  5543. {
  5544. ggml_compute_forward_dup_f16(params, src0, dst);
  5545. } break;
  5546. case GGML_TYPE_F32:
  5547. {
  5548. ggml_compute_forward_dup_f32(params, src0, dst);
  5549. } break;
  5550. default:
  5551. {
  5552. GGML_ASSERT(false);
  5553. } break;
  5554. }
  5555. }
  5556. // ggml_compute_forward_add
  5557. static void ggml_compute_forward_add_f32(
  5558. const struct ggml_compute_params * params,
  5559. const struct ggml_tensor * src0,
  5560. const struct ggml_tensor * src1,
  5561. struct ggml_tensor * dst) {
  5562. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5563. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5564. return;
  5565. }
  5566. const int ith = params->ith;
  5567. const int nth = params->nth;
  5568. const int n = ggml_nrows(src0);
  5569. const int nc = src0->ne[0];
  5570. const size_t nb00 = src0->nb[0];
  5571. const size_t nb01 = src0->nb[1];
  5572. const size_t nb10 = src1->nb[0];
  5573. const size_t nb11 = src1->nb[1];
  5574. const size_t nb0 = dst->nb[0];
  5575. const size_t nb1 = dst->nb[1];
  5576. GGML_ASSERT( nb0 == sizeof(float));
  5577. GGML_ASSERT(nb00 == sizeof(float));
  5578. if (nb10 == sizeof(float)) {
  5579. for (int j = ith; j < n; j += nth) {
  5580. #ifdef GGML_USE_ACCELERATE
  5581. vDSP_vadd(
  5582. (float *) ((char *) src0->data + j*nb01), 1,
  5583. (float *) ((char *) src1->data + j*nb11), 1,
  5584. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5585. #else
  5586. ggml_vec_add_f32(nc,
  5587. (float *) ((char *) dst->data + j*nb1),
  5588. (float *) ((char *) src0->data + j*nb01),
  5589. (float *) ((char *) src1->data + j*nb11));
  5590. #endif
  5591. }
  5592. } else {
  5593. // src1 is not contiguous
  5594. for (int j = ith; j < n; j += nth) {
  5595. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5596. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5597. for (int i = 0; i < nc; i++) {
  5598. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5599. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5600. }
  5601. }
  5602. }
  5603. }
  5604. static void ggml_compute_forward_add_f16_f32(
  5605. const struct ggml_compute_params * params,
  5606. const struct ggml_tensor * src0,
  5607. const struct ggml_tensor * src1,
  5608. struct ggml_tensor * dst) {
  5609. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5611. return;
  5612. }
  5613. const int ith = params->ith;
  5614. const int nth = params->nth;
  5615. const int n = ggml_nrows(src0);
  5616. const int nc = src0->ne[0];
  5617. const size_t nb00 = src0->nb[0];
  5618. const size_t nb01 = src0->nb[1];
  5619. const size_t nb10 = src1->nb[0];
  5620. const size_t nb11 = src1->nb[1];
  5621. const size_t nb0 = dst->nb[0];
  5622. const size_t nb1 = dst->nb[1];
  5623. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5624. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5625. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5626. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5627. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5628. if (nb10 == sizeof(float)) {
  5629. for (int j = ith; j < n; j += nth) {
  5630. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5631. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5632. for (int i = 0; i < nc; i++) {
  5633. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5634. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5635. }
  5636. }
  5637. }
  5638. else {
  5639. // src1 is not contiguous
  5640. GGML_ASSERT(false);
  5641. }
  5642. }
  5643. static void ggml_compute_forward_add_f16_f16(
  5644. const struct ggml_compute_params * params,
  5645. const struct ggml_tensor * src0,
  5646. const struct ggml_tensor * src1,
  5647. struct ggml_tensor * dst) {
  5648. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5649. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5650. return;
  5651. }
  5652. const int ith = params->ith;
  5653. const int nth = params->nth;
  5654. const int n = ggml_nrows(src0);
  5655. const int nc = src0->ne[0];
  5656. const size_t nb00 = src0->nb[0];
  5657. const size_t nb01 = src0->nb[1];
  5658. const size_t nb10 = src1->nb[0];
  5659. const size_t nb11 = src1->nb[1];
  5660. const size_t nb0 = dst->nb[0];
  5661. const size_t nb1 = dst->nb[1];
  5662. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5663. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5664. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5665. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5666. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5667. if (nb10 == sizeof(ggml_fp16_t)) {
  5668. for (int j = ith; j < n; j += nth) {
  5669. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5670. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5671. for (int i = 0; i < nc; i++) {
  5672. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5673. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5674. }
  5675. }
  5676. }
  5677. else {
  5678. // src1 is not contiguous
  5679. GGML_ASSERT(false);
  5680. }
  5681. }
  5682. static void ggml_compute_forward_add_q_f32(
  5683. const struct ggml_compute_params * params,
  5684. const struct ggml_tensor * src0,
  5685. const struct ggml_tensor * src1,
  5686. struct ggml_tensor * dst) {
  5687. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5688. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5689. return;
  5690. }
  5691. const int64_t ne00 = src0->ne[0];
  5692. const int64_t ne01 = src0->ne[1];
  5693. const int64_t ne02 = src0->ne[2];
  5694. const int64_t ne03 = src0->ne[3];
  5695. //const int64_t ne10 = src1->ne[0];
  5696. //const int64_t ne11 = src1->ne[1];
  5697. const int64_t ne12 = src1->ne[2];
  5698. const int64_t ne13 = src1->ne[3];
  5699. //const int64_t ne0 = dst->ne[0];
  5700. //const int64_t ne1 = dst->ne[1];
  5701. const int64_t ne2 = dst->ne[2];
  5702. const int64_t ne3 = dst->ne[3];
  5703. const int nb00 = src0->nb[0];
  5704. const int nb01 = src0->nb[1];
  5705. const int nb02 = src0->nb[2];
  5706. const int nb03 = src0->nb[3];
  5707. const int nb10 = src1->nb[0];
  5708. const int nb11 = src1->nb[1];
  5709. const int nb12 = src1->nb[2];
  5710. const int nb13 = src1->nb[3];
  5711. const int nb0 = dst->nb[0];
  5712. const int nb1 = dst->nb[1];
  5713. const int nb2 = dst->nb[2];
  5714. const int nb3 = dst->nb[3];
  5715. const int ith = params->ith;
  5716. const int nth = params->nth;
  5717. GGML_ASSERT(ne02 == ne12);
  5718. GGML_ASSERT(ne03 == ne13);
  5719. GGML_ASSERT(ne2 == ne12);
  5720. GGML_ASSERT(ne3 == ne13);
  5721. const enum ggml_type type = src0->type;
  5722. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5723. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5724. // we don't support permuted src0 or src1
  5725. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5726. GGML_ASSERT(nb10 == sizeof(float));
  5727. // dst cannot be transposed or permuted
  5728. GGML_ASSERT(nb0 <= nb1);
  5729. GGML_ASSERT(nb1 <= nb2);
  5730. GGML_ASSERT(nb2 <= nb3);
  5731. GGML_ASSERT(ggml_is_quantized(src0->type));
  5732. GGML_ASSERT(dst->type == src0->type);
  5733. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5734. // total rows in src0
  5735. const int nr = ne01*ne02*ne03;
  5736. // rows per thread
  5737. const int dr = (nr + nth - 1)/nth;
  5738. // row range for this thread
  5739. const int ir0 = dr*ith;
  5740. const int ir1 = MIN(ir0 + dr, nr);
  5741. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5742. for (int ir = ir0; ir < ir1; ++ir) {
  5743. // src0 indices
  5744. const int i03 = ir/(ne02*ne01);
  5745. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5746. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5747. // src1 and dst are same shape as src0 => same indices
  5748. const int i13 = i03;
  5749. const int i12 = i02;
  5750. const int i11 = i01;
  5751. const int i3 = i03;
  5752. const int i2 = i02;
  5753. const int i1 = i01;
  5754. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5755. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5756. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5757. assert(ne00 % 32 == 0);
  5758. // unquantize row from src0 to temp buffer
  5759. dequantize_row_q(src0_row, wdata, ne00);
  5760. // add src1
  5761. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5762. // quantize row to dst
  5763. quantize_row_q(wdata, dst_row, ne00);
  5764. }
  5765. }
  5766. static void ggml_compute_forward_add(
  5767. const struct ggml_compute_params * params,
  5768. const struct ggml_tensor * src0,
  5769. const struct ggml_tensor * src1,
  5770. struct ggml_tensor * dst) {
  5771. switch (src0->type) {
  5772. case GGML_TYPE_F32:
  5773. {
  5774. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5775. } break;
  5776. case GGML_TYPE_F16:
  5777. {
  5778. if (src1->type == GGML_TYPE_F16) {
  5779. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5780. }
  5781. else if (src1->type == GGML_TYPE_F32) {
  5782. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5783. }
  5784. else {
  5785. GGML_ASSERT(false);
  5786. }
  5787. } break;
  5788. case GGML_TYPE_Q4_0:
  5789. case GGML_TYPE_Q4_1:
  5790. case GGML_TYPE_Q4_2:
  5791. case GGML_TYPE_Q4_3:
  5792. case GGML_TYPE_Q5_0:
  5793. case GGML_TYPE_Q5_1:
  5794. case GGML_TYPE_Q8_0:
  5795. {
  5796. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5797. } break;
  5798. default:
  5799. {
  5800. GGML_ASSERT(false);
  5801. } break;
  5802. }
  5803. }
  5804. // ggml_compute_forward_sub
  5805. static void ggml_compute_forward_sub_f32(
  5806. const struct ggml_compute_params * params,
  5807. const struct ggml_tensor * src0,
  5808. const struct ggml_tensor * src1,
  5809. struct ggml_tensor * dst) {
  5810. assert(params->ith == 0);
  5811. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5813. return;
  5814. }
  5815. const int n = ggml_nrows(src0);
  5816. const int nc = src0->ne[0];
  5817. assert( dst->nb[0] == sizeof(float));
  5818. assert(src0->nb[0] == sizeof(float));
  5819. assert(src1->nb[0] == sizeof(float));
  5820. for (int i = 0; i < n; i++) {
  5821. ggml_vec_sub_f32(nc,
  5822. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5823. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5824. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5825. }
  5826. }
  5827. static void ggml_compute_forward_sub(
  5828. const struct ggml_compute_params * params,
  5829. const struct ggml_tensor * src0,
  5830. const struct ggml_tensor * src1,
  5831. struct ggml_tensor * dst) {
  5832. switch (src0->type) {
  5833. case GGML_TYPE_F32:
  5834. {
  5835. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5836. } break;
  5837. default:
  5838. {
  5839. GGML_ASSERT(false);
  5840. } break;
  5841. }
  5842. }
  5843. // ggml_compute_forward_mul
  5844. static void ggml_compute_forward_mul_f32(
  5845. const struct ggml_compute_params * params,
  5846. const struct ggml_tensor * src0,
  5847. const struct ggml_tensor * src1,
  5848. struct ggml_tensor * dst) {
  5849. assert(params->ith == 0);
  5850. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5851. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5852. return;
  5853. }
  5854. const int n = ggml_nrows(src0);
  5855. const int nc = src0->ne[0];
  5856. assert( dst->nb[0] == sizeof(float));
  5857. assert(src0->nb[0] == sizeof(float));
  5858. assert(src1->nb[0] == sizeof(float));
  5859. for (int i = 0; i < n; i++) {
  5860. ggml_vec_mul_f32(nc,
  5861. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5862. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5863. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5864. }
  5865. }
  5866. static void ggml_compute_forward_mul(
  5867. const struct ggml_compute_params * params,
  5868. const struct ggml_tensor * src0,
  5869. const struct ggml_tensor * src1,
  5870. struct ggml_tensor * dst) {
  5871. switch (src0->type) {
  5872. case GGML_TYPE_F32:
  5873. {
  5874. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5875. } break;
  5876. default:
  5877. {
  5878. GGML_ASSERT(false);
  5879. } break;
  5880. }
  5881. }
  5882. // ggml_compute_forward_div
  5883. static void ggml_compute_forward_div_f32(
  5884. const struct ggml_compute_params * params,
  5885. const struct ggml_tensor * src0,
  5886. const struct ggml_tensor * src1,
  5887. struct ggml_tensor * dst) {
  5888. assert(params->ith == 0);
  5889. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5890. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5891. return;
  5892. }
  5893. const int n = ggml_nrows(src0);
  5894. const int nc = src0->ne[0];
  5895. assert( dst->nb[0] == sizeof(float));
  5896. assert(src0->nb[0] == sizeof(float));
  5897. assert(src1->nb[0] == sizeof(float));
  5898. for (int i = 0; i < n; i++) {
  5899. ggml_vec_div_f32(nc,
  5900. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5901. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5902. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5903. }
  5904. }
  5905. static void ggml_compute_forward_div(
  5906. const struct ggml_compute_params * params,
  5907. const struct ggml_tensor * src0,
  5908. const struct ggml_tensor * src1,
  5909. struct ggml_tensor * dst) {
  5910. switch (src0->type) {
  5911. case GGML_TYPE_F32:
  5912. {
  5913. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5914. } break;
  5915. default:
  5916. {
  5917. GGML_ASSERT(false);
  5918. } break;
  5919. }
  5920. }
  5921. // ggml_compute_forward_sqr
  5922. static void ggml_compute_forward_sqr_f32(
  5923. const struct ggml_compute_params * params,
  5924. const struct ggml_tensor * src0,
  5925. struct ggml_tensor * dst) {
  5926. assert(params->ith == 0);
  5927. assert(ggml_are_same_shape(src0, dst));
  5928. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5929. return;
  5930. }
  5931. const int n = ggml_nrows(src0);
  5932. const int nc = src0->ne[0];
  5933. assert( dst->nb[0] == sizeof(float));
  5934. assert(src0->nb[0] == sizeof(float));
  5935. for (int i = 0; i < n; i++) {
  5936. ggml_vec_sqr_f32(nc,
  5937. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5938. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5939. }
  5940. }
  5941. static void ggml_compute_forward_sqr(
  5942. const struct ggml_compute_params * params,
  5943. const struct ggml_tensor * src0,
  5944. struct ggml_tensor * dst) {
  5945. switch (src0->type) {
  5946. case GGML_TYPE_F32:
  5947. {
  5948. ggml_compute_forward_sqr_f32(params, src0, dst);
  5949. } break;
  5950. default:
  5951. {
  5952. GGML_ASSERT(false);
  5953. } break;
  5954. }
  5955. }
  5956. // ggml_compute_forward_sqrt
  5957. static void ggml_compute_forward_sqrt_f32(
  5958. const struct ggml_compute_params * params,
  5959. const struct ggml_tensor * src0,
  5960. struct ggml_tensor * dst) {
  5961. assert(params->ith == 0);
  5962. assert(ggml_are_same_shape(src0, dst));
  5963. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5964. return;
  5965. }
  5966. const int n = ggml_nrows(src0);
  5967. const int nc = src0->ne[0];
  5968. assert( dst->nb[0] == sizeof(float));
  5969. assert(src0->nb[0] == sizeof(float));
  5970. for (int i = 0; i < n; i++) {
  5971. ggml_vec_sqrt_f32(nc,
  5972. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5973. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5974. }
  5975. }
  5976. static void ggml_compute_forward_sqrt(
  5977. const struct ggml_compute_params * params,
  5978. const struct ggml_tensor * src0,
  5979. struct ggml_tensor * dst) {
  5980. switch (src0->type) {
  5981. case GGML_TYPE_F32:
  5982. {
  5983. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5984. } break;
  5985. default:
  5986. {
  5987. GGML_ASSERT(false);
  5988. } break;
  5989. }
  5990. }
  5991. // ggml_compute_forward_sum
  5992. static void ggml_compute_forward_sum_f32(
  5993. const struct ggml_compute_params * params,
  5994. const struct ggml_tensor * src0,
  5995. struct ggml_tensor * dst) {
  5996. assert(params->ith == 0);
  5997. assert(ggml_is_scalar(dst));
  5998. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5999. return;
  6000. }
  6001. assert(ggml_is_scalar(dst));
  6002. assert(src0->nb[0] == sizeof(float));
  6003. const int64_t ne00 = src0->ne[0];
  6004. const int64_t ne01 = src0->ne[1];
  6005. const int64_t ne02 = src0->ne[2];
  6006. const int64_t ne03 = src0->ne[3];
  6007. const size_t nb01 = src0->nb[1];
  6008. const size_t nb02 = src0->nb[2];
  6009. const size_t nb03 = src0->nb[3];
  6010. ggml_float sum = 0;
  6011. ggml_float row_sum = 0;
  6012. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6013. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6014. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6015. ggml_vec_sum_ggf(ne00,
  6016. &row_sum,
  6017. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6018. sum += row_sum;
  6019. }
  6020. }
  6021. }
  6022. ((float *) dst->data)[0] = sum;
  6023. }
  6024. static void ggml_compute_forward_sum(
  6025. const struct ggml_compute_params * params,
  6026. const struct ggml_tensor * src0,
  6027. struct ggml_tensor * dst) {
  6028. switch (src0->type) {
  6029. case GGML_TYPE_F32:
  6030. {
  6031. ggml_compute_forward_sum_f32(params, src0, dst);
  6032. } break;
  6033. default:
  6034. {
  6035. GGML_ASSERT(false);
  6036. } break;
  6037. }
  6038. }
  6039. // ggml_compute_forward_mean
  6040. static void ggml_compute_forward_mean_f32(
  6041. const struct ggml_compute_params * params,
  6042. const struct ggml_tensor * src0,
  6043. struct ggml_tensor * dst) {
  6044. assert(params->ith == 0);
  6045. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6046. return;
  6047. }
  6048. assert(src0->nb[0] == sizeof(float));
  6049. const int64_t ne00 = src0->ne[0];
  6050. const int64_t ne01 = src0->ne[1];
  6051. const int64_t ne02 = src0->ne[2];
  6052. const int64_t ne03 = src0->ne[3];
  6053. const size_t nb01 = src0->nb[1];
  6054. const size_t nb02 = src0->nb[2];
  6055. const size_t nb03 = src0->nb[3];
  6056. const int64_t ne0 = dst->ne[0];
  6057. const int64_t ne1 = dst->ne[1];
  6058. const int64_t ne2 = dst->ne[2];
  6059. const int64_t ne3 = dst->ne[3];
  6060. assert(ne0 == 1);
  6061. assert(ne1 == ne01);
  6062. assert(ne2 == ne02);
  6063. assert(ne3 == ne03);
  6064. UNUSED(ne0);
  6065. UNUSED(ne1);
  6066. UNUSED(ne2);
  6067. UNUSED(ne3);
  6068. const size_t nb1 = dst->nb[1];
  6069. const size_t nb2 = dst->nb[2];
  6070. const size_t nb3 = dst->nb[3];
  6071. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6072. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6073. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6074. ggml_vec_sum_f32(ne00,
  6075. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6076. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6077. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6078. }
  6079. }
  6080. }
  6081. }
  6082. static void ggml_compute_forward_mean(
  6083. const struct ggml_compute_params * params,
  6084. const struct ggml_tensor * src0,
  6085. struct ggml_tensor * dst) {
  6086. switch (src0->type) {
  6087. case GGML_TYPE_F32:
  6088. {
  6089. ggml_compute_forward_mean_f32(params, src0, dst);
  6090. } break;
  6091. default:
  6092. {
  6093. GGML_ASSERT(false);
  6094. } break;
  6095. }
  6096. }
  6097. // ggml_compute_forward_repeat
  6098. static void ggml_compute_forward_repeat_f32(
  6099. const struct ggml_compute_params * params,
  6100. const struct ggml_tensor * src0,
  6101. struct ggml_tensor * dst) {
  6102. assert(params->ith == 0);
  6103. assert(ggml_can_repeat(src0, dst));
  6104. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6105. return;
  6106. }
  6107. // TODO: implement support for rank > 2 tensors
  6108. assert(src0->ne[2] == 1);
  6109. assert(src0->ne[3] == 1);
  6110. assert( dst->ne[2] == 1);
  6111. assert( dst->ne[3] == 1);
  6112. const int nc = dst->ne[0];
  6113. const int nr = dst->ne[1];
  6114. const int nc0 = src0->ne[0];
  6115. const int nr0 = src0->ne[1];
  6116. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6117. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6118. // TODO: support for transposed / permuted tensors
  6119. assert( dst->nb[0] == sizeof(float));
  6120. assert(src0->nb[0] == sizeof(float));
  6121. // TODO: maybe this is not optimal?
  6122. for (int i = 0; i < nrr; i++) {
  6123. for (int j = 0; j < ncr; j++) {
  6124. for (int k = 0; k < nr0; k++) {
  6125. ggml_vec_cpy_f32(nc0,
  6126. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6127. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6128. }
  6129. }
  6130. }
  6131. }
  6132. static void ggml_compute_forward_repeat(
  6133. const struct ggml_compute_params * params,
  6134. const struct ggml_tensor * src0,
  6135. struct ggml_tensor * dst) {
  6136. switch (src0->type) {
  6137. case GGML_TYPE_F32:
  6138. {
  6139. ggml_compute_forward_repeat_f32(params, src0, dst);
  6140. } break;
  6141. default:
  6142. {
  6143. GGML_ASSERT(false);
  6144. } break;
  6145. }
  6146. }
  6147. // ggml_compute_forward_abs
  6148. static void ggml_compute_forward_abs_f32(
  6149. const struct ggml_compute_params * params,
  6150. const struct ggml_tensor * src0,
  6151. struct ggml_tensor * dst) {
  6152. assert(params->ith == 0);
  6153. assert(ggml_are_same_shape(src0, dst));
  6154. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6155. return;
  6156. }
  6157. const int n = ggml_nrows(src0);
  6158. const int nc = src0->ne[0];
  6159. assert(dst->nb[0] == sizeof(float));
  6160. assert(src0->nb[0] == sizeof(float));
  6161. for (int i = 0; i < n; i++) {
  6162. ggml_vec_abs_f32(nc,
  6163. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6164. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6165. }
  6166. }
  6167. static void ggml_compute_forward_abs(
  6168. const struct ggml_compute_params * params,
  6169. const struct ggml_tensor * src0,
  6170. struct ggml_tensor * dst) {
  6171. switch (src0->type) {
  6172. case GGML_TYPE_F32:
  6173. {
  6174. ggml_compute_forward_abs_f32(params, src0, dst);
  6175. } break;
  6176. default:
  6177. {
  6178. GGML_ASSERT(false);
  6179. } break;
  6180. }
  6181. }
  6182. // ggml_compute_forward_sgn
  6183. static void ggml_compute_forward_sgn_f32(
  6184. const struct ggml_compute_params * params,
  6185. const struct ggml_tensor * src0,
  6186. struct ggml_tensor * dst) {
  6187. assert(params->ith == 0);
  6188. assert(ggml_are_same_shape(src0, dst));
  6189. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6190. return;
  6191. }
  6192. const int n = ggml_nrows(src0);
  6193. const int nc = src0->ne[0];
  6194. assert(dst->nb[0] == sizeof(float));
  6195. assert(src0->nb[0] == sizeof(float));
  6196. for (int i = 0; i < n; i++) {
  6197. ggml_vec_sgn_f32(nc,
  6198. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6199. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6200. }
  6201. }
  6202. static void ggml_compute_forward_sgn(
  6203. const struct ggml_compute_params * params,
  6204. const struct ggml_tensor * src0,
  6205. struct ggml_tensor * dst) {
  6206. switch (src0->type) {
  6207. case GGML_TYPE_F32:
  6208. {
  6209. ggml_compute_forward_sgn_f32(params, src0, dst);
  6210. } break;
  6211. default:
  6212. {
  6213. GGML_ASSERT(false);
  6214. } break;
  6215. }
  6216. }
  6217. // ggml_compute_forward_neg
  6218. static void ggml_compute_forward_neg_f32(
  6219. const struct ggml_compute_params * params,
  6220. const struct ggml_tensor * src0,
  6221. struct ggml_tensor * dst) {
  6222. assert(params->ith == 0);
  6223. assert(ggml_are_same_shape(src0, dst));
  6224. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6225. return;
  6226. }
  6227. const int n = ggml_nrows(src0);
  6228. const int nc = src0->ne[0];
  6229. assert(dst->nb[0] == sizeof(float));
  6230. assert(src0->nb[0] == sizeof(float));
  6231. for (int i = 0; i < n; i++) {
  6232. ggml_vec_neg_f32(nc,
  6233. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6234. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6235. }
  6236. }
  6237. static void ggml_compute_forward_neg(
  6238. const struct ggml_compute_params * params,
  6239. const struct ggml_tensor * src0,
  6240. struct ggml_tensor * dst) {
  6241. switch (src0->type) {
  6242. case GGML_TYPE_F32:
  6243. {
  6244. ggml_compute_forward_neg_f32(params, src0, dst);
  6245. } break;
  6246. default:
  6247. {
  6248. GGML_ASSERT(false);
  6249. } break;
  6250. }
  6251. }
  6252. // ggml_compute_forward_step
  6253. static void ggml_compute_forward_step_f32(
  6254. const struct ggml_compute_params * params,
  6255. const struct ggml_tensor * src0,
  6256. struct ggml_tensor * dst) {
  6257. assert(params->ith == 0);
  6258. assert(ggml_are_same_shape(src0, dst));
  6259. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6260. return;
  6261. }
  6262. const int n = ggml_nrows(src0);
  6263. const int nc = src0->ne[0];
  6264. assert(dst->nb[0] == sizeof(float));
  6265. assert(src0->nb[0] == sizeof(float));
  6266. for (int i = 0; i < n; i++) {
  6267. ggml_vec_step_f32(nc,
  6268. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6269. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6270. }
  6271. }
  6272. static void ggml_compute_forward_step(
  6273. const struct ggml_compute_params * params,
  6274. const struct ggml_tensor * src0,
  6275. struct ggml_tensor * dst) {
  6276. switch (src0->type) {
  6277. case GGML_TYPE_F32:
  6278. {
  6279. ggml_compute_forward_step_f32(params, src0, dst);
  6280. } break;
  6281. default:
  6282. {
  6283. GGML_ASSERT(false);
  6284. } break;
  6285. }
  6286. }
  6287. // ggml_compute_forward_relu
  6288. static void ggml_compute_forward_relu_f32(
  6289. const struct ggml_compute_params * params,
  6290. const struct ggml_tensor * src0,
  6291. struct ggml_tensor * dst) {
  6292. assert(params->ith == 0);
  6293. assert(ggml_are_same_shape(src0, dst));
  6294. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6295. return;
  6296. }
  6297. const int n = ggml_nrows(src0);
  6298. const int nc = src0->ne[0];
  6299. assert(dst->nb[0] == sizeof(float));
  6300. assert(src0->nb[0] == sizeof(float));
  6301. for (int i = 0; i < n; i++) {
  6302. ggml_vec_relu_f32(nc,
  6303. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6304. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6305. }
  6306. }
  6307. static void ggml_compute_forward_relu(
  6308. const struct ggml_compute_params * params,
  6309. const struct ggml_tensor * src0,
  6310. struct ggml_tensor * dst) {
  6311. switch (src0->type) {
  6312. case GGML_TYPE_F32:
  6313. {
  6314. ggml_compute_forward_relu_f32(params, src0, dst);
  6315. } break;
  6316. default:
  6317. {
  6318. GGML_ASSERT(false);
  6319. } break;
  6320. }
  6321. }
  6322. // ggml_compute_forward_gelu
  6323. static void ggml_compute_forward_gelu_f32(
  6324. const struct ggml_compute_params * params,
  6325. const struct ggml_tensor * src0,
  6326. struct ggml_tensor * dst) {
  6327. GGML_ASSERT(ggml_is_contiguous(src0));
  6328. GGML_ASSERT(ggml_is_contiguous(dst));
  6329. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6330. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6331. return;
  6332. }
  6333. const int ith = params->ith;
  6334. const int nth = params->nth;
  6335. const int nc = src0->ne[0];
  6336. const int nr = ggml_nrows(src0);
  6337. // rows per thread
  6338. const int dr = (nr + nth - 1)/nth;
  6339. // row range for this thread
  6340. const int ir0 = dr*ith;
  6341. const int ir1 = MIN(ir0 + dr, nr);
  6342. for (int i1 = ir0; i1 < ir1; i1++) {
  6343. ggml_vec_gelu_f32(nc,
  6344. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6345. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6346. #ifndef NDEBUG
  6347. for (int k = 0; k < nc; k++) {
  6348. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6349. UNUSED(x);
  6350. assert(!isnan(x));
  6351. assert(!isinf(x));
  6352. }
  6353. #endif
  6354. }
  6355. }
  6356. static void ggml_compute_forward_gelu(
  6357. const struct ggml_compute_params * params,
  6358. const struct ggml_tensor * src0,
  6359. struct ggml_tensor * dst) {
  6360. switch (src0->type) {
  6361. case GGML_TYPE_F32:
  6362. {
  6363. ggml_compute_forward_gelu_f32(params, src0, dst);
  6364. } break;
  6365. default:
  6366. {
  6367. GGML_ASSERT(false);
  6368. } break;
  6369. }
  6370. //printf("XXXXXXXX gelu\n");
  6371. }
  6372. // ggml_compute_forward_silu
  6373. static void ggml_compute_forward_silu_f32(
  6374. const struct ggml_compute_params * params,
  6375. const struct ggml_tensor * src0,
  6376. struct ggml_tensor * dst) {
  6377. GGML_ASSERT(ggml_is_contiguous(src0));
  6378. GGML_ASSERT(ggml_is_contiguous(dst));
  6379. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6380. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6381. return;
  6382. }
  6383. const int ith = params->ith;
  6384. const int nth = params->nth;
  6385. const int nc = src0->ne[0];
  6386. const int nr = ggml_nrows(src0);
  6387. // rows per thread
  6388. const int dr = (nr + nth - 1)/nth;
  6389. // row range for this thread
  6390. const int ir0 = dr*ith;
  6391. const int ir1 = MIN(ir0 + dr, nr);
  6392. for (int i1 = ir0; i1 < ir1; i1++) {
  6393. ggml_vec_silu_f32(nc,
  6394. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6395. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6396. #ifndef NDEBUG
  6397. for (int k = 0; k < nc; k++) {
  6398. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6399. UNUSED(x);
  6400. assert(!isnan(x));
  6401. assert(!isinf(x));
  6402. }
  6403. #endif
  6404. }
  6405. }
  6406. static void ggml_compute_forward_silu(
  6407. const struct ggml_compute_params * params,
  6408. const struct ggml_tensor * src0,
  6409. struct ggml_tensor * dst) {
  6410. switch (src0->type) {
  6411. case GGML_TYPE_F32:
  6412. {
  6413. ggml_compute_forward_silu_f32(params, src0, dst);
  6414. } break;
  6415. default:
  6416. {
  6417. GGML_ASSERT(false);
  6418. } break;
  6419. }
  6420. }
  6421. // ggml_compute_forward_norm
  6422. static void ggml_compute_forward_norm_f32(
  6423. const struct ggml_compute_params * params,
  6424. const struct ggml_tensor * src0,
  6425. struct ggml_tensor * dst) {
  6426. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6428. return;
  6429. }
  6430. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6431. const int ith = params->ith;
  6432. const int nth = params->nth;
  6433. const int64_t ne00 = src0->ne[0];
  6434. const int64_t ne01 = src0->ne[1];
  6435. const int64_t ne02 = src0->ne[2];
  6436. const int64_t ne03 = src0->ne[3];
  6437. const size_t nb01 = src0->nb[1];
  6438. const size_t nb02 = src0->nb[2];
  6439. const size_t nb03 = src0->nb[3];
  6440. const size_t nb1 = dst->nb[1];
  6441. const size_t nb2 = dst->nb[2];
  6442. const size_t nb3 = dst->nb[3];
  6443. const float eps = 1e-5f; // TODO: make this a parameter
  6444. // TODO: optimize
  6445. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6446. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6447. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6448. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6449. ggml_float sum = 0.0;
  6450. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6451. sum += (ggml_float)x[i00];
  6452. }
  6453. float mean = sum/ne00;
  6454. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6455. ggml_float sum2 = 0.0;
  6456. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6457. float v = x[i00] - mean;
  6458. y[i00] = v;
  6459. sum2 += (ggml_float)(v*v);
  6460. }
  6461. float variance = sum2/ne00;
  6462. const float scale = 1.0f/sqrtf(variance + eps);
  6463. ggml_vec_scale_f32(ne00, y, scale);
  6464. }
  6465. }
  6466. }
  6467. }
  6468. static void ggml_compute_forward_norm(
  6469. const struct ggml_compute_params * params,
  6470. const struct ggml_tensor * src0,
  6471. struct ggml_tensor * dst) {
  6472. switch (src0->type) {
  6473. case GGML_TYPE_F32:
  6474. {
  6475. ggml_compute_forward_norm_f32(params, src0, dst);
  6476. } break;
  6477. default:
  6478. {
  6479. GGML_ASSERT(false);
  6480. } break;
  6481. }
  6482. }
  6483. static void ggml_compute_forward_rms_norm_f32(
  6484. const struct ggml_compute_params * params,
  6485. const struct ggml_tensor * src0,
  6486. struct ggml_tensor * dst) {
  6487. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6488. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6489. return;
  6490. }
  6491. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6492. const int ith = params->ith;
  6493. const int nth = params->nth;
  6494. const int64_t ne00 = src0->ne[0];
  6495. const int64_t ne01 = src0->ne[1];
  6496. const int64_t ne02 = src0->ne[2];
  6497. const int64_t ne03 = src0->ne[3];
  6498. const size_t nb01 = src0->nb[1];
  6499. const size_t nb02 = src0->nb[2];
  6500. const size_t nb03 = src0->nb[3];
  6501. const size_t nb1 = dst->nb[1];
  6502. const size_t nb2 = dst->nb[2];
  6503. const size_t nb3 = dst->nb[3];
  6504. const float eps = 1e-6f; // TODO: make this a parameter
  6505. // TODO: optimize
  6506. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6507. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6508. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6509. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6510. ggml_float sum = 0.0;
  6511. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6512. sum += (ggml_float)(x[i00] * x[i00]);
  6513. }
  6514. float mean = sum/ne00;
  6515. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6516. memcpy(y, x, ne00 * sizeof(float));
  6517. // for (int i00 = 0; i00 < ne00; i00++) {
  6518. // y[i00] = x[i00];
  6519. // }
  6520. const float scale = 1.0f/sqrtf(mean + eps);
  6521. ggml_vec_scale_f32(ne00, y, scale);
  6522. }
  6523. }
  6524. }
  6525. }
  6526. static void ggml_compute_forward_rms_norm(
  6527. const struct ggml_compute_params * params,
  6528. const struct ggml_tensor * src0,
  6529. struct ggml_tensor * dst) {
  6530. switch (src0->type) {
  6531. case GGML_TYPE_F32:
  6532. {
  6533. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6534. } break;
  6535. default:
  6536. {
  6537. GGML_ASSERT(false);
  6538. } break;
  6539. }
  6540. }
  6541. // ggml_compute_forward_mul_mat
  6542. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6543. // helper function to determine if it is better to use BLAS or not
  6544. // for large matrices, BLAS is faster
  6545. static bool ggml_compute_forward_mul_mat_use_blas(
  6546. const struct ggml_tensor * src0,
  6547. const struct ggml_tensor * src1,
  6548. struct ggml_tensor * dst) {
  6549. //const int64_t ne00 = src0->ne[0];
  6550. //const int64_t ne01 = src0->ne[1];
  6551. const int64_t ne10 = src1->ne[0];
  6552. const int64_t ne0 = dst->ne[0];
  6553. const int64_t ne1 = dst->ne[1];
  6554. // TODO: find the optimal values for these
  6555. if (ggml_is_contiguous(src0) &&
  6556. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6557. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6558. return true;
  6559. }
  6560. return false;
  6561. }
  6562. #endif
  6563. static void ggml_compute_forward_mul_mat_f32(
  6564. const struct ggml_compute_params * params,
  6565. const struct ggml_tensor * src0,
  6566. const struct ggml_tensor * src1,
  6567. struct ggml_tensor * dst) {
  6568. int64_t t0 = ggml_perf_time_us();
  6569. UNUSED(t0);
  6570. const int64_t ne00 = src0->ne[0];
  6571. const int64_t ne01 = src0->ne[1];
  6572. const int64_t ne02 = src0->ne[2];
  6573. const int64_t ne03 = src0->ne[3];
  6574. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6575. const int64_t ne10 = src1->ne[0];
  6576. #endif
  6577. const int64_t ne11 = src1->ne[1];
  6578. #ifndef NDEBUG
  6579. const int64_t ne12 = src1->ne[2];
  6580. const int64_t ne13 = src1->ne[3];
  6581. const int64_t ne0 = dst->ne[0];
  6582. const int64_t ne1 = dst->ne[1];
  6583. const int64_t ne2 = dst->ne[2];
  6584. const int64_t ne3 = dst->ne[3];
  6585. const int nb00 = src0->nb[0];
  6586. #endif
  6587. const int nb01 = src0->nb[1];
  6588. const int nb02 = src0->nb[2];
  6589. const int nb03 = src0->nb[3];
  6590. #ifndef NDEBUG
  6591. const int nb10 = src1->nb[0];
  6592. #endif
  6593. const int nb11 = src1->nb[1];
  6594. const int nb12 = src1->nb[2];
  6595. const int nb13 = src1->nb[3];
  6596. const int nb0 = dst->nb[0];
  6597. const int nb1 = dst->nb[1];
  6598. const int nb2 = dst->nb[2];
  6599. const int nb3 = dst->nb[3];
  6600. const int ith = params->ith;
  6601. const int nth = params->nth;
  6602. assert(ne02 == ne12);
  6603. assert(ne03 == ne13);
  6604. assert(ne2 == ne12);
  6605. assert(ne3 == ne13);
  6606. // we don't support permuted src0 or src1
  6607. assert(nb00 == sizeof(float));
  6608. assert(nb10 == sizeof(float));
  6609. // dst cannot be transposed or permuted
  6610. assert(nb0 == sizeof(float));
  6611. assert(nb0 <= nb1);
  6612. assert(nb1 <= nb2);
  6613. assert(nb2 <= nb3);
  6614. assert(ne0 == ne01);
  6615. assert(ne1 == ne11);
  6616. assert(ne2 == ne02);
  6617. assert(ne3 == ne03);
  6618. // nb01 >= nb00 - src0 is not transposed
  6619. // compute by src0 rows
  6620. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6621. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6622. if (params->ith != 0) {
  6623. return;
  6624. }
  6625. if (params->type == GGML_TASK_INIT) {
  6626. return;
  6627. }
  6628. if (params->type == GGML_TASK_FINALIZE) {
  6629. return;
  6630. }
  6631. #if defined(GGML_USE_CUBLAS)
  6632. const float alpha = 1.0f;
  6633. const float beta = 0.0f;
  6634. const int x_ne = ne01 * ne10;
  6635. const int y_ne = ne11 * ne10;
  6636. const int d_ne = ne11 * ne01;
  6637. size_t x_size, y_size, d_size;
  6638. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6639. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6640. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6641. #endif
  6642. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6643. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6644. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6645. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6646. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6647. #if defined(GGML_USE_CUBLAS)
  6648. // copy data to device
  6649. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6650. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6651. // compute
  6652. CUBLAS_CHECK(
  6653. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6654. ne01, ne11, ne10,
  6655. &alpha, d_X, ne00,
  6656. d_Y, ne10,
  6657. &beta, d_D, ne01));
  6658. // copy data to host
  6659. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6660. #elif defined(GGML_USE_CLBLAST)
  6661. // zT = y * xT
  6662. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6663. ne11, ne01, ne10,
  6664. 1.0f, y, ne10,
  6665. x, ne10,
  6666. 0.0f, d, ne01,
  6667. GGML_TYPE_F32);
  6668. #else
  6669. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6670. ne11, ne01, ne10,
  6671. 1.0f, y, ne10,
  6672. x, ne00,
  6673. 0.0f, d, ne01);
  6674. #endif
  6675. }
  6676. }
  6677. #if defined(GGML_USE_CUBLAS)
  6678. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6679. ggml_cuda_pool_free(d_X, x_size);
  6680. ggml_cuda_pool_free(d_Y, y_size);
  6681. ggml_cuda_pool_free(d_D, d_size);
  6682. #endif
  6683. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6684. return;
  6685. }
  6686. #endif
  6687. if (params->type == GGML_TASK_INIT) {
  6688. return;
  6689. }
  6690. if (params->type == GGML_TASK_FINALIZE) {
  6691. return;
  6692. }
  6693. // parallelize by src0 rows using ggml_vec_dot_f32
  6694. // total rows in src0
  6695. const int nr = ne01*ne02*ne03;
  6696. // rows per thread
  6697. const int dr = (nr + nth - 1)/nth;
  6698. // row range for this thread
  6699. const int ir0 = dr*ith;
  6700. const int ir1 = MIN(ir0 + dr, nr);
  6701. for (int ir = ir0; ir < ir1; ++ir) {
  6702. // src0 indices
  6703. const int i03 = ir/(ne02*ne01);
  6704. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6705. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6706. for (int64_t ic = 0; ic < ne11; ++ic) {
  6707. // src1 indices
  6708. const int i13 = i03;
  6709. const int i12 = i02;
  6710. const int i11 = ic;
  6711. // dst indices
  6712. const int i0 = i01;
  6713. const int i1 = i11;
  6714. const int i2 = i02;
  6715. const int i3 = i03;
  6716. ggml_vec_dot_f32(ne00,
  6717. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6718. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6719. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6720. }
  6721. }
  6722. //int64_t t1 = ggml_perf_time_us();
  6723. //static int64_t acc = 0;
  6724. //acc += t1 - t0;
  6725. //if (t1 - t0 > 10) {
  6726. // printf("\n");
  6727. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6728. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6729. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6730. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6731. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6732. //}
  6733. }
  6734. static void ggml_compute_forward_mul_mat_f16_f32(
  6735. const struct ggml_compute_params * params,
  6736. const struct ggml_tensor * src0,
  6737. const struct ggml_tensor * src1,
  6738. struct ggml_tensor * dst) {
  6739. int64_t t0 = ggml_perf_time_us();
  6740. UNUSED(t0);
  6741. const int64_t ne00 = src0->ne[0];
  6742. const int64_t ne01 = src0->ne[1];
  6743. const int64_t ne02 = src0->ne[2];
  6744. const int64_t ne03 = src0->ne[3];
  6745. const int64_t ne10 = src1->ne[0];
  6746. const int64_t ne11 = src1->ne[1];
  6747. const int64_t ne12 = src1->ne[2];
  6748. const int64_t ne13 = src1->ne[3];
  6749. const int64_t ne0 = dst->ne[0];
  6750. const int64_t ne1 = dst->ne[1];
  6751. const int64_t ne2 = dst->ne[2];
  6752. const int64_t ne3 = dst->ne[3];
  6753. //const int64_t ne = ne0*ne1*ne2*ne3;
  6754. const int nb00 = src0->nb[0];
  6755. const int nb01 = src0->nb[1];
  6756. const int nb02 = src0->nb[2];
  6757. const int nb03 = src0->nb[3];
  6758. const int nb10 = src1->nb[0];
  6759. const int nb11 = src1->nb[1];
  6760. const int nb12 = src1->nb[2];
  6761. const int nb13 = src1->nb[3];
  6762. const int nb0 = dst->nb[0];
  6763. const int nb1 = dst->nb[1];
  6764. const int nb2 = dst->nb[2];
  6765. const int nb3 = dst->nb[3];
  6766. const int ith = params->ith;
  6767. const int nth = params->nth;
  6768. GGML_ASSERT(ne02 == ne12);
  6769. GGML_ASSERT(ne03 == ne13);
  6770. GGML_ASSERT(ne2 == ne12);
  6771. GGML_ASSERT(ne3 == ne13);
  6772. // TODO: we don't support permuted src0
  6773. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6774. // dst cannot be transposed or permuted
  6775. GGML_ASSERT(nb0 == sizeof(float));
  6776. GGML_ASSERT(nb0 <= nb1);
  6777. GGML_ASSERT(nb1 <= nb2);
  6778. GGML_ASSERT(nb2 <= nb3);
  6779. GGML_ASSERT(ne0 == ne01);
  6780. GGML_ASSERT(ne1 == ne11);
  6781. GGML_ASSERT(ne2 == ne02);
  6782. GGML_ASSERT(ne3 == ne03);
  6783. // nb01 >= nb00 - src0 is not transposed
  6784. // compute by src0 rows
  6785. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6786. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6787. GGML_ASSERT(nb10 == sizeof(float));
  6788. if (params->ith != 0) {
  6789. return;
  6790. }
  6791. if (params->type == GGML_TASK_INIT) {
  6792. return;
  6793. }
  6794. if (params->type == GGML_TASK_FINALIZE) {
  6795. return;
  6796. }
  6797. #if defined(GGML_USE_CUBLAS)
  6798. ggml_fp16_t * const wdata = params->wdata;
  6799. const float alpha = 1.0f;
  6800. const float beta = 0.0f;
  6801. const int x_ne = ne01 * ne10;
  6802. const int y_ne = ne11 * ne10;
  6803. const int d_ne = ne11 * ne01;
  6804. size_t x_size, y_size, d_size;
  6805. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6806. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6807. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6808. #else
  6809. float * const wdata = params->wdata;
  6810. #endif
  6811. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6812. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6813. #if defined(GGML_USE_CUBLAS)
  6814. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6815. {
  6816. size_t id = 0;
  6817. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6818. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6819. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6820. }
  6821. }
  6822. }
  6823. #else
  6824. {
  6825. size_t id = 0;
  6826. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6827. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6828. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6829. }
  6830. }
  6831. }
  6832. #endif
  6833. #if defined(GGML_USE_CUBLAS)
  6834. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6835. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6836. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6837. // copy data to device
  6838. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6839. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6840. // compute
  6841. CUBLAS_CHECK(
  6842. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6843. ne01, ne11, ne10,
  6844. &alpha, d_X, CUDA_R_16F, ne00,
  6845. d_Y, CUDA_R_16F, ne10,
  6846. &beta, d_D, CUDA_R_32F, ne01,
  6847. CUBLAS_COMPUTE_32F,
  6848. CUBLAS_GEMM_DEFAULT));
  6849. // copy data to host
  6850. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6851. #elif defined(GGML_USE_CLBLAST)
  6852. const float * x = wdata;
  6853. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6854. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6855. // zT = y * xT
  6856. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6857. ne11, ne01, ne10,
  6858. 1.0f, y, ne10,
  6859. x, ne10,
  6860. 0.0f, d, ne01,
  6861. GGML_TYPE_F32);
  6862. #else
  6863. const float * x = wdata;
  6864. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6865. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6866. // zT = y * xT
  6867. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6868. ne11, ne01, ne10,
  6869. 1.0f, y, ne10,
  6870. x, ne00,
  6871. 0.0f, d, ne01);
  6872. #endif
  6873. }
  6874. }
  6875. #if defined(GGML_USE_CUBLAS)
  6876. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6877. ggml_cuda_pool_free(d_X, x_size);
  6878. ggml_cuda_pool_free(d_Y, y_size);
  6879. ggml_cuda_pool_free(d_D, d_size);
  6880. #endif
  6881. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6882. return;
  6883. }
  6884. #endif
  6885. if (params->type == GGML_TASK_INIT) {
  6886. ggml_fp16_t * const wdata = params->wdata;
  6887. size_t id = 0;
  6888. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6889. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6890. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6891. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6892. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6893. }
  6894. }
  6895. }
  6896. }
  6897. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6898. return;
  6899. }
  6900. if (params->type == GGML_TASK_FINALIZE) {
  6901. return;
  6902. }
  6903. // fp16 -> half the size, so divide by 2
  6904. // TODO: do not support transposed src1
  6905. assert(nb10/2 == sizeof(ggml_fp16_t));
  6906. // parallelize by src0 rows using ggml_vec_dot_f16
  6907. // total rows in src0
  6908. const int nr = ne01*ne02*ne03;
  6909. // rows per thread
  6910. const int dr = (nr + nth - 1)/nth;
  6911. // row range for this thread
  6912. const int ir0 = dr*ith;
  6913. const int ir1 = MIN(ir0 + dr, nr);
  6914. ggml_fp16_t * wdata = params->wdata;
  6915. for (int ir = ir0; ir < ir1; ++ir) {
  6916. // src0 indices
  6917. const int i03 = ir/(ne02*ne01);
  6918. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6919. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6920. const int i13 = i03;
  6921. const int i12 = i02;
  6922. const int i0 = i01;
  6923. const int i2 = i02;
  6924. const int i3 = i03;
  6925. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6926. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6927. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6928. for (int64_t ic = 0; ic < ne11; ++ic) {
  6929. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6930. }
  6931. }
  6932. //int64_t t1 = ggml_time_us();
  6933. //static int64_t acc = 0;
  6934. //acc += t1 - t0;
  6935. //if (t1 - t0 > 10) {
  6936. // printf("\n");
  6937. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6938. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6939. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6940. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6941. //}
  6942. }
  6943. static void ggml_compute_forward_mul_mat_q_f32(
  6944. const struct ggml_compute_params * params,
  6945. const struct ggml_tensor * src0,
  6946. const struct ggml_tensor * src1,
  6947. struct ggml_tensor * dst) {
  6948. int64_t t0 = ggml_perf_time_us();
  6949. UNUSED(t0);
  6950. const int64_t ne00 = src0->ne[0];
  6951. const int64_t ne01 = src0->ne[1];
  6952. const int64_t ne02 = src0->ne[2];
  6953. const int64_t ne03 = src0->ne[3];
  6954. const int64_t ne10 = src1->ne[0];
  6955. const int64_t ne11 = src1->ne[1];
  6956. const int64_t ne12 = src1->ne[2];
  6957. const int64_t ne13 = src1->ne[3];
  6958. const int64_t ne0 = dst->ne[0];
  6959. const int64_t ne1 = dst->ne[1];
  6960. const int64_t ne2 = dst->ne[2];
  6961. const int64_t ne3 = dst->ne[3];
  6962. const int nb00 = src0->nb[0];
  6963. const int nb01 = src0->nb[1];
  6964. const int nb02 = src0->nb[2];
  6965. const int nb03 = src0->nb[3];
  6966. const int nb10 = src1->nb[0];
  6967. const int nb11 = src1->nb[1];
  6968. const int nb12 = src1->nb[2];
  6969. const int nb13 = src1->nb[3];
  6970. const int nb0 = dst->nb[0];
  6971. const int nb1 = dst->nb[1];
  6972. const int nb2 = dst->nb[2];
  6973. const int nb3 = dst->nb[3];
  6974. const int ith = params->ith;
  6975. const int nth = params->nth;
  6976. GGML_ASSERT(ne02 == ne12);
  6977. GGML_ASSERT(ne03 == ne13);
  6978. GGML_ASSERT(ne2 == ne12);
  6979. GGML_ASSERT(ne3 == ne13);
  6980. const enum ggml_type type = src0->type;
  6981. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6982. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6983. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6984. // we don't support permuted src0 or src1
  6985. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6986. GGML_ASSERT(nb10 == sizeof(float));
  6987. // dst cannot be transposed or permuted
  6988. GGML_ASSERT(nb0 == sizeof(float));
  6989. GGML_ASSERT(nb0 <= nb1);
  6990. GGML_ASSERT(nb1 <= nb2);
  6991. GGML_ASSERT(nb2 <= nb3);
  6992. GGML_ASSERT(ne0 == ne01);
  6993. GGML_ASSERT(ne1 == ne11);
  6994. GGML_ASSERT(ne2 == ne02);
  6995. GGML_ASSERT(ne3 == ne03);
  6996. // nb01 >= nb00 - src0 is not transposed
  6997. // compute by src0 rows
  6998. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6999. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7000. if (params->ith != 0) {
  7001. return;
  7002. }
  7003. if (params->type == GGML_TASK_INIT) {
  7004. return;
  7005. }
  7006. if (params->type == GGML_TASK_FINALIZE) {
  7007. return;
  7008. }
  7009. #if defined(GGML_USE_CUBLAS)
  7010. const float alpha = 1.0f;
  7011. const float beta = 0.0f;
  7012. const int x_ne = ne01 * ne10;
  7013. const int y_ne = ne11 * ne10;
  7014. const int d_ne = ne11 * ne01;
  7015. size_t x_size, y_size, d_size, q_size;
  7016. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  7017. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  7018. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  7019. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  7020. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  7021. if (type == GGML_TYPE_Q4_0) {
  7022. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  7023. }
  7024. else if (type == GGML_TYPE_Q4_1) {
  7025. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  7026. }
  7027. else if (type == GGML_TYPE_Q4_2) {
  7028. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  7029. }
  7030. else if (type == GGML_TYPE_Q4_3) {
  7031. dequantize_row_q_cuda = dequantize_row_q4_3_cuda;
  7032. }
  7033. else if (type == GGML_TYPE_Q5_0) {
  7034. dequantize_row_q_cuda = dequantize_row_q5_0_cuda;
  7035. }
  7036. else if (type == GGML_TYPE_Q5_1) {
  7037. dequantize_row_q_cuda = dequantize_row_q5_1_cuda;
  7038. }
  7039. else if (type == GGML_TYPE_Q8_0) {
  7040. dequantize_row_q_cuda = dequantize_row_q8_0_cuda;
  7041. }
  7042. else {
  7043. GGML_ASSERT(false);
  7044. }
  7045. #elif !defined(GGML_USE_CLBLAST)
  7046. float * const wdata = params->wdata;
  7047. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7048. #endif
  7049. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7050. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7051. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7052. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7053. #if defined(GGML_USE_CUBLAS)
  7054. // copy and dequantize on device
  7055. CUDA_CHECK(
  7056. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  7057. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  7058. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  7059. CUDA_CHECK(cudaGetLastError());
  7060. #elif defined(GGML_USE_CLBLAST)
  7061. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7062. #else
  7063. {
  7064. size_t id = 0;
  7065. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7066. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7067. id += ne00;
  7068. }
  7069. }
  7070. const float * x = wdata;
  7071. #endif
  7072. #if defined(GGML_USE_CUBLAS)
  7073. // copy data to device
  7074. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  7075. // compute
  7076. CUBLAS_CHECK(
  7077. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  7078. ne01, ne11, ne10,
  7079. &alpha, d_X, ne00,
  7080. d_Y, ne10,
  7081. &beta, d_D, ne01));
  7082. // copy data to host
  7083. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  7084. #elif defined(GGML_USE_CLBLAST)
  7085. // zT = y * xT
  7086. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7087. ne11, ne01, ne10,
  7088. 1.0f, y, ne10,
  7089. x, ne10,
  7090. 0.0f, d, ne01,
  7091. type);
  7092. #else
  7093. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7094. ne11, ne01, ne10,
  7095. 1.0f, y, ne10,
  7096. x, ne00,
  7097. 0.0f, d, ne01);
  7098. #endif
  7099. }
  7100. }
  7101. #if defined(GGML_USE_CUBLAS)
  7102. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  7103. ggml_cuda_pool_free(d_X, x_size);
  7104. ggml_cuda_pool_free(d_Y, y_size);
  7105. ggml_cuda_pool_free(d_D, d_size);
  7106. ggml_cuda_pool_free(d_Q, q_size);
  7107. #endif
  7108. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7109. return;
  7110. }
  7111. #endif
  7112. if (params->type == GGML_TASK_INIT) {
  7113. char * wdata = params->wdata;
  7114. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7115. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7116. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7117. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7118. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7119. wdata += row_size;
  7120. }
  7121. }
  7122. }
  7123. return;
  7124. }
  7125. if (params->type == GGML_TASK_FINALIZE) {
  7126. return;
  7127. }
  7128. // parallelize by src0 rows using ggml_vec_dot_q
  7129. // total rows in src0
  7130. const int nr = ne01*ne02*ne03;
  7131. // rows per thread
  7132. const int dr = (nr + nth - 1)/nth;
  7133. // row range for this thread
  7134. const int ir0 = dr*ith;
  7135. const int ir1 = MIN(ir0 + dr, nr);
  7136. void * wdata = params->wdata;
  7137. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7138. for (int ir = ir0; ir < ir1; ++ir) {
  7139. // src0 indices
  7140. const int i03 = ir/(ne02*ne01);
  7141. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7142. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7143. const int i13 = i03;
  7144. const int i12 = i02;
  7145. const int i0 = i01;
  7146. const int i2 = i02;
  7147. const int i3 = i03;
  7148. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7149. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7150. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7151. assert(ne00 % 32 == 0);
  7152. for (int64_t ic = 0; ic < ne11; ++ic) {
  7153. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7154. }
  7155. }
  7156. //int64_t t1 = ggml_time_us();
  7157. //static int64_t acc = 0;
  7158. //acc += t1 - t0;
  7159. //if (t1 - t0 > 10) {
  7160. // printf("\n");
  7161. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7162. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7163. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7164. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7165. //}
  7166. }
  7167. static void ggml_compute_forward_mul_mat(
  7168. const struct ggml_compute_params * params,
  7169. const struct ggml_tensor * src0,
  7170. const struct ggml_tensor * src1,
  7171. struct ggml_tensor * dst) {
  7172. switch (src0->type) {
  7173. case GGML_TYPE_Q4_0:
  7174. case GGML_TYPE_Q4_1:
  7175. case GGML_TYPE_Q4_2:
  7176. case GGML_TYPE_Q4_3:
  7177. case GGML_TYPE_Q5_0:
  7178. case GGML_TYPE_Q5_1:
  7179. case GGML_TYPE_Q8_0:
  7180. case GGML_TYPE_Q8_1:
  7181. {
  7182. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7183. } break;
  7184. case GGML_TYPE_F16:
  7185. {
  7186. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7187. } break;
  7188. case GGML_TYPE_F32:
  7189. {
  7190. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7191. } break;
  7192. default:
  7193. {
  7194. GGML_ASSERT(false);
  7195. } break;
  7196. }
  7197. }
  7198. // ggml_compute_forward_scale
  7199. static void ggml_compute_forward_scale_f32(
  7200. const struct ggml_compute_params * params,
  7201. const struct ggml_tensor * src0,
  7202. const struct ggml_tensor * src1,
  7203. struct ggml_tensor * dst) {
  7204. GGML_ASSERT(ggml_is_contiguous(src0));
  7205. GGML_ASSERT(ggml_is_contiguous(dst));
  7206. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7207. GGML_ASSERT(ggml_is_scalar(src1));
  7208. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7209. return;
  7210. }
  7211. // scale factor
  7212. const float v = *(float *) src1->data;
  7213. const int ith = params->ith;
  7214. const int nth = params->nth;
  7215. const int nc = src0->ne[0];
  7216. const int nr = ggml_nrows(src0);
  7217. // rows per thread
  7218. const int dr = (nr + nth - 1)/nth;
  7219. // row range for this thread
  7220. const int ir0 = dr*ith;
  7221. const int ir1 = MIN(ir0 + dr, nr);
  7222. for (int i1 = ir0; i1 < ir1; i1++) {
  7223. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7224. }
  7225. }
  7226. static void ggml_compute_forward_scale(
  7227. const struct ggml_compute_params * params,
  7228. const struct ggml_tensor * src0,
  7229. const struct ggml_tensor * src1,
  7230. struct ggml_tensor * dst) {
  7231. switch (src0->type) {
  7232. case GGML_TYPE_F32:
  7233. {
  7234. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7235. } break;
  7236. default:
  7237. {
  7238. GGML_ASSERT(false);
  7239. } break;
  7240. }
  7241. }
  7242. // ggml_compute_forward_cpy
  7243. static void ggml_compute_forward_cpy(
  7244. const struct ggml_compute_params * params,
  7245. const struct ggml_tensor * src0,
  7246. struct ggml_tensor * dst) {
  7247. ggml_compute_forward_dup(params, src0, dst);
  7248. }
  7249. // ggml_compute_forward_cont
  7250. static void ggml_compute_forward_cont(
  7251. const struct ggml_compute_params * params,
  7252. const struct ggml_tensor * src0,
  7253. struct ggml_tensor * dst) {
  7254. ggml_compute_forward_dup(params, src0, dst);
  7255. }
  7256. // ggml_compute_forward_reshape
  7257. static void ggml_compute_forward_reshape(
  7258. const struct ggml_compute_params * params,
  7259. const struct ggml_tensor * src0,
  7260. struct ggml_tensor * dst) {
  7261. // NOP
  7262. UNUSED(params);
  7263. UNUSED(src0);
  7264. UNUSED(dst);
  7265. }
  7266. // ggml_compute_forward_view
  7267. static void ggml_compute_forward_view(
  7268. const struct ggml_compute_params * params,
  7269. const struct ggml_tensor * src0) {
  7270. // NOP
  7271. UNUSED(params);
  7272. UNUSED(src0);
  7273. }
  7274. // ggml_compute_forward_permute
  7275. static void ggml_compute_forward_permute(
  7276. const struct ggml_compute_params * params,
  7277. const struct ggml_tensor * src0) {
  7278. // NOP
  7279. UNUSED(params);
  7280. UNUSED(src0);
  7281. }
  7282. // ggml_compute_forward_transpose
  7283. static void ggml_compute_forward_transpose(
  7284. const struct ggml_compute_params * params,
  7285. const struct ggml_tensor * src0) {
  7286. // NOP
  7287. UNUSED(params);
  7288. UNUSED(src0);
  7289. }
  7290. // ggml_compute_forward_get_rows
  7291. static void ggml_compute_forward_get_rows_q(
  7292. const struct ggml_compute_params * params,
  7293. const struct ggml_tensor * src0,
  7294. const struct ggml_tensor * src1,
  7295. struct ggml_tensor * dst) {
  7296. assert(params->ith == 0);
  7297. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7298. return;
  7299. }
  7300. const int nc = src0->ne[0];
  7301. const int nr = ggml_nelements(src1);
  7302. const enum ggml_type type = src0->type;
  7303. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7304. assert( dst->ne[0] == nc);
  7305. assert( dst->ne[1] == nr);
  7306. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7307. for (int i = 0; i < nr; ++i) {
  7308. const int r = ((int32_t *) src1->data)[i];
  7309. dequantize_row_q(
  7310. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7311. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7312. }
  7313. }
  7314. static void ggml_compute_forward_get_rows_f16(
  7315. const struct ggml_compute_params * params,
  7316. const struct ggml_tensor * src0,
  7317. const struct ggml_tensor * src1,
  7318. struct ggml_tensor * dst) {
  7319. assert(params->ith == 0);
  7320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7321. return;
  7322. }
  7323. const int nc = src0->ne[0];
  7324. const int nr = ggml_nelements(src1);
  7325. assert( dst->ne[0] == nc);
  7326. assert( dst->ne[1] == nr);
  7327. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7328. for (int i = 0; i < nr; ++i) {
  7329. const int r = ((int32_t *) src1->data)[i];
  7330. for (int j = 0; j < nc; ++j) {
  7331. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7332. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7333. }
  7334. }
  7335. }
  7336. static void ggml_compute_forward_get_rows_f32(
  7337. const struct ggml_compute_params * params,
  7338. const struct ggml_tensor * src0,
  7339. const struct ggml_tensor * src1,
  7340. struct ggml_tensor * dst) {
  7341. assert(params->ith == 0);
  7342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7343. return;
  7344. }
  7345. const int nc = src0->ne[0];
  7346. const int nr = ggml_nelements(src1);
  7347. assert( dst->ne[0] == nc);
  7348. assert( dst->ne[1] == nr);
  7349. assert(src0->nb[0] == sizeof(float));
  7350. for (int i = 0; i < nr; ++i) {
  7351. const int r = ((int32_t *) src1->data)[i];
  7352. ggml_vec_cpy_f32(nc,
  7353. (float *) ((char *) dst->data + i*dst->nb[1]),
  7354. (float *) ((char *) src0->data + r*src0->nb[1]));
  7355. }
  7356. }
  7357. static void ggml_compute_forward_get_rows(
  7358. const struct ggml_compute_params * params,
  7359. const struct ggml_tensor * src0,
  7360. const struct ggml_tensor * src1,
  7361. struct ggml_tensor * dst) {
  7362. switch (src0->type) {
  7363. case GGML_TYPE_Q4_0:
  7364. case GGML_TYPE_Q4_1:
  7365. case GGML_TYPE_Q4_2:
  7366. case GGML_TYPE_Q4_3:
  7367. case GGML_TYPE_Q5_0:
  7368. case GGML_TYPE_Q5_1:
  7369. case GGML_TYPE_Q8_0:
  7370. case GGML_TYPE_Q8_1:
  7371. {
  7372. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7373. } break;
  7374. case GGML_TYPE_F16:
  7375. {
  7376. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7377. } break;
  7378. case GGML_TYPE_F32:
  7379. {
  7380. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7381. } break;
  7382. default:
  7383. {
  7384. GGML_ASSERT(false);
  7385. } break;
  7386. }
  7387. //static bool first = true;
  7388. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7389. //if (first) {
  7390. // first = false;
  7391. //} else {
  7392. // for (int k = 0; k < dst->ne[1]; ++k) {
  7393. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7394. // for (int i = 0; i < 16; ++i) {
  7395. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7396. // }
  7397. // printf("\n");
  7398. // }
  7399. // printf("\n");
  7400. // }
  7401. // printf("\n");
  7402. // exit(0);
  7403. //}
  7404. }
  7405. // ggml_compute_forward_diag_mask_inf
  7406. static void ggml_compute_forward_diag_mask_inf_f32(
  7407. const struct ggml_compute_params * params,
  7408. const struct ggml_tensor * src0,
  7409. const struct ggml_tensor * src1,
  7410. struct ggml_tensor * dst) {
  7411. assert(params->ith == 0);
  7412. assert(src1->type == GGML_TYPE_I32);
  7413. assert(ggml_nelements(src1) == 1);
  7414. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7415. return;
  7416. }
  7417. const int n_past = ((int32_t *) src1->data)[0];
  7418. // TODO: handle transposed/permuted matrices
  7419. const int n = ggml_nrows(src0);
  7420. const int nc = src0->ne[0];
  7421. const int nr = src0->ne[1];
  7422. const int nz = n/nr;
  7423. assert( dst->nb[0] == sizeof(float));
  7424. assert(src0->nb[0] == sizeof(float));
  7425. for (int k = 0; k < nz; k++) {
  7426. for (int j = 0; j < nr; j++) {
  7427. for (int i = n_past; i < nc; i++) {
  7428. if (i > n_past + j) {
  7429. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7430. }
  7431. }
  7432. }
  7433. }
  7434. }
  7435. static void ggml_compute_forward_diag_mask_inf(
  7436. const struct ggml_compute_params * params,
  7437. const struct ggml_tensor * src0,
  7438. const struct ggml_tensor * src1,
  7439. struct ggml_tensor * dst) {
  7440. switch (src0->type) {
  7441. case GGML_TYPE_F32:
  7442. {
  7443. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7444. } break;
  7445. default:
  7446. {
  7447. GGML_ASSERT(false);
  7448. } break;
  7449. }
  7450. }
  7451. // ggml_compute_forward_soft_max
  7452. static void ggml_compute_forward_soft_max_f32(
  7453. const struct ggml_compute_params * params,
  7454. const struct ggml_tensor * src0,
  7455. struct ggml_tensor * dst) {
  7456. GGML_ASSERT(ggml_is_contiguous(src0));
  7457. GGML_ASSERT(ggml_is_contiguous(dst));
  7458. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7460. return;
  7461. }
  7462. // TODO: handle transposed/permuted matrices
  7463. const int ith = params->ith;
  7464. const int nth = params->nth;
  7465. const int nc = src0->ne[0];
  7466. const int nr = ggml_nrows(src0);
  7467. // rows per thread
  7468. const int dr = (nr + nth - 1)/nth;
  7469. // row range for this thread
  7470. const int ir0 = dr*ith;
  7471. const int ir1 = MIN(ir0 + dr, nr);
  7472. for (int i1 = ir0; i1 < ir1; i1++) {
  7473. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7474. #ifndef NDEBUG
  7475. for (int i = 0; i < nc; ++i) {
  7476. //printf("p[%d] = %f\n", i, p[i]);
  7477. assert(!isnan(p[i]));
  7478. }
  7479. #endif
  7480. float max = -INFINITY;
  7481. ggml_vec_max_f32(nc, &max, p);
  7482. ggml_float sum = 0.0;
  7483. uint16_t scvt;
  7484. for (int i = 0; i < nc; i++) {
  7485. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7486. if (p[i] == -INFINITY) {
  7487. p[i] = 0.0f;
  7488. } else {
  7489. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7490. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7491. memcpy(&scvt, &s, sizeof(scvt));
  7492. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7493. sum += (ggml_float)val;
  7494. p[i] = val;
  7495. }
  7496. }
  7497. assert(sum > 0.0);
  7498. sum = 1.0/sum;
  7499. ggml_vec_scale_f32(nc, p, sum);
  7500. #ifndef NDEBUG
  7501. for (int i = 0; i < nc; ++i) {
  7502. assert(!isnan(p[i]));
  7503. assert(!isinf(p[i]));
  7504. }
  7505. #endif
  7506. }
  7507. }
  7508. static void ggml_compute_forward_soft_max(
  7509. const struct ggml_compute_params * params,
  7510. const struct ggml_tensor * src0,
  7511. struct ggml_tensor * dst) {
  7512. switch (src0->type) {
  7513. case GGML_TYPE_F32:
  7514. {
  7515. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7516. } break;
  7517. default:
  7518. {
  7519. GGML_ASSERT(false);
  7520. } break;
  7521. }
  7522. }
  7523. // ggml_compute_forward_rope
  7524. static void ggml_compute_forward_rope_f32(
  7525. const struct ggml_compute_params * params,
  7526. const struct ggml_tensor * src0,
  7527. const struct ggml_tensor * src1,
  7528. struct ggml_tensor * dst) {
  7529. assert(src1->type == GGML_TYPE_I32);
  7530. assert(ggml_nelements(src1) == 3);
  7531. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7532. return;
  7533. }
  7534. const int n_past = ((int32_t *) src1->data)[0];
  7535. const int n_dims = ((int32_t *) src1->data)[1];
  7536. const int mode = ((int32_t *) src1->data)[2];
  7537. //const int64_t ne0 = src0->ne[0];
  7538. const int64_t ne1 = src0->ne[1];
  7539. const int64_t ne2 = src0->ne[2];
  7540. const int64_t ne3 = src0->ne[3];
  7541. const int nb0 = src0->nb[0];
  7542. const int nb1 = src0->nb[1];
  7543. const int nb2 = src0->nb[2];
  7544. const int nb3 = src0->nb[3];
  7545. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7546. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7547. assert(nb0 == sizeof(float));
  7548. const int ith = params->ith;
  7549. const int nth = params->nth;
  7550. const int nr = ggml_nrows(src0);
  7551. // rows per thread
  7552. const int dr = (nr + nth - 1)/nth;
  7553. // row range for this thread
  7554. const int ir0 = dr*ith;
  7555. const int ir1 = MIN(ir0 + dr, nr);
  7556. // row index used to determine which thread to use
  7557. int ir = 0;
  7558. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7559. const bool is_neox = mode & 2;
  7560. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7561. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7562. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7563. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7564. if (ir++ < ir0) continue;
  7565. if (ir > ir1) break;
  7566. float theta = (float)p;
  7567. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7568. const float cos_theta = cosf(theta);
  7569. const float sin_theta = sinf(theta);
  7570. theta *= theta_scale;
  7571. if (!is_neox) {
  7572. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7573. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7574. const float x0 = src[0];
  7575. const float x1 = src[1];
  7576. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7577. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7578. } else {
  7579. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7580. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7581. const float x0 = src[0];
  7582. const float x1 = src[n_dims/2];
  7583. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7584. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7585. }
  7586. }
  7587. }
  7588. }
  7589. }
  7590. }
  7591. static void ggml_compute_forward_rope_f16(
  7592. const struct ggml_compute_params * params,
  7593. const struct ggml_tensor * src0,
  7594. const struct ggml_tensor * src1,
  7595. struct ggml_tensor * dst) {
  7596. assert(src1->type == GGML_TYPE_I32);
  7597. assert(ggml_nelements(src1) == 3);
  7598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7599. return;
  7600. }
  7601. const int n_past = ((int32_t *) src1->data)[0];
  7602. const int n_dims = ((int32_t *) src1->data)[1];
  7603. const int mode = ((int32_t *) src1->data)[2];
  7604. //const int64_t ne0 = src0->ne[0];
  7605. const int64_t ne1 = src0->ne[1];
  7606. const int64_t ne2 = src0->ne[2];
  7607. const int64_t ne3 = src0->ne[3];
  7608. const int nb0 = src0->nb[0];
  7609. const int nb1 = src0->nb[1];
  7610. const int nb2 = src0->nb[2];
  7611. const int nb3 = src0->nb[3];
  7612. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7613. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7614. assert(nb0 == sizeof(ggml_fp16_t));
  7615. const int ith = params->ith;
  7616. const int nth = params->nth;
  7617. const int nr = ggml_nrows(src0);
  7618. // rows per thread
  7619. const int dr = (nr + nth - 1)/nth;
  7620. // row range for this thread
  7621. const int ir0 = dr*ith;
  7622. const int ir1 = MIN(ir0 + dr, nr);
  7623. // row index used to determine which thread to use
  7624. int ir = 0;
  7625. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7626. const bool is_neox = mode & 2;
  7627. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7628. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7629. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7630. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7631. if (ir++ < ir0) continue;
  7632. if (ir > ir1) break;
  7633. float theta = (float)p;
  7634. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7635. const float cos_theta = cosf(theta);
  7636. const float sin_theta = sinf(theta);
  7637. theta *= theta_scale;
  7638. if (!is_neox) {
  7639. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7640. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7641. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7642. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7643. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7644. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7645. } else {
  7646. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7647. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7648. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7649. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7650. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7651. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7652. }
  7653. }
  7654. }
  7655. }
  7656. }
  7657. }
  7658. static void ggml_compute_forward_rope(
  7659. const struct ggml_compute_params * params,
  7660. const struct ggml_tensor * src0,
  7661. const struct ggml_tensor * src1,
  7662. struct ggml_tensor * dst) {
  7663. switch (src0->type) {
  7664. case GGML_TYPE_F16:
  7665. {
  7666. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7667. } break;
  7668. case GGML_TYPE_F32:
  7669. {
  7670. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7671. } break;
  7672. default:
  7673. {
  7674. GGML_ASSERT(false);
  7675. } break;
  7676. }
  7677. }
  7678. // ggml_compute_forward_conv_1d_1s
  7679. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7680. const struct ggml_compute_params * params,
  7681. const struct ggml_tensor * src0,
  7682. const struct ggml_tensor * src1,
  7683. struct ggml_tensor * dst) {
  7684. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7685. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7686. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7687. int64_t t0 = ggml_perf_time_us();
  7688. UNUSED(t0);
  7689. const int64_t ne00 = src0->ne[0];
  7690. const int64_t ne01 = src0->ne[1];
  7691. const int64_t ne02 = src0->ne[2];
  7692. //const int64_t ne03 = src0->ne[3];
  7693. const int64_t ne10 = src1->ne[0];
  7694. const int64_t ne11 = src1->ne[1];
  7695. //const int64_t ne12 = src1->ne[2];
  7696. //const int64_t ne13 = src1->ne[3];
  7697. //const int64_t ne0 = dst->ne[0];
  7698. //const int64_t ne1 = dst->ne[1];
  7699. //const int64_t ne2 = dst->ne[2];
  7700. //const int64_t ne3 = dst->ne[3];
  7701. //const int64_t ne = ne0*ne1*ne2*ne3;
  7702. const int nb00 = src0->nb[0];
  7703. const int nb01 = src0->nb[1];
  7704. const int nb02 = src0->nb[2];
  7705. //const int nb03 = src0->nb[3];
  7706. const int nb10 = src1->nb[0];
  7707. const int nb11 = src1->nb[1];
  7708. //const int nb12 = src1->nb[2];
  7709. //const int nb13 = src1->nb[3];
  7710. //const int nb0 = dst->nb[0];
  7711. const int nb1 = dst->nb[1];
  7712. //const int nb2 = dst->nb[2];
  7713. //const int nb3 = dst->nb[3];
  7714. const int ith = params->ith;
  7715. const int nth = params->nth;
  7716. const int nk = ne00;
  7717. const int nh = nk/2;
  7718. const int ew0 = ggml_up32(ne01);
  7719. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7720. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7721. GGML_ASSERT(nb10 == sizeof(float));
  7722. if (params->type == GGML_TASK_INIT) {
  7723. // TODO: fix this memset (wsize is overestimated)
  7724. memset(params->wdata, 0, params->wsize);
  7725. // prepare kernel data (src0)
  7726. {
  7727. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7728. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7729. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7730. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7731. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7732. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7733. dst_data[i00*ew0 + i01] = src[i00];
  7734. }
  7735. }
  7736. }
  7737. }
  7738. // prepare source data (src1)
  7739. {
  7740. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7741. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7742. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7743. ggml_fp16_t * dst_data = wdata;
  7744. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7745. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7746. }
  7747. }
  7748. }
  7749. return;
  7750. }
  7751. if (params->type == GGML_TASK_FINALIZE) {
  7752. return;
  7753. }
  7754. // total rows in dst
  7755. const int nr = ne02;
  7756. // rows per thread
  7757. const int dr = (nr + nth - 1)/nth;
  7758. // row range for this thread
  7759. const int ir0 = dr*ith;
  7760. const int ir1 = MIN(ir0 + dr, nr);
  7761. for (int i1 = ir0; i1 < ir1; i1++) {
  7762. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7763. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7764. dst_data[i0] = 0;
  7765. for (int k = -nh; k <= nh; k++) {
  7766. float v = 0.0f;
  7767. ggml_vec_dot_f16(ew0, &v,
  7768. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7769. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7770. dst_data[i0] += v;
  7771. }
  7772. }
  7773. }
  7774. }
  7775. static void ggml_compute_forward_conv_1d_1s_f32(
  7776. const struct ggml_compute_params * params,
  7777. const struct ggml_tensor * src0,
  7778. const struct ggml_tensor * src1,
  7779. struct ggml_tensor * dst) {
  7780. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7781. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7782. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7783. int64_t t0 = ggml_perf_time_us();
  7784. UNUSED(t0);
  7785. const int64_t ne00 = src0->ne[0];
  7786. const int64_t ne01 = src0->ne[1];
  7787. const int64_t ne02 = src0->ne[2];
  7788. //const int64_t ne03 = src0->ne[3];
  7789. const int64_t ne10 = src1->ne[0];
  7790. const int64_t ne11 = src1->ne[1];
  7791. //const int64_t ne12 = src1->ne[2];
  7792. //const int64_t ne13 = src1->ne[3];
  7793. //const int64_t ne0 = dst->ne[0];
  7794. //const int64_t ne1 = dst->ne[1];
  7795. //const int64_t ne2 = dst->ne[2];
  7796. //const int64_t ne3 = dst->ne[3];
  7797. //const int64_t ne = ne0*ne1*ne2*ne3;
  7798. const int nb00 = src0->nb[0];
  7799. const int nb01 = src0->nb[1];
  7800. const int nb02 = src0->nb[2];
  7801. //const int nb03 = src0->nb[3];
  7802. const int nb10 = src1->nb[0];
  7803. const int nb11 = src1->nb[1];
  7804. //const int nb12 = src1->nb[2];
  7805. //const int nb13 = src1->nb[3];
  7806. //const int nb0 = dst->nb[0];
  7807. const int nb1 = dst->nb[1];
  7808. //const int nb2 = dst->nb[2];
  7809. //const int nb3 = dst->nb[3];
  7810. const int ith = params->ith;
  7811. const int nth = params->nth;
  7812. const int nk = ne00;
  7813. const int nh = nk/2;
  7814. const int ew0 = ggml_up32(ne01);
  7815. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7816. GGML_ASSERT(nb00 == sizeof(float));
  7817. GGML_ASSERT(nb10 == sizeof(float));
  7818. if (params->type == GGML_TASK_INIT) {
  7819. // TODO: fix this memset (wsize is overestimated)
  7820. memset(params->wdata, 0, params->wsize);
  7821. // prepare kernel data (src0)
  7822. {
  7823. float * const wdata = (float *) params->wdata + 0;
  7824. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7825. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7826. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7827. float * dst_data = wdata + i02*ew0*ne00;
  7828. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7829. dst_data[i00*ew0 + i01] = src[i00];
  7830. }
  7831. }
  7832. }
  7833. }
  7834. // prepare source data (src1)
  7835. {
  7836. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7837. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7838. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7839. float * dst_data = wdata;
  7840. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7841. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7842. }
  7843. }
  7844. }
  7845. return;
  7846. }
  7847. if (params->type == GGML_TASK_FINALIZE) {
  7848. return;
  7849. }
  7850. // total rows in dst
  7851. const int nr = ne02;
  7852. // rows per thread
  7853. const int dr = (nr + nth - 1)/nth;
  7854. // row range for this thread
  7855. const int ir0 = dr*ith;
  7856. const int ir1 = MIN(ir0 + dr, nr);
  7857. for (int i1 = ir0; i1 < ir1; i1++) {
  7858. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7859. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7860. dst_data[i0] = 0;
  7861. for (int k = -nh; k <= nh; k++) {
  7862. float v = 0.0f;
  7863. ggml_vec_dot_f32(ew0, &v,
  7864. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7865. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7866. dst_data[i0] += v;
  7867. }
  7868. }
  7869. }
  7870. }
  7871. static void ggml_compute_forward_conv_1d_1s(
  7872. const struct ggml_compute_params * params,
  7873. const struct ggml_tensor * src0,
  7874. const struct ggml_tensor * src1,
  7875. struct ggml_tensor * dst) {
  7876. switch (src0->type) {
  7877. case GGML_TYPE_F16:
  7878. {
  7879. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7880. } break;
  7881. case GGML_TYPE_F32:
  7882. {
  7883. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7884. } break;
  7885. default:
  7886. {
  7887. GGML_ASSERT(false);
  7888. } break;
  7889. }
  7890. }
  7891. // ggml_compute_forward_conv_1d_2s
  7892. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7893. const struct ggml_compute_params * params,
  7894. const struct ggml_tensor * src0,
  7895. const struct ggml_tensor * src1,
  7896. struct ggml_tensor * dst) {
  7897. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7898. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7899. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7900. int64_t t0 = ggml_perf_time_us();
  7901. UNUSED(t0);
  7902. const int64_t ne00 = src0->ne[0];
  7903. const int64_t ne01 = src0->ne[1];
  7904. const int64_t ne02 = src0->ne[2];
  7905. //const int64_t ne03 = src0->ne[3];
  7906. const int64_t ne10 = src1->ne[0];
  7907. const int64_t ne11 = src1->ne[1];
  7908. //const int64_t ne12 = src1->ne[2];
  7909. //const int64_t ne13 = src1->ne[3];
  7910. //const int64_t ne0 = dst->ne[0];
  7911. //const int64_t ne1 = dst->ne[1];
  7912. //const int64_t ne2 = dst->ne[2];
  7913. //const int64_t ne3 = dst->ne[3];
  7914. //const int64_t ne = ne0*ne1*ne2*ne3;
  7915. const int nb00 = src0->nb[0];
  7916. const int nb01 = src0->nb[1];
  7917. const int nb02 = src0->nb[2];
  7918. //const int nb03 = src0->nb[3];
  7919. const int nb10 = src1->nb[0];
  7920. const int nb11 = src1->nb[1];
  7921. //const int nb12 = src1->nb[2];
  7922. //const int nb13 = src1->nb[3];
  7923. //const int nb0 = dst->nb[0];
  7924. const int nb1 = dst->nb[1];
  7925. //const int nb2 = dst->nb[2];
  7926. //const int nb3 = dst->nb[3];
  7927. const int ith = params->ith;
  7928. const int nth = params->nth;
  7929. const int nk = ne00;
  7930. const int nh = nk/2;
  7931. const int ew0 = ggml_up32(ne01);
  7932. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7933. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7934. GGML_ASSERT(nb10 == sizeof(float));
  7935. if (params->type == GGML_TASK_INIT) {
  7936. // TODO: fix this memset (wsize is overestimated)
  7937. memset(params->wdata, 0, params->wsize);
  7938. // prepare kernel data (src0)
  7939. {
  7940. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7941. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7942. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7943. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7944. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7945. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7946. dst_data[i00*ew0 + i01] = src[i00];
  7947. }
  7948. }
  7949. }
  7950. }
  7951. // prepare source data (src1)
  7952. {
  7953. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7954. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7955. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7956. ggml_fp16_t * dst_data = wdata;
  7957. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7958. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7959. }
  7960. }
  7961. }
  7962. return;
  7963. }
  7964. if (params->type == GGML_TASK_FINALIZE) {
  7965. return;
  7966. }
  7967. // total rows in dst
  7968. const int nr = ne02;
  7969. // rows per thread
  7970. const int dr = (nr + nth - 1)/nth;
  7971. // row range for this thread
  7972. const int ir0 = dr*ith;
  7973. const int ir1 = MIN(ir0 + dr, nr);
  7974. for (int i1 = ir0; i1 < ir1; i1++) {
  7975. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7976. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7977. dst_data[i0/2] = 0;
  7978. for (int k = -nh; k <= nh; k++) {
  7979. float v = 0.0f;
  7980. ggml_vec_dot_f16(ew0, &v,
  7981. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7982. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7983. dst_data[i0/2] += v;
  7984. }
  7985. }
  7986. }
  7987. }
  7988. static void ggml_compute_forward_conv_1d_2s_f32(
  7989. const struct ggml_compute_params * params,
  7990. const struct ggml_tensor * src0,
  7991. const struct ggml_tensor * src1,
  7992. struct ggml_tensor * dst) {
  7993. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7994. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7995. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7996. int64_t t0 = ggml_perf_time_us();
  7997. UNUSED(t0);
  7998. const int64_t ne00 = src0->ne[0];
  7999. const int64_t ne01 = src0->ne[1];
  8000. const int64_t ne02 = src0->ne[2];
  8001. //const int64_t ne03 = src0->ne[3];
  8002. const int64_t ne10 = src1->ne[0];
  8003. const int64_t ne11 = src1->ne[1];
  8004. //const int64_t ne12 = src1->ne[2];
  8005. //const int64_t ne13 = src1->ne[3];
  8006. //const int64_t ne0 = dst->ne[0];
  8007. //const int64_t ne1 = dst->ne[1];
  8008. //const int64_t ne2 = dst->ne[2];
  8009. //const int64_t ne3 = dst->ne[3];
  8010. //const int64_t ne = ne0*ne1*ne2*ne3;
  8011. const int nb00 = src0->nb[0];
  8012. const int nb01 = src0->nb[1];
  8013. const int nb02 = src0->nb[2];
  8014. //const int nb03 = src0->nb[3];
  8015. const int nb10 = src1->nb[0];
  8016. const int nb11 = src1->nb[1];
  8017. //const int nb12 = src1->nb[2];
  8018. //const int nb13 = src1->nb[3];
  8019. //const int nb0 = dst->nb[0];
  8020. const int nb1 = dst->nb[1];
  8021. //const int nb2 = dst->nb[2];
  8022. //const int nb3 = dst->nb[3];
  8023. const int ith = params->ith;
  8024. const int nth = params->nth;
  8025. const int nk = ne00;
  8026. const int nh = nk/2;
  8027. const int ew0 = ggml_up32(ne01);
  8028. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8029. GGML_ASSERT(nb00 == sizeof(float));
  8030. GGML_ASSERT(nb10 == sizeof(float));
  8031. if (params->type == GGML_TASK_INIT) {
  8032. // TODO: fix this memset (wsize is overestimated)
  8033. memset(params->wdata, 0, params->wsize);
  8034. // prepare kernel data (src0)
  8035. {
  8036. float * const wdata = (float *) params->wdata + 0;
  8037. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8038. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8039. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8040. float * dst_data = wdata + i02*ew0*ne00;
  8041. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8042. dst_data[i00*ew0 + i01] = src[i00];
  8043. }
  8044. }
  8045. }
  8046. }
  8047. // prepare source data (src1)
  8048. {
  8049. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8050. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8051. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8052. float * dst_data = wdata;
  8053. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8054. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8055. }
  8056. }
  8057. }
  8058. return;
  8059. }
  8060. if (params->type == GGML_TASK_FINALIZE) {
  8061. return;
  8062. }
  8063. // total rows in dst
  8064. const int nr = ne02;
  8065. // rows per thread
  8066. const int dr = (nr + nth - 1)/nth;
  8067. // row range for this thread
  8068. const int ir0 = dr*ith;
  8069. const int ir1 = MIN(ir0 + dr, nr);
  8070. for (int i1 = ir0; i1 < ir1; i1++) {
  8071. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8072. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8073. dst_data[i0/2] = 0;
  8074. for (int k = -nh; k <= nh; k++) {
  8075. float v = 0.0f;
  8076. ggml_vec_dot_f32(ew0, &v,
  8077. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8078. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8079. dst_data[i0/2] += v;
  8080. }
  8081. }
  8082. }
  8083. }
  8084. static void ggml_compute_forward_conv_1d_2s(
  8085. const struct ggml_compute_params * params,
  8086. const struct ggml_tensor * src0,
  8087. const struct ggml_tensor * src1,
  8088. struct ggml_tensor * dst) {
  8089. switch (src0->type) {
  8090. case GGML_TYPE_F16:
  8091. {
  8092. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8093. } break;
  8094. case GGML_TYPE_F32:
  8095. {
  8096. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8097. } break;
  8098. default:
  8099. {
  8100. GGML_ASSERT(false);
  8101. } break;
  8102. }
  8103. }
  8104. // ggml_compute_forward_flash_attn
  8105. static void ggml_compute_forward_flash_attn_f32(
  8106. const struct ggml_compute_params * params,
  8107. const struct ggml_tensor * q,
  8108. const struct ggml_tensor * k,
  8109. const struct ggml_tensor * v,
  8110. const bool masked,
  8111. struct ggml_tensor * dst) {
  8112. int64_t t0 = ggml_perf_time_us();
  8113. UNUSED(t0);
  8114. const int64_t neq0 = q->ne[0];
  8115. const int64_t neq1 = q->ne[1];
  8116. const int64_t neq2 = q->ne[2];
  8117. const int64_t neq3 = q->ne[3];
  8118. const int64_t nek0 = k->ne[0];
  8119. const int64_t nek1 = k->ne[1];
  8120. //const int64_t nek2 = k->ne[2];
  8121. //const int64_t nek3 = k->ne[3];
  8122. //const int64_t nev0 = v->ne[0];
  8123. const int64_t nev1 = v->ne[1];
  8124. //const int64_t nev2 = v->ne[2];
  8125. //const int64_t nev3 = v->ne[3];
  8126. const int64_t ne0 = dst->ne[0];
  8127. const int64_t ne1 = dst->ne[1];
  8128. //const int64_t ne2 = dst->ne[2];
  8129. //const int64_t ne3 = dst->ne[3];
  8130. const int nbk0 = k->nb[0];
  8131. const int nbk1 = k->nb[1];
  8132. const int nbk2 = k->nb[2];
  8133. const int nbk3 = k->nb[3];
  8134. const int nbq0 = q->nb[0];
  8135. const int nbq1 = q->nb[1];
  8136. const int nbq2 = q->nb[2];
  8137. const int nbq3 = q->nb[3];
  8138. const int nbv0 = v->nb[0];
  8139. const int nbv1 = v->nb[1];
  8140. const int nbv2 = v->nb[2];
  8141. const int nbv3 = v->nb[3];
  8142. const int nb0 = dst->nb[0];
  8143. const int nb1 = dst->nb[1];
  8144. const int nb2 = dst->nb[2];
  8145. const int nb3 = dst->nb[3];
  8146. const int ith = params->ith;
  8147. const int nth = params->nth;
  8148. const int64_t D = neq0;
  8149. const int64_t N = neq1;
  8150. const int64_t P = nek1 - N;
  8151. const int64_t M = P + N;
  8152. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8153. GGML_ASSERT(ne0 == D);
  8154. GGML_ASSERT(ne1 == N);
  8155. GGML_ASSERT(P >= 0);
  8156. GGML_ASSERT(nbq0 == sizeof(float));
  8157. GGML_ASSERT(nbk0 == sizeof(float));
  8158. GGML_ASSERT(nbv0 == sizeof(float));
  8159. GGML_ASSERT(neq0 == D);
  8160. GGML_ASSERT(nek0 == D);
  8161. GGML_ASSERT(nev1 == D);
  8162. GGML_ASSERT(neq1 == N);
  8163. GGML_ASSERT(nek1 == N + P);
  8164. GGML_ASSERT(nev1 == D);
  8165. // dst cannot be transposed or permuted
  8166. GGML_ASSERT(nb0 == sizeof(float));
  8167. GGML_ASSERT(nb0 <= nb1);
  8168. GGML_ASSERT(nb1 <= nb2);
  8169. GGML_ASSERT(nb2 <= nb3);
  8170. if (params->type == GGML_TASK_INIT) {
  8171. return;
  8172. }
  8173. if (params->type == GGML_TASK_FINALIZE) {
  8174. return;
  8175. }
  8176. // parallelize by q rows using ggml_vec_dot_f32
  8177. // total rows in q
  8178. const int nr = neq1*neq2*neq3;
  8179. // rows per thread
  8180. const int dr = (nr + nth - 1)/nth;
  8181. // row range for this thread
  8182. const int ir0 = dr*ith;
  8183. const int ir1 = MIN(ir0 + dr, nr);
  8184. const float scale = 1.0f/sqrtf(D);
  8185. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8186. for (int ir = ir0; ir < ir1; ++ir) {
  8187. // q indices
  8188. const int iq3 = ir/(neq2*neq1);
  8189. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8190. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8191. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8192. for (int i = M; i < Mup; ++i) {
  8193. S[i] = -INFINITY;
  8194. }
  8195. for (int64_t ic = 0; ic < nek1; ++ic) {
  8196. // k indices
  8197. const int ik3 = iq3;
  8198. const int ik2 = iq2;
  8199. const int ik1 = ic;
  8200. // S indices
  8201. const int i1 = ik1;
  8202. ggml_vec_dot_f32(neq0,
  8203. S + i1,
  8204. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8205. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8206. }
  8207. // scale
  8208. ggml_vec_scale_f32(nek1, S, scale);
  8209. if (masked) {
  8210. for (int64_t i = P; i < M; i++) {
  8211. if (i > P + iq1) {
  8212. S[i] = -INFINITY;
  8213. }
  8214. }
  8215. }
  8216. // softmax
  8217. {
  8218. float max = -INFINITY;
  8219. ggml_vec_max_f32(M, &max, S);
  8220. ggml_float sum = 0.0;
  8221. {
  8222. #ifdef GGML_SOFT_MAX_ACCELERATE
  8223. max = -max;
  8224. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8225. vvexpf(S, S, &Mup);
  8226. ggml_vec_sum_f32(Mup, &sum, S);
  8227. #else
  8228. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8229. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8230. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8231. float * SS = S + i;
  8232. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8233. if (SS[j] == -INFINITY) {
  8234. SS[j] = 0.0f;
  8235. } else {
  8236. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8237. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8238. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8239. sump[j] += (ggml_float)val;
  8240. SS[j] = val;
  8241. }
  8242. }
  8243. }
  8244. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8245. sum += sump[i];
  8246. }
  8247. #endif
  8248. }
  8249. assert(sum > 0.0);
  8250. sum = 1.0/sum;
  8251. ggml_vec_scale_f32(M, S, sum);
  8252. #ifndef NDEBUG
  8253. for (int i = 0; i < M; ++i) {
  8254. assert(!isnan(S[i]));
  8255. assert(!isinf(S[i]));
  8256. }
  8257. #endif
  8258. }
  8259. for (int64_t ic = 0; ic < nev1; ++ic) {
  8260. // dst indices
  8261. const int i1 = iq1;
  8262. const int i2 = iq2;
  8263. const int i3 = iq3;
  8264. ggml_vec_dot_f32(nek1,
  8265. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8266. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8267. S);
  8268. }
  8269. }
  8270. }
  8271. static void ggml_compute_forward_flash_attn_f16(
  8272. const struct ggml_compute_params * params,
  8273. const struct ggml_tensor * q,
  8274. const struct ggml_tensor * k,
  8275. const struct ggml_tensor * v,
  8276. const bool masked,
  8277. struct ggml_tensor * dst) {
  8278. int64_t t0 = ggml_perf_time_us();
  8279. UNUSED(t0);
  8280. const int64_t neq0 = q->ne[0];
  8281. const int64_t neq1 = q->ne[1];
  8282. const int64_t neq2 = q->ne[2];
  8283. const int64_t neq3 = q->ne[3];
  8284. const int64_t nek0 = k->ne[0];
  8285. const int64_t nek1 = k->ne[1];
  8286. //const int64_t nek2 = k->ne[2];
  8287. //const int64_t nek3 = k->ne[3];
  8288. //const int64_t nev0 = v->ne[0];
  8289. const int64_t nev1 = v->ne[1];
  8290. //const int64_t nev2 = v->ne[2];
  8291. //const int64_t nev3 = v->ne[3];
  8292. const int64_t ne0 = dst->ne[0];
  8293. const int64_t ne1 = dst->ne[1];
  8294. //const int64_t ne2 = dst->ne[2];
  8295. //const int64_t ne3 = dst->ne[3];
  8296. const int nbk0 = k->nb[0];
  8297. const int nbk1 = k->nb[1];
  8298. const int nbk2 = k->nb[2];
  8299. const int nbk3 = k->nb[3];
  8300. const int nbq0 = q->nb[0];
  8301. const int nbq1 = q->nb[1];
  8302. const int nbq2 = q->nb[2];
  8303. const int nbq3 = q->nb[3];
  8304. const int nbv0 = v->nb[0];
  8305. const int nbv1 = v->nb[1];
  8306. const int nbv2 = v->nb[2];
  8307. const int nbv3 = v->nb[3];
  8308. const int nb0 = dst->nb[0];
  8309. const int nb1 = dst->nb[1];
  8310. const int nb2 = dst->nb[2];
  8311. const int nb3 = dst->nb[3];
  8312. const int ith = params->ith;
  8313. const int nth = params->nth;
  8314. const int64_t D = neq0;
  8315. const int64_t N = neq1;
  8316. const int64_t P = nek1 - N;
  8317. const int64_t M = P + N;
  8318. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8319. GGML_ASSERT(ne0 == D);
  8320. GGML_ASSERT(ne1 == N);
  8321. GGML_ASSERT(P >= 0);
  8322. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8323. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8324. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8325. GGML_ASSERT(neq0 == D);
  8326. GGML_ASSERT(nek0 == D);
  8327. GGML_ASSERT(nev1 == D);
  8328. GGML_ASSERT(neq1 == N);
  8329. GGML_ASSERT(nek1 == N + P);
  8330. GGML_ASSERT(nev1 == D);
  8331. // dst cannot be transposed or permuted
  8332. GGML_ASSERT(nb0 == sizeof(float));
  8333. GGML_ASSERT(nb0 <= nb1);
  8334. GGML_ASSERT(nb1 <= nb2);
  8335. GGML_ASSERT(nb2 <= nb3);
  8336. if (params->type == GGML_TASK_INIT) {
  8337. return;
  8338. }
  8339. if (params->type == GGML_TASK_FINALIZE) {
  8340. return;
  8341. }
  8342. // parallelize by q rows using ggml_vec_dot_f32
  8343. // total rows in q
  8344. const int nr = neq1*neq2*neq3;
  8345. // rows per thread
  8346. const int dr = (nr + nth - 1)/nth;
  8347. // row range for this thread
  8348. const int ir0 = dr*ith;
  8349. const int ir1 = MIN(ir0 + dr, nr);
  8350. const float scale = 1.0f/sqrtf(D);
  8351. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8352. for (int ir = ir0; ir < ir1; ++ir) {
  8353. // q indices
  8354. const int iq3 = ir/(neq2*neq1);
  8355. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8356. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8357. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8358. for (int i = M; i < Mup; ++i) {
  8359. S[i] = -INFINITY;
  8360. }
  8361. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8362. for (int64_t ic = 0; ic < nek1; ++ic) {
  8363. // k indices
  8364. const int ik3 = iq3;
  8365. const int ik2 = iq2;
  8366. const int ik1 = ic;
  8367. // S indices
  8368. const int i1 = ik1;
  8369. ggml_vec_dot_f16(neq0,
  8370. S + i1,
  8371. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8372. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8373. }
  8374. } else {
  8375. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8376. // k indices
  8377. const int ik3 = iq3;
  8378. const int ik2 = iq2;
  8379. const int ik1 = ic;
  8380. // S indices
  8381. const int i1 = ik1;
  8382. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8383. S + i1,
  8384. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8385. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8386. }
  8387. }
  8388. // scale
  8389. ggml_vec_scale_f32(nek1, S, scale);
  8390. if (masked) {
  8391. for (int64_t i = P; i < M; i++) {
  8392. if (i > P + iq1) {
  8393. S[i] = -INFINITY;
  8394. }
  8395. }
  8396. }
  8397. // softmax
  8398. {
  8399. float max = -INFINITY;
  8400. ggml_vec_max_f32(M, &max, S);
  8401. ggml_float sum = 0.0;
  8402. {
  8403. #ifdef GGML_SOFT_MAX_ACCELERATE
  8404. max = -max;
  8405. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8406. vvexpf(S, S, &Mup);
  8407. ggml_vec_sum_f32(Mup, &sum, S);
  8408. #else
  8409. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8410. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8411. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8412. float * SS = S + i;
  8413. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8414. if (SS[j] == -INFINITY) {
  8415. SS[j] = 0.0f;
  8416. } else {
  8417. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8418. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8419. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8420. sump[j] += (ggml_float)val;
  8421. SS[j] = val;
  8422. }
  8423. }
  8424. }
  8425. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8426. sum += sump[i];
  8427. }
  8428. #endif
  8429. }
  8430. assert(sum > 0.0);
  8431. sum = 1.0/sum;
  8432. ggml_vec_scale_f32(M, S, sum);
  8433. #ifndef NDEBUG
  8434. for (int i = 0; i < M; ++i) {
  8435. assert(!isnan(S[i]));
  8436. assert(!isinf(S[i]));
  8437. }
  8438. #endif
  8439. }
  8440. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8441. for (int64_t i = 0; i < M; i++) {
  8442. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8443. }
  8444. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8445. for (int64_t ic = 0; ic < nev1; ++ic) {
  8446. // dst indices
  8447. const int i1 = iq1;
  8448. const int i2 = iq2;
  8449. const int i3 = iq3;
  8450. ggml_vec_dot_f16(nek1,
  8451. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8452. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8453. S16);
  8454. }
  8455. } else {
  8456. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8457. // dst indices
  8458. const int i1 = iq1;
  8459. const int i2 = iq2;
  8460. const int i3 = iq3;
  8461. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8462. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8463. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8464. S16);
  8465. }
  8466. }
  8467. }
  8468. }
  8469. static void ggml_compute_forward_flash_attn(
  8470. const struct ggml_compute_params * params,
  8471. const struct ggml_tensor * q,
  8472. const struct ggml_tensor * k,
  8473. const struct ggml_tensor * v,
  8474. const bool masked,
  8475. struct ggml_tensor * dst) {
  8476. switch (q->type) {
  8477. case GGML_TYPE_F16:
  8478. {
  8479. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8480. } break;
  8481. case GGML_TYPE_F32:
  8482. {
  8483. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8484. } break;
  8485. default:
  8486. {
  8487. GGML_ASSERT(false);
  8488. } break;
  8489. }
  8490. }
  8491. // ggml_compute_forward_flash_ff
  8492. static void ggml_compute_forward_flash_ff_f16(
  8493. const struct ggml_compute_params * params,
  8494. const struct ggml_tensor * a, // F16
  8495. const struct ggml_tensor * b0, // F16 fc_w
  8496. const struct ggml_tensor * b1, // F32 fc_b
  8497. const struct ggml_tensor * c0, // F16 proj_w
  8498. const struct ggml_tensor * c1, // F32 proj_b
  8499. struct ggml_tensor * dst) {
  8500. int64_t t0 = ggml_perf_time_us();
  8501. UNUSED(t0);
  8502. const int64_t nea0 = a->ne[0];
  8503. const int64_t nea1 = a->ne[1];
  8504. const int64_t nea2 = a->ne[2];
  8505. const int64_t nea3 = a->ne[3];
  8506. const int64_t neb00 = b0->ne[0];
  8507. const int64_t neb01 = b0->ne[1];
  8508. //const int64_t neb02 = b0->ne[2];
  8509. //const int64_t neb03 = b0->ne[3];
  8510. const int64_t neb10 = b1->ne[0];
  8511. const int64_t neb11 = b1->ne[1];
  8512. //const int64_t neb12 = b1->ne[2];
  8513. //const int64_t neb13 = b1->ne[3];
  8514. const int64_t nec00 = c0->ne[0];
  8515. const int64_t nec01 = c0->ne[1];
  8516. //const int64_t nec02 = c0->ne[2];
  8517. //const int64_t nec03 = c0->ne[3];
  8518. const int64_t nec10 = c1->ne[0];
  8519. const int64_t nec11 = c1->ne[1];
  8520. //const int64_t nec12 = c1->ne[2];
  8521. //const int64_t nec13 = c1->ne[3];
  8522. const int64_t ne0 = dst->ne[0];
  8523. const int64_t ne1 = dst->ne[1];
  8524. const int64_t ne2 = dst->ne[2];
  8525. //const int64_t ne3 = dst->ne[3];
  8526. const int nba0 = a->nb[0];
  8527. const int nba1 = a->nb[1];
  8528. const int nba2 = a->nb[2];
  8529. const int nba3 = a->nb[3];
  8530. const int nbb00 = b0->nb[0];
  8531. const int nbb01 = b0->nb[1];
  8532. const int nbb02 = b0->nb[2];
  8533. const int nbb03 = b0->nb[3];
  8534. const int nbb10 = b1->nb[0];
  8535. //const int nbb11 = b1->nb[1];
  8536. //const int nbb12 = b1->nb[2];
  8537. //const int nbb13 = b1->nb[3];
  8538. const int nbc00 = c0->nb[0];
  8539. const int nbc01 = c0->nb[1];
  8540. const int nbc02 = c0->nb[2];
  8541. const int nbc03 = c0->nb[3];
  8542. const int nbc10 = c1->nb[0];
  8543. //const int nbc11 = c1->nb[1];
  8544. //const int nbc12 = c1->nb[2];
  8545. //const int nbc13 = c1->nb[3];
  8546. const int nb0 = dst->nb[0];
  8547. const int nb1 = dst->nb[1];
  8548. const int nb2 = dst->nb[2];
  8549. const int nb3 = dst->nb[3];
  8550. const int ith = params->ith;
  8551. const int nth = params->nth;
  8552. const int64_t D = nea0;
  8553. //const int64_t N = nea1;
  8554. const int64_t M = neb01;
  8555. GGML_ASSERT(ne0 == nea0);
  8556. GGML_ASSERT(ne1 == nea1);
  8557. GGML_ASSERT(ne2 == nea2);
  8558. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8559. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8560. GGML_ASSERT(nbb10 == sizeof(float));
  8561. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8562. GGML_ASSERT(nbc10 == sizeof(float));
  8563. GGML_ASSERT(neb00 == D);
  8564. GGML_ASSERT(neb01 == M);
  8565. GGML_ASSERT(neb10 == M);
  8566. GGML_ASSERT(neb11 == 1);
  8567. GGML_ASSERT(nec00 == M);
  8568. GGML_ASSERT(nec01 == D);
  8569. GGML_ASSERT(nec10 == D);
  8570. GGML_ASSERT(nec11 == 1);
  8571. // dst cannot be transposed or permuted
  8572. GGML_ASSERT(nb0 == sizeof(float));
  8573. GGML_ASSERT(nb0 <= nb1);
  8574. GGML_ASSERT(nb1 <= nb2);
  8575. GGML_ASSERT(nb2 <= nb3);
  8576. if (params->type == GGML_TASK_INIT) {
  8577. return;
  8578. }
  8579. if (params->type == GGML_TASK_FINALIZE) {
  8580. return;
  8581. }
  8582. // parallelize by a rows using ggml_vec_dot_f32
  8583. // total rows in a
  8584. const int nr = nea1*nea2*nea3;
  8585. // rows per thread
  8586. const int dr = (nr + nth - 1)/nth;
  8587. // row range for this thread
  8588. const int ir0 = dr*ith;
  8589. const int ir1 = MIN(ir0 + dr, nr);
  8590. for (int ir = ir0; ir < ir1; ++ir) {
  8591. // a indices
  8592. const int ia3 = ir/(nea2*nea1);
  8593. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8594. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8595. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8596. for (int64_t ic = 0; ic < neb01; ++ic) {
  8597. // b0 indices
  8598. const int ib03 = ia3;
  8599. const int ib02 = ia2;
  8600. const int ib01 = ic;
  8601. // S indices
  8602. const int i1 = ib01;
  8603. ggml_vec_dot_f16(nea0,
  8604. S + i1,
  8605. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8606. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8607. }
  8608. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8609. //ggml_vec_gelu_f32(neb01, S, S);
  8610. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8611. for (int64_t i = 0; i < M; i++) {
  8612. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8613. }
  8614. ggml_vec_gelu_f16(neb01, S16, S16);
  8615. {
  8616. // dst indices
  8617. const int i1 = ia1;
  8618. const int i2 = ia2;
  8619. const int i3 = ia3;
  8620. for (int64_t ic = 0; ic < nec01; ++ic) {
  8621. ggml_vec_dot_f16(neb01,
  8622. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8623. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8624. S16);
  8625. }
  8626. ggml_vec_add_f32(nec01,
  8627. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8628. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8629. (float *) c1->data);
  8630. }
  8631. }
  8632. }
  8633. static void ggml_compute_forward_flash_ff(
  8634. const struct ggml_compute_params * params,
  8635. const struct ggml_tensor * a,
  8636. const struct ggml_tensor * b0,
  8637. const struct ggml_tensor * b1,
  8638. const struct ggml_tensor * c0,
  8639. const struct ggml_tensor * c1,
  8640. struct ggml_tensor * dst) {
  8641. switch (b0->type) {
  8642. case GGML_TYPE_F16:
  8643. {
  8644. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8645. } break;
  8646. case GGML_TYPE_F32:
  8647. {
  8648. GGML_ASSERT(false); // TODO
  8649. } break;
  8650. default:
  8651. {
  8652. GGML_ASSERT(false);
  8653. } break;
  8654. }
  8655. }
  8656. // ggml_compute_forward_map_unary
  8657. static void ggml_compute_forward_map_unary_f32(
  8658. const struct ggml_compute_params * params,
  8659. const struct ggml_tensor * src0,
  8660. struct ggml_tensor * dst,
  8661. const ggml_unary_op_f32_t fun) {
  8662. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8663. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8664. return;
  8665. }
  8666. const int n = ggml_nrows(src0);
  8667. const int nc = src0->ne[0];
  8668. assert( dst->nb[0] == sizeof(float));
  8669. assert(src0->nb[0] == sizeof(float));
  8670. for (int i = 0; i < n; i++) {
  8671. fun(nc,
  8672. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8673. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8674. }
  8675. }
  8676. static void ggml_compute_forward_map_unary(
  8677. const struct ggml_compute_params * params,
  8678. const struct ggml_tensor * src0,
  8679. struct ggml_tensor * dst,
  8680. const ggml_unary_op_f32_t fun) {
  8681. switch (src0->type) {
  8682. case GGML_TYPE_F32:
  8683. {
  8684. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8685. } break;
  8686. default:
  8687. {
  8688. GGML_ASSERT(false);
  8689. } break;
  8690. }
  8691. }
  8692. // ggml_compute_forward_map_binary
  8693. static void ggml_compute_forward_map_binary_f32(
  8694. const struct ggml_compute_params * params,
  8695. const struct ggml_tensor * src0,
  8696. const struct ggml_tensor * src1,
  8697. struct ggml_tensor * dst,
  8698. const ggml_binary_op_f32_t fun) {
  8699. assert(params->ith == 0);
  8700. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8702. return;
  8703. }
  8704. const int n = ggml_nrows(src0);
  8705. const int nc = src0->ne[0];
  8706. assert( dst->nb[0] == sizeof(float));
  8707. assert(src0->nb[0] == sizeof(float));
  8708. assert(src1->nb[0] == sizeof(float));
  8709. for (int i = 0; i < n; i++) {
  8710. fun(nc,
  8711. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8712. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8713. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8714. }
  8715. }
  8716. static void ggml_compute_forward_map_binary(
  8717. const struct ggml_compute_params * params,
  8718. const struct ggml_tensor * src0,
  8719. const struct ggml_tensor * src1,
  8720. struct ggml_tensor * dst,
  8721. const ggml_binary_op_f32_t fun) {
  8722. switch (src0->type) {
  8723. case GGML_TYPE_F32:
  8724. {
  8725. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8726. } break;
  8727. default:
  8728. {
  8729. GGML_ASSERT(false);
  8730. } break;
  8731. }
  8732. }
  8733. /////////////////////////////////
  8734. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8735. GGML_ASSERT(params);
  8736. switch (tensor->op) {
  8737. case GGML_OP_DUP:
  8738. {
  8739. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8740. } break;
  8741. case GGML_OP_ADD:
  8742. {
  8743. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8744. } break;
  8745. case GGML_OP_SUB:
  8746. {
  8747. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8748. } break;
  8749. case GGML_OP_MUL:
  8750. {
  8751. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8752. } break;
  8753. case GGML_OP_DIV:
  8754. {
  8755. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8756. } break;
  8757. case GGML_OP_SQR:
  8758. {
  8759. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8760. } break;
  8761. case GGML_OP_SQRT:
  8762. {
  8763. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8764. } break;
  8765. case GGML_OP_SUM:
  8766. {
  8767. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8768. } break;
  8769. case GGML_OP_MEAN:
  8770. {
  8771. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8772. } break;
  8773. case GGML_OP_REPEAT:
  8774. {
  8775. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8776. } break;
  8777. case GGML_OP_ABS:
  8778. {
  8779. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8780. } break;
  8781. case GGML_OP_SGN:
  8782. {
  8783. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8784. } break;
  8785. case GGML_OP_NEG:
  8786. {
  8787. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8788. } break;
  8789. case GGML_OP_STEP:
  8790. {
  8791. ggml_compute_forward_step(params, tensor->src0, tensor);
  8792. } break;
  8793. case GGML_OP_RELU:
  8794. {
  8795. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8796. } break;
  8797. case GGML_OP_GELU:
  8798. {
  8799. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8800. } break;
  8801. case GGML_OP_SILU:
  8802. {
  8803. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8804. } break;
  8805. case GGML_OP_NORM:
  8806. {
  8807. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8808. } break;
  8809. case GGML_OP_RMS_NORM:
  8810. {
  8811. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8812. } break;
  8813. case GGML_OP_MUL_MAT:
  8814. {
  8815. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8816. } break;
  8817. case GGML_OP_SCALE:
  8818. {
  8819. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8820. } break;
  8821. case GGML_OP_CPY:
  8822. {
  8823. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8824. } break;
  8825. case GGML_OP_CONT:
  8826. {
  8827. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8828. } break;
  8829. case GGML_OP_RESHAPE:
  8830. {
  8831. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8832. } break;
  8833. case GGML_OP_VIEW:
  8834. {
  8835. ggml_compute_forward_view(params, tensor->src0);
  8836. } break;
  8837. case GGML_OP_PERMUTE:
  8838. {
  8839. ggml_compute_forward_permute(params, tensor->src0);
  8840. } break;
  8841. case GGML_OP_TRANSPOSE:
  8842. {
  8843. ggml_compute_forward_transpose(params, tensor->src0);
  8844. } break;
  8845. case GGML_OP_GET_ROWS:
  8846. {
  8847. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8848. } break;
  8849. case GGML_OP_DIAG_MASK_INF:
  8850. {
  8851. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8852. } break;
  8853. case GGML_OP_SOFT_MAX:
  8854. {
  8855. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8856. } break;
  8857. case GGML_OP_ROPE:
  8858. {
  8859. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8860. } break;
  8861. case GGML_OP_CONV_1D_1S:
  8862. {
  8863. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8864. } break;
  8865. case GGML_OP_CONV_1D_2S:
  8866. {
  8867. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8868. } break;
  8869. case GGML_OP_FLASH_ATTN:
  8870. {
  8871. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8872. GGML_ASSERT(t == 0 || t == 1);
  8873. bool masked = t != 0;
  8874. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8875. } break;
  8876. case GGML_OP_FLASH_FF:
  8877. {
  8878. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8879. } break;
  8880. case GGML_OP_MAP_UNARY:
  8881. {
  8882. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8883. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8884. }
  8885. break;
  8886. case GGML_OP_MAP_BINARY:
  8887. {
  8888. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8889. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8890. }
  8891. break;
  8892. case GGML_OP_NONE:
  8893. {
  8894. // nop
  8895. } break;
  8896. case GGML_OP_COUNT:
  8897. {
  8898. GGML_ASSERT(false);
  8899. } break;
  8900. }
  8901. }
  8902. ////////////////////////////////////////////////////////////////////////////////
  8903. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8904. struct ggml_tensor * src0 = tensor->src0;
  8905. struct ggml_tensor * src1 = tensor->src1;
  8906. switch (tensor->op) {
  8907. case GGML_OP_DUP:
  8908. {
  8909. if (src0->grad) {
  8910. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8911. }
  8912. } break;
  8913. case GGML_OP_ADD:
  8914. {
  8915. if (src0->grad) {
  8916. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8917. }
  8918. if (src1->grad) {
  8919. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8920. }
  8921. } break;
  8922. case GGML_OP_SUB:
  8923. {
  8924. if (src0->grad) {
  8925. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8926. }
  8927. if (src1->grad) {
  8928. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8929. }
  8930. } break;
  8931. case GGML_OP_MUL:
  8932. {
  8933. if (src0->grad) {
  8934. src0->grad =
  8935. ggml_add_impl(ctx,
  8936. src0->grad,
  8937. ggml_mul(ctx, src1, tensor->grad),
  8938. inplace);
  8939. }
  8940. if (src1->grad) {
  8941. src1->grad =
  8942. ggml_add_impl(ctx,
  8943. src1->grad,
  8944. ggml_mul(ctx, src0, tensor->grad),
  8945. inplace);
  8946. }
  8947. } break;
  8948. case GGML_OP_DIV:
  8949. {
  8950. if (src0->grad) {
  8951. src0->grad =
  8952. ggml_add_impl(ctx,
  8953. src0->grad,
  8954. ggml_div(ctx, tensor->grad, src1),
  8955. inplace);
  8956. }
  8957. if (src1->grad) {
  8958. src1->grad =
  8959. ggml_sub_impl(ctx,
  8960. src1->grad,
  8961. ggml_mul(ctx,
  8962. tensor->grad,
  8963. ggml_div(ctx, tensor, src1)),
  8964. inplace);
  8965. }
  8966. } break;
  8967. case GGML_OP_SQR:
  8968. {
  8969. if (src0->grad) {
  8970. src0->grad =
  8971. ggml_add_impl(ctx,
  8972. src0->grad,
  8973. ggml_mul(ctx,
  8974. ggml_mul(ctx, src0, tensor->grad),
  8975. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8976. inplace);
  8977. }
  8978. } break;
  8979. case GGML_OP_SQRT:
  8980. {
  8981. if (src0->grad) {
  8982. src0->grad =
  8983. ggml_add_impl(ctx,
  8984. src0->grad,
  8985. ggml_div(ctx,
  8986. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8987. tensor),
  8988. inplace);
  8989. }
  8990. } break;
  8991. case GGML_OP_SUM:
  8992. {
  8993. if (src0->grad) {
  8994. src0->grad =
  8995. ggml_add_impl(ctx,
  8996. src0->grad,
  8997. ggml_repeat(ctx, tensor->grad, src0->grad),
  8998. inplace);
  8999. }
  9000. } break;
  9001. case GGML_OP_MEAN:
  9002. {
  9003. GGML_ASSERT(false); // TODO: implement
  9004. } break;
  9005. case GGML_OP_REPEAT:
  9006. {
  9007. if (src0->grad) {
  9008. src0->grad =
  9009. ggml_add_impl(ctx,
  9010. src0->grad,
  9011. ggml_sum(ctx, tensor->grad),
  9012. inplace);
  9013. }
  9014. } break;
  9015. case GGML_OP_ABS:
  9016. {
  9017. if (src0->grad) {
  9018. src0->grad =
  9019. ggml_add_impl(ctx,
  9020. src0->grad,
  9021. ggml_mul(ctx,
  9022. ggml_sgn(ctx, src0),
  9023. tensor->grad),
  9024. inplace);
  9025. }
  9026. } break;
  9027. case GGML_OP_SGN:
  9028. {
  9029. if (src0->grad) {
  9030. // noop
  9031. }
  9032. } break;
  9033. case GGML_OP_NEG:
  9034. {
  9035. if (src0->grad) {
  9036. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9037. }
  9038. } break;
  9039. case GGML_OP_STEP:
  9040. {
  9041. if (src0->grad) {
  9042. // noop
  9043. }
  9044. } break;
  9045. case GGML_OP_RELU:
  9046. {
  9047. if (src0->grad) {
  9048. src0->grad = ggml_sub_impl(ctx,
  9049. src0->grad,
  9050. ggml_mul(ctx,
  9051. ggml_step(ctx, src0),
  9052. tensor->grad),
  9053. inplace);
  9054. }
  9055. } break;
  9056. case GGML_OP_GELU:
  9057. {
  9058. GGML_ASSERT(false); // TODO: not implemented
  9059. } break;
  9060. case GGML_OP_SILU:
  9061. {
  9062. GGML_ASSERT(false); // TODO: not implemented
  9063. } break;
  9064. case GGML_OP_NORM:
  9065. {
  9066. GGML_ASSERT(false); // TODO: not implemented
  9067. } break;
  9068. case GGML_OP_RMS_NORM:
  9069. {
  9070. GGML_ASSERT(false); // TODO: not implemented
  9071. } break;
  9072. case GGML_OP_MUL_MAT:
  9073. {
  9074. if (src0->grad) {
  9075. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9076. GGML_ASSERT(false);
  9077. }
  9078. if (src1->grad) {
  9079. src1->grad =
  9080. ggml_add_impl(ctx,
  9081. src1->grad,
  9082. ggml_mul_mat(ctx,
  9083. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9084. tensor->grad),
  9085. inplace);
  9086. }
  9087. } break;
  9088. case GGML_OP_SCALE:
  9089. {
  9090. GGML_ASSERT(false); // TODO: not implemented
  9091. } break;
  9092. case GGML_OP_CPY:
  9093. {
  9094. GGML_ASSERT(false); // TODO: not implemented
  9095. } break;
  9096. case GGML_OP_CONT:
  9097. {
  9098. GGML_ASSERT(false); // TODO: not implemented
  9099. } break;
  9100. case GGML_OP_RESHAPE:
  9101. {
  9102. GGML_ASSERT(false); // TODO: not implemented
  9103. } break;
  9104. case GGML_OP_VIEW:
  9105. {
  9106. GGML_ASSERT(false); // not supported
  9107. } break;
  9108. case GGML_OP_PERMUTE:
  9109. {
  9110. GGML_ASSERT(false); // TODO: not implemented
  9111. } break;
  9112. case GGML_OP_TRANSPOSE:
  9113. {
  9114. GGML_ASSERT(false); // TODO: not implemented
  9115. } break;
  9116. case GGML_OP_GET_ROWS:
  9117. {
  9118. GGML_ASSERT(false); // TODO: not implemented
  9119. } break;
  9120. case GGML_OP_DIAG_MASK_INF:
  9121. {
  9122. GGML_ASSERT(false); // TODO: not implemented
  9123. } break;
  9124. case GGML_OP_SOFT_MAX:
  9125. {
  9126. GGML_ASSERT(false); // TODO: not implemented
  9127. } break;
  9128. case GGML_OP_ROPE:
  9129. {
  9130. GGML_ASSERT(false); // TODO: not implemented
  9131. } break;
  9132. case GGML_OP_CONV_1D_1S:
  9133. {
  9134. GGML_ASSERT(false); // TODO: not implemented
  9135. } break;
  9136. case GGML_OP_CONV_1D_2S:
  9137. {
  9138. GGML_ASSERT(false); // TODO: not implemented
  9139. } break;
  9140. case GGML_OP_FLASH_ATTN:
  9141. {
  9142. GGML_ASSERT(false); // not supported
  9143. } break;
  9144. case GGML_OP_FLASH_FF:
  9145. {
  9146. GGML_ASSERT(false); // not supported
  9147. } break;
  9148. case GGML_OP_MAP_UNARY:
  9149. case GGML_OP_MAP_BINARY:
  9150. {
  9151. GGML_ASSERT(false); // not supported
  9152. } break;
  9153. case GGML_OP_NONE:
  9154. {
  9155. // nop
  9156. } break;
  9157. case GGML_OP_COUNT:
  9158. {
  9159. GGML_ASSERT(false);
  9160. } break;
  9161. }
  9162. }
  9163. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9164. if (node->grad == NULL) {
  9165. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9166. // it can also happen during forward pass, if the user performs computations with constants
  9167. if (node->op != GGML_OP_NONE) {
  9168. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9169. }
  9170. }
  9171. // check if already visited
  9172. for (int i = 0; i < cgraph->n_nodes; i++) {
  9173. if (cgraph->nodes[i] == node) {
  9174. return;
  9175. }
  9176. }
  9177. for (int i = 0; i < cgraph->n_leafs; i++) {
  9178. if (cgraph->leafs[i] == node) {
  9179. return;
  9180. }
  9181. }
  9182. if (node->src0) {
  9183. ggml_visit_parents(cgraph, node->src0);
  9184. }
  9185. if (node->src1) {
  9186. ggml_visit_parents(cgraph, node->src1);
  9187. }
  9188. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9189. if (node->opt[i]) {
  9190. ggml_visit_parents(cgraph, node->opt[i]);
  9191. }
  9192. }
  9193. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9194. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9195. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9196. cgraph->leafs[cgraph->n_leafs] = node;
  9197. cgraph->n_leafs++;
  9198. } else {
  9199. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9200. cgraph->nodes[cgraph->n_nodes] = node;
  9201. cgraph->grads[cgraph->n_nodes] = node->grad;
  9202. cgraph->n_nodes++;
  9203. }
  9204. }
  9205. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9206. if (!expand) {
  9207. cgraph->n_nodes = 0;
  9208. cgraph->n_leafs = 0;
  9209. }
  9210. const int n0 = cgraph->n_nodes;
  9211. UNUSED(n0);
  9212. ggml_visit_parents(cgraph, tensor);
  9213. const int n_new = cgraph->n_nodes - n0;
  9214. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9215. if (n_new > 0) {
  9216. // the last added node should always be starting point
  9217. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9218. }
  9219. }
  9220. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9221. ggml_build_forward_impl(cgraph, tensor, true);
  9222. }
  9223. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9224. struct ggml_cgraph result = {
  9225. /*.n_nodes =*/ 0,
  9226. /*.n_leafs =*/ 0,
  9227. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9228. /*.work_size =*/ 0,
  9229. /*.work =*/ NULL,
  9230. /*.nodes =*/ { NULL },
  9231. /*.grads =*/ { NULL },
  9232. /*.leafs =*/ { NULL },
  9233. /*.perf_runs =*/ 0,
  9234. /*.perf_cycles =*/ 0,
  9235. /*.perf_time_us =*/ 0,
  9236. };
  9237. ggml_build_forward_impl(&result, tensor, false);
  9238. return result;
  9239. }
  9240. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9241. struct ggml_cgraph result = *gf;
  9242. GGML_ASSERT(gf->n_nodes > 0);
  9243. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9244. if (keep) {
  9245. for (int i = 0; i < gf->n_nodes; i++) {
  9246. struct ggml_tensor * node = gf->nodes[i];
  9247. if (node->grad) {
  9248. node->grad = ggml_dup_tensor(ctx, node);
  9249. gf->grads[i] = node->grad;
  9250. }
  9251. }
  9252. }
  9253. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9254. struct ggml_tensor * node = gf->nodes[i];
  9255. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9256. if (node->grad) {
  9257. ggml_compute_backward(ctx, node, keep);
  9258. }
  9259. }
  9260. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9261. struct ggml_tensor * node = gf->nodes[i];
  9262. if (node->is_param) {
  9263. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9264. ggml_build_forward_impl(&result, node->grad, true);
  9265. }
  9266. }
  9267. return result;
  9268. }
  9269. //
  9270. // thread data
  9271. //
  9272. // synchronization is done via busy loops
  9273. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9274. //
  9275. #ifdef __APPLE__
  9276. //#include <os/lock.h>
  9277. //
  9278. //typedef os_unfair_lock ggml_lock_t;
  9279. //
  9280. //#define ggml_lock_init(x) UNUSED(x)
  9281. //#define ggml_lock_destroy(x) UNUSED(x)
  9282. //#define ggml_lock_lock os_unfair_lock_lock
  9283. //#define ggml_lock_unlock os_unfair_lock_unlock
  9284. //
  9285. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9286. typedef int ggml_lock_t;
  9287. #define ggml_lock_init(x) UNUSED(x)
  9288. #define ggml_lock_destroy(x) UNUSED(x)
  9289. #define ggml_lock_lock(x) UNUSED(x)
  9290. #define ggml_lock_unlock(x) UNUSED(x)
  9291. #define GGML_LOCK_INITIALIZER 0
  9292. typedef pthread_t ggml_thread_t;
  9293. #define ggml_thread_create pthread_create
  9294. #define ggml_thread_join pthread_join
  9295. #else
  9296. //typedef pthread_spinlock_t ggml_lock_t;
  9297. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9298. //#define ggml_lock_destroy pthread_spin_destroy
  9299. //#define ggml_lock_lock pthread_spin_lock
  9300. //#define ggml_lock_unlock pthread_spin_unlock
  9301. typedef int ggml_lock_t;
  9302. #define ggml_lock_init(x) UNUSED(x)
  9303. #define ggml_lock_destroy(x) UNUSED(x)
  9304. #define ggml_lock_lock(x) UNUSED(x)
  9305. #define ggml_lock_unlock(x) UNUSED(x)
  9306. #define GGML_LOCK_INITIALIZER 0
  9307. typedef pthread_t ggml_thread_t;
  9308. #define ggml_thread_create pthread_create
  9309. #define ggml_thread_join pthread_join
  9310. #endif
  9311. struct ggml_compute_state_shared {
  9312. ggml_lock_t spin;
  9313. int n_threads;
  9314. // synchronization primitives
  9315. atomic_int n_ready;
  9316. atomic_bool has_work;
  9317. atomic_bool stop; // stop all threads
  9318. };
  9319. struct ggml_compute_state {
  9320. ggml_thread_t thrd;
  9321. struct ggml_compute_params params;
  9322. struct ggml_tensor * node;
  9323. struct ggml_compute_state_shared * shared;
  9324. };
  9325. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9326. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9327. const int n_threads = state->shared->n_threads;
  9328. while (true) {
  9329. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9330. atomic_store(&state->shared->has_work, false);
  9331. } else {
  9332. while (atomic_load(&state->shared->has_work)) {
  9333. if (atomic_load(&state->shared->stop)) {
  9334. return 0;
  9335. }
  9336. ggml_lock_lock (&state->shared->spin);
  9337. ggml_lock_unlock(&state->shared->spin);
  9338. }
  9339. }
  9340. atomic_fetch_sub(&state->shared->n_ready, 1);
  9341. // wait for work
  9342. while (!atomic_load(&state->shared->has_work)) {
  9343. if (atomic_load(&state->shared->stop)) {
  9344. return 0;
  9345. }
  9346. ggml_lock_lock (&state->shared->spin);
  9347. ggml_lock_unlock(&state->shared->spin);
  9348. }
  9349. // check if we should stop
  9350. if (atomic_load(&state->shared->stop)) {
  9351. break;
  9352. }
  9353. if (state->node) {
  9354. if (state->params.ith < state->params.nth) {
  9355. ggml_compute_forward(&state->params, state->node);
  9356. }
  9357. state->node = NULL;
  9358. } else {
  9359. break;
  9360. }
  9361. }
  9362. return 0;
  9363. }
  9364. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9365. const int n_threads = cgraph->n_threads;
  9366. struct ggml_compute_state_shared state_shared = {
  9367. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9368. /*.n_threads =*/ n_threads,
  9369. /*.n_ready =*/ 0,
  9370. /*.has_work =*/ false,
  9371. /*.stop =*/ false,
  9372. };
  9373. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9374. // create thread pool
  9375. if (n_threads > 1) {
  9376. ggml_lock_init(&state_shared.spin);
  9377. atomic_store(&state_shared.has_work, true);
  9378. for (int j = 0; j < n_threads - 1; j++) {
  9379. workers[j] = (struct ggml_compute_state) {
  9380. .thrd = 0,
  9381. .params = {
  9382. .type = GGML_TASK_COMPUTE,
  9383. .ith = j + 1,
  9384. .nth = n_threads,
  9385. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9386. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9387. },
  9388. .node = NULL,
  9389. .shared = &state_shared,
  9390. };
  9391. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9392. GGML_ASSERT(rc == 0);
  9393. UNUSED(rc);
  9394. }
  9395. }
  9396. // initialize tasks + work buffer
  9397. {
  9398. size_t work_size = 0;
  9399. // thread scheduling for the different operations
  9400. for (int i = 0; i < cgraph->n_nodes; i++) {
  9401. struct ggml_tensor * node = cgraph->nodes[i];
  9402. switch (node->op) {
  9403. case GGML_OP_CPY:
  9404. case GGML_OP_DUP:
  9405. {
  9406. node->n_tasks = n_threads;
  9407. size_t cur = 0;
  9408. if (ggml_is_quantized(node->type)) {
  9409. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9410. }
  9411. work_size = MAX(work_size, cur);
  9412. } break;
  9413. case GGML_OP_ADD:
  9414. {
  9415. node->n_tasks = n_threads;
  9416. size_t cur = 0;
  9417. if (ggml_is_quantized(node->src0->type)) {
  9418. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9419. }
  9420. work_size = MAX(work_size, cur);
  9421. } break;
  9422. case GGML_OP_SUB:
  9423. case GGML_OP_MUL:
  9424. case GGML_OP_DIV:
  9425. case GGML_OP_SQR:
  9426. case GGML_OP_SQRT:
  9427. case GGML_OP_SUM:
  9428. case GGML_OP_MEAN:
  9429. case GGML_OP_REPEAT:
  9430. case GGML_OP_ABS:
  9431. case GGML_OP_SGN:
  9432. case GGML_OP_NEG:
  9433. case GGML_OP_STEP:
  9434. case GGML_OP_RELU:
  9435. {
  9436. node->n_tasks = 1;
  9437. } break;
  9438. case GGML_OP_GELU:
  9439. {
  9440. node->n_tasks = n_threads;
  9441. } break;
  9442. case GGML_OP_SILU:
  9443. {
  9444. node->n_tasks = n_threads;
  9445. } break;
  9446. case GGML_OP_NORM:
  9447. case GGML_OP_RMS_NORM:
  9448. {
  9449. node->n_tasks = n_threads;
  9450. } break;
  9451. case GGML_OP_MUL_MAT:
  9452. {
  9453. node->n_tasks = n_threads;
  9454. // TODO: use different scheduling for different matrix sizes
  9455. //const int nr0 = ggml_nrows(node->src0);
  9456. //const int nr1 = ggml_nrows(node->src1);
  9457. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9458. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9459. size_t cur = 0;
  9460. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9461. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9462. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9463. node->n_tasks = 1; // TODO: this actually is doing nothing
  9464. // the threads are still spinning
  9465. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9466. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  9467. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  9468. //printf("cur = %zu\n", cur);
  9469. } else {
  9470. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9471. }
  9472. #else
  9473. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9474. #endif
  9475. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9476. cur = 0;
  9477. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9478. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9479. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9480. node->n_tasks = 1;
  9481. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9482. } else
  9483. #endif
  9484. {
  9485. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9486. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9487. }
  9488. } else {
  9489. GGML_ASSERT(false);
  9490. }
  9491. work_size = MAX(work_size, cur);
  9492. } break;
  9493. case GGML_OP_SCALE:
  9494. {
  9495. node->n_tasks = n_threads;
  9496. } break;
  9497. case GGML_OP_CONT:
  9498. case GGML_OP_RESHAPE:
  9499. case GGML_OP_VIEW:
  9500. case GGML_OP_PERMUTE:
  9501. case GGML_OP_TRANSPOSE:
  9502. case GGML_OP_GET_ROWS:
  9503. case GGML_OP_DIAG_MASK_INF:
  9504. {
  9505. node->n_tasks = 1;
  9506. } break;
  9507. case GGML_OP_SOFT_MAX:
  9508. {
  9509. node->n_tasks = n_threads;
  9510. } break;
  9511. case GGML_OP_ROPE:
  9512. {
  9513. node->n_tasks = n_threads;
  9514. } break;
  9515. case GGML_OP_CONV_1D_1S:
  9516. case GGML_OP_CONV_1D_2S:
  9517. {
  9518. node->n_tasks = n_threads;
  9519. GGML_ASSERT(node->src0->ne[3] == 1);
  9520. GGML_ASSERT(node->src1->ne[2] == 1);
  9521. GGML_ASSERT(node->src1->ne[3] == 1);
  9522. size_t cur = 0;
  9523. const int nk = node->src0->ne[0];
  9524. if (node->src0->type == GGML_TYPE_F16 &&
  9525. node->src1->type == GGML_TYPE_F32) {
  9526. cur = sizeof(ggml_fp16_t)*(
  9527. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9528. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9529. );
  9530. } else if (node->src0->type == GGML_TYPE_F32 &&
  9531. node->src1->type == GGML_TYPE_F32) {
  9532. cur = sizeof(float)*(
  9533. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9534. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9535. );
  9536. } else {
  9537. GGML_ASSERT(false);
  9538. }
  9539. work_size = MAX(work_size, cur);
  9540. } break;
  9541. case GGML_OP_FLASH_ATTN:
  9542. {
  9543. node->n_tasks = n_threads;
  9544. size_t cur = 0;
  9545. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9546. if (node->src1->type == GGML_TYPE_F32) {
  9547. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9548. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9549. }
  9550. if (node->src1->type == GGML_TYPE_F16) {
  9551. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9552. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9553. }
  9554. work_size = MAX(work_size, cur);
  9555. } break;
  9556. case GGML_OP_FLASH_FF:
  9557. {
  9558. node->n_tasks = n_threads;
  9559. size_t cur = 0;
  9560. if (node->src1->type == GGML_TYPE_F32) {
  9561. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9562. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9563. }
  9564. if (node->src1->type == GGML_TYPE_F16) {
  9565. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9566. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9567. }
  9568. work_size = MAX(work_size, cur);
  9569. } break;
  9570. case GGML_OP_MAP_UNARY:
  9571. case GGML_OP_MAP_BINARY:
  9572. {
  9573. node->n_tasks = 1;
  9574. } break;
  9575. case GGML_OP_NONE:
  9576. {
  9577. node->n_tasks = 1;
  9578. } break;
  9579. case GGML_OP_COUNT:
  9580. {
  9581. GGML_ASSERT(false);
  9582. } break;
  9583. }
  9584. }
  9585. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9586. GGML_ASSERT(false); // TODO: better handling
  9587. }
  9588. if (work_size > 0 && cgraph->work == NULL) {
  9589. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9590. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9591. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9592. }
  9593. }
  9594. const int64_t perf_start_cycles = ggml_perf_cycles();
  9595. const int64_t perf_start_time_us = ggml_perf_time_us();
  9596. for (int i = 0; i < cgraph->n_nodes; i++) {
  9597. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9598. struct ggml_tensor * node = cgraph->nodes[i];
  9599. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9600. //if (node->grad == NULL && node->perf_runs > 0) {
  9601. // continue;
  9602. //}
  9603. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9604. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9605. // INIT
  9606. struct ggml_compute_params params = {
  9607. /*.type =*/ GGML_TASK_INIT,
  9608. /*.ith =*/ 0,
  9609. /*.nth =*/ node->n_tasks,
  9610. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9611. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9612. };
  9613. ggml_compute_forward(&params, node);
  9614. // COMPUTE
  9615. if (node->n_tasks > 1) {
  9616. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9617. atomic_store(&state_shared.has_work, false);
  9618. }
  9619. while (atomic_load(&state_shared.has_work)) {
  9620. ggml_lock_lock (&state_shared.spin);
  9621. ggml_lock_unlock(&state_shared.spin);
  9622. }
  9623. // launch thread pool
  9624. for (int j = 0; j < n_threads - 1; j++) {
  9625. workers[j].params = (struct ggml_compute_params) {
  9626. .type = GGML_TASK_COMPUTE,
  9627. .ith = j + 1,
  9628. .nth = node->n_tasks,
  9629. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9630. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9631. };
  9632. workers[j].node = node;
  9633. }
  9634. atomic_fetch_sub(&state_shared.n_ready, 1);
  9635. while (atomic_load(&state_shared.n_ready) > 0) {
  9636. ggml_lock_lock (&state_shared.spin);
  9637. ggml_lock_unlock(&state_shared.spin);
  9638. }
  9639. atomic_store(&state_shared.has_work, true);
  9640. }
  9641. params.type = GGML_TASK_COMPUTE;
  9642. ggml_compute_forward(&params, node);
  9643. // wait for thread pool
  9644. if (node->n_tasks > 1) {
  9645. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9646. atomic_store(&state_shared.has_work, false);
  9647. }
  9648. while (atomic_load(&state_shared.has_work)) {
  9649. ggml_lock_lock (&state_shared.spin);
  9650. ggml_lock_unlock(&state_shared.spin);
  9651. }
  9652. atomic_fetch_sub(&state_shared.n_ready, 1);
  9653. while (atomic_load(&state_shared.n_ready) != 0) {
  9654. ggml_lock_lock (&state_shared.spin);
  9655. ggml_lock_unlock(&state_shared.spin);
  9656. }
  9657. }
  9658. // FINALIZE
  9659. if (node->n_tasks > 1) {
  9660. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9661. atomic_store(&state_shared.has_work, false);
  9662. }
  9663. while (atomic_load(&state_shared.has_work)) {
  9664. ggml_lock_lock (&state_shared.spin);
  9665. ggml_lock_unlock(&state_shared.spin);
  9666. }
  9667. // launch thread pool
  9668. for (int j = 0; j < n_threads - 1; j++) {
  9669. workers[j].params = (struct ggml_compute_params) {
  9670. .type = GGML_TASK_FINALIZE,
  9671. .ith = j + 1,
  9672. .nth = node->n_tasks,
  9673. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9674. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9675. };
  9676. workers[j].node = node;
  9677. }
  9678. atomic_fetch_sub(&state_shared.n_ready, 1);
  9679. while (atomic_load(&state_shared.n_ready) > 0) {
  9680. ggml_lock_lock (&state_shared.spin);
  9681. ggml_lock_unlock(&state_shared.spin);
  9682. }
  9683. atomic_store(&state_shared.has_work, true);
  9684. }
  9685. params.type = GGML_TASK_FINALIZE;
  9686. ggml_compute_forward(&params, node);
  9687. // wait for thread pool
  9688. if (node->n_tasks > 1) {
  9689. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9690. atomic_store(&state_shared.has_work, false);
  9691. }
  9692. while (atomic_load(&state_shared.has_work)) {
  9693. ggml_lock_lock (&state_shared.spin);
  9694. ggml_lock_unlock(&state_shared.spin);
  9695. }
  9696. atomic_fetch_sub(&state_shared.n_ready, 1);
  9697. while (atomic_load(&state_shared.n_ready) != 0) {
  9698. ggml_lock_lock (&state_shared.spin);
  9699. ggml_lock_unlock(&state_shared.spin);
  9700. }
  9701. }
  9702. // performance stats (node)
  9703. {
  9704. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9705. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9706. node->perf_runs++;
  9707. node->perf_cycles += perf_cycles_cur;
  9708. node->perf_time_us += perf_time_us_cur;
  9709. }
  9710. }
  9711. // join thread pool
  9712. if (n_threads > 1) {
  9713. atomic_store(&state_shared.stop, true);
  9714. atomic_store(&state_shared.has_work, true);
  9715. for (int j = 0; j < n_threads - 1; j++) {
  9716. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9717. GGML_ASSERT(rc == 0);
  9718. UNUSED(rc);
  9719. }
  9720. ggml_lock_destroy(&state_shared.spin);
  9721. }
  9722. // performance stats (graph)
  9723. {
  9724. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9725. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9726. cgraph->perf_runs++;
  9727. cgraph->perf_cycles += perf_cycles_cur;
  9728. cgraph->perf_time_us += perf_time_us_cur;
  9729. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9730. __func__, cgraph->perf_runs,
  9731. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9732. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9733. (double) perf_time_us_cur / 1000.0,
  9734. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9735. }
  9736. }
  9737. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9738. for (int i = 0; i < cgraph->n_nodes; i++) {
  9739. struct ggml_tensor * grad = cgraph->grads[i];
  9740. if (grad) {
  9741. ggml_set_zero(grad);
  9742. }
  9743. }
  9744. }
  9745. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9746. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9747. GGML_PRINT("=== GRAPH ===\n");
  9748. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9749. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9750. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9751. for (int i = 0; i < cgraph->n_nodes; i++) {
  9752. struct ggml_tensor * node = cgraph->nodes[i];
  9753. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9754. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9755. i,
  9756. node->ne[0], node->ne[1], node->ne[2],
  9757. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9758. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9759. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9760. (double) node->perf_time_us / 1000.0,
  9761. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9762. }
  9763. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9764. for (int i = 0; i < cgraph->n_leafs; i++) {
  9765. struct ggml_tensor * node = cgraph->leafs[i];
  9766. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9767. i,
  9768. node->ne[0], node->ne[1],
  9769. GGML_OP_LABEL[node->op]);
  9770. }
  9771. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9772. if (perf_total_per_op_us[i] == 0) {
  9773. continue;
  9774. }
  9775. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9776. }
  9777. GGML_PRINT("========================================\n");
  9778. }
  9779. // check if node is part of the graph
  9780. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9781. if (cgraph == NULL) {
  9782. return true;
  9783. }
  9784. for (int i = 0; i < cgraph->n_nodes; i++) {
  9785. if (cgraph->nodes[i] == node) {
  9786. return true;
  9787. }
  9788. }
  9789. return false;
  9790. }
  9791. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9792. for (int i = 0; i < cgraph->n_nodes; i++) {
  9793. struct ggml_tensor * parent = cgraph->nodes[i];
  9794. if (parent->grad == node) {
  9795. return parent;
  9796. }
  9797. }
  9798. return NULL;
  9799. }
  9800. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9801. char color[16];
  9802. FILE * fp = fopen(filename, "w");
  9803. GGML_ASSERT(fp);
  9804. fprintf(fp, "digraph G {\n");
  9805. fprintf(fp, " newrank = true;\n");
  9806. fprintf(fp, " rankdir = LR;\n");
  9807. for (int i = 0; i < gb->n_nodes; i++) {
  9808. struct ggml_tensor * node = gb->nodes[i];
  9809. if (ggml_graph_get_parent(gb, node) != NULL) {
  9810. continue;
  9811. }
  9812. if (node->is_param) {
  9813. snprintf(color, sizeof(color), "yellow");
  9814. } else if (node->grad) {
  9815. if (ggml_graph_find(gf, node)) {
  9816. snprintf(color, sizeof(color), "green");
  9817. } else {
  9818. snprintf(color, sizeof(color), "lightblue");
  9819. }
  9820. } else {
  9821. snprintf(color, sizeof(color), "white");
  9822. }
  9823. fprintf(fp, " \"%p\" [ \
  9824. style = filled; fillcolor = %s; shape = record; \
  9825. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9826. (void *) node, color,
  9827. i, node->ne[0], node->ne[1],
  9828. GGML_OP_SYMBOL[node->op]);
  9829. if (node->grad) {
  9830. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9831. } else {
  9832. fprintf(fp, "\"; ]\n");
  9833. }
  9834. }
  9835. for (int i = 0; i < gb->n_leafs; i++) {
  9836. struct ggml_tensor * node = gb->leafs[i];
  9837. snprintf(color, sizeof(color), "pink");
  9838. if (ggml_nelements(node) == 1) {
  9839. fprintf(fp, " \"%p\" [ \
  9840. style = filled; fillcolor = %s; shape = record; \
  9841. label=\"<x>%.1e\"; ]\n",
  9842. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9843. } else {
  9844. fprintf(fp, " \"%p\" [ \
  9845. style = filled; fillcolor = %s; shape = record; \
  9846. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9847. (void *) node, color,
  9848. i, node->ne[0], node->ne[1]);
  9849. }
  9850. }
  9851. for (int i = 0; i < gb->n_nodes; i++) {
  9852. struct ggml_tensor * node = gb->nodes[i];
  9853. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9854. if (node->src0) {
  9855. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9856. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9857. parent0 ? (void *) parent0 : (void *) node->src0,
  9858. parent0 ? "g" : "x",
  9859. parent ? (void *) parent : (void *) node,
  9860. parent ? "g" : "x",
  9861. parent ? "empty" : "vee",
  9862. parent ? "dashed" : "solid");
  9863. }
  9864. if (node->src1) {
  9865. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9866. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9867. parent1 ? (void *) parent1 : (void *) node->src1,
  9868. parent1 ? "g" : "x",
  9869. parent ? (void *) parent : (void *) node,
  9870. parent ? "g" : "x",
  9871. parent ? "empty" : "vee",
  9872. parent ? "dashed" : "solid");
  9873. }
  9874. }
  9875. for (int i = 0; i < gb->n_leafs; i++) {
  9876. struct ggml_tensor * node = gb->leafs[i];
  9877. if (node->src0) {
  9878. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9879. (void *) node->src0, "x",
  9880. (void *) node, "x");
  9881. }
  9882. if (node->src1) {
  9883. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9884. (void *) node->src1, "x",
  9885. (void *) node, "x");
  9886. }
  9887. }
  9888. fprintf(fp, "}\n");
  9889. fclose(fp);
  9890. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9891. }
  9892. ////////////////////////////////////////////////////////////////////////////////
  9893. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9894. int i = 0;
  9895. for (int p = 0; p < np; ++p) {
  9896. const int64_t ne = ggml_nelements(ps[p]) ;
  9897. // TODO: add function to set tensor from array
  9898. for (int64_t j = 0; j < ne; ++j) {
  9899. ggml_set_f32_1d(ps[p], j, x[i++]);
  9900. }
  9901. }
  9902. }
  9903. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9904. int i = 0;
  9905. for (int p = 0; p < np; ++p) {
  9906. const int64_t ne = ggml_nelements(ps[p]) ;
  9907. // TODO: add function to get all elements at once
  9908. for (int64_t j = 0; j < ne; ++j) {
  9909. x[i++] = ggml_get_f32_1d(ps[p], j);
  9910. }
  9911. }
  9912. }
  9913. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9914. int i = 0;
  9915. for (int p = 0; p < np; ++p) {
  9916. const int64_t ne = ggml_nelements(ps[p]) ;
  9917. // TODO: add function to get all elements at once
  9918. for (int64_t j = 0; j < ne; ++j) {
  9919. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9920. }
  9921. }
  9922. }
  9923. //
  9924. // ADAM
  9925. //
  9926. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9927. //
  9928. static enum ggml_opt_result ggml_opt_adam(
  9929. struct ggml_context * ctx,
  9930. struct ggml_opt_params params,
  9931. struct ggml_tensor * f,
  9932. struct ggml_cgraph * gf,
  9933. struct ggml_cgraph * gb) {
  9934. GGML_ASSERT(ggml_is_scalar(f));
  9935. gf->n_threads = params.n_threads;
  9936. gb->n_threads = params.n_threads;
  9937. // these will store the parameters we want to optimize
  9938. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9939. int np = 0;
  9940. int nx = 0;
  9941. for (int i = 0; i < gf->n_nodes; ++i) {
  9942. if (gf->nodes[i]->is_param) {
  9943. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9944. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9945. ps[np++] = gf->nodes[i];
  9946. nx += ggml_nelements(gf->nodes[i]);
  9947. }
  9948. }
  9949. // constants
  9950. const float alpha = params.adam.alpha;
  9951. const float beta1 = params.adam.beta1;
  9952. const float beta2 = params.adam.beta2;
  9953. const float eps = params.adam.eps;
  9954. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9955. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9956. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9957. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9958. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9959. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9960. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9961. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9962. // initialize
  9963. ggml_vec_set_f32(nx, m, 0.0f);
  9964. ggml_vec_set_f32(nx, v, 0.0f);
  9965. // update view
  9966. ggml_opt_get_params(np, ps, x);
  9967. // compute the function value
  9968. ggml_graph_reset (gf);
  9969. ggml_set_f32 (f->grad, 1.0f);
  9970. ggml_graph_compute(ctx, gb);
  9971. float fx_prev = ggml_get_f32_1d(f, 0);
  9972. if (pf) {
  9973. pf[0] = fx_prev;
  9974. }
  9975. int n_no_improvement = 0;
  9976. float fx_best = fx_prev;
  9977. // run the optimizer
  9978. for (int t = 0; t < params.adam.n_iter; ++t) {
  9979. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9980. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9981. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9982. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9983. for (int i = 0; i < np; ++i) {
  9984. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9985. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9986. }
  9987. const int64_t t_start_wall = ggml_time_us();
  9988. const int64_t t_start_cpu = ggml_cycles();
  9989. UNUSED(t_start_wall);
  9990. UNUSED(t_start_cpu);
  9991. {
  9992. // update the gradient
  9993. ggml_opt_get_grad(np, ps, g1);
  9994. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9995. ggml_vec_scale_f32(nx, m, beta1);
  9996. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9997. // g2 = g1^2
  9998. ggml_vec_sqr_f32 (nx, g2, g1);
  9999. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  10000. ggml_vec_scale_f32(nx, v, beta2);
  10001. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  10002. // m^hat = m_t / (1 - beta1^t)
  10003. // v^hat = v_t / (1 - beta2^t)
  10004. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  10005. ggml_vec_cpy_f32 (nx, mh, m);
  10006. ggml_vec_cpy_f32 (nx, vh, v);
  10007. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  10008. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  10009. ggml_vec_sqrt_f32 (nx, vh, vh);
  10010. ggml_vec_acc1_f32 (nx, vh, eps);
  10011. ggml_vec_div_f32 (nx, mh, mh, vh);
  10012. ggml_vec_sub_f32 (nx, x, x, mh);
  10013. // update the parameters
  10014. ggml_opt_set_params(np, ps, x);
  10015. }
  10016. ggml_graph_reset (gf);
  10017. ggml_set_f32 (f->grad, 1.0f);
  10018. ggml_graph_compute(ctx, gb);
  10019. const float fx = ggml_get_f32_1d(f, 0);
  10020. // check convergence
  10021. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10022. GGML_PRINT_DEBUG("converged\n");
  10023. return GGML_OPT_OK;
  10024. }
  10025. // delta-based convergence test
  10026. if (pf != NULL) {
  10027. // need at least params.past iterations to start checking for convergence
  10028. if (params.past <= t) {
  10029. const float rate = (pf[t%params.past] - fx)/fx;
  10030. if (fabsf(rate) < params.delta) {
  10031. return GGML_OPT_OK;
  10032. }
  10033. }
  10034. pf[t%params.past] = fx;
  10035. }
  10036. // check for improvement
  10037. if (params.max_no_improvement > 0) {
  10038. if (fx_best > fx) {
  10039. fx_best = fx;
  10040. n_no_improvement = 0;
  10041. } else {
  10042. ++n_no_improvement;
  10043. if (n_no_improvement >= params.max_no_improvement) {
  10044. return GGML_OPT_OK;
  10045. }
  10046. }
  10047. }
  10048. fx_prev = fx;
  10049. {
  10050. const int64_t t_end_cpu = ggml_cycles();
  10051. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10052. UNUSED(t_end_cpu);
  10053. const int64_t t_end_wall = ggml_time_us();
  10054. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10055. UNUSED(t_end_wall);
  10056. }
  10057. }
  10058. return GGML_OPT_DID_NOT_CONVERGE;
  10059. }
  10060. //
  10061. // L-BFGS
  10062. //
  10063. // the L-BFGS implementation below is based on the following implementation:
  10064. //
  10065. // https://github.com/chokkan/liblbfgs
  10066. //
  10067. struct ggml_lbfgs_iteration_data {
  10068. float alpha;
  10069. float ys;
  10070. float * s;
  10071. float * y;
  10072. };
  10073. static enum ggml_opt_result linesearch_backtracking(
  10074. struct ggml_context * ctx,
  10075. const struct ggml_opt_params * params,
  10076. int nx,
  10077. float * x,
  10078. float * fx,
  10079. float * g,
  10080. float * d,
  10081. float * step,
  10082. const float * xp,
  10083. struct ggml_tensor * f,
  10084. struct ggml_cgraph * gf,
  10085. struct ggml_cgraph * gb,
  10086. const int np,
  10087. struct ggml_tensor * ps[]) {
  10088. int count = 0;
  10089. float width = 0.0f;
  10090. float dg = 0.0f;
  10091. float finit = 0.0f;
  10092. float dginit = 0.0f;
  10093. float dgtest = 0.0f;
  10094. const float dec = 0.5f;
  10095. const float inc = 2.1f;
  10096. if (*step <= 0.f) {
  10097. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10098. }
  10099. // compute the initial gradient in the search direction
  10100. ggml_vec_dot_f32(nx, &dginit, g, d);
  10101. // make sure that d points to a descent direction
  10102. if (0 < dginit) {
  10103. return GGML_LINESEARCH_FAIL;
  10104. }
  10105. // initialize local variables
  10106. finit = *fx;
  10107. dgtest = params->lbfgs.ftol*dginit;
  10108. while (true) {
  10109. ggml_vec_cpy_f32(nx, x, xp);
  10110. ggml_vec_mad_f32(nx, x, d, *step);
  10111. // evaluate the function and gradient values
  10112. {
  10113. ggml_opt_set_params(np, ps, x);
  10114. ggml_graph_reset (gf);
  10115. ggml_set_f32 (f->grad, 1.0f);
  10116. ggml_graph_compute(ctx, gb);
  10117. ggml_opt_get_grad(np, ps, g);
  10118. *fx = ggml_get_f32_1d(f, 0);
  10119. }
  10120. ++count;
  10121. if (*fx > finit + (*step)*dgtest) {
  10122. width = dec;
  10123. } else {
  10124. // Armijo condition is satisfied
  10125. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10126. return count;
  10127. }
  10128. ggml_vec_dot_f32(nx, &dg, g, d);
  10129. // check the Wolfe condition
  10130. if (dg < params->lbfgs.wolfe * dginit) {
  10131. width = inc;
  10132. } else {
  10133. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10134. // regular Wolfe conditions
  10135. return count;
  10136. }
  10137. if(dg > -params->lbfgs.wolfe*dginit) {
  10138. width = dec;
  10139. } else {
  10140. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10141. return count;
  10142. }
  10143. return count;
  10144. }
  10145. }
  10146. if (*step < params->lbfgs.min_step) {
  10147. return GGML_LINESEARCH_MINIMUM_STEP;
  10148. }
  10149. if (*step > params->lbfgs.max_step) {
  10150. return GGML_LINESEARCH_MAXIMUM_STEP;
  10151. }
  10152. if (params->lbfgs.max_linesearch <= count) {
  10153. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10154. }
  10155. (*step) *= width;
  10156. }
  10157. return GGML_LINESEARCH_FAIL;
  10158. }
  10159. static enum ggml_opt_result ggml_opt_lbfgs(
  10160. struct ggml_context * ctx,
  10161. struct ggml_opt_params params,
  10162. struct ggml_tensor * f,
  10163. struct ggml_cgraph * gf,
  10164. struct ggml_cgraph * gb) {
  10165. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10166. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10167. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10168. return GGML_OPT_INVALID_WOLFE;
  10169. }
  10170. }
  10171. gf->n_threads = params.n_threads;
  10172. gb->n_threads = params.n_threads;
  10173. const int m = params.lbfgs.m;
  10174. // these will store the parameters we want to optimize
  10175. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10176. int np = 0;
  10177. int nx = 0;
  10178. for (int i = 0; i < gf->n_nodes; ++i) {
  10179. if (gf->nodes[i]->is_param) {
  10180. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10181. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10182. ps[np++] = gf->nodes[i];
  10183. nx += ggml_nelements(gf->nodes[i]);
  10184. }
  10185. }
  10186. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10187. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10188. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10189. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10190. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10191. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10192. float fx = 0.0f; // cost function value
  10193. float xnorm = 0.0f; // ||x||
  10194. float gnorm = 0.0f; // ||g||
  10195. float step = 0.0f;
  10196. // initialize x from the graph nodes
  10197. ggml_opt_get_params(np, ps, x);
  10198. // the L-BFGS memory
  10199. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10200. for (int i = 0; i < m; ++i) {
  10201. lm[i].alpha = 0.0f;
  10202. lm[i].ys = 0.0f;
  10203. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10204. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10205. }
  10206. // evaluate the function value and its gradient
  10207. {
  10208. ggml_opt_set_params(np, ps, x);
  10209. ggml_graph_reset (gf);
  10210. ggml_set_f32 (f->grad, 1.0f);
  10211. ggml_graph_compute(ctx, gb);
  10212. ggml_opt_get_grad(np, ps, g);
  10213. fx = ggml_get_f32_1d(f, 0);
  10214. }
  10215. if (pf) {
  10216. pf[0] = fx;
  10217. }
  10218. float fx_best = fx;
  10219. // search direction = -gradient
  10220. ggml_vec_neg_f32(nx, d, g);
  10221. // ||x||, ||g||
  10222. ggml_vec_norm_f32(nx, &xnorm, x);
  10223. ggml_vec_norm_f32(nx, &gnorm, g);
  10224. if (xnorm < 1.0f) {
  10225. xnorm = 1.0f;
  10226. }
  10227. // already optimized
  10228. if (gnorm/xnorm <= params.lbfgs.eps) {
  10229. return GGML_OPT_OK;
  10230. }
  10231. // initial step
  10232. ggml_vec_norm_inv_f32(nx, &step, d);
  10233. int j = 0;
  10234. int k = 1;
  10235. int ls = 0;
  10236. int end = 0;
  10237. int bound = 0;
  10238. int n_no_improvement = 0;
  10239. float ys = 0.0f;
  10240. float yy = 0.0f;
  10241. float beta = 0.0f;
  10242. while (true) {
  10243. // store the current position and gradient vectors
  10244. ggml_vec_cpy_f32(nx, xp, x);
  10245. ggml_vec_cpy_f32(nx, gp, g);
  10246. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10247. if (ls < 0) {
  10248. // linesearch failed - go back to the previous point and return
  10249. ggml_vec_cpy_f32(nx, x, xp);
  10250. ggml_vec_cpy_f32(nx, g, gp);
  10251. return ls;
  10252. }
  10253. ggml_vec_norm_f32(nx, &xnorm, x);
  10254. ggml_vec_norm_f32(nx, &gnorm, g);
  10255. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10256. if (xnorm < 1.0f) {
  10257. xnorm = 1.0f;
  10258. }
  10259. if (gnorm/xnorm <= params.lbfgs.eps) {
  10260. // converged
  10261. return GGML_OPT_OK;
  10262. }
  10263. // delta-based convergence test
  10264. if (pf != NULL) {
  10265. // need at least params.past iterations to start checking for convergence
  10266. if (params.past <= k) {
  10267. const float rate = (pf[k%params.past] - fx)/fx;
  10268. if (fabsf(rate) < params.delta) {
  10269. return GGML_OPT_OK;
  10270. }
  10271. }
  10272. pf[k%params.past] = fx;
  10273. }
  10274. // check for improvement
  10275. if (params.max_no_improvement > 0) {
  10276. if (fx < fx_best) {
  10277. fx_best = fx;
  10278. n_no_improvement = 0;
  10279. } else {
  10280. n_no_improvement++;
  10281. if (n_no_improvement >= params.max_no_improvement) {
  10282. return GGML_OPT_OK;
  10283. }
  10284. }
  10285. }
  10286. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10287. // reached the maximum number of iterations
  10288. return GGML_OPT_DID_NOT_CONVERGE;
  10289. }
  10290. // update vectors s and y:
  10291. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10292. // y_{k+1} = g_{k+1} - g_{k}.
  10293. //
  10294. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10295. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10296. // compute scalars ys and yy:
  10297. // ys = y^t \cdot s -> 1 / \rho.
  10298. // yy = y^t \cdot y.
  10299. //
  10300. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10301. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10302. lm[end].ys = ys;
  10303. // find new search direction
  10304. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10305. bound = (m <= k) ? m : k;
  10306. k++;
  10307. end = (end + 1)%m;
  10308. // initialize search direction with -g
  10309. ggml_vec_neg_f32(nx, d, g);
  10310. j = end;
  10311. for (int i = 0; i < bound; ++i) {
  10312. j = (j + m - 1) % m;
  10313. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10314. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10315. lm[j].alpha /= lm[j].ys;
  10316. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10317. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10318. }
  10319. ggml_vec_scale_f32(nx, d, ys/yy);
  10320. for (int i = 0; i < bound; ++i) {
  10321. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10322. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10323. beta /= lm[j].ys;
  10324. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10325. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10326. j = (j + 1)%m;
  10327. }
  10328. step = 1.0;
  10329. }
  10330. return GGML_OPT_DID_NOT_CONVERGE;
  10331. }
  10332. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10333. struct ggml_opt_params result;
  10334. switch (type) {
  10335. case GGML_OPT_ADAM:
  10336. {
  10337. result = (struct ggml_opt_params) {
  10338. .type = GGML_OPT_ADAM,
  10339. .n_threads = 1,
  10340. .past = 0,
  10341. .delta = 1e-5f,
  10342. .max_no_improvement = 100,
  10343. .print_forward_graph = true,
  10344. .print_backward_graph = true,
  10345. .adam = {
  10346. .n_iter = 10000,
  10347. .alpha = 0.001f,
  10348. .beta1 = 0.9f,
  10349. .beta2 = 0.999f,
  10350. .eps = 1e-8f,
  10351. .eps_f = 1e-5f,
  10352. .eps_g = 1e-3f,
  10353. },
  10354. };
  10355. } break;
  10356. case GGML_OPT_LBFGS:
  10357. {
  10358. result = (struct ggml_opt_params) {
  10359. .type = GGML_OPT_LBFGS,
  10360. .n_threads = 1,
  10361. .past = 0,
  10362. .delta = 1e-5f,
  10363. .max_no_improvement = 0,
  10364. .print_forward_graph = true,
  10365. .print_backward_graph = true,
  10366. .lbfgs = {
  10367. .m = 6,
  10368. .n_iter = 100,
  10369. .max_linesearch = 20,
  10370. .eps = 1e-5f,
  10371. .ftol = 1e-4f,
  10372. .wolfe = 0.9f,
  10373. .min_step = 1e-20f,
  10374. .max_step = 1e+20f,
  10375. .linesearch = GGML_LINESEARCH_DEFAULT,
  10376. },
  10377. };
  10378. } break;
  10379. }
  10380. return result;
  10381. }
  10382. enum ggml_opt_result ggml_opt(
  10383. struct ggml_context * ctx,
  10384. struct ggml_opt_params params,
  10385. struct ggml_tensor * f) {
  10386. bool free_ctx = false;
  10387. if (ctx == NULL) {
  10388. struct ggml_init_params params_ctx = {
  10389. .mem_size = 16*1024*1024,
  10390. .mem_buffer = NULL,
  10391. .no_alloc = false,
  10392. };
  10393. ctx = ggml_init(params_ctx);
  10394. if (ctx == NULL) {
  10395. return GGML_OPT_NO_CONTEXT;
  10396. }
  10397. free_ctx = true;
  10398. }
  10399. enum ggml_opt_result result = GGML_OPT_OK;
  10400. // build forward + backward compute graphs
  10401. struct ggml_cgraph gf = ggml_build_forward (f);
  10402. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10403. switch (params.type) {
  10404. case GGML_OPT_ADAM:
  10405. {
  10406. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10407. } break;
  10408. case GGML_OPT_LBFGS:
  10409. {
  10410. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10411. } break;
  10412. }
  10413. if (params.print_forward_graph) {
  10414. ggml_graph_print (&gf);
  10415. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10416. }
  10417. if (params.print_backward_graph) {
  10418. ggml_graph_print (&gb);
  10419. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10420. }
  10421. if (free_ctx) {
  10422. ggml_free(ctx);
  10423. }
  10424. return result;
  10425. }
  10426. ////////////////////////////////////////////////////////////////////////////////
  10427. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10428. assert(k % QK4_0 == 0);
  10429. const int nb = k / QK4_0;
  10430. for (int j = 0; j < n; j += k) {
  10431. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10432. quantize_row_q4_0_reference(src + j, y, k);
  10433. for (int i = 0; i < nb; i++) {
  10434. for (int l = 0; l < QK4_0; l += 2) {
  10435. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10436. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10437. hist[vi0]++;
  10438. hist[vi1]++;
  10439. }
  10440. }
  10441. }
  10442. return (n/QK4_0*sizeof(block_q4_0));
  10443. }
  10444. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10445. assert(k % QK4_1 == 0);
  10446. const int nb = k / QK4_1;
  10447. for (int j = 0; j < n; j += k) {
  10448. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10449. quantize_row_q4_1_reference(src + j, y, k);
  10450. for (int i = 0; i < nb; i++) {
  10451. for (int l = 0; l < QK4_1; l += 2) {
  10452. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10453. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10454. hist[vi0]++;
  10455. hist[vi1]++;
  10456. }
  10457. }
  10458. }
  10459. return (n/QK4_1*sizeof(block_q4_1));
  10460. }
  10461. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10462. assert(k % QK4_2 == 0);
  10463. const int nb = k / QK4_2;
  10464. for (int j = 0; j < n; j += k) {
  10465. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10466. quantize_row_q4_2_reference(src + j, y, k);
  10467. for (int i = 0; i < nb; i++) {
  10468. for (int l = 0; l < QK4_2; l += 2) {
  10469. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10470. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10471. hist[vi0]++;
  10472. hist[vi1]++;
  10473. }
  10474. }
  10475. }
  10476. return (n/QK4_2*sizeof(block_q4_2));
  10477. }
  10478. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  10479. assert(k % QK4_3 == 0);
  10480. const int nb = k / QK4_3;
  10481. for (int j = 0; j < n; j += k) {
  10482. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  10483. quantize_row_q4_3_reference(src + j, y, k);
  10484. for (int i = 0; i < nb; i++) {
  10485. for (int l = 0; l < QK4_3; l += 2) {
  10486. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10487. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10488. hist[vi0]++;
  10489. hist[vi1]++;
  10490. }
  10491. }
  10492. }
  10493. return (n/QK4_3*sizeof(block_q4_3));
  10494. }
  10495. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10496. assert(k % QK5_0 == 0);
  10497. const int nb = k / QK5_0;
  10498. for (int j = 0; j < n; j += k) {
  10499. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10500. quantize_row_q5_0_reference(src + j, y, k);
  10501. for (int i = 0; i < nb; i++) {
  10502. uint32_t qh;
  10503. memcpy(&qh, &y[i].qh, sizeof(qh));
  10504. for (int l = 0; l < QK5_0; l += 2) {
  10505. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10506. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10507. // cast to 16 bins
  10508. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10509. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10510. hist[vi0]++;
  10511. hist[vi1]++;
  10512. }
  10513. }
  10514. }
  10515. return (n/QK5_0*sizeof(block_q5_0));
  10516. }
  10517. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10518. assert(k % QK5_1 == 0);
  10519. const int nb = k / QK5_1;
  10520. for (int j = 0; j < n; j += k) {
  10521. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10522. quantize_row_q5_1_reference(src + j, y, k);
  10523. for (int i = 0; i < nb; i++) {
  10524. uint32_t qh;
  10525. memcpy(&qh, &y[i].qh, sizeof(qh));
  10526. for (int l = 0; l < QK5_1; l += 2) {
  10527. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10528. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10529. // cast to 16 bins
  10530. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10531. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10532. hist[vi0]++;
  10533. hist[vi1]++;
  10534. }
  10535. }
  10536. }
  10537. return (n/QK5_1*sizeof(block_q5_1));
  10538. }
  10539. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10540. assert(k % QK8_0 == 0);
  10541. const int nb = k / QK8_0;
  10542. for (int j = 0; j < n; j += k) {
  10543. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10544. quantize_row_q8_0_reference(src + j, y, k);
  10545. for (int i = 0; i < nb; i++) {
  10546. for (int l = 0; l < QK8_0; ++l) {
  10547. const int8_t vi = y[i].qs[l];
  10548. hist[vi/16 + 8]++;
  10549. }
  10550. }
  10551. }
  10552. return (n/QK8_0*sizeof(block_q8_0));
  10553. }
  10554. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10555. size_t result = 0;
  10556. switch (type) {
  10557. case GGML_TYPE_Q4_0:
  10558. {
  10559. GGML_ASSERT(start % QK4_0 == 0);
  10560. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10561. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10562. } break;
  10563. case GGML_TYPE_Q4_1:
  10564. {
  10565. GGML_ASSERT(start % QK4_1 == 0);
  10566. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10567. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10568. } break;
  10569. case GGML_TYPE_Q4_2:
  10570. {
  10571. GGML_ASSERT(start % QK4_2 == 0);
  10572. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10573. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10574. } break;
  10575. case GGML_TYPE_Q4_3:
  10576. {
  10577. GGML_ASSERT(start % QK4_3 == 0);
  10578. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  10579. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  10580. } break;
  10581. case GGML_TYPE_Q5_0:
  10582. {
  10583. GGML_ASSERT(start % QK5_0 == 0);
  10584. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10585. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10586. } break;
  10587. case GGML_TYPE_Q5_1:
  10588. {
  10589. GGML_ASSERT(start % QK5_1 == 0);
  10590. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10591. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10592. } break;
  10593. case GGML_TYPE_Q8_0:
  10594. {
  10595. GGML_ASSERT(start % QK8_0 == 0);
  10596. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10597. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10598. } break;
  10599. default:
  10600. assert(false);
  10601. }
  10602. return result;
  10603. }
  10604. ////////////////////////////////////////////////////////////////////////////////
  10605. int ggml_cpu_has_avx(void) {
  10606. #if defined(__AVX__)
  10607. return 1;
  10608. #else
  10609. return 0;
  10610. #endif
  10611. }
  10612. int ggml_cpu_has_avx2(void) {
  10613. #if defined(__AVX2__)
  10614. return 1;
  10615. #else
  10616. return 0;
  10617. #endif
  10618. }
  10619. int ggml_cpu_has_avx512(void) {
  10620. #if defined(__AVX512F__)
  10621. return 1;
  10622. #else
  10623. return 0;
  10624. #endif
  10625. }
  10626. int ggml_cpu_has_avx512_vbmi(void) {
  10627. #if defined(__AVX512VBMI__)
  10628. return 1;
  10629. #else
  10630. return 0;
  10631. #endif
  10632. }
  10633. int ggml_cpu_has_avx512_vnni(void) {
  10634. #if defined(__AVX512VNNI__)
  10635. return 1;
  10636. #else
  10637. return 0;
  10638. #endif
  10639. }
  10640. int ggml_cpu_has_fma(void) {
  10641. #if defined(__FMA__)
  10642. return 1;
  10643. #else
  10644. return 0;
  10645. #endif
  10646. }
  10647. int ggml_cpu_has_neon(void) {
  10648. #if defined(__ARM_NEON)
  10649. return 1;
  10650. #else
  10651. return 0;
  10652. #endif
  10653. }
  10654. int ggml_cpu_has_arm_fma(void) {
  10655. #if defined(__ARM_FEATURE_FMA)
  10656. return 1;
  10657. #else
  10658. return 0;
  10659. #endif
  10660. }
  10661. int ggml_cpu_has_f16c(void) {
  10662. #if defined(__F16C__)
  10663. return 1;
  10664. #else
  10665. return 0;
  10666. #endif
  10667. }
  10668. int ggml_cpu_has_fp16_va(void) {
  10669. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10670. return 1;
  10671. #else
  10672. return 0;
  10673. #endif
  10674. }
  10675. int ggml_cpu_has_wasm_simd(void) {
  10676. #if defined(__wasm_simd128__)
  10677. return 1;
  10678. #else
  10679. return 0;
  10680. #endif
  10681. }
  10682. int ggml_cpu_has_blas(void) {
  10683. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10684. return 1;
  10685. #else
  10686. return 0;
  10687. #endif
  10688. }
  10689. int ggml_cpu_has_cublas(void) {
  10690. #if defined(GGML_USE_CUBLAS)
  10691. return 1;
  10692. #else
  10693. return 0;
  10694. #endif
  10695. }
  10696. int ggml_cpu_has_clblast(void) {
  10697. #if defined(GGML_USE_CLBLAST)
  10698. return 1;
  10699. #else
  10700. return 0;
  10701. #endif
  10702. }
  10703. int ggml_cpu_has_gpublas(void) {
  10704. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10705. }
  10706. int ggml_cpu_has_sse3(void) {
  10707. #if defined(__SSE3__)
  10708. return 1;
  10709. #else
  10710. return 0;
  10711. #endif
  10712. }
  10713. int ggml_cpu_has_vsx(void) {
  10714. #if defined(__POWER9_VECTOR__)
  10715. return 1;
  10716. #else
  10717. return 0;
  10718. #endif
  10719. }
  10720. ////////////////////////////////////////////////////////////////////////////////