ggml.c 765 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949229502295122952229532295422955229562295722958229592296022961229622296322964229652296622967229682296922970229712297222973229742297522976229772297822979229802298122982229832298422985229862298722988229892299022991229922299322994229952299622997229982299923000230012300223003230042300523006230072300823009230102301123012230132301423015230162301723018230192302023021230222302323024230252302623027230282302923030230312303223033230342303523036230372303823039230402304123042230432304423045230462304723048230492305023051230522305323054230552305623057230582305923060230612306223063230642306523066230672306823069230702307123072230732307423075230762307723078230792308023081230822308323084230852308623087230882308923090230912309223093230942309523096230972309823099231002310123102231032310423105231062310723108231092311023111231122311323114231152311623117231182311923120231212312223123231242312523126231272312823129231302313123132231332313423135231362313723138231392314023141231422314323144231452314623147231482314923150231512315223153231542315523156231572315823159231602316123162231632316423165231662316723168231692317023171231722317323174231752317623177231782317923180231812318223183231842318523186231872318823189231902319123192231932319423195231962319723198231992320023201232022320323204232052320623207232082320923210232112321223213232142321523216232172321823219232202322123222232232322423225232262322723228232292323023231232322323323234232352323623237232382323923240232412324223243232442324523246232472324823249232502325123252232532325423255232562325723258232592326023261232622326323264232652326623267232682326923270232712327223273232742327523276232772327823279232802328123282232832328423285232862328723288232892329023291232922329323294232952329623297232982329923300233012330223303233042330523306233072330823309233102331123312233132331423315233162331723318233192332023321233222332323324233252332623327233282332923330233312333223333233342333523336233372333823339233402334123342233432334423345233462334723348233492335023351233522335323354233552335623357233582335923360233612336223363233642336523366233672336823369233702337123372233732337423375233762337723378233792338023381233822338323384233852338623387233882338923390233912339223393233942339523396233972339823399234002340123402234032340423405234062340723408234092341023411234122341323414234152341623417234182341923420234212342223423234242342523426234272342823429234302343123432234332343423435234362343723438234392344023441234422344323444234452344623447
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-backend.h"
  4. #include "ggml-impl.h"
  5. #include "ggml-cpu-impl.h"
  6. #include "ggml-quants.h"
  7. #include "ggml.h"
  8. #include "ggml-aarch64.h"
  9. #if defined(_MSC_VER) || defined(__MINGW32__)
  10. #include <malloc.h> // using malloc.h with MSC/MINGW
  11. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  12. #include <alloca.h>
  13. #endif
  14. #include <assert.h>
  15. #include <errno.h>
  16. #include <time.h>
  17. #include <math.h>
  18. #include <stdlib.h>
  19. #include <string.h>
  20. #include <stdint.h>
  21. #include <inttypes.h>
  22. #include <stdio.h>
  23. #include <float.h>
  24. #include <limits.h>
  25. #include <stdarg.h>
  26. #include <signal.h>
  27. #if defined(__gnu_linux__)
  28. #include <syscall.h>
  29. #endif
  30. #ifdef GGML_USE_OPENMP
  31. #include <omp.h>
  32. #endif
  33. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  34. #undef GGML_USE_LLAMAFILE
  35. #endif
  36. #ifdef GGML_USE_LLAMAFILE
  37. #include <llamafile/sgemm.h>
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. // disable POSIX deprecation warnings
  44. // these functions are never going away, anyway
  45. #pragma warning(disable: 4996)
  46. // unreachable code because of multiple instances of code after GGML_ABORT
  47. #pragma warning(disable: 4702)
  48. #endif
  49. // Note: once we move threading into a separate C++ file
  50. // will use std::hardware_destructive_interference_size instead of hardcoding it here
  51. // and we'll use C++ attribute syntax.
  52. #define GGML_CACHE_LINE 64
  53. #if defined(__clang__) || defined(__GNUC__)
  54. #define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE)))
  55. #endif
  56. #if defined(__has_feature)
  57. #if __has_feature(thread_sanitizer)
  58. #define GGML_TSAN_ENABLED 1
  59. #endif
  60. #else // __has_feature
  61. #if defined(__SANITIZE_THREAD__)
  62. #define GGML_TSAN_ENABLED 1
  63. #endif
  64. #endif // __has_feature
  65. #if defined(_WIN32)
  66. #define WIN32_LEAN_AND_MEAN
  67. #ifndef NOMINMAX
  68. #define NOMINMAX
  69. #endif
  70. #include <windows.h>
  71. #if !defined(__clang__)
  72. #define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE))
  73. typedef volatile LONG atomic_int;
  74. typedef atomic_int atomic_bool;
  75. typedef atomic_int atomic_flag;
  76. #define ATOMIC_FLAG_INIT 0
  77. typedef enum {
  78. memory_order_relaxed,
  79. memory_order_consume,
  80. memory_order_acquire,
  81. memory_order_release,
  82. memory_order_acq_rel,
  83. memory_order_seq_cst
  84. } memory_order;
  85. static void atomic_store(atomic_int * ptr, LONG val) {
  86. InterlockedExchange(ptr, val);
  87. }
  88. static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) {
  89. // TODO: add support for explicit memory order
  90. InterlockedExchange(ptr, val);
  91. }
  92. static LONG atomic_load(atomic_int * ptr) {
  93. return InterlockedCompareExchange(ptr, 0, 0);
  94. }
  95. static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) {
  96. // TODO: add support for explicit memory order
  97. return InterlockedCompareExchange(ptr, 0, 0);
  98. }
  99. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  100. return InterlockedExchangeAdd(ptr, inc);
  101. }
  102. static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) {
  103. // TODO: add support for explicit memory order
  104. return InterlockedExchangeAdd(ptr, inc);
  105. }
  106. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  107. return InterlockedExchange(ptr, 1);
  108. }
  109. static void atomic_flag_clear(atomic_flag * ptr) {
  110. InterlockedExchange(ptr, 0);
  111. }
  112. static void atomic_thread_fence(memory_order mo) {
  113. MemoryBarrier();
  114. }
  115. #else // clang
  116. #include <stdatomic.h>
  117. #endif
  118. typedef HANDLE pthread_t;
  119. typedef DWORD thread_ret_t;
  120. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  121. (void) unused;
  122. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  123. if (handle == NULL)
  124. {
  125. return EAGAIN;
  126. }
  127. *out = handle;
  128. return 0;
  129. }
  130. static int pthread_join(pthread_t thread, void * unused) {
  131. (void) unused;
  132. int ret = (int) WaitForSingleObject(thread, INFINITE);
  133. CloseHandle(thread);
  134. return ret;
  135. }
  136. static int sched_yield (void) {
  137. Sleep (0);
  138. return 0;
  139. }
  140. #else
  141. #include <pthread.h>
  142. #include <stdatomic.h>
  143. #include <sched.h>
  144. #if defined(__FreeBSD__)
  145. #include <pthread_np.h>
  146. #endif
  147. typedef void * thread_ret_t;
  148. #include <sys/types.h>
  149. #include <sys/stat.h>
  150. #include <unistd.h>
  151. #endif
  152. typedef pthread_t ggml_thread_t;
  153. #ifdef GGML_USE_CPU_HBM
  154. #include <hbwmalloc.h>
  155. #endif
  156. #if defined(__APPLE__)
  157. #include <unistd.h>
  158. #include <mach/mach.h>
  159. #include <TargetConditionals.h>
  160. #endif
  161. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  162. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  163. #include <sys/wait.h>
  164. #if defined(__ANDROID__)
  165. #include <unwind.h>
  166. #include <dlfcn.h>
  167. #include <stdio.h>
  168. struct backtrace_state {
  169. void ** current;
  170. void ** end;
  171. };
  172. static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
  173. struct backtrace_state * state = (struct backtrace_state *)arg;
  174. uintptr_t pc = _Unwind_GetIP(context);
  175. if (pc) {
  176. if (state->current == state->end) {
  177. return _URC_END_OF_STACK;
  178. } else {
  179. *state->current++ = (void*)pc;
  180. }
  181. }
  182. return _URC_NO_REASON;
  183. }
  184. static void ggml_print_backtrace_symbols(void) {
  185. const int max = 100;
  186. void* buffer[max];
  187. struct backtrace_state state = {buffer, buffer + max};
  188. _Unwind_Backtrace(unwind_callback, &state);
  189. int count = state.current - buffer;
  190. for (int idx = 0; idx < count; ++idx) {
  191. const void * addr = buffer[idx];
  192. const char * symbol = "";
  193. Dl_info info;
  194. if (dladdr(addr, &info) && info.dli_sname) {
  195. symbol = info.dli_sname;
  196. }
  197. fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
  198. }
  199. }
  200. #elif defined(__linux__) && defined(__GLIBC__)
  201. #include <execinfo.h>
  202. static void ggml_print_backtrace_symbols(void) {
  203. void * trace[100];
  204. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  205. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  206. }
  207. #else
  208. static void ggml_print_backtrace_symbols(void) {
  209. // platform not supported
  210. }
  211. #endif
  212. static void ggml_print_backtrace(void) {
  213. char attach[32];
  214. snprintf(attach, sizeof(attach), "attach %d", getpid());
  215. int pid = fork();
  216. if (pid == 0) {
  217. // try gdb
  218. execlp("gdb", "gdb", "--batch",
  219. "-ex", "set style enabled on",
  220. "-ex", attach,
  221. "-ex", "bt -frame-info source-and-location",
  222. "-ex", "detach",
  223. "-ex", "quit",
  224. (char *) NULL);
  225. // try lldb
  226. execlp("lldb", "lldb", "--batch",
  227. "-o", "bt",
  228. "-o", "quit",
  229. "-p", attach,
  230. (char *) NULL);
  231. exit(EXIT_FAILURE);
  232. } else {
  233. int wstatus;
  234. waitpid(pid, &wstatus, 0);
  235. if (WIFEXITED(wstatus)) {
  236. if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
  237. // gdb failed, fallback to backtrace_symbols
  238. ggml_print_backtrace_symbols();
  239. }
  240. }
  241. }
  242. }
  243. #else
  244. static void ggml_print_backtrace(void) {
  245. // platform not supported
  246. }
  247. #endif
  248. void ggml_abort(const char * file, int line, const char * fmt, ...) {
  249. fflush(stdout);
  250. fprintf(stderr, "%s:%d: ", file, line);
  251. va_list args;
  252. va_start(args, fmt);
  253. vfprintf(stderr, fmt, args);
  254. va_end(args);
  255. fprintf(stderr, "\n");
  256. ggml_print_backtrace();
  257. abort();
  258. }
  259. #define GGML_DEBUG 0
  260. #define GGML_GELU_FP16
  261. #define GGML_GELU_QUICK_FP16
  262. #define GGML_SOFT_MAX_UNROLL 4
  263. #define GGML_VEC_DOT_UNROLL 2
  264. #define GGML_VEC_MAD_UNROLL 32
  265. //
  266. // logging
  267. //
  268. struct ggml_logger_state {
  269. ggml_log_callback log_callback;
  270. void * log_callback_user_data;
  271. };
  272. static struct ggml_logger_state g_logger_state = {ggml_log_callback_default, NULL};
  273. static void ggml_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
  274. if (format == NULL)
  275. return;
  276. va_list args_copy;
  277. va_copy(args_copy, args);
  278. char buffer[128];
  279. int len = vsnprintf(buffer, 128, format, args);
  280. if (len < 128) {
  281. g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
  282. } else {
  283. char * buffer2 = (char *) calloc(len + 1, sizeof(char));
  284. vsnprintf(buffer2, len + 1, format, args_copy);
  285. buffer2[len] = 0;
  286. g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
  287. free(buffer2);
  288. }
  289. va_end(args_copy);
  290. }
  291. void ggml_log_internal(enum ggml_log_level level, const char * format, ...) {
  292. va_list args;
  293. va_start(args, format);
  294. ggml_log_internal_v(level, format, args);
  295. va_end(args);
  296. }
  297. void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
  298. (void) level;
  299. (void) user_data;
  300. fputs(text, stderr);
  301. fflush(stderr);
  302. }
  303. #if (GGML_DEBUG >= 1)
  304. #define GGML_PRINT_DEBUG(...) GGML_LOG_DEBUG(__VA_ARGS__)
  305. #else
  306. #define GGML_PRINT_DEBUG(...)
  307. #endif
  308. #if (GGML_DEBUG >= 5)
  309. #define GGML_PRINT_DEBUG_5(...) GGML_LOG_DEBUG(__VA_ARGS__)
  310. #else
  311. #define GGML_PRINT_DEBUG_5(...)
  312. #endif
  313. #if (GGML_DEBUG >= 10)
  314. #define GGML_PRINT_DEBUG_10(...) GGML_LOG_DEBUG(__VA_ARGS__)
  315. #else
  316. #define GGML_PRINT_DEBUG_10(...)
  317. #endif
  318. //
  319. // end of logging block
  320. //
  321. #ifdef GGML_USE_ACCELERATE
  322. // uncomment to use vDSP for soft max computation
  323. // note: not sure if it is actually faster
  324. //#define GGML_SOFT_MAX_ACCELERATE
  325. #endif
  326. void * ggml_aligned_malloc(size_t size) {
  327. #if defined(_MSC_VER) || defined(__MINGW32__)
  328. return _aligned_malloc(size, TENSOR_ALIGNMENT);
  329. #else
  330. if (size == 0) {
  331. GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  332. return NULL;
  333. }
  334. void * aligned_memory = NULL;
  335. #ifdef GGML_USE_CPU_HBM
  336. int result = hbw_posix_memalign(&aligned_memory, TENSOR_ALIGNMENT, size);
  337. #elif TARGET_OS_OSX
  338. kern_return_t alloc_status = vm_allocate((vm_map_t) mach_task_self(), (vm_address_t *) &aligned_memory, size, VM_FLAGS_ANYWHERE);
  339. int result = EFAULT;
  340. switch (alloc_status) {
  341. case KERN_SUCCESS:
  342. result = 0;
  343. break;
  344. case KERN_INVALID_ADDRESS:
  345. result = EINVAL;
  346. break;
  347. case KERN_NO_SPACE:
  348. result = ENOMEM;
  349. break;
  350. default:
  351. result = EFAULT;
  352. break;
  353. }
  354. #elif GGML_USE_METAL
  355. const long page_size = sysconf(_SC_PAGESIZE);
  356. int result = posix_memalign(&aligned_memory, MAX(TENSOR_ALIGNMENT, page_size), size);
  357. #else
  358. int result = posix_memalign(&aligned_memory, TENSOR_ALIGNMENT, size);
  359. #endif
  360. if (result != 0) {
  361. // Handle allocation failure
  362. const char *error_desc = "unknown allocation error";
  363. switch (result) {
  364. case EINVAL:
  365. error_desc = "invalid alignment value";
  366. break;
  367. case ENOMEM:
  368. error_desc = "insufficient memory";
  369. break;
  370. }
  371. GGML_LOG_ERROR("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  372. GGML_ABORT("fatal error");
  373. return NULL;
  374. }
  375. return aligned_memory;
  376. #endif
  377. }
  378. void ggml_aligned_free(void * ptr, size_t size) {
  379. GGML_UNUSED(size);
  380. #if defined(_MSC_VER) || defined(__MINGW32__)
  381. _aligned_free(ptr);
  382. #elif GGML_USE_CPU_HBM
  383. if (ptr != NULL) {
  384. hbw_free(ptr);
  385. }
  386. #elif TARGET_OS_OSX
  387. if (ptr != NULL) {
  388. vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ptr, size);
  389. }
  390. #else
  391. free(ptr);
  392. #endif
  393. }
  394. inline static void * ggml_malloc(size_t size) {
  395. if (size == 0) {
  396. GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  397. return NULL;
  398. }
  399. void * result = malloc(size);
  400. if (result == NULL) {
  401. GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  402. GGML_ABORT("fatal error");
  403. }
  404. return result;
  405. }
  406. // calloc
  407. inline static void * ggml_calloc(size_t num, size_t size) {
  408. if (num == 0 || size == 0) {
  409. GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  410. return NULL;
  411. }
  412. void * result = calloc(num, size);
  413. if (result == NULL) {
  414. GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  415. GGML_ABORT("fatal error");
  416. }
  417. return result;
  418. }
  419. #define GGML_MALLOC(size) ggml_malloc(size)
  420. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  421. #define GGML_FREE(ptr) free(ptr)
  422. #define UNUSED GGML_UNUSED
  423. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  424. #if defined(GGML_USE_ACCELERATE)
  425. #include <Accelerate/Accelerate.h>
  426. #endif
  427. // floating point type used to accumulate sums
  428. typedef double ggml_float;
  429. #undef MIN
  430. #undef MAX
  431. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  432. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  433. //
  434. // global data
  435. //
  436. // precomputed gelu table for f16 (128 KB)
  437. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  438. // precomputed quick gelu table for f16 (128 KB)
  439. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  440. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  441. float ggml_table_f32_f16[1 << 16];
  442. #if defined(__ARM_ARCH)
  443. struct ggml_arm_arch_features_type {
  444. int has_neon;
  445. int has_i8mm;
  446. int has_sve;
  447. int sve_cnt;
  448. } ggml_arm_arch_features = {-1, -1, -1, 0};
  449. #endif
  450. const char * ggml_status_to_string(enum ggml_status status) {
  451. switch (status) {
  452. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  453. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  454. case GGML_STATUS_SUCCESS: return "GGML status: success";
  455. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  456. }
  457. return "GGML status: unknown";
  458. }
  459. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  460. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  461. return GGML_FP16_TO_FP32(x);
  462. }
  463. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  464. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  465. return GGML_FP32_TO_FP16(x);
  466. }
  467. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  468. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  469. return GGML_BF16_TO_FP32(x); // it just left shifts
  470. }
  471. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  472. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  473. return GGML_FP32_TO_BF16(x);
  474. }
  475. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  476. for (int64_t i = 0; i < n; i++) {
  477. y[i] = GGML_FP16_TO_FP32(x[i]);
  478. }
  479. }
  480. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  481. int64_t i = 0;
  482. #if defined(__F16C__)
  483. for (; i + 7 < n; i += 8) {
  484. __m256 x_vec = _mm256_loadu_ps(x + i);
  485. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  486. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  487. }
  488. for(; i + 3 < n; i += 4) {
  489. __m128 x_vec = _mm_loadu_ps(x + i);
  490. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  491. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  492. }
  493. #endif
  494. for (; i < n; i++) {
  495. y[i] = GGML_FP32_TO_FP16(x[i]);
  496. }
  497. }
  498. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  499. int64_t i = 0;
  500. #if defined(__AVX512F__)
  501. for (; i + 16 <= n; i += 16) {
  502. _mm512_storeu_ps(y + i,
  503. _mm512_castsi512_ps(
  504. _mm512_slli_epi32(
  505. _mm512_cvtepu16_epi32(
  506. _mm256_loadu_si256(
  507. (const __m256i *)(x + i))),
  508. 16)));
  509. }
  510. #elif defined(__AVX2__)
  511. for (; i + 8 <= n; i += 8) {
  512. _mm256_storeu_ps(y + i,
  513. _mm256_castsi256_ps(
  514. _mm256_slli_epi32(
  515. _mm256_cvtepu16_epi32(
  516. _mm_loadu_si128(
  517. (const __m128i *)(x + i))),
  518. 16)));
  519. }
  520. #endif
  521. for (; i < n; i++) {
  522. y[i] = GGML_BF16_TO_FP32(x[i]);
  523. }
  524. }
  525. void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
  526. for (int i = 0; i < n; i++) {
  527. y[i] = ggml_compute_fp32_to_bf16(x[i]);
  528. }
  529. }
  530. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  531. int i = 0;
  532. #if defined(__AVX512BF16__)
  533. // subnormals are flushed to zero on this platform
  534. for (; i + 32 <= n; i += 32) {
  535. _mm512_storeu_si512(
  536. (__m512i *)(y + i),
  537. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  538. _mm512_loadu_ps(x + i))));
  539. }
  540. #endif
  541. for (; i < n; i++) {
  542. y[i] = GGML_FP32_TO_BF16(x[i]);
  543. }
  544. }
  545. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  546. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  547. }
  548. //
  549. // timing
  550. //
  551. #if defined(_MSC_VER) || defined(__MINGW32__)
  552. static int64_t timer_freq, timer_start;
  553. void ggml_time_init(void) {
  554. LARGE_INTEGER t;
  555. QueryPerformanceFrequency(&t);
  556. timer_freq = t.QuadPart;
  557. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  558. // and the uptime is high enough.
  559. // We subtract the program start time to reduce the likelihood of that happening.
  560. QueryPerformanceCounter(&t);
  561. timer_start = t.QuadPart;
  562. }
  563. int64_t ggml_time_ms(void) {
  564. LARGE_INTEGER t;
  565. QueryPerformanceCounter(&t);
  566. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  567. }
  568. int64_t ggml_time_us(void) {
  569. LARGE_INTEGER t;
  570. QueryPerformanceCounter(&t);
  571. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  572. }
  573. #else
  574. void ggml_time_init(void) {}
  575. int64_t ggml_time_ms(void) {
  576. struct timespec ts;
  577. clock_gettime(CLOCK_MONOTONIC, &ts);
  578. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  579. }
  580. int64_t ggml_time_us(void) {
  581. struct timespec ts;
  582. clock_gettime(CLOCK_MONOTONIC, &ts);
  583. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  584. }
  585. #endif
  586. int64_t ggml_cycles(void) {
  587. return clock();
  588. }
  589. int64_t ggml_cycles_per_ms(void) {
  590. return CLOCKS_PER_SEC/1000;
  591. }
  592. //
  593. // cross-platform UTF-8 file paths
  594. //
  595. #ifdef _WIN32
  596. static wchar_t * ggml_mbstowcs(const char * mbs) {
  597. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  598. if (!wlen) {
  599. errno = EINVAL;
  600. return NULL;
  601. }
  602. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  603. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  604. if (!wlen) {
  605. GGML_FREE(wbuf);
  606. errno = EINVAL;
  607. return NULL;
  608. }
  609. return wbuf;
  610. }
  611. #endif
  612. FILE * ggml_fopen(const char * fname, const char * mode) {
  613. #ifdef _WIN32
  614. FILE * file = NULL;
  615. // convert fname (UTF-8)
  616. wchar_t * wfname = ggml_mbstowcs(fname);
  617. if (wfname) {
  618. // convert mode (ANSI)
  619. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  620. wchar_t * wmode_p = wmode;
  621. do {
  622. *wmode_p++ = (wchar_t)*mode;
  623. } while (*mode++);
  624. // open file
  625. file = _wfopen(wfname, wmode);
  626. GGML_FREE(wfname);
  627. GGML_FREE(wmode);
  628. }
  629. return file;
  630. #else
  631. return fopen(fname, mode);
  632. #endif
  633. }
  634. //
  635. // cache line
  636. //
  637. #if defined(__cpp_lib_hardware_interference_size)
  638. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  639. #else
  640. #if defined(__POWER9_VECTOR__)
  641. #define CACHE_LINE_SIZE 128
  642. #else
  643. #define CACHE_LINE_SIZE 64
  644. #endif
  645. #endif
  646. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  647. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  648. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  649. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  650. static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
  651. [GGML_TYPE_I8] = {
  652. .type_name = "i8",
  653. .blck_size = 1,
  654. .type_size = sizeof(int8_t),
  655. .is_quantized = false,
  656. },
  657. [GGML_TYPE_I16] = {
  658. .type_name = "i16",
  659. .blck_size = 1,
  660. .type_size = sizeof(int16_t),
  661. .is_quantized = false,
  662. },
  663. [GGML_TYPE_I32] = {
  664. .type_name = "i32",
  665. .blck_size = 1,
  666. .type_size = sizeof(int32_t),
  667. .is_quantized = false,
  668. },
  669. [GGML_TYPE_I64] = {
  670. .type_name = "i64",
  671. .blck_size = 1,
  672. .type_size = sizeof(int64_t),
  673. .is_quantized = false,
  674. },
  675. [GGML_TYPE_F64] = {
  676. .type_name = "f64",
  677. .blck_size = 1,
  678. .type_size = sizeof(double),
  679. .is_quantized = false,
  680. .nrows = 1,
  681. },
  682. [GGML_TYPE_F32] = {
  683. .type_name = "f32",
  684. .blck_size = 1,
  685. .type_size = sizeof(float),
  686. .is_quantized = false,
  687. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  688. .vec_dot_type = GGML_TYPE_F32,
  689. .nrows = 1,
  690. },
  691. [GGML_TYPE_F16] = {
  692. .type_name = "f16",
  693. .blck_size = 1,
  694. .type_size = sizeof(ggml_fp16_t),
  695. .is_quantized = false,
  696. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  697. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  698. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  699. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  700. .vec_dot_type = GGML_TYPE_F16,
  701. .nrows = 1,
  702. },
  703. [GGML_TYPE_Q4_0] = {
  704. .type_name = "q4_0",
  705. .blck_size = QK4_0,
  706. .type_size = sizeof(block_q4_0),
  707. .is_quantized = true,
  708. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  709. .from_float = quantize_row_q4_0,
  710. .from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
  711. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  712. .vec_dot_type = GGML_TYPE_Q8_0,
  713. #if defined (__ARM_FEATURE_MATMUL_INT8)
  714. .nrows = 2,
  715. #else
  716. .nrows = 1,
  717. #endif
  718. },
  719. [GGML_TYPE_Q4_1] = {
  720. .type_name = "q4_1",
  721. .blck_size = QK4_1,
  722. .type_size = sizeof(block_q4_1),
  723. .is_quantized = true,
  724. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  725. .from_float = quantize_row_q4_1,
  726. .from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
  727. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  728. .vec_dot_type = GGML_TYPE_Q8_1,
  729. #if defined (__ARM_FEATURE_MATMUL_INT8)
  730. .nrows = 2,
  731. #else
  732. .nrows = 1,
  733. #endif
  734. },
  735. [4] = { // GGML_TYPE_Q4_2
  736. .type_name = "DEPRECATED",
  737. .blck_size = 0,
  738. .type_size = 0,
  739. .is_quantized = false,
  740. .to_float = NULL,
  741. .from_float = NULL,
  742. .from_float_ref = NULL,
  743. .vec_dot = NULL,
  744. .vec_dot_type = GGML_TYPE_COUNT,
  745. .nrows = 1,
  746. },
  747. [5] = { // GGML_TYPE_Q4_3
  748. .type_name = "DEPRECATED",
  749. .blck_size = 0,
  750. .type_size = 0,
  751. .is_quantized = false,
  752. .to_float = NULL,
  753. .from_float = NULL,
  754. .from_float_ref = NULL,
  755. .vec_dot = NULL,
  756. .vec_dot_type = GGML_TYPE_COUNT,
  757. .nrows = 1,
  758. },
  759. [GGML_TYPE_Q5_0] = {
  760. .type_name = "q5_0",
  761. .blck_size = QK5_0,
  762. .type_size = sizeof(block_q5_0),
  763. .is_quantized = true,
  764. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  765. .from_float = quantize_row_q5_0,
  766. .from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
  767. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  768. .vec_dot_type = GGML_TYPE_Q8_0,
  769. .nrows = 1,
  770. },
  771. [GGML_TYPE_Q5_1] = {
  772. .type_name = "q5_1",
  773. .blck_size = QK5_1,
  774. .type_size = sizeof(block_q5_1),
  775. .is_quantized = true,
  776. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  777. .from_float = quantize_row_q5_1,
  778. .from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
  779. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  780. .vec_dot_type = GGML_TYPE_Q8_1,
  781. .nrows = 1,
  782. },
  783. [GGML_TYPE_Q8_0] = {
  784. .type_name = "q8_0",
  785. .blck_size = QK8_0,
  786. .type_size = sizeof(block_q8_0),
  787. .is_quantized = true,
  788. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  789. .from_float = quantize_row_q8_0,
  790. .from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
  791. .from_float_to_mat = quantize_mat_q8_0,
  792. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  793. .vec_dot_type = GGML_TYPE_Q8_0,
  794. #if defined (__ARM_FEATURE_MATMUL_INT8)
  795. .nrows = 2,
  796. #else
  797. .nrows = 1,
  798. #endif
  799. },
  800. [GGML_TYPE_Q8_1] = {
  801. .type_name = "q8_1",
  802. .blck_size = QK8_1,
  803. .type_size = sizeof(block_q8_1),
  804. .is_quantized = true,
  805. .from_float = quantize_row_q8_1,
  806. .from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
  807. .vec_dot_type = GGML_TYPE_Q8_1,
  808. .nrows = 1,
  809. },
  810. [GGML_TYPE_Q2_K] = {
  811. .type_name = "q2_K",
  812. .blck_size = QK_K,
  813. .type_size = sizeof(block_q2_K),
  814. .is_quantized = true,
  815. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  816. .from_float = quantize_row_q2_K,
  817. .from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
  818. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  819. .vec_dot_type = GGML_TYPE_Q8_K,
  820. .nrows = 1,
  821. },
  822. [GGML_TYPE_Q3_K] = {
  823. .type_name = "q3_K",
  824. .blck_size = QK_K,
  825. .type_size = sizeof(block_q3_K),
  826. .is_quantized = true,
  827. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  828. .from_float = quantize_row_q3_K,
  829. .from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
  830. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  831. .vec_dot_type = GGML_TYPE_Q8_K,
  832. .nrows = 1,
  833. },
  834. [GGML_TYPE_Q4_K] = {
  835. .type_name = "q4_K",
  836. .blck_size = QK_K,
  837. .type_size = sizeof(block_q4_K),
  838. .is_quantized = true,
  839. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  840. .from_float = quantize_row_q4_K,
  841. .from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
  842. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  843. .vec_dot_type = GGML_TYPE_Q8_K,
  844. .nrows = 1,
  845. },
  846. [GGML_TYPE_Q5_K] = {
  847. .type_name = "q5_K",
  848. .blck_size = QK_K,
  849. .type_size = sizeof(block_q5_K),
  850. .is_quantized = true,
  851. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  852. .from_float = quantize_row_q5_K,
  853. .from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
  854. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  855. .vec_dot_type = GGML_TYPE_Q8_K,
  856. .nrows = 1,
  857. },
  858. [GGML_TYPE_Q6_K] = {
  859. .type_name = "q6_K",
  860. .blck_size = QK_K,
  861. .type_size = sizeof(block_q6_K),
  862. .is_quantized = true,
  863. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  864. .from_float = quantize_row_q6_K,
  865. .from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
  866. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  867. .vec_dot_type = GGML_TYPE_Q8_K,
  868. .nrows = 1,
  869. },
  870. [GGML_TYPE_IQ2_XXS] = {
  871. .type_name = "iq2_xxs",
  872. .blck_size = QK_K,
  873. .type_size = sizeof(block_iq2_xxs),
  874. .is_quantized = true,
  875. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  876. .from_float = NULL,
  877. .from_float_ref = NULL,
  878. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  879. .vec_dot_type = GGML_TYPE_Q8_K,
  880. .nrows = 1,
  881. },
  882. [GGML_TYPE_IQ2_XS] = {
  883. .type_name = "iq2_xs",
  884. .blck_size = QK_K,
  885. .type_size = sizeof(block_iq2_xs),
  886. .is_quantized = true,
  887. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  888. .from_float = NULL,
  889. .from_float_ref = NULL,
  890. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  891. .vec_dot_type = GGML_TYPE_Q8_K,
  892. .nrows = 1,
  893. },
  894. [GGML_TYPE_IQ3_XXS] = {
  895. .type_name = "iq3_xxs",
  896. .blck_size = QK_K,
  897. .type_size = sizeof(block_iq3_xxs),
  898. .is_quantized = true,
  899. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  900. .from_float = quantize_row_iq3_xxs,
  901. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
  902. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  903. .vec_dot_type = GGML_TYPE_Q8_K,
  904. .nrows = 1,
  905. },
  906. [GGML_TYPE_IQ3_S] = {
  907. .type_name = "iq3_s",
  908. .blck_size = QK_K,
  909. .type_size = sizeof(block_iq3_s),
  910. .is_quantized = true,
  911. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  912. .from_float = quantize_row_iq3_s,
  913. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
  914. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  915. .vec_dot_type = GGML_TYPE_Q8_K,
  916. .nrows = 1,
  917. },
  918. [GGML_TYPE_IQ2_S] = {
  919. .type_name = "iq2_s",
  920. .blck_size = QK_K,
  921. .type_size = sizeof(block_iq2_s),
  922. .is_quantized = true,
  923. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  924. .from_float = quantize_row_iq2_s,
  925. .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
  926. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  927. .vec_dot_type = GGML_TYPE_Q8_K,
  928. .nrows = 1,
  929. },
  930. [GGML_TYPE_IQ1_S] = {
  931. .type_name = "iq1_s",
  932. .blck_size = QK_K,
  933. .type_size = sizeof(block_iq1_s),
  934. .is_quantized = true,
  935. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  936. .from_float = NULL,
  937. .from_float_ref = NULL,
  938. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  939. .vec_dot_type = GGML_TYPE_Q8_K,
  940. .nrows = 1,
  941. },
  942. [GGML_TYPE_IQ1_M] = {
  943. .type_name = "iq1_m",
  944. .blck_size = QK_K,
  945. .type_size = sizeof(block_iq1_m),
  946. .is_quantized = true,
  947. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  948. .from_float = NULL,
  949. .from_float_ref = NULL,
  950. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  951. .vec_dot_type = GGML_TYPE_Q8_K,
  952. .nrows = 1,
  953. },
  954. [GGML_TYPE_IQ4_NL] = {
  955. .type_name = "iq4_nl",
  956. .blck_size = QK4_NL,
  957. .type_size = sizeof(block_iq4_nl),
  958. .is_quantized = true,
  959. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  960. .from_float = quantize_row_iq4_nl,
  961. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
  962. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  963. .vec_dot_type = GGML_TYPE_Q8_0,
  964. .nrows = 1,
  965. },
  966. [GGML_TYPE_IQ4_XS] = {
  967. .type_name = "iq4_xs",
  968. .blck_size = QK_K,
  969. .type_size = sizeof(block_iq4_xs),
  970. .is_quantized = true,
  971. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  972. .from_float = quantize_row_iq4_xs,
  973. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
  974. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  975. .vec_dot_type = GGML_TYPE_Q8_K,
  976. .nrows = 1,
  977. },
  978. [GGML_TYPE_Q8_K] = {
  979. .type_name = "q8_K",
  980. .blck_size = QK_K,
  981. .type_size = sizeof(block_q8_K),
  982. .is_quantized = true,
  983. .from_float = quantize_row_q8_K,
  984. },
  985. [GGML_TYPE_BF16] = {
  986. .type_name = "bf16",
  987. .blck_size = 1,
  988. .type_size = sizeof(ggml_bf16_t),
  989. .is_quantized = false,
  990. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  991. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  992. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
  993. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  994. .vec_dot_type = GGML_TYPE_BF16,
  995. .nrows = 1,
  996. },
  997. [GGML_TYPE_Q4_0_4_4] = {
  998. .type_name = "q4_0_4x4",
  999. .blck_size = QK4_0,
  1000. .blck_size_interleave = 4,
  1001. .type_size = sizeof(block_q4_0),
  1002. .is_quantized = true,
  1003. .to_float = NULL,
  1004. .from_float = NULL,
  1005. .from_float_ref = NULL,
  1006. .vec_dot = NULL,
  1007. .vec_dot_type = GGML_TYPE_Q8_0,
  1008. .nrows = 1,
  1009. .ncols = 4,
  1010. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  1011. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  1012. },
  1013. [GGML_TYPE_Q4_0_4_8] = {
  1014. .type_name = "q4_0_4x8",
  1015. .blck_size = QK4_0,
  1016. .blck_size_interleave = 8,
  1017. .type_size = sizeof(block_q4_0),
  1018. .is_quantized = true,
  1019. .to_float = NULL,
  1020. .from_float = NULL,
  1021. .from_float_ref = NULL,
  1022. .vec_dot = NULL,
  1023. .vec_dot_type = GGML_TYPE_Q8_0,
  1024. .nrows = 1,
  1025. .ncols = 4,
  1026. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  1027. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  1028. },
  1029. [GGML_TYPE_Q4_0_8_8] = {
  1030. .type_name = "q4_0_8x8",
  1031. .blck_size = QK4_0,
  1032. .blck_size_interleave = 8,
  1033. .type_size = sizeof(block_q4_0),
  1034. .is_quantized = true,
  1035. .to_float = NULL,
  1036. .from_float = NULL,
  1037. .from_float_ref = NULL,
  1038. .vec_dot = NULL,
  1039. .vec_dot_type = GGML_TYPE_Q8_0,
  1040. .nrows = 1,
  1041. .ncols = 8,
  1042. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  1043. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  1044. },
  1045. [GGML_TYPE_TQ1_0] = {
  1046. .type_name = "tq1_0",
  1047. .blck_size = QK_K,
  1048. .type_size = sizeof(block_tq1_0),
  1049. .is_quantized = true,
  1050. .to_float = (ggml_to_float_t) dequantize_row_tq1_0,
  1051. .from_float = quantize_row_tq1_0,
  1052. .from_float_ref = (ggml_from_float_t) quantize_row_tq1_0_ref,
  1053. .vec_dot = ggml_vec_dot_tq1_0_q8_K,
  1054. .vec_dot_type = GGML_TYPE_Q8_K,
  1055. .nrows = 1,
  1056. },
  1057. [GGML_TYPE_TQ2_0] = {
  1058. .type_name = "tq2_0",
  1059. .blck_size = QK_K,
  1060. .type_size = sizeof(block_tq2_0),
  1061. .is_quantized = true,
  1062. .to_float = (ggml_to_float_t) dequantize_row_tq2_0,
  1063. .from_float = quantize_row_tq2_0,
  1064. .from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref,
  1065. .vec_dot = ggml_vec_dot_tq2_0_q8_K,
  1066. .vec_dot_type = GGML_TYPE_Q8_K,
  1067. .nrows = 1,
  1068. },
  1069. };
  1070. // For internal test use
  1071. const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type) {
  1072. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1073. return &type_traits[type];
  1074. }
  1075. //
  1076. // simd mappings
  1077. //
  1078. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1079. // we then implement the fundamental computation operations below using only these macros
  1080. // adding support for new architectures requires to define the corresponding SIMD macros
  1081. //
  1082. // GGML_F32_STEP / GGML_F16_STEP
  1083. // number of elements to process in a single step
  1084. //
  1085. // GGML_F32_EPR / GGML_F16_EPR
  1086. // number of elements to fit in a single register
  1087. //
  1088. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1089. #define GGML_SIMD
  1090. // F32 NEON
  1091. #define GGML_F32_STEP 16
  1092. #define GGML_F32_EPR 4
  1093. #define GGML_F32x4 float32x4_t
  1094. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1095. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1096. #define GGML_F32x4_LOAD vld1q_f32
  1097. #define GGML_F32x4_STORE vst1q_f32
  1098. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1099. #define GGML_F32x4_ADD vaddq_f32
  1100. #define GGML_F32x4_MUL vmulq_f32
  1101. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1102. #define GGML_F32x4_REDUCE(res, x) \
  1103. { \
  1104. int offset = GGML_F32_ARR >> 1; \
  1105. for (int i = 0; i < offset; ++i) { \
  1106. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1107. } \
  1108. offset >>= 1; \
  1109. for (int i = 0; i < offset; ++i) { \
  1110. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1111. } \
  1112. offset >>= 1; \
  1113. for (int i = 0; i < offset; ++i) { \
  1114. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1115. } \
  1116. (res) = GGML_F32x4_REDUCE_ONE((x)[0]); \
  1117. }
  1118. #define GGML_F32_VEC GGML_F32x4
  1119. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1120. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1121. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1122. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1123. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1124. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1125. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1126. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1127. // F16 NEON
  1128. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1129. #define GGML_F16_STEP 32
  1130. #define GGML_F16_EPR 8
  1131. #define GGML_F16x8 float16x8_t
  1132. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1133. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1134. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  1135. #define GGML_F16x8_STORE vst1q_f16
  1136. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1137. #define GGML_F16x8_ADD vaddq_f16
  1138. #define GGML_F16x8_MUL vmulq_f16
  1139. #define GGML_F16x8_REDUCE(res, x) \
  1140. do { \
  1141. int offset = GGML_F16_ARR >> 1; \
  1142. for (int i = 0; i < offset; ++i) { \
  1143. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1144. } \
  1145. offset >>= 1; \
  1146. for (int i = 0; i < offset; ++i) { \
  1147. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1148. } \
  1149. offset >>= 1; \
  1150. for (int i = 0; i < offset; ++i) { \
  1151. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1152. } \
  1153. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
  1154. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
  1155. (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1156. } while (0)
  1157. #define GGML_F16_VEC GGML_F16x8
  1158. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1159. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1160. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1161. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
  1162. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1163. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1164. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1165. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1166. #else
  1167. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1168. // and take advantage of the vcvt_ functions to convert to/from FP16
  1169. #define GGML_F16_STEP 16
  1170. #define GGML_F16_EPR 4
  1171. #define GGML_F32Cx4 float32x4_t
  1172. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1173. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1174. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  1175. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1176. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1177. #define GGML_F32Cx4_ADD vaddq_f32
  1178. #define GGML_F32Cx4_MUL vmulq_f32
  1179. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1180. #define GGML_F16_VEC GGML_F32Cx4
  1181. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1182. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1183. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1184. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  1185. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1186. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1187. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1188. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1189. #endif
  1190. #elif defined(__AVX512F__)
  1191. #define GGML_SIMD
  1192. // F32 AVX512
  1193. #define GGML_F32_STEP 64
  1194. #define GGML_F32_EPR 16
  1195. #define GGML_F32x16 __m512
  1196. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  1197. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  1198. #define GGML_F32x16_LOAD _mm512_loadu_ps
  1199. #define GGML_F32x16_STORE _mm512_storeu_ps
  1200. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  1201. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1202. #define GGML_F32x16_ADD _mm512_add_ps
  1203. #define GGML_F32x16_MUL _mm512_mul_ps
  1204. #define GGML_F32x16_REDUCE(res, x) \
  1205. do { \
  1206. int offset = GGML_F32_ARR >> 1; \
  1207. for (int i = 0; i < offset; ++i) { \
  1208. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1209. } \
  1210. offset >>= 1; \
  1211. for (int i = 0; i < offset; ++i) { \
  1212. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1213. } \
  1214. offset >>= 1; \
  1215. for (int i = 0; i < offset; ++i) { \
  1216. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1217. } \
  1218. res = _mm512_reduce_add_ps(x[0]); \
  1219. } while (0)
  1220. // TODO: is this optimal ?
  1221. #define GGML_F32_VEC GGML_F32x16
  1222. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  1223. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  1224. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  1225. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  1226. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  1227. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  1228. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  1229. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  1230. // F16 AVX512
  1231. // F16 AVX
  1232. #define GGML_F16_STEP 64
  1233. #define GGML_F16_EPR 16
  1234. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  1235. #define GGML_F32Cx16 __m512
  1236. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1237. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1238. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1239. // so F16C guard isn't required
  1240. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1241. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1242. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1243. #define GGML_F32Cx16_ADD _mm512_add_ps
  1244. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1245. #define GGML_F32Cx16_REDUCE(res, x) \
  1246. do { \
  1247. int offset = GGML_F32_ARR >> 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1250. } \
  1251. offset >>= 1; \
  1252. for (int i = 0; i < offset; ++i) { \
  1253. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1254. } \
  1255. offset >>= 1; \
  1256. for (int i = 0; i < offset; ++i) { \
  1257. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1258. } \
  1259. res = _mm512_reduce_add_ps(x[0]); \
  1260. } while (0)
  1261. #define GGML_F16_VEC GGML_F32Cx16
  1262. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1263. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1264. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1265. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1266. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1267. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1268. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1269. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1270. #elif defined(__AVX__)
  1271. #define GGML_SIMD
  1272. // F32 AVX
  1273. #define GGML_F32_STEP 32
  1274. #define GGML_F32_EPR 8
  1275. #define GGML_F32x8 __m256
  1276. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1277. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1278. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1279. #define GGML_F32x8_STORE _mm256_storeu_ps
  1280. #if defined(__FMA__)
  1281. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1282. #else
  1283. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1284. #endif
  1285. #define GGML_F32x8_ADD _mm256_add_ps
  1286. #define GGML_F32x8_MUL _mm256_mul_ps
  1287. #define GGML_F32x8_REDUCE(res, x) \
  1288. do { \
  1289. int offset = GGML_F32_ARR >> 1; \
  1290. for (int i = 0; i < offset; ++i) { \
  1291. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1292. } \
  1293. offset >>= 1; \
  1294. for (int i = 0; i < offset; ++i) { \
  1295. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1296. } \
  1297. offset >>= 1; \
  1298. for (int i = 0; i < offset; ++i) { \
  1299. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1300. } \
  1301. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1302. _mm256_extractf128_ps(x[0], 1)); \
  1303. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1304. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1305. } while (0)
  1306. // TODO: is this optimal ?
  1307. #define GGML_F32_VEC GGML_F32x8
  1308. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1309. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1310. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1311. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1312. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1313. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1314. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1315. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1316. // F16 AVX
  1317. #define GGML_F16_STEP 32
  1318. #define GGML_F16_EPR 8
  1319. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1320. #define GGML_F32Cx8 __m256
  1321. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1322. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1323. #if defined(__F16C__)
  1324. // the _mm256_cvt intrinsics require F16C
  1325. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1326. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1327. #else
  1328. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1329. float tmp[8];
  1330. for (int i = 0; i < 8; i++) {
  1331. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1332. }
  1333. return _mm256_loadu_ps(tmp);
  1334. }
  1335. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1336. float arr[8];
  1337. _mm256_storeu_ps(arr, y);
  1338. for (int i = 0; i < 8; i++)
  1339. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1340. }
  1341. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1342. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1343. #endif
  1344. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1345. #define GGML_F32Cx8_ADD _mm256_add_ps
  1346. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1347. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1348. #define GGML_F16_VEC GGML_F32Cx8
  1349. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1350. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1351. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1352. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1353. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1354. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1355. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1356. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1357. #elif defined(__POWER9_VECTOR__)
  1358. #define GGML_SIMD
  1359. // F32 POWER9
  1360. #define GGML_F32_STEP 32
  1361. #define GGML_F32_EPR 4
  1362. #define GGML_F32x4 vector float
  1363. #define GGML_F32x4_ZERO 0.0f
  1364. #define GGML_F32x4_SET1 vec_splats
  1365. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1366. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1367. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1368. #define GGML_F32x4_ADD vec_add
  1369. #define GGML_F32x4_MUL vec_mul
  1370. #define GGML_F32x4_REDUCE(res, x) \
  1371. { \
  1372. int offset = GGML_F32_ARR >> 1; \
  1373. for (int i = 0; i < offset; ++i) { \
  1374. x[i] = vec_add(x[i], x[offset+i]); \
  1375. } \
  1376. offset >>= 1; \
  1377. for (int i = 0; i < offset; ++i) { \
  1378. x[i] = vec_add(x[i], x[offset+i]); \
  1379. } \
  1380. offset >>= 1; \
  1381. for (int i = 0; i < offset; ++i) { \
  1382. x[i] = vec_add(x[i], x[offset+i]); \
  1383. } \
  1384. res = vec_extract(x[0], 0) + \
  1385. vec_extract(x[0], 1) + \
  1386. vec_extract(x[0], 2) + \
  1387. vec_extract(x[0], 3); \
  1388. }
  1389. #define GGML_F32_VEC GGML_F32x4
  1390. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1391. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1392. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1393. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1394. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1395. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1396. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1397. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1398. // F16 POWER9
  1399. #define GGML_F16_STEP GGML_F32_STEP
  1400. #define GGML_F16_EPR GGML_F32_EPR
  1401. #define GGML_F16_VEC GGML_F32x4
  1402. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1403. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1404. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1405. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1406. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1407. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1408. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1409. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1410. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1411. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1412. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1413. #define GGML_F16_VEC_STORE(p, r, i) \
  1414. if (i & 0x1) \
  1415. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1416. r[i - GGML_ENDIAN_BYTE(0)]), \
  1417. 0, p - GGML_F16_EPR)
  1418. #elif defined(__wasm_simd128__)
  1419. #define GGML_SIMD
  1420. // F32 WASM
  1421. #define GGML_F32_STEP 16
  1422. #define GGML_F32_EPR 4
  1423. #define GGML_F32x4 v128_t
  1424. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1425. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1426. #define GGML_F32x4_LOAD wasm_v128_load
  1427. #define GGML_F32x4_STORE wasm_v128_store
  1428. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1429. #define GGML_F32x4_ADD wasm_f32x4_add
  1430. #define GGML_F32x4_MUL wasm_f32x4_mul
  1431. #define GGML_F32x4_REDUCE(res, x) \
  1432. { \
  1433. int offset = GGML_F32_ARR >> 1; \
  1434. for (int i = 0; i < offset; ++i) { \
  1435. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1436. } \
  1437. offset >>= 1; \
  1438. for (int i = 0; i < offset; ++i) { \
  1439. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1440. } \
  1441. offset >>= 1; \
  1442. for (int i = 0; i < offset; ++i) { \
  1443. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1444. } \
  1445. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1446. wasm_f32x4_extract_lane(x[0], 1) + \
  1447. wasm_f32x4_extract_lane(x[0], 2) + \
  1448. wasm_f32x4_extract_lane(x[0], 3); \
  1449. }
  1450. #define GGML_F32_VEC GGML_F32x4
  1451. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1452. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1453. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1454. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1455. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1456. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1457. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1458. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1459. // F16 WASM
  1460. #define GGML_F16_STEP 16
  1461. #define GGML_F16_EPR 4
  1462. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1463. float tmp[4];
  1464. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1465. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1466. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1467. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1468. return wasm_v128_load(tmp);
  1469. }
  1470. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1471. float tmp[4];
  1472. wasm_v128_store(tmp, x);
  1473. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1474. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1475. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1476. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1477. }
  1478. #define GGML_F16x4 v128_t
  1479. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1480. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1481. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1482. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1483. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1484. #define GGML_F16x4_ADD wasm_f32x4_add
  1485. #define GGML_F16x4_MUL wasm_f32x4_mul
  1486. #define GGML_F16x4_REDUCE(res, x) \
  1487. { \
  1488. int offset = GGML_F16_ARR >> 1; \
  1489. for (int i = 0; i < offset; ++i) { \
  1490. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1491. } \
  1492. offset >>= 1; \
  1493. for (int i = 0; i < offset; ++i) { \
  1494. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1495. } \
  1496. offset >>= 1; \
  1497. for (int i = 0; i < offset; ++i) { \
  1498. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1499. } \
  1500. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1501. wasm_f32x4_extract_lane(x[0], 1) + \
  1502. wasm_f32x4_extract_lane(x[0], 2) + \
  1503. wasm_f32x4_extract_lane(x[0], 3); \
  1504. }
  1505. #define GGML_F16_VEC GGML_F16x4
  1506. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1507. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1508. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1509. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1510. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1511. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1512. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1513. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1514. #elif defined(__SSE3__)
  1515. #define GGML_SIMD
  1516. // F32 SSE
  1517. #define GGML_F32_STEP 32
  1518. #define GGML_F32_EPR 4
  1519. #define GGML_F32x4 __m128
  1520. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1521. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1522. #define GGML_F32x4_LOAD _mm_loadu_ps
  1523. #define GGML_F32x4_STORE _mm_storeu_ps
  1524. #if defined(__FMA__)
  1525. // TODO: Does this work?
  1526. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1527. #else
  1528. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1529. #endif
  1530. #define GGML_F32x4_ADD _mm_add_ps
  1531. #define GGML_F32x4_MUL _mm_mul_ps
  1532. #define GGML_F32x4_REDUCE(res, x) \
  1533. { \
  1534. int offset = GGML_F32_ARR >> 1; \
  1535. for (int i = 0; i < offset; ++i) { \
  1536. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1537. } \
  1538. offset >>= 1; \
  1539. for (int i = 0; i < offset; ++i) { \
  1540. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1541. } \
  1542. offset >>= 1; \
  1543. for (int i = 0; i < offset; ++i) { \
  1544. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1545. } \
  1546. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1547. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1548. }
  1549. // TODO: is this optimal ?
  1550. #define GGML_F32_VEC GGML_F32x4
  1551. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1552. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1553. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1554. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1555. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1556. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1557. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1558. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1559. // F16 SSE
  1560. #define GGML_F16_STEP 32
  1561. #define GGML_F16_EPR 4
  1562. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1563. float tmp[4];
  1564. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1565. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1566. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1567. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1568. return _mm_loadu_ps(tmp);
  1569. }
  1570. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1571. float arr[4];
  1572. _mm_storeu_ps(arr, y);
  1573. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1574. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1575. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1576. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1577. }
  1578. #define GGML_F32Cx4 __m128
  1579. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1580. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1581. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1582. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1583. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1584. #define GGML_F32Cx4_ADD _mm_add_ps
  1585. #define GGML_F32Cx4_MUL _mm_mul_ps
  1586. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1587. #define GGML_F16_VEC GGML_F32Cx4
  1588. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1589. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1590. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1591. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1592. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1593. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1594. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1595. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1596. #elif defined(__loongarch_asx)
  1597. #define GGML_SIMD
  1598. // F32 LASX
  1599. #define GGML_F32_STEP 32
  1600. #define GGML_F32_EPR 8
  1601. #define GGML_F32x8 __m256
  1602. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1603. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1604. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1605. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1606. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1607. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1608. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1609. #define GGML_F32x8_REDUCE(res, x) \
  1610. do { \
  1611. int offset = GGML_F32_ARR >> 1; \
  1612. for (int i = 0; i < offset; ++i) { \
  1613. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1614. } \
  1615. offset >>= 1; \
  1616. for (int i = 0; i < offset; ++i) { \
  1617. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1618. } \
  1619. offset >>= 1; \
  1620. for (int i = 0; i < offset; ++i) { \
  1621. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1622. } \
  1623. float *tmp_p = (float *)&x[0]; \
  1624. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1625. } while (0)
  1626. // TODO: is this optimal ?
  1627. #define GGML_F32_VEC GGML_F32x8
  1628. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1629. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1630. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1631. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1632. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1633. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1634. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1635. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1636. // F16 LASX
  1637. #define GGML_F16_STEP 32
  1638. #define GGML_F16_EPR 8
  1639. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1640. #define GGML_F32Cx8 __m256
  1641. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1642. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1643. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1644. float tmp[8];
  1645. for (int i = 0; i < 8; i++) {
  1646. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1647. }
  1648. return (__m256)__lasx_xvld(tmp, 0);
  1649. }
  1650. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1651. float arr[8];
  1652. __lasx_xvst(y, arr, 0);
  1653. for (int i = 0; i < 8; i++) {
  1654. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1655. }
  1656. }
  1657. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1658. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1659. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1660. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1661. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1662. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1663. #define GGML_F16_VEC GGML_F32Cx8
  1664. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1665. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1666. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1667. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1668. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1669. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1670. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1671. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1672. #elif defined(__loongarch_sx)
  1673. #define GGML_SIMD
  1674. // F32 LSX
  1675. #define GGML_F32_STEP 32
  1676. #define GGML_F32_EPR 4
  1677. #define GGML_F32x4 __m128
  1678. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1679. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1680. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1681. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1682. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1683. #define GGML_F32x4_ADD __lsx_vfadd_s
  1684. #define GGML_F32x4_MUL __lsx_vfmul_s
  1685. #define GGML_F32x4_REDUCE(res, x) \
  1686. { \
  1687. int offset = GGML_F32_ARR >> 1; \
  1688. for (int i = 0; i < offset; ++i) { \
  1689. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1690. } \
  1691. offset >>= 1; \
  1692. for (int i = 0; i < offset; ++i) { \
  1693. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1694. } \
  1695. offset >>= 1; \
  1696. for (int i = 0; i < offset; ++i) { \
  1697. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1698. } \
  1699. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1700. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1701. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1702. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1703. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1704. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1705. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1706. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1707. }
  1708. #define GGML_F32_VEC GGML_F32x4
  1709. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1710. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1711. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1712. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1713. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1714. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1715. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1716. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1717. // F16 LSX
  1718. #define GGML_F16_STEP 32
  1719. #define GGML_F16_EPR 4
  1720. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1721. float tmp[4];
  1722. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1723. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1724. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1725. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1726. return __lsx_vld(tmp, 0);
  1727. }
  1728. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1729. float arr[4];
  1730. __lsx_vst(y, arr, 0);
  1731. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1732. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1733. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1734. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1735. }
  1736. #define GGML_F32Cx4 __m128
  1737. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1738. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1739. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1740. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1741. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1742. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1743. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1744. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1745. #define GGML_F16_VEC GGML_F32Cx4
  1746. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1747. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1748. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1749. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1750. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1751. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1752. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1753. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1754. #endif
  1755. // GGML_F32_ARR / GGML_F16_ARR
  1756. // number of registers to use per step
  1757. #ifdef GGML_SIMD
  1758. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1759. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1760. #endif
  1761. //
  1762. // ggml object
  1763. //
  1764. struct ggml_object {
  1765. size_t offs;
  1766. size_t size;
  1767. struct ggml_object * next;
  1768. enum ggml_object_type type;
  1769. char padding[4];
  1770. };
  1771. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1772. //
  1773. // ggml context
  1774. //
  1775. struct ggml_context {
  1776. size_t mem_size;
  1777. void* mem_buffer;
  1778. bool mem_buffer_owned;
  1779. bool no_alloc;
  1780. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1781. int n_objects;
  1782. struct ggml_object * objects_begin;
  1783. struct ggml_object * objects_end;
  1784. struct ggml_scratch scratch;
  1785. struct ggml_scratch scratch_save;
  1786. };
  1787. struct ggml_context_container {
  1788. bool used;
  1789. struct ggml_context context;
  1790. };
  1791. //
  1792. // Threading defs
  1793. //
  1794. typedef pthread_t ggml_thread_t;
  1795. #if defined(_WIN32)
  1796. typedef CONDITION_VARIABLE ggml_cond_t;
  1797. typedef SRWLOCK ggml_mutex_t;
  1798. #define ggml_mutex_init(m) InitializeSRWLock(m)
  1799. #define ggml_mutex_destroy(m)
  1800. #define ggml_mutex_lock(m) AcquireSRWLockExclusive(m)
  1801. #define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m)
  1802. #define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m)
  1803. #define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m)
  1804. #define ggml_cond_init(c) InitializeConditionVariable(c)
  1805. #define ggml_cond_destroy(c)
  1806. #define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED)
  1807. #define ggml_cond_broadcast(c) WakeAllConditionVariable(c)
  1808. #define ggml_thread_create pthread_create
  1809. #define ggml_thread_join pthread_join
  1810. #else
  1811. typedef pthread_cond_t ggml_cond_t;
  1812. typedef pthread_mutex_t ggml_mutex_t;
  1813. #define ggml_mutex_init(m) pthread_mutex_init(m, NULL)
  1814. #define ggml_mutex_destroy(m) pthread_mutex_destroy(m)
  1815. #define ggml_mutex_lock(m) pthread_mutex_lock(m)
  1816. #define ggml_mutex_unlock(m) pthread_mutex_unlock(m)
  1817. #define ggml_mutex_lock_shared(m) pthread_mutex_lock(m)
  1818. #define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m)
  1819. #define ggml_lock_init(x) UNUSED(x)
  1820. #define ggml_lock_destroy(x) UNUSED(x)
  1821. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  1822. #define ggml_lock_lock(x) _mm_pause()
  1823. #else
  1824. #define ggml_lock_lock(x) UNUSED(x)
  1825. #endif
  1826. #define ggml_lock_unlock(x) UNUSED(x)
  1827. #define GGML_LOCK_INITIALIZER 0
  1828. #define ggml_cond_init(c) pthread_cond_init(c, NULL)
  1829. #define ggml_cond_destroy(c) pthread_cond_destroy(c)
  1830. #define ggml_cond_wait(c, m) pthread_cond_wait(c, m)
  1831. #define ggml_cond_broadcast(c) pthread_cond_broadcast(c)
  1832. #define ggml_thread_create pthread_create
  1833. #define ggml_thread_join pthread_join
  1834. #endif
  1835. // Threadpool def
  1836. struct ggml_threadpool {
  1837. ggml_mutex_t mutex; // mutex for cond.var
  1838. ggml_cond_t cond; // cond.var for waiting for new work
  1839. struct ggml_cgraph * cgraph;
  1840. struct ggml_cplan * cplan;
  1841. // synchronization primitives
  1842. atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
  1843. atomic_int GGML_CACHE_ALIGN n_barrier;
  1844. atomic_int GGML_CACHE_ALIGN n_barrier_passed;
  1845. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1846. // these are atomic as an annotation for thread-sanitizer
  1847. atomic_bool stop; // Used for stopping the threadpool altogether
  1848. atomic_bool pause; // Used for pausing the threadpool or individual threads
  1849. atomic_bool abort; // Used for aborting processing of a graph
  1850. struct ggml_compute_state * workers; // per thread state
  1851. int n_threads_max; // number of threads in the pool
  1852. atomic_int n_threads_cur; // number of threads used in the current graph
  1853. int32_t prio; // Scheduling priority
  1854. uint32_t poll; // Polling level (0 - no polling)
  1855. enum ggml_status ec;
  1856. };
  1857. // Per-thread state
  1858. struct ggml_compute_state {
  1859. #ifndef GGML_USE_OPENMP
  1860. ggml_thread_t thrd;
  1861. bool cpumask[GGML_MAX_N_THREADS];
  1862. int last_graph;
  1863. bool pending;
  1864. #endif
  1865. struct ggml_threadpool * threadpool;
  1866. int ith;
  1867. };
  1868. struct ggml_compute_params {
  1869. // ith = thread index, nth = number of threads
  1870. int ith, nth;
  1871. // work buffer for all threads
  1872. size_t wsize;
  1873. void * wdata;
  1874. struct ggml_threadpool * threadpool;
  1875. };
  1876. //
  1877. // fundamental operations
  1878. //
  1879. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1880. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1881. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1882. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1883. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1884. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1885. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1886. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1887. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1888. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1889. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1890. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1891. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1892. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1893. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1894. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1895. assert(nrc == 1);
  1896. UNUSED(nrc);
  1897. UNUSED(bx);
  1898. UNUSED(by);
  1899. UNUSED(bs);
  1900. #if defined(GGML_SIMD)
  1901. float sumf = 0.0f;
  1902. const int np = (n & ~(GGML_F32_STEP - 1));
  1903. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1904. GGML_F32_VEC ax[GGML_F32_ARR];
  1905. GGML_F32_VEC ay[GGML_F32_ARR];
  1906. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1907. for (int j = 0; j < GGML_F32_ARR; j++) {
  1908. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1909. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1910. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1911. }
  1912. }
  1913. // reduce sum0..sum3 to sum0
  1914. GGML_F32_VEC_REDUCE(sumf, sum);
  1915. // leftovers
  1916. for (int i = np; i < n; ++i) {
  1917. sumf += x[i]*y[i];
  1918. }
  1919. #else
  1920. // scalar
  1921. ggml_float sumf = 0.0;
  1922. for (int i = 0; i < n; ++i) {
  1923. sumf += (ggml_float)(x[i]*y[i]);
  1924. }
  1925. #endif
  1926. *s = sumf;
  1927. }
  1928. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1929. assert(nrc == 1);
  1930. UNUSED(nrc);
  1931. UNUSED(bx);
  1932. UNUSED(by);
  1933. UNUSED(bs);
  1934. int i = 0;
  1935. ggml_float sumf = 0;
  1936. #if defined(__AVX512BF16__)
  1937. __m512 c1 = _mm512_setzero_ps();
  1938. __m512 c2 = _mm512_setzero_ps();
  1939. for (; i + 64 <= n; i += 64) {
  1940. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1941. m512bh(_mm512_loadu_si512((y + i))));
  1942. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1943. m512bh(_mm512_loadu_si512((y + i + 32))));
  1944. }
  1945. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1946. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1947. #elif defined(__AVX512F__)
  1948. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1949. __m512 c1 = _mm512_setzero_ps();
  1950. __m512 c2 = _mm512_setzero_ps();
  1951. for (; i + 32 <= n; i += 32) {
  1952. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1953. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1954. }
  1955. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1956. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1957. #undef LOAD
  1958. #elif defined(__AVX2__)
  1959. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1960. __m256 c1 = _mm256_setzero_ps();
  1961. __m256 c2 = _mm256_setzero_ps();
  1962. __m256 c3 = _mm256_setzero_ps();
  1963. __m256 c4 = _mm256_setzero_ps();
  1964. for (; i + 32 <= n; i += 32) {
  1965. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1966. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1967. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1968. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1969. }
  1970. __m128 g;
  1971. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1972. _mm256_add_ps(c2, c4));
  1973. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1974. _mm256_castps256_ps128(c1));
  1975. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1976. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1977. sumf += (ggml_float)_mm_cvtss_f32(g);
  1978. #undef LOAD
  1979. #endif
  1980. for (; i < n; ++i) {
  1981. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1982. GGML_BF16_TO_FP32(y[i]));
  1983. }
  1984. *s = sumf;
  1985. }
  1986. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1987. assert(nrc == 1);
  1988. UNUSED(nrc);
  1989. UNUSED(bx);
  1990. UNUSED(by);
  1991. UNUSED(bs);
  1992. ggml_float sumf = 0.0;
  1993. #if defined(GGML_SIMD)
  1994. const int np = (n & ~(GGML_F16_STEP - 1));
  1995. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1996. GGML_F16_VEC ax[GGML_F16_ARR];
  1997. GGML_F16_VEC ay[GGML_F16_ARR];
  1998. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1999. for (int j = 0; j < GGML_F16_ARR; j++) {
  2000. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2001. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2002. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2003. }
  2004. }
  2005. // reduce sum0..sum3 to sum0
  2006. GGML_F16_VEC_REDUCE(sumf, sum);
  2007. // leftovers
  2008. for (int i = np; i < n; ++i) {
  2009. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2010. }
  2011. #else
  2012. for (int i = 0; i < n; ++i) {
  2013. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2014. }
  2015. #endif
  2016. *s = sumf;
  2017. }
  2018. // compute GGML_VEC_DOT_UNROLL dot products at once
  2019. // xs - x row stride in bytes
  2020. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2021. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2022. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2023. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2024. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2025. }
  2026. #if defined(GGML_SIMD)
  2027. const int np = (n & ~(GGML_F16_STEP - 1));
  2028. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2029. GGML_F16_VEC ax[GGML_F16_ARR];
  2030. GGML_F16_VEC ay[GGML_F16_ARR];
  2031. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2032. for (int j = 0; j < GGML_F16_ARR; j++) {
  2033. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2034. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2035. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2036. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2037. }
  2038. }
  2039. }
  2040. // reduce sum0..sum3 to sum0
  2041. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2042. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2043. }
  2044. // leftovers
  2045. for (int i = np; i < n; ++i) {
  2046. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2047. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2048. }
  2049. }
  2050. #else
  2051. for (int i = 0; i < n; ++i) {
  2052. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2053. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2054. }
  2055. }
  2056. #endif
  2057. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2058. s[i] = sumf[i];
  2059. }
  2060. }
  2061. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2062. #if defined(GGML_SIMD)
  2063. const int np = (n & ~(GGML_F32_STEP - 1));
  2064. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2065. GGML_F32_VEC ax[GGML_F32_ARR];
  2066. GGML_F32_VEC ay[GGML_F32_ARR];
  2067. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2068. for (int j = 0; j < GGML_F32_ARR; j++) {
  2069. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2070. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2071. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2072. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2073. }
  2074. }
  2075. // leftovers
  2076. for (int i = np; i < n; ++i) {
  2077. y[i] += x[i]*v;
  2078. }
  2079. #else
  2080. // scalar
  2081. for (int i = 0; i < n; ++i) {
  2082. y[i] += x[i]*v;
  2083. }
  2084. #endif
  2085. }
  2086. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  2087. #if defined(GGML_SIMD)
  2088. const int np = (n & ~(GGML_F16_STEP - 1));
  2089. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  2090. GGML_F16_VEC ax[GGML_F16_ARR];
  2091. GGML_F16_VEC ay[GGML_F16_ARR];
  2092. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2093. for (int j = 0; j < GGML_F16_ARR; j++) {
  2094. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2095. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2096. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  2097. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  2098. }
  2099. }
  2100. // leftovers
  2101. for (int i = np; i < n; ++i) {
  2102. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  2103. }
  2104. #else
  2105. // scalar
  2106. for (int i = 0; i < n; ++i) {
  2107. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  2108. }
  2109. #endif
  2110. }
  2111. // xs and vs are byte strides of x and v
  2112. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  2113. const float * restrict x[GGML_VEC_MAD_UNROLL];
  2114. const float * restrict v[GGML_VEC_MAD_UNROLL];
  2115. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  2116. x[i] = (const float *) ((const char *) xv + i*xs);
  2117. v[i] = (const float *) ((const char *) vv + i*vs);
  2118. }
  2119. #if defined(GGML_SIMD)
  2120. const int np = (n & ~(GGML_F32_STEP - 1));
  2121. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  2122. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2123. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  2124. }
  2125. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  2126. GGML_F32_VEC ay[GGML_F32_ARR];
  2127. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2128. for (int j = 0; j < GGML_F32_ARR; j++) {
  2129. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2130. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2131. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  2132. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  2133. }
  2134. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2135. }
  2136. }
  2137. // leftovers
  2138. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2139. for (int i = np; i < n; ++i) {
  2140. y[i] += x[k][i]*v[k][0];
  2141. }
  2142. }
  2143. #else
  2144. // scalar
  2145. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2146. for (int i = 0; i < n; ++i) {
  2147. y[i] += x[k][i]*v[k][0];
  2148. }
  2149. }
  2150. #endif
  2151. }
  2152. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2153. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2154. #if defined(GGML_USE_ACCELERATE)
  2155. vDSP_vsmul(y, 1, &v, y, 1, n);
  2156. #elif defined(GGML_SIMD)
  2157. const int np = (n & ~(GGML_F32_STEP - 1));
  2158. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2159. GGML_F32_VEC ay[GGML_F32_ARR];
  2160. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2161. for (int j = 0; j < GGML_F32_ARR; j++) {
  2162. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2163. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2164. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2165. }
  2166. }
  2167. // leftovers
  2168. for (int i = np; i < n; ++i) {
  2169. y[i] *= v;
  2170. }
  2171. #else
  2172. // scalar
  2173. for (int i = 0; i < n; ++i) {
  2174. y[i] *= v;
  2175. }
  2176. #endif
  2177. }
  2178. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  2179. #if defined(GGML_SIMD)
  2180. const int np = (n & ~(GGML_F16_STEP - 1));
  2181. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  2182. GGML_F16_VEC ay[GGML_F16_ARR];
  2183. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2184. for (int j = 0; j < GGML_F16_ARR; j++) {
  2185. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2186. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  2187. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  2188. }
  2189. }
  2190. // leftovers
  2191. for (int i = np; i < n; ++i) {
  2192. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  2193. }
  2194. #else
  2195. // scalar
  2196. for (int i = 0; i < n; ++i) {
  2197. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  2198. }
  2199. #endif
  2200. }
  2201. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  2202. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2203. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2204. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2205. inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
  2206. inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
  2207. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2208. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2209. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2210. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2211. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
  2212. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2213. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  2214. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  2215. // TODO: optimize performance
  2216. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2217. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2218. inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
  2219. static const float GELU_COEF_A = 0.044715f;
  2220. static const float GELU_QUICK_COEF = -1.702f;
  2221. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2222. inline static float ggml_gelu_f32(float x) {
  2223. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2224. }
  2225. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2226. const uint16_t * i16 = (const uint16_t *) x;
  2227. for (int i = 0; i < n; ++i) {
  2228. y[i] = ggml_table_gelu_f16[i16[i]];
  2229. }
  2230. }
  2231. #ifdef GGML_GELU_FP16
  2232. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2233. uint16_t t;
  2234. for (int i = 0; i < n; ++i) {
  2235. if (x[i] <= -10.0f) {
  2236. y[i] = 0.0f;
  2237. } else if (x[i] >= 10.0f) {
  2238. y[i] = x[i];
  2239. } else {
  2240. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2241. memcpy(&t, &fp16, sizeof(uint16_t));
  2242. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  2243. }
  2244. }
  2245. }
  2246. #else
  2247. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2248. for (int i = 0; i < n; ++i) {
  2249. y[i] = ggml_gelu_f32(x[i]);
  2250. }
  2251. }
  2252. #endif
  2253. inline static float ggml_gelu_quick_f32(float x) {
  2254. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2255. }
  2256. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2257. // const uint16_t * i16 = (const uint16_t *) x;
  2258. // for (int i = 0; i < n; ++i) {
  2259. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  2260. // }
  2261. //}
  2262. #ifdef GGML_GELU_QUICK_FP16
  2263. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2264. uint16_t t;
  2265. for (int i = 0; i < n; ++i) {
  2266. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2267. memcpy(&t, &fp16, sizeof(uint16_t));
  2268. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  2269. }
  2270. }
  2271. #else
  2272. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2273. for (int i = 0; i < n; ++i) {
  2274. y[i] = ggml_gelu_quick_f32(x[i]);
  2275. }
  2276. }
  2277. #endif
  2278. // Sigmoid Linear Unit (SiLU) function
  2279. inline static float ggml_silu_f32(float x) {
  2280. return x/(1.0f + expf(-x));
  2281. }
  2282. #if __FINITE_MATH_ONLY__
  2283. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  2284. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  2285. #endif
  2286. #if defined(__ARM_NEON) && defined(__aarch64__)
  2287. // adapted from arm limited optimized routine
  2288. // the maximum error is 1.45358 plus 0.5 ulps
  2289. // numbers above 88.38 will flush to infinity
  2290. // numbers beneath -103.97 will flush to zero
  2291. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  2292. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  2293. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  2294. const float32x4_t n = vsubq_f32(z, r);
  2295. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  2296. vdupq_n_f32(0x1.7f7d1cp-20f));
  2297. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  2298. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  2299. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  2300. const float32x4_t u = vmulq_f32(b, b);
  2301. const float32x4_t j = vfmaq_f32(
  2302. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  2303. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  2304. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  2305. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  2306. return vfmaq_f32(k, j, k);
  2307. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  2308. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  2309. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  2310. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  2311. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  2312. }
  2313. // computes silu x/(1+exp(-x)) in single precision vector
  2314. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  2315. const float32x4_t one = vdupq_n_f32(1.0f);
  2316. const float32x4_t zero = vdupq_n_f32(0.0f);
  2317. const float32x4_t neg_x = vsubq_f32(zero, x);
  2318. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  2319. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  2320. return vdivq_f32(x, one_plus_exp_neg_x);
  2321. }
  2322. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  2323. // adapted from arm limited optimized routine
  2324. // the maximum error is 1.45358 plus 0.5 ulps
  2325. // numbers above 88.38 will flush to infinity
  2326. // numbers beneath -103.97 will flush to zero
  2327. inline static __m512 ggml_v_expf(__m512 x) {
  2328. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2329. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2330. const __m512 n = _mm512_sub_ps(z, r);
  2331. const __m512 b =
  2332. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2333. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2334. const __mmask16 d =
  2335. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2336. const __m512 u = _mm512_mul_ps(b, b);
  2337. const __m512 j = _mm512_fmadd_ps(
  2338. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2339. _mm512_set1_ps(0x1.573e2ep-5f)),
  2340. u,
  2341. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2342. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2343. u,
  2344. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2345. const __m512 res = _mm512_scalef_ps(j, n);
  2346. if (_mm512_kortestz(d, d))
  2347. return res;
  2348. const __m512 zero = _mm512_setzero_ps();
  2349. const __m512 alt = _mm512_mask_blend_ps(
  2350. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2351. return _mm512_mask_blend_ps(d, res, alt);
  2352. }
  2353. // computes silu x/(1+exp(-x)) in single precision vector
  2354. inline static __m512 ggml_v_silu(__m512 x) {
  2355. const __m512 one = _mm512_set1_ps(1);
  2356. const __m512 zero = _mm512_setzero_ps();
  2357. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2358. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2359. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2360. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2361. }
  2362. #elif defined(__AVX2__) && defined(__FMA__)
  2363. // adapted from arm limited optimized routine
  2364. // the maximum error is 1.45358 plus 0.5 ulps
  2365. // numbers above 88.38 will flush to infinity
  2366. // numbers beneath -103.97 will flush to zero
  2367. inline static __m256 ggml_v_expf(__m256 x) {
  2368. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2369. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2370. const __m256 n = _mm256_sub_ps(z, r);
  2371. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2372. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2373. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2374. const __m256 k = _mm256_castsi256_ps(
  2375. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2376. const __m256i c = _mm256_castps_si256(
  2377. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2378. _mm256_set1_ps(126), _CMP_GT_OQ));
  2379. const __m256 u = _mm256_mul_ps(b, b);
  2380. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2381. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2382. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2383. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2384. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2385. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2386. return _mm256_fmadd_ps(j, k, k);
  2387. const __m256i g = _mm256_and_si256(
  2388. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2389. _mm256_set1_epi32(0x82000000u));
  2390. const __m256 s1 =
  2391. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2392. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2393. const __m256i d = _mm256_castps_si256(
  2394. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2395. _mm256_set1_ps(192), _CMP_GT_OQ));
  2396. return _mm256_or_ps(
  2397. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2398. _mm256_andnot_ps(
  2399. _mm256_castsi256_ps(d),
  2400. _mm256_or_ps(
  2401. _mm256_and_ps(_mm256_castsi256_ps(c),
  2402. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2403. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2404. }
  2405. // computes silu x/(1+exp(-x)) in single precision vector
  2406. inline static __m256 ggml_v_silu(__m256 x) {
  2407. const __m256 one = _mm256_set1_ps(1);
  2408. const __m256 zero = _mm256_setzero_ps();
  2409. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2410. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2411. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2412. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2413. }
  2414. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2415. #if defined(__FMA__)
  2416. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2417. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2418. #else
  2419. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2420. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2421. #endif
  2422. // adapted from arm limited optimized routine
  2423. // the maximum error is 1.45358 plus 0.5 ulps
  2424. // numbers above 88.38 will flush to infinity
  2425. // numbers beneath -103.97 will flush to zero
  2426. inline static __m128 ggml_v_expf(__m128 x) {
  2427. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2428. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2429. const __m128 n = _mm_sub_ps(z, r);
  2430. const __m128 b =
  2431. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2432. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2433. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2434. const __m128i c =
  2435. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2436. const __m128 u = _mm_mul_ps(b, b);
  2437. const __m128 j =
  2438. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2439. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2440. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2441. if (!_mm_movemask_epi8(c))
  2442. return MADD128(j, k, k);
  2443. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2444. _mm_set1_epi32(0x82000000u));
  2445. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2446. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2447. const __m128i d =
  2448. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2449. return _mm_or_ps(
  2450. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2451. _mm_andnot_ps(_mm_castsi128_ps(d),
  2452. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2453. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2454. }
  2455. // computes silu x/(1+exp(-x)) in single precision vector
  2456. inline static __m128 ggml_v_silu(__m128 x) {
  2457. const __m128 one = _mm_set1_ps(1);
  2458. const __m128 zero = _mm_setzero_ps();
  2459. const __m128 neg_x = _mm_sub_ps(zero, x);
  2460. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2461. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2462. return _mm_div_ps(x, one_plus_exp_neg_x);
  2463. }
  2464. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2465. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2466. int i = 0;
  2467. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2468. for (; i + 15 < n; i += 16) {
  2469. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2470. }
  2471. #elif defined(__AVX2__) && defined(__FMA__)
  2472. for (; i + 7 < n; i += 8) {
  2473. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2474. }
  2475. #elif defined(__SSE2__)
  2476. for (; i + 3 < n; i += 4) {
  2477. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2478. }
  2479. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2480. for (; i + 3 < n; i += 4) {
  2481. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2482. }
  2483. #endif
  2484. for (; i < n; ++i) {
  2485. y[i] = ggml_silu_f32(x[i]);
  2486. }
  2487. }
  2488. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2489. int i = 0;
  2490. ggml_float sum = 0;
  2491. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2492. for (; i + 15 < n; i += 16) {
  2493. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2494. _mm512_set1_ps(max)));
  2495. _mm512_storeu_ps(y + i, val);
  2496. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2497. }
  2498. #elif defined(__AVX2__) && defined(__FMA__)
  2499. for (; i + 7 < n; i += 8) {
  2500. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2501. _mm256_set1_ps(max)));
  2502. _mm256_storeu_ps(y + i, val);
  2503. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2504. _mm256_castps256_ps128(val));
  2505. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2506. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2507. sum += (ggml_float)_mm_cvtss_f32(val2);
  2508. }
  2509. #elif defined(__SSE2__)
  2510. for (; i + 3 < n; i += 4) {
  2511. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2512. _mm_set1_ps(max)));
  2513. _mm_storeu_ps(y + i, val);
  2514. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2515. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2516. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2517. #else
  2518. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2519. val = _mm_add_ps(val, tmp);
  2520. tmp = _mm_movehl_ps(tmp, val);
  2521. val = _mm_add_ss(val, tmp);
  2522. #endif
  2523. sum += (ggml_float)_mm_cvtss_f32(val);
  2524. }
  2525. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2526. for (; i + 3 < n; i += 4) {
  2527. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2528. vdupq_n_f32(max)));
  2529. vst1q_f32(y + i, val);
  2530. sum += (ggml_float)vaddvq_f32(val);
  2531. }
  2532. #endif
  2533. for (; i < n; ++i) {
  2534. float val = expf(x[i] - max);
  2535. sum += (ggml_float)val;
  2536. y[i] = val;
  2537. }
  2538. return sum;
  2539. }
  2540. static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
  2541. // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
  2542. int i = 0;
  2543. ggml_float sum = 0;
  2544. for (; i < n; ++i) {
  2545. float val = x[i] - max;
  2546. y[i] = val;
  2547. sum += (ggml_float)expf(val);
  2548. }
  2549. return sum = (ggml_float)logf(sum);
  2550. }
  2551. inline static float ggml_silu_backward_f32(float x, float dy) {
  2552. const float s = 1.0f/(1.0f + expf(-x));
  2553. return dy*s*(1.0f + x*(1.0f - s));
  2554. }
  2555. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2556. for (int i = 0; i < n; ++i) {
  2557. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2558. }
  2559. }
  2560. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2561. #ifndef GGML_USE_ACCELERATE
  2562. ggml_float sum = 0.0;
  2563. for (int i = 0; i < n; ++i) {
  2564. sum += (ggml_float)x[i];
  2565. }
  2566. *s = sum;
  2567. #else
  2568. vDSP_sve(x, 1, s, n);
  2569. #endif
  2570. }
  2571. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2572. ggml_float sum = 0.0;
  2573. for (int i = 0; i < n; ++i) {
  2574. sum += (ggml_float)x[i];
  2575. }
  2576. *s = sum;
  2577. }
  2578. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2579. float sum = 0.0f;
  2580. for (int i = 0; i < n; ++i) {
  2581. sum += GGML_FP16_TO_FP32(x[i]);
  2582. }
  2583. *s = sum;
  2584. }
  2585. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2586. float sum = 0.0f;
  2587. for (int i = 0; i < n; ++i) {
  2588. sum += GGML_BF16_TO_FP32(x[i]);
  2589. }
  2590. *s = sum;
  2591. }
  2592. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2593. #ifndef GGML_USE_ACCELERATE
  2594. float max = -INFINITY;
  2595. for (int i = 0; i < n; ++i) {
  2596. max = MAX(max, x[i]);
  2597. }
  2598. *s = max;
  2599. #else
  2600. vDSP_maxv(x, 1, s, n);
  2601. #endif
  2602. }
  2603. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2604. ggml_vec_norm_f32(n, s, x);
  2605. *s = 1.f/(*s);
  2606. }
  2607. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2608. float max = -INFINITY;
  2609. int idx = 0;
  2610. for (int i = 0; i < n; ++i) {
  2611. max = MAX(max, x[i]);
  2612. if (max == x[i]) { idx = i; }
  2613. }
  2614. *s = idx;
  2615. }
  2616. //
  2617. // data types
  2618. //
  2619. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2620. "NONE",
  2621. "DUP",
  2622. "ADD",
  2623. "ADD1",
  2624. "ACC",
  2625. "SUB",
  2626. "MUL",
  2627. "DIV",
  2628. "SQR",
  2629. "SQRT",
  2630. "LOG",
  2631. "SIN",
  2632. "COS",
  2633. "SUM",
  2634. "SUM_ROWS",
  2635. "MEAN",
  2636. "ARGMAX",
  2637. "COUNT_EQUAL",
  2638. "REPEAT",
  2639. "REPEAT_BACK",
  2640. "CONCAT",
  2641. "SILU_BACK",
  2642. "NORM",
  2643. "RMS_NORM",
  2644. "RMS_NORM_BACK",
  2645. "GROUP_NORM",
  2646. "MUL_MAT",
  2647. "MUL_MAT_ID",
  2648. "OUT_PROD",
  2649. "SCALE",
  2650. "SET",
  2651. "CPY",
  2652. "CONT",
  2653. "RESHAPE",
  2654. "VIEW",
  2655. "PERMUTE",
  2656. "TRANSPOSE",
  2657. "GET_ROWS",
  2658. "GET_ROWS_BACK",
  2659. "DIAG",
  2660. "DIAG_MASK_INF",
  2661. "DIAG_MASK_ZERO",
  2662. "SOFT_MAX",
  2663. "SOFT_MAX_BACK",
  2664. "ROPE",
  2665. "ROPE_BACK",
  2666. "CLAMP",
  2667. "CONV_TRANSPOSE_1D",
  2668. "IM2COL",
  2669. "IM2COL_BACK",
  2670. "CONV_TRANSPOSE_2D",
  2671. "POOL_1D",
  2672. "POOL_2D",
  2673. "POOL_2D_BACK",
  2674. "UPSCALE",
  2675. "PAD",
  2676. "ARANGE",
  2677. "TIMESTEP_EMBEDDING",
  2678. "ARGSORT",
  2679. "LEAKY_RELU",
  2680. "FLASH_ATTN_EXT",
  2681. "FLASH_ATTN_BACK",
  2682. "SSM_CONV",
  2683. "SSM_SCAN",
  2684. "WIN_PART",
  2685. "WIN_UNPART",
  2686. "GET_REL_POS",
  2687. "ADD_REL_POS",
  2688. "RWKV_WKV",
  2689. "UNARY",
  2690. "MAP_UNARY",
  2691. "MAP_BINARY",
  2692. "MAP_CUSTOM1_F32",
  2693. "MAP_CUSTOM2_F32",
  2694. "MAP_CUSTOM3_F32",
  2695. "MAP_CUSTOM1",
  2696. "MAP_CUSTOM2",
  2697. "MAP_CUSTOM3",
  2698. "CROSS_ENTROPY_LOSS",
  2699. "CROSS_ENTROPY_LOSS_BACK",
  2700. "OPT_STEP_ADAMW",
  2701. };
  2702. static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
  2703. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2704. "none",
  2705. "x",
  2706. "x+y",
  2707. "x+y",
  2708. "view(x,nb,offset)+=y->x",
  2709. "x-y",
  2710. "x*y",
  2711. "x/y",
  2712. "x^2",
  2713. "√x",
  2714. "log(x)",
  2715. "sin(x)",
  2716. "cos(x)",
  2717. "Σx",
  2718. "Σx_k",
  2719. "Σx/n",
  2720. "argmax(x)",
  2721. "count_equal(x)",
  2722. "repeat(x)",
  2723. "repeat_back(x)",
  2724. "concat(x, y)",
  2725. "silu_back(x)",
  2726. "norm(x)",
  2727. "rms_norm(x)",
  2728. "rms_norm_back(x)",
  2729. "group_norm(x)",
  2730. "X*Y",
  2731. "X[i]*Y",
  2732. "X*Y",
  2733. "x*v",
  2734. "y-\\>view(x)",
  2735. "x-\\>y",
  2736. "cont(x)",
  2737. "reshape(x)",
  2738. "view(x)",
  2739. "permute(x)",
  2740. "transpose(x)",
  2741. "get_rows(x)",
  2742. "get_rows_back(x)",
  2743. "diag(x)",
  2744. "diag_mask_inf(x)",
  2745. "diag_mask_zero(x)",
  2746. "soft_max(x)",
  2747. "soft_max_back(x)",
  2748. "rope(x)",
  2749. "rope_back(x)",
  2750. "clamp(x)",
  2751. "conv_transpose_1d(x)",
  2752. "im2col(x)",
  2753. "im2col_back(x)",
  2754. "conv_transpose_2d(x)",
  2755. "pool_1d(x)",
  2756. "pool_2d(x)",
  2757. "pool_2d_back(x)",
  2758. "upscale(x)",
  2759. "pad(x)",
  2760. "arange(start, stop, step)",
  2761. "timestep_embedding(timesteps, dim, max_period)",
  2762. "argsort(x)",
  2763. "leaky_relu(x)",
  2764. "flash_attn_ext(x)",
  2765. "flash_attn_back(x)",
  2766. "ssm_conv(x)",
  2767. "ssm_scan(x)",
  2768. "win_part(x)",
  2769. "win_unpart(x)",
  2770. "get_rel_pos(x)",
  2771. "add_rel_pos(x)",
  2772. "rwkv_wkv(k, v, r, tf, td, s)",
  2773. "unary(x)",
  2774. "f(x)",
  2775. "f(x,y)",
  2776. "custom_f32(x)",
  2777. "custom_f32(x,y)",
  2778. "custom_f32(x,y,z)",
  2779. "custom(x)",
  2780. "custom(x,y)",
  2781. "custom(x,y,z)",
  2782. "cross_entropy_loss(x,y)",
  2783. "cross_entropy_loss_back(x,y)",
  2784. "adamw(x)",
  2785. };
  2786. static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
  2787. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2788. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2789. "ABS",
  2790. "SGN",
  2791. "NEG",
  2792. "STEP",
  2793. "TANH",
  2794. "ELU",
  2795. "RELU",
  2796. "SIGMOID",
  2797. "GELU",
  2798. "GELU_QUICK",
  2799. "SILU",
  2800. "HARDSWISH",
  2801. "HARDSIGMOID",
  2802. "EXP",
  2803. };
  2804. static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14");
  2805. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2806. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2807. // Helpers for polling loops
  2808. #if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
  2809. static inline void ggml_thread_cpu_relax(void) {
  2810. __asm__ volatile("yield" ::: "memory");
  2811. }
  2812. #elif defined(__x86_64__)
  2813. static inline void ggml_thread_cpu_relax(void) {
  2814. _mm_pause();
  2815. }
  2816. #else
  2817. static inline void ggml_thread_cpu_relax(void) {;}
  2818. #endif
  2819. //
  2820. // NUMA support
  2821. //
  2822. #define GGML_NUMA_MAX_NODES 8
  2823. #define GGML_NUMA_MAX_CPUS 512
  2824. struct ggml_numa_node {
  2825. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2826. uint32_t n_cpus;
  2827. };
  2828. struct ggml_numa_nodes {
  2829. enum ggml_numa_strategy numa_strategy;
  2830. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2831. uint32_t n_nodes;
  2832. uint32_t total_cpus; // hardware threads on system
  2833. uint32_t current_node; // node on which main process is execting
  2834. #if defined(__gnu_linux__)
  2835. cpu_set_t cpuset; // cpuset from numactl
  2836. #else
  2837. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2838. #endif
  2839. };
  2840. //
  2841. // ggml state
  2842. //
  2843. struct ggml_state {
  2844. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2845. struct ggml_numa_nodes numa;
  2846. };
  2847. // global state
  2848. static struct ggml_state g_state;
  2849. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2850. // critical section via spin lock
  2851. inline static void ggml_critical_section_start(void) {
  2852. while (atomic_flag_test_and_set(&g_state_critical)) {
  2853. // spin
  2854. sched_yield();
  2855. }
  2856. }
  2857. static void ggml_barrier(struct ggml_threadpool * tp) {
  2858. int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
  2859. if (n_threads == 1) {
  2860. return;
  2861. }
  2862. #ifdef GGML_USE_OPENMP
  2863. #pragma omp barrier
  2864. #else
  2865. int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
  2866. // enter barrier (full seq-cst fence)
  2867. int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
  2868. if (n_barrier == (n_threads - 1)) {
  2869. // last thread
  2870. atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
  2871. // exit barrier (fill seq-cst fence)
  2872. atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
  2873. return;
  2874. }
  2875. // wait for other threads
  2876. while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
  2877. ggml_thread_cpu_relax();
  2878. }
  2879. // exit barrier (full seq-cst fence)
  2880. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  2881. #ifdef GGML_TSAN_ENABLED
  2882. atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
  2883. #else
  2884. atomic_thread_fence(memory_order_seq_cst);
  2885. #endif
  2886. #endif
  2887. }
  2888. // TODO: make this somehow automatically executed
  2889. // some sort of "sentry" mechanism
  2890. inline static void ggml_critical_section_end(void) {
  2891. atomic_flag_clear(&g_state_critical);
  2892. }
  2893. #if defined(__gnu_linux__)
  2894. static cpu_set_t ggml_get_numa_affinity(void) {
  2895. cpu_set_t cpuset;
  2896. pthread_t thread;
  2897. thread = pthread_self();
  2898. CPU_ZERO(&cpuset);
  2899. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2900. return cpuset;
  2901. }
  2902. #else
  2903. static uint32_t ggml_get_numa_affinity(void) {
  2904. return 0; // no NUMA support
  2905. }
  2906. #endif
  2907. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2908. if (g_state.numa.n_nodes > 0) {
  2909. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2910. return;
  2911. }
  2912. #if defined(__gnu_linux__)
  2913. struct stat st;
  2914. char path[256];
  2915. int rv;
  2916. // set numa scheme
  2917. g_state.numa.numa_strategy = numa_flag;
  2918. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2919. g_state.numa.cpuset = ggml_get_numa_affinity();
  2920. // enumerate nodes
  2921. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2922. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2923. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2924. if (stat(path, &st) != 0) { break; }
  2925. ++g_state.numa.n_nodes;
  2926. }
  2927. // enumerate CPUs
  2928. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2929. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2930. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2931. if (stat(path, &st) != 0) { break; }
  2932. ++g_state.numa.total_cpus;
  2933. }
  2934. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2935. // figure out which node we're on
  2936. uint current_cpu;
  2937. int getcpu_ret = 0;
  2938. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2939. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2940. #else
  2941. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2942. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2943. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2944. # endif
  2945. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2946. #endif
  2947. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2948. g_state.numa.n_nodes = 0;
  2949. return;
  2950. }
  2951. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2952. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2953. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2954. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2955. node->n_cpus = 0;
  2956. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2957. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2958. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2959. if (stat(path, &st) == 0) {
  2960. node->cpus[node->n_cpus++] = c;
  2961. GGML_PRINT_DEBUG(" %u", c);
  2962. }
  2963. }
  2964. GGML_PRINT_DEBUG("\n");
  2965. }
  2966. if (ggml_is_numa()) {
  2967. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2968. if (fptr != NULL) {
  2969. char buf[42];
  2970. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2971. GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2972. }
  2973. fclose(fptr);
  2974. }
  2975. }
  2976. #else
  2977. UNUSED(numa_flag);
  2978. // TODO
  2979. #endif
  2980. }
  2981. bool ggml_is_numa(void) {
  2982. return g_state.numa.n_nodes > 1;
  2983. }
  2984. ////////////////////////////////////////////////////////////////////////////////
  2985. void ggml_print_object(const struct ggml_object * obj) {
  2986. GGML_LOG_INFO(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2987. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2988. }
  2989. void ggml_print_objects(const struct ggml_context * ctx) {
  2990. struct ggml_object * obj = ctx->objects_begin;
  2991. GGML_LOG_INFO("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2992. while (obj != NULL) {
  2993. ggml_print_object(obj);
  2994. obj = obj->next;
  2995. }
  2996. GGML_LOG_INFO("%s: --- end ---\n", __func__);
  2997. }
  2998. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2999. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3000. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3001. }
  3002. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3003. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3004. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3005. }
  3006. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3007. size_t nbytes;
  3008. size_t blck_size = ggml_blck_size(tensor->type);
  3009. if (blck_size == 1) {
  3010. nbytes = ggml_type_size(tensor->type);
  3011. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3012. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3013. }
  3014. }
  3015. else {
  3016. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  3017. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3018. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3019. }
  3020. }
  3021. return nbytes;
  3022. }
  3023. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3024. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3025. }
  3026. int64_t ggml_blck_size(enum ggml_type type) {
  3027. return type_traits[type].blck_size;
  3028. }
  3029. size_t ggml_type_size(enum ggml_type type) {
  3030. return type_traits[type].type_size;
  3031. }
  3032. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  3033. assert(ne % ggml_blck_size(type) == 0);
  3034. return ggml_type_size(type)*ne/ggml_blck_size(type);
  3035. }
  3036. double ggml_type_sizef(enum ggml_type type) {
  3037. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  3038. }
  3039. const char * ggml_type_name(enum ggml_type type) {
  3040. return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
  3041. }
  3042. bool ggml_is_quantized(enum ggml_type type) {
  3043. return type_traits[type].is_quantized;
  3044. }
  3045. const char * ggml_op_name(enum ggml_op op) {
  3046. return GGML_OP_NAME[op];
  3047. }
  3048. const char * ggml_op_symbol(enum ggml_op op) {
  3049. return GGML_OP_SYMBOL[op];
  3050. }
  3051. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  3052. return GGML_UNARY_OP_NAME[op];
  3053. }
  3054. const char * ggml_op_desc(const struct ggml_tensor * t) {
  3055. if (t->op == GGML_OP_UNARY) {
  3056. enum ggml_unary_op uop = ggml_get_unary_op(t);
  3057. return ggml_unary_op_name(uop);
  3058. }
  3059. return ggml_op_name(t->op);
  3060. }
  3061. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3062. return ggml_type_size(tensor->type);
  3063. }
  3064. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3065. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3066. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3067. }
  3068. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3069. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3070. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3071. }
  3072. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3073. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3074. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3075. }
  3076. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  3077. return tensor->ne[3] == 1;
  3078. }
  3079. int ggml_n_dims(const struct ggml_tensor * tensor) {
  3080. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  3081. if (tensor->ne[i] > 1) {
  3082. return i + 1;
  3083. }
  3084. }
  3085. return 1;
  3086. }
  3087. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3088. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3089. return (t0->ne[0] == t1->ne[0]) &&
  3090. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3091. (t1->ne[3]%t0->ne[3] == 0);
  3092. }
  3093. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3094. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3095. return (t0->ne[1] == t1->ne[1]) &&
  3096. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3097. (t1->ne[3]%t0->ne[3] == 0);
  3098. }
  3099. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3100. enum ggml_type wtype = GGML_TYPE_COUNT;
  3101. switch (ftype) {
  3102. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3103. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3104. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  3105. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3106. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3107. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3108. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3109. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3110. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3111. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3112. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3113. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3114. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3115. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  3116. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  3117. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  3118. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  3119. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  3120. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  3121. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  3122. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  3123. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  3124. case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
  3125. case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
  3126. case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
  3127. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3128. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3129. }
  3130. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3131. return wtype;
  3132. }
  3133. size_t ggml_tensor_overhead(void) {
  3134. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3135. }
  3136. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3137. return tensor->nb[0] > tensor->nb[1];
  3138. }
  3139. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  3140. size_t next_nb = ggml_type_size(tensor->type);
  3141. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  3142. return false;
  3143. }
  3144. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  3145. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  3146. if (tensor->ne[i] != 1) {
  3147. if (i > n) {
  3148. if (tensor->nb[i] != next_nb) {
  3149. return false;
  3150. }
  3151. next_nb *= tensor->ne[i];
  3152. } else {
  3153. // this dimension does not need to be contiguous
  3154. next_nb = tensor->ne[i]*tensor->nb[i];
  3155. }
  3156. }
  3157. }
  3158. return true;
  3159. }
  3160. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3161. return ggml_is_contiguous_0(tensor);
  3162. }
  3163. bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  3164. return ggml_is_contiguous_n(tensor, 0);
  3165. }
  3166. bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  3167. return ggml_is_contiguous_n(tensor, 1);
  3168. }
  3169. bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  3170. return ggml_is_contiguous_n(tensor, 2);
  3171. }
  3172. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3173. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3174. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3175. }
  3176. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3177. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3178. return
  3179. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3180. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3181. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3182. }
  3183. bool ggml_is_empty(const struct ggml_tensor * tensor) {
  3184. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3185. if (tensor->ne[i] == 0) {
  3186. // empty if any dimension has no elements
  3187. return true;
  3188. }
  3189. }
  3190. return false;
  3191. }
  3192. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3193. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3194. return
  3195. (t0->ne[0] == t1->ne[0]) &&
  3196. (t0->ne[1] == t1->ne[1]) &&
  3197. (t0->ne[2] == t1->ne[2]) &&
  3198. (t0->ne[3] == t1->ne[3]);
  3199. }
  3200. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3201. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3202. return
  3203. (t0->nb[0] == t1->nb[0]) &&
  3204. (t0->nb[1] == t1->nb[1]) &&
  3205. (t0->nb[2] == t1->nb[2]) &&
  3206. (t0->nb[3] == t1->nb[3]);
  3207. }
  3208. // check if t1 can be represented as a repeatition of t0
  3209. bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3210. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3211. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  3212. (t1->ne[0]%t0->ne[0] == 0) &&
  3213. (t1->ne[1]%t0->ne[1] == 0) &&
  3214. (t1->ne[2]%t0->ne[2] == 0) &&
  3215. (t1->ne[3]%t0->ne[3] == 0);
  3216. }
  3217. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3218. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3219. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3220. }
  3221. static inline int ggml_up32(int n) {
  3222. return (n + 31) & ~31;
  3223. }
  3224. //static inline int ggml_up64(int n) {
  3225. // return (n + 63) & ~63;
  3226. //}
  3227. static inline int ggml_up(int n, int m) {
  3228. // assert m is a power of 2
  3229. GGML_ASSERT((m & (m - 1)) == 0);
  3230. return (n + m - 1) & ~(m - 1);
  3231. }
  3232. // assert that pointer is aligned to GGML_MEM_ALIGN
  3233. #define GGML_ASSERT_ALIGNED(ptr) \
  3234. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3235. ////////////////////////////////////////////////////////////////////////////////
  3236. #if defined(__ARM_ARCH)
  3237. #if defined(__linux__) && defined(__aarch64__)
  3238. #include <sys/auxv.h>
  3239. #elif defined(__APPLE__)
  3240. #include <sys/sysctl.h>
  3241. #endif
  3242. #if !defined(HWCAP2_I8MM)
  3243. #define HWCAP2_I8MM 0
  3244. #endif
  3245. static void ggml_init_arm_arch_features(void) {
  3246. #if defined(__linux__) && defined(__aarch64__)
  3247. uint32_t hwcap = getauxval(AT_HWCAP);
  3248. uint32_t hwcap2 = getauxval(AT_HWCAP2);
  3249. ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
  3250. ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
  3251. ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
  3252. #if defined(__ARM_FEATURE_SVE)
  3253. ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
  3254. #endif
  3255. #elif defined(__APPLE__)
  3256. int oldp = 0;
  3257. size_t size = sizeof(oldp);
  3258. if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
  3259. oldp = 0;
  3260. }
  3261. ggml_arm_arch_features.has_neon = oldp;
  3262. if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
  3263. oldp = 0;
  3264. }
  3265. ggml_arm_arch_features.has_i8mm = oldp;
  3266. ggml_arm_arch_features.has_sve = 0;
  3267. ggml_arm_arch_features.sve_cnt = 0;
  3268. #else
  3269. // Run-time CPU feature detection not implemented for this platform, fallback to compile time
  3270. #if defined(__ARM_NEON)
  3271. ggml_arm_arch_features.has_neon = 1;
  3272. #else
  3273. ggml_arm_arch_features.has_neon = 0;
  3274. #endif
  3275. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3276. ggml_arm_arch_features.has_i8mm = 1;
  3277. #else
  3278. ggml_arm_arch_features.has_i8mm = 0;
  3279. #endif
  3280. #if defined(__ARM_FEATURE_SVE)
  3281. ggml_arm_arch_features.has_sve = 1;
  3282. ggml_arm_arch_features.sve_cnt = 16;
  3283. #else
  3284. ggml_arm_arch_features.has_sve = 0;
  3285. ggml_arm_arch_features.sve_cnt = 0;
  3286. #endif
  3287. #endif
  3288. }
  3289. #endif
  3290. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3291. // make this function thread safe
  3292. ggml_critical_section_start();
  3293. static bool is_first_call = true;
  3294. if (is_first_call) {
  3295. // initialize time system (required on Windows)
  3296. ggml_time_init();
  3297. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3298. {
  3299. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3300. for (int i = 0; i < (1 << 16); ++i) {
  3301. union {
  3302. uint16_t u16;
  3303. ggml_fp16_t fp16;
  3304. } u = {i};
  3305. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  3306. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3307. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3308. }
  3309. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3310. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3311. }
  3312. // initialize g_state
  3313. {
  3314. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3315. g_state = (struct ggml_state) {
  3316. /*.contexts =*/ { { 0 } },
  3317. /*.numa =*/ {
  3318. .n_nodes = 0,
  3319. .total_cpus = 0,
  3320. },
  3321. };
  3322. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3323. g_state.contexts[i].used = false;
  3324. }
  3325. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3326. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3327. }
  3328. #if defined(__ARM_ARCH)
  3329. ggml_init_arm_arch_features();
  3330. #endif
  3331. is_first_call = false;
  3332. }
  3333. // find non-used context in g_state
  3334. struct ggml_context * ctx = NULL;
  3335. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3336. if (!g_state.contexts[i].used) {
  3337. g_state.contexts[i].used = true;
  3338. ctx = &g_state.contexts[i].context;
  3339. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3340. break;
  3341. }
  3342. }
  3343. if (ctx == NULL) {
  3344. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3345. ggml_critical_section_end();
  3346. return NULL;
  3347. }
  3348. // allow to call ggml_init with 0 size
  3349. if (params.mem_size == 0) {
  3350. params.mem_size = GGML_MEM_ALIGN;
  3351. }
  3352. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3353. *ctx = (struct ggml_context) {
  3354. /*.mem_size =*/ mem_size,
  3355. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : ggml_aligned_malloc(mem_size),
  3356. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3357. /*.no_alloc =*/ params.no_alloc,
  3358. /*.no_alloc_save =*/ params.no_alloc,
  3359. /*.n_objects =*/ 0,
  3360. /*.objects_begin =*/ NULL,
  3361. /*.objects_end =*/ NULL,
  3362. /*.scratch =*/ { 0, 0, NULL, },
  3363. /*.scratch_save =*/ { 0, 0, NULL, },
  3364. };
  3365. GGML_ASSERT(ctx->mem_buffer != NULL);
  3366. GGML_ASSERT_ALIGNED(ctx->mem_buffer);
  3367. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3368. ggml_critical_section_end();
  3369. return ctx;
  3370. }
  3371. void ggml_free(struct ggml_context * ctx) {
  3372. if (ctx == NULL) {
  3373. return;
  3374. }
  3375. // make this function thread safe
  3376. ggml_critical_section_start();
  3377. bool found = false;
  3378. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3379. if (&g_state.contexts[i].context == ctx) {
  3380. g_state.contexts[i].used = false;
  3381. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3382. __func__, i, ggml_used_mem(ctx));
  3383. if (ctx->mem_buffer_owned) {
  3384. ggml_aligned_free(ctx->mem_buffer, ctx->mem_size);
  3385. }
  3386. found = true;
  3387. break;
  3388. }
  3389. }
  3390. if (!found) {
  3391. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3392. }
  3393. ggml_critical_section_end();
  3394. }
  3395. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3396. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3397. }
  3398. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3399. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3400. ctx->scratch = scratch;
  3401. return result;
  3402. }
  3403. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3404. return ctx->no_alloc;
  3405. }
  3406. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3407. ctx->no_alloc = no_alloc;
  3408. }
  3409. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3410. return ctx->mem_buffer;
  3411. }
  3412. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3413. return ctx->mem_size;
  3414. }
  3415. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3416. size_t max_size = 0;
  3417. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3418. size_t bytes = ggml_nbytes(tensor);
  3419. max_size = MAX(max_size, bytes);
  3420. }
  3421. return max_size;
  3422. }
  3423. // IMPORTANT:
  3424. // when creating "opt" tensors, always save and load the scratch buffer
  3425. // this is an error prone process, but it is necessary to support inplace
  3426. // operators when using scratch buffers
  3427. // TODO: implement a better way
  3428. static void ggml_scratch_save(struct ggml_context * ctx) {
  3429. // this is needed to allow opt tensors to store their data
  3430. // TODO: again, need to find a better way
  3431. ctx->no_alloc_save = ctx->no_alloc;
  3432. ctx->no_alloc = false;
  3433. ctx->scratch_save = ctx->scratch;
  3434. ctx->scratch.data = NULL;
  3435. }
  3436. static void ggml_scratch_load(struct ggml_context * ctx) {
  3437. ctx->no_alloc = ctx->no_alloc_save;
  3438. ctx->scratch = ctx->scratch_save;
  3439. }
  3440. ////////////////////////////////////////////////////////////////////////////////
  3441. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3442. // always insert objects at the end of the context's memory pool
  3443. struct ggml_object * obj_cur = ctx->objects_end;
  3444. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3445. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3446. const size_t cur_end = cur_offs + cur_size;
  3447. // align to GGML_MEM_ALIGN
  3448. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3449. char * const mem_buffer = ctx->mem_buffer;
  3450. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3451. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3452. GGML_LOG_WARN("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3453. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3454. assert(false);
  3455. return NULL;
  3456. }
  3457. *obj_new = (struct ggml_object) {
  3458. .offs = cur_end + GGML_OBJECT_SIZE,
  3459. .size = size_needed,
  3460. .next = NULL,
  3461. .type = type,
  3462. };
  3463. GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
  3464. if (obj_cur != NULL) {
  3465. obj_cur->next = obj_new;
  3466. } else {
  3467. // this is the first object in this context
  3468. ctx->objects_begin = obj_new;
  3469. }
  3470. ctx->objects_end = obj_new;
  3471. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3472. return obj_new;
  3473. }
  3474. static struct ggml_tensor * ggml_new_tensor_impl(
  3475. struct ggml_context * ctx,
  3476. enum ggml_type type,
  3477. int n_dims,
  3478. const int64_t * ne,
  3479. struct ggml_tensor * view_src,
  3480. size_t view_offs) {
  3481. GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT);
  3482. GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3483. // find the base tensor and absolute offset
  3484. if (view_src != NULL && view_src->view_src != NULL) {
  3485. view_offs += view_src->view_offs;
  3486. view_src = view_src->view_src;
  3487. }
  3488. size_t data_size = ggml_row_size(type, ne[0]);
  3489. for (int i = 1; i < n_dims; i++) {
  3490. data_size *= ne[i];
  3491. }
  3492. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3493. void * data = view_src != NULL ? view_src->data : NULL;
  3494. if (data != NULL) {
  3495. data = (char *) data + view_offs;
  3496. }
  3497. size_t obj_alloc_size = 0;
  3498. if (view_src == NULL && !ctx->no_alloc) {
  3499. if (ctx->scratch.data != NULL) {
  3500. // allocate tensor data in the scratch buffer
  3501. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3502. GGML_LOG_WARN("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3503. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3504. assert(false);
  3505. return NULL;
  3506. }
  3507. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3508. ctx->scratch.offs += data_size;
  3509. } else {
  3510. // allocate tensor data in the context's memory pool
  3511. obj_alloc_size = data_size;
  3512. }
  3513. }
  3514. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3515. GGML_ASSERT(obj_new);
  3516. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3517. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3518. #ifdef __clang__
  3519. // temporary until ggml_tensor::backend is removed
  3520. #pragma clang diagnostic push
  3521. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3522. #endif
  3523. *result = (struct ggml_tensor) {
  3524. /*.type =*/ type,
  3525. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3526. /*.buffer =*/ NULL,
  3527. /*.ne =*/ { 1, 1, 1, 1 },
  3528. /*.nb =*/ { 0, 0, 0, 0 },
  3529. /*.op =*/ GGML_OP_NONE,
  3530. /*.op_params =*/ { 0 },
  3531. /*.flags =*/ 0,
  3532. /*.grad =*/ NULL,
  3533. /*.src =*/ { NULL },
  3534. /*.view_src =*/ view_src,
  3535. /*.view_offs =*/ view_offs,
  3536. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3537. /*.name =*/ { 0 },
  3538. /*.extra =*/ NULL,
  3539. ///*.padding =*/ { 0 },
  3540. };
  3541. #ifdef __clang__
  3542. #pragma clang diagnostic pop
  3543. #endif
  3544. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3545. //GGML_ASSERT_ALIGNED(result->data);
  3546. for (int i = 0; i < n_dims; i++) {
  3547. result->ne[i] = ne[i];
  3548. }
  3549. result->nb[0] = ggml_type_size(type);
  3550. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3551. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3552. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3553. }
  3554. ctx->n_objects++;
  3555. return result;
  3556. }
  3557. struct ggml_tensor * ggml_new_tensor(
  3558. struct ggml_context * ctx,
  3559. enum ggml_type type,
  3560. int n_dims,
  3561. const int64_t * ne) {
  3562. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3563. }
  3564. struct ggml_tensor * ggml_new_tensor_1d(
  3565. struct ggml_context * ctx,
  3566. enum ggml_type type,
  3567. int64_t ne0) {
  3568. return ggml_new_tensor(ctx, type, 1, &ne0);
  3569. }
  3570. struct ggml_tensor * ggml_new_tensor_2d(
  3571. struct ggml_context * ctx,
  3572. enum ggml_type type,
  3573. int64_t ne0,
  3574. int64_t ne1) {
  3575. const int64_t ne[2] = { ne0, ne1 };
  3576. return ggml_new_tensor(ctx, type, 2, ne);
  3577. }
  3578. struct ggml_tensor * ggml_new_tensor_3d(
  3579. struct ggml_context * ctx,
  3580. enum ggml_type type,
  3581. int64_t ne0,
  3582. int64_t ne1,
  3583. int64_t ne2) {
  3584. const int64_t ne[3] = { ne0, ne1, ne2 };
  3585. return ggml_new_tensor(ctx, type, 3, ne);
  3586. }
  3587. struct ggml_tensor * ggml_new_tensor_4d(
  3588. struct ggml_context * ctx,
  3589. enum ggml_type type,
  3590. int64_t ne0,
  3591. int64_t ne1,
  3592. int64_t ne2,
  3593. int64_t ne3) {
  3594. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3595. return ggml_new_tensor(ctx, type, 4, ne);
  3596. }
  3597. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3598. ggml_scratch_save(ctx);
  3599. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3600. ggml_scratch_load(ctx);
  3601. ggml_set_i32(result, value);
  3602. return result;
  3603. }
  3604. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3605. ggml_scratch_save(ctx);
  3606. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3607. ggml_scratch_load(ctx);
  3608. ggml_set_f32(result, value);
  3609. return result;
  3610. }
  3611. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3612. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3613. }
  3614. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3615. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3616. assert(params_size <= GGML_MAX_OP_PARAMS);
  3617. memcpy(tensor->op_params, params, params_size);
  3618. }
  3619. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3620. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3621. return ((const int32_t *)(tensor->op_params))[i];
  3622. }
  3623. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3624. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3625. return ((const float *)(tensor->op_params))[i];
  3626. }
  3627. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3628. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3629. ((int32_t *)(tensor->op_params))[i] = value;
  3630. }
  3631. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3632. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3633. ((float *)(tensor->op_params))[i] = value;
  3634. }
  3635. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3636. if (ggml_is_empty(tensor)) {
  3637. return tensor;
  3638. }
  3639. if (tensor->buffer) {
  3640. ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor));
  3641. } else {
  3642. GGML_ASSERT(tensor->data);
  3643. memset(tensor->data, 0, ggml_nbytes(tensor));
  3644. }
  3645. return tensor;
  3646. }
  3647. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3648. const int n = ggml_nrows(tensor);
  3649. const int nc = tensor->ne[0];
  3650. const size_t n1 = tensor->nb[1];
  3651. char * const data = tensor->data;
  3652. switch (tensor->type) {
  3653. case GGML_TYPE_I8:
  3654. {
  3655. assert(tensor->nb[0] == sizeof(int8_t));
  3656. for (int i = 0; i < n; i++) {
  3657. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3658. }
  3659. } break;
  3660. case GGML_TYPE_I16:
  3661. {
  3662. assert(tensor->nb[0] == sizeof(int16_t));
  3663. for (int i = 0; i < n; i++) {
  3664. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3665. }
  3666. } break;
  3667. case GGML_TYPE_I32:
  3668. {
  3669. assert(tensor->nb[0] == sizeof(int32_t));
  3670. for (int i = 0; i < n; i++) {
  3671. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3672. }
  3673. } break;
  3674. case GGML_TYPE_F16:
  3675. {
  3676. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3677. for (int i = 0; i < n; i++) {
  3678. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3679. }
  3680. } break;
  3681. case GGML_TYPE_BF16:
  3682. {
  3683. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3684. for (int i = 0; i < n; i++) {
  3685. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3686. }
  3687. } break;
  3688. case GGML_TYPE_F32:
  3689. {
  3690. assert(tensor->nb[0] == sizeof(float));
  3691. for (int i = 0; i < n; i++) {
  3692. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3693. }
  3694. } break;
  3695. default:
  3696. {
  3697. GGML_ABORT("fatal error");
  3698. }
  3699. }
  3700. return tensor;
  3701. }
  3702. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3703. const int n = ggml_nrows(tensor);
  3704. const int nc = tensor->ne[0];
  3705. const size_t n1 = tensor->nb[1];
  3706. char * const data = tensor->data;
  3707. switch (tensor->type) {
  3708. case GGML_TYPE_I8:
  3709. {
  3710. assert(tensor->nb[0] == sizeof(int8_t));
  3711. for (int i = 0; i < n; i++) {
  3712. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3713. }
  3714. } break;
  3715. case GGML_TYPE_I16:
  3716. {
  3717. assert(tensor->nb[0] == sizeof(int16_t));
  3718. for (int i = 0; i < n; i++) {
  3719. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3720. }
  3721. } break;
  3722. case GGML_TYPE_I32:
  3723. {
  3724. assert(tensor->nb[0] == sizeof(int32_t));
  3725. for (int i = 0; i < n; i++) {
  3726. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3727. }
  3728. } break;
  3729. case GGML_TYPE_F16:
  3730. {
  3731. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3732. for (int i = 0; i < n; i++) {
  3733. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3734. }
  3735. } break;
  3736. case GGML_TYPE_BF16:
  3737. {
  3738. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3739. for (int i = 0; i < n; i++) {
  3740. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3741. }
  3742. } break;
  3743. case GGML_TYPE_F32:
  3744. {
  3745. assert(tensor->nb[0] == sizeof(float));
  3746. for (int i = 0; i < n; i++) {
  3747. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3748. }
  3749. } break;
  3750. default:
  3751. {
  3752. GGML_ABORT("fatal error");
  3753. }
  3754. }
  3755. return tensor;
  3756. }
  3757. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3758. const int64_t ne2 = tensor->ne[2];
  3759. const int64_t ne1 = tensor->ne[1];
  3760. const int64_t ne0 = tensor->ne[0];
  3761. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3762. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3763. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3764. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3765. if (i0) {
  3766. * i0 = i0_;
  3767. }
  3768. if (i1) {
  3769. * i1 = i1_;
  3770. }
  3771. if (i2) {
  3772. * i2 = i2_;
  3773. }
  3774. if (i3) {
  3775. * i3 = i3_;
  3776. }
  3777. }
  3778. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3779. if (!ggml_is_contiguous(tensor)) {
  3780. int64_t id[4] = { 0, 0, 0, 0 };
  3781. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3782. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3783. }
  3784. switch (tensor->type) {
  3785. case GGML_TYPE_I8:
  3786. {
  3787. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3788. return ((int8_t *)(tensor->data))[i];
  3789. }
  3790. case GGML_TYPE_I16:
  3791. {
  3792. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3793. return ((int16_t *)(tensor->data))[i];
  3794. }
  3795. case GGML_TYPE_I32:
  3796. {
  3797. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3798. return ((int32_t *)(tensor->data))[i];
  3799. }
  3800. case GGML_TYPE_F16:
  3801. {
  3802. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3803. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3804. }
  3805. case GGML_TYPE_BF16:
  3806. {
  3807. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3808. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3809. }
  3810. case GGML_TYPE_F32:
  3811. {
  3812. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3813. return ((float *)(tensor->data))[i];
  3814. }
  3815. default:
  3816. {
  3817. GGML_ABORT("fatal error");
  3818. }
  3819. }
  3820. }
  3821. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3822. if (!ggml_is_contiguous(tensor)) {
  3823. int64_t id[4] = { 0, 0, 0, 0 };
  3824. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3825. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3826. return;
  3827. }
  3828. switch (tensor->type) {
  3829. case GGML_TYPE_I8:
  3830. {
  3831. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3832. ((int8_t *)(tensor->data))[i] = value;
  3833. } break;
  3834. case GGML_TYPE_I16:
  3835. {
  3836. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3837. ((int16_t *)(tensor->data))[i] = value;
  3838. } break;
  3839. case GGML_TYPE_I32:
  3840. {
  3841. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3842. ((int32_t *)(tensor->data))[i] = value;
  3843. } break;
  3844. case GGML_TYPE_F16:
  3845. {
  3846. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3847. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3848. } break;
  3849. case GGML_TYPE_BF16:
  3850. {
  3851. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3852. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3853. } break;
  3854. case GGML_TYPE_F32:
  3855. {
  3856. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3857. ((float *)(tensor->data))[i] = value;
  3858. } break;
  3859. default:
  3860. {
  3861. GGML_ABORT("fatal error");
  3862. }
  3863. }
  3864. }
  3865. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3866. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3867. switch (tensor->type) {
  3868. case GGML_TYPE_I8:
  3869. return ((int8_t *) data)[0];
  3870. case GGML_TYPE_I16:
  3871. return ((int16_t *) data)[0];
  3872. case GGML_TYPE_I32:
  3873. return ((int32_t *) data)[0];
  3874. case GGML_TYPE_F16:
  3875. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3876. case GGML_TYPE_BF16:
  3877. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3878. case GGML_TYPE_F32:
  3879. return ((float *) data)[0];
  3880. default:
  3881. GGML_ABORT("fatal error");
  3882. }
  3883. }
  3884. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3885. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3886. switch (tensor->type) {
  3887. case GGML_TYPE_I8:
  3888. {
  3889. ((int8_t *)(data))[0] = value;
  3890. } break;
  3891. case GGML_TYPE_I16:
  3892. {
  3893. ((int16_t *)(data))[0] = value;
  3894. } break;
  3895. case GGML_TYPE_I32:
  3896. {
  3897. ((int32_t *)(data))[0] = value;
  3898. } break;
  3899. case GGML_TYPE_F16:
  3900. {
  3901. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3902. } break;
  3903. case GGML_TYPE_BF16:
  3904. {
  3905. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3906. } break;
  3907. case GGML_TYPE_F32:
  3908. {
  3909. ((float *)(data))[0] = value;
  3910. } break;
  3911. default:
  3912. {
  3913. GGML_ABORT("fatal error");
  3914. }
  3915. }
  3916. }
  3917. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3918. if (!ggml_is_contiguous(tensor)) {
  3919. int64_t id[4] = { 0, 0, 0, 0 };
  3920. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3921. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3922. }
  3923. switch (tensor->type) {
  3924. case GGML_TYPE_I8:
  3925. {
  3926. return ((int8_t *)(tensor->data))[i];
  3927. }
  3928. case GGML_TYPE_I16:
  3929. {
  3930. return ((int16_t *)(tensor->data))[i];
  3931. }
  3932. case GGML_TYPE_I32:
  3933. {
  3934. return ((int32_t *)(tensor->data))[i];
  3935. }
  3936. case GGML_TYPE_F16:
  3937. {
  3938. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3939. }
  3940. case GGML_TYPE_BF16:
  3941. {
  3942. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3943. }
  3944. case GGML_TYPE_F32:
  3945. {
  3946. return ((float *)(tensor->data))[i];
  3947. }
  3948. default:
  3949. {
  3950. GGML_ABORT("fatal error");
  3951. }
  3952. }
  3953. }
  3954. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3955. if (!ggml_is_contiguous(tensor)) {
  3956. int64_t id[4] = { 0, 0, 0, 0 };
  3957. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3958. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3959. return;
  3960. }
  3961. switch (tensor->type) {
  3962. case GGML_TYPE_I8:
  3963. {
  3964. ((int8_t *)(tensor->data))[i] = value;
  3965. } break;
  3966. case GGML_TYPE_I16:
  3967. {
  3968. ((int16_t *)(tensor->data))[i] = value;
  3969. } break;
  3970. case GGML_TYPE_I32:
  3971. {
  3972. ((int32_t *)(tensor->data))[i] = value;
  3973. } break;
  3974. case GGML_TYPE_F16:
  3975. {
  3976. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3977. } break;
  3978. case GGML_TYPE_BF16:
  3979. {
  3980. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3981. } break;
  3982. case GGML_TYPE_F32:
  3983. {
  3984. ((float *)(tensor->data))[i] = value;
  3985. } break;
  3986. default:
  3987. {
  3988. GGML_ABORT("fatal error");
  3989. }
  3990. }
  3991. }
  3992. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3993. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3994. switch (tensor->type) {
  3995. case GGML_TYPE_I8:
  3996. return ((int8_t *) data)[0];
  3997. case GGML_TYPE_I16:
  3998. return ((int16_t *) data)[0];
  3999. case GGML_TYPE_I32:
  4000. return ((int32_t *) data)[0];
  4001. case GGML_TYPE_F16:
  4002. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  4003. case GGML_TYPE_BF16:
  4004. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  4005. case GGML_TYPE_F32:
  4006. return ((float *) data)[0];
  4007. default:
  4008. GGML_ABORT("fatal error");
  4009. }
  4010. }
  4011. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  4012. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4013. switch (tensor->type) {
  4014. case GGML_TYPE_I8:
  4015. {
  4016. ((int8_t *)(data))[0] = value;
  4017. } break;
  4018. case GGML_TYPE_I16:
  4019. {
  4020. ((int16_t *)(data))[0] = value;
  4021. } break;
  4022. case GGML_TYPE_I32:
  4023. {
  4024. ((int32_t *)(data))[0] = value;
  4025. } break;
  4026. case GGML_TYPE_F16:
  4027. {
  4028. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  4029. } break;
  4030. case GGML_TYPE_BF16:
  4031. {
  4032. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  4033. } break;
  4034. case GGML_TYPE_F32:
  4035. {
  4036. ((float *)(data))[0] = value;
  4037. } break;
  4038. default:
  4039. {
  4040. GGML_ABORT("fatal error");
  4041. }
  4042. }
  4043. }
  4044. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4045. return tensor->data;
  4046. }
  4047. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4048. assert(tensor->type == GGML_TYPE_F32);
  4049. return (float *)(tensor->data);
  4050. }
  4051. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4052. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4053. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4054. }
  4055. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4056. return tensor->name;
  4057. }
  4058. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4059. size_t i;
  4060. for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
  4061. tensor->name[i] = name[i];
  4062. }
  4063. tensor->name[i] = '\0';
  4064. return tensor;
  4065. }
  4066. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4067. va_list args;
  4068. va_start(args, fmt);
  4069. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4070. va_end(args);
  4071. return tensor;
  4072. }
  4073. struct ggml_tensor * ggml_view_tensor(
  4074. struct ggml_context * ctx,
  4075. struct ggml_tensor * src) {
  4076. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  4077. ggml_format_name(result, "%s (view)", src->name);
  4078. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4079. result->nb[i] = src->nb[i];
  4080. }
  4081. return result;
  4082. }
  4083. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  4084. struct ggml_object * obj = ctx->objects_begin;
  4085. char * const mem_buffer = ctx->mem_buffer;
  4086. while (obj != NULL) {
  4087. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  4088. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  4089. }
  4090. obj = obj->next;
  4091. }
  4092. return NULL;
  4093. }
  4094. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  4095. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  4096. obj = obj->next;
  4097. char * const mem_buffer = ctx->mem_buffer;
  4098. while (obj != NULL) {
  4099. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  4100. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  4101. }
  4102. obj = obj->next;
  4103. }
  4104. return NULL;
  4105. }
  4106. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4107. struct ggml_object * obj = ctx->objects_begin;
  4108. char * const mem_buffer = ctx->mem_buffer;
  4109. while (obj != NULL) {
  4110. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  4111. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4112. if (strcmp(cur->name, name) == 0) {
  4113. return cur;
  4114. }
  4115. }
  4116. obj = obj->next;
  4117. }
  4118. return NULL;
  4119. }
  4120. ////////////////////////////////////////////////////////////////////////////////
  4121. // ggml_dup
  4122. static struct ggml_tensor * ggml_dup_impl(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a,
  4125. bool inplace) {
  4126. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4127. result->op = GGML_OP_DUP;
  4128. result->src[0] = a;
  4129. return result;
  4130. }
  4131. struct ggml_tensor * ggml_dup(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a) {
  4134. return ggml_dup_impl(ctx, a, false);
  4135. }
  4136. struct ggml_tensor * ggml_dup_inplace(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a) {
  4139. return ggml_dup_impl(ctx, a, true);
  4140. }
  4141. // ggml_add
  4142. static struct ggml_tensor * ggml_add_impl(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a,
  4145. struct ggml_tensor * b,
  4146. bool inplace) {
  4147. GGML_ASSERT(ggml_can_repeat(b, a));
  4148. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4149. result->op = GGML_OP_ADD;
  4150. result->src[0] = a;
  4151. result->src[1] = b;
  4152. return result;
  4153. }
  4154. struct ggml_tensor * ggml_add(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a,
  4157. struct ggml_tensor * b) {
  4158. return ggml_add_impl(ctx, a, b, false);
  4159. }
  4160. struct ggml_tensor * ggml_add_inplace(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a,
  4163. struct ggml_tensor * b) {
  4164. return ggml_add_impl(ctx, a, b, true);
  4165. }
  4166. // ggml_add_cast
  4167. static struct ggml_tensor * ggml_add_cast_impl(
  4168. struct ggml_context * ctx,
  4169. struct ggml_tensor * a,
  4170. struct ggml_tensor * b,
  4171. enum ggml_type type) {
  4172. // TODO: support less-strict constraint
  4173. // GGML_ASSERT(ggml_can_repeat(b, a));
  4174. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4175. // currently only supported for quantized input and f16
  4176. GGML_ASSERT(ggml_is_quantized(a->type) ||
  4177. a->type == GGML_TYPE_F16 ||
  4178. a->type == GGML_TYPE_BF16);
  4179. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4180. result->op = GGML_OP_ADD;
  4181. result->src[0] = a;
  4182. result->src[1] = b;
  4183. return result;
  4184. }
  4185. struct ggml_tensor * ggml_add_cast(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a,
  4188. struct ggml_tensor * b,
  4189. enum ggml_type type) {
  4190. return ggml_add_cast_impl(ctx, a, b, type);
  4191. }
  4192. // ggml_add1
  4193. static struct ggml_tensor * ggml_add1_impl(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. struct ggml_tensor * b,
  4197. bool inplace) {
  4198. GGML_ASSERT(ggml_is_scalar(b));
  4199. GGML_ASSERT(ggml_is_padded_1d(a));
  4200. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4201. result->op = GGML_OP_ADD1;
  4202. result->src[0] = a;
  4203. result->src[1] = b;
  4204. return result;
  4205. }
  4206. struct ggml_tensor * ggml_add1(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a,
  4209. struct ggml_tensor * b) {
  4210. return ggml_add1_impl(ctx, a, b, false);
  4211. }
  4212. struct ggml_tensor * ggml_add1_inplace(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. struct ggml_tensor * b) {
  4216. return ggml_add1_impl(ctx, a, b, true);
  4217. }
  4218. // ggml_acc
  4219. static struct ggml_tensor * ggml_acc_impl(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a,
  4222. struct ggml_tensor * b,
  4223. size_t nb1,
  4224. size_t nb2,
  4225. size_t nb3,
  4226. size_t offset,
  4227. bool inplace) {
  4228. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4229. GGML_ASSERT(ggml_is_contiguous(a));
  4230. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4231. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4232. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4233. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4234. ggml_set_op_params(result, params, sizeof(params));
  4235. result->op = GGML_OP_ACC;
  4236. result->src[0] = a;
  4237. result->src[1] = b;
  4238. return result;
  4239. }
  4240. struct ggml_tensor * ggml_acc(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a,
  4243. struct ggml_tensor * b,
  4244. size_t nb1,
  4245. size_t nb2,
  4246. size_t nb3,
  4247. size_t offset) {
  4248. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4249. }
  4250. struct ggml_tensor * ggml_acc_inplace(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. struct ggml_tensor * b,
  4254. size_t nb1,
  4255. size_t nb2,
  4256. size_t nb3,
  4257. size_t offset) {
  4258. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4259. }
  4260. // ggml_sub
  4261. static struct ggml_tensor * ggml_sub_impl(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a,
  4264. struct ggml_tensor * b,
  4265. bool inplace) {
  4266. GGML_ASSERT(ggml_can_repeat(b, a));
  4267. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4268. result->op = GGML_OP_SUB;
  4269. result->src[0] = a;
  4270. result->src[1] = b;
  4271. return result;
  4272. }
  4273. struct ggml_tensor * ggml_sub(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a,
  4276. struct ggml_tensor * b) {
  4277. return ggml_sub_impl(ctx, a, b, false);
  4278. }
  4279. struct ggml_tensor * ggml_sub_inplace(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a,
  4282. struct ggml_tensor * b) {
  4283. return ggml_sub_impl(ctx, a, b, true);
  4284. }
  4285. // ggml_mul
  4286. static struct ggml_tensor * ggml_mul_impl(
  4287. struct ggml_context * ctx,
  4288. struct ggml_tensor * a,
  4289. struct ggml_tensor * b,
  4290. bool inplace) {
  4291. GGML_ASSERT(ggml_can_repeat(b, a));
  4292. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4293. result->op = GGML_OP_MUL;
  4294. result->src[0] = a;
  4295. result->src[1] = b;
  4296. return result;
  4297. }
  4298. struct ggml_tensor * ggml_mul(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a,
  4301. struct ggml_tensor * b) {
  4302. return ggml_mul_impl(ctx, a, b, false);
  4303. }
  4304. struct ggml_tensor * ggml_mul_inplace(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b) {
  4308. return ggml_mul_impl(ctx, a, b, true);
  4309. }
  4310. // ggml_div
  4311. static struct ggml_tensor * ggml_div_impl(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a,
  4314. struct ggml_tensor * b,
  4315. bool inplace) {
  4316. GGML_ASSERT(ggml_can_repeat(b, a));
  4317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4318. result->op = GGML_OP_DIV;
  4319. result->src[0] = a;
  4320. result->src[1] = b;
  4321. return result;
  4322. }
  4323. struct ggml_tensor * ggml_div(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. struct ggml_tensor * b) {
  4327. return ggml_div_impl(ctx, a, b, false);
  4328. }
  4329. struct ggml_tensor * ggml_div_inplace(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. struct ggml_tensor * b) {
  4333. return ggml_div_impl(ctx, a, b, true);
  4334. }
  4335. // ggml_sqr
  4336. static struct ggml_tensor * ggml_sqr_impl(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a,
  4339. bool inplace) {
  4340. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4341. result->op = GGML_OP_SQR;
  4342. result->src[0] = a;
  4343. return result;
  4344. }
  4345. struct ggml_tensor * ggml_sqr(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a) {
  4348. return ggml_sqr_impl(ctx, a, false);
  4349. }
  4350. struct ggml_tensor * ggml_sqr_inplace(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a) {
  4353. return ggml_sqr_impl(ctx, a, true);
  4354. }
  4355. // ggml_sqrt
  4356. static struct ggml_tensor * ggml_sqrt_impl(
  4357. struct ggml_context * ctx,
  4358. struct ggml_tensor * a,
  4359. bool inplace) {
  4360. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4361. result->op = GGML_OP_SQRT;
  4362. result->src[0] = a;
  4363. return result;
  4364. }
  4365. struct ggml_tensor * ggml_sqrt(
  4366. struct ggml_context * ctx,
  4367. struct ggml_tensor * a) {
  4368. return ggml_sqrt_impl(ctx, a, false);
  4369. }
  4370. struct ggml_tensor * ggml_sqrt_inplace(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a) {
  4373. return ggml_sqrt_impl(ctx, a, true);
  4374. }
  4375. // ggml_log
  4376. static struct ggml_tensor * ggml_log_impl(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. bool inplace) {
  4380. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4381. result->op = GGML_OP_LOG;
  4382. result->src[0] = a;
  4383. return result;
  4384. }
  4385. struct ggml_tensor * ggml_log(
  4386. struct ggml_context * ctx,
  4387. struct ggml_tensor * a) {
  4388. return ggml_log_impl(ctx, a, false);
  4389. }
  4390. struct ggml_tensor * ggml_log_inplace(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a) {
  4393. return ggml_log_impl(ctx, a, true);
  4394. }
  4395. // ggml_sin
  4396. static struct ggml_tensor * ggml_sin_impl(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a,
  4399. bool inplace) {
  4400. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4401. result->op = GGML_OP_SIN;
  4402. result->src[0] = a;
  4403. return result;
  4404. }
  4405. struct ggml_tensor * ggml_sin(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * a) {
  4408. return ggml_sin_impl(ctx, a, false);
  4409. }
  4410. struct ggml_tensor * ggml_sin_inplace(
  4411. struct ggml_context * ctx,
  4412. struct ggml_tensor * a) {
  4413. return ggml_sin_impl(ctx, a, true);
  4414. }
  4415. // ggml_cos
  4416. static struct ggml_tensor * ggml_cos_impl(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a,
  4419. bool inplace) {
  4420. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4421. result->op = GGML_OP_COS;
  4422. result->src[0] = a;
  4423. return result;
  4424. }
  4425. struct ggml_tensor * ggml_cos(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a) {
  4428. return ggml_cos_impl(ctx, a, false);
  4429. }
  4430. struct ggml_tensor * ggml_cos_inplace(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a) {
  4433. return ggml_cos_impl(ctx, a, true);
  4434. }
  4435. // ggml_sum
  4436. struct ggml_tensor * ggml_sum(
  4437. struct ggml_context * ctx,
  4438. struct ggml_tensor * a) {
  4439. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4440. result->op = GGML_OP_SUM;
  4441. result->src[0] = a;
  4442. return result;
  4443. }
  4444. // ggml_sum_rows
  4445. struct ggml_tensor * ggml_sum_rows(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a) {
  4448. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4449. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4450. ne[i] = a->ne[i];
  4451. }
  4452. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4453. result->op = GGML_OP_SUM_ROWS;
  4454. result->src[0] = a;
  4455. return result;
  4456. }
  4457. // ggml_mean
  4458. struct ggml_tensor * ggml_mean(
  4459. struct ggml_context * ctx,
  4460. struct ggml_tensor * a) {
  4461. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4462. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4463. result->op = GGML_OP_MEAN;
  4464. result->src[0] = a;
  4465. return result;
  4466. }
  4467. // ggml_argmax
  4468. struct ggml_tensor * ggml_argmax(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * a) {
  4471. GGML_ASSERT(ggml_is_matrix(a));
  4472. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4473. result->op = GGML_OP_ARGMAX;
  4474. result->src[0] = a;
  4475. return result;
  4476. }
  4477. // ggml_count_equal
  4478. struct ggml_tensor * ggml_count_equal(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a,
  4481. struct ggml_tensor * b) {
  4482. GGML_ASSERT(ggml_are_same_shape(a, b));
  4483. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, 1);
  4484. result->op = GGML_OP_COUNT_EQUAL;
  4485. result->src[0] = a;
  4486. result->src[1] = b;
  4487. return result;
  4488. }
  4489. // ggml_repeat
  4490. struct ggml_tensor * ggml_repeat(
  4491. struct ggml_context * ctx,
  4492. struct ggml_tensor * a,
  4493. struct ggml_tensor * b) {
  4494. GGML_ASSERT(ggml_can_repeat(a, b));
  4495. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4496. result->op = GGML_OP_REPEAT;
  4497. result->src[0] = a;
  4498. return result;
  4499. }
  4500. // ggml_repeat_back
  4501. struct ggml_tensor * ggml_repeat_back(
  4502. struct ggml_context * ctx,
  4503. struct ggml_tensor * a,
  4504. struct ggml_tensor * b) {
  4505. GGML_ASSERT(ggml_can_repeat(b, a));
  4506. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4507. result->op = GGML_OP_REPEAT_BACK;
  4508. result->src[0] = a;
  4509. return result;
  4510. }
  4511. // ggml_concat
  4512. struct ggml_tensor * ggml_concat(
  4513. struct ggml_context * ctx,
  4514. struct ggml_tensor * a,
  4515. struct ggml_tensor * b,
  4516. int dim) {
  4517. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4518. int64_t ne[GGML_MAX_DIMS];
  4519. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4520. if (d == dim) {
  4521. ne[d] = a->ne[d] + b->ne[d];
  4522. continue;
  4523. }
  4524. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4525. ne[d] = a->ne[d];
  4526. }
  4527. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4528. ggml_set_op_params_i32(result, 0, dim);
  4529. result->op = GGML_OP_CONCAT;
  4530. result->src[0] = a;
  4531. result->src[1] = b;
  4532. return result;
  4533. }
  4534. // ggml_abs
  4535. struct ggml_tensor * ggml_abs(
  4536. struct ggml_context * ctx,
  4537. struct ggml_tensor * a) {
  4538. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4539. }
  4540. struct ggml_tensor * ggml_abs_inplace(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a) {
  4543. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4544. }
  4545. // ggml_sgn
  4546. struct ggml_tensor * ggml_sgn(
  4547. struct ggml_context * ctx,
  4548. struct ggml_tensor * a) {
  4549. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4550. }
  4551. struct ggml_tensor * ggml_sgn_inplace(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a) {
  4554. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4555. }
  4556. // ggml_neg
  4557. struct ggml_tensor * ggml_neg(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a) {
  4560. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4561. }
  4562. struct ggml_tensor * ggml_neg_inplace(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a) {
  4565. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4566. }
  4567. // ggml_step
  4568. struct ggml_tensor * ggml_step(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a) {
  4571. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4572. }
  4573. struct ggml_tensor * ggml_step_inplace(
  4574. struct ggml_context * ctx,
  4575. struct ggml_tensor * a) {
  4576. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4577. }
  4578. // ggml_tanh
  4579. struct ggml_tensor * ggml_tanh(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a) {
  4582. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4583. }
  4584. struct ggml_tensor * ggml_tanh_inplace(
  4585. struct ggml_context * ctx,
  4586. struct ggml_tensor * a) {
  4587. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4588. }
  4589. // ggml_elu
  4590. struct ggml_tensor * ggml_elu(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a) {
  4593. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4594. }
  4595. struct ggml_tensor * ggml_elu_inplace(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a) {
  4598. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4599. }
  4600. // ggml_relu
  4601. struct ggml_tensor * ggml_relu(
  4602. struct ggml_context * ctx,
  4603. struct ggml_tensor * a) {
  4604. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4605. }
  4606. struct ggml_tensor * ggml_relu_inplace(
  4607. struct ggml_context * ctx,
  4608. struct ggml_tensor * a) {
  4609. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4610. }
  4611. // ggml_leaky_relu
  4612. struct ggml_tensor * ggml_leaky_relu(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a,
  4615. float negative_slope,
  4616. bool inplace) {
  4617. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4618. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4619. result->op = GGML_OP_LEAKY_RELU;
  4620. result->src[0] = a;
  4621. return result;
  4622. }
  4623. // ggml_sigmoid
  4624. struct ggml_tensor * ggml_sigmoid(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a) {
  4627. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4628. }
  4629. struct ggml_tensor * ggml_sigmoid_inplace(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a) {
  4632. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4633. }
  4634. // ggml_gelu
  4635. struct ggml_tensor * ggml_gelu(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a) {
  4638. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4639. }
  4640. struct ggml_tensor * ggml_gelu_inplace(
  4641. struct ggml_context * ctx,
  4642. struct ggml_tensor * a) {
  4643. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4644. }
  4645. // ggml_gelu_quick
  4646. struct ggml_tensor * ggml_gelu_quick(
  4647. struct ggml_context * ctx,
  4648. struct ggml_tensor * a) {
  4649. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4650. }
  4651. struct ggml_tensor * ggml_gelu_quick_inplace(
  4652. struct ggml_context * ctx,
  4653. struct ggml_tensor * a) {
  4654. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4655. }
  4656. // ggml_silu
  4657. struct ggml_tensor * ggml_silu(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a) {
  4660. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4661. }
  4662. struct ggml_tensor * ggml_silu_inplace(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a) {
  4665. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4666. }
  4667. // ggml_silu_back
  4668. struct ggml_tensor * ggml_silu_back(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a,
  4671. struct ggml_tensor * b) {
  4672. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4673. result->op = GGML_OP_SILU_BACK;
  4674. result->src[0] = a;
  4675. result->src[1] = b;
  4676. return result;
  4677. }
  4678. // ggml hardswish
  4679. struct ggml_tensor * ggml_hardswish(
  4680. struct ggml_context * ctx,
  4681. struct ggml_tensor * a) {
  4682. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4683. }
  4684. // ggml hardsigmoid
  4685. struct ggml_tensor * ggml_hardsigmoid(
  4686. struct ggml_context * ctx,
  4687. struct ggml_tensor * a) {
  4688. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4689. }
  4690. // ggml exp
  4691. struct ggml_tensor * ggml_exp(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a) {
  4694. return ggml_unary(ctx, a, GGML_UNARY_OP_EXP);
  4695. }
  4696. struct ggml_tensor * ggml_exp_inplace(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a) {
  4699. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP);
  4700. }
  4701. // ggml_norm
  4702. static struct ggml_tensor * ggml_norm_impl(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a,
  4705. float eps,
  4706. bool inplace) {
  4707. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4708. ggml_set_op_params(result, &eps, sizeof(eps));
  4709. result->op = GGML_OP_NORM;
  4710. result->src[0] = a;
  4711. return result;
  4712. }
  4713. struct ggml_tensor * ggml_norm(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. float eps) {
  4717. return ggml_norm_impl(ctx, a, eps, false);
  4718. }
  4719. struct ggml_tensor * ggml_norm_inplace(
  4720. struct ggml_context * ctx,
  4721. struct ggml_tensor * a,
  4722. float eps) {
  4723. return ggml_norm_impl(ctx, a, eps, true);
  4724. }
  4725. // ggml_rms_norm
  4726. static struct ggml_tensor * ggml_rms_norm_impl(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a,
  4729. float eps,
  4730. bool inplace) {
  4731. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4732. ggml_set_op_params(result, &eps, sizeof(eps));
  4733. result->op = GGML_OP_RMS_NORM;
  4734. result->src[0] = a;
  4735. return result;
  4736. }
  4737. struct ggml_tensor * ggml_rms_norm(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. float eps) {
  4741. return ggml_rms_norm_impl(ctx, a, eps, false);
  4742. }
  4743. struct ggml_tensor * ggml_rms_norm_inplace(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a,
  4746. float eps) {
  4747. return ggml_rms_norm_impl(ctx, a, eps, true);
  4748. }
  4749. // ggml_rms_norm_back
  4750. struct ggml_tensor * ggml_rms_norm_back(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. struct ggml_tensor * b,
  4754. float eps) {
  4755. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4756. ggml_set_op_params(result, &eps, sizeof(eps));
  4757. result->op = GGML_OP_RMS_NORM_BACK;
  4758. result->src[0] = a;
  4759. result->src[1] = b;
  4760. return result;
  4761. }
  4762. // ggml_group_norm
  4763. static struct ggml_tensor * ggml_group_norm_impl(
  4764. struct ggml_context * ctx,
  4765. struct ggml_tensor * a,
  4766. int n_groups,
  4767. float eps,
  4768. bool inplace) {
  4769. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4770. ggml_set_op_params_i32(result, 0, n_groups);
  4771. ggml_set_op_params_f32(result, 1, eps);
  4772. result->op = GGML_OP_GROUP_NORM;
  4773. result->src[0] = a;
  4774. return result;
  4775. }
  4776. struct ggml_tensor * ggml_group_norm(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a,
  4779. int n_groups,
  4780. float eps) {
  4781. return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
  4782. }
  4783. struct ggml_tensor * ggml_group_norm_inplace(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. int n_groups,
  4787. float eps) {
  4788. return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
  4789. }
  4790. // ggml_mul_mat
  4791. struct ggml_tensor * ggml_mul_mat(
  4792. struct ggml_context * ctx,
  4793. struct ggml_tensor * a,
  4794. struct ggml_tensor * b) {
  4795. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4796. GGML_ASSERT(!ggml_is_transposed(a));
  4797. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4798. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4799. result->op = GGML_OP_MUL_MAT;
  4800. result->src[0] = a;
  4801. result->src[1] = b;
  4802. return result;
  4803. }
  4804. void ggml_mul_mat_set_prec(
  4805. struct ggml_tensor * a,
  4806. enum ggml_prec prec) {
  4807. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4808. const int32_t prec_i32 = (int32_t) prec;
  4809. ggml_set_op_params_i32(a, 0, prec_i32);
  4810. }
  4811. // ggml_mul_mat_id
  4812. /*
  4813. c = ggml_mul_mat_id(ctx, as, b, ids);
  4814. as -> [cols, rows, n_expert]
  4815. ids -> [n_experts_used, n_tokens] (i32)
  4816. b -> [cols, n_expert_used, n_tokens]
  4817. c -> [rows, n_expert_used, n_tokens]
  4818. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4819. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4820. */
  4821. struct ggml_tensor * ggml_mul_mat_id(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * as,
  4824. struct ggml_tensor * b,
  4825. struct ggml_tensor * ids) {
  4826. GGML_ASSERT(!ggml_is_transposed(as));
  4827. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4828. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4829. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4830. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4831. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4832. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4833. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4834. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4835. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4836. result->op = GGML_OP_MUL_MAT_ID;
  4837. result->src[0] = as;
  4838. result->src[1] = b;
  4839. result->src[2] = ids;
  4840. return result;
  4841. }
  4842. // ggml_out_prod
  4843. struct ggml_tensor * ggml_out_prod(
  4844. struct ggml_context * ctx,
  4845. struct ggml_tensor * a,
  4846. struct ggml_tensor * b) {
  4847. GGML_ASSERT(ggml_can_out_prod(a, b));
  4848. GGML_ASSERT(!ggml_is_transposed(a));
  4849. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4850. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4851. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4852. result->op = GGML_OP_OUT_PROD;
  4853. result->src[0] = a;
  4854. result->src[1] = b;
  4855. return result;
  4856. }
  4857. // ggml_scale
  4858. static struct ggml_tensor * ggml_scale_impl(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. float s,
  4862. bool inplace) {
  4863. GGML_ASSERT(ggml_is_padded_1d(a));
  4864. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4865. ggml_set_op_params(result, &s, sizeof(s));
  4866. result->op = GGML_OP_SCALE;
  4867. result->src[0] = a;
  4868. return result;
  4869. }
  4870. struct ggml_tensor * ggml_scale(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. float s) {
  4874. return ggml_scale_impl(ctx, a, s, false);
  4875. }
  4876. struct ggml_tensor * ggml_scale_inplace(
  4877. struct ggml_context * ctx,
  4878. struct ggml_tensor * a,
  4879. float s) {
  4880. return ggml_scale_impl(ctx, a, s, true);
  4881. }
  4882. // ggml_set
  4883. static struct ggml_tensor * ggml_set_impl(
  4884. struct ggml_context * ctx,
  4885. struct ggml_tensor * a,
  4886. struct ggml_tensor * b,
  4887. size_t nb1,
  4888. size_t nb2,
  4889. size_t nb3,
  4890. size_t offset,
  4891. bool inplace) {
  4892. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4893. // make a view of the destination
  4894. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4895. GGML_ASSERT(offset < (size_t)(1 << 30));
  4896. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4897. ggml_set_op_params(result, params, sizeof(params));
  4898. result->op = GGML_OP_SET;
  4899. result->src[0] = a;
  4900. result->src[1] = b;
  4901. return result;
  4902. }
  4903. struct ggml_tensor * ggml_set(
  4904. struct ggml_context * ctx,
  4905. struct ggml_tensor * a,
  4906. struct ggml_tensor * b,
  4907. size_t nb1,
  4908. size_t nb2,
  4909. size_t nb3,
  4910. size_t offset) {
  4911. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4912. }
  4913. struct ggml_tensor * ggml_set_inplace(
  4914. struct ggml_context * ctx,
  4915. struct ggml_tensor * a,
  4916. struct ggml_tensor * b,
  4917. size_t nb1,
  4918. size_t nb2,
  4919. size_t nb3,
  4920. size_t offset) {
  4921. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4922. }
  4923. struct ggml_tensor * ggml_set_1d(
  4924. struct ggml_context * ctx,
  4925. struct ggml_tensor * a,
  4926. struct ggml_tensor * b,
  4927. size_t offset) {
  4928. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4929. }
  4930. struct ggml_tensor * ggml_set_1d_inplace(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. struct ggml_tensor * b,
  4934. size_t offset) {
  4935. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4936. }
  4937. struct ggml_tensor * ggml_set_2d(
  4938. struct ggml_context * ctx,
  4939. struct ggml_tensor * a,
  4940. struct ggml_tensor * b,
  4941. size_t nb1,
  4942. size_t offset) {
  4943. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4944. }
  4945. struct ggml_tensor * ggml_set_2d_inplace(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a,
  4948. struct ggml_tensor * b,
  4949. size_t nb1,
  4950. size_t offset) {
  4951. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4952. }
  4953. // ggml_cpy
  4954. static struct ggml_tensor * ggml_cpy_impl(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. struct ggml_tensor * b) {
  4958. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4959. // make a view of the destination
  4960. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4961. if (strlen(b->name) > 0) {
  4962. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4963. } else {
  4964. ggml_format_name(result, "%s (copy)", a->name);
  4965. }
  4966. result->op = GGML_OP_CPY;
  4967. result->src[0] = a;
  4968. result->src[1] = b;
  4969. return result;
  4970. }
  4971. struct ggml_tensor * ggml_cpy(
  4972. struct ggml_context * ctx,
  4973. struct ggml_tensor * a,
  4974. struct ggml_tensor * b) {
  4975. return ggml_cpy_impl(ctx, a, b);
  4976. }
  4977. struct ggml_tensor * ggml_cast(
  4978. struct ggml_context * ctx,
  4979. struct ggml_tensor * a,
  4980. enum ggml_type type) {
  4981. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4982. ggml_format_name(result, "%s (copy)", a->name);
  4983. result->op = GGML_OP_CPY;
  4984. result->src[0] = a;
  4985. result->src[1] = result;
  4986. return result;
  4987. }
  4988. // ggml_cont
  4989. static struct ggml_tensor * ggml_cont_impl(
  4990. struct ggml_context * ctx,
  4991. struct ggml_tensor * a) {
  4992. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4993. ggml_format_name(result, "%s (cont)", a->name);
  4994. result->op = GGML_OP_CONT;
  4995. result->src[0] = a;
  4996. return result;
  4997. }
  4998. struct ggml_tensor * ggml_cont(
  4999. struct ggml_context * ctx,
  5000. struct ggml_tensor * a) {
  5001. return ggml_cont_impl(ctx, a);
  5002. }
  5003. // make contiguous, with new shape
  5004. GGML_API struct ggml_tensor * ggml_cont_1d(
  5005. struct ggml_context * ctx,
  5006. struct ggml_tensor * a,
  5007. int64_t ne0) {
  5008. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  5009. }
  5010. GGML_API struct ggml_tensor * ggml_cont_2d(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a,
  5013. int64_t ne0,
  5014. int64_t ne1) {
  5015. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  5016. }
  5017. GGML_API struct ggml_tensor * ggml_cont_3d(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. int64_t ne0,
  5021. int64_t ne1,
  5022. int64_t ne2) {
  5023. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  5024. }
  5025. struct ggml_tensor * ggml_cont_4d(
  5026. struct ggml_context * ctx,
  5027. struct ggml_tensor * a,
  5028. int64_t ne0,
  5029. int64_t ne1,
  5030. int64_t ne2,
  5031. int64_t ne3) {
  5032. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  5033. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5034. ggml_format_name(result, "%s (cont)", a->name);
  5035. result->op = GGML_OP_CONT;
  5036. result->src[0] = a;
  5037. return result;
  5038. }
  5039. // ggml_reshape
  5040. struct ggml_tensor * ggml_reshape(
  5041. struct ggml_context * ctx,
  5042. struct ggml_tensor * a,
  5043. struct ggml_tensor * b) {
  5044. GGML_ASSERT(ggml_is_contiguous(a));
  5045. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  5046. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5047. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  5048. ggml_format_name(result, "%s (reshaped)", a->name);
  5049. result->op = GGML_OP_RESHAPE;
  5050. result->src[0] = a;
  5051. return result;
  5052. }
  5053. struct ggml_tensor * ggml_reshape_1d(
  5054. struct ggml_context * ctx,
  5055. struct ggml_tensor * a,
  5056. int64_t ne0) {
  5057. GGML_ASSERT(ggml_is_contiguous(a));
  5058. GGML_ASSERT(ggml_nelements(a) == ne0);
  5059. const int64_t ne[1] = { ne0 };
  5060. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5061. ggml_format_name(result, "%s (reshaped)", a->name);
  5062. result->op = GGML_OP_RESHAPE;
  5063. result->src[0] = a;
  5064. return result;
  5065. }
  5066. struct ggml_tensor * ggml_reshape_2d(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a,
  5069. int64_t ne0,
  5070. int64_t ne1) {
  5071. GGML_ASSERT(ggml_is_contiguous(a));
  5072. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5073. const int64_t ne[2] = { ne0, ne1 };
  5074. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5075. ggml_format_name(result, "%s (reshaped)", a->name);
  5076. result->op = GGML_OP_RESHAPE;
  5077. result->src[0] = a;
  5078. return result;
  5079. }
  5080. struct ggml_tensor * ggml_reshape_3d(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. int64_t ne0,
  5084. int64_t ne1,
  5085. int64_t ne2) {
  5086. GGML_ASSERT(ggml_is_contiguous(a));
  5087. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5088. const int64_t ne[3] = { ne0, ne1, ne2 };
  5089. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5090. ggml_format_name(result, "%s (reshaped)", a->name);
  5091. result->op = GGML_OP_RESHAPE;
  5092. result->src[0] = a;
  5093. return result;
  5094. }
  5095. struct ggml_tensor * ggml_reshape_4d(
  5096. struct ggml_context * ctx,
  5097. struct ggml_tensor * a,
  5098. int64_t ne0,
  5099. int64_t ne1,
  5100. int64_t ne2,
  5101. int64_t ne3) {
  5102. GGML_ASSERT(ggml_is_contiguous(a));
  5103. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5104. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5105. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5106. ggml_format_name(result, "%s (reshaped)", a->name);
  5107. result->op = GGML_OP_RESHAPE;
  5108. result->src[0] = a;
  5109. return result;
  5110. }
  5111. static struct ggml_tensor * ggml_view_impl(
  5112. struct ggml_context * ctx,
  5113. struct ggml_tensor * a,
  5114. int n_dims,
  5115. const int64_t * ne,
  5116. size_t offset) {
  5117. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5118. ggml_format_name(result, "%s (view)", a->name);
  5119. ggml_set_op_params(result, &offset, sizeof(offset));
  5120. result->op = GGML_OP_VIEW;
  5121. result->src[0] = a;
  5122. return result;
  5123. }
  5124. // ggml_view_1d
  5125. struct ggml_tensor * ggml_view_1d(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. int64_t ne0,
  5129. size_t offset) {
  5130. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5131. return result;
  5132. }
  5133. // ggml_view_2d
  5134. struct ggml_tensor * ggml_view_2d(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a,
  5137. int64_t ne0,
  5138. int64_t ne1,
  5139. size_t nb1,
  5140. size_t offset) {
  5141. const int64_t ne[2] = { ne0, ne1 };
  5142. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5143. result->nb[1] = nb1;
  5144. result->nb[2] = result->nb[1]*ne1;
  5145. result->nb[3] = result->nb[2];
  5146. return result;
  5147. }
  5148. // ggml_view_3d
  5149. struct ggml_tensor * ggml_view_3d(
  5150. struct ggml_context * ctx,
  5151. struct ggml_tensor * a,
  5152. int64_t ne0,
  5153. int64_t ne1,
  5154. int64_t ne2,
  5155. size_t nb1,
  5156. size_t nb2,
  5157. size_t offset) {
  5158. const int64_t ne[3] = { ne0, ne1, ne2 };
  5159. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5160. result->nb[1] = nb1;
  5161. result->nb[2] = nb2;
  5162. result->nb[3] = result->nb[2]*ne2;
  5163. return result;
  5164. }
  5165. // ggml_view_4d
  5166. struct ggml_tensor * ggml_view_4d(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * a,
  5169. int64_t ne0,
  5170. int64_t ne1,
  5171. int64_t ne2,
  5172. int64_t ne3,
  5173. size_t nb1,
  5174. size_t nb2,
  5175. size_t nb3,
  5176. size_t offset) {
  5177. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5178. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5179. result->nb[1] = nb1;
  5180. result->nb[2] = nb2;
  5181. result->nb[3] = nb3;
  5182. return result;
  5183. }
  5184. // ggml_permute
  5185. struct ggml_tensor * ggml_permute(
  5186. struct ggml_context * ctx,
  5187. struct ggml_tensor * a,
  5188. int axis0,
  5189. int axis1,
  5190. int axis2,
  5191. int axis3) {
  5192. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5193. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5194. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5195. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5196. GGML_ASSERT(axis0 != axis1);
  5197. GGML_ASSERT(axis0 != axis2);
  5198. GGML_ASSERT(axis0 != axis3);
  5199. GGML_ASSERT(axis1 != axis2);
  5200. GGML_ASSERT(axis1 != axis3);
  5201. GGML_ASSERT(axis2 != axis3);
  5202. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5203. ggml_format_name(result, "%s (permuted)", a->name);
  5204. int ne[GGML_MAX_DIMS];
  5205. int nb[GGML_MAX_DIMS];
  5206. ne[axis0] = a->ne[0];
  5207. ne[axis1] = a->ne[1];
  5208. ne[axis2] = a->ne[2];
  5209. ne[axis3] = a->ne[3];
  5210. nb[axis0] = a->nb[0];
  5211. nb[axis1] = a->nb[1];
  5212. nb[axis2] = a->nb[2];
  5213. nb[axis3] = a->nb[3];
  5214. result->ne[0] = ne[0];
  5215. result->ne[1] = ne[1];
  5216. result->ne[2] = ne[2];
  5217. result->ne[3] = ne[3];
  5218. result->nb[0] = nb[0];
  5219. result->nb[1] = nb[1];
  5220. result->nb[2] = nb[2];
  5221. result->nb[3] = nb[3];
  5222. result->op = GGML_OP_PERMUTE;
  5223. result->src[0] = a;
  5224. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5225. ggml_set_op_params(result, params, sizeof(params));
  5226. return result;
  5227. }
  5228. // ggml_transpose
  5229. struct ggml_tensor * ggml_transpose(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * a) {
  5232. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5233. ggml_format_name(result, "%s (transposed)", a->name);
  5234. result->ne[0] = a->ne[1];
  5235. result->ne[1] = a->ne[0];
  5236. result->nb[0] = a->nb[1];
  5237. result->nb[1] = a->nb[0];
  5238. result->op = GGML_OP_TRANSPOSE;
  5239. result->src[0] = a;
  5240. return result;
  5241. }
  5242. // ggml_get_rows
  5243. struct ggml_tensor * ggml_get_rows(
  5244. struct ggml_context * ctx,
  5245. struct ggml_tensor * a,
  5246. struct ggml_tensor * b) {
  5247. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5248. GGML_ASSERT(b->ne[3] == 1);
  5249. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5250. // TODO: implement non F32 return
  5251. enum ggml_type type = GGML_TYPE_F32;
  5252. if (a->type == GGML_TYPE_I32) {
  5253. type = a->type;
  5254. }
  5255. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  5256. result->op = GGML_OP_GET_ROWS;
  5257. result->src[0] = a;
  5258. result->src[1] = b;
  5259. return result;
  5260. }
  5261. // ggml_get_rows_back
  5262. struct ggml_tensor * ggml_get_rows_back(
  5263. struct ggml_context * ctx,
  5264. struct ggml_tensor * a,
  5265. struct ggml_tensor * b,
  5266. struct ggml_tensor * c) {
  5267. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5268. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5269. // TODO: implement non F32 return
  5270. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5271. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5272. result->op = GGML_OP_GET_ROWS_BACK;
  5273. result->src[0] = a;
  5274. result->src[1] = b;
  5275. return result;
  5276. }
  5277. // ggml_diag
  5278. struct ggml_tensor * ggml_diag(
  5279. struct ggml_context * ctx,
  5280. struct ggml_tensor * a) {
  5281. GGML_ASSERT(a->ne[1] == 1);
  5282. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5283. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5284. result->op = GGML_OP_DIAG;
  5285. result->src[0] = a;
  5286. return result;
  5287. }
  5288. // ggml_diag_mask_inf
  5289. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5290. struct ggml_context * ctx,
  5291. struct ggml_tensor * a,
  5292. int n_past,
  5293. bool inplace) {
  5294. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5295. int32_t params[] = { n_past };
  5296. ggml_set_op_params(result, params, sizeof(params));
  5297. result->op = GGML_OP_DIAG_MASK_INF;
  5298. result->src[0] = a;
  5299. return result;
  5300. }
  5301. struct ggml_tensor * ggml_diag_mask_inf(
  5302. struct ggml_context * ctx,
  5303. struct ggml_tensor * a,
  5304. int n_past) {
  5305. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5306. }
  5307. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5308. struct ggml_context * ctx,
  5309. struct ggml_tensor * a,
  5310. int n_past) {
  5311. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5312. }
  5313. // ggml_diag_mask_zero
  5314. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5315. struct ggml_context * ctx,
  5316. struct ggml_tensor * a,
  5317. int n_past,
  5318. bool inplace) {
  5319. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5320. int32_t params[] = { n_past };
  5321. ggml_set_op_params(result, params, sizeof(params));
  5322. result->op = GGML_OP_DIAG_MASK_ZERO;
  5323. result->src[0] = a;
  5324. return result;
  5325. }
  5326. struct ggml_tensor * ggml_diag_mask_zero(
  5327. struct ggml_context * ctx,
  5328. struct ggml_tensor * a,
  5329. int n_past) {
  5330. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5331. }
  5332. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5333. struct ggml_context * ctx,
  5334. struct ggml_tensor * a,
  5335. int n_past) {
  5336. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5337. }
  5338. // ggml_soft_max
  5339. static struct ggml_tensor * ggml_soft_max_impl(
  5340. struct ggml_context * ctx,
  5341. struct ggml_tensor * a,
  5342. struct ggml_tensor * mask,
  5343. float scale,
  5344. float max_bias,
  5345. bool inplace) {
  5346. GGML_ASSERT(ggml_is_contiguous(a));
  5347. if (mask) {
  5348. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5349. GGML_ASSERT(ggml_is_contiguous(mask));
  5350. GGML_ASSERT(ggml_is_matrix(mask));
  5351. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5352. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5353. }
  5354. if (max_bias > 0.0f) {
  5355. GGML_ASSERT(mask);
  5356. }
  5357. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5358. float params[] = { scale, max_bias };
  5359. ggml_set_op_params(result, params, sizeof(params));
  5360. result->op = GGML_OP_SOFT_MAX;
  5361. result->src[0] = a;
  5362. result->src[1] = mask;
  5363. return result;
  5364. }
  5365. struct ggml_tensor * ggml_soft_max(
  5366. struct ggml_context * ctx,
  5367. struct ggml_tensor * a) {
  5368. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5369. }
  5370. struct ggml_tensor * ggml_soft_max_inplace(
  5371. struct ggml_context * ctx,
  5372. struct ggml_tensor * a) {
  5373. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5374. }
  5375. struct ggml_tensor * ggml_soft_max_ext(
  5376. struct ggml_context * ctx,
  5377. struct ggml_tensor * a,
  5378. struct ggml_tensor * mask,
  5379. float scale,
  5380. float max_bias) {
  5381. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5382. }
  5383. // ggml_soft_max_back
  5384. static struct ggml_tensor * ggml_soft_max_back_impl(
  5385. struct ggml_context * ctx,
  5386. struct ggml_tensor * a,
  5387. struct ggml_tensor * b,
  5388. bool inplace) {
  5389. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5390. result->op = GGML_OP_SOFT_MAX_BACK;
  5391. result->src[0] = a;
  5392. result->src[1] = b;
  5393. return result;
  5394. }
  5395. struct ggml_tensor * ggml_soft_max_back(
  5396. struct ggml_context * ctx,
  5397. struct ggml_tensor * a,
  5398. struct ggml_tensor * b) {
  5399. return ggml_soft_max_back_impl(ctx, a, b, false);
  5400. }
  5401. struct ggml_tensor * ggml_soft_max_back_inplace(
  5402. struct ggml_context * ctx,
  5403. struct ggml_tensor * a,
  5404. struct ggml_tensor * b) {
  5405. return ggml_soft_max_back_impl(ctx, a, b, true);
  5406. }
  5407. // ggml_rope
  5408. static struct ggml_tensor * ggml_rope_impl(
  5409. struct ggml_context * ctx,
  5410. struct ggml_tensor * a,
  5411. struct ggml_tensor * b,
  5412. struct ggml_tensor * c,
  5413. int n_dims,
  5414. int mode,
  5415. int n_ctx_orig,
  5416. float freq_base,
  5417. float freq_scale,
  5418. float ext_factor,
  5419. float attn_factor,
  5420. float beta_fast,
  5421. float beta_slow,
  5422. bool inplace) {
  5423. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5424. GGML_ASSERT(ggml_is_vector(b));
  5425. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5426. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5427. if (c) {
  5428. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5429. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5430. }
  5431. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5432. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5433. memcpy(params + 5, &freq_base, sizeof(float));
  5434. memcpy(params + 6, &freq_scale, sizeof(float));
  5435. memcpy(params + 7, &ext_factor, sizeof(float));
  5436. memcpy(params + 8, &attn_factor, sizeof(float));
  5437. memcpy(params + 9, &beta_fast, sizeof(float));
  5438. memcpy(params + 10, &beta_slow, sizeof(float));
  5439. ggml_set_op_params(result, params, sizeof(params));
  5440. result->op = GGML_OP_ROPE;
  5441. result->src[0] = a;
  5442. result->src[1] = b;
  5443. result->src[2] = c;
  5444. return result;
  5445. }
  5446. struct ggml_tensor * ggml_rope(
  5447. struct ggml_context * ctx,
  5448. struct ggml_tensor * a,
  5449. struct ggml_tensor * b,
  5450. int n_dims,
  5451. int mode) {
  5452. return ggml_rope_impl(
  5453. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5454. );
  5455. }
  5456. struct ggml_tensor * ggml_rope_inplace(
  5457. struct ggml_context * ctx,
  5458. struct ggml_tensor * a,
  5459. struct ggml_tensor * b,
  5460. int n_dims,
  5461. int mode) {
  5462. return ggml_rope_impl(
  5463. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5464. );
  5465. }
  5466. struct ggml_tensor * ggml_rope_ext(
  5467. struct ggml_context * ctx,
  5468. struct ggml_tensor * a,
  5469. struct ggml_tensor * b,
  5470. struct ggml_tensor * c,
  5471. int n_dims,
  5472. int mode,
  5473. int n_ctx_orig,
  5474. float freq_base,
  5475. float freq_scale,
  5476. float ext_factor,
  5477. float attn_factor,
  5478. float beta_fast,
  5479. float beta_slow) {
  5480. return ggml_rope_impl(
  5481. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5482. ext_factor, attn_factor, beta_fast, beta_slow, false
  5483. );
  5484. }
  5485. struct ggml_tensor * ggml_rope_ext_inplace(
  5486. struct ggml_context * ctx,
  5487. struct ggml_tensor * a,
  5488. struct ggml_tensor * b,
  5489. struct ggml_tensor * c,
  5490. int n_dims,
  5491. int mode,
  5492. int n_ctx_orig,
  5493. float freq_base,
  5494. float freq_scale,
  5495. float ext_factor,
  5496. float attn_factor,
  5497. float beta_fast,
  5498. float beta_slow) {
  5499. return ggml_rope_impl(
  5500. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5501. ext_factor, attn_factor, beta_fast, beta_slow, true
  5502. );
  5503. }
  5504. struct ggml_tensor * ggml_rope_custom(
  5505. struct ggml_context * ctx,
  5506. struct ggml_tensor * a,
  5507. struct ggml_tensor * b,
  5508. int n_dims,
  5509. int mode,
  5510. int n_ctx_orig,
  5511. float freq_base,
  5512. float freq_scale,
  5513. float ext_factor,
  5514. float attn_factor,
  5515. float beta_fast,
  5516. float beta_slow) {
  5517. return ggml_rope_impl(
  5518. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5519. ext_factor, attn_factor, beta_fast, beta_slow, false
  5520. );
  5521. }
  5522. struct ggml_tensor * ggml_rope_custom_inplace(
  5523. struct ggml_context * ctx,
  5524. struct ggml_tensor * a,
  5525. struct ggml_tensor * b,
  5526. int n_dims,
  5527. int mode,
  5528. int n_ctx_orig,
  5529. float freq_base,
  5530. float freq_scale,
  5531. float ext_factor,
  5532. float attn_factor,
  5533. float beta_fast,
  5534. float beta_slow) {
  5535. return ggml_rope_impl(
  5536. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5537. ext_factor, attn_factor, beta_fast, beta_slow, true
  5538. );
  5539. }
  5540. // ggml_rope_back
  5541. struct ggml_tensor * ggml_rope_back(
  5542. struct ggml_context * ctx,
  5543. struct ggml_tensor * a,
  5544. struct ggml_tensor * b,
  5545. struct ggml_tensor * c,
  5546. int n_dims,
  5547. int mode,
  5548. int n_ctx_orig,
  5549. float freq_base,
  5550. float freq_scale,
  5551. float ext_factor,
  5552. float attn_factor,
  5553. float beta_fast,
  5554. float beta_slow) {
  5555. GGML_ASSERT(ggml_is_vector(b));
  5556. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5557. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5558. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5559. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5560. memcpy(params + 5, &freq_base, sizeof(float));
  5561. memcpy(params + 6, &freq_scale, sizeof(float));
  5562. memcpy(params + 7, &ext_factor, sizeof(float));
  5563. memcpy(params + 8, &attn_factor, sizeof(float));
  5564. memcpy(params + 9, &beta_fast, sizeof(float));
  5565. memcpy(params + 10, &beta_slow, sizeof(float));
  5566. ggml_set_op_params(result, params, sizeof(params));
  5567. result->op = GGML_OP_ROPE_BACK;
  5568. result->src[0] = a;
  5569. result->src[1] = b;
  5570. result->src[2] = c;
  5571. return result;
  5572. }
  5573. // ggml_clamp
  5574. struct ggml_tensor * ggml_clamp(
  5575. struct ggml_context * ctx,
  5576. struct ggml_tensor * a,
  5577. float min,
  5578. float max) {
  5579. // TODO: when implement backward, fix this:
  5580. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5581. float params[] = { min, max };
  5582. ggml_set_op_params(result, params, sizeof(params));
  5583. result->op = GGML_OP_CLAMP;
  5584. result->src[0] = a;
  5585. return result;
  5586. }
  5587. // ggml_conv_1d
  5588. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5589. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5590. }
  5591. GGML_API struct ggml_tensor * ggml_conv_1d(
  5592. struct ggml_context * ctx,
  5593. struct ggml_tensor * a,
  5594. struct ggml_tensor * b,
  5595. int s0,
  5596. int p0,
  5597. int d0) {
  5598. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5599. struct ggml_tensor * result =
  5600. ggml_mul_mat(ctx,
  5601. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5602. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5603. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5604. return result;
  5605. }
  5606. // ggml_conv_1d_ph
  5607. struct ggml_tensor* ggml_conv_1d_ph(
  5608. struct ggml_context * ctx,
  5609. struct ggml_tensor * a,
  5610. struct ggml_tensor * b,
  5611. int s,
  5612. int d) {
  5613. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5614. }
  5615. // ggml_conv_transpose_1d
  5616. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5617. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5618. }
  5619. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5620. struct ggml_context * ctx,
  5621. struct ggml_tensor * a,
  5622. struct ggml_tensor * b,
  5623. int s0,
  5624. int p0,
  5625. int d0) {
  5626. GGML_ASSERT(ggml_is_matrix(b));
  5627. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5628. GGML_ASSERT(a->ne[3] == 1);
  5629. GGML_ASSERT(p0 == 0);
  5630. GGML_ASSERT(d0 == 1);
  5631. const int64_t ne[4] = {
  5632. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5633. a->ne[1], b->ne[2], 1,
  5634. };
  5635. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5636. int32_t params[] = { s0, p0, d0 };
  5637. ggml_set_op_params(result, params, sizeof(params));
  5638. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5639. result->src[0] = a;
  5640. result->src[1] = b;
  5641. return result;
  5642. }
  5643. // ggml_conv_depthwise
  5644. struct ggml_tensor * ggml_conv_depthwise_2d(
  5645. struct ggml_context * ctx,
  5646. struct ggml_tensor * a,
  5647. struct ggml_tensor * b,
  5648. int s0,
  5649. int s1,
  5650. int p0,
  5651. int p1,
  5652. int d0,
  5653. int d1) {
  5654. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5655. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5656. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5657. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5658. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5659. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5660. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5661. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5662. return result;
  5663. }
  5664. // ggml_conv_2d
  5665. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5666. // a: [OC,IC, KH, KW]
  5667. // b: [N, IC, IH, IW]
  5668. // result: [N, OH, OW, IC*KH*KW]
  5669. struct ggml_tensor * ggml_im2col(
  5670. struct ggml_context * ctx,
  5671. struct ggml_tensor * a,
  5672. struct ggml_tensor * b,
  5673. int s0,
  5674. int s1,
  5675. int p0,
  5676. int p1,
  5677. int d0,
  5678. int d1,
  5679. bool is_2D,
  5680. enum ggml_type dst_type) {
  5681. if(is_2D) {
  5682. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5683. } else {
  5684. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5685. GGML_ASSERT(b->ne[3] == 1);
  5686. }
  5687. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5688. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5689. GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a");
  5690. GGML_ASSERT((OW > 0) && "b too small compared to a");
  5691. const int64_t ne[4] = {
  5692. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5693. OW,
  5694. is_2D ? OH : b->ne[2],
  5695. is_2D ? b->ne[3] : 1,
  5696. };
  5697. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5698. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5699. ggml_set_op_params(result, params, sizeof(params));
  5700. result->op = GGML_OP_IM2COL;
  5701. result->src[0] = a;
  5702. result->src[1] = b;
  5703. return result;
  5704. }
  5705. struct ggml_tensor * ggml_im2col_back(
  5706. struct ggml_context * ctx,
  5707. struct ggml_tensor * a,
  5708. struct ggml_tensor * b,
  5709. int64_t * ne,
  5710. int s0,
  5711. int s1,
  5712. int p0,
  5713. int p1,
  5714. int d0,
  5715. int d1,
  5716. bool is_2D) {
  5717. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5718. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5719. ggml_set_op_params(result, params, sizeof(params));
  5720. result->op = GGML_OP_IM2COL_BACK;
  5721. result->src[0] = a;
  5722. result->src[1] = b;
  5723. return result;
  5724. }
  5725. // a: [OC,IC, KH, KW]
  5726. // b: [N, IC, IH, IW]
  5727. // result: [N, OC, OH, OW]
  5728. struct ggml_tensor * ggml_conv_2d(
  5729. struct ggml_context * ctx,
  5730. struct ggml_tensor * a,
  5731. struct ggml_tensor * b,
  5732. int s0,
  5733. int s1,
  5734. int p0,
  5735. int p1,
  5736. int d0,
  5737. int d1) {
  5738. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); // [N, OH, OW, IC * KH * KW]
  5739. struct ggml_tensor * result =
  5740. ggml_mul_mat(ctx,
  5741. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5742. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5743. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5744. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5745. return result;
  5746. }
  5747. // ggml_conv_2d_sk_p0
  5748. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5749. struct ggml_context * ctx,
  5750. struct ggml_tensor * a,
  5751. struct ggml_tensor * b) {
  5752. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5753. }
  5754. // ggml_conv_2d_s1_ph
  5755. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5756. struct ggml_context * ctx,
  5757. struct ggml_tensor * a,
  5758. struct ggml_tensor * b) {
  5759. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5760. }
  5761. // ggml_conv_transpose_2d_p0
  5762. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5763. return (ins - 1) * s - 2 * p + ks;
  5764. }
  5765. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5766. struct ggml_context * ctx,
  5767. struct ggml_tensor * a,
  5768. struct ggml_tensor * b,
  5769. int stride) {
  5770. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5771. const int64_t ne[4] = {
  5772. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5773. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5774. a->ne[2], b->ne[3],
  5775. };
  5776. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5777. ggml_set_op_params_i32(result, 0, stride);
  5778. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5779. result->src[0] = a;
  5780. result->src[1] = b;
  5781. return result;
  5782. }
  5783. // ggml_pool_*
  5784. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5785. return (ins + 2 * p - ks) / s + 1;
  5786. }
  5787. // ggml_pool_1d
  5788. struct ggml_tensor * ggml_pool_1d(
  5789. struct ggml_context * ctx,
  5790. struct ggml_tensor * a,
  5791. enum ggml_op_pool op,
  5792. int k0,
  5793. int s0,
  5794. int p0) {
  5795. const int64_t ne[4] = {
  5796. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5797. a->ne[1],
  5798. a->ne[2],
  5799. a->ne[3],
  5800. };
  5801. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5802. int32_t params[] = { op, k0, s0, p0 };
  5803. ggml_set_op_params(result, params, sizeof(params));
  5804. result->op = GGML_OP_POOL_1D;
  5805. result->src[0] = a;
  5806. return result;
  5807. }
  5808. // ggml_pool_2d
  5809. struct ggml_tensor * ggml_pool_2d(
  5810. struct ggml_context * ctx,
  5811. struct ggml_tensor * a,
  5812. enum ggml_op_pool op,
  5813. int k0,
  5814. int k1,
  5815. int s0,
  5816. int s1,
  5817. float p0,
  5818. float p1) {
  5819. struct ggml_tensor * result;
  5820. const int64_t ne[4] = {
  5821. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5822. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5823. a->ne[2],
  5824. a->ne[3],
  5825. };
  5826. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5827. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5828. ggml_set_op_params(result, params, sizeof(params));
  5829. result->op = GGML_OP_POOL_2D;
  5830. result->src[0] = a;
  5831. return result;
  5832. }
  5833. struct ggml_tensor * ggml_pool_2d_back(
  5834. struct ggml_context * ctx,
  5835. struct ggml_tensor * a,
  5836. struct ggml_tensor * af,
  5837. enum ggml_op_pool op,
  5838. int k0,
  5839. int k1,
  5840. int s0,
  5841. int s1,
  5842. float p0,
  5843. float p1) {
  5844. struct ggml_tensor * result;
  5845. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne);
  5846. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5847. ggml_set_op_params(result, params, sizeof(params));
  5848. result->op = GGML_OP_POOL_2D_BACK;
  5849. result->src[0] = a;
  5850. result->src[1] = af;
  5851. return result;
  5852. }
  5853. // ggml_upscale
  5854. static struct ggml_tensor * ggml_upscale_impl(
  5855. struct ggml_context * ctx,
  5856. struct ggml_tensor * a,
  5857. int ne0,
  5858. int ne1,
  5859. int ne2,
  5860. int ne3) {
  5861. GGML_ASSERT(a->ne[0] <= ne0);
  5862. GGML_ASSERT(a->ne[1] <= ne1);
  5863. GGML_ASSERT(a->ne[2] <= ne2);
  5864. GGML_ASSERT(a->ne[3] <= ne3);
  5865. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5866. result->op = GGML_OP_UPSCALE;
  5867. result->src[0] = a;
  5868. return result;
  5869. }
  5870. struct ggml_tensor * ggml_upscale(
  5871. struct ggml_context * ctx,
  5872. struct ggml_tensor * a,
  5873. int scale_factor) {
  5874. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5875. }
  5876. struct ggml_tensor * ggml_upscale_ext(
  5877. struct ggml_context * ctx,
  5878. struct ggml_tensor * a,
  5879. int ne0,
  5880. int ne1,
  5881. int ne2,
  5882. int ne3) {
  5883. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5884. }
  5885. // ggml_pad
  5886. struct ggml_tensor * ggml_pad(
  5887. struct ggml_context * ctx,
  5888. struct ggml_tensor * a,
  5889. int p0,
  5890. int p1,
  5891. int p2,
  5892. int p3) {
  5893. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5894. a->ne[0] + p0,
  5895. a->ne[1] + p1,
  5896. a->ne[2] + p2,
  5897. a->ne[3] + p3);
  5898. result->op = GGML_OP_PAD;
  5899. result->src[0] = a;
  5900. return result;
  5901. }
  5902. // ggml_arange
  5903. struct ggml_tensor * ggml_arange(
  5904. struct ggml_context * ctx,
  5905. float start,
  5906. float stop,
  5907. float step) {
  5908. GGML_ASSERT(stop > start);
  5909. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5910. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5911. ggml_set_op_params_f32(result, 0, start);
  5912. ggml_set_op_params_f32(result, 1, stop);
  5913. ggml_set_op_params_f32(result, 2, step);
  5914. result->op = GGML_OP_ARANGE;
  5915. return result;
  5916. }
  5917. // ggml_timestep_embedding
  5918. struct ggml_tensor * ggml_timestep_embedding(
  5919. struct ggml_context * ctx,
  5920. struct ggml_tensor * timesteps,
  5921. int dim,
  5922. int max_period) {
  5923. int actual_dim = dim;
  5924. if (dim % 2 != 0) {
  5925. actual_dim = dim + 1;
  5926. }
  5927. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5928. ggml_set_op_params_i32(result, 0, dim);
  5929. ggml_set_op_params_i32(result, 1, max_period);
  5930. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5931. result->src[0] = timesteps;
  5932. return result;
  5933. }
  5934. // ggml_argsort
  5935. struct ggml_tensor * ggml_argsort(
  5936. struct ggml_context * ctx,
  5937. struct ggml_tensor * a,
  5938. enum ggml_sort_order order) {
  5939. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5940. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5941. result->op = GGML_OP_ARGSORT;
  5942. result->src[0] = a;
  5943. return result;
  5944. }
  5945. // ggml_top_k
  5946. struct ggml_tensor * ggml_top_k(
  5947. struct ggml_context * ctx,
  5948. struct ggml_tensor * a,
  5949. int k) {
  5950. GGML_ASSERT(a->ne[0] >= k);
  5951. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5952. result = ggml_view_4d(ctx, result,
  5953. k, result->ne[1], result->ne[2], result->ne[3],
  5954. result->nb[1], result->nb[2], result->nb[3],
  5955. 0);
  5956. return result;
  5957. }
  5958. // ggml_flash_attn_ext
  5959. struct ggml_tensor * ggml_flash_attn_ext(
  5960. struct ggml_context * ctx,
  5961. struct ggml_tensor * q,
  5962. struct ggml_tensor * k,
  5963. struct ggml_tensor * v,
  5964. struct ggml_tensor * mask,
  5965. float scale,
  5966. float max_bias,
  5967. float logit_softcap) {
  5968. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5969. // TODO: check if vT can be multiplied by (k*qT)
  5970. if (mask) {
  5971. GGML_ASSERT(ggml_is_contiguous(mask));
  5972. GGML_ASSERT(mask->ne[2] == 1);
  5973. GGML_ASSERT(mask->ne[3] == 1);
  5974. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5975. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5976. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5977. }
  5978. if (max_bias > 0.0f) {
  5979. GGML_ASSERT(mask);
  5980. }
  5981. bool is_node = false;
  5982. // permute(0, 2, 1, 3)
  5983. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5984. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5985. float params[] = { scale, max_bias, logit_softcap };
  5986. ggml_set_op_params(result, params, sizeof(params));
  5987. result->op = GGML_OP_FLASH_ATTN_EXT;
  5988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5989. result->src[0] = q;
  5990. result->src[1] = k;
  5991. result->src[2] = v;
  5992. result->src[3] = mask;
  5993. return result;
  5994. }
  5995. void ggml_flash_attn_ext_set_prec(
  5996. struct ggml_tensor * a,
  5997. enum ggml_prec prec) {
  5998. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5999. const int32_t prec_i32 = (int32_t) prec;
  6000. ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
  6001. }
  6002. // ggml_flash_attn_back
  6003. struct ggml_tensor * ggml_flash_attn_back(
  6004. struct ggml_context * ctx,
  6005. struct ggml_tensor * q,
  6006. struct ggml_tensor * k,
  6007. struct ggml_tensor * v,
  6008. struct ggml_tensor * d,
  6009. bool masked) {
  6010. GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
  6011. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6012. // TODO: check if vT can be multiplied by (k*qT)
  6013. // d shape [D,N,ne2,ne3]
  6014. // q shape [D,N,ne2,ne3]
  6015. // k shape [D,M,kvne2,ne3]
  6016. // v shape [M,D,kvne2,ne3]
  6017. const int64_t D = q->ne[0];
  6018. const int64_t N = q->ne[1];
  6019. const int64_t M = k->ne[1];
  6020. const int64_t ne2 = q->ne[2];
  6021. const int64_t ne3 = q->ne[3];
  6022. const int64_t kvne2 = k->ne[2];
  6023. GGML_ASSERT(k->ne[0] == D);
  6024. GGML_ASSERT(v->ne[0] == M);
  6025. GGML_ASSERT(v->ne[1] == D);
  6026. GGML_ASSERT(d->ne[0] == D);
  6027. GGML_ASSERT(d->ne[1] == N);
  6028. GGML_ASSERT(k->ne[2] == kvne2);
  6029. GGML_ASSERT(k->ne[3] == ne3);
  6030. GGML_ASSERT(v->ne[2] == kvne2);
  6031. GGML_ASSERT(v->ne[3] == ne3);
  6032. GGML_ASSERT(d->ne[2] == ne2);
  6033. GGML_ASSERT(d->ne[3] == ne3);
  6034. GGML_ASSERT(ne2 % kvne2 == 0);
  6035. bool is_node = false;
  6036. if (q->grad || k->grad || v->grad) {
  6037. // when using this operation (in backwards pass) these grads are set.
  6038. // we don't want to create (big) grad of our result, so is_node is false.
  6039. is_node = false;
  6040. }
  6041. // store gradients of q, k and v as continuous tensors concatenated in result.
  6042. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6043. const int64_t elem_q = ggml_nelements(q);
  6044. const int64_t elem_k = ggml_nelements(k);
  6045. const int64_t elem_v = ggml_nelements(v);
  6046. enum ggml_type result_type = GGML_TYPE_F32;
  6047. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  6048. const size_t tsize = ggml_type_size(result_type);
  6049. const size_t offs_q = 0;
  6050. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  6051. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  6052. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  6053. const size_t nelements = (end + tsize - 1)/tsize;
  6054. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  6055. int32_t masked_i = masked ? 1 : 0;
  6056. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6057. result->op = GGML_OP_FLASH_ATTN_BACK;
  6058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6059. result->src[0] = q;
  6060. result->src[1] = k;
  6061. result->src[2] = v;
  6062. result->src[3] = d;
  6063. return result;
  6064. }
  6065. // ggml_ssm_conv
  6066. struct ggml_tensor * ggml_ssm_conv(
  6067. struct ggml_context * ctx,
  6068. struct ggml_tensor * sx,
  6069. struct ggml_tensor * c) {
  6070. GGML_ASSERT(ggml_is_3d(sx));
  6071. GGML_ASSERT(ggml_is_matrix(c));
  6072. const int64_t d_conv = c->ne[0];
  6073. const int64_t d_inner = c->ne[1];
  6074. const int64_t n_t = sx->ne[0] - d_conv + 1; // tokens per sequence
  6075. const int64_t n_s = sx->ne[2];
  6076. // TODO: maybe support other strides than 1?
  6077. GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t);
  6078. GGML_ASSERT(sx->ne[1] == d_inner);
  6079. GGML_ASSERT(n_t >= 0);
  6080. struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s);
  6081. result->op = GGML_OP_SSM_CONV;
  6082. result->src[0] = sx;
  6083. result->src[1] = c;
  6084. return result;
  6085. }
  6086. // ggml_ssm_scan
  6087. struct ggml_tensor * ggml_ssm_scan(
  6088. struct ggml_context * ctx,
  6089. struct ggml_tensor * s,
  6090. struct ggml_tensor * x,
  6091. struct ggml_tensor * dt,
  6092. struct ggml_tensor * A,
  6093. struct ggml_tensor * B,
  6094. struct ggml_tensor * C) {
  6095. GGML_ASSERT(ggml_is_contiguous(s));
  6096. GGML_ASSERT(ggml_is_contiguous(x));
  6097. GGML_ASSERT(ggml_is_contiguous(dt));
  6098. GGML_ASSERT(ggml_is_contiguous(A));
  6099. GGML_ASSERT(ggml_is_matrix(A));
  6100. GGML_ASSERT(ggml_is_3d(B));
  6101. GGML_ASSERT(ggml_is_3d(s));
  6102. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  6103. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  6104. GGML_ASSERT(ggml_are_same_shape(x, dt));
  6105. GGML_ASSERT(ggml_are_same_shape(B, C));
  6106. {
  6107. const int64_t d_state = s->ne[0];
  6108. const int64_t d_inner = s->ne[1];
  6109. const int64_t n_seq_tokens = x->ne[1];
  6110. const int64_t n_seqs = x->ne[2];
  6111. GGML_ASSERT(s->ne[2] == n_seqs);
  6112. GGML_ASSERT(x->ne[0] == d_inner);
  6113. GGML_ASSERT(A->ne[0] == d_state);
  6114. GGML_ASSERT(A->ne[1] == d_inner);
  6115. GGML_ASSERT(B->ne[0] == d_state);
  6116. GGML_ASSERT(B->ne[1] == n_seq_tokens);
  6117. GGML_ASSERT(B->ne[2] == n_seqs);
  6118. }
  6119. // concatenated y + ssm_states
  6120. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  6121. result->op = GGML_OP_SSM_SCAN;
  6122. result->src[0] = s;
  6123. result->src[1] = x;
  6124. result->src[2] = dt;
  6125. result->src[3] = A;
  6126. result->src[4] = B;
  6127. result->src[5] = C;
  6128. return result;
  6129. }
  6130. // ggml_win_part
  6131. struct ggml_tensor * ggml_win_part(
  6132. struct ggml_context * ctx,
  6133. struct ggml_tensor * a,
  6134. int w) {
  6135. GGML_ASSERT(a->ne[3] == 1);
  6136. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6137. // padding
  6138. const int px = (w - a->ne[1]%w)%w;
  6139. const int py = (w - a->ne[2]%w)%w;
  6140. const int npx = (px + a->ne[1])/w;
  6141. const int npy = (py + a->ne[2])/w;
  6142. const int np = npx*npy;
  6143. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6144. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6145. int32_t params[] = { npx, npy, w };
  6146. ggml_set_op_params(result, params, sizeof(params));
  6147. result->op = GGML_OP_WIN_PART;
  6148. result->src[0] = a;
  6149. return result;
  6150. }
  6151. // ggml_win_unpart
  6152. struct ggml_tensor * ggml_win_unpart(
  6153. struct ggml_context * ctx,
  6154. struct ggml_tensor * a,
  6155. int w0,
  6156. int h0,
  6157. int w) {
  6158. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6159. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6160. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6161. int32_t params[] = { w };
  6162. ggml_set_op_params(result, params, sizeof(params));
  6163. result->op = GGML_OP_WIN_UNPART;
  6164. result->src[0] = a;
  6165. return result;
  6166. }
  6167. // ggml_get_rel_pos
  6168. struct ggml_tensor * ggml_get_rel_pos(
  6169. struct ggml_context * ctx,
  6170. struct ggml_tensor * a,
  6171. int qh,
  6172. int kh) {
  6173. GGML_ASSERT(qh == kh);
  6174. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6175. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6176. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6177. result->op = GGML_OP_GET_REL_POS;
  6178. result->src[0] = a;
  6179. return result;
  6180. }
  6181. // ggml_add_rel_pos
  6182. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6183. struct ggml_context * ctx,
  6184. struct ggml_tensor * a,
  6185. struct ggml_tensor * pw,
  6186. struct ggml_tensor * ph,
  6187. bool inplace) {
  6188. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6189. GGML_ASSERT(ggml_is_contiguous(a));
  6190. GGML_ASSERT(ggml_is_contiguous(pw));
  6191. GGML_ASSERT(ggml_is_contiguous(ph));
  6192. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6193. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6194. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6195. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6196. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6197. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6198. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6199. result->op = GGML_OP_ADD_REL_POS;
  6200. result->src[0] = a;
  6201. result->src[1] = pw;
  6202. result->src[2] = ph;
  6203. return result;
  6204. }
  6205. struct ggml_tensor * ggml_add_rel_pos(
  6206. struct ggml_context * ctx,
  6207. struct ggml_tensor * a,
  6208. struct ggml_tensor * pw,
  6209. struct ggml_tensor * ph) {
  6210. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6211. }
  6212. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6213. struct ggml_context * ctx,
  6214. struct ggml_tensor * a,
  6215. struct ggml_tensor * pw,
  6216. struct ggml_tensor * ph) {
  6217. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6218. }
  6219. // ggml_rwkv_wkv
  6220. struct ggml_tensor * ggml_rwkv_wkv(
  6221. struct ggml_context * ctx,
  6222. struct ggml_tensor * k,
  6223. struct ggml_tensor * v,
  6224. struct ggml_tensor * r,
  6225. struct ggml_tensor * tf,
  6226. struct ggml_tensor * td,
  6227. struct ggml_tensor * state) {
  6228. GGML_ASSERT(ggml_is_contiguous(k));
  6229. GGML_ASSERT(ggml_is_contiguous(v));
  6230. GGML_ASSERT(ggml_is_contiguous(r));
  6231. GGML_ASSERT(ggml_is_contiguous(tf));
  6232. GGML_ASSERT(ggml_is_contiguous(td));
  6233. GGML_ASSERT(ggml_is_contiguous(state));
  6234. const int64_t S = k->ne[0];
  6235. const int64_t H = k->ne[2];
  6236. const int64_t n_tokens = k->ne[3];
  6237. const int64_t n_seqs = state->ne[1];
  6238. {
  6239. GGML_ASSERT(k->ne[1] == 1);
  6240. GGML_ASSERT(v->ne[0] == 1 && v->ne[1] == S && v->ne[2] == H && v->ne[3] == n_tokens);
  6241. GGML_ASSERT(r->ne[0] == 1 && r->ne[1] == S && r->ne[2] == H && r->ne[3] == n_tokens);
  6242. // TODO: RWKV v4 and v5
  6243. GGML_ASSERT(td->ne[0] == 1 && td->ne[1] == S && td->ne[2] == H && td->ne[3] == n_tokens);
  6244. GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
  6245. }
  6246. // concat output and new_state
  6247. const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
  6248. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6249. result->op = GGML_OP_RWKV_WKV;
  6250. result->src[0] = k;
  6251. result->src[1] = v;
  6252. result->src[2] = r;
  6253. result->src[3] = tf;
  6254. result->src[4] = td;
  6255. result->src[5] = state;
  6256. return result;
  6257. }
  6258. // ggml_unary
  6259. static struct ggml_tensor * ggml_unary_impl(
  6260. struct ggml_context * ctx,
  6261. struct ggml_tensor * a,
  6262. enum ggml_unary_op op,
  6263. bool inplace) {
  6264. GGML_ASSERT(ggml_is_contiguous_1(a));
  6265. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6266. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6267. result->op = GGML_OP_UNARY;
  6268. result->src[0] = a;
  6269. return result;
  6270. }
  6271. struct ggml_tensor * ggml_unary(
  6272. struct ggml_context * ctx,
  6273. struct ggml_tensor * a,
  6274. enum ggml_unary_op op) {
  6275. return ggml_unary_impl(ctx, a, op, false);
  6276. }
  6277. struct ggml_tensor * ggml_unary_inplace(
  6278. struct ggml_context * ctx,
  6279. struct ggml_tensor * a,
  6280. enum ggml_unary_op op) {
  6281. return ggml_unary_impl(ctx, a, op, true);
  6282. }
  6283. // ggml_map_unary
  6284. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6285. struct ggml_context * ctx,
  6286. struct ggml_tensor * a,
  6287. const ggml_unary_op_f32_t fun,
  6288. bool inplace) {
  6289. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6290. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6291. result->op = GGML_OP_MAP_UNARY;
  6292. result->src[0] = a;
  6293. return result;
  6294. }
  6295. struct ggml_tensor * ggml_map_unary_f32(
  6296. struct ggml_context * ctx,
  6297. struct ggml_tensor * a,
  6298. const ggml_unary_op_f32_t fun) {
  6299. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6300. }
  6301. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6302. struct ggml_context * ctx,
  6303. struct ggml_tensor * a,
  6304. const ggml_unary_op_f32_t fun) {
  6305. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6306. }
  6307. // ggml_map_binary
  6308. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6309. struct ggml_context * ctx,
  6310. struct ggml_tensor * a,
  6311. struct ggml_tensor * b,
  6312. const ggml_binary_op_f32_t fun,
  6313. bool inplace) {
  6314. GGML_ASSERT(ggml_are_same_shape(a, b));
  6315. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6316. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6317. result->op = GGML_OP_MAP_BINARY;
  6318. result->src[0] = a;
  6319. result->src[1] = b;
  6320. return result;
  6321. }
  6322. struct ggml_tensor * ggml_map_binary_f32(
  6323. struct ggml_context * ctx,
  6324. struct ggml_tensor * a,
  6325. struct ggml_tensor * b,
  6326. const ggml_binary_op_f32_t fun) {
  6327. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6328. }
  6329. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6330. struct ggml_context * ctx,
  6331. struct ggml_tensor * a,
  6332. struct ggml_tensor * b,
  6333. const ggml_binary_op_f32_t fun) {
  6334. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6335. }
  6336. // ggml_map_custom1_f32
  6337. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6338. struct ggml_context * ctx,
  6339. struct ggml_tensor * a,
  6340. const ggml_custom1_op_f32_t fun,
  6341. bool inplace) {
  6342. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6343. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6344. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6345. result->src[0] = a;
  6346. return result;
  6347. }
  6348. struct ggml_tensor * ggml_map_custom1_f32(
  6349. struct ggml_context * ctx,
  6350. struct ggml_tensor * a,
  6351. const ggml_custom1_op_f32_t fun) {
  6352. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6353. }
  6354. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6355. struct ggml_context * ctx,
  6356. struct ggml_tensor * a,
  6357. const ggml_custom1_op_f32_t fun) {
  6358. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6359. }
  6360. // ggml_map_custom2_f32
  6361. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6362. struct ggml_context * ctx,
  6363. struct ggml_tensor * a,
  6364. struct ggml_tensor * b,
  6365. const ggml_custom2_op_f32_t fun,
  6366. bool inplace) {
  6367. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6368. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6369. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6370. result->src[0] = a;
  6371. result->src[1] = b;
  6372. return result;
  6373. }
  6374. struct ggml_tensor * ggml_map_custom2_f32(
  6375. struct ggml_context * ctx,
  6376. struct ggml_tensor * a,
  6377. struct ggml_tensor * b,
  6378. const ggml_custom2_op_f32_t fun) {
  6379. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6380. }
  6381. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6382. struct ggml_context * ctx,
  6383. struct ggml_tensor * a,
  6384. struct ggml_tensor * b,
  6385. const ggml_custom2_op_f32_t fun) {
  6386. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6387. }
  6388. // ggml_map_custom3_f32
  6389. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6390. struct ggml_context * ctx,
  6391. struct ggml_tensor * a,
  6392. struct ggml_tensor * b,
  6393. struct ggml_tensor * c,
  6394. const ggml_custom3_op_f32_t fun,
  6395. bool inplace) {
  6396. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6397. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6398. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6399. result->src[0] = a;
  6400. result->src[1] = b;
  6401. result->src[2] = c;
  6402. return result;
  6403. }
  6404. struct ggml_tensor * ggml_map_custom3_f32(
  6405. struct ggml_context * ctx,
  6406. struct ggml_tensor * a,
  6407. struct ggml_tensor * b,
  6408. struct ggml_tensor * c,
  6409. const ggml_custom3_op_f32_t fun) {
  6410. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6411. }
  6412. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6413. struct ggml_context * ctx,
  6414. struct ggml_tensor * a,
  6415. struct ggml_tensor * b,
  6416. struct ggml_tensor * c,
  6417. const ggml_custom3_op_f32_t fun) {
  6418. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6419. }
  6420. // ggml_map_custom1
  6421. struct ggml_map_custom1_op_params {
  6422. ggml_custom1_op_t fun;
  6423. int n_tasks;
  6424. void * userdata;
  6425. };
  6426. static struct ggml_tensor * ggml_map_custom1_impl(
  6427. struct ggml_context * ctx,
  6428. struct ggml_tensor * a,
  6429. const ggml_custom1_op_t fun,
  6430. int n_tasks,
  6431. void * userdata,
  6432. bool inplace) {
  6433. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6434. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6435. struct ggml_map_custom1_op_params params = {
  6436. /*.fun =*/ fun,
  6437. /*.n_tasks =*/ n_tasks,
  6438. /*.userdata =*/ userdata
  6439. };
  6440. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6441. result->op = GGML_OP_MAP_CUSTOM1;
  6442. result->src[0] = a;
  6443. return result;
  6444. }
  6445. struct ggml_tensor * ggml_map_custom1(
  6446. struct ggml_context * ctx,
  6447. struct ggml_tensor * a,
  6448. const ggml_custom1_op_t fun,
  6449. int n_tasks,
  6450. void * userdata) {
  6451. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6452. }
  6453. struct ggml_tensor * ggml_map_custom1_inplace(
  6454. struct ggml_context * ctx,
  6455. struct ggml_tensor * a,
  6456. const ggml_custom1_op_t fun,
  6457. int n_tasks,
  6458. void * userdata) {
  6459. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6460. }
  6461. // ggml_map_custom2
  6462. struct ggml_map_custom2_op_params {
  6463. ggml_custom2_op_t fun;
  6464. int n_tasks;
  6465. void * userdata;
  6466. };
  6467. static struct ggml_tensor * ggml_map_custom2_impl(
  6468. struct ggml_context * ctx,
  6469. struct ggml_tensor * a,
  6470. struct ggml_tensor * b,
  6471. const ggml_custom2_op_t fun,
  6472. int n_tasks,
  6473. void * userdata,
  6474. bool inplace) {
  6475. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6476. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6477. struct ggml_map_custom2_op_params params = {
  6478. /*.fun =*/ fun,
  6479. /*.n_tasks =*/ n_tasks,
  6480. /*.userdata =*/ userdata
  6481. };
  6482. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6483. result->op = GGML_OP_MAP_CUSTOM2;
  6484. result->src[0] = a;
  6485. result->src[1] = b;
  6486. return result;
  6487. }
  6488. struct ggml_tensor * ggml_map_custom2(
  6489. struct ggml_context * ctx,
  6490. struct ggml_tensor * a,
  6491. struct ggml_tensor * b,
  6492. const ggml_custom2_op_t fun,
  6493. int n_tasks,
  6494. void * userdata) {
  6495. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6496. }
  6497. struct ggml_tensor * ggml_map_custom2_inplace(
  6498. struct ggml_context * ctx,
  6499. struct ggml_tensor * a,
  6500. struct ggml_tensor * b,
  6501. const ggml_custom2_op_t fun,
  6502. int n_tasks,
  6503. void * userdata) {
  6504. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6505. }
  6506. // ggml_map_custom3
  6507. struct ggml_map_custom3_op_params {
  6508. ggml_custom3_op_t fun;
  6509. int n_tasks;
  6510. void * userdata;
  6511. };
  6512. static struct ggml_tensor * ggml_map_custom3_impl(
  6513. struct ggml_context * ctx,
  6514. struct ggml_tensor * a,
  6515. struct ggml_tensor * b,
  6516. struct ggml_tensor * c,
  6517. const ggml_custom3_op_t fun,
  6518. int n_tasks,
  6519. void * userdata,
  6520. bool inplace) {
  6521. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6522. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6523. struct ggml_map_custom3_op_params params = {
  6524. /*.fun =*/ fun,
  6525. /*.n_tasks =*/ n_tasks,
  6526. /*.userdata =*/ userdata
  6527. };
  6528. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6529. result->op = GGML_OP_MAP_CUSTOM3;
  6530. result->src[0] = a;
  6531. result->src[1] = b;
  6532. result->src[2] = c;
  6533. return result;
  6534. }
  6535. struct ggml_tensor * ggml_map_custom3(
  6536. struct ggml_context * ctx,
  6537. struct ggml_tensor * a,
  6538. struct ggml_tensor * b,
  6539. struct ggml_tensor * c,
  6540. const ggml_custom3_op_t fun,
  6541. int n_tasks,
  6542. void * userdata) {
  6543. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6544. }
  6545. struct ggml_tensor * ggml_map_custom3_inplace(
  6546. struct ggml_context * ctx,
  6547. struct ggml_tensor * a,
  6548. struct ggml_tensor * b,
  6549. struct ggml_tensor * c,
  6550. const ggml_custom3_op_t fun,
  6551. int n_tasks,
  6552. void * userdata) {
  6553. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6554. }
  6555. // ggml_cross_entropy_loss
  6556. struct ggml_tensor * ggml_cross_entropy_loss(
  6557. struct ggml_context * ctx,
  6558. struct ggml_tensor * a,
  6559. struct ggml_tensor * b) {
  6560. GGML_ASSERT(ggml_are_same_shape(a, b));
  6561. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6562. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6563. result->src[0] = a;
  6564. result->src[1] = b;
  6565. return result;
  6566. }
  6567. // ggml_cross_entropy_loss_back
  6568. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6569. struct ggml_context * ctx,
  6570. struct ggml_tensor * a,
  6571. struct ggml_tensor * b,
  6572. struct ggml_tensor * c) {
  6573. GGML_ASSERT(ggml_are_same_shape(a, b));
  6574. GGML_ASSERT(ggml_is_scalar(c));
  6575. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6576. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6577. result->src[0] = a;
  6578. result->src[1] = b;
  6579. result->src[2] = c;
  6580. return result;
  6581. }
  6582. // opt_step_adamw
  6583. struct ggml_tensor * ggml_opt_step_adamw(
  6584. struct ggml_context * ctx,
  6585. struct ggml_tensor * a,
  6586. struct ggml_tensor * grad,
  6587. float alpha,
  6588. float beta1,
  6589. float beta2,
  6590. float eps,
  6591. float wd) {
  6592. GGML_ASSERT(a->flags & GGML_TENSOR_FLAG_PARAM);
  6593. GGML_ASSERT(ggml_are_same_shape(a, grad));
  6594. GGML_ASSERT(alpha > 0.0f);
  6595. GGML_ASSERT(beta1 >= 0.0f && beta1 <= 1.0f);
  6596. GGML_ASSERT(beta2 >= 0.0f && beta2 <= 1.0f);
  6597. GGML_ASSERT(eps >= 0.0f);
  6598. GGML_ASSERT(wd >= 0.0f && wd <= 1.0f);
  6599. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  6600. const int64_t iter = 1;
  6601. memcpy(&result->op_params[0], &iter, sizeof(int64_t));
  6602. ggml_set_op_params_f32(result, 2, alpha);
  6603. ggml_set_op_params_f32(result, 3, beta1);
  6604. ggml_set_op_params_f32(result, 4, beta2);
  6605. ggml_set_op_params_f32(result, 5, eps);
  6606. ggml_set_op_params_f32(result, 6, wd);
  6607. result->op = GGML_OP_OPT_STEP_ADAMW;
  6608. result->src[0] = a;
  6609. result->src[1] = grad;
  6610. result->src[2] = ggml_dup_tensor(ctx, grad);
  6611. result->src[3] = ggml_dup_tensor(ctx, grad);
  6612. return result;
  6613. }
  6614. ////////////////////////////////////////////////////////////////////////////////
  6615. // ggml_compute_forward_dup
  6616. static void ggml_compute_forward_dup_same_cont(
  6617. const struct ggml_compute_params * params,
  6618. struct ggml_tensor * dst) {
  6619. const struct ggml_tensor * src0 = dst->src[0];
  6620. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6621. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6622. GGML_ASSERT(src0->type == dst->type);
  6623. const size_t nb0 = ggml_type_size(src0->type);
  6624. const int ith = params->ith; // thread index
  6625. const int nth = params->nth; // number of threads
  6626. // parallelize by elements
  6627. const int ne = ggml_nelements(dst);
  6628. const int dr = (ne + nth - 1) / nth;
  6629. const int ie0 = dr * ith;
  6630. const int ie1 = MIN(ie0 + dr, ne);
  6631. if (ie0 < ie1) {
  6632. memcpy(
  6633. ((char *) dst->data + ie0*nb0),
  6634. ((char *) src0->data + ie0*nb0),
  6635. (ie1 - ie0) * nb0);
  6636. }
  6637. }
  6638. static void ggml_compute_forward_dup_f16(
  6639. const struct ggml_compute_params * params,
  6640. struct ggml_tensor * dst) {
  6641. const struct ggml_tensor * src0 = dst->src[0];
  6642. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6643. GGML_TENSOR_UNARY_OP_LOCALS
  6644. const int ith = params->ith; // thread index
  6645. const int nth = params->nth; // number of threads
  6646. // parallelize by rows
  6647. const int nr = ne01;
  6648. // number of rows per thread
  6649. const int dr = (nr + nth - 1) / nth;
  6650. // row range for this thread
  6651. const int ir0 = dr * ith;
  6652. const int ir1 = MIN(ir0 + dr, nr);
  6653. if (src0->type == dst->type &&
  6654. ne00 == ne0 &&
  6655. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6656. // copy by rows
  6657. const size_t rs = ne00*nb00;
  6658. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6659. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6660. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6661. memcpy(
  6662. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6663. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6664. rs);
  6665. }
  6666. }
  6667. }
  6668. return;
  6669. }
  6670. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6671. if (ggml_is_contiguous(dst)) {
  6672. if (nb00 == sizeof(ggml_fp16_t)) {
  6673. if (dst->type == GGML_TYPE_F16) {
  6674. size_t id = 0;
  6675. const size_t rs = ne00 * nb00;
  6676. char * dst_ptr = (char *) dst->data;
  6677. for (int i03 = 0; i03 < ne03; i03++) {
  6678. for (int i02 = 0; i02 < ne02; i02++) {
  6679. id += rs * ir0;
  6680. for (int i01 = ir0; i01 < ir1; i01++) {
  6681. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6682. memcpy(dst_ptr + id, src0_ptr, rs);
  6683. id += rs;
  6684. }
  6685. id += rs * (ne01 - ir1);
  6686. }
  6687. }
  6688. } else if (dst->type == GGML_TYPE_F32) {
  6689. size_t id = 0;
  6690. float * dst_ptr = (float *) dst->data;
  6691. for (int i03 = 0; i03 < ne03; i03++) {
  6692. for (int i02 = 0; i02 < ne02; i02++) {
  6693. id += ne00 * ir0;
  6694. for (int i01 = ir0; i01 < ir1; i01++) {
  6695. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6696. for (int i00 = 0; i00 < ne00; i00++) {
  6697. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6698. id++;
  6699. }
  6700. }
  6701. id += ne00 * (ne01 - ir1);
  6702. }
  6703. }
  6704. } else if (type_traits[dst->type].from_float) {
  6705. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6706. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6707. size_t id = 0;
  6708. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6709. char * dst_ptr = (char *) dst->data;
  6710. for (int i03 = 0; i03 < ne03; i03++) {
  6711. for (int i02 = 0; i02 < ne02; i02++) {
  6712. id += rs * ir0;
  6713. for (int i01 = ir0; i01 < ir1; i01++) {
  6714. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6715. for (int i00 = 0; i00 < ne00; i00++) {
  6716. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6717. }
  6718. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6719. id += rs;
  6720. }
  6721. id += rs * (ne01 - ir1);
  6722. }
  6723. }
  6724. } else {
  6725. GGML_ABORT("fatal error"); // TODO: implement
  6726. }
  6727. } else {
  6728. //printf("%s: this is not optimal - fix me\n", __func__);
  6729. if (dst->type == GGML_TYPE_F32) {
  6730. size_t id = 0;
  6731. float * dst_ptr = (float *) dst->data;
  6732. for (int i03 = 0; i03 < ne03; i03++) {
  6733. for (int i02 = 0; i02 < ne02; i02++) {
  6734. id += ne00 * ir0;
  6735. for (int i01 = ir0; i01 < ir1; i01++) {
  6736. for (int i00 = 0; i00 < ne00; i00++) {
  6737. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6738. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6739. id++;
  6740. }
  6741. }
  6742. id += ne00 * (ne01 - ir1);
  6743. }
  6744. }
  6745. } else if (dst->type == GGML_TYPE_F16) {
  6746. size_t id = 0;
  6747. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6748. for (int i03 = 0; i03 < ne03; i03++) {
  6749. for (int i02 = 0; i02 < ne02; i02++) {
  6750. id += ne00 * ir0;
  6751. for (int i01 = ir0; i01 < ir1; i01++) {
  6752. for (int i00 = 0; i00 < ne00; i00++) {
  6753. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6754. dst_ptr[id] = *src0_ptr;
  6755. id++;
  6756. }
  6757. }
  6758. id += ne00 * (ne01 - ir1);
  6759. }
  6760. }
  6761. } else {
  6762. GGML_ABORT("fatal error"); // TODO: implement
  6763. }
  6764. }
  6765. return;
  6766. }
  6767. // dst counters
  6768. int64_t i10 = 0;
  6769. int64_t i11 = 0;
  6770. int64_t i12 = 0;
  6771. int64_t i13 = 0;
  6772. if (dst->type == GGML_TYPE_F16) {
  6773. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6774. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6775. i10 += ne00 * ir0;
  6776. while (i10 >= ne0) {
  6777. i10 -= ne0;
  6778. if (++i11 == ne1) {
  6779. i11 = 0;
  6780. if (++i12 == ne2) {
  6781. i12 = 0;
  6782. if (++i13 == ne3) {
  6783. i13 = 0;
  6784. }
  6785. }
  6786. }
  6787. }
  6788. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6789. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6790. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6791. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6792. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6793. if (++i10 == ne00) {
  6794. i10 = 0;
  6795. if (++i11 == ne01) {
  6796. i11 = 0;
  6797. if (++i12 == ne02) {
  6798. i12 = 0;
  6799. if (++i13 == ne03) {
  6800. i13 = 0;
  6801. }
  6802. }
  6803. }
  6804. }
  6805. }
  6806. }
  6807. i10 += ne00 * (ne01 - ir1);
  6808. while (i10 >= ne0) {
  6809. i10 -= ne0;
  6810. if (++i11 == ne1) {
  6811. i11 = 0;
  6812. if (++i12 == ne2) {
  6813. i12 = 0;
  6814. if (++i13 == ne3) {
  6815. i13 = 0;
  6816. }
  6817. }
  6818. }
  6819. }
  6820. }
  6821. }
  6822. } else if (dst->type == GGML_TYPE_F32) {
  6823. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6824. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6825. i10 += ne00 * ir0;
  6826. while (i10 >= ne0) {
  6827. i10 -= ne0;
  6828. if (++i11 == ne1) {
  6829. i11 = 0;
  6830. if (++i12 == ne2) {
  6831. i12 = 0;
  6832. if (++i13 == ne3) {
  6833. i13 = 0;
  6834. }
  6835. }
  6836. }
  6837. }
  6838. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6839. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6840. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6841. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6842. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6843. if (++i10 == ne0) {
  6844. i10 = 0;
  6845. if (++i11 == ne1) {
  6846. i11 = 0;
  6847. if (++i12 == ne2) {
  6848. i12 = 0;
  6849. if (++i13 == ne3) {
  6850. i13 = 0;
  6851. }
  6852. }
  6853. }
  6854. }
  6855. }
  6856. }
  6857. i10 += ne00 * (ne01 - ir1);
  6858. while (i10 >= ne0) {
  6859. i10 -= ne0;
  6860. if (++i11 == ne1) {
  6861. i11 = 0;
  6862. if (++i12 == ne2) {
  6863. i12 = 0;
  6864. if (++i13 == ne3) {
  6865. i13 = 0;
  6866. }
  6867. }
  6868. }
  6869. }
  6870. }
  6871. }
  6872. } else {
  6873. GGML_ABORT("fatal error"); // TODO: implement
  6874. }
  6875. }
  6876. static void ggml_compute_forward_dup_bf16(
  6877. const struct ggml_compute_params * params,
  6878. struct ggml_tensor * dst) {
  6879. const struct ggml_tensor * src0 = dst->src[0];
  6880. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6881. GGML_TENSOR_UNARY_OP_LOCALS
  6882. const int ith = params->ith; // thread index
  6883. const int nth = params->nth; // number of threads
  6884. // parallelize by rows
  6885. const int nr = ne01;
  6886. // number of rows per thread
  6887. const int dr = (nr + nth - 1) / nth;
  6888. // row range for this thread
  6889. const int ir0 = dr * ith;
  6890. const int ir1 = MIN(ir0 + dr, nr);
  6891. if (src0->type == dst->type &&
  6892. ne00 == ne0 &&
  6893. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6894. // copy by rows
  6895. const size_t rs = ne00*nb00;
  6896. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6897. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6898. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6899. memcpy(
  6900. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6901. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6902. rs);
  6903. }
  6904. }
  6905. }
  6906. return;
  6907. }
  6908. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6909. if (ggml_is_contiguous(dst)) {
  6910. if (nb00 == sizeof(ggml_bf16_t)) {
  6911. if (dst->type == GGML_TYPE_BF16) {
  6912. size_t id = 0;
  6913. const size_t rs = ne00 * nb00;
  6914. char * dst_ptr = (char *) dst->data;
  6915. for (int i03 = 0; i03 < ne03; i03++) {
  6916. for (int i02 = 0; i02 < ne02; i02++) {
  6917. id += rs * ir0;
  6918. for (int i01 = ir0; i01 < ir1; i01++) {
  6919. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6920. memcpy(dst_ptr + id, src0_ptr, rs);
  6921. id += rs;
  6922. }
  6923. id += rs * (ne01 - ir1);
  6924. }
  6925. }
  6926. } else if (dst->type == GGML_TYPE_F16) {
  6927. size_t id = 0;
  6928. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6929. for (int i03 = 0; i03 < ne03; i03++) {
  6930. for (int i02 = 0; i02 < ne02; i02++) {
  6931. id += ne00 * ir0;
  6932. for (int i01 = ir0; i01 < ir1; i01++) {
  6933. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6934. for (int i00 = 0; i00 < ne00; i00++) {
  6935. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6936. id++;
  6937. }
  6938. }
  6939. id += ne00 * (ne01 - ir1);
  6940. }
  6941. }
  6942. } else if (dst->type == GGML_TYPE_F32) {
  6943. size_t id = 0;
  6944. float * dst_ptr = (float *) dst->data;
  6945. for (int i03 = 0; i03 < ne03; i03++) {
  6946. for (int i02 = 0; i02 < ne02; i02++) {
  6947. id += ne00 * ir0;
  6948. for (int i01 = ir0; i01 < ir1; i01++) {
  6949. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6950. for (int i00 = 0; i00 < ne00; i00++) {
  6951. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6952. id++;
  6953. }
  6954. }
  6955. id += ne00 * (ne01 - ir1);
  6956. }
  6957. }
  6958. } else if (type_traits[dst->type].from_float) {
  6959. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6960. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6961. size_t id = 0;
  6962. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6963. char * dst_ptr = (char *) dst->data;
  6964. for (int i03 = 0; i03 < ne03; i03++) {
  6965. for (int i02 = 0; i02 < ne02; i02++) {
  6966. id += rs * ir0;
  6967. for (int i01 = ir0; i01 < ir1; i01++) {
  6968. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6969. for (int i00 = 0; i00 < ne00; i00++) {
  6970. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6971. }
  6972. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6973. id += rs;
  6974. }
  6975. id += rs * (ne01 - ir1);
  6976. }
  6977. }
  6978. } else {
  6979. GGML_ABORT("fatal error"); // TODO: implement
  6980. }
  6981. } else {
  6982. //printf("%s: this is not optimal - fix me\n", __func__);
  6983. if (dst->type == GGML_TYPE_F32) {
  6984. size_t id = 0;
  6985. float * dst_ptr = (float *) dst->data;
  6986. for (int i03 = 0; i03 < ne03; i03++) {
  6987. for (int i02 = 0; i02 < ne02; i02++) {
  6988. id += ne00 * ir0;
  6989. for (int i01 = ir0; i01 < ir1; i01++) {
  6990. for (int i00 = 0; i00 < ne00; i00++) {
  6991. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6992. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6993. id++;
  6994. }
  6995. }
  6996. id += ne00 * (ne01 - ir1);
  6997. }
  6998. }
  6999. } else if (dst->type == GGML_TYPE_BF16) {
  7000. size_t id = 0;
  7001. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7002. for (int i03 = 0; i03 < ne03; i03++) {
  7003. for (int i02 = 0; i02 < ne02; i02++) {
  7004. id += ne00 * ir0;
  7005. for (int i01 = ir0; i01 < ir1; i01++) {
  7006. for (int i00 = 0; i00 < ne00; i00++) {
  7007. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7008. dst_ptr[id] = *src0_ptr;
  7009. id++;
  7010. }
  7011. }
  7012. id += ne00 * (ne01 - ir1);
  7013. }
  7014. }
  7015. } else if (dst->type == GGML_TYPE_F16) {
  7016. size_t id = 0;
  7017. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7018. for (int i03 = 0; i03 < ne03; i03++) {
  7019. for (int i02 = 0; i02 < ne02; i02++) {
  7020. id += ne00 * ir0;
  7021. for (int i01 = ir0; i01 < ir1; i01++) {
  7022. for (int i00 = 0; i00 < ne00; i00++) {
  7023. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7024. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  7025. id++;
  7026. }
  7027. }
  7028. id += ne00 * (ne01 - ir1);
  7029. }
  7030. }
  7031. } else {
  7032. GGML_ABORT("fatal error"); // TODO: implement
  7033. }
  7034. }
  7035. return;
  7036. }
  7037. // dst counters
  7038. int64_t i10 = 0;
  7039. int64_t i11 = 0;
  7040. int64_t i12 = 0;
  7041. int64_t i13 = 0;
  7042. if (dst->type == GGML_TYPE_BF16) {
  7043. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7044. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7045. i10 += ne00 * ir0;
  7046. while (i10 >= ne0) {
  7047. i10 -= ne0;
  7048. if (++i11 == ne1) {
  7049. i11 = 0;
  7050. if (++i12 == ne2) {
  7051. i12 = 0;
  7052. if (++i13 == ne3) {
  7053. i13 = 0;
  7054. }
  7055. }
  7056. }
  7057. }
  7058. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7059. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7060. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7061. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7062. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  7063. if (++i10 == ne00) {
  7064. i10 = 0;
  7065. if (++i11 == ne01) {
  7066. i11 = 0;
  7067. if (++i12 == ne02) {
  7068. i12 = 0;
  7069. if (++i13 == ne03) {
  7070. i13 = 0;
  7071. }
  7072. }
  7073. }
  7074. }
  7075. }
  7076. }
  7077. i10 += ne00 * (ne01 - ir1);
  7078. while (i10 >= ne0) {
  7079. i10 -= ne0;
  7080. if (++i11 == ne1) {
  7081. i11 = 0;
  7082. if (++i12 == ne2) {
  7083. i12 = 0;
  7084. if (++i13 == ne3) {
  7085. i13 = 0;
  7086. }
  7087. }
  7088. }
  7089. }
  7090. }
  7091. }
  7092. } else if (dst->type == GGML_TYPE_F16) {
  7093. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7094. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7095. i10 += ne00 * ir0;
  7096. while (i10 >= ne0) {
  7097. i10 -= ne0;
  7098. if (++i11 == ne1) {
  7099. i11 = 0;
  7100. if (++i12 == ne2) {
  7101. i12 = 0;
  7102. if (++i13 == ne3) {
  7103. i13 = 0;
  7104. }
  7105. }
  7106. }
  7107. }
  7108. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7109. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7110. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7111. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7112. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  7113. if (++i10 == ne0) {
  7114. i10 = 0;
  7115. if (++i11 == ne1) {
  7116. i11 = 0;
  7117. if (++i12 == ne2) {
  7118. i12 = 0;
  7119. if (++i13 == ne3) {
  7120. i13 = 0;
  7121. }
  7122. }
  7123. }
  7124. }
  7125. }
  7126. }
  7127. i10 += ne00 * (ne01 - ir1);
  7128. while (i10 >= ne0) {
  7129. i10 -= ne0;
  7130. if (++i11 == ne1) {
  7131. i11 = 0;
  7132. if (++i12 == ne2) {
  7133. i12 = 0;
  7134. if (++i13 == ne3) {
  7135. i13 = 0;
  7136. }
  7137. }
  7138. }
  7139. }
  7140. }
  7141. }
  7142. } else if (dst->type == GGML_TYPE_F32) {
  7143. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7144. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7145. i10 += ne00 * ir0;
  7146. while (i10 >= ne0) {
  7147. i10 -= ne0;
  7148. if (++i11 == ne1) {
  7149. i11 = 0;
  7150. if (++i12 == ne2) {
  7151. i12 = 0;
  7152. if (++i13 == ne3) {
  7153. i13 = 0;
  7154. }
  7155. }
  7156. }
  7157. }
  7158. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7159. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7160. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7161. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7162. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7163. if (++i10 == ne0) {
  7164. i10 = 0;
  7165. if (++i11 == ne1) {
  7166. i11 = 0;
  7167. if (++i12 == ne2) {
  7168. i12 = 0;
  7169. if (++i13 == ne3) {
  7170. i13 = 0;
  7171. }
  7172. }
  7173. }
  7174. }
  7175. }
  7176. }
  7177. i10 += ne00 * (ne01 - ir1);
  7178. while (i10 >= ne0) {
  7179. i10 -= ne0;
  7180. if (++i11 == ne1) {
  7181. i11 = 0;
  7182. if (++i12 == ne2) {
  7183. i12 = 0;
  7184. if (++i13 == ne3) {
  7185. i13 = 0;
  7186. }
  7187. }
  7188. }
  7189. }
  7190. }
  7191. }
  7192. } else {
  7193. GGML_ABORT("fatal error"); // TODO: implement
  7194. }
  7195. }
  7196. static void ggml_compute_forward_dup_f32(
  7197. const struct ggml_compute_params * params,
  7198. struct ggml_tensor * dst) {
  7199. const struct ggml_tensor * src0 = dst->src[0];
  7200. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7201. GGML_TENSOR_UNARY_OP_LOCALS
  7202. const int ith = params->ith; // thread index
  7203. const int nth = params->nth; // number of threads
  7204. // parallelize by rows
  7205. const int nr = ne01;
  7206. // number of rows per thread
  7207. const int dr = (nr + nth - 1) / nth;
  7208. // row range for this thread
  7209. const int ir0 = dr * ith;
  7210. const int ir1 = MIN(ir0 + dr, nr);
  7211. if (src0->type == dst->type &&
  7212. ne00 == ne0 &&
  7213. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7214. // copy by rows
  7215. const size_t rs = ne00*nb00;
  7216. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7217. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7218. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7219. memcpy(
  7220. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7221. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7222. rs);
  7223. }
  7224. }
  7225. }
  7226. return;
  7227. }
  7228. if (ggml_is_contiguous(dst)) {
  7229. // TODO: simplify
  7230. if (nb00 == sizeof(float)) {
  7231. if (dst->type == GGML_TYPE_F32) {
  7232. size_t id = 0;
  7233. const size_t rs = ne00 * nb00;
  7234. char * dst_ptr = (char *) dst->data;
  7235. for (int i03 = 0; i03 < ne03; i03++) {
  7236. for (int i02 = 0; i02 < ne02; i02++) {
  7237. id += rs * ir0;
  7238. for (int i01 = ir0; i01 < ir1; i01++) {
  7239. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7240. memcpy(dst_ptr + id, src0_ptr, rs);
  7241. id += rs;
  7242. }
  7243. id += rs * (ne01 - ir1);
  7244. }
  7245. }
  7246. } else if (type_traits[dst->type].from_float) {
  7247. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7248. size_t id = 0;
  7249. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7250. char * dst_ptr = (char *) dst->data;
  7251. for (int i03 = 0; i03 < ne03; i03++) {
  7252. for (int i02 = 0; i02 < ne02; i02++) {
  7253. id += rs * ir0;
  7254. for (int i01 = ir0; i01 < ir1; i01++) {
  7255. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7256. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7257. id += rs;
  7258. }
  7259. id += rs * (ne01 - ir1);
  7260. }
  7261. }
  7262. } else {
  7263. GGML_ABORT("fatal error"); // TODO: implement
  7264. }
  7265. } else {
  7266. //printf("%s: this is not optimal - fix me\n", __func__);
  7267. if (dst->type == GGML_TYPE_F32) {
  7268. size_t id = 0;
  7269. float * dst_ptr = (float *) dst->data;
  7270. for (int i03 = 0; i03 < ne03; i03++) {
  7271. for (int i02 = 0; i02 < ne02; i02++) {
  7272. id += ne00 * ir0;
  7273. for (int i01 = ir0; i01 < ir1; i01++) {
  7274. for (int i00 = 0; i00 < ne00; i00++) {
  7275. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7276. dst_ptr[id] = *src0_ptr;
  7277. id++;
  7278. }
  7279. }
  7280. id += ne00 * (ne01 - ir1);
  7281. }
  7282. }
  7283. } else if (dst->type == GGML_TYPE_F16) {
  7284. size_t id = 0;
  7285. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7286. for (int i03 = 0; i03 < ne03; i03++) {
  7287. for (int i02 = 0; i02 < ne02; i02++) {
  7288. id += ne00 * ir0;
  7289. for (int i01 = ir0; i01 < ir1; i01++) {
  7290. for (int i00 = 0; i00 < ne00; i00++) {
  7291. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7292. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7293. id++;
  7294. }
  7295. }
  7296. id += ne00 * (ne01 - ir1);
  7297. }
  7298. }
  7299. } else if (dst->type == GGML_TYPE_BF16) {
  7300. size_t id = 0;
  7301. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7302. for (int i03 = 0; i03 < ne03; i03++) {
  7303. for (int i02 = 0; i02 < ne02; i02++) {
  7304. id += ne00 * ir0;
  7305. for (int i01 = ir0; i01 < ir1; i01++) {
  7306. for (int i00 = 0; i00 < ne00; i00++) {
  7307. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7308. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7309. id++;
  7310. }
  7311. }
  7312. id += ne00 * (ne01 - ir1);
  7313. }
  7314. }
  7315. } else {
  7316. GGML_ABORT("fatal error"); // TODO: implement
  7317. }
  7318. }
  7319. return;
  7320. }
  7321. // dst counters
  7322. int64_t i10 = 0;
  7323. int64_t i11 = 0;
  7324. int64_t i12 = 0;
  7325. int64_t i13 = 0;
  7326. if (dst->type == GGML_TYPE_F32) {
  7327. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7328. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7329. i10 += ne00 * ir0;
  7330. while (i10 >= ne0) {
  7331. i10 -= ne0;
  7332. if (++i11 == ne1) {
  7333. i11 = 0;
  7334. if (++i12 == ne2) {
  7335. i12 = 0;
  7336. if (++i13 == ne3) {
  7337. i13 = 0;
  7338. }
  7339. }
  7340. }
  7341. }
  7342. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7343. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7344. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7345. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7346. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7347. if (++i10 == ne0) {
  7348. i10 = 0;
  7349. if (++i11 == ne1) {
  7350. i11 = 0;
  7351. if (++i12 == ne2) {
  7352. i12 = 0;
  7353. if (++i13 == ne3) {
  7354. i13 = 0;
  7355. }
  7356. }
  7357. }
  7358. }
  7359. }
  7360. }
  7361. i10 += ne00 * (ne01 - ir1);
  7362. while (i10 >= ne0) {
  7363. i10 -= ne0;
  7364. if (++i11 == ne1) {
  7365. i11 = 0;
  7366. if (++i12 == ne2) {
  7367. i12 = 0;
  7368. if (++i13 == ne3) {
  7369. i13 = 0;
  7370. }
  7371. }
  7372. }
  7373. }
  7374. }
  7375. }
  7376. } else if (dst->type == GGML_TYPE_F16) {
  7377. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7378. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7379. i10 += ne00 * ir0;
  7380. while (i10 >= ne0) {
  7381. i10 -= ne0;
  7382. if (++i11 == ne1) {
  7383. i11 = 0;
  7384. if (++i12 == ne2) {
  7385. i12 = 0;
  7386. if (++i13 == ne3) {
  7387. i13 = 0;
  7388. }
  7389. }
  7390. }
  7391. }
  7392. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7393. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7394. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7395. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7396. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7397. if (++i10 == ne0) {
  7398. i10 = 0;
  7399. if (++i11 == ne1) {
  7400. i11 = 0;
  7401. if (++i12 == ne2) {
  7402. i12 = 0;
  7403. if (++i13 == ne3) {
  7404. i13 = 0;
  7405. }
  7406. }
  7407. }
  7408. }
  7409. }
  7410. }
  7411. i10 += ne00 * (ne01 - ir1);
  7412. while (i10 >= ne0) {
  7413. i10 -= ne0;
  7414. if (++i11 == ne1) {
  7415. i11 = 0;
  7416. if (++i12 == ne2) {
  7417. i12 = 0;
  7418. if (++i13 == ne3) {
  7419. i13 = 0;
  7420. }
  7421. }
  7422. }
  7423. }
  7424. }
  7425. }
  7426. } else if (dst->type == GGML_TYPE_BF16) {
  7427. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7428. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7429. i10 += ne00 * ir0;
  7430. while (i10 >= ne0) {
  7431. i10 -= ne0;
  7432. if (++i11 == ne1) {
  7433. i11 = 0;
  7434. if (++i12 == ne2) {
  7435. i12 = 0;
  7436. if (++i13 == ne3) {
  7437. i13 = 0;
  7438. }
  7439. }
  7440. }
  7441. }
  7442. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7443. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7444. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7445. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7446. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7447. if (++i10 == ne0) {
  7448. i10 = 0;
  7449. if (++i11 == ne1) {
  7450. i11 = 0;
  7451. if (++i12 == ne2) {
  7452. i12 = 0;
  7453. if (++i13 == ne3) {
  7454. i13 = 0;
  7455. }
  7456. }
  7457. }
  7458. }
  7459. }
  7460. }
  7461. i10 += ne00 * (ne01 - ir1);
  7462. while (i10 >= ne0) {
  7463. i10 -= ne0;
  7464. if (++i11 == ne1) {
  7465. i11 = 0;
  7466. if (++i12 == ne2) {
  7467. i12 = 0;
  7468. if (++i13 == ne3) {
  7469. i13 = 0;
  7470. }
  7471. }
  7472. }
  7473. }
  7474. }
  7475. }
  7476. } else {
  7477. GGML_ABORT("fatal error"); // TODO: implement
  7478. }
  7479. }
  7480. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7481. static void ggml_compute_forward_dup_bytes(
  7482. const struct ggml_compute_params * params,
  7483. struct ggml_tensor * dst) {
  7484. const struct ggml_tensor * src0 = dst->src[0];
  7485. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7486. GGML_ASSERT(src0->type == dst->type);
  7487. GGML_TENSOR_UNARY_OP_LOCALS;
  7488. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7489. ggml_compute_forward_dup_same_cont(params, dst);
  7490. return;
  7491. }
  7492. const size_t type_size = ggml_type_size(src0->type);
  7493. const int ith = params->ith; // thread index
  7494. const int nth = params->nth; // number of threads
  7495. // parallelize by rows
  7496. const int nr = ne01;
  7497. // number of rows per thread
  7498. const int dr = (nr + nth - 1) / nth;
  7499. // row range for this thread
  7500. const int ir0 = dr * ith;
  7501. const int ir1 = MIN(ir0 + dr, nr);
  7502. if (src0->type == dst->type &&
  7503. ne00 == ne0 &&
  7504. nb00 == type_size && nb0 == type_size) {
  7505. // copy by rows
  7506. const size_t rs = ne00 * type_size;
  7507. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7508. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7509. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7510. memcpy(
  7511. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7512. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7513. rs);
  7514. }
  7515. }
  7516. }
  7517. return;
  7518. }
  7519. if (ggml_is_contiguous(dst)) {
  7520. size_t id = 0;
  7521. char * dst_ptr = (char *) dst->data;
  7522. const size_t rs = ne00 * type_size;
  7523. if (nb00 == type_size) {
  7524. // src0 is contigous on first dimension, copy by rows
  7525. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7526. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7527. id += rs * ir0;
  7528. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7529. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7530. memcpy(dst_ptr + id, src0_ptr, rs);
  7531. id += rs;
  7532. }
  7533. id += rs * (ne01 - ir1);
  7534. }
  7535. }
  7536. } else {
  7537. //printf("%s: this is not optimal - fix me\n", __func__);
  7538. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7539. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7540. id += rs * ir0;
  7541. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7542. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7543. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7544. memcpy(dst_ptr + id, src0_ptr, type_size);
  7545. id += type_size;
  7546. }
  7547. }
  7548. id += rs * (ne01 - ir1);
  7549. }
  7550. }
  7551. }
  7552. return;
  7553. }
  7554. // dst counters
  7555. int64_t i10 = 0;
  7556. int64_t i11 = 0;
  7557. int64_t i12 = 0;
  7558. int64_t i13 = 0;
  7559. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7560. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7561. i10 += ne00 * ir0;
  7562. while (i10 >= ne0) {
  7563. i10 -= ne0;
  7564. if (++i11 == ne1) {
  7565. i11 = 0;
  7566. if (++i12 == ne2) {
  7567. i12 = 0;
  7568. if (++i13 == ne3) {
  7569. i13 = 0;
  7570. }
  7571. }
  7572. }
  7573. }
  7574. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7575. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7576. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7577. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7578. memcpy(dst_ptr, src0_ptr, type_size);
  7579. if (++i10 == ne0) {
  7580. i10 = 0;
  7581. if (++i11 == ne1) {
  7582. i11 = 0;
  7583. if (++i12 == ne2) {
  7584. i12 = 0;
  7585. if (++i13 == ne3) {
  7586. i13 = 0;
  7587. }
  7588. }
  7589. }
  7590. }
  7591. }
  7592. }
  7593. i10 += ne00 * (ne01 - ir1);
  7594. while (i10 >= ne0) {
  7595. i10 -= ne0;
  7596. if (++i11 == ne1) {
  7597. i11 = 0;
  7598. if (++i12 == ne2) {
  7599. i12 = 0;
  7600. if (++i13 == ne3) {
  7601. i13 = 0;
  7602. }
  7603. }
  7604. }
  7605. }
  7606. }
  7607. }
  7608. }
  7609. static void ggml_compute_forward_dup(
  7610. const struct ggml_compute_params * params,
  7611. struct ggml_tensor * dst) {
  7612. const struct ggml_tensor * src0 = dst->src[0];
  7613. if (src0->type == dst->type) {
  7614. ggml_compute_forward_dup_bytes(params, dst);
  7615. return;
  7616. }
  7617. switch (src0->type) {
  7618. case GGML_TYPE_F16:
  7619. {
  7620. ggml_compute_forward_dup_f16(params, dst);
  7621. } break;
  7622. case GGML_TYPE_BF16:
  7623. {
  7624. ggml_compute_forward_dup_bf16(params, dst);
  7625. } break;
  7626. case GGML_TYPE_F32:
  7627. {
  7628. ggml_compute_forward_dup_f32(params, dst);
  7629. } break;
  7630. default:
  7631. {
  7632. GGML_ABORT("fatal error");
  7633. }
  7634. }
  7635. }
  7636. // ggml_compute_forward_add
  7637. static void ggml_compute_forward_add_f32(
  7638. const struct ggml_compute_params * params,
  7639. struct ggml_tensor * dst) {
  7640. const struct ggml_tensor * src0 = dst->src[0];
  7641. const struct ggml_tensor * src1 = dst->src[1];
  7642. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7643. const int ith = params->ith;
  7644. const int nth = params->nth;
  7645. const int nr = ggml_nrows(src0);
  7646. GGML_TENSOR_BINARY_OP_LOCALS
  7647. GGML_ASSERT( nb0 == sizeof(float));
  7648. GGML_ASSERT(nb00 == sizeof(float));
  7649. // rows per thread
  7650. const int dr = (nr + nth - 1)/nth;
  7651. // row range for this thread
  7652. const int ir0 = dr*ith;
  7653. const int ir1 = MIN(ir0 + dr, nr);
  7654. if (nb10 == sizeof(float)) {
  7655. for (int ir = ir0; ir < ir1; ++ir) {
  7656. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7657. const int64_t i03 = ir/(ne02*ne01);
  7658. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7659. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7660. const int64_t i13 = i03 % ne13;
  7661. const int64_t i12 = i02 % ne12;
  7662. const int64_t i11 = i01 % ne11;
  7663. const int64_t nr0 = ne00 / ne10;
  7664. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7665. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7666. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7667. for (int64_t r = 0; r < nr0; ++r) {
  7668. #ifdef GGML_USE_ACCELERATE
  7669. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7670. #else
  7671. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7672. #endif
  7673. }
  7674. }
  7675. } else {
  7676. // src1 is not contiguous
  7677. for (int ir = ir0; ir < ir1; ++ir) {
  7678. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7679. const int64_t i03 = ir/(ne02*ne01);
  7680. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7681. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7682. const int64_t i13 = i03 % ne13;
  7683. const int64_t i12 = i02 % ne12;
  7684. const int64_t i11 = i01 % ne11;
  7685. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7686. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7687. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7688. const int64_t i10 = i0 % ne10;
  7689. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7690. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7691. }
  7692. }
  7693. }
  7694. }
  7695. static void ggml_compute_forward_add_f16_f32(
  7696. const struct ggml_compute_params * params,
  7697. struct ggml_tensor * dst) {
  7698. const struct ggml_tensor * src0 = dst->src[0];
  7699. const struct ggml_tensor * src1 = dst->src[1];
  7700. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7701. const int ith = params->ith;
  7702. const int nth = params->nth;
  7703. const int nr = ggml_nrows(src0);
  7704. GGML_TENSOR_BINARY_OP_LOCALS
  7705. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7706. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7707. if (dst->type == GGML_TYPE_F32) {
  7708. GGML_ASSERT( nb0 == sizeof(float));
  7709. }
  7710. else {
  7711. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7712. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7713. }
  7714. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7715. // rows per thread
  7716. const int dr = (nr + nth - 1)/nth;
  7717. // row range for this thread
  7718. const int ir0 = dr*ith;
  7719. const int ir1 = MIN(ir0 + dr, nr);
  7720. if (nb10 == sizeof(float)) {
  7721. if (dst->type == GGML_TYPE_F16) {
  7722. for (int ir = ir0; ir < ir1; ++ir) {
  7723. // src0, src1 and dst are same shape => same indices
  7724. const int i3 = ir/(ne2*ne1);
  7725. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7726. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7727. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7728. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7729. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7730. for (int i = 0; i < ne0; i++) {
  7731. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7732. }
  7733. }
  7734. } else {
  7735. for (int ir = ir0; ir < ir1; ++ir) {
  7736. // src0, src1 and dst are same shape => same indices
  7737. const int i3 = ir/(ne2*ne1);
  7738. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7739. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7740. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7741. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7742. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7743. for (int i = 0; i < ne0; i++) {
  7744. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7745. }
  7746. }
  7747. }
  7748. }
  7749. else {
  7750. // src1 is not contiguous
  7751. GGML_ABORT("fatal error");
  7752. }
  7753. }
  7754. static void ggml_compute_forward_add_bf16_f32(
  7755. const struct ggml_compute_params * params,
  7756. struct ggml_tensor * dst) {
  7757. const struct ggml_tensor * src0 = dst->src[0];
  7758. const struct ggml_tensor * src1 = dst->src[1];
  7759. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7760. const int ith = params->ith;
  7761. const int nth = params->nth;
  7762. const int nr = ggml_nrows(src0);
  7763. GGML_TENSOR_BINARY_OP_LOCALS
  7764. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7765. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7766. if (dst->type == GGML_TYPE_F32) {
  7767. GGML_ASSERT( nb0 == sizeof(float));
  7768. }
  7769. else {
  7770. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7771. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7772. }
  7773. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7774. // rows per thread
  7775. const int dr = (nr + nth - 1)/nth;
  7776. // row range for this thread
  7777. const int ir0 = dr*ith;
  7778. const int ir1 = MIN(ir0 + dr, nr);
  7779. if (nb10 == sizeof(float)) {
  7780. if (dst->type == GGML_TYPE_BF16) {
  7781. for (int ir = ir0; ir < ir1; ++ir) {
  7782. // src0, src1 and dst are same shape => same indices
  7783. const int i3 = ir/(ne2*ne1);
  7784. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7785. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7786. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7787. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7788. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7789. for (int i = 0; i < ne0; i++) {
  7790. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7791. }
  7792. }
  7793. } else {
  7794. for (int ir = ir0; ir < ir1; ++ir) {
  7795. // src0, src1 and dst are same shape => same indices
  7796. const int i3 = ir/(ne2*ne1);
  7797. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7798. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7799. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7800. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7801. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7802. for (int i = 0; i < ne0; i++) {
  7803. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7804. }
  7805. }
  7806. }
  7807. }
  7808. else {
  7809. // src1 is not contiguous
  7810. GGML_ABORT("fatal error");
  7811. }
  7812. }
  7813. static void ggml_compute_forward_add_f16_f16(
  7814. const struct ggml_compute_params * params,
  7815. struct ggml_tensor * dst) {
  7816. const struct ggml_tensor * src0 = dst->src[0];
  7817. const struct ggml_tensor * src1 = dst->src[1];
  7818. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7819. const int ith = params->ith;
  7820. const int nth = params->nth;
  7821. const int nr = ggml_nrows(src0);
  7822. GGML_TENSOR_BINARY_OP_LOCALS
  7823. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7824. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7825. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7826. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7827. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7828. // rows per thread
  7829. const int dr = (nr + nth - 1)/nth;
  7830. // row range for this thread
  7831. const int ir0 = dr*ith;
  7832. const int ir1 = MIN(ir0 + dr, nr);
  7833. if (nb10 == sizeof(ggml_fp16_t)) {
  7834. for (int ir = ir0; ir < ir1; ++ir) {
  7835. // src0, src1 and dst are same shape => same indices
  7836. const int i3 = ir/(ne2*ne1);
  7837. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7838. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7839. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7840. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7841. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7842. for (int i = 0; i < ne0; i++) {
  7843. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7844. }
  7845. }
  7846. }
  7847. else {
  7848. // src1 is not contiguous
  7849. GGML_ABORT("fatal error");
  7850. }
  7851. }
  7852. static void ggml_compute_forward_add_bf16_bf16(
  7853. const struct ggml_compute_params * params,
  7854. struct ggml_tensor * dst) {
  7855. const struct ggml_tensor * src0 = dst->src[0];
  7856. const struct ggml_tensor * src1 = dst->src[1];
  7857. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7858. const int ith = params->ith;
  7859. const int nth = params->nth;
  7860. const int nr = ggml_nrows(src0);
  7861. GGML_TENSOR_BINARY_OP_LOCALS
  7862. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7863. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7864. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7865. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7866. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7867. // rows per thread
  7868. const int dr = (nr + nth - 1)/nth;
  7869. // row range for this thread
  7870. const int ir0 = dr*ith;
  7871. const int ir1 = MIN(ir0 + dr, nr);
  7872. if (nb10 == sizeof(ggml_bf16_t)) {
  7873. for (int ir = ir0; ir < ir1; ++ir) {
  7874. // src0, src1 and dst are same shape => same indices
  7875. const int i3 = ir/(ne2*ne1);
  7876. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7877. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7878. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7879. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7880. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7881. for (int i = 0; i < ne0; i++) {
  7882. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7883. }
  7884. }
  7885. }
  7886. else {
  7887. // src1 is not contiguous
  7888. GGML_ABORT("fatal error");
  7889. }
  7890. }
  7891. static void ggml_compute_forward_add_q_f32(
  7892. const struct ggml_compute_params * params,
  7893. struct ggml_tensor * dst) {
  7894. const struct ggml_tensor * src0 = dst->src[0];
  7895. const struct ggml_tensor * src1 = dst->src[1];
  7896. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7897. const int nr = ggml_nrows(src0);
  7898. GGML_TENSOR_BINARY_OP_LOCALS
  7899. const int ith = params->ith;
  7900. const int nth = params->nth;
  7901. const enum ggml_type type = src0->type;
  7902. const enum ggml_type dtype = dst->type;
  7903. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7904. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7905. // we don't support permuted src0 or src1
  7906. GGML_ASSERT(nb00 == ggml_type_size(type));
  7907. GGML_ASSERT(nb10 == sizeof(float));
  7908. // dst cannot be transposed or permuted
  7909. GGML_ASSERT(nb0 <= nb1);
  7910. GGML_ASSERT(nb1 <= nb2);
  7911. GGML_ASSERT(nb2 <= nb3);
  7912. GGML_ASSERT(ggml_is_quantized(src0->type));
  7913. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7914. // rows per thread
  7915. const int dr = (nr + nth - 1)/nth;
  7916. // row range for this thread
  7917. const int ir0 = dr*ith;
  7918. const int ir1 = MIN(ir0 + dr, nr);
  7919. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7920. for (int ir = ir0; ir < ir1; ++ir) {
  7921. // src0 indices
  7922. const int i03 = ir/(ne02*ne01);
  7923. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7924. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7925. // src1 and dst are same shape as src0 => same indices
  7926. const int i13 = i03;
  7927. const int i12 = i02;
  7928. const int i11 = i01;
  7929. const int i3 = i03;
  7930. const int i2 = i02;
  7931. const int i1 = i01;
  7932. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7933. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7934. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7935. assert(ne00 % 32 == 0);
  7936. // unquantize row from src0 to temp buffer
  7937. dequantize_row_q(src0_row, wdata, ne00);
  7938. // add src1
  7939. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7940. // quantize row to dst
  7941. if (quantize_row_q != NULL) {
  7942. quantize_row_q(wdata, dst_row, ne00);
  7943. } else {
  7944. memcpy(dst_row, wdata, ne0*nb0);
  7945. }
  7946. }
  7947. }
  7948. static void ggml_compute_forward_add(
  7949. const struct ggml_compute_params * params,
  7950. struct ggml_tensor * dst) {
  7951. const struct ggml_tensor * src0 = dst->src[0];
  7952. const struct ggml_tensor * src1 = dst->src[1];
  7953. switch (src0->type) {
  7954. case GGML_TYPE_F32:
  7955. {
  7956. if (src1->type == GGML_TYPE_F32) {
  7957. ggml_compute_forward_add_f32(params, dst);
  7958. }
  7959. else {
  7960. GGML_ABORT("fatal error");
  7961. }
  7962. } break;
  7963. case GGML_TYPE_F16:
  7964. {
  7965. if (src1->type == GGML_TYPE_F16) {
  7966. ggml_compute_forward_add_f16_f16(params, dst);
  7967. }
  7968. else if (src1->type == GGML_TYPE_F32) {
  7969. ggml_compute_forward_add_f16_f32(params, dst);
  7970. }
  7971. else {
  7972. GGML_ABORT("fatal error");
  7973. }
  7974. } break;
  7975. case GGML_TYPE_BF16:
  7976. {
  7977. if (src1->type == GGML_TYPE_BF16) {
  7978. ggml_compute_forward_add_bf16_bf16(params, dst);
  7979. }
  7980. else if (src1->type == GGML_TYPE_F32) {
  7981. ggml_compute_forward_add_bf16_f32(params, dst);
  7982. }
  7983. else {
  7984. GGML_ABORT("fatal error");
  7985. }
  7986. } break;
  7987. case GGML_TYPE_Q4_0:
  7988. case GGML_TYPE_Q4_1:
  7989. case GGML_TYPE_Q5_0:
  7990. case GGML_TYPE_Q5_1:
  7991. case GGML_TYPE_Q8_0:
  7992. case GGML_TYPE_Q2_K:
  7993. case GGML_TYPE_Q3_K:
  7994. case GGML_TYPE_Q4_K:
  7995. case GGML_TYPE_Q5_K:
  7996. case GGML_TYPE_Q6_K:
  7997. case GGML_TYPE_TQ1_0:
  7998. case GGML_TYPE_TQ2_0:
  7999. case GGML_TYPE_IQ2_XXS:
  8000. case GGML_TYPE_IQ2_XS:
  8001. case GGML_TYPE_IQ3_XXS:
  8002. case GGML_TYPE_IQ1_S:
  8003. case GGML_TYPE_IQ1_M:
  8004. case GGML_TYPE_IQ4_NL:
  8005. case GGML_TYPE_IQ4_XS:
  8006. case GGML_TYPE_IQ3_S:
  8007. case GGML_TYPE_IQ2_S:
  8008. case GGML_TYPE_Q4_0_4_4:
  8009. case GGML_TYPE_Q4_0_4_8:
  8010. case GGML_TYPE_Q4_0_8_8:
  8011. {
  8012. ggml_compute_forward_add_q_f32(params, dst);
  8013. } break;
  8014. default:
  8015. {
  8016. GGML_ABORT("fatal error");
  8017. }
  8018. }
  8019. }
  8020. // ggml_compute_forward_add1
  8021. static void ggml_compute_forward_add1_f32(
  8022. const struct ggml_compute_params * params,
  8023. struct ggml_tensor * dst) {
  8024. const struct ggml_tensor * src0 = dst->src[0];
  8025. const struct ggml_tensor * src1 = dst->src[1];
  8026. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8027. GGML_ASSERT(ggml_is_scalar(src1));
  8028. const int ith = params->ith;
  8029. const int nth = params->nth;
  8030. const int nr = ggml_nrows(src0);
  8031. GGML_TENSOR_UNARY_OP_LOCALS
  8032. GGML_ASSERT( nb0 == sizeof(float));
  8033. GGML_ASSERT(nb00 == sizeof(float));
  8034. // rows per thread
  8035. const int dr = (nr + nth - 1)/nth;
  8036. // row range for this thread
  8037. const int ir0 = dr*ith;
  8038. const int ir1 = MIN(ir0 + dr, nr);
  8039. for (int ir = ir0; ir < ir1; ++ir) {
  8040. // src0 and dst are same shape => same indices
  8041. const int i3 = ir/(ne2*ne1);
  8042. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8043. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8044. #ifdef GGML_USE_ACCELERATE
  8045. UNUSED(ggml_vec_add1_f32);
  8046. vDSP_vadd(
  8047. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8048. (float *) ((char *) src1->data), 0,
  8049. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8050. ne0);
  8051. #else
  8052. ggml_vec_add1_f32(ne0,
  8053. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8054. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8055. *(float *) src1->data);
  8056. #endif
  8057. }
  8058. }
  8059. static void ggml_compute_forward_add1_f16_f32(
  8060. const struct ggml_compute_params * params,
  8061. struct ggml_tensor * dst) {
  8062. const struct ggml_tensor * src0 = dst->src[0];
  8063. const struct ggml_tensor * src1 = dst->src[1];
  8064. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8065. GGML_ASSERT(ggml_is_scalar(src1));
  8066. // scalar to add
  8067. const float v = *(float *) src1->data;
  8068. const int ith = params->ith;
  8069. const int nth = params->nth;
  8070. const int nr = ggml_nrows(src0);
  8071. GGML_TENSOR_UNARY_OP_LOCALS
  8072. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8073. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8074. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8075. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8076. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8077. // rows per thread
  8078. const int dr = (nr + nth - 1)/nth;
  8079. // row range for this thread
  8080. const int ir0 = dr*ith;
  8081. const int ir1 = MIN(ir0 + dr, nr);
  8082. for (int ir = ir0; ir < ir1; ++ir) {
  8083. // src0 and dst are same shape => same indices
  8084. const int i3 = ir/(ne2*ne1);
  8085. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8086. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8087. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8088. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8089. for (int i = 0; i < ne0; i++) {
  8090. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8091. }
  8092. }
  8093. }
  8094. static void ggml_compute_forward_add1_f16_f16(
  8095. const struct ggml_compute_params * params,
  8096. struct ggml_tensor * dst) {
  8097. const struct ggml_tensor * src0 = dst->src[0];
  8098. const struct ggml_tensor * src1 = dst->src[1];
  8099. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8100. GGML_ASSERT(ggml_is_scalar(src1));
  8101. // scalar to add
  8102. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8103. const int ith = params->ith;
  8104. const int nth = params->nth;
  8105. const int nr = ggml_nrows(src0);
  8106. GGML_TENSOR_UNARY_OP_LOCALS
  8107. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8108. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8109. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8110. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8111. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8112. // rows per thread
  8113. const int dr = (nr + nth - 1)/nth;
  8114. // row range for this thread
  8115. const int ir0 = dr*ith;
  8116. const int ir1 = MIN(ir0 + dr, nr);
  8117. for (int ir = ir0; ir < ir1; ++ir) {
  8118. // src0 and dst are same shape => same indices
  8119. const int i3 = ir/(ne2*ne1);
  8120. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8121. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8122. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8123. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8124. for (int i = 0; i < ne0; i++) {
  8125. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8126. }
  8127. }
  8128. }
  8129. static void ggml_compute_forward_add1_q_f32(
  8130. const struct ggml_compute_params * params,
  8131. struct ggml_tensor * dst) {
  8132. const struct ggml_tensor * src0 = dst->src[0];
  8133. const struct ggml_tensor * src1 = dst->src[1];
  8134. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8135. GGML_ASSERT(ggml_is_scalar(src1));
  8136. // scalar to add
  8137. const float v = *(float *) src1->data;
  8138. const int ith = params->ith;
  8139. const int nth = params->nth;
  8140. const int nr = ggml_nrows(src0);
  8141. GGML_TENSOR_UNARY_OP_LOCALS
  8142. const enum ggml_type type = src0->type;
  8143. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8144. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8145. // we don't support permuted src0
  8146. GGML_ASSERT(nb00 == ggml_type_size(type));
  8147. // dst cannot be transposed or permuted
  8148. GGML_ASSERT(nb0 <= nb1);
  8149. GGML_ASSERT(nb1 <= nb2);
  8150. GGML_ASSERT(nb2 <= nb3);
  8151. GGML_ASSERT(ggml_is_quantized(src0->type));
  8152. GGML_ASSERT(dst->type == src0->type);
  8153. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8154. // rows per thread
  8155. const int dr = (nr + nth - 1)/nth;
  8156. // row range for this thread
  8157. const int ir0 = dr*ith;
  8158. const int ir1 = MIN(ir0 + dr, nr);
  8159. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8160. for (int ir = ir0; ir < ir1; ++ir) {
  8161. // src0 and dst are same shape => same indices
  8162. const int i3 = ir/(ne2*ne1);
  8163. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8164. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8165. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8166. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8167. assert(ne0 % 32 == 0);
  8168. // unquantize row from src0 to temp buffer
  8169. dequantize_row_q(src0_row, wdata, ne0);
  8170. // add src1
  8171. ggml_vec_acc1_f32(ne0, wdata, v);
  8172. // quantize row to dst
  8173. quantize_row_q(wdata, dst_row, ne0);
  8174. }
  8175. }
  8176. static void ggml_compute_forward_add1_bf16_f32(
  8177. const struct ggml_compute_params * params,
  8178. struct ggml_tensor * dst) {
  8179. const struct ggml_tensor * src0 = dst->src[0];
  8180. const struct ggml_tensor * src1 = dst->src[1];
  8181. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8182. GGML_ASSERT(ggml_is_scalar(src1));
  8183. // scalar to add
  8184. const float v = *(float *) src1->data;
  8185. const int ith = params->ith;
  8186. const int nth = params->nth;
  8187. const int nr = ggml_nrows(src0);
  8188. GGML_TENSOR_UNARY_OP_LOCALS
  8189. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8190. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8191. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8192. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8193. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8194. // rows per thread
  8195. const int dr = (nr + nth - 1)/nth;
  8196. // row range for this thread
  8197. const int ir0 = dr*ith;
  8198. const int ir1 = MIN(ir0 + dr, nr);
  8199. for (int ir = ir0; ir < ir1; ++ir) {
  8200. // src0 and dst are same shape => same indices
  8201. const int i3 = ir/(ne2*ne1);
  8202. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8203. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8204. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8205. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8206. for (int i = 0; i < ne0; i++) {
  8207. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8208. }
  8209. }
  8210. }
  8211. static void ggml_compute_forward_add1_bf16_bf16(
  8212. const struct ggml_compute_params * params,
  8213. struct ggml_tensor * dst) {
  8214. const struct ggml_tensor * src0 = dst->src[0];
  8215. const struct ggml_tensor * src1 = dst->src[1];
  8216. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8217. GGML_ASSERT(ggml_is_scalar(src1));
  8218. // scalar to add
  8219. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8220. const int ith = params->ith;
  8221. const int nth = params->nth;
  8222. const int nr = ggml_nrows(src0);
  8223. GGML_TENSOR_UNARY_OP_LOCALS
  8224. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8225. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8226. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8227. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8228. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8229. // rows per thread
  8230. const int dr = (nr + nth - 1)/nth;
  8231. // row range for this thread
  8232. const int ir0 = dr*ith;
  8233. const int ir1 = MIN(ir0 + dr, nr);
  8234. for (int ir = ir0; ir < ir1; ++ir) {
  8235. // src0 and dst are same shape => same indices
  8236. const int i3 = ir/(ne2*ne1);
  8237. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8238. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8239. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8240. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8241. for (int i = 0; i < ne0; i++) {
  8242. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8243. }
  8244. }
  8245. }
  8246. static void ggml_compute_forward_add1(
  8247. const struct ggml_compute_params * params,
  8248. struct ggml_tensor * dst) {
  8249. const struct ggml_tensor * src0 = dst->src[0];
  8250. const struct ggml_tensor * src1 = dst->src[1];
  8251. switch (src0->type) {
  8252. case GGML_TYPE_F32:
  8253. {
  8254. ggml_compute_forward_add1_f32(params, dst);
  8255. } break;
  8256. case GGML_TYPE_F16:
  8257. {
  8258. if (src1->type == GGML_TYPE_F16) {
  8259. ggml_compute_forward_add1_f16_f16(params, dst);
  8260. }
  8261. else if (src1->type == GGML_TYPE_F32) {
  8262. ggml_compute_forward_add1_f16_f32(params, dst);
  8263. }
  8264. else {
  8265. GGML_ABORT("fatal error");
  8266. }
  8267. } break;
  8268. case GGML_TYPE_BF16:
  8269. {
  8270. if (src1->type == GGML_TYPE_BF16) {
  8271. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8272. }
  8273. else if (src1->type == GGML_TYPE_F32) {
  8274. ggml_compute_forward_add1_bf16_f32(params, dst);
  8275. }
  8276. else {
  8277. GGML_ABORT("fatal error");
  8278. }
  8279. } break;
  8280. case GGML_TYPE_Q4_0:
  8281. case GGML_TYPE_Q4_1:
  8282. case GGML_TYPE_Q5_0:
  8283. case GGML_TYPE_Q5_1:
  8284. case GGML_TYPE_Q8_0:
  8285. case GGML_TYPE_Q8_1:
  8286. case GGML_TYPE_Q2_K:
  8287. case GGML_TYPE_Q3_K:
  8288. case GGML_TYPE_Q4_K:
  8289. case GGML_TYPE_Q5_K:
  8290. case GGML_TYPE_Q6_K:
  8291. case GGML_TYPE_TQ1_0:
  8292. case GGML_TYPE_TQ2_0:
  8293. case GGML_TYPE_IQ2_XXS:
  8294. case GGML_TYPE_IQ2_XS:
  8295. case GGML_TYPE_IQ3_XXS:
  8296. case GGML_TYPE_IQ1_S:
  8297. case GGML_TYPE_IQ1_M:
  8298. case GGML_TYPE_IQ4_NL:
  8299. case GGML_TYPE_IQ4_XS:
  8300. case GGML_TYPE_IQ3_S:
  8301. case GGML_TYPE_IQ2_S:
  8302. case GGML_TYPE_Q4_0_4_4:
  8303. case GGML_TYPE_Q4_0_4_8:
  8304. case GGML_TYPE_Q4_0_8_8:
  8305. {
  8306. ggml_compute_forward_add1_q_f32(params, dst);
  8307. } break;
  8308. default:
  8309. {
  8310. GGML_ABORT("fatal error");
  8311. }
  8312. }
  8313. }
  8314. // ggml_compute_forward_acc
  8315. static void ggml_compute_forward_acc_f32(
  8316. const struct ggml_compute_params * params,
  8317. struct ggml_tensor * dst) {
  8318. const struct ggml_tensor * src0 = dst->src[0];
  8319. const struct ggml_tensor * src1 = dst->src[1];
  8320. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8321. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8322. // view src0 and dst with these strides and data offset inbytes during acc
  8323. // nb0 is implicitly element_size because src0 and dst are contiguous
  8324. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8325. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8326. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8327. size_t offset = ((int32_t *) dst->op_params)[3];
  8328. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8329. if (!inplace) {
  8330. if (params->ith == 0) {
  8331. // memcpy needs to be synchronized across threads to avoid race conditions.
  8332. // => do it in INIT phase
  8333. memcpy(
  8334. ((char *) dst->data),
  8335. ((char *) src0->data),
  8336. ggml_nbytes(dst));
  8337. }
  8338. ggml_barrier(params->threadpool);
  8339. }
  8340. const int ith = params->ith;
  8341. const int nth = params->nth;
  8342. const int nr = ggml_nrows(src1);
  8343. const int nc = src1->ne[0];
  8344. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8345. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8346. // src0 and dst as viewed during acc
  8347. const size_t nb0 = ggml_element_size(src0);
  8348. const size_t nb00 = nb0;
  8349. const size_t nb01 = nb1;
  8350. const size_t nb02 = nb2;
  8351. const size_t nb03 = nb3;
  8352. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8353. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8354. GGML_ASSERT(nb10 == sizeof(float));
  8355. // rows per thread
  8356. const int dr = (nr + nth - 1)/nth;
  8357. // row range for this thread
  8358. const int ir0 = dr*ith;
  8359. const int ir1 = MIN(ir0 + dr, nr);
  8360. for (int ir = ir0; ir < ir1; ++ir) {
  8361. // src0 and dst are viewed with shape of src1 and offset
  8362. // => same indices
  8363. const int i3 = ir/(ne12*ne11);
  8364. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8365. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8366. #ifdef GGML_USE_ACCELERATE
  8367. vDSP_vadd(
  8368. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8369. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8370. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8371. #else
  8372. ggml_vec_add_f32(nc,
  8373. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8374. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8375. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8376. #endif
  8377. }
  8378. }
  8379. static void ggml_compute_forward_acc(
  8380. const struct ggml_compute_params * params,
  8381. struct ggml_tensor * dst) {
  8382. const struct ggml_tensor * src0 = dst->src[0];
  8383. switch (src0->type) {
  8384. case GGML_TYPE_F32:
  8385. {
  8386. ggml_compute_forward_acc_f32(params, dst);
  8387. } break;
  8388. case GGML_TYPE_F16:
  8389. case GGML_TYPE_BF16:
  8390. case GGML_TYPE_Q4_0:
  8391. case GGML_TYPE_Q4_1:
  8392. case GGML_TYPE_Q5_0:
  8393. case GGML_TYPE_Q5_1:
  8394. case GGML_TYPE_Q8_0:
  8395. case GGML_TYPE_Q8_1:
  8396. case GGML_TYPE_Q2_K:
  8397. case GGML_TYPE_Q3_K:
  8398. case GGML_TYPE_Q4_K:
  8399. case GGML_TYPE_Q5_K:
  8400. case GGML_TYPE_Q6_K:
  8401. case GGML_TYPE_TQ1_0:
  8402. case GGML_TYPE_TQ2_0:
  8403. case GGML_TYPE_IQ2_XXS:
  8404. case GGML_TYPE_IQ2_XS:
  8405. case GGML_TYPE_IQ3_XXS:
  8406. case GGML_TYPE_IQ1_S:
  8407. case GGML_TYPE_IQ1_M:
  8408. case GGML_TYPE_IQ4_NL:
  8409. case GGML_TYPE_IQ4_XS:
  8410. case GGML_TYPE_IQ3_S:
  8411. case GGML_TYPE_IQ2_S:
  8412. case GGML_TYPE_Q4_0_4_4:
  8413. case GGML_TYPE_Q4_0_4_8:
  8414. case GGML_TYPE_Q4_0_8_8:
  8415. default:
  8416. {
  8417. GGML_ABORT("fatal error");
  8418. }
  8419. }
  8420. }
  8421. // ggml_compute_forward_sub
  8422. static void ggml_compute_forward_sub_f32(
  8423. const struct ggml_compute_params * params,
  8424. struct ggml_tensor * dst) {
  8425. const struct ggml_tensor * src0 = dst->src[0];
  8426. const struct ggml_tensor * src1 = dst->src[1];
  8427. assert(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8428. const int ith = params->ith;
  8429. const int nth = params->nth;
  8430. const int nr = ggml_nrows(src0);
  8431. GGML_TENSOR_BINARY_OP_LOCALS
  8432. GGML_ASSERT( nb0 == sizeof(float));
  8433. GGML_ASSERT(nb00 == sizeof(float));
  8434. // rows per thread
  8435. const int dr = (nr + nth - 1)/nth;
  8436. // row range for this thread
  8437. const int ir0 = dr*ith;
  8438. const int ir1 = MIN(ir0 + dr, nr);
  8439. if (nb10 == sizeof(float)) {
  8440. for (int ir = ir0; ir < ir1; ++ir) {
  8441. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8442. const int64_t i03 = ir/(ne02*ne01);
  8443. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8444. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8445. const int64_t i13 = i03 % ne13;
  8446. const int64_t i12 = i02 % ne12;
  8447. const int64_t i11 = i01 % ne11;
  8448. const int64_t nr0 = ne00 / ne10;
  8449. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8450. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8451. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8452. for (int64_t r = 0; r < nr0; ++r) {
  8453. #ifdef GGML_USE_ACCELERATE
  8454. vDSP_vsub(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8455. #else
  8456. ggml_vec_sub_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8457. #endif
  8458. }
  8459. }
  8460. } else {
  8461. // src1 is not contiguous
  8462. for (int ir = ir0; ir < ir1; ++ir) {
  8463. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8464. const int64_t i03 = ir/(ne02*ne01);
  8465. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8466. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8467. const int64_t i13 = i03 % ne13;
  8468. const int64_t i12 = i02 % ne12;
  8469. const int64_t i11 = i01 % ne11;
  8470. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8471. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8472. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8473. const int64_t i10 = i0 % ne10;
  8474. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8475. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8476. }
  8477. }
  8478. }
  8479. }
  8480. static void ggml_compute_forward_sub(
  8481. const struct ggml_compute_params * params,
  8482. struct ggml_tensor * dst) {
  8483. const struct ggml_tensor * src0 = dst->src[0];
  8484. switch (src0->type) {
  8485. case GGML_TYPE_F32:
  8486. {
  8487. ggml_compute_forward_sub_f32(params, dst);
  8488. } break;
  8489. default:
  8490. {
  8491. GGML_ABORT("fatal error");
  8492. }
  8493. }
  8494. }
  8495. // ggml_compute_forward_mul
  8496. static void ggml_compute_forward_mul_f32(
  8497. const struct ggml_compute_params * params,
  8498. struct ggml_tensor * dst) {
  8499. const struct ggml_tensor * src0 = dst->src[0];
  8500. const struct ggml_tensor * src1 = dst->src[1];
  8501. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8502. const int ith = params->ith;
  8503. const int nth = params->nth;
  8504. const int64_t nr = ggml_nrows(src0);
  8505. GGML_TENSOR_BINARY_OP_LOCALS
  8506. GGML_ASSERT( nb0 == sizeof(float));
  8507. GGML_ASSERT(nb00 == sizeof(float));
  8508. if (nb10 == sizeof(float)) {
  8509. for (int64_t ir = ith; ir < nr; ir += nth) {
  8510. // src0 and dst are same shape => same indices
  8511. const int64_t i03 = ir/(ne02*ne01);
  8512. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8513. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8514. const int64_t i13 = i03 % ne13;
  8515. const int64_t i12 = i02 % ne12;
  8516. const int64_t i11 = i01 % ne11;
  8517. const int64_t nr0 = ne00 / ne10;
  8518. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8519. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8520. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8521. for (int64_t r = 0 ; r < nr0; ++r) {
  8522. #ifdef GGML_USE_ACCELERATE
  8523. UNUSED(ggml_vec_mul_f32);
  8524. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8525. #else
  8526. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8527. #endif
  8528. }
  8529. }
  8530. } else {
  8531. // src1 is not contiguous
  8532. for (int64_t ir = ith; ir < nr; ir += nth) {
  8533. // src0 and dst are same shape => same indices
  8534. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8535. const int64_t i03 = ir/(ne02*ne01);
  8536. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8537. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8538. const int64_t i13 = i03 % ne13;
  8539. const int64_t i12 = i02 % ne12;
  8540. const int64_t i11 = i01 % ne11;
  8541. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8542. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8543. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8544. const int64_t i10 = i0 % ne10;
  8545. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8546. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8547. }
  8548. }
  8549. }
  8550. }
  8551. static void ggml_compute_forward_mul(
  8552. const struct ggml_compute_params * params,
  8553. struct ggml_tensor * dst) {
  8554. const struct ggml_tensor * src0 = dst->src[0];
  8555. const struct ggml_tensor * src1 = dst->src[1];
  8556. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8557. switch (src0->type) {
  8558. case GGML_TYPE_F32:
  8559. {
  8560. ggml_compute_forward_mul_f32(params, dst);
  8561. } break;
  8562. default:
  8563. {
  8564. GGML_ABORT("fatal error");
  8565. }
  8566. }
  8567. }
  8568. // ggml_compute_forward_div
  8569. static void ggml_compute_forward_div_f32(
  8570. const struct ggml_compute_params * params,
  8571. struct ggml_tensor * dst) {
  8572. const struct ggml_tensor * src0 = dst->src[0];
  8573. const struct ggml_tensor * src1 = dst->src[1];
  8574. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8575. const int ith = params->ith;
  8576. const int nth = params->nth;
  8577. const int64_t nr = ggml_nrows(src0);
  8578. GGML_TENSOR_BINARY_OP_LOCALS
  8579. GGML_ASSERT( nb0 == sizeof(float));
  8580. GGML_ASSERT(nb00 == sizeof(float));
  8581. if (nb10 == sizeof(float)) {
  8582. for (int64_t ir = ith; ir < nr; ir += nth) {
  8583. // src0 and dst are same shape => same indices
  8584. const int64_t i03 = ir/(ne02*ne01);
  8585. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8586. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8587. const int64_t i13 = i03 % ne13;
  8588. const int64_t i12 = i02 % ne12;
  8589. const int64_t i11 = i01 % ne11;
  8590. const int64_t nr0 = ne00 / ne10;
  8591. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8592. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8593. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8594. for (int64_t r = 0; r < nr0; ++r) {
  8595. #ifdef GGML_USE_ACCELERATE
  8596. UNUSED(ggml_vec_div_f32);
  8597. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8598. #else
  8599. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8600. #endif
  8601. }
  8602. }
  8603. } else {
  8604. // src1 is not contiguous
  8605. for (int64_t ir = ith; ir < nr; ir += nth) {
  8606. // src0 and dst are same shape => same indices
  8607. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8608. const int64_t i03 = ir/(ne02*ne01);
  8609. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8610. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8611. const int64_t i13 = i03 % ne13;
  8612. const int64_t i12 = i02 % ne12;
  8613. const int64_t i11 = i01 % ne11;
  8614. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8615. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8616. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8617. const int64_t i10 = i0 % ne10;
  8618. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8619. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8620. }
  8621. }
  8622. }
  8623. }
  8624. static void ggml_compute_forward_div(
  8625. const struct ggml_compute_params * params,
  8626. struct ggml_tensor * dst) {
  8627. const struct ggml_tensor * src0 = dst->src[0];
  8628. switch (src0->type) {
  8629. case GGML_TYPE_F32:
  8630. {
  8631. ggml_compute_forward_div_f32(params, dst);
  8632. } break;
  8633. default:
  8634. {
  8635. GGML_ABORT("fatal error");
  8636. }
  8637. }
  8638. }
  8639. // ggml_compute_forward_sqr
  8640. static void ggml_compute_forward_sqr_f32(
  8641. const struct ggml_compute_params * params,
  8642. struct ggml_tensor * dst) {
  8643. const struct ggml_tensor * src0 = dst->src[0];
  8644. if (params->ith != 0) {
  8645. return;
  8646. }
  8647. assert(ggml_are_same_shape(src0, dst));
  8648. const int n = ggml_nrows(src0);
  8649. const int nc = src0->ne[0];
  8650. assert( dst->nb[0] == sizeof(float));
  8651. assert(src0->nb[0] == sizeof(float));
  8652. for (int i = 0; i < n; i++) {
  8653. ggml_vec_sqr_f32(nc,
  8654. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8655. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8656. }
  8657. }
  8658. static void ggml_compute_forward_sqr(
  8659. const struct ggml_compute_params * params,
  8660. struct ggml_tensor * dst) {
  8661. const struct ggml_tensor * src0 = dst->src[0];
  8662. switch (src0->type) {
  8663. case GGML_TYPE_F32:
  8664. {
  8665. ggml_compute_forward_sqr_f32(params, dst);
  8666. } break;
  8667. default:
  8668. {
  8669. GGML_ABORT("fatal error");
  8670. }
  8671. }
  8672. }
  8673. // ggml_compute_forward_sqrt
  8674. static void ggml_compute_forward_sqrt_f32(
  8675. const struct ggml_compute_params * params,
  8676. struct ggml_tensor * dst) {
  8677. const struct ggml_tensor * src0 = dst->src[0];
  8678. if (params->ith != 0) {
  8679. return;
  8680. }
  8681. assert(ggml_are_same_shape(src0, dst));
  8682. const int n = ggml_nrows(src0);
  8683. const int nc = src0->ne[0];
  8684. assert( dst->nb[0] == sizeof(float));
  8685. assert(src0->nb[0] == sizeof(float));
  8686. for (int i = 0; i < n; i++) {
  8687. ggml_vec_sqrt_f32(nc,
  8688. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8689. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8690. }
  8691. }
  8692. static void ggml_compute_forward_sqrt(
  8693. const struct ggml_compute_params * params,
  8694. struct ggml_tensor * dst) {
  8695. const struct ggml_tensor * src0 = dst->src[0];
  8696. switch (src0->type) {
  8697. case GGML_TYPE_F32:
  8698. {
  8699. ggml_compute_forward_sqrt_f32(params, dst);
  8700. } break;
  8701. default:
  8702. {
  8703. GGML_ABORT("fatal error");
  8704. }
  8705. }
  8706. }
  8707. // ggml_compute_forward_log
  8708. static void ggml_compute_forward_log_f32(
  8709. const struct ggml_compute_params * params,
  8710. struct ggml_tensor * dst) {
  8711. const struct ggml_tensor * src0 = dst->src[0];
  8712. if (params->ith != 0) {
  8713. return;
  8714. }
  8715. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8716. const int n = ggml_nrows(src0);
  8717. const int nc = src0->ne[0];
  8718. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8719. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8720. for (int i = 0; i < n; i++) {
  8721. ggml_vec_log_f32(nc,
  8722. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8723. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8724. }
  8725. }
  8726. static void ggml_compute_forward_log(
  8727. const struct ggml_compute_params * params,
  8728. struct ggml_tensor * dst) {
  8729. const struct ggml_tensor * src0 = dst->src[0];
  8730. switch (src0->type) {
  8731. case GGML_TYPE_F32:
  8732. {
  8733. ggml_compute_forward_log_f32(params, dst);
  8734. } break;
  8735. default:
  8736. {
  8737. GGML_ABORT("fatal error");
  8738. }
  8739. }
  8740. }
  8741. // ggml_compute_forward_sin
  8742. static void ggml_compute_forward_sin_f32(
  8743. const struct ggml_compute_params * params,
  8744. struct ggml_tensor * dst) {
  8745. const struct ggml_tensor * src0 = dst->src[0];
  8746. if (params->ith != 0) {
  8747. return;
  8748. }
  8749. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8750. const int n = ggml_nrows(src0);
  8751. const int nc = src0->ne[0];
  8752. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8753. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8754. for (int i = 0; i < n; i++) {
  8755. ggml_vec_sin_f32(nc,
  8756. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8757. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8758. }
  8759. }
  8760. static void ggml_compute_forward_sin(
  8761. const struct ggml_compute_params * params,
  8762. struct ggml_tensor * dst) {
  8763. const struct ggml_tensor * src0 = dst->src[0];
  8764. switch (src0->type) {
  8765. case GGML_TYPE_F32:
  8766. {
  8767. ggml_compute_forward_sin_f32(params, dst);
  8768. } break;
  8769. default:
  8770. {
  8771. GGML_ABORT("fatal error");
  8772. }
  8773. }
  8774. }
  8775. // ggml_compute_forward_cos
  8776. static void ggml_compute_forward_cos_f32(
  8777. const struct ggml_compute_params * params,
  8778. struct ggml_tensor * dst) {
  8779. const struct ggml_tensor * src0 = dst->src[0];
  8780. if (params->ith != 0) {
  8781. return;
  8782. }
  8783. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8784. const int n = ggml_nrows(src0);
  8785. const int nc = src0->ne[0];
  8786. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8787. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8788. for (int i = 0; i < n; i++) {
  8789. ggml_vec_cos_f32(nc,
  8790. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8791. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8792. }
  8793. }
  8794. static void ggml_compute_forward_cos(
  8795. const struct ggml_compute_params * params,
  8796. struct ggml_tensor * dst) {
  8797. const struct ggml_tensor * src0 = dst->src[0];
  8798. switch (src0->type) {
  8799. case GGML_TYPE_F32:
  8800. {
  8801. ggml_compute_forward_cos_f32(params, dst);
  8802. } break;
  8803. default:
  8804. {
  8805. GGML_ABORT("fatal error");
  8806. }
  8807. }
  8808. }
  8809. // ggml_compute_forward_sum
  8810. static void ggml_compute_forward_sum_f32(
  8811. const struct ggml_compute_params * params,
  8812. struct ggml_tensor * dst) {
  8813. const struct ggml_tensor * src0 = dst->src[0];
  8814. if (params->ith != 0) {
  8815. return;
  8816. }
  8817. assert(ggml_is_scalar(dst));
  8818. assert(src0->nb[0] == sizeof(float));
  8819. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8820. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8821. ggml_float sum = 0;
  8822. ggml_float row_sum = 0;
  8823. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8824. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8825. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8826. ggml_vec_sum_f32_ggf(ne00,
  8827. &row_sum,
  8828. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8829. sum += row_sum;
  8830. }
  8831. }
  8832. }
  8833. ((float *) dst->data)[0] = sum;
  8834. }
  8835. static void ggml_compute_forward_sum_f16(
  8836. const struct ggml_compute_params * params,
  8837. struct ggml_tensor * dst) {
  8838. const struct ggml_tensor * src0 = dst->src[0];
  8839. if (params->ith != 0) {
  8840. return;
  8841. }
  8842. assert(ggml_is_scalar(dst));
  8843. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8844. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8845. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8846. float sum = 0;
  8847. float row_sum = 0;
  8848. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8849. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8850. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8851. ggml_vec_sum_f16_ggf(ne00,
  8852. &row_sum,
  8853. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8854. sum += row_sum;
  8855. }
  8856. }
  8857. }
  8858. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8859. }
  8860. static void ggml_compute_forward_sum_bf16(
  8861. const struct ggml_compute_params * params,
  8862. struct ggml_tensor * dst) {
  8863. const struct ggml_tensor * src0 = dst->src[0];
  8864. if (params->ith != 0) {
  8865. return;
  8866. }
  8867. assert(ggml_is_scalar(dst));
  8868. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8869. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8870. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8871. float sum = 0;
  8872. float row_sum = 0;
  8873. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8874. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8875. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8876. ggml_vec_sum_bf16_ggf(ne00,
  8877. &row_sum,
  8878. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8879. sum += row_sum;
  8880. }
  8881. }
  8882. }
  8883. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8884. }
  8885. static void ggml_compute_forward_sum(
  8886. const struct ggml_compute_params * params,
  8887. struct ggml_tensor * dst) {
  8888. const struct ggml_tensor * src0 = dst->src[0];
  8889. switch (src0->type) {
  8890. case GGML_TYPE_F32:
  8891. {
  8892. ggml_compute_forward_sum_f32(params, dst);
  8893. } break;
  8894. case GGML_TYPE_F16:
  8895. {
  8896. ggml_compute_forward_sum_f16(params, dst);
  8897. } break;
  8898. case GGML_TYPE_BF16:
  8899. {
  8900. ggml_compute_forward_sum_bf16(params, dst);
  8901. } break;
  8902. default:
  8903. {
  8904. GGML_ABORT("fatal error");
  8905. }
  8906. }
  8907. }
  8908. // ggml_compute_forward_sum_rows
  8909. static void ggml_compute_forward_sum_rows_f32(
  8910. const struct ggml_compute_params * params,
  8911. struct ggml_tensor * dst) {
  8912. const struct ggml_tensor * src0 = dst->src[0];
  8913. if (params->ith != 0) {
  8914. return;
  8915. }
  8916. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8917. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8918. GGML_TENSOR_UNARY_OP_LOCALS
  8919. GGML_ASSERT(ne0 == 1);
  8920. GGML_ASSERT(ne1 == ne01);
  8921. GGML_ASSERT(ne2 == ne02);
  8922. GGML_ASSERT(ne3 == ne03);
  8923. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8924. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8925. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8926. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8927. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8928. float row_sum = 0;
  8929. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8930. dst_row[0] = row_sum;
  8931. }
  8932. }
  8933. }
  8934. }
  8935. static void ggml_compute_forward_sum_rows(
  8936. const struct ggml_compute_params * params,
  8937. struct ggml_tensor * dst) {
  8938. const struct ggml_tensor * src0 = dst->src[0];
  8939. switch (src0->type) {
  8940. case GGML_TYPE_F32:
  8941. {
  8942. ggml_compute_forward_sum_rows_f32(params, dst);
  8943. } break;
  8944. default:
  8945. {
  8946. GGML_ABORT("fatal error");
  8947. }
  8948. }
  8949. }
  8950. // ggml_compute_forward_mean
  8951. static void ggml_compute_forward_mean_f32(
  8952. const struct ggml_compute_params * params,
  8953. struct ggml_tensor * dst) {
  8954. const struct ggml_tensor * src0 = dst->src[0];
  8955. if (params->ith != 0) {
  8956. return;
  8957. }
  8958. assert(src0->nb[0] == sizeof(float));
  8959. GGML_TENSOR_UNARY_OP_LOCALS
  8960. assert(ne0 == 1);
  8961. assert(ne1 == ne01);
  8962. assert(ne2 == ne02);
  8963. assert(ne3 == ne03);
  8964. UNUSED(ne0);
  8965. UNUSED(ne1);
  8966. UNUSED(ne2);
  8967. UNUSED(ne3);
  8968. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8969. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8970. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8971. ggml_vec_sum_f32(ne00,
  8972. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8973. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8974. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8975. }
  8976. }
  8977. }
  8978. }
  8979. static void ggml_compute_forward_mean(
  8980. const struct ggml_compute_params * params,
  8981. struct ggml_tensor * dst) {
  8982. const struct ggml_tensor * src0 = dst->src[0];
  8983. switch (src0->type) {
  8984. case GGML_TYPE_F32:
  8985. {
  8986. ggml_compute_forward_mean_f32(params, dst);
  8987. } break;
  8988. default:
  8989. {
  8990. GGML_ABORT("fatal error");
  8991. }
  8992. }
  8993. }
  8994. // ggml_compute_forward_argmax
  8995. static void ggml_compute_forward_argmax_f32(
  8996. const struct ggml_compute_params * params,
  8997. struct ggml_tensor * dst) {
  8998. const struct ggml_tensor * src0 = dst->src[0];
  8999. if (params->ith != 0) {
  9000. return;
  9001. }
  9002. assert(src0->nb[0] == sizeof(float));
  9003. assert(dst->nb[0] == sizeof(float));
  9004. const int64_t ne00 = src0->ne[0];
  9005. const int64_t ne01 = src0->ne[1];
  9006. const size_t nb01 = src0->nb[1];
  9007. const size_t nb0 = dst->nb[0];
  9008. for (int64_t i1 = 0; i1 < ne01; i1++) {
  9009. float * src = (float *) ((char *) src0->data + i1*nb01);
  9010. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  9011. int v = 0;
  9012. ggml_vec_argmax_f32(ne00, &v, src);
  9013. dst_[0] = v;
  9014. }
  9015. }
  9016. static void ggml_compute_forward_argmax(
  9017. const struct ggml_compute_params * params,
  9018. struct ggml_tensor * dst) {
  9019. const struct ggml_tensor * src0 = dst->src[0];
  9020. switch (src0->type) {
  9021. case GGML_TYPE_F32:
  9022. {
  9023. ggml_compute_forward_argmax_f32(params, dst);
  9024. } break;
  9025. default:
  9026. {
  9027. GGML_ABORT("fatal error");
  9028. }
  9029. }
  9030. }
  9031. // ggml_compute_forward_count_equal
  9032. static void ggml_compute_forward_count_equal_i32(
  9033. const struct ggml_compute_params * params,
  9034. struct ggml_tensor * dst) {
  9035. const struct ggml_tensor * src0 = dst->src[0];
  9036. const struct ggml_tensor * src1 = dst->src[1];
  9037. GGML_TENSOR_BINARY_OP_LOCALS;
  9038. GGML_ASSERT(src0->type == GGML_TYPE_I32);
  9039. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9040. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  9041. GGML_ASSERT(ggml_is_scalar(dst));
  9042. GGML_ASSERT(dst->type == GGML_TYPE_I64);
  9043. const int64_t nr = ggml_nrows(src0);
  9044. const int ith = params->ith;
  9045. const int nth = params->nth;
  9046. int64_t * sums = (int64_t *) params->wdata;
  9047. int64_t sum_thread = 0;
  9048. // rows per thread
  9049. const int64_t dr = (nr + nth - 1)/nth;
  9050. // row range for this thread
  9051. const int64_t ir0 = dr*ith;
  9052. const int64_t ir1 = MIN(ir0 + dr, nr);
  9053. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9054. const int64_t i03 = ir / (ne02*ne01);
  9055. const int64_t i02 = (ir - i03*ne03) / ne01;
  9056. const int64_t i01 = ir - i03*ne03 - i02*ne02;
  9057. const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
  9058. const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
  9059. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  9060. const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
  9061. const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
  9062. sum_thread += val0 == val1;
  9063. }
  9064. }
  9065. if (ith != 0) {
  9066. sums[ith] = sum_thread;
  9067. }
  9068. ggml_barrier(params->threadpool);
  9069. if (ith != 0) {
  9070. return;
  9071. }
  9072. for (int ith_other = 1; ith_other < nth; ++ith_other) {
  9073. sum_thread += sums[ith_other];
  9074. }
  9075. *((int64_t *) dst->data) = sum_thread;
  9076. }
  9077. static void ggml_compute_forward_count_equal(
  9078. const struct ggml_compute_params * params,
  9079. struct ggml_tensor * dst) {
  9080. const struct ggml_tensor * src0 = dst->src[0];
  9081. switch (src0->type) {
  9082. case GGML_TYPE_I32:
  9083. {
  9084. ggml_compute_forward_count_equal_i32(params, dst);
  9085. } break;
  9086. default:
  9087. {
  9088. GGML_ABORT("fatal error");
  9089. }
  9090. }
  9091. }
  9092. // ggml_compute_forward_repeat
  9093. static void ggml_compute_forward_repeat_f32(
  9094. const struct ggml_compute_params * params,
  9095. struct ggml_tensor * dst) {
  9096. const struct ggml_tensor * src0 = dst->src[0];
  9097. if (params->ith != 0) {
  9098. return;
  9099. }
  9100. GGML_ASSERT(ggml_can_repeat(src0, dst));
  9101. GGML_TENSOR_UNARY_OP_LOCALS
  9102. // guaranteed to be an integer due to the check in ggml_can_repeat
  9103. const int nr0 = (int)(ne0/ne00);
  9104. const int nr1 = (int)(ne1/ne01);
  9105. const int nr2 = (int)(ne2/ne02);
  9106. const int nr3 = (int)(ne3/ne03);
  9107. // TODO: support for transposed / permuted tensors
  9108. GGML_ASSERT(nb0 == sizeof(float));
  9109. GGML_ASSERT(nb00 == sizeof(float));
  9110. // TODO: maybe this is not optimal?
  9111. for (int i3 = 0; i3 < nr3; i3++) {
  9112. for (int k3 = 0; k3 < ne03; k3++) {
  9113. for (int i2 = 0; i2 < nr2; i2++) {
  9114. for (int k2 = 0; k2 < ne02; k2++) {
  9115. for (int i1 = 0; i1 < nr1; i1++) {
  9116. for (int k1 = 0; k1 < ne01; k1++) {
  9117. for (int i0 = 0; i0 < nr0; i0++) {
  9118. ggml_vec_cpy_f32(ne00,
  9119. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  9120. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  9121. }
  9122. }
  9123. }
  9124. }
  9125. }
  9126. }
  9127. }
  9128. }
  9129. static void ggml_compute_forward_repeat_f16(
  9130. const struct ggml_compute_params * params,
  9131. struct ggml_tensor * dst) {
  9132. const struct ggml_tensor * src0 = dst->src[0];
  9133. if (params->ith != 0) {
  9134. return;
  9135. }
  9136. GGML_ASSERT(ggml_can_repeat(src0, dst));
  9137. GGML_TENSOR_UNARY_OP_LOCALS
  9138. // guaranteed to be an integer due to the check in ggml_can_repeat
  9139. const int nr0 = (int)(ne0/ne00);
  9140. const int nr1 = (int)(ne1/ne01);
  9141. const int nr2 = (int)(ne2/ne02);
  9142. const int nr3 = (int)(ne3/ne03);
  9143. // TODO: support for transposed / permuted tensors
  9144. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9145. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9146. // TODO: maybe this is not optimal?
  9147. for (int i3 = 0; i3 < nr3; i3++) {
  9148. for (int k3 = 0; k3 < ne03; k3++) {
  9149. for (int i2 = 0; i2 < nr2; i2++) {
  9150. for (int k2 = 0; k2 < ne02; k2++) {
  9151. for (int i1 = 0; i1 < nr1; i1++) {
  9152. for (int k1 = 0; k1 < ne01; k1++) {
  9153. for (int i0 = 0; i0 < nr0; i0++) {
  9154. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  9155. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  9156. // ggml_vec_cpy_f16(ne00, y, x)
  9157. for (int i = 0; i < ne00; ++i) {
  9158. y[i] = x[i];
  9159. }
  9160. }
  9161. }
  9162. }
  9163. }
  9164. }
  9165. }
  9166. }
  9167. }
  9168. static void ggml_compute_forward_repeat(
  9169. const struct ggml_compute_params * params,
  9170. struct ggml_tensor * dst) {
  9171. const struct ggml_tensor * src0 = dst->src[0];
  9172. switch (src0->type) {
  9173. case GGML_TYPE_F16:
  9174. case GGML_TYPE_BF16:
  9175. case GGML_TYPE_I16:
  9176. {
  9177. ggml_compute_forward_repeat_f16(params, dst);
  9178. } break;
  9179. case GGML_TYPE_F32:
  9180. case GGML_TYPE_I32:
  9181. {
  9182. ggml_compute_forward_repeat_f32(params, dst);
  9183. } break;
  9184. default:
  9185. {
  9186. GGML_ABORT("fatal error");
  9187. }
  9188. }
  9189. }
  9190. // ggml_compute_forward_repeat_back
  9191. static void ggml_compute_forward_repeat_back_f32(
  9192. const struct ggml_compute_params * params,
  9193. struct ggml_tensor * dst) {
  9194. const struct ggml_tensor * src0 = dst->src[0];
  9195. if (params->ith != 0) {
  9196. return;
  9197. }
  9198. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9199. GGML_TENSOR_UNARY_OP_LOCALS
  9200. // guaranteed to be an integer due to the check in ggml_can_repeat
  9201. const int nr0 = (int)(ne00/ne0);
  9202. const int nr1 = (int)(ne01/ne1);
  9203. const int nr2 = (int)(ne02/ne2);
  9204. const int nr3 = (int)(ne03/ne3);
  9205. // TODO: support for transposed / permuted tensors
  9206. GGML_ASSERT(nb0 == sizeof(float));
  9207. GGML_ASSERT(nb00 == sizeof(float));
  9208. if (ggml_is_contiguous(dst)) {
  9209. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9210. } else {
  9211. for (int k3 = 0; k3 < ne3; k3++) {
  9212. for (int k2 = 0; k2 < ne2; k2++) {
  9213. for (int k1 = 0; k1 < ne1; k1++) {
  9214. ggml_vec_set_f32(ne0,
  9215. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9216. 0);
  9217. }
  9218. }
  9219. }
  9220. }
  9221. // TODO: maybe this is not optimal?
  9222. for (int i3 = 0; i3 < nr3; i3++) {
  9223. for (int k3 = 0; k3 < ne3; k3++) {
  9224. for (int i2 = 0; i2 < nr2; i2++) {
  9225. for (int k2 = 0; k2 < ne2; k2++) {
  9226. for (int i1 = 0; i1 < nr1; i1++) {
  9227. for (int k1 = 0; k1 < ne1; k1++) {
  9228. for (int i0 = 0; i0 < nr0; i0++) {
  9229. ggml_vec_acc_f32(ne0,
  9230. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9231. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9232. }
  9233. }
  9234. }
  9235. }
  9236. }
  9237. }
  9238. }
  9239. }
  9240. static void ggml_compute_forward_repeat_back(
  9241. const struct ggml_compute_params * params,
  9242. struct ggml_tensor * dst) {
  9243. const struct ggml_tensor * src0 = dst->src[0];
  9244. switch (src0->type) {
  9245. case GGML_TYPE_F32:
  9246. {
  9247. ggml_compute_forward_repeat_back_f32(params, dst);
  9248. } break;
  9249. default:
  9250. {
  9251. GGML_ABORT("fatal error");
  9252. }
  9253. }
  9254. }
  9255. // ggml_compute_forward_concat
  9256. static void ggml_compute_forward_concat_f32(
  9257. const struct ggml_compute_params * params,
  9258. struct ggml_tensor * dst) {
  9259. const struct ggml_tensor * src0 = dst->src[0];
  9260. const struct ggml_tensor * src1 = dst->src[1];
  9261. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9262. const int ith = params->ith;
  9263. const int nth = params->nth;
  9264. GGML_TENSOR_BINARY_OP_LOCALS
  9265. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9266. GGML_ASSERT(dim >= 0 && dim < 4);
  9267. int64_t o[4] = {0, 0, 0, 0};
  9268. o[dim] = src0->ne[dim];
  9269. const float * x;
  9270. // TODO: smarter multi-theading
  9271. for (int i3 = 0; i3 < ne3; i3++) {
  9272. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9273. for (int i1 = 0; i1 < ne1; i1++) {
  9274. for (int i0 = 0; i0 < ne0; i0++) {
  9275. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9276. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9277. } else {
  9278. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9279. }
  9280. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9281. *y = *x;
  9282. }
  9283. }
  9284. }
  9285. }
  9286. }
  9287. static void ggml_compute_forward_concat(
  9288. const struct ggml_compute_params * params,
  9289. struct ggml_tensor * dst) {
  9290. const struct ggml_tensor * src0 = dst->src[0];
  9291. switch (src0->type) {
  9292. case GGML_TYPE_F32:
  9293. case GGML_TYPE_I32:
  9294. {
  9295. ggml_compute_forward_concat_f32(params, dst);
  9296. } break;
  9297. default:
  9298. {
  9299. GGML_ABORT("fatal error");
  9300. }
  9301. }
  9302. }
  9303. // ggml_compute_forward_abs
  9304. static void ggml_compute_forward_abs_f32(
  9305. const struct ggml_compute_params * params,
  9306. struct ggml_tensor * dst) {
  9307. const struct ggml_tensor * src0 = dst->src[0];
  9308. if (params->ith != 0) {
  9309. return;
  9310. }
  9311. assert(ggml_is_contiguous_1(src0));
  9312. assert(ggml_is_contiguous_1(dst));
  9313. assert(ggml_are_same_shape(src0, dst));
  9314. const int n = ggml_nrows(src0);
  9315. const int nc = src0->ne[0];
  9316. for (int i = 0; i < n; i++) {
  9317. ggml_vec_abs_f32(nc,
  9318. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9319. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9320. }
  9321. }
  9322. static void ggml_compute_forward_abs(
  9323. const struct ggml_compute_params * params,
  9324. struct ggml_tensor * dst) {
  9325. const struct ggml_tensor * src0 = dst->src[0];
  9326. switch (src0->type) {
  9327. case GGML_TYPE_F32:
  9328. {
  9329. ggml_compute_forward_abs_f32(params, dst);
  9330. } break;
  9331. default:
  9332. {
  9333. GGML_ABORT("fatal error");
  9334. }
  9335. }
  9336. }
  9337. // ggml_compute_forward_sgn
  9338. static void ggml_compute_forward_sgn_f32(
  9339. const struct ggml_compute_params * params,
  9340. struct ggml_tensor * dst) {
  9341. const struct ggml_tensor * src0 = dst->src[0];
  9342. if (params->ith != 0) {
  9343. return;
  9344. }
  9345. assert(ggml_is_contiguous_1(src0));
  9346. assert(ggml_is_contiguous_1(dst));
  9347. assert(ggml_are_same_shape(src0, dst));
  9348. const int n = ggml_nrows(src0);
  9349. const int nc = src0->ne[0];
  9350. for (int i = 0; i < n; i++) {
  9351. ggml_vec_sgn_f32(nc,
  9352. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9353. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9354. }
  9355. }
  9356. static void ggml_compute_forward_sgn(
  9357. const struct ggml_compute_params * params,
  9358. struct ggml_tensor * dst) {
  9359. const struct ggml_tensor * src0 = dst->src[0];
  9360. switch (src0->type) {
  9361. case GGML_TYPE_F32:
  9362. {
  9363. ggml_compute_forward_sgn_f32(params, dst);
  9364. } break;
  9365. default:
  9366. {
  9367. GGML_ABORT("fatal error");
  9368. }
  9369. }
  9370. }
  9371. // ggml_compute_forward_neg
  9372. static void ggml_compute_forward_neg_f32(
  9373. const struct ggml_compute_params * params,
  9374. struct ggml_tensor * dst) {
  9375. const struct ggml_tensor * src0 = dst->src[0];
  9376. if (params->ith != 0) {
  9377. return;
  9378. }
  9379. assert(ggml_is_contiguous_1(src0));
  9380. assert(ggml_is_contiguous_1(dst));
  9381. assert(ggml_are_same_shape(src0, dst));
  9382. const int n = ggml_nrows(src0);
  9383. const int nc = src0->ne[0];
  9384. for (int i = 0; i < n; i++) {
  9385. ggml_vec_neg_f32(nc,
  9386. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9387. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9388. }
  9389. }
  9390. static void ggml_compute_forward_neg(
  9391. const struct ggml_compute_params * params,
  9392. struct ggml_tensor * dst) {
  9393. const struct ggml_tensor * src0 = dst->src[0];
  9394. switch (src0->type) {
  9395. case GGML_TYPE_F32:
  9396. {
  9397. ggml_compute_forward_neg_f32(params, dst);
  9398. } break;
  9399. default:
  9400. {
  9401. GGML_ABORT("fatal error");
  9402. }
  9403. }
  9404. }
  9405. // ggml_compute_forward_step
  9406. static void ggml_compute_forward_step_f32(
  9407. const struct ggml_compute_params * params,
  9408. struct ggml_tensor * dst) {
  9409. const struct ggml_tensor * src0 = dst->src[0];
  9410. if (params->ith != 0) {
  9411. return;
  9412. }
  9413. assert(ggml_is_contiguous_1(src0));
  9414. assert(ggml_is_contiguous_1(dst));
  9415. assert(ggml_are_same_shape(src0, dst));
  9416. const int n = ggml_nrows(src0);
  9417. const int nc = src0->ne[0];
  9418. for (int i = 0; i < n; i++) {
  9419. ggml_vec_step_f32(nc,
  9420. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9421. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9422. }
  9423. }
  9424. static void ggml_compute_forward_step(
  9425. const struct ggml_compute_params * params,
  9426. struct ggml_tensor * dst) {
  9427. const struct ggml_tensor * src0 = dst->src[0];
  9428. switch (src0->type) {
  9429. case GGML_TYPE_F32:
  9430. {
  9431. ggml_compute_forward_step_f32(params, dst);
  9432. } break;
  9433. default:
  9434. {
  9435. GGML_ABORT("fatal error");
  9436. }
  9437. }
  9438. }
  9439. // ggml_compute_forward_tanh
  9440. static void ggml_compute_forward_tanh_f32(
  9441. const struct ggml_compute_params * params,
  9442. struct ggml_tensor * dst) {
  9443. const struct ggml_tensor * src0 = dst->src[0];
  9444. if (params->ith != 0) {
  9445. return;
  9446. }
  9447. assert(ggml_is_contiguous_1(src0));
  9448. assert(ggml_is_contiguous_1(dst));
  9449. assert(ggml_are_same_shape(src0, dst));
  9450. const int n = ggml_nrows(src0);
  9451. const int nc = src0->ne[0];
  9452. for (int i = 0; i < n; i++) {
  9453. ggml_vec_tanh_f32(nc,
  9454. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9455. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9456. }
  9457. }
  9458. static void ggml_compute_forward_tanh(
  9459. const struct ggml_compute_params * params,
  9460. struct ggml_tensor * dst) {
  9461. const struct ggml_tensor * src0 = dst->src[0];
  9462. switch (src0->type) {
  9463. case GGML_TYPE_F32:
  9464. {
  9465. ggml_compute_forward_tanh_f32(params, dst);
  9466. } break;
  9467. default:
  9468. {
  9469. GGML_ABORT("fatal error");
  9470. }
  9471. }
  9472. }
  9473. // ggml_compute_forward_elu
  9474. static void ggml_compute_forward_elu_f32(
  9475. const struct ggml_compute_params * params,
  9476. struct ggml_tensor * dst) {
  9477. const struct ggml_tensor * src0 = dst->src[0];
  9478. if (params->ith != 0) {
  9479. return;
  9480. }
  9481. assert(ggml_is_contiguous_1(src0));
  9482. assert(ggml_is_contiguous_1(dst));
  9483. assert(ggml_are_same_shape(src0, dst));
  9484. const int n = ggml_nrows(src0);
  9485. const int nc = src0->ne[0];
  9486. for (int i = 0; i < n; i++) {
  9487. ggml_vec_elu_f32(nc,
  9488. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9489. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9490. }
  9491. }
  9492. static void ggml_compute_forward_elu(
  9493. const struct ggml_compute_params * params,
  9494. struct ggml_tensor * dst) {
  9495. const struct ggml_tensor * src0 = dst->src[0];
  9496. switch (src0->type) {
  9497. case GGML_TYPE_F32:
  9498. {
  9499. ggml_compute_forward_elu_f32(params, dst);
  9500. } break;
  9501. default:
  9502. {
  9503. GGML_ABORT("fatal error");
  9504. }
  9505. }
  9506. }
  9507. // ggml_compute_forward_relu
  9508. static void ggml_compute_forward_relu_f32(
  9509. const struct ggml_compute_params * params,
  9510. struct ggml_tensor * dst) {
  9511. const struct ggml_tensor * src0 = dst->src[0];
  9512. if (params->ith != 0) {
  9513. return;
  9514. }
  9515. assert(ggml_is_contiguous_1(src0));
  9516. assert(ggml_is_contiguous_1(dst));
  9517. assert(ggml_are_same_shape(src0, dst));
  9518. const int n = ggml_nrows(src0);
  9519. const int nc = src0->ne[0];
  9520. for (int i = 0; i < n; i++) {
  9521. ggml_vec_relu_f32(nc,
  9522. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9523. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9524. }
  9525. }
  9526. static void ggml_compute_forward_relu(
  9527. const struct ggml_compute_params * params,
  9528. struct ggml_tensor * dst) {
  9529. const struct ggml_tensor * src0 = dst->src[0];
  9530. switch (src0->type) {
  9531. case GGML_TYPE_F32:
  9532. {
  9533. ggml_compute_forward_relu_f32(params, dst);
  9534. } break;
  9535. default:
  9536. {
  9537. GGML_ABORT("fatal error");
  9538. }
  9539. }
  9540. }
  9541. // ggml_compute_forward_sigmoid
  9542. static void ggml_compute_forward_sigmoid_f32(
  9543. const struct ggml_compute_params * params,
  9544. struct ggml_tensor * dst) {
  9545. const struct ggml_tensor * src0 = dst->src[0];
  9546. if (params->ith != 0) {
  9547. return;
  9548. }
  9549. assert(ggml_is_contiguous_1(src0));
  9550. assert(ggml_is_contiguous_1(dst));
  9551. assert(ggml_are_same_shape(src0, dst));
  9552. const int n = ggml_nrows(src0);
  9553. const int nc = src0->ne[0];
  9554. for (int i = 0; i < n; i++) {
  9555. ggml_vec_sigmoid_f32(nc,
  9556. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9557. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9558. }
  9559. }
  9560. static void ggml_compute_forward_sigmoid(
  9561. const struct ggml_compute_params * params,
  9562. struct ggml_tensor * dst) {
  9563. const struct ggml_tensor * src0 = dst->src[0];
  9564. switch (src0->type) {
  9565. case GGML_TYPE_F32:
  9566. {
  9567. ggml_compute_forward_sigmoid_f32(params, dst);
  9568. } break;
  9569. default:
  9570. {
  9571. GGML_ABORT("fatal error");
  9572. }
  9573. }
  9574. }
  9575. // ggml_compute_forward_gelu
  9576. static void ggml_compute_forward_gelu_f32(
  9577. const struct ggml_compute_params * params,
  9578. struct ggml_tensor * dst) {
  9579. const struct ggml_tensor * src0 = dst->src[0];
  9580. assert(ggml_is_contiguous_1(src0));
  9581. assert(ggml_is_contiguous_1(dst));
  9582. assert(ggml_are_same_shape(src0, dst));
  9583. const int ith = params->ith;
  9584. const int nth = params->nth;
  9585. const int nc = src0->ne[0];
  9586. const int nr = ggml_nrows(src0);
  9587. // rows per thread
  9588. const int dr = (nr + nth - 1)/nth;
  9589. // row range for this thread
  9590. const int ir0 = dr*ith;
  9591. const int ir1 = MIN(ir0 + dr, nr);
  9592. for (int i1 = ir0; i1 < ir1; i1++) {
  9593. ggml_vec_gelu_f32(nc,
  9594. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9595. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9596. #ifndef NDEBUG
  9597. for (int k = 0; k < nc; k++) {
  9598. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9599. UNUSED(x);
  9600. assert(!isnan(x));
  9601. assert(!isinf(x));
  9602. }
  9603. #endif
  9604. }
  9605. }
  9606. static void ggml_compute_forward_gelu(
  9607. const struct ggml_compute_params * params,
  9608. struct ggml_tensor * dst) {
  9609. const struct ggml_tensor * src0 = dst->src[0];
  9610. switch (src0->type) {
  9611. case GGML_TYPE_F32:
  9612. {
  9613. ggml_compute_forward_gelu_f32(params, dst);
  9614. } break;
  9615. default:
  9616. {
  9617. GGML_ABORT("fatal error");
  9618. }
  9619. }
  9620. }
  9621. // ggml_compute_forward_gelu_quick
  9622. static void ggml_compute_forward_gelu_quick_f32(
  9623. const struct ggml_compute_params * params,
  9624. struct ggml_tensor * dst) {
  9625. const struct ggml_tensor * src0 = dst->src[0];
  9626. assert(ggml_is_contiguous_1(src0));
  9627. assert(ggml_is_contiguous_1(dst));
  9628. assert(ggml_are_same_shape(src0, dst));
  9629. const int ith = params->ith;
  9630. const int nth = params->nth;
  9631. const int nc = src0->ne[0];
  9632. const int nr = ggml_nrows(src0);
  9633. // rows per thread
  9634. const int dr = (nr + nth - 1)/nth;
  9635. // row range for this thread
  9636. const int ir0 = dr*ith;
  9637. const int ir1 = MIN(ir0 + dr, nr);
  9638. for (int i1 = ir0; i1 < ir1; i1++) {
  9639. ggml_vec_gelu_quick_f32(nc,
  9640. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9641. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9642. #ifndef NDEBUG
  9643. for (int k = 0; k < nc; k++) {
  9644. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9645. UNUSED(x);
  9646. assert(!isnan(x));
  9647. assert(!isinf(x));
  9648. }
  9649. #endif
  9650. }
  9651. }
  9652. static void ggml_compute_forward_gelu_quick(
  9653. const struct ggml_compute_params * params,
  9654. struct ggml_tensor * dst) {
  9655. const struct ggml_tensor * src0 = dst->src[0];
  9656. switch (src0->type) {
  9657. case GGML_TYPE_F32:
  9658. {
  9659. ggml_compute_forward_gelu_quick_f32(params, dst);
  9660. } break;
  9661. default:
  9662. {
  9663. GGML_ABORT("fatal error");
  9664. }
  9665. }
  9666. }
  9667. // ggml_compute_forward_silu
  9668. static void ggml_compute_forward_silu_f32(
  9669. const struct ggml_compute_params * params,
  9670. struct ggml_tensor * dst) {
  9671. const struct ggml_tensor * src0 = dst->src[0];
  9672. assert(ggml_is_contiguous_1(src0));
  9673. assert(ggml_is_contiguous_1(dst));
  9674. assert(ggml_are_same_shape(src0, dst));
  9675. const int ith = params->ith;
  9676. const int nth = params->nth;
  9677. const int nc = src0->ne[0];
  9678. const int nr = ggml_nrows(src0);
  9679. // rows per thread
  9680. const int dr = (nr + nth - 1)/nth;
  9681. // row range for this thread
  9682. const int ir0 = dr*ith;
  9683. const int ir1 = MIN(ir0 + dr, nr);
  9684. for (int i1 = ir0; i1 < ir1; i1++) {
  9685. ggml_vec_silu_f32(nc,
  9686. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9687. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9688. #ifndef NDEBUG
  9689. for (int k = 0; k < nc; k++) {
  9690. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9691. UNUSED(x);
  9692. assert(!isnan(x));
  9693. assert(!isinf(x));
  9694. }
  9695. #endif
  9696. }
  9697. }
  9698. static void ggml_compute_forward_silu(
  9699. const struct ggml_compute_params * params,
  9700. struct ggml_tensor * dst) {
  9701. const struct ggml_tensor * src0 = dst->src[0];
  9702. switch (src0->type) {
  9703. case GGML_TYPE_F32:
  9704. {
  9705. ggml_compute_forward_silu_f32(params, dst);
  9706. } break;
  9707. default:
  9708. {
  9709. GGML_ABORT("fatal error");
  9710. }
  9711. }
  9712. }
  9713. // ggml_compute_forward_leaky_relu
  9714. static void ggml_compute_forward_leaky_relu_f32(
  9715. const struct ggml_compute_params * params,
  9716. struct ggml_tensor * dst) {
  9717. const struct ggml_tensor * src0 = dst->src[0];
  9718. if (params->ith != 0) {
  9719. return;
  9720. }
  9721. assert(ggml_is_contiguous_1(src0));
  9722. assert(ggml_is_contiguous_1(dst));
  9723. assert(ggml_are_same_shape(src0, dst));
  9724. const int n = ggml_nrows(src0);
  9725. const int nc = src0->ne[0];
  9726. float negative_slope;
  9727. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9728. assert(dst->nb[0] == sizeof(float));
  9729. assert(src0->nb[0] == sizeof(float));
  9730. for (int i = 0; i < n; i++) {
  9731. ggml_vec_leaky_relu_f32(nc,
  9732. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9733. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9734. }
  9735. }
  9736. static void ggml_compute_forward_leaky_relu(
  9737. const struct ggml_compute_params * params,
  9738. struct ggml_tensor * dst) {
  9739. const struct ggml_tensor * src0 = dst->src[0];
  9740. switch (src0->type) {
  9741. case GGML_TYPE_F32:
  9742. {
  9743. ggml_compute_forward_leaky_relu_f32(params, dst);
  9744. } break;
  9745. default:
  9746. {
  9747. GGML_ABORT("fatal error");
  9748. }
  9749. }
  9750. }
  9751. // ggml_compute_forward_silu_back
  9752. static void ggml_compute_forward_silu_back_f32(
  9753. const struct ggml_compute_params * params,
  9754. struct ggml_tensor * dst) {
  9755. const struct ggml_tensor * src0 = dst->src[0];
  9756. const struct ggml_tensor * grad = dst->src[1];
  9757. assert(ggml_is_contiguous_1(grad));
  9758. assert(ggml_is_contiguous_1(src0));
  9759. assert(ggml_is_contiguous_1(dst));
  9760. assert(ggml_are_same_shape(src0, dst));
  9761. assert(ggml_are_same_shape(src0, grad));
  9762. const int ith = params->ith;
  9763. const int nth = params->nth;
  9764. const int nc = src0->ne[0];
  9765. const int nr = ggml_nrows(src0);
  9766. // rows per thread
  9767. const int dr = (nr + nth - 1)/nth;
  9768. // row range for this thread
  9769. const int ir0 = dr*ith;
  9770. const int ir1 = MIN(ir0 + dr, nr);
  9771. for (int i1 = ir0; i1 < ir1; i1++) {
  9772. ggml_vec_silu_backward_f32(nc,
  9773. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9774. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9775. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9776. #ifndef NDEBUG
  9777. for (int k = 0; k < nc; k++) {
  9778. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9779. UNUSED(x);
  9780. assert(!isnan(x));
  9781. assert(!isinf(x));
  9782. }
  9783. #endif
  9784. }
  9785. }
  9786. static void ggml_compute_forward_silu_back(
  9787. const struct ggml_compute_params * params,
  9788. struct ggml_tensor * dst) {
  9789. const struct ggml_tensor * src0 = dst->src[0];
  9790. switch (src0->type) {
  9791. case GGML_TYPE_F32:
  9792. {
  9793. ggml_compute_forward_silu_back_f32(params, dst);
  9794. } break;
  9795. default:
  9796. {
  9797. GGML_ABORT("fatal error");
  9798. }
  9799. }
  9800. }
  9801. static void ggml_compute_forward_hardswish_f32(
  9802. const struct ggml_compute_params * params,
  9803. struct ggml_tensor * dst) {
  9804. const struct ggml_tensor * src0 = dst->src[0];
  9805. if (params->ith != 0) {
  9806. return;
  9807. }
  9808. assert(ggml_is_contiguous_1(src0));
  9809. assert(ggml_is_contiguous_1(dst));
  9810. assert(ggml_are_same_shape(src0, dst));
  9811. const int n = ggml_nrows(src0);
  9812. const int nc = src0->ne[0];
  9813. for (int i = 0; i < n; i++) {
  9814. ggml_vec_hardswish_f32(nc,
  9815. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9816. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9817. }
  9818. }
  9819. static void ggml_compute_forward_hardswish(
  9820. const struct ggml_compute_params * params,
  9821. struct ggml_tensor * dst) {
  9822. const struct ggml_tensor * src0 = dst->src[0];
  9823. switch (src0->type) {
  9824. case GGML_TYPE_F32:
  9825. {
  9826. ggml_compute_forward_hardswish_f32(params, dst);
  9827. } break;
  9828. default:
  9829. {
  9830. GGML_ABORT("fatal error");
  9831. }
  9832. }
  9833. }
  9834. static void ggml_compute_forward_hardsigmoid_f32(
  9835. const struct ggml_compute_params * params,
  9836. struct ggml_tensor * dst) {
  9837. const struct ggml_tensor * src0 = dst->src[0];
  9838. if (params->ith != 0) {
  9839. return;
  9840. }
  9841. assert(ggml_is_contiguous_1(src0));
  9842. assert(ggml_is_contiguous_1(dst));
  9843. assert(ggml_are_same_shape(src0, dst));
  9844. const int n = ggml_nrows(src0);
  9845. const int nc = src0->ne[0];
  9846. for (int i = 0; i < n; i++) {
  9847. ggml_vec_hardsigmoid_f32(nc,
  9848. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9849. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9850. }
  9851. }
  9852. static void ggml_compute_forward_hardsigmoid(
  9853. const struct ggml_compute_params * params,
  9854. struct ggml_tensor * dst) {
  9855. const struct ggml_tensor * src0 = dst->src[0];
  9856. switch (src0->type) {
  9857. case GGML_TYPE_F32:
  9858. {
  9859. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9860. } break;
  9861. default:
  9862. {
  9863. GGML_ABORT("fatal error");
  9864. }
  9865. }
  9866. }
  9867. static void ggml_compute_forward_exp_f32(
  9868. const struct ggml_compute_params * params,
  9869. struct ggml_tensor * dst) {
  9870. const struct ggml_tensor * src0 = dst->src[0];
  9871. if (params->ith != 0) {
  9872. return;
  9873. }
  9874. assert(ggml_is_contiguous_1(src0));
  9875. assert(ggml_is_contiguous_1(dst));
  9876. assert(ggml_are_same_shape(src0, dst));
  9877. const int n = ggml_nrows(src0);
  9878. const int nc = src0->ne[0];
  9879. for (int i = 0; i < n; i++) {
  9880. ggml_vec_exp_f32(nc,
  9881. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9882. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9883. }
  9884. }
  9885. static void ggml_compute_forward_exp(
  9886. const struct ggml_compute_params * params,
  9887. struct ggml_tensor * dst) {
  9888. const struct ggml_tensor * src0 = dst->src[0];
  9889. switch (src0->type) {
  9890. case GGML_TYPE_F32:
  9891. {
  9892. ggml_compute_forward_exp_f32(params, dst);
  9893. } break;
  9894. default:
  9895. {
  9896. GGML_ABORT("fatal error");
  9897. }
  9898. }
  9899. }
  9900. // ggml_compute_forward_norm
  9901. static void ggml_compute_forward_norm_f32(
  9902. const struct ggml_compute_params * params,
  9903. struct ggml_tensor * dst) {
  9904. const struct ggml_tensor * src0 = dst->src[0];
  9905. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9906. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9907. const int ith = params->ith;
  9908. const int nth = params->nth;
  9909. GGML_TENSOR_UNARY_OP_LOCALS
  9910. float eps;
  9911. memcpy(&eps, dst->op_params, sizeof(float));
  9912. GGML_ASSERT(eps > 0.0f);
  9913. // TODO: optimize
  9914. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9915. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9916. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9917. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9918. ggml_float sum = 0.0;
  9919. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9920. sum += (ggml_float)x[i00];
  9921. }
  9922. float mean = sum/ne00;
  9923. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9924. ggml_float sum2 = 0.0;
  9925. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9926. float v = x[i00] - mean;
  9927. y[i00] = v;
  9928. sum2 += (ggml_float)(v*v);
  9929. }
  9930. float variance = sum2/ne00;
  9931. const float scale = 1.0f/sqrtf(variance + eps);
  9932. ggml_vec_scale_f32(ne00, y, scale);
  9933. }
  9934. }
  9935. }
  9936. }
  9937. static void ggml_compute_forward_norm(
  9938. const struct ggml_compute_params * params,
  9939. struct ggml_tensor * dst) {
  9940. const struct ggml_tensor * src0 = dst->src[0];
  9941. switch (src0->type) {
  9942. case GGML_TYPE_F32:
  9943. {
  9944. ggml_compute_forward_norm_f32(params, dst);
  9945. } break;
  9946. default:
  9947. {
  9948. GGML_ABORT("fatal error");
  9949. }
  9950. }
  9951. }
  9952. // ggml_compute_forward_group_rms_norm
  9953. static void ggml_compute_forward_rms_norm_f32(
  9954. const struct ggml_compute_params * params,
  9955. struct ggml_tensor * dst) {
  9956. const struct ggml_tensor * src0 = dst->src[0];
  9957. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9958. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9959. const int ith = params->ith;
  9960. const int nth = params->nth;
  9961. GGML_TENSOR_UNARY_OP_LOCALS
  9962. float eps;
  9963. memcpy(&eps, dst->op_params, sizeof(float));
  9964. GGML_ASSERT(eps > 0.0f);
  9965. // TODO: optimize
  9966. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9967. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9968. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9969. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9970. ggml_float sum = 0.0;
  9971. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9972. sum += (ggml_float)(x[i00] * x[i00]);
  9973. }
  9974. const float mean = sum/ne00;
  9975. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9976. memcpy(y, x, ne00 * sizeof(float));
  9977. // for (int i00 = 0; i00 < ne00; i00++) {
  9978. // y[i00] = x[i00];
  9979. // }
  9980. const float scale = 1.0f/sqrtf(mean + eps);
  9981. ggml_vec_scale_f32(ne00, y, scale);
  9982. }
  9983. }
  9984. }
  9985. }
  9986. static void ggml_compute_forward_rms_norm(
  9987. const struct ggml_compute_params * params,
  9988. struct ggml_tensor * dst) {
  9989. const struct ggml_tensor * src0 = dst->src[0];
  9990. switch (src0->type) {
  9991. case GGML_TYPE_F32:
  9992. {
  9993. ggml_compute_forward_rms_norm_f32(params, dst);
  9994. } break;
  9995. default:
  9996. {
  9997. GGML_ABORT("fatal error");
  9998. }
  9999. }
  10000. }
  10001. static void ggml_compute_forward_rms_norm_back_f32(
  10002. const struct ggml_compute_params * params,
  10003. struct ggml_tensor * dst) {
  10004. const struct ggml_tensor * src0 = dst->src[0];
  10005. const struct ggml_tensor * src1 = dst->src[1];
  10006. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  10007. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10008. const int ith = params->ith;
  10009. const int nth = params->nth;
  10010. GGML_TENSOR_BINARY_OP_LOCALS
  10011. float eps;
  10012. memcpy(&eps, dst->op_params, sizeof(float));
  10013. // TODO: optimize
  10014. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10015. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10016. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10017. // src1 is same shape as src0 => same indices
  10018. const int64_t i11 = i01;
  10019. const int64_t i12 = i02;
  10020. const int64_t i13 = i03;
  10021. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  10022. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  10023. ggml_float sum_xx = 0.0;
  10024. ggml_float sum_xdz = 0.0;
  10025. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10026. sum_xx += (ggml_float)(x[i00] * x[i00]);
  10027. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  10028. }
  10029. //const float mean = (float)(sum_xx)/ne00;
  10030. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  10031. const float sum_eps = (float)(sum_xx) + eps*ne00;
  10032. //const float mean_xdz = (float)(sum_xdz)/ne00;
  10033. // we could cache rms from forward pass to improve performance.
  10034. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  10035. //const float rms = sqrtf(mean_eps);
  10036. const float rrms = 1.0f / sqrtf(mean_eps);
  10037. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  10038. {
  10039. // z = rms_norm(x)
  10040. //
  10041. // rms_norm(src0) =
  10042. // scale(
  10043. // src0,
  10044. // div(
  10045. // 1,
  10046. // sqrt(
  10047. // add(
  10048. // scale(
  10049. // sum(
  10050. // sqr(
  10051. // src0)),
  10052. // (1.0/N)),
  10053. // eps))));
  10054. // postorder:
  10055. // ## op args grad
  10056. // 00 param src0 grad[#00]
  10057. // 01 const 1
  10058. // 02 sqr (#00) grad[#02]
  10059. // 03 sum (#02) grad[#03]
  10060. // 04 const 1/N
  10061. // 05 scale (#03, #04) grad[#05]
  10062. // 06 const eps
  10063. // 07 add (#05, #06) grad[#07]
  10064. // 08 sqrt (#07) grad[#08]
  10065. // 09 div (#01,#08) grad[#09]
  10066. // 10 scale (#00,#09) grad[#10]
  10067. //
  10068. // backward pass, given grad[#10]
  10069. // #10: scale
  10070. // grad[#00] += scale(grad[#10],#09)
  10071. // grad[#09] += sum(mul(grad[#10],#00))
  10072. // #09: div
  10073. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  10074. // #08: sqrt
  10075. // grad[#07] += mul(grad[#08], div(0.5, #08))
  10076. // #07: add
  10077. // grad[#05] += grad[#07]
  10078. // #05: scale
  10079. // grad[#03] += scale(grad[#05],#04)
  10080. // #03: sum
  10081. // grad[#02] += repeat(grad[#03], #02)
  10082. // #02:
  10083. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  10084. //
  10085. // substitute and simplify:
  10086. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  10087. // grad[#02] = repeat(grad[#03], #02)
  10088. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  10089. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  10090. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  10091. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  10092. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  10093. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  10094. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  10095. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  10096. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  10097. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  10098. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  10099. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  10100. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  10101. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  10102. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  10103. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  10104. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  10105. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  10106. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  10107. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  10108. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  10109. // a = b*c + d*e
  10110. // a = b*c*f/f + d*e*f/f
  10111. // a = (b*c*f + d*e*f)*(1/f)
  10112. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  10113. // a = (b + d*e/c)*c
  10114. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  10115. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  10116. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  10117. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  10118. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  10119. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  10120. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  10121. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  10122. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10123. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10124. }
  10125. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10126. // post-order:
  10127. // dx := x
  10128. // dx := scale(dx,-mean_xdz/mean_eps)
  10129. // dx := add(dx, dz)
  10130. // dx := scale(dx, rrms)
  10131. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  10132. ggml_vec_cpy_f32 (ne00, dx, x);
  10133. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  10134. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  10135. ggml_vec_acc_f32 (ne00, dx, dz);
  10136. ggml_vec_scale_f32(ne00, dx, rrms);
  10137. }
  10138. }
  10139. }
  10140. }
  10141. static void ggml_compute_forward_rms_norm_back(
  10142. const struct ggml_compute_params * params,
  10143. struct ggml_tensor * dst) {
  10144. const struct ggml_tensor * src0 = dst->src[0];
  10145. switch (src0->type) {
  10146. case GGML_TYPE_F32:
  10147. {
  10148. ggml_compute_forward_rms_norm_back_f32(params, dst);
  10149. } break;
  10150. default:
  10151. {
  10152. GGML_ABORT("fatal error");
  10153. }
  10154. }
  10155. }
  10156. // ggml_compute_forward_group_norm
  10157. static void ggml_compute_forward_group_norm_f32(
  10158. const struct ggml_compute_params * params,
  10159. struct ggml_tensor * dst) {
  10160. const struct ggml_tensor * src0 = dst->src[0];
  10161. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10162. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10163. const int ith = params->ith;
  10164. const int nth = params->nth;
  10165. GGML_TENSOR_UNARY_OP_LOCALS
  10166. // TODO: optimize
  10167. float eps;
  10168. memcpy(&eps, dst->op_params + 1, sizeof(float));
  10169. int n_channels = src0->ne[2];
  10170. int n_groups = dst->op_params[0];
  10171. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  10172. for (int i = ith; i < n_groups; i += nth) {
  10173. int start = i * n_channels_per_group;
  10174. int end = start + n_channels_per_group;
  10175. if (end > n_channels) {
  10176. end = n_channels;
  10177. }
  10178. int step = end - start;
  10179. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10180. ggml_float sum = 0.0;
  10181. for (int64_t i02 = start; i02 < end; i02++) {
  10182. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10183. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10184. ggml_float sumr = 0.0;
  10185. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10186. sumr += (ggml_float)x[i00];
  10187. }
  10188. sum += sumr;
  10189. }
  10190. }
  10191. const float mean = sum / (ne00 * ne01 * step);
  10192. ggml_float sum2 = 0.0;
  10193. for (int64_t i02 = start; i02 < end; i02++) {
  10194. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10195. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10196. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10197. ggml_float sumr = 0.0;
  10198. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10199. float v = x[i00] - mean;
  10200. y[i00] = v;
  10201. sumr += (ggml_float)(v * v);
  10202. }
  10203. sum2 += sumr;
  10204. }
  10205. }
  10206. const float variance = sum2 / (ne00 * ne01 * step);
  10207. const float scale = 1.0f / sqrtf(variance + eps);
  10208. for (int64_t i02 = start; i02 < end; i02++) {
  10209. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10210. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10211. ggml_vec_scale_f32(ne00, y, scale);
  10212. }
  10213. }
  10214. }
  10215. }
  10216. }
  10217. static void ggml_compute_forward_group_norm(
  10218. const struct ggml_compute_params * params,
  10219. struct ggml_tensor * dst) {
  10220. const struct ggml_tensor * src0 = dst->src[0];
  10221. switch (src0->type) {
  10222. case GGML_TYPE_F32:
  10223. {
  10224. ggml_compute_forward_group_norm_f32(params, dst);
  10225. } break;
  10226. default:
  10227. {
  10228. GGML_ABORT("fatal error");
  10229. }
  10230. }
  10231. }
  10232. // ggml_compute_forward_mul_mat
  10233. static void ggml_compute_forward_mul_mat_one_chunk(
  10234. const struct ggml_compute_params * params,
  10235. struct ggml_tensor * dst,
  10236. const int64_t num_rows_per_vec_dot,
  10237. const int64_t ir0_start,
  10238. const int64_t ir0_end,
  10239. const int64_t ir1_start,
  10240. const int64_t ir1_end) {
  10241. const struct ggml_tensor * src0 = dst->src[0];
  10242. const struct ggml_tensor * src1 = dst->src[1];
  10243. GGML_TENSOR_BINARY_OP_LOCALS
  10244. const enum ggml_type type = src0->type;
  10245. const bool src1_cont = ggml_is_contiguous(src1);
  10246. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10247. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10248. // broadcast factors
  10249. const int64_t r2 = ne12 / ne02;
  10250. const int64_t r3 = ne13 / ne03;
  10251. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10252. // threads with no work simply yield (not sure if it helps)
  10253. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10254. return;
  10255. }
  10256. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10257. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10258. assert(ne12 % ne02 == 0);
  10259. assert(ne13 % ne03 == 0);
  10260. // block-tiling attempt
  10261. const int64_t blck_0 = 16;
  10262. const int64_t blck_1 = 16;
  10263. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10264. // attempt to reduce false-sharing (does not seem to make a difference)
  10265. // 16 * 2, accounting for mmla kernels
  10266. float tmp[32];
  10267. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10268. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10269. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10270. const int64_t i13 = (ir1 / (ne12 * ne1));
  10271. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10272. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10273. // broadcast src0 into src1
  10274. const int64_t i03 = i13 / r3;
  10275. const int64_t i02 = i12 / r2;
  10276. const int64_t i1 = i11;
  10277. const int64_t i2 = i12;
  10278. const int64_t i3 = i13;
  10279. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10280. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10281. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10282. // the original src1 data pointer, so we should index using the indices directly
  10283. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10284. const char * src1_col = (const char*)wdata +
  10285. (src1_cont || src1->type != vec_dot_type
  10286. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10287. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10288. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10289. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10290. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10291. //}
  10292. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10293. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10294. }
  10295. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10296. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10297. }
  10298. }
  10299. }
  10300. }
  10301. }
  10302. static void ggml_compute_forward_mul_mat(
  10303. const struct ggml_compute_params * params,
  10304. struct ggml_tensor * dst) {
  10305. const struct ggml_tensor * src0 = dst->src[0];
  10306. const struct ggml_tensor * src1 = dst->src[1];
  10307. GGML_TENSOR_BINARY_OP_LOCALS
  10308. const int ith = params->ith;
  10309. const int nth = params->nth;
  10310. const enum ggml_type type = src0->type;
  10311. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10312. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10313. ggml_from_float_to_mat_t const from_float_to_mat = type_traits[vec_dot_type].from_float_to_mat;
  10314. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10315. int64_t const matmul_num_cols = type_traits[type].ncols;
  10316. int64_t const blck_size_interleave = type_traits[type].blck_size_interleave;
  10317. ggml_gemv_t const gemv = type_traits[type].gemv;
  10318. ggml_gemm_t const gemm = type_traits[type].gemm;
  10319. GGML_ASSERT(ne0 == ne01);
  10320. GGML_ASSERT(ne1 == ne11);
  10321. GGML_ASSERT(ne2 == ne12);
  10322. GGML_ASSERT(ne3 == ne13);
  10323. // we don't support permuted src0 or src1
  10324. GGML_ASSERT(nb00 == ggml_type_size(type));
  10325. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10326. // dst cannot be transposed or permuted
  10327. GGML_ASSERT(nb0 == sizeof(float));
  10328. GGML_ASSERT(nb0 <= nb1);
  10329. GGML_ASSERT(nb1 <= nb2);
  10330. GGML_ASSERT(nb2 <= nb3);
  10331. // nb01 >= nb00 - src0 is not transposed
  10332. // compute by src0 rows
  10333. #if GGML_USE_LLAMAFILE
  10334. // broadcast factors
  10335. const int64_t r2 = ne12 / ne02;
  10336. const int64_t r3 = ne13 / ne03;
  10337. const bool src1_cont = ggml_is_contiguous(src1);
  10338. if (src1_cont) {
  10339. for (int64_t i13 = 0; i13 < ne13; i13++)
  10340. for (int64_t i12 = 0; i12 < ne12; i12++)
  10341. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10342. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10343. nb01/ggml_type_size(src0->type),
  10344. (const char *)src1->data + i12*nb12 + i13*nb13,
  10345. nb11/ggml_type_size(src1->type),
  10346. (char *)dst->data + i12*nb2 + i13*nb3,
  10347. nb1/ggml_type_size(dst->type),
  10348. ith, nth,
  10349. src0->type,
  10350. src1->type,
  10351. dst->type))
  10352. goto UseGgmlGemm1;
  10353. return;
  10354. }
  10355. UseGgmlGemm1:;
  10356. #endif
  10357. if (src1->type != vec_dot_type) {
  10358. char * wdata = params->wdata;
  10359. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10360. const size_t nbw2 = nbw1*ne11;
  10361. const size_t nbw3 = nbw2*ne12;
  10362. assert(params->wsize >= ne13*nbw3);
  10363. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10364. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10365. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10366. int64_t i11_processed = 0;
  10367. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  10368. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  10369. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10370. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10371. 4, ne10, blck_size_interleave);
  10372. }
  10373. i11_processed = ne11 - ne11 % 4;
  10374. }
  10375. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  10376. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10377. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10378. ne10);
  10379. }
  10380. }
  10381. }
  10382. }
  10383. if (ith == 0) {
  10384. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10385. atomic_store_explicit(&params->threadpool->current_chunk, nth, memory_order_relaxed);
  10386. }
  10387. ggml_barrier(params->threadpool);
  10388. #if GGML_USE_LLAMAFILE
  10389. if (src1->type != vec_dot_type) {
  10390. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10391. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10392. for (int64_t i13 = 0; i13 < ne13; i13++)
  10393. for (int64_t i12 = 0; i12 < ne12; i12++)
  10394. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10395. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10396. nb01/ggml_type_size(src0->type),
  10397. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10398. row_size/ggml_type_size(vec_dot_type),
  10399. (char *)dst->data + i12*nb2 + i13*nb3,
  10400. nb1/ggml_type_size(dst->type),
  10401. ith, nth,
  10402. src0->type,
  10403. vec_dot_type,
  10404. dst->type))
  10405. goto UseGgmlGemm2;
  10406. return;
  10407. }
  10408. UseGgmlGemm2:;
  10409. #endif
  10410. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10411. const int64_t nr0 = ne0;
  10412. // This is the size of the rest of the dimensions of the result
  10413. const int64_t nr1 = ne1 * ne2 * ne3;
  10414. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10415. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10416. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10417. // this check can be removed once they are extended to support odd numbered rows/cols too
  10418. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10419. num_rows_per_vec_dot = 1;
  10420. }
  10421. // Now select a reasonable chunk size.
  10422. int chunk_size = 16;
  10423. // We need to step up the size if it's small
  10424. if (nr0 == 1 || nr1 == 1) {
  10425. chunk_size = 64;
  10426. }
  10427. // distribute the work across the inner or outer loop based on which one is larger
  10428. // The number of chunks in the 0/1 dim.
  10429. // CEIL(nr0/chunk_size)
  10430. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10431. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10432. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10433. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10434. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10435. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10436. // distribute the thread work across the inner or outer loop based on which one is larger
  10437. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10438. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10439. }
  10440. // The number of elements in each chunk
  10441. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10442. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10443. if ((ggml_n_dims(src0) == 2) && gemv) {
  10444. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10445. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  10446. int64_t src0_start = (ith * ne01) / nth;
  10447. int64_t src0_end = ((ith + 1) * ne01) / nth;
  10448. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  10449. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  10450. if (src0_start >= src0_end) return;
  10451. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  10452. if (gemm && (ne11 > 3)) {
  10453. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  10454. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  10455. }
  10456. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  10457. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  10458. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  10459. src0_end - src0_start);
  10460. }
  10461. return;
  10462. }
  10463. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10464. int current_chunk = ith;
  10465. while (current_chunk < nchunk0 * nchunk1) {
  10466. const int64_t ith0 = current_chunk % nchunk0;
  10467. const int64_t ith1 = current_chunk / nchunk0;
  10468. const int64_t ir0_start = dr0 * ith0;
  10469. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10470. const int64_t ir1_start = dr1 * ith1;
  10471. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10472. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10473. if (nth >= nchunk0 * nchunk1) {
  10474. break;
  10475. }
  10476. current_chunk = atomic_fetch_add_explicit(&params->threadpool->current_chunk, 1, memory_order_relaxed);
  10477. }
  10478. }
  10479. // ggml_compute_forward_mul_mat_id
  10480. static void ggml_compute_forward_mul_mat_id(
  10481. const struct ggml_compute_params * params,
  10482. struct ggml_tensor * dst) {
  10483. const struct ggml_tensor * src0 = dst->src[0];
  10484. const struct ggml_tensor * src1 = dst->src[1];
  10485. const struct ggml_tensor * ids = dst->src[2];
  10486. GGML_TENSOR_BINARY_OP_LOCALS
  10487. const int ith = params->ith;
  10488. const int nth = params->nth;
  10489. const enum ggml_type type = src0->type;
  10490. const bool src1_cont = ggml_is_contiguous(src1);
  10491. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10492. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10493. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10494. int64_t const matmul_num_cols = type_traits[type].ncols;
  10495. ggml_gemv_t const gemv = type_traits[type].gemv;
  10496. // we don't support permuted src0 or src1
  10497. GGML_ASSERT(nb00 == ggml_type_size(type));
  10498. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10499. // dst cannot be transposed or permuted
  10500. GGML_ASSERT(nb0 == sizeof(float));
  10501. GGML_ASSERT(nb0 <= nb1);
  10502. GGML_ASSERT(nb1 <= nb2);
  10503. GGML_ASSERT(nb2 <= nb3);
  10504. // row groups
  10505. const int n_ids = ids->ne[0]; // n_expert_used
  10506. const int n_as = ne02; // n_expert
  10507. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10508. (char *) params->wdata :
  10509. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10510. struct mmid_row_mapping {
  10511. int32_t i1;
  10512. int32_t i2;
  10513. };
  10514. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10515. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10516. if (src1->type != vec_dot_type) {
  10517. char * wdata = params->wdata;
  10518. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10519. const size_t nbw2 = nbw1*ne11;
  10520. const size_t nbw3 = nbw2*ne12;
  10521. assert(params->wsize >= ne13*nbw3);
  10522. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10523. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10524. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10525. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  10526. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10527. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10528. ne10);
  10529. }
  10530. }
  10531. }
  10532. }
  10533. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10534. if (ith == 0) {
  10535. // initialize matrix_row_counts
  10536. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10537. // group rows by src0 matrix
  10538. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10539. for (int id = 0; id < n_ids; ++id) {
  10540. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10541. assert(i02 >= 0 && i02 < n_as);
  10542. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10543. matrix_row_counts[i02] += 1;
  10544. }
  10545. }
  10546. }
  10547. ggml_barrier(params->threadpool);
  10548. // compute each matrix multiplication in sequence
  10549. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10550. const int64_t cne1 = matrix_row_counts[cur_a];
  10551. if (cne1 == 0) {
  10552. continue;
  10553. }
  10554. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10555. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10556. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10557. const int64_t nr0 = ne01; // src0 rows
  10558. const int64_t nr1 = cne1; // src1 rows
  10559. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  10560. int64_t src0_cur_start = (ith * ne01) / nth;
  10561. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  10562. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  10563. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  10564. if (src0_cur_start >= src0_cur_end) return;
  10565. for (int ir1 = 0; ir1 < nr1; ir1++) {
  10566. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  10567. const int id = row_mapping.i1; // selected expert index
  10568. const int64_t i11 = id % ne11;
  10569. const int64_t i12 = row_mapping.i2; // row index in src1
  10570. const int64_t i1 = id; // selected expert index
  10571. const int64_t i2 = i12; // row
  10572. const char * src1_col = (const char *) wdata +
  10573. (src1_cont || src1->type != vec_dot_type
  10574. ? (i11 + i12 * ne11) * row_size
  10575. : (i11 * nb11 + i12 * nb12));
  10576. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  10577. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  10578. }
  10579. continue;
  10580. }
  10581. // distribute the thread work across the inner or outer loop based on which one is larger
  10582. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10583. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10584. const int64_t ith0 = ith % nth0;
  10585. const int64_t ith1 = ith / nth0;
  10586. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10587. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10588. const int64_t ir010 = dr0*ith0;
  10589. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10590. const int64_t ir110 = dr1*ith1;
  10591. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10592. // threads with no work simply yield (not sure if it helps)
  10593. //if (ir010 >= ir011 || ir110 >= ir111) {
  10594. // sched_yield();
  10595. // continue;
  10596. //}
  10597. // block-tiling attempt
  10598. const int64_t blck_0 = 16;
  10599. const int64_t blck_1 = 16;
  10600. // attempt to reduce false-sharing (does not seem to make a difference)
  10601. float tmp[16];
  10602. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10603. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10604. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10605. const int64_t _i12 = ir1; // logical row index for this expert
  10606. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10607. const int id = row_mapping.i1; // selected expert index
  10608. const int64_t i11 = id % ne11;
  10609. const int64_t i12 = row_mapping.i2; // row index in src1
  10610. const int64_t i1 = id; // selected expert index
  10611. const int64_t i2 = i12; // row
  10612. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10613. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10614. // the original src1 data pointer, so we should index using the indices directly
  10615. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10616. const char * src1_col = (const char *) wdata +
  10617. (src1_cont || src1->type != vec_dot_type
  10618. ? (i11 + i12*ne11)*row_size
  10619. : (i11*nb11 + i12*nb12));
  10620. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10621. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10622. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10623. //}
  10624. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10625. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10626. }
  10627. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10628. }
  10629. }
  10630. }
  10631. }
  10632. #undef MMID_MATRIX_ROW
  10633. }
  10634. // ggml_compute_forward_out_prod
  10635. static void ggml_compute_forward_out_prod_f32(
  10636. const struct ggml_compute_params * params,
  10637. struct ggml_tensor * dst) {
  10638. const struct ggml_tensor * src0 = dst->src[0];
  10639. const struct ggml_tensor * src1 = dst->src[1];
  10640. GGML_TENSOR_BINARY_OP_LOCALS
  10641. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  10642. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10643. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10644. const int ith = params->ith;
  10645. const int nth = params->nth;
  10646. GGML_ASSERT(ne0 == ne00);
  10647. GGML_ASSERT(ne1 == ne10);
  10648. GGML_ASSERT(ne2 == ne02);
  10649. GGML_ASSERT(ne02 == ne12);
  10650. GGML_ASSERT(ne3 == ne13);
  10651. GGML_ASSERT(ne03 == ne13);
  10652. // we don't support permuted src0 or src1
  10653. GGML_ASSERT(nb00 == sizeof(float));
  10654. // dst cannot be transposed or permuted
  10655. GGML_ASSERT(nb0 == sizeof(float));
  10656. // GGML_ASSERT(nb0 <= nb1);
  10657. // GGML_ASSERT(nb1 <= nb2);
  10658. // GGML_ASSERT(nb2 <= nb3);
  10659. // nb01 >= nb00 - src0 is not transposed
  10660. // compute by src0 rows
  10661. if (ith == 0) {
  10662. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10663. }
  10664. ggml_barrier(params->threadpool);
  10665. // dst[:,:,:,:] = 0
  10666. // for i2,i3:
  10667. // for i1:
  10668. // for i01:
  10669. // for i0:
  10670. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10671. // parallelize by last three dimensions
  10672. // total rows in dst
  10673. const int64_t nr = ne1*ne2*ne3;
  10674. // rows per thread
  10675. const int64_t dr = (nr + nth - 1)/nth;
  10676. // row range for this thread
  10677. const int64_t ir0 = dr*ith;
  10678. const int64_t ir1 = MIN(ir0 + dr, nr);
  10679. // block-tiling attempt
  10680. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10681. const int64_t blck_1 = 16;
  10682. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10683. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10684. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10685. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10686. for (int64_t ir = bir; ir < bir1; ++ir) {
  10687. // dst indices
  10688. const int64_t i3 = ir/(ne2*ne1);
  10689. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10690. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10691. const int64_t i02 = i2;
  10692. const int64_t i03 = i3;
  10693. //const int64_t i10 = i1;
  10694. const int64_t i12 = i2;
  10695. const int64_t i13 = i3;
  10696. #if GGML_VEC_MAD_UNROLL > 2
  10697. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10698. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10699. const int64_t i11 = i01;
  10700. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10701. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10702. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10703. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10704. }
  10705. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10706. const int64_t i11 = i01;
  10707. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10708. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10709. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10710. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10711. }
  10712. #else
  10713. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10714. const int64_t i11 = i01;
  10715. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10716. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10717. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10718. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10719. }
  10720. #endif
  10721. }
  10722. }
  10723. }
  10724. }
  10725. static void ggml_compute_forward_out_prod_q_f32(
  10726. const struct ggml_compute_params * params,
  10727. struct ggml_tensor * dst) {
  10728. const struct ggml_tensor * src0 = dst->src[0];
  10729. const struct ggml_tensor * src1 = dst->src[1];
  10730. GGML_TENSOR_BINARY_OP_LOCALS;
  10731. const int ith = params->ith;
  10732. const int nth = params->nth;
  10733. const enum ggml_type type = src0->type;
  10734. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10735. GGML_ASSERT(ne02 == ne12);
  10736. GGML_ASSERT(ne03 == ne13);
  10737. GGML_ASSERT(ne2 == ne12);
  10738. GGML_ASSERT(ne3 == ne13);
  10739. // we don't support permuted src0 dim0
  10740. GGML_ASSERT(nb00 == ggml_type_size(type));
  10741. // dst dim0 cannot be transposed or permuted
  10742. GGML_ASSERT(nb0 == sizeof(float));
  10743. // GGML_ASSERT(nb0 <= nb1);
  10744. // GGML_ASSERT(nb1 <= nb2);
  10745. // GGML_ASSERT(nb2 <= nb3);
  10746. GGML_ASSERT(ne0 == ne00);
  10747. GGML_ASSERT(ne1 == ne10);
  10748. GGML_ASSERT(ne2 == ne02);
  10749. GGML_ASSERT(ne3 == ne03);
  10750. // nb01 >= nb00 - src0 is not transposed
  10751. // compute by src0 rows
  10752. if (ith == 0) {
  10753. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10754. }
  10755. ggml_barrier(params->threadpool);
  10756. // parallelize by last three dimensions
  10757. // total rows in dst
  10758. const int64_t nr = ne1*ne2*ne3;
  10759. // rows per thread
  10760. const int64_t dr = (nr + nth - 1)/nth;
  10761. // row range for this thread
  10762. const int64_t ir0 = dr*ith;
  10763. const int64_t ir1 = MIN(ir0 + dr, nr);
  10764. // dst[:,:,:,:] = 0
  10765. // for i2,i3:
  10766. // for i1:
  10767. // for i01:
  10768. // for i0:
  10769. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10770. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10771. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10772. // dst indices
  10773. const int64_t i3 = ir/(ne2*ne1);
  10774. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10775. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10776. const int64_t i02 = i2;
  10777. const int64_t i03 = i3;
  10778. //const int64_t i10 = i1;
  10779. const int64_t i12 = i2;
  10780. const int64_t i13 = i3;
  10781. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10782. const int64_t i11 = i01;
  10783. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10784. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10785. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10786. dequantize_row_q(s0, wdata, ne0);
  10787. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10788. }
  10789. }
  10790. }
  10791. static void ggml_compute_forward_out_prod(
  10792. const struct ggml_compute_params * params,
  10793. struct ggml_tensor * dst) {
  10794. const struct ggml_tensor * src0 = dst->src[0];
  10795. switch (src0->type) {
  10796. case GGML_TYPE_Q4_0:
  10797. case GGML_TYPE_Q4_1:
  10798. case GGML_TYPE_Q5_0:
  10799. case GGML_TYPE_Q5_1:
  10800. case GGML_TYPE_Q8_0:
  10801. case GGML_TYPE_Q2_K:
  10802. case GGML_TYPE_Q3_K:
  10803. case GGML_TYPE_Q4_K:
  10804. case GGML_TYPE_Q5_K:
  10805. case GGML_TYPE_Q6_K:
  10806. case GGML_TYPE_TQ1_0:
  10807. case GGML_TYPE_TQ2_0:
  10808. case GGML_TYPE_IQ2_XXS:
  10809. case GGML_TYPE_IQ2_XS:
  10810. case GGML_TYPE_IQ3_XXS:
  10811. case GGML_TYPE_IQ1_S:
  10812. case GGML_TYPE_IQ1_M:
  10813. case GGML_TYPE_IQ4_NL:
  10814. case GGML_TYPE_IQ4_XS:
  10815. case GGML_TYPE_IQ3_S:
  10816. case GGML_TYPE_IQ2_S:
  10817. case GGML_TYPE_Q4_0_4_4:
  10818. case GGML_TYPE_Q4_0_4_8:
  10819. case GGML_TYPE_Q4_0_8_8:
  10820. {
  10821. ggml_compute_forward_out_prod_q_f32(params, dst);
  10822. } break;
  10823. case GGML_TYPE_F16:
  10824. {
  10825. GGML_ABORT("fatal error"); // todo
  10826. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10827. }
  10828. case GGML_TYPE_F32:
  10829. {
  10830. ggml_compute_forward_out_prod_f32(params, dst);
  10831. } break;
  10832. default:
  10833. {
  10834. GGML_ABORT("fatal error");
  10835. }
  10836. }
  10837. }
  10838. // ggml_compute_forward_scale
  10839. static void ggml_compute_forward_scale_f32(
  10840. const struct ggml_compute_params * params,
  10841. struct ggml_tensor * dst) {
  10842. const struct ggml_tensor * src0 = dst->src[0];
  10843. GGML_ASSERT(ggml_is_contiguous(src0));
  10844. GGML_ASSERT(ggml_is_contiguous(dst));
  10845. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10846. // scale factor
  10847. float v;
  10848. memcpy(&v, dst->op_params, sizeof(float));
  10849. const int ith = params->ith;
  10850. const int nth = params->nth;
  10851. const int nc = src0->ne[0];
  10852. const int nr = ggml_nrows(src0);
  10853. // rows per thread
  10854. const int dr = (nr + nth - 1)/nth;
  10855. // row range for this thread
  10856. const int ir0 = dr*ith;
  10857. const int ir1 = MIN(ir0 + dr, nr);
  10858. const size_t nb01 = src0->nb[1];
  10859. const size_t nb1 = dst->nb[1];
  10860. for (int i1 = ir0; i1 < ir1; i1++) {
  10861. if (dst->data != src0->data) {
  10862. // src0 is same shape as dst => same indices
  10863. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10864. }
  10865. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10866. }
  10867. }
  10868. static void ggml_compute_forward_scale(
  10869. const struct ggml_compute_params * params,
  10870. struct ggml_tensor * dst) {
  10871. const struct ggml_tensor * src0 = dst->src[0];
  10872. switch (src0->type) {
  10873. case GGML_TYPE_F32:
  10874. {
  10875. ggml_compute_forward_scale_f32(params, dst);
  10876. } break;
  10877. default:
  10878. {
  10879. GGML_ABORT("fatal error");
  10880. }
  10881. }
  10882. }
  10883. // ggml_compute_forward_set
  10884. static void ggml_compute_forward_set_f32(
  10885. const struct ggml_compute_params * params,
  10886. struct ggml_tensor * dst) {
  10887. const struct ggml_tensor * src0 = dst->src[0];
  10888. const struct ggml_tensor * src1 = dst->src[1];
  10889. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10890. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10891. // view src0 and dst with these strides and data offset inbytes during set
  10892. // nb0 is implicitly element_size because src0 and dst are contiguous
  10893. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10894. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10895. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10896. size_t offset = ((int32_t *) dst->op_params)[3];
  10897. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10898. if (!inplace) {
  10899. if (params->ith == 0) {
  10900. // memcpy needs to be synchronized across threads to avoid race conditions.
  10901. // => do it in INIT phase
  10902. memcpy(
  10903. ((char *) dst->data),
  10904. ((char *) src0->data),
  10905. ggml_nbytes(dst));
  10906. }
  10907. ggml_barrier(params->threadpool);
  10908. }
  10909. const int ith = params->ith;
  10910. const int nth = params->nth;
  10911. const int nr = ggml_nrows(src1);
  10912. const int nc = src1->ne[0];
  10913. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10914. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10915. // src0 and dst as viewed during set
  10916. const size_t nb0 = ggml_element_size(src0);
  10917. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10918. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10919. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10920. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10921. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10922. GGML_ASSERT(nb10 == sizeof(float));
  10923. // rows per thread
  10924. const int dr = (nr + nth - 1)/nth;
  10925. // row range for this thread
  10926. const int ir0 = dr*ith;
  10927. const int ir1 = MIN(ir0 + dr, nr);
  10928. for (int ir = ir0; ir < ir1; ++ir) {
  10929. // src0 and dst are viewed with shape of src1 and offset
  10930. // => same indices
  10931. const int i3 = ir/(ne12*ne11);
  10932. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10933. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10934. ggml_vec_cpy_f32(nc,
  10935. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10936. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10937. }
  10938. }
  10939. static void ggml_compute_forward_set(
  10940. const struct ggml_compute_params * params,
  10941. struct ggml_tensor * dst) {
  10942. const struct ggml_tensor * src0 = dst->src[0];
  10943. switch (src0->type) {
  10944. case GGML_TYPE_F32:
  10945. {
  10946. ggml_compute_forward_set_f32(params, dst);
  10947. } break;
  10948. case GGML_TYPE_F16:
  10949. case GGML_TYPE_BF16:
  10950. case GGML_TYPE_Q4_0:
  10951. case GGML_TYPE_Q4_1:
  10952. case GGML_TYPE_Q5_0:
  10953. case GGML_TYPE_Q5_1:
  10954. case GGML_TYPE_Q8_0:
  10955. case GGML_TYPE_Q8_1:
  10956. case GGML_TYPE_Q2_K:
  10957. case GGML_TYPE_Q3_K:
  10958. case GGML_TYPE_Q4_K:
  10959. case GGML_TYPE_Q5_K:
  10960. case GGML_TYPE_Q6_K:
  10961. case GGML_TYPE_TQ1_0:
  10962. case GGML_TYPE_TQ2_0:
  10963. case GGML_TYPE_IQ2_XXS:
  10964. case GGML_TYPE_IQ2_XS:
  10965. case GGML_TYPE_IQ3_XXS:
  10966. case GGML_TYPE_IQ1_S:
  10967. case GGML_TYPE_IQ1_M:
  10968. case GGML_TYPE_IQ4_NL:
  10969. case GGML_TYPE_IQ4_XS:
  10970. case GGML_TYPE_IQ3_S:
  10971. case GGML_TYPE_IQ2_S:
  10972. case GGML_TYPE_Q4_0_4_4:
  10973. case GGML_TYPE_Q4_0_4_8:
  10974. case GGML_TYPE_Q4_0_8_8:
  10975. default:
  10976. {
  10977. GGML_ABORT("fatal error");
  10978. }
  10979. }
  10980. }
  10981. // ggml_compute_forward_cpy
  10982. static void ggml_compute_forward_cpy(
  10983. const struct ggml_compute_params * params,
  10984. struct ggml_tensor * dst) {
  10985. ggml_compute_forward_dup(params, dst);
  10986. }
  10987. // ggml_compute_forward_cont
  10988. static void ggml_compute_forward_cont(
  10989. const struct ggml_compute_params * params,
  10990. struct ggml_tensor * dst) {
  10991. ggml_compute_forward_dup(params, dst);
  10992. }
  10993. // ggml_compute_forward_reshape
  10994. static void ggml_compute_forward_reshape(
  10995. const struct ggml_compute_params * params,
  10996. struct ggml_tensor * dst) {
  10997. // NOP
  10998. UNUSED(params);
  10999. UNUSED(dst);
  11000. }
  11001. // ggml_compute_forward_view
  11002. static void ggml_compute_forward_view(
  11003. const struct ggml_compute_params * params,
  11004. const struct ggml_tensor * dst) {
  11005. // NOP
  11006. UNUSED(params);
  11007. UNUSED(dst);
  11008. }
  11009. // ggml_compute_forward_permute
  11010. static void ggml_compute_forward_permute(
  11011. const struct ggml_compute_params * params,
  11012. const struct ggml_tensor * dst) {
  11013. // NOP
  11014. UNUSED(params);
  11015. UNUSED(dst);
  11016. }
  11017. // ggml_compute_forward_transpose
  11018. static void ggml_compute_forward_transpose(
  11019. const struct ggml_compute_params * params,
  11020. const struct ggml_tensor * dst) {
  11021. // NOP
  11022. UNUSED(params);
  11023. UNUSED(dst);
  11024. }
  11025. // ggml_compute_forward_get_rows
  11026. static void ggml_compute_forward_get_rows_q(
  11027. const struct ggml_compute_params * params,
  11028. struct ggml_tensor * dst) {
  11029. const struct ggml_tensor * src0 = dst->src[0];
  11030. const struct ggml_tensor * src1 = dst->src[1];
  11031. GGML_TENSOR_BINARY_OP_LOCALS
  11032. const int64_t nc = ne00;
  11033. const int64_t nr = ggml_nelements(src1);
  11034. const enum ggml_type type = src0->type;
  11035. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  11036. assert(ne0 == nc);
  11037. assert(ne02 == ne11);
  11038. assert(nb00 == ggml_type_size(type));
  11039. assert(ggml_nrows(dst) == nr);
  11040. const int ith = params->ith;
  11041. const int nth = params->nth;
  11042. // rows per thread
  11043. const int dr = (nr + nth - 1)/nth;
  11044. // row range for this thread
  11045. const int ir0 = dr*ith;
  11046. const int ir1 = MIN(ir0 + dr, nr);
  11047. for (int64_t i = ir0; i < ir1; ++i) {
  11048. const int64_t i12 = i/(ne11*ne10);
  11049. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11050. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11051. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11052. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11053. dequantize_row_q(
  11054. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11055. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11056. }
  11057. }
  11058. static void ggml_compute_forward_get_rows_f16(
  11059. const struct ggml_compute_params * params,
  11060. struct ggml_tensor * dst) {
  11061. const struct ggml_tensor * src0 = dst->src[0];
  11062. const struct ggml_tensor * src1 = dst->src[1];
  11063. GGML_TENSOR_BINARY_OP_LOCALS
  11064. const int64_t nc = ne00;
  11065. const int64_t nr = ggml_nelements(src1);
  11066. assert(ne0 == nc);
  11067. assert(ne02 == ne11);
  11068. assert(nb00 == sizeof(ggml_fp16_t));
  11069. assert(ggml_nrows(dst) == nr);
  11070. const int ith = params->ith;
  11071. const int nth = params->nth;
  11072. // rows per thread
  11073. const int dr = (nr + nth - 1)/nth;
  11074. // row range for this thread
  11075. const int ir0 = dr*ith;
  11076. const int ir1 = MIN(ir0 + dr, nr);
  11077. for (int64_t i = ir0; i < ir1; ++i) {
  11078. const int64_t i12 = i/(ne11*ne10);
  11079. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11080. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11081. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11082. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11083. ggml_fp16_to_fp32_row(
  11084. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11085. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11086. }
  11087. }
  11088. static void ggml_compute_forward_get_rows_bf16(
  11089. const struct ggml_compute_params * params,
  11090. struct ggml_tensor * dst) {
  11091. const struct ggml_tensor * src0 = dst->src[0];
  11092. const struct ggml_tensor * src1 = dst->src[1];
  11093. GGML_TENSOR_BINARY_OP_LOCALS
  11094. const int64_t nc = ne00;
  11095. const int64_t nr = ggml_nelements(src1);
  11096. assert(ne0 == nc);
  11097. assert(ne02 == ne11);
  11098. assert(nb00 == sizeof(ggml_bf16_t));
  11099. assert(ggml_nrows(dst) == nr);
  11100. const int ith = params->ith;
  11101. const int nth = params->nth;
  11102. // rows per thread
  11103. const int dr = (nr + nth - 1)/nth;
  11104. // row range for this thread
  11105. const int ir0 = dr*ith;
  11106. const int ir1 = MIN(ir0 + dr, nr);
  11107. for (int64_t i = ir0; i < ir1; ++i) {
  11108. const int64_t i12 = i/(ne11*ne10);
  11109. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11110. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11111. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11112. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11113. ggml_bf16_to_fp32_row(
  11114. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11115. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11116. }
  11117. }
  11118. static void ggml_compute_forward_get_rows_f32(
  11119. const struct ggml_compute_params * params,
  11120. struct ggml_tensor * dst) {
  11121. const struct ggml_tensor * src0 = dst->src[0];
  11122. const struct ggml_tensor * src1 = dst->src[1];
  11123. GGML_TENSOR_BINARY_OP_LOCALS
  11124. const int64_t nc = ne00;
  11125. const int64_t nr = ggml_nelements(src1);
  11126. assert(ne0 == nc);
  11127. assert(ne02 == ne11);
  11128. assert(nb00 == sizeof(float));
  11129. assert(ggml_nrows(dst) == nr);
  11130. const int ith = params->ith;
  11131. const int nth = params->nth;
  11132. // rows per thread
  11133. const int dr = (nr + nth - 1)/nth;
  11134. // row range for this thread
  11135. const int ir0 = dr*ith;
  11136. const int ir1 = MIN(ir0 + dr, nr);
  11137. for (int64_t i = ir0; i < ir1; ++i) {
  11138. const int64_t i12 = i/(ne11*ne10);
  11139. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11140. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11141. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11142. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11143. ggml_vec_cpy_f32(nc,
  11144. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11145. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11146. }
  11147. }
  11148. static void ggml_compute_forward_get_rows(
  11149. const struct ggml_compute_params * params,
  11150. struct ggml_tensor * dst) {
  11151. const struct ggml_tensor * src0 = dst->src[0];
  11152. switch (src0->type) {
  11153. case GGML_TYPE_Q4_0:
  11154. case GGML_TYPE_Q4_1:
  11155. case GGML_TYPE_Q5_0:
  11156. case GGML_TYPE_Q5_1:
  11157. case GGML_TYPE_Q8_0:
  11158. case GGML_TYPE_Q8_1:
  11159. case GGML_TYPE_Q2_K:
  11160. case GGML_TYPE_Q3_K:
  11161. case GGML_TYPE_Q4_K:
  11162. case GGML_TYPE_Q5_K:
  11163. case GGML_TYPE_Q6_K:
  11164. case GGML_TYPE_TQ1_0:
  11165. case GGML_TYPE_TQ2_0:
  11166. case GGML_TYPE_IQ2_XXS:
  11167. case GGML_TYPE_IQ2_XS:
  11168. case GGML_TYPE_IQ3_XXS:
  11169. case GGML_TYPE_IQ1_S:
  11170. case GGML_TYPE_IQ1_M:
  11171. case GGML_TYPE_IQ4_NL:
  11172. case GGML_TYPE_IQ4_XS:
  11173. case GGML_TYPE_IQ3_S:
  11174. case GGML_TYPE_IQ2_S:
  11175. case GGML_TYPE_Q4_0_4_4:
  11176. case GGML_TYPE_Q4_0_4_8:
  11177. case GGML_TYPE_Q4_0_8_8:
  11178. {
  11179. ggml_compute_forward_get_rows_q(params, dst);
  11180. } break;
  11181. case GGML_TYPE_F16:
  11182. {
  11183. ggml_compute_forward_get_rows_f16(params, dst);
  11184. } break;
  11185. case GGML_TYPE_BF16:
  11186. {
  11187. ggml_compute_forward_get_rows_bf16(params, dst);
  11188. } break;
  11189. case GGML_TYPE_F32:
  11190. case GGML_TYPE_I32:
  11191. {
  11192. ggml_compute_forward_get_rows_f32(params, dst);
  11193. } break;
  11194. default:
  11195. {
  11196. GGML_ABORT("fatal error");
  11197. }
  11198. }
  11199. //static bool first = true;
  11200. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11201. //if (first) {
  11202. // first = false;
  11203. //} else {
  11204. // for (int k = 0; k < dst->ne[1]; ++k) {
  11205. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11206. // for (int i = 0; i < 16; ++i) {
  11207. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11208. // }
  11209. // printf("\n");
  11210. // }
  11211. // printf("\n");
  11212. // }
  11213. // printf("\n");
  11214. // exit(0);
  11215. //}
  11216. }
  11217. // ggml_compute_forward_get_rows_back
  11218. static void ggml_compute_forward_get_rows_back_f32_f16(
  11219. const struct ggml_compute_params * params,
  11220. struct ggml_tensor * dst) {
  11221. const struct ggml_tensor * src0 = dst->src[0];
  11222. const struct ggml_tensor * src1 = dst->src[1];
  11223. if (params->ith != 0) {
  11224. return;
  11225. }
  11226. GGML_ASSERT(ggml_is_contiguous(dst));
  11227. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11228. memset(dst->data, 0, ggml_nbytes(dst));
  11229. const int nc = src0->ne[0];
  11230. const int nr = ggml_nelements(src1);
  11231. GGML_ASSERT( dst->ne[0] == nc);
  11232. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11233. for (int i = 0; i < nr; ++i) {
  11234. const int r = ((int32_t *) src1->data)[i];
  11235. for (int j = 0; j < nc; ++j) {
  11236. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11237. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11238. }
  11239. }
  11240. }
  11241. static void ggml_compute_forward_get_rows_back_f32(
  11242. const struct ggml_compute_params * params,
  11243. struct ggml_tensor * dst) {
  11244. const struct ggml_tensor * src0 = dst->src[0];
  11245. const struct ggml_tensor * src1 = dst->src[1];
  11246. if (params->ith != 0) {
  11247. return;
  11248. }
  11249. GGML_ASSERT(ggml_is_contiguous(dst));
  11250. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11251. memset(dst->data, 0, ggml_nbytes(dst));
  11252. const int nc = src0->ne[0];
  11253. const int nr = ggml_nelements(src1);
  11254. GGML_ASSERT( dst->ne[0] == nc);
  11255. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11256. for (int i = 0; i < nr; ++i) {
  11257. const int r = ((int32_t *) src1->data)[i];
  11258. ggml_vec_add_f32(nc,
  11259. (float *) ((char *) dst->data + r*dst->nb[1]),
  11260. (float *) ((char *) dst->data + r*dst->nb[1]),
  11261. (float *) ((char *) src0->data + i*src0->nb[1]));
  11262. }
  11263. }
  11264. static void ggml_compute_forward_get_rows_back(
  11265. const struct ggml_compute_params * params,
  11266. struct ggml_tensor * dst) {
  11267. const struct ggml_tensor * src0 = dst->src[0];
  11268. switch (src0->type) {
  11269. case GGML_TYPE_F16:
  11270. {
  11271. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11272. } break;
  11273. case GGML_TYPE_F32:
  11274. {
  11275. ggml_compute_forward_get_rows_back_f32(params, dst);
  11276. } break;
  11277. default:
  11278. {
  11279. GGML_ABORT("fatal error");
  11280. }
  11281. }
  11282. //static bool first = true;
  11283. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11284. //if (first) {
  11285. // first = false;
  11286. //} else {
  11287. // for (int k = 0; k < dst->ne[1]; ++k) {
  11288. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11289. // for (int i = 0; i < 16; ++i) {
  11290. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11291. // }
  11292. // printf("\n");
  11293. // }
  11294. // printf("\n");
  11295. // }
  11296. // printf("\n");
  11297. // exit(0);
  11298. //}
  11299. }
  11300. // ggml_compute_forward_diag
  11301. static void ggml_compute_forward_diag_f32(
  11302. const struct ggml_compute_params * params,
  11303. struct ggml_tensor * dst) {
  11304. const struct ggml_tensor * src0 = dst->src[0];
  11305. if (params->ith != 0) {
  11306. return;
  11307. }
  11308. // TODO: handle transposed/permuted matrices
  11309. GGML_TENSOR_UNARY_OP_LOCALS
  11310. GGML_ASSERT(ne00 == ne0);
  11311. GGML_ASSERT(ne00 == ne1);
  11312. GGML_ASSERT(ne01 == 1);
  11313. GGML_ASSERT(ne02 == ne2);
  11314. GGML_ASSERT(ne03 == ne3);
  11315. GGML_ASSERT(nb00 == sizeof(float));
  11316. GGML_ASSERT(nb0 == sizeof(float));
  11317. for (int i3 = 0; i3 < ne3; i3++) {
  11318. for (int i2 = 0; i2 < ne2; i2++) {
  11319. for (int i1 = 0; i1 < ne1; i1++) {
  11320. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11321. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11322. for (int i0 = 0; i0 < i1; i0++) {
  11323. d[i0] = 0;
  11324. }
  11325. d[i1] = s[i1];
  11326. for (int i0 = i1+1; i0 < ne0; i0++) {
  11327. d[i0] = 0;
  11328. }
  11329. }
  11330. }
  11331. }
  11332. }
  11333. static void ggml_compute_forward_diag(
  11334. const struct ggml_compute_params * params,
  11335. struct ggml_tensor * dst) {
  11336. const struct ggml_tensor * src0 = dst->src[0];
  11337. switch (src0->type) {
  11338. case GGML_TYPE_F32:
  11339. {
  11340. ggml_compute_forward_diag_f32(params, dst);
  11341. } break;
  11342. default:
  11343. {
  11344. GGML_ABORT("fatal error");
  11345. }
  11346. }
  11347. }
  11348. // ggml_compute_forward_diag_mask_inf
  11349. static void ggml_compute_forward_diag_mask_f32(
  11350. const struct ggml_compute_params * params,
  11351. struct ggml_tensor * dst,
  11352. const float value) {
  11353. const struct ggml_tensor * src0 = dst->src[0];
  11354. const int ith = params->ith;
  11355. const int nth = params->nth;
  11356. const int n_past = ((int32_t *) dst->op_params)[0];
  11357. const bool inplace = src0->data == dst->data;
  11358. GGML_ASSERT(n_past >= 0);
  11359. if (!inplace) {
  11360. if (ith == 0) {
  11361. // memcpy needs to be synchronized across threads to avoid race conditions.
  11362. // => do it in INIT phase
  11363. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11364. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11365. memcpy(
  11366. ((char *) dst->data),
  11367. ((char *) src0->data),
  11368. ggml_nbytes(dst));
  11369. }
  11370. ggml_barrier(params->threadpool);
  11371. }
  11372. // TODO: handle transposed/permuted matrices
  11373. const int n = ggml_nrows(src0);
  11374. const int nc = src0->ne[0];
  11375. const int nr = src0->ne[1];
  11376. const int nz = n/nr;
  11377. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11378. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11379. for (int k = 0; k < nz; k++) {
  11380. for (int j = ith; j < nr; j += nth) {
  11381. for (int i = n_past; i < nc; i++) {
  11382. if (i > n_past + j) {
  11383. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11384. }
  11385. }
  11386. }
  11387. }
  11388. }
  11389. static void ggml_compute_forward_diag_mask_inf(
  11390. const struct ggml_compute_params * params,
  11391. struct ggml_tensor * dst) {
  11392. const struct ggml_tensor * src0 = dst->src[0];
  11393. switch (src0->type) {
  11394. case GGML_TYPE_F32:
  11395. {
  11396. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11397. } break;
  11398. default:
  11399. {
  11400. GGML_ABORT("fatal error");
  11401. }
  11402. }
  11403. }
  11404. static void ggml_compute_forward_diag_mask_zero(
  11405. const struct ggml_compute_params * params,
  11406. struct ggml_tensor * dst) {
  11407. const struct ggml_tensor * src0 = dst->src[0];
  11408. switch (src0->type) {
  11409. case GGML_TYPE_F32:
  11410. {
  11411. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11412. } break;
  11413. default:
  11414. {
  11415. GGML_ABORT("fatal error");
  11416. }
  11417. }
  11418. }
  11419. // ggml_compute_forward_soft_max
  11420. static void ggml_compute_forward_soft_max_f32(
  11421. const struct ggml_compute_params * params,
  11422. struct ggml_tensor * dst) {
  11423. const struct ggml_tensor * src0 = dst->src[0];
  11424. const struct ggml_tensor * src1 = dst->src[1];
  11425. assert(ggml_is_contiguous(dst));
  11426. assert(ggml_are_same_shape(src0, dst));
  11427. float scale = 1.0f;
  11428. float max_bias = 0.0f;
  11429. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11430. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11431. // TODO: handle transposed/permuted matrices
  11432. const int ith = params->ith;
  11433. const int nth = params->nth;
  11434. GGML_TENSOR_UNARY_OP_LOCALS
  11435. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11436. // TODO: is this supposed to be ceil instead of floor?
  11437. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11438. const uint32_t n_head = ne02;
  11439. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11440. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11441. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11442. const int nc = src0->ne[0];
  11443. const int nr = ggml_nrows(src0);
  11444. // rows per thread
  11445. const int dr = (nr + nth - 1)/nth;
  11446. // row range for this thread
  11447. const int ir0 = dr*ith;
  11448. const int ir1 = MIN(ir0 + dr, nr);
  11449. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11450. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11451. for (int i1 = ir0; i1 < ir1; i1++) {
  11452. // ALiBi
  11453. const uint32_t h = (i1/ne01)%ne02; // head
  11454. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11455. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11456. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11457. // broadcast the mask across rows
  11458. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11459. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11460. ggml_vec_cpy_f32 (nc, wp, sp);
  11461. ggml_vec_scale_f32(nc, wp, scale);
  11462. if (mp_f32) {
  11463. if (use_f16) {
  11464. for (int i = 0; i < nc; ++i) {
  11465. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11466. }
  11467. } else {
  11468. for (int i = 0; i < nc; ++i) {
  11469. wp[i] += slope*mp_f32[i];
  11470. }
  11471. }
  11472. }
  11473. #ifndef NDEBUG
  11474. for (int i = 0; i < nc; ++i) {
  11475. //printf("p[%d] = %f\n", i, p[i]);
  11476. assert(!isnan(wp[i]));
  11477. }
  11478. #endif
  11479. float max = -INFINITY;
  11480. ggml_vec_max_f32(nc, &max, wp);
  11481. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11482. assert(sum > 0.0);
  11483. sum = 1.0/sum;
  11484. ggml_vec_scale_f32(nc, dp, sum);
  11485. #ifndef NDEBUG
  11486. for (int i = 0; i < nc; ++i) {
  11487. assert(!isnan(dp[i]));
  11488. assert(!isinf(dp[i]));
  11489. }
  11490. #endif
  11491. }
  11492. }
  11493. static void ggml_compute_forward_soft_max(
  11494. const struct ggml_compute_params * params,
  11495. struct ggml_tensor * dst) {
  11496. const struct ggml_tensor * src0 = dst->src[0];
  11497. switch (src0->type) {
  11498. case GGML_TYPE_F32:
  11499. {
  11500. ggml_compute_forward_soft_max_f32(params, dst);
  11501. } break;
  11502. default:
  11503. {
  11504. GGML_ABORT("fatal error");
  11505. }
  11506. }
  11507. }
  11508. // ggml_compute_forward_soft_max_back
  11509. static void ggml_compute_forward_soft_max_back_f32(
  11510. const struct ggml_compute_params * params,
  11511. struct ggml_tensor * dst) {
  11512. const struct ggml_tensor * src0 = dst->src[0];
  11513. const struct ggml_tensor * src1 = dst->src[1];
  11514. GGML_ASSERT(ggml_is_contiguous(src0));
  11515. GGML_ASSERT(ggml_is_contiguous(src1));
  11516. GGML_ASSERT(ggml_is_contiguous(dst));
  11517. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11518. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11519. // TODO: handle transposed/permuted matrices
  11520. const int ith = params->ith;
  11521. const int nth = params->nth;
  11522. const int nc = src0->ne[0];
  11523. const int nr = ggml_nrows(src0);
  11524. // rows per thread
  11525. const int dr = (nr + nth - 1)/nth;
  11526. // row range for this thread
  11527. const int ir0 = dr*ith;
  11528. const int ir1 = MIN(ir0 + dr, nr);
  11529. for (int i1 = ir0; i1 < ir1; i1++) {
  11530. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11531. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11532. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11533. #ifndef NDEBUG
  11534. for (int i = 0; i < nc; ++i) {
  11535. //printf("p[%d] = %f\n", i, p[i]);
  11536. assert(!isnan(dy[i]));
  11537. assert(!isnan(y[i]));
  11538. }
  11539. #endif
  11540. // Jii = yi - yi*yi
  11541. // Jij = -yi*yj
  11542. // J = diag(y)-y.T*y
  11543. // dx = J * dy
  11544. // dxk = sum_i(Jki * dyi)
  11545. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11546. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11547. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11548. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11549. // dxk = -yk * dot(y, dy) + yk*dyk
  11550. // dxk = yk * (- dot(y, dy) + dyk)
  11551. // dxk = yk * (dyk - dot(y, dy))
  11552. //
  11553. // post-order:
  11554. // dot_y_dy := dot(y, dy)
  11555. // dx := dy
  11556. // dx := dx - dot_y_dy
  11557. // dx := dx * y
  11558. // linear runtime, no additional memory
  11559. float dot_y_dy = 0;
  11560. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11561. ggml_vec_cpy_f32 (nc, dx, dy);
  11562. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11563. ggml_vec_mul_f32 (nc, dx, dx, y);
  11564. #ifndef NDEBUG
  11565. for (int i = 0; i < nc; ++i) {
  11566. assert(!isnan(dx[i]));
  11567. assert(!isinf(dx[i]));
  11568. }
  11569. #endif
  11570. }
  11571. }
  11572. static void ggml_compute_forward_soft_max_back(
  11573. const struct ggml_compute_params * params,
  11574. struct ggml_tensor * dst) {
  11575. const struct ggml_tensor * src0 = dst->src[0];
  11576. switch (src0->type) {
  11577. case GGML_TYPE_F32:
  11578. {
  11579. ggml_compute_forward_soft_max_back_f32(params, dst);
  11580. } break;
  11581. default:
  11582. {
  11583. GGML_ABORT("fatal error");
  11584. }
  11585. }
  11586. }
  11587. // ggml_compute_forward_clamp
  11588. static void ggml_compute_forward_clamp_f32(
  11589. const struct ggml_compute_params * params,
  11590. struct ggml_tensor * dst) {
  11591. const struct ggml_tensor * src0 = dst->src[0];
  11592. if (params->ith != 0) {
  11593. return;
  11594. }
  11595. float min;
  11596. float max;
  11597. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11598. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11599. const int ith = params->ith;
  11600. const int nth = params->nth;
  11601. const int n = ggml_nrows(src0);
  11602. const int nc = src0->ne[0];
  11603. const size_t nb00 = src0->nb[0];
  11604. const size_t nb01 = src0->nb[1];
  11605. const size_t nb0 = dst->nb[0];
  11606. const size_t nb1 = dst->nb[1];
  11607. GGML_ASSERT( nb0 == sizeof(float));
  11608. GGML_ASSERT(nb00 == sizeof(float));
  11609. for (int j = ith; j < n; j += nth) {
  11610. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11611. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11612. for (int i = 0; i < nc; i++) {
  11613. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11614. }
  11615. }
  11616. }
  11617. static void ggml_compute_forward_clamp(
  11618. const struct ggml_compute_params * params,
  11619. struct ggml_tensor * dst) {
  11620. const struct ggml_tensor * src0 = dst->src[0];
  11621. switch (src0->type) {
  11622. case GGML_TYPE_F32:
  11623. {
  11624. ggml_compute_forward_clamp_f32(params, dst);
  11625. } break;
  11626. case GGML_TYPE_F16:
  11627. case GGML_TYPE_BF16:
  11628. case GGML_TYPE_Q4_0:
  11629. case GGML_TYPE_Q4_1:
  11630. case GGML_TYPE_Q5_0:
  11631. case GGML_TYPE_Q5_1:
  11632. case GGML_TYPE_Q8_0:
  11633. case GGML_TYPE_Q8_1:
  11634. case GGML_TYPE_Q2_K:
  11635. case GGML_TYPE_Q3_K:
  11636. case GGML_TYPE_Q4_K:
  11637. case GGML_TYPE_Q5_K:
  11638. case GGML_TYPE_Q6_K:
  11639. case GGML_TYPE_TQ1_0:
  11640. case GGML_TYPE_TQ2_0:
  11641. case GGML_TYPE_IQ2_XXS:
  11642. case GGML_TYPE_IQ2_XS:
  11643. case GGML_TYPE_IQ3_XXS:
  11644. case GGML_TYPE_IQ1_S:
  11645. case GGML_TYPE_IQ1_M:
  11646. case GGML_TYPE_IQ4_NL:
  11647. case GGML_TYPE_IQ4_XS:
  11648. case GGML_TYPE_IQ3_S:
  11649. case GGML_TYPE_IQ2_S:
  11650. case GGML_TYPE_Q8_K:
  11651. case GGML_TYPE_Q4_0_4_4:
  11652. case GGML_TYPE_Q4_0_4_8:
  11653. case GGML_TYPE_Q4_0_8_8:
  11654. case GGML_TYPE_I8:
  11655. case GGML_TYPE_I16:
  11656. case GGML_TYPE_I32:
  11657. case GGML_TYPE_I64:
  11658. case GGML_TYPE_F64:
  11659. case GGML_TYPE_COUNT:
  11660. {
  11661. GGML_ABORT("fatal error");
  11662. }
  11663. }
  11664. }
  11665. // ggml_compute_forward_rope
  11666. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11667. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11668. return 1 - MIN(1, MAX(0, y));
  11669. }
  11670. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11671. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11672. static void rope_yarn(
  11673. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11674. float * cos_theta, float * sin_theta) {
  11675. // Get n-d rotational scaling corrected for extrapolation
  11676. float theta_interp = freq_scale * theta_extrap;
  11677. float theta = theta_interp;
  11678. if (ext_factor != 0.0f) {
  11679. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11680. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11681. // Get n-d magnitude scaling corrected for interpolation
  11682. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11683. }
  11684. *cos_theta = cosf(theta) * mscale;
  11685. *sin_theta = sinf(theta) * mscale;
  11686. }
  11687. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11688. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11689. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11690. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11691. }
  11692. static void ggml_rope_cache_init(
  11693. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11694. float * cache, float sin_sign, float theta_scale) {
  11695. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11696. float theta = theta_base;
  11697. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11698. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11699. rope_yarn(
  11700. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11701. );
  11702. cache[i0 + 1] *= sin_sign;
  11703. theta *= theta_scale;
  11704. }
  11705. }
  11706. void ggml_rope_yarn_corr_dims(
  11707. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11708. ) {
  11709. // start and end correction dims
  11710. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11711. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11712. dims[0] = MAX(0, start);
  11713. dims[1] = MIN(n_dims - 1, end);
  11714. }
  11715. static void ggml_compute_forward_rope_f32(
  11716. const struct ggml_compute_params * params,
  11717. struct ggml_tensor * dst,
  11718. const bool forward) {
  11719. const struct ggml_tensor * src0 = dst->src[0];
  11720. const struct ggml_tensor * src1 = dst->src[1];
  11721. const struct ggml_tensor * src2 = dst->src[2];
  11722. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11723. //const int n_past = ((int32_t *) dst->op_params)[0];
  11724. const int n_dims = ((int32_t *) dst->op_params)[1];
  11725. const int mode = ((int32_t *) dst->op_params)[2];
  11726. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11727. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11728. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11729. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11730. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11731. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11732. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11733. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11734. GGML_TENSOR_UNARY_OP_LOCALS
  11735. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11736. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11737. GGML_ASSERT(nb00 == sizeof(float));
  11738. const int ith = params->ith;
  11739. const int nth = params->nth;
  11740. const int nr = ggml_nrows(dst);
  11741. GGML_ASSERT(n_dims <= ne0);
  11742. GGML_ASSERT(n_dims % 2 == 0);
  11743. // rows per thread
  11744. const int dr = (nr + nth - 1)/nth;
  11745. // row range for this thread
  11746. const int ir0 = dr*ith;
  11747. const int ir1 = MIN(ir0 + dr, nr);
  11748. // row index used to determine which thread to use
  11749. int ir = 0;
  11750. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11751. float corr_dims[2];
  11752. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11753. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  11754. const float * freq_factors = NULL;
  11755. if (src2 != NULL) {
  11756. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11757. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11758. freq_factors = (const float *) src2->data;
  11759. }
  11760. // backward process uses inverse rotation by cos and sin.
  11761. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11762. // this essentially just switches the sign of sin.
  11763. const float sin_sign = forward ? 1.0f : -1.0f;
  11764. const int32_t * pos = (const int32_t *) src1->data;
  11765. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11766. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11767. const int64_t p = pos[i2];
  11768. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11769. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11770. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11771. if (ir++ < ir0) continue;
  11772. if (ir > ir1) break;
  11773. if (!is_neox) {
  11774. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11775. const float cos_theta = cache[i0 + 0];
  11776. const float sin_theta = cache[i0 + 1];
  11777. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11778. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11779. const float x0 = src[0];
  11780. const float x1 = src[1];
  11781. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11782. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11783. }
  11784. } else {
  11785. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11786. const int64_t ic = i0/2;
  11787. const float cos_theta = cache[i0 + 0];
  11788. const float sin_theta = cache[i0 + 1];
  11789. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11790. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11791. const float x0 = src[0];
  11792. const float x1 = src[n_dims/2];
  11793. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11794. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11795. }
  11796. }
  11797. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11798. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11799. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11800. dst_data[0] = src[0];
  11801. dst_data[1] = src[1];
  11802. }
  11803. }
  11804. }
  11805. }
  11806. }
  11807. // TODO: deduplicate f16/f32 code
  11808. static void ggml_compute_forward_rope_f16(
  11809. const struct ggml_compute_params * params,
  11810. struct ggml_tensor * dst,
  11811. const bool forward) {
  11812. const struct ggml_tensor * src0 = dst->src[0];
  11813. const struct ggml_tensor * src1 = dst->src[1];
  11814. const struct ggml_tensor * src2 = dst->src[2];
  11815. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11816. //const int n_past = ((int32_t *) dst->op_params)[0];
  11817. const int n_dims = ((int32_t *) dst->op_params)[1];
  11818. const int mode = ((int32_t *) dst->op_params)[2];
  11819. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11820. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11821. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11822. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11823. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11824. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11825. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11826. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11827. GGML_TENSOR_UNARY_OP_LOCALS
  11828. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11829. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11830. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11831. const int ith = params->ith;
  11832. const int nth = params->nth;
  11833. const int nr = ggml_nrows(dst);
  11834. GGML_ASSERT(n_dims <= ne0);
  11835. GGML_ASSERT(n_dims % 2 == 0);
  11836. // rows per thread
  11837. const int dr = (nr + nth - 1)/nth;
  11838. // row range for this thread
  11839. const int ir0 = dr*ith;
  11840. const int ir1 = MIN(ir0 + dr, nr);
  11841. // row index used to determine which thread to use
  11842. int ir = 0;
  11843. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11844. float corr_dims[2];
  11845. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11846. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  11847. const float * freq_factors = NULL;
  11848. if (src2 != NULL) {
  11849. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11850. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11851. freq_factors = (const float *) src2->data;
  11852. }
  11853. // backward process uses inverse rotation by cos and sin.
  11854. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11855. // this essentially just switches the sign of sin.
  11856. const float sin_sign = forward ? 1.0f : -1.0f;
  11857. const int32_t * pos = (const int32_t *) src1->data;
  11858. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11859. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11860. const int64_t p = pos[i2];
  11861. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11862. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11863. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11864. if (ir++ < ir0) continue;
  11865. if (ir > ir1) break;
  11866. if (!is_neox) {
  11867. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11868. const float cos_theta = cache[i0 + 0];
  11869. const float sin_theta = cache[i0 + 1];
  11870. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11871. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11872. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11873. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11874. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11875. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11876. }
  11877. } else {
  11878. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11879. const int64_t ic = i0/2;
  11880. const float cos_theta = cache[i0 + 0];
  11881. const float sin_theta = cache[i0 + 1];
  11882. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11883. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11884. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11885. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11886. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11887. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11888. }
  11889. }
  11890. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11891. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11892. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11893. dst_data[0] = src[0];
  11894. dst_data[1] = src[1];
  11895. }
  11896. }
  11897. }
  11898. }
  11899. }
  11900. static void ggml_compute_forward_rope(
  11901. const struct ggml_compute_params * params,
  11902. struct ggml_tensor * dst) {
  11903. const struct ggml_tensor * src0 = dst->src[0];
  11904. switch (src0->type) {
  11905. case GGML_TYPE_F16:
  11906. {
  11907. ggml_compute_forward_rope_f16(params, dst, true);
  11908. } break;
  11909. case GGML_TYPE_F32:
  11910. {
  11911. ggml_compute_forward_rope_f32(params, dst, true);
  11912. } break;
  11913. default:
  11914. {
  11915. GGML_ABORT("fatal error");
  11916. }
  11917. }
  11918. }
  11919. // ggml_compute_forward_rope_back
  11920. static void ggml_compute_forward_rope_back(
  11921. const struct ggml_compute_params * params,
  11922. struct ggml_tensor * dst) {
  11923. const struct ggml_tensor * src0 = dst->src[0];
  11924. switch (src0->type) {
  11925. case GGML_TYPE_F16:
  11926. {
  11927. ggml_compute_forward_rope_f16(params, dst, false);
  11928. } break;
  11929. case GGML_TYPE_F32:
  11930. {
  11931. ggml_compute_forward_rope_f32(params, dst, false);
  11932. } break;
  11933. default:
  11934. {
  11935. GGML_ABORT("fatal error");
  11936. }
  11937. }
  11938. }
  11939. // ggml_compute_forward_conv_transpose_1d
  11940. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11941. const struct ggml_compute_params * params,
  11942. struct ggml_tensor * dst) {
  11943. const struct ggml_tensor * src0 = dst->src[0];
  11944. const struct ggml_tensor * src1 = dst->src[1];
  11945. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11946. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11947. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11948. GGML_TENSOR_BINARY_OP_LOCALS
  11949. const int ith = params->ith;
  11950. const int nth = params->nth;
  11951. const int nk = ne00*ne01*ne02;
  11952. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11953. GGML_ASSERT(nb10 == sizeof(float));
  11954. if (ith == 0) {
  11955. memset(params->wdata, 0, params->wsize);
  11956. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11957. {
  11958. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11959. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11960. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11961. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11962. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11963. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11964. dst_data[i00*ne02 + i02] = src[i00];
  11965. }
  11966. }
  11967. }
  11968. }
  11969. // permute source data (src1) from (L x Cin) to (Cin x L)
  11970. {
  11971. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11972. ggml_fp16_t * dst_data = wdata;
  11973. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11974. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11975. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11976. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11977. }
  11978. }
  11979. }
  11980. // need to zero dst since we are accumulating into it
  11981. memset(dst->data, 0, ggml_nbytes(dst));
  11982. }
  11983. ggml_barrier(params->threadpool);
  11984. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11985. // total rows in dst
  11986. const int nr = ne1;
  11987. // rows per thread
  11988. const int dr = (nr + nth - 1)/nth;
  11989. // row range for this thread
  11990. const int ir0 = dr*ith;
  11991. const int ir1 = MIN(ir0 + dr, nr);
  11992. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11993. ggml_fp16_t * const wdata_src = wdata + nk;
  11994. for (int i1 = ir0; i1 < ir1; i1++) {
  11995. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11996. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11997. for (int i10 = 0; i10 < ne10; i10++) {
  11998. const int i1n = i10*ne11;
  11999. for (int i00 = 0; i00 < ne00; i00++) {
  12000. float v = 0;
  12001. ggml_vec_dot_f16(ne02, &v, 0,
  12002. (ggml_fp16_t *) wdata_src + i1n, 0,
  12003. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12004. dst_data[i10*s0 + i00] += v;
  12005. }
  12006. }
  12007. }
  12008. }
  12009. static void ggml_compute_forward_conv_transpose_1d_f32(
  12010. const struct ggml_compute_params * params,
  12011. struct ggml_tensor * dst) {
  12012. const struct ggml_tensor * src0 = dst->src[0];
  12013. const struct ggml_tensor * src1 = dst->src[1];
  12014. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12015. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12016. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12017. GGML_TENSOR_BINARY_OP_LOCALS
  12018. const int ith = params->ith;
  12019. const int nth = params->nth;
  12020. const int nk = ne00*ne01*ne02;
  12021. GGML_ASSERT(nb00 == sizeof(float));
  12022. GGML_ASSERT(nb10 == sizeof(float));
  12023. if (ith == 0) {
  12024. memset(params->wdata, 0, params->wsize);
  12025. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12026. {
  12027. float * const wdata = (float *) params->wdata + 0;
  12028. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12029. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12030. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12031. float * dst_data = wdata + i01*ne00*ne02;
  12032. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12033. dst_data[i00*ne02 + i02] = src[i00];
  12034. }
  12035. }
  12036. }
  12037. }
  12038. // prepare source data (src1)
  12039. {
  12040. float * const wdata = (float *) params->wdata + nk;
  12041. float * dst_data = wdata;
  12042. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12043. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12044. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12045. dst_data[i10*ne11 + i11] = src[i10];
  12046. }
  12047. }
  12048. }
  12049. // need to zero dst since we are accumulating into it
  12050. memset(dst->data, 0, ggml_nbytes(dst));
  12051. }
  12052. ggml_barrier(params->threadpool);
  12053. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12054. // total rows in dst
  12055. const int nr = ne1;
  12056. // rows per thread
  12057. const int dr = (nr + nth - 1)/nth;
  12058. // row range for this thread
  12059. const int ir0 = dr*ith;
  12060. const int ir1 = MIN(ir0 + dr, nr);
  12061. float * const wdata = (float *) params->wdata + 0;
  12062. float * const wdata_src = wdata + nk;
  12063. for (int i1 = ir0; i1 < ir1; i1++) {
  12064. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12065. float * wdata_kernel = wdata + i1*ne02*ne00;
  12066. for (int i10 = 0; i10 < ne10; i10++) {
  12067. const int i1n = i10*ne11;
  12068. for (int i00 = 0; i00 < ne00; i00++) {
  12069. float v = 0;
  12070. ggml_vec_dot_f32(ne02, &v, 0,
  12071. wdata_src + i1n, 0,
  12072. wdata_kernel + i00*ne02, 0, 1);
  12073. dst_data[i10*s0 + i00] += v;
  12074. }
  12075. }
  12076. }
  12077. }
  12078. static void ggml_compute_forward_conv_transpose_1d(
  12079. const struct ggml_compute_params * params,
  12080. struct ggml_tensor * dst) {
  12081. const struct ggml_tensor * src0 = dst->src[0];
  12082. switch (src0->type) {
  12083. case GGML_TYPE_F16:
  12084. {
  12085. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12086. } break;
  12087. case GGML_TYPE_F32:
  12088. {
  12089. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12090. } break;
  12091. default:
  12092. {
  12093. GGML_ABORT("fatal error");
  12094. }
  12095. }
  12096. }
  12097. // ggml_compute_forward_im2col_f32
  12098. // src0: kernel [OC, IC, KH, KW]
  12099. // src1: image [N, IC, IH, IW]
  12100. // dst: result [N, OH, OW, IC*KH*KW]
  12101. static void ggml_compute_forward_im2col_f32(
  12102. const struct ggml_compute_params * params,
  12103. struct ggml_tensor * dst) {
  12104. const struct ggml_tensor * src0 = dst->src[0];
  12105. const struct ggml_tensor * src1 = dst->src[1];
  12106. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12107. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12108. GGML_TENSOR_BINARY_OP_LOCALS;
  12109. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12110. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12111. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12112. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12113. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12114. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12115. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12116. const int ith = params->ith;
  12117. const int nth = params->nth;
  12118. const int64_t N = is_2D ? ne13 : ne12;
  12119. const int64_t IC = is_2D ? ne12 : ne11;
  12120. const int64_t IH = is_2D ? ne11 : 1;
  12121. const int64_t IW = ne10;
  12122. const int64_t KH = is_2D ? ne01 : 1;
  12123. const int64_t KW = ne00;
  12124. const int64_t OH = is_2D ? ne2 : 1;
  12125. const int64_t OW = ne1;
  12126. int ofs0 = is_2D ? nb13 : nb12;
  12127. int ofs1 = is_2D ? nb12 : nb11;
  12128. GGML_ASSERT(nb10 == sizeof(float));
  12129. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12130. {
  12131. float * const wdata = (float *) dst->data;
  12132. for (int64_t in = 0; in < N; in++) {
  12133. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12134. for (int64_t iow = 0; iow < OW; iow++) {
  12135. for (int64_t iic = ith; iic < IC; iic += nth) {
  12136. // micro kernel
  12137. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12138. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12139. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12140. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12141. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12142. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12143. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12144. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12145. } else {
  12146. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12147. }
  12148. }
  12149. }
  12150. }
  12151. }
  12152. }
  12153. }
  12154. }
  12155. }
  12156. // ggml_compute_forward_im2col_f16
  12157. // src0: kernel [OC, IC, KH, KW]
  12158. // src1: image [N, IC, IH, IW]
  12159. // dst: result [N, OH, OW, IC*KH*KW]
  12160. static void ggml_compute_forward_im2col_f16(
  12161. const struct ggml_compute_params * params,
  12162. struct ggml_tensor * dst) {
  12163. const struct ggml_tensor * src0 = dst->src[0];
  12164. const struct ggml_tensor * src1 = dst->src[1];
  12165. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12166. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12167. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12168. GGML_TENSOR_BINARY_OP_LOCALS;
  12169. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12170. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12171. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12172. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12173. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12174. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12175. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12176. const int ith = params->ith;
  12177. const int nth = params->nth;
  12178. const int64_t N = is_2D ? ne13 : ne12;
  12179. const int64_t IC = is_2D ? ne12 : ne11;
  12180. const int64_t IH = is_2D ? ne11 : 1;
  12181. const int64_t IW = ne10;
  12182. const int64_t KH = is_2D ? ne01 : 1;
  12183. const int64_t KW = ne00;
  12184. const int64_t OH = is_2D ? ne2 : 1;
  12185. const int64_t OW = ne1;
  12186. int ofs0 = is_2D ? nb13 : nb12;
  12187. int ofs1 = is_2D ? nb12 : nb11;
  12188. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12189. GGML_ASSERT(nb10 == sizeof(float));
  12190. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12191. {
  12192. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12193. for (int64_t in = 0; in < N; in++) {
  12194. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12195. for (int64_t iow = 0; iow < OW; iow++) {
  12196. for (int64_t iic = ith; iic < IC; iic += nth) {
  12197. // micro kernel
  12198. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12199. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12200. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12201. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12202. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12203. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12204. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12205. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12206. } else {
  12207. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12208. }
  12209. }
  12210. }
  12211. }
  12212. }
  12213. }
  12214. }
  12215. }
  12216. }
  12217. static void ggml_compute_forward_im2col(
  12218. const struct ggml_compute_params * params,
  12219. struct ggml_tensor * dst) {
  12220. switch (dst->type) {
  12221. case GGML_TYPE_F16:
  12222. {
  12223. ggml_compute_forward_im2col_f16(params, dst);
  12224. } break;
  12225. case GGML_TYPE_F32:
  12226. {
  12227. ggml_compute_forward_im2col_f32(params, dst);
  12228. } break;
  12229. default:
  12230. {
  12231. GGML_ABORT("fatal error");
  12232. }
  12233. }
  12234. }
  12235. // ggml_compute_forward_im2col_back_f32
  12236. static void ggml_compute_forward_im2col_back_f32(
  12237. const struct ggml_compute_params * params,
  12238. struct ggml_tensor * dst) {
  12239. const struct ggml_tensor * src0 = dst->src[0];
  12240. const struct ggml_tensor * src1 = dst->src[1];
  12241. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12242. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12243. GGML_TENSOR_BINARY_OP_LOCALS;
  12244. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12245. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12246. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12247. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12248. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12249. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12250. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12251. const int ith = params->ith;
  12252. const int nth = params->nth;
  12253. const int64_t N = is_2D ? ne3 : ne2;
  12254. const int64_t IC = is_2D ? ne2 : ne1;
  12255. const int64_t IH = is_2D ? ne1 : 1;
  12256. const int64_t IW = ne0;
  12257. const int64_t KH = is_2D ? ne01 : 1;
  12258. const int64_t KW = ne00;
  12259. const int64_t OH = is_2D ? ne12 : 1;
  12260. const int64_t OW = ne11;
  12261. int ofs0 = is_2D ? nb3 : nb2;
  12262. int ofs1 = is_2D ? nb2 : nb1;
  12263. GGML_ASSERT(nb0 == sizeof(float));
  12264. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12265. {
  12266. float * const wdata = (float *) dst->data;
  12267. for (int64_t in = 0; in < N; in++) {
  12268. for (int64_t iic = ith; iic < IC; iic += nth) {
  12269. for (int64_t iih = 0; iih < IH; iih++) {
  12270. for (int64_t iiw = 0; iiw < IW; iiw++) {
  12271. // micro kernel
  12272. float grad = 0.0f;
  12273. for (int64_t ikh = 0; ikh < KH; ikh++) {
  12274. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12275. // For s0 > 1 some values were skipped over in the forward pass.
  12276. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
  12277. const int64_t tmpw = (iiw + p0 - ikw*d0);
  12278. if (tmpw % s0 != 0) {
  12279. continue;
  12280. }
  12281. const int64_t iow = tmpw / s0;
  12282. // Equivalent logic as above except for s1.
  12283. int64_t ioh;
  12284. if (is_2D) {
  12285. const int64_t tmph = iih + p1 - ikh*d1;
  12286. if (tmph % s1 != 0) {
  12287. continue;
  12288. }
  12289. ioh = tmph / s1;
  12290. } else {
  12291. ioh = 0;
  12292. }
  12293. if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
  12294. continue;
  12295. }
  12296. const float * const src_data = (const float *) src1->data
  12297. + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12298. grad += src_data[iic*(KH*KW) + ikh*KW + ikw];
  12299. }
  12300. }
  12301. float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
  12302. dst_data[iih*IW + iiw] = grad;
  12303. }
  12304. }
  12305. }
  12306. }
  12307. }
  12308. }
  12309. // ggml_compute_forward_conv_transpose_2d
  12310. static void ggml_compute_forward_conv_transpose_2d(
  12311. const struct ggml_compute_params * params,
  12312. struct ggml_tensor * dst) {
  12313. const struct ggml_tensor * src0 = dst->src[0];
  12314. const struct ggml_tensor * src1 = dst->src[1];
  12315. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12316. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12317. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12318. GGML_TENSOR_BINARY_OP_LOCALS
  12319. const int ith = params->ith;
  12320. const int nth = params->nth;
  12321. const int nk = ne00*ne01*ne02*ne03;
  12322. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12323. GGML_ASSERT(nb10 == sizeof(float));
  12324. if (ith == 0) {
  12325. memset(params->wdata, 0, params->wsize);
  12326. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12327. {
  12328. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12329. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12330. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12331. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12332. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12333. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12334. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12335. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12336. }
  12337. }
  12338. }
  12339. }
  12340. }
  12341. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12342. {
  12343. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12344. for (int i12 = 0; i12 < ne12; i12++) {
  12345. for (int i11 = 0; i11 < ne11; i11++) {
  12346. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12347. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12348. for (int i10 = 0; i10 < ne10; i10++) {
  12349. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12350. }
  12351. }
  12352. }
  12353. }
  12354. memset(dst->data, 0, ggml_nbytes(dst));
  12355. }
  12356. ggml_barrier(params->threadpool);
  12357. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12358. // total patches in dst
  12359. const int np = ne2;
  12360. // patches per thread
  12361. const int dp = (np + nth - 1)/nth;
  12362. // patch range for this thread
  12363. const int ip0 = dp*ith;
  12364. const int ip1 = MIN(ip0 + dp, np);
  12365. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12366. ggml_fp16_t * const wdata_src = wdata + nk;
  12367. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12368. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12369. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12370. for (int i11 = 0; i11 < ne11; i11++) {
  12371. for (int i10 = 0; i10 < ne10; i10++) {
  12372. const int i1n = i11*ne10*ne12 + i10*ne12;
  12373. for (int i01 = 0; i01 < ne01; i01++) {
  12374. for (int i00 = 0; i00 < ne00; i00++) {
  12375. float v = 0;
  12376. ggml_vec_dot_f16(ne03, &v, 0,
  12377. wdata_src + i1n, 0,
  12378. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12379. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12380. }
  12381. }
  12382. }
  12383. }
  12384. }
  12385. }
  12386. // ggml_compute_forward_pool_1d_sk_p0
  12387. static void ggml_compute_forward_pool_1d_sk_p0(
  12388. const struct ggml_compute_params * params,
  12389. const enum ggml_op_pool op,
  12390. const int k,
  12391. struct ggml_tensor * dst) {
  12392. const struct ggml_tensor * src = dst->src[0];
  12393. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12394. if (params->ith != 0) {
  12395. return;
  12396. }
  12397. const char * cdata = (const char *)src->data;
  12398. const char * const data_end = cdata + ggml_nbytes(src);
  12399. float * drow = (float *)dst->data;
  12400. const int64_t rs = dst->ne[0];
  12401. while (cdata < data_end) {
  12402. const void * srow = (const void *)cdata;
  12403. int j = 0;
  12404. for (int64_t i = 0; i < rs; ++i) {
  12405. switch (op) {
  12406. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12407. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12408. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12409. }
  12410. for (int ki = 0; ki < k; ++ki) {
  12411. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12412. switch (op) {
  12413. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  12414. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  12415. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12416. }
  12417. ++j;
  12418. }
  12419. switch (op) {
  12420. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12421. case GGML_OP_POOL_MAX: break;
  12422. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12423. }
  12424. }
  12425. cdata += src->nb[1];
  12426. drow += rs;
  12427. }
  12428. }
  12429. // ggml_compute_forward_pool_1d
  12430. static void ggml_compute_forward_pool_1d(
  12431. const struct ggml_compute_params * params,
  12432. struct ggml_tensor * dst) {
  12433. const int32_t * opts = (const int32_t *)dst->op_params;
  12434. enum ggml_op_pool op = opts[0];
  12435. const int k0 = opts[1];
  12436. const int s0 = opts[2];
  12437. const int p0 = opts[3];
  12438. GGML_ASSERT(p0 == 0); // padding not supported
  12439. GGML_ASSERT(k0 == s0); // only s = k supported
  12440. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12441. }
  12442. // ggml_compute_forward_pool_2d
  12443. static void ggml_compute_forward_pool_2d(
  12444. const struct ggml_compute_params * params,
  12445. struct ggml_tensor * dst) {
  12446. const struct ggml_tensor * src = dst->src[0];
  12447. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12448. if (params->ith != 0) {
  12449. return;
  12450. }
  12451. const int32_t * opts = (const int32_t *)dst->op_params;
  12452. enum ggml_op_pool op = opts[0];
  12453. const int k0 = opts[1];
  12454. const int k1 = opts[2];
  12455. const int s0 = opts[3];
  12456. const int s1 = opts[4];
  12457. const int p0 = opts[5];
  12458. const int p1 = opts[6];
  12459. const char * cdata = (const char*)src->data;
  12460. const char * const data_end = cdata + ggml_nbytes(src);
  12461. const int64_t px = dst->ne[0];
  12462. const int64_t py = dst->ne[1];
  12463. const int64_t pa = px * py;
  12464. float * dplane = (float *)dst->data;
  12465. const int ka = k0 * k1;
  12466. const int offset0 = -p0;
  12467. const int offset1 = -p1;
  12468. while (cdata < data_end) {
  12469. for (int oy = 0; oy < py; ++oy) {
  12470. float * const drow = dplane + oy * px;
  12471. for (int ox = 0; ox < px; ++ox) {
  12472. float * const out = drow + ox;
  12473. switch (op) {
  12474. case GGML_OP_POOL_AVG: *out = 0; break;
  12475. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12476. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12477. }
  12478. const int ix = offset0 + ox * s0;
  12479. const int iy = offset1 + oy * s1;
  12480. for (int ky = 0; ky < k1; ++ky) {
  12481. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12482. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  12483. for (int kx = 0; kx < k0; ++kx) {
  12484. int j = ix + kx;
  12485. if (j < 0 || j >= src->ne[0]) continue;
  12486. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12487. switch (op) {
  12488. case GGML_OP_POOL_AVG: *out += srow_j; break;
  12489. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  12490. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12491. }
  12492. }
  12493. }
  12494. switch (op) {
  12495. case GGML_OP_POOL_AVG: *out /= ka; break;
  12496. case GGML_OP_POOL_MAX: break;
  12497. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12498. }
  12499. }
  12500. }
  12501. cdata += src->nb[2];
  12502. dplane += pa;
  12503. }
  12504. }
  12505. // ggml_compute_forward_pool_2d_back
  12506. static void ggml_compute_forward_pool_2d_back(
  12507. const struct ggml_compute_params * params,
  12508. struct ggml_tensor * dst) {
  12509. const struct ggml_tensor * src = dst->src[0];
  12510. const struct ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
  12511. assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
  12512. if (params->ith != 0) {
  12513. return;
  12514. }
  12515. const int32_t * opts = (const int32_t *)dst->op_params;
  12516. enum ggml_op_pool op = opts[0];
  12517. const int k0 = opts[1];
  12518. const int k1 = opts[2];
  12519. const int s0 = opts[3];
  12520. const int s1 = opts[4];
  12521. const int p0 = opts[5];
  12522. const int p1 = opts[6];
  12523. char * cdata = (char *) dst->data;
  12524. const char * cdataf = (const char *) dstf->data;
  12525. const char * const data_end = cdata + ggml_nbytes(dst);
  12526. GGML_ASSERT(params->ith == 0);
  12527. memset(cdata, 0, ggml_nbytes(dst));
  12528. const int64_t px = src->ne[0];
  12529. const int64_t py = src->ne[1];
  12530. const int64_t pa = px * py;
  12531. const float * splane = (const float *) src->data;
  12532. const int ka = k0 * k1;
  12533. const int offset0 = -p0;
  12534. const int offset1 = -p1;
  12535. while (cdata < data_end) {
  12536. for (int oy = 0; oy < py; ++oy) {
  12537. const float * const srow = splane + oy * px;
  12538. for (int ox = 0; ox < px; ++ox) {
  12539. const float grad0 = srow[ox];
  12540. const int ix = offset0 + ox * s0;
  12541. const int iy = offset1 + oy * s1;
  12542. if (op == GGML_OP_POOL_MAX) {
  12543. float maxval = -FLT_MAX;
  12544. int kxmax = -1;
  12545. int kymax = -1;
  12546. for (int ky = 0; ky < k1; ++ky) {
  12547. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  12548. continue;
  12549. }
  12550. const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
  12551. for (int kx = 0; kx < k0; ++kx) {
  12552. int j = ix + kx;
  12553. if (j < 0 || j >= dst->ne[0]) {
  12554. continue;
  12555. }
  12556. const float val = dst->type == GGML_TYPE_F32 ?
  12557. ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
  12558. if (val <= maxval) {
  12559. continue;
  12560. }
  12561. maxval = val;
  12562. kxmax = kx;
  12563. kymax = ky;
  12564. }
  12565. }
  12566. if (kxmax == -1 || kymax == -1) {
  12567. continue;
  12568. }
  12569. void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
  12570. const int j = ix + kxmax;
  12571. if (dst->type == GGML_TYPE_F32) {
  12572. ((float *) drow)[j] += grad0;
  12573. } else {
  12574. ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
  12575. }
  12576. } else if (op == GGML_OP_POOL_AVG) {
  12577. const float grad = grad0 / ka;
  12578. for (int ky = 0; ky < k1; ++ky) {
  12579. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  12580. continue;
  12581. }
  12582. void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
  12583. for (int kx = 0; kx < k0; ++kx) {
  12584. int j = ix + kx;
  12585. if (j < 0 || j >= dst->ne[0]) {
  12586. continue;
  12587. }
  12588. if (dst->type == GGML_TYPE_F32) {
  12589. ((float *) drow)[j] += grad;
  12590. } else {
  12591. ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
  12592. }
  12593. }
  12594. }
  12595. } else {
  12596. GGML_ASSERT(false);
  12597. }
  12598. }
  12599. }
  12600. cdata += dst->nb[2];
  12601. cdataf += dst->nb[2];
  12602. splane += pa;
  12603. }
  12604. }
  12605. // ggml_compute_forward_upscale
  12606. static void ggml_compute_forward_upscale_f32(
  12607. const struct ggml_compute_params * params,
  12608. struct ggml_tensor * dst) {
  12609. const struct ggml_tensor * src0 = dst->src[0];
  12610. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12611. const int ith = params->ith;
  12612. const int nth = params->nth;
  12613. GGML_TENSOR_UNARY_OP_LOCALS
  12614. const float sf0 = (float)ne0/src0->ne[0];
  12615. const float sf1 = (float)ne1/src0->ne[1];
  12616. const float sf2 = (float)ne2/src0->ne[2];
  12617. const float sf3 = (float)ne3/src0->ne[3];
  12618. // TODO: optimize
  12619. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12620. const int64_t i03 = i3 / sf3;
  12621. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12622. const int64_t i02 = i2 / sf2;
  12623. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12624. const int64_t i01 = i1 / sf1;
  12625. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12626. const int64_t i00 = i0 / sf0;
  12627. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12628. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12629. *y = *x;
  12630. }
  12631. }
  12632. }
  12633. }
  12634. }
  12635. static void ggml_compute_forward_upscale(
  12636. const struct ggml_compute_params * params,
  12637. struct ggml_tensor * dst) {
  12638. const struct ggml_tensor * src0 = dst->src[0];
  12639. switch (src0->type) {
  12640. case GGML_TYPE_F32:
  12641. {
  12642. ggml_compute_forward_upscale_f32(params, dst);
  12643. } break;
  12644. default:
  12645. {
  12646. GGML_ABORT("fatal error");
  12647. }
  12648. }
  12649. }
  12650. // ggml_compute_forward_pad
  12651. static void ggml_compute_forward_pad_f32(
  12652. const struct ggml_compute_params * params,
  12653. struct ggml_tensor * dst) {
  12654. const struct ggml_tensor * src0 = dst->src[0];
  12655. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12656. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12657. const int ith = params->ith;
  12658. const int nth = params->nth;
  12659. GGML_TENSOR_UNARY_OP_LOCALS
  12660. float * dst_ptr = (float *) dst->data;
  12661. // TODO: optimize
  12662. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12663. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12664. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12665. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12666. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12667. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12668. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12669. dst_ptr[dst_idx] = *src_ptr;
  12670. } else {
  12671. dst_ptr[dst_idx] = 0;
  12672. }
  12673. }
  12674. }
  12675. }
  12676. }
  12677. }
  12678. static void ggml_compute_forward_pad(
  12679. const struct ggml_compute_params * params,
  12680. struct ggml_tensor * dst) {
  12681. const struct ggml_tensor * src0 = dst->src[0];
  12682. switch (src0->type) {
  12683. case GGML_TYPE_F32:
  12684. {
  12685. ggml_compute_forward_pad_f32(params, dst);
  12686. } break;
  12687. default:
  12688. {
  12689. GGML_ABORT("fatal error");
  12690. }
  12691. }
  12692. }
  12693. // ggml_compute_forward_arange
  12694. static void ggml_compute_forward_arange_f32(
  12695. const struct ggml_compute_params * params,
  12696. struct ggml_tensor * dst) {
  12697. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12698. const int ith = params->ith;
  12699. const int nth = params->nth;
  12700. const float start = ggml_get_op_params_f32(dst, 0);
  12701. const float stop = ggml_get_op_params_f32(dst, 1);
  12702. const float step = ggml_get_op_params_f32(dst, 2);
  12703. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12704. GGML_ASSERT(ggml_nelements(dst) == steps);
  12705. for (int64_t i = ith; i < steps; i+= nth) {
  12706. float value = start + step * i;
  12707. ((float *)dst->data)[i] = value;
  12708. }
  12709. }
  12710. static void ggml_compute_forward_arange(
  12711. const struct ggml_compute_params * params,
  12712. struct ggml_tensor * dst) {
  12713. switch (dst->type) {
  12714. case GGML_TYPE_F32:
  12715. {
  12716. ggml_compute_forward_arange_f32(params, dst);
  12717. } break;
  12718. default:
  12719. {
  12720. GGML_ABORT("fatal error");
  12721. }
  12722. }
  12723. }
  12724. static void ggml_compute_forward_timestep_embedding_f32(
  12725. const struct ggml_compute_params * params,
  12726. struct ggml_tensor * dst) {
  12727. const struct ggml_tensor * src0 = dst->src[0];
  12728. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12729. const int ith = params->ith;
  12730. const int nth = params->nth;
  12731. GGML_TENSOR_UNARY_OP_LOCALS
  12732. const int dim = ggml_get_op_params_i32(dst, 0);
  12733. const int max_period = ggml_get_op_params_i32(dst, 1);
  12734. int half = dim / 2;
  12735. for (int64_t i = 0; i < ne00; i++) {
  12736. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12737. for (int64_t j = ith; j < half; j += nth) {
  12738. float timestep = ((float *)src0->data)[i];
  12739. float freq = (float)expf(-logf(max_period) * j / half);
  12740. float arg = timestep * freq;
  12741. embed_data[j] = cosf(arg);
  12742. embed_data[j + half] = sinf(arg);
  12743. }
  12744. if (dim % 2 != 0 && ith == 0) {
  12745. embed_data[dim] = 0.f;
  12746. }
  12747. }
  12748. }
  12749. static void ggml_compute_forward_timestep_embedding(
  12750. const struct ggml_compute_params * params,
  12751. struct ggml_tensor * dst) {
  12752. const struct ggml_tensor * src0 = dst->src[0];
  12753. switch (src0->type) {
  12754. case GGML_TYPE_F32:
  12755. {
  12756. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12757. } break;
  12758. default:
  12759. {
  12760. GGML_ABORT("fatal error");
  12761. }
  12762. }
  12763. }
  12764. // ggml_compute_forward_argsort
  12765. static void ggml_compute_forward_argsort_f32(
  12766. const struct ggml_compute_params * params,
  12767. struct ggml_tensor * dst) {
  12768. const struct ggml_tensor * src0 = dst->src[0];
  12769. GGML_TENSOR_UNARY_OP_LOCALS
  12770. GGML_ASSERT(nb0 == sizeof(float));
  12771. const int ith = params->ith;
  12772. const int nth = params->nth;
  12773. const int64_t nr = ggml_nrows(src0);
  12774. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12775. for (int64_t i = ith; i < nr; i += nth) {
  12776. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12777. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12778. for (int64_t j = 0; j < ne0; j++) {
  12779. dst_data[j] = j;
  12780. }
  12781. // C doesn't have a functional sort, so we do a bubble sort instead
  12782. for (int64_t j = 0; j < ne0; j++) {
  12783. for (int64_t k = j + 1; k < ne0; k++) {
  12784. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12785. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12786. int32_t tmp = dst_data[j];
  12787. dst_data[j] = dst_data[k];
  12788. dst_data[k] = tmp;
  12789. }
  12790. }
  12791. }
  12792. }
  12793. }
  12794. static void ggml_compute_forward_argsort(
  12795. const struct ggml_compute_params * params,
  12796. struct ggml_tensor * dst) {
  12797. const struct ggml_tensor * src0 = dst->src[0];
  12798. switch (src0->type) {
  12799. case GGML_TYPE_F32:
  12800. {
  12801. ggml_compute_forward_argsort_f32(params, dst);
  12802. } break;
  12803. default:
  12804. {
  12805. GGML_ABORT("fatal error");
  12806. }
  12807. }
  12808. }
  12809. // ggml_compute_forward_flash_attn_ext
  12810. static void ggml_compute_forward_flash_attn_ext_f16(
  12811. const struct ggml_compute_params * params,
  12812. const struct ggml_tensor * q,
  12813. const struct ggml_tensor * k,
  12814. const struct ggml_tensor * v,
  12815. const struct ggml_tensor * mask,
  12816. struct ggml_tensor * dst) {
  12817. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12818. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12819. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12820. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12821. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12822. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12823. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12824. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12825. const int ith = params->ith;
  12826. const int nth = params->nth;
  12827. const int64_t D = neq0;
  12828. const int64_t N = neq1;
  12829. GGML_ASSERT(ne0 == D);
  12830. GGML_ASSERT(ne2 == N);
  12831. // input tensor rows must be contiguous
  12832. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12833. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12834. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12835. GGML_ASSERT(neq0 == D);
  12836. GGML_ASSERT(nek0 == D);
  12837. GGML_ASSERT(nev0 == D);
  12838. GGML_ASSERT(neq1 == N);
  12839. GGML_ASSERT(nev0 == D);
  12840. // dst cannot be transposed or permuted
  12841. GGML_ASSERT(nb0 == sizeof(float));
  12842. GGML_ASSERT(nb0 <= nb1);
  12843. GGML_ASSERT(nb1 <= nb2);
  12844. GGML_ASSERT(nb2 <= nb3);
  12845. // broadcast factors
  12846. const int64_t rk2 = neq2/nek2;
  12847. const int64_t rk3 = neq3/nek3;
  12848. const int64_t rv2 = neq2/nev2;
  12849. const int64_t rv3 = neq3/nev3;
  12850. // parallelize by q rows using ggml_vec_dot_f32
  12851. // total rows in q
  12852. const int nr = neq1*neq2*neq3;
  12853. // rows per thread
  12854. const int dr = (nr + nth - 1)/nth;
  12855. // row range for this thread
  12856. const int ir0 = dr*ith;
  12857. const int ir1 = MIN(ir0 + dr, nr);
  12858. float scale = 1.0f;
  12859. float max_bias = 0.0f;
  12860. float logit_softcap = 0.0f;
  12861. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12862. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12863. memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
  12864. if (logit_softcap != 0) {
  12865. scale /= logit_softcap;
  12866. }
  12867. const uint32_t n_head = neq2;
  12868. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12869. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12870. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12871. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12872. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12873. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12874. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12875. // loop over n_batch and n_head
  12876. for (int ir = ir0; ir < ir1; ++ir) {
  12877. // q indices
  12878. const int iq3 = ir/(neq2*neq1);
  12879. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12880. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12881. const uint32_t h = iq2; // head index
  12882. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12883. float S = 0.0f; // sum
  12884. float M = -INFINITY; // maximum KQ value
  12885. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12886. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12887. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12888. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12889. if (v->type == GGML_TYPE_F16) {
  12890. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12891. } else {
  12892. memset(VKQ32, 0, D*sizeof(float));
  12893. }
  12894. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12895. // k indices
  12896. const int ik3 = iq3 / rk3;
  12897. const int ik2 = iq2 / rk2;
  12898. // v indices
  12899. const int iv3 = iq3 / rv3;
  12900. const int iv2 = iq2 / rv2;
  12901. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12902. q_to_vec_dot(pq, Q_q, D);
  12903. // online softmax / attention
  12904. // loop over n_kv and n_head_kv
  12905. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12906. for (int64_t ic = 0; ic < nek1; ++ic) {
  12907. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12908. if (mv == -INFINITY) {
  12909. continue;
  12910. }
  12911. float s; // KQ value
  12912. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12913. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12914. s = s*scale; // scale KQ value
  12915. if (logit_softcap != 0.0f) {
  12916. s = logit_softcap*tanhf(s);
  12917. }
  12918. s += mv; // apply mask
  12919. const float Mold = M;
  12920. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12921. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12922. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12923. if (v->type == GGML_TYPE_F16) {
  12924. if (s > M) {
  12925. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12926. M = s;
  12927. ms = expf(Mold - M);
  12928. // V = V*expf(Mold - M)
  12929. ggml_vec_scale_f16(D, VKQ16, ms);
  12930. } else {
  12931. // no new maximum, ms == 1.0f, vs != 1.0f
  12932. vs = expf(s - M);
  12933. }
  12934. // V += v*expf(s - M)
  12935. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12936. } else {
  12937. if (s > M) {
  12938. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12939. M = s;
  12940. ms = expf(Mold - M);
  12941. // V = V*expf(Mold - M)
  12942. ggml_vec_scale_f32(D, VKQ32, ms);
  12943. } else {
  12944. // no new maximum, ms == 1.0f, vs != 1.0f
  12945. vs = expf(s - M);
  12946. }
  12947. v_to_float(v_data, V32, D);
  12948. // V += v*expf(s - M)
  12949. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12950. }
  12951. S = S*ms + vs; // scale and increment sum with partial sum
  12952. }
  12953. if (v->type == GGML_TYPE_F16) {
  12954. for (int64_t d = 0; d < D; ++d) {
  12955. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12956. }
  12957. }
  12958. // V /= S
  12959. const float S_inv = 1.0f/S;
  12960. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12961. // dst indices
  12962. const int i1 = iq1;
  12963. const int i2 = iq2;
  12964. const int i3 = iq3;
  12965. // original
  12966. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12967. // permute(0, 2, 1, 3)
  12968. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12969. }
  12970. }
  12971. static void ggml_compute_forward_flash_attn_ext(
  12972. const struct ggml_compute_params * params,
  12973. const struct ggml_tensor * q,
  12974. const struct ggml_tensor * k,
  12975. const struct ggml_tensor * v,
  12976. const struct ggml_tensor * mask,
  12977. struct ggml_tensor * dst) {
  12978. switch (dst->op_params[3]) {
  12979. case GGML_PREC_DEFAULT:
  12980. case GGML_PREC_F32:
  12981. {
  12982. // uses F32 accumulators
  12983. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12984. } break;
  12985. default:
  12986. {
  12987. GGML_ABORT("fatal error");
  12988. }
  12989. }
  12990. }
  12991. // ggml_compute_forward_flash_attn_back
  12992. static void ggml_compute_forward_flash_attn_back_f32(
  12993. const struct ggml_compute_params * params,
  12994. const bool masked,
  12995. struct ggml_tensor * dst) {
  12996. const struct ggml_tensor * q = dst->src[0];
  12997. const struct ggml_tensor * k = dst->src[1];
  12998. const struct ggml_tensor * v = dst->src[2];
  12999. const struct ggml_tensor * d = dst->src[3];
  13000. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13001. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13002. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13003. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13004. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13005. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13006. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  13007. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  13008. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13009. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13010. const int ith = params->ith;
  13011. const int nth = params->nth;
  13012. const int64_t D = neq0;
  13013. const int64_t N = neq1;
  13014. const int64_t P = nek1 - N;
  13015. const int64_t M = P + N;
  13016. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  13017. const int mxDM = MAX(D, Mup);
  13018. // GGML_ASSERT(ne0 == D);
  13019. // GGML_ASSERT(ne1 == N);
  13020. GGML_ASSERT(P >= 0);
  13021. GGML_ASSERT(nbq0 == sizeof(float));
  13022. GGML_ASSERT(nbk0 == sizeof(float));
  13023. GGML_ASSERT(nbv0 == sizeof(float));
  13024. GGML_ASSERT(neq0 == D);
  13025. GGML_ASSERT(nek0 == D);
  13026. GGML_ASSERT(nev1 == D);
  13027. GGML_ASSERT(ned0 == D);
  13028. GGML_ASSERT(neq1 == N);
  13029. GGML_ASSERT(nek1 == N + P);
  13030. GGML_ASSERT(nev1 == D);
  13031. GGML_ASSERT(ned1 == N);
  13032. // dst cannot be transposed or permuted
  13033. GGML_ASSERT(nb0 == sizeof(float));
  13034. GGML_ASSERT(nb0 <= nb1);
  13035. GGML_ASSERT(nb1 <= nb2);
  13036. GGML_ASSERT(nb2 <= nb3);
  13037. if (ith == 0) {
  13038. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13039. }
  13040. ggml_barrier(params->threadpool);
  13041. const int64_t elem_q = ggml_nelements(q);
  13042. const int64_t elem_k = ggml_nelements(k);
  13043. enum ggml_type result_type = dst->type;
  13044. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13045. const size_t tsize = ggml_type_size(result_type);
  13046. const size_t offs_q = 0;
  13047. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13048. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13049. void * grad_q = (char *) dst->data;
  13050. void * grad_k = (char *) dst->data + offs_k;
  13051. void * grad_v = (char *) dst->data + offs_v;
  13052. const size_t nbgq1 = nb0*neq0;
  13053. const size_t nbgq2 = nb0*neq0*neq1;
  13054. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13055. const size_t nbgk1 = nb0*nek0;
  13056. const size_t nbgk2 = nb0*nek0*nek1;
  13057. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13058. const size_t nbgv1 = nb0*nev0;
  13059. const size_t nbgv2 = nb0*nev0*nev1;
  13060. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13061. // parallelize by k rows using ggml_vec_dot_f32
  13062. // total rows in k
  13063. const int nr = nek2*nek3;
  13064. // rows per thread
  13065. const int dr = (nr + nth - 1)/nth;
  13066. // row range for this thread
  13067. const int ir0 = dr*ith;
  13068. const int ir1 = MIN(ir0 + dr, nr);
  13069. const float scale = 1.0f/sqrtf(D);
  13070. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13071. // how often k2 (and v2) is repeated in q2
  13072. int nrep = neq2/nek2;
  13073. for (int ir = ir0; ir < ir1; ++ir) {
  13074. // q indices
  13075. const int ik3 = ir/(nek2);
  13076. const int ik2 = ir - ik3*nek2;
  13077. const int iq3 = ik3;
  13078. const int id3 = ik3;
  13079. const int iv3 = ik3;
  13080. const int iv2 = ik2;
  13081. for (int irep = 0; irep < nrep; ++irep) {
  13082. const int iq2 = ik2 + irep*nek2;
  13083. const int id2 = iq2;
  13084. // (ik2 + irep*nek2) % nek2 == ik2
  13085. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13086. const int id1 = iq1;
  13087. // not sure about CACHE_LINE_SIZE_F32..
  13088. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13089. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13090. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13091. for (int i = M; i < Mup; ++i) {
  13092. S[i] = -INFINITY;
  13093. }
  13094. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13095. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13096. // k indices
  13097. const int ik1 = ic;
  13098. // S indices
  13099. const int i1 = ik1;
  13100. ggml_vec_dot_f32(neq0,
  13101. S + i1, 0,
  13102. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13103. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13104. }
  13105. // scale
  13106. ggml_vec_scale_f32(masked_begin, S, scale);
  13107. for (int64_t i = masked_begin; i < M; i++) {
  13108. S[i] = -INFINITY;
  13109. }
  13110. // softmax
  13111. // exclude known -INF S[..] values from max and loop
  13112. // dont forget to set their SM values to zero
  13113. {
  13114. float max = -INFINITY;
  13115. ggml_vec_max_f32(masked_begin, &max, S);
  13116. ggml_float sum = 0.0;
  13117. {
  13118. #ifdef GGML_SOFT_MAX_ACCELERATE
  13119. max = -max;
  13120. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13121. vvexpf(SM, SM, &Mup);
  13122. ggml_vec_sum_f32(Mup, &sum, SM);
  13123. #else
  13124. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13125. #endif
  13126. }
  13127. assert(sum > 0.0);
  13128. sum = 1.0/sum;
  13129. ggml_vec_scale_f32(masked_begin, SM, sum);
  13130. }
  13131. // step-by-step explanation
  13132. {
  13133. // forward-process shape grads from backward process
  13134. // parallel_for ik2,ik3:
  13135. // for irep:
  13136. // iq2 = ik2 + irep*nek2
  13137. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13138. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13139. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13140. // for iq1:
  13141. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13142. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13143. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13144. // S0 = -Inf [D,1,1,1]
  13145. // ~S1[i] = dot(kcur[:D,i], qcur)
  13146. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13147. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13148. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13149. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13150. // ~S5[i] = dot(vcur[:,i], S4)
  13151. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13152. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13153. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13154. // dst backward-/ grad[dst] = d
  13155. //
  13156. // output gradients with their dependencies:
  13157. //
  13158. // grad[kcur] = grad[S1].T @ qcur
  13159. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13160. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13161. // grad[S4] = grad[S5] @ vcur
  13162. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13163. // grad[qcur] = grad[S1] @ kcur
  13164. // grad[vcur] = grad[S5].T @ S4
  13165. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13166. //
  13167. // in post-order:
  13168. //
  13169. // S1 = qcur @ kcur.T
  13170. // S2 = S1 * scale
  13171. // S3 = diag_mask_inf(S2, P)
  13172. // S4 = softmax(S3)
  13173. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13174. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13175. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13176. // grad[qcur] = grad[S1] @ kcur
  13177. // grad[kcur] = grad[S1].T @ qcur
  13178. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13179. //
  13180. // using less variables (SM=S4):
  13181. //
  13182. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13183. // SM = softmax(S)
  13184. // S = d[:D,iq1,iq2,iq3] @ vcur
  13185. // dot_SM_gradSM = dot(SM, S)
  13186. // S = SM * (S - dot(SM, S))
  13187. // S = diag_mask_zero(S, P) * scale
  13188. //
  13189. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13190. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13191. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13192. }
  13193. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13194. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13195. // for ic:
  13196. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13197. // exclude known future zero S[..] values from operation
  13198. ggml_vec_set_f32(masked_begin, S, 0);
  13199. for (int64_t ic = 0; ic < D; ++ic) {
  13200. ggml_vec_mad_f32(masked_begin,
  13201. S,
  13202. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13203. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13204. }
  13205. // S = SM * (S - dot(SM, S))
  13206. float dot_SM_gradSM = 0;
  13207. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13208. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13209. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13210. // S = diag_mask_zero(S, P) * scale
  13211. // already done by above ggml_vec_set_f32
  13212. // exclude known zero S[..] values from operation
  13213. ggml_vec_scale_f32(masked_begin, S, scale);
  13214. // S shape [M,1]
  13215. // SM shape [M,1]
  13216. // kcur shape [D,M]
  13217. // qcur shape [D,1]
  13218. // vcur shape [M,D]
  13219. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13220. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13221. // for ic:
  13222. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13223. // exclude known zero S[..] values from loop
  13224. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13225. ggml_vec_mad_f32(D,
  13226. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13227. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13228. S[ic]);
  13229. }
  13230. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13231. // for ic:
  13232. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13233. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13234. // exclude known zero S[..] values from loop
  13235. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13236. ggml_vec_mad_f32(D,
  13237. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13238. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13239. S[ic]);
  13240. }
  13241. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13242. // for ic:
  13243. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13244. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13245. // exclude known zero SM[..] values from mad
  13246. for (int64_t ic = 0; ic < D; ++ic) {
  13247. ggml_vec_mad_f32(masked_begin,
  13248. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13249. SM,
  13250. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13251. }
  13252. }
  13253. }
  13254. }
  13255. }
  13256. static void ggml_compute_forward_flash_attn_back(
  13257. const struct ggml_compute_params * params,
  13258. const bool masked,
  13259. struct ggml_tensor * dst) {
  13260. const struct ggml_tensor * q = dst->src[0];
  13261. switch (q->type) {
  13262. case GGML_TYPE_F32:
  13263. {
  13264. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13265. } break;
  13266. default:
  13267. {
  13268. GGML_ABORT("fatal error");
  13269. }
  13270. }
  13271. }
  13272. // ggml_compute_forward_ssm_conv
  13273. static void ggml_compute_forward_ssm_conv_f32(
  13274. const struct ggml_compute_params * params,
  13275. struct ggml_tensor * dst) {
  13276. const struct ggml_tensor * src0 = dst->src[0]; // conv_x
  13277. const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
  13278. const int ith = params->ith;
  13279. const int nth = params->nth;
  13280. const int nc = src1->ne[0]; // d_conv
  13281. const int ncs = src0->ne[0]; // d_conv - 1 + n_t
  13282. const int nr = src0->ne[1]; // d_inner
  13283. const int n_t = dst->ne[1]; // tokens per sequence
  13284. const int n_s = dst->ne[2]; // number of sequences in the batch
  13285. GGML_ASSERT( dst->ne[0] == nr);
  13286. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13287. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13288. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13289. // rows per thread
  13290. const int dr = (nr + nth - 1)/nth;
  13291. // row range for this thread
  13292. const int ir0 = dr*ith;
  13293. const int ir1 = MIN(ir0 + dr, nr);
  13294. const int ir = ir1 - ir0;
  13295. for (int i3 = 0; i3 < n_s; ++i3) {
  13296. for (int i2 = 0; i2 < n_t; ++i2) {
  13297. // {d_conv - 1 + n_t, d_inner, n_seqs}
  13298. // sliding window
  13299. const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
  13300. const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
  13301. float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
  13302. // TODO: transpose the output for smaller strides for big batches?
  13303. // d_inner
  13304. for (int i1 = 0; i1 < ir; ++i1) {
  13305. // rowwise dot product
  13306. // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
  13307. float sumf = 0.0f;
  13308. // d_conv
  13309. for (int i0 = 0; i0 < nc; ++i0) {
  13310. sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
  13311. }
  13312. x[i1] = sumf;
  13313. }
  13314. }
  13315. }
  13316. }
  13317. static void ggml_compute_forward_ssm_conv(
  13318. const struct ggml_compute_params * params,
  13319. struct ggml_tensor * dst) {
  13320. switch (dst->src[0]->type) {
  13321. case GGML_TYPE_F32:
  13322. {
  13323. ggml_compute_forward_ssm_conv_f32(params, dst);
  13324. } break;
  13325. default:
  13326. {
  13327. GGML_ABORT("fatal error");
  13328. }
  13329. }
  13330. }
  13331. // ggml_compute_forward_ssm_scan
  13332. static void ggml_compute_forward_ssm_scan_f32(
  13333. const struct ggml_compute_params * params,
  13334. struct ggml_tensor * dst) {
  13335. const struct ggml_tensor * src0 = dst->src[0]; // s
  13336. const struct ggml_tensor * src1 = dst->src[1]; // x
  13337. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13338. const struct ggml_tensor * src3 = dst->src[3]; // A
  13339. const struct ggml_tensor * src4 = dst->src[4]; // B
  13340. const struct ggml_tensor * src5 = dst->src[5]; // C
  13341. const int ith = params->ith;
  13342. const int nth = params->nth;
  13343. const int64_t nc = src0->ne[0]; // d_state
  13344. const int64_t nr = src0->ne[1]; // d_inner
  13345. const int64_t n_t = src1->ne[1]; // number of tokens per sequence
  13346. const int64_t n_s = src0->ne[2]; // number of sequences in the batch
  13347. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13348. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13349. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13350. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13351. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13352. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13353. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13354. // required for the dot product between s and C
  13355. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13356. // required for per-sequence offsets for states
  13357. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13358. // required to get correct offset for state destination (i.e. src1->nb[3])
  13359. GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
  13360. // rows per thread
  13361. const int dr = (nr + nth - 1)/nth;
  13362. // row range for this thread
  13363. const int ir0 = dr*ith;
  13364. const int ir1 = MIN(ir0 + dr, nr);
  13365. const int ir = ir1 - ir0;
  13366. for (int i3 = 0; i3 < n_s; ++i3) {
  13367. for (int i2 = 0; i2 < n_t; ++i2) {
  13368. const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
  13369. const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  13370. const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
  13371. const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13372. const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
  13373. const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
  13374. float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  13375. float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
  13376. // use the output as the source for the next token-wise iterations
  13377. if (i2 > 0) { s0 = s; }
  13378. // d_inner
  13379. for (int i1 = 0; i1 < ir; ++i1) {
  13380. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13381. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13382. float x_dt = x[i1] * dt_soft_plus;
  13383. float sumf = 0.0f;
  13384. // d_state
  13385. for (int i0 = 0; i0 < nc; ++i0) {
  13386. int i = i0 + i1*nc;
  13387. // state = prev_state * dA + dB * x
  13388. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13389. // y = rowwise_dotprod(state, C)
  13390. sumf += state * C[i0];
  13391. s[i] = state;
  13392. }
  13393. y[i1] = sumf;
  13394. }
  13395. }
  13396. }
  13397. }
  13398. static void ggml_compute_forward_ssm_scan(
  13399. const struct ggml_compute_params * params,
  13400. struct ggml_tensor * dst) {
  13401. switch (dst->src[0]->type) {
  13402. case GGML_TYPE_F32:
  13403. {
  13404. ggml_compute_forward_ssm_scan_f32(params, dst);
  13405. } break;
  13406. default:
  13407. {
  13408. GGML_ABORT("fatal error");
  13409. }
  13410. }
  13411. }
  13412. // ggml_compute_forward_win_part
  13413. static void ggml_compute_forward_win_part_f32(
  13414. const struct ggml_compute_params * params,
  13415. struct ggml_tensor * dst) {
  13416. UNUSED(params);
  13417. const struct ggml_tensor * src0 = dst->src[0];
  13418. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13419. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13420. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13421. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13422. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13423. assert(ne00 == ne0);
  13424. assert(ne3 == nep0*nep1);
  13425. // TODO: optimize / multi-thread
  13426. for (int py = 0; py < nep1; ++py) {
  13427. for (int px = 0; px < nep0; ++px) {
  13428. const int64_t i3 = py*nep0 + px;
  13429. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13430. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13431. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13432. const int64_t i02 = py*w + i2;
  13433. const int64_t i01 = px*w + i1;
  13434. const int64_t i00 = i0;
  13435. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13436. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13437. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13438. ((float *) dst->data)[i] = 0.0f;
  13439. } else {
  13440. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13441. }
  13442. }
  13443. }
  13444. }
  13445. }
  13446. }
  13447. }
  13448. static void ggml_compute_forward_win_part(
  13449. const struct ggml_compute_params * params,
  13450. struct ggml_tensor * dst) {
  13451. const struct ggml_tensor * src0 = dst->src[0];
  13452. switch (src0->type) {
  13453. case GGML_TYPE_F32:
  13454. {
  13455. ggml_compute_forward_win_part_f32(params, dst);
  13456. } break;
  13457. default:
  13458. {
  13459. GGML_ABORT("fatal error");
  13460. }
  13461. }
  13462. }
  13463. // ggml_compute_forward_win_unpart
  13464. static void ggml_compute_forward_win_unpart_f32(
  13465. const struct ggml_compute_params * params,
  13466. struct ggml_tensor * dst) {
  13467. UNUSED(params);
  13468. const struct ggml_tensor * src0 = dst->src[0];
  13469. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13470. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13471. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13472. // padding
  13473. const int px = (w - ne1%w)%w;
  13474. //const int py = (w - ne2%w)%w;
  13475. const int npx = (px + ne1)/w;
  13476. //const int npy = (py + ne2)/w;
  13477. assert(ne0 == ne00);
  13478. // TODO: optimize / multi-thread
  13479. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13480. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13481. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13482. const int ip2 = i2/w;
  13483. const int ip1 = i1/w;
  13484. const int64_t i02 = i2%w;
  13485. const int64_t i01 = i1%w;
  13486. const int64_t i00 = i0;
  13487. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13488. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13489. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13490. }
  13491. }
  13492. }
  13493. }
  13494. static void ggml_compute_forward_win_unpart(
  13495. const struct ggml_compute_params * params,
  13496. struct ggml_tensor * dst) {
  13497. const struct ggml_tensor * src0 = dst->src[0];
  13498. switch (src0->type) {
  13499. case GGML_TYPE_F32:
  13500. {
  13501. ggml_compute_forward_win_unpart_f32(params, dst);
  13502. } break;
  13503. default:
  13504. {
  13505. GGML_ABORT("fatal error");
  13506. }
  13507. }
  13508. }
  13509. //gmml_compute_forward_unary
  13510. static void ggml_compute_forward_unary(
  13511. const struct ggml_compute_params * params,
  13512. struct ggml_tensor * dst) {
  13513. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13514. switch (op) {
  13515. case GGML_UNARY_OP_ABS:
  13516. {
  13517. ggml_compute_forward_abs(params, dst);
  13518. } break;
  13519. case GGML_UNARY_OP_SGN:
  13520. {
  13521. ggml_compute_forward_sgn(params, dst);
  13522. } break;
  13523. case GGML_UNARY_OP_NEG:
  13524. {
  13525. ggml_compute_forward_neg(params, dst);
  13526. } break;
  13527. case GGML_UNARY_OP_STEP:
  13528. {
  13529. ggml_compute_forward_step(params, dst);
  13530. } break;
  13531. case GGML_UNARY_OP_TANH:
  13532. {
  13533. ggml_compute_forward_tanh(params, dst);
  13534. } break;
  13535. case GGML_UNARY_OP_ELU:
  13536. {
  13537. ggml_compute_forward_elu(params, dst);
  13538. } break;
  13539. case GGML_UNARY_OP_RELU:
  13540. {
  13541. ggml_compute_forward_relu(params, dst);
  13542. } break;
  13543. case GGML_UNARY_OP_SIGMOID:
  13544. {
  13545. ggml_compute_forward_sigmoid(params, dst);
  13546. } break;
  13547. case GGML_UNARY_OP_GELU:
  13548. {
  13549. ggml_compute_forward_gelu(params, dst);
  13550. } break;
  13551. case GGML_UNARY_OP_GELU_QUICK:
  13552. {
  13553. ggml_compute_forward_gelu_quick(params, dst);
  13554. } break;
  13555. case GGML_UNARY_OP_SILU:
  13556. {
  13557. ggml_compute_forward_silu(params, dst);
  13558. } break;
  13559. case GGML_UNARY_OP_HARDSWISH:
  13560. {
  13561. ggml_compute_forward_hardswish(params, dst);
  13562. } break;
  13563. case GGML_UNARY_OP_HARDSIGMOID:
  13564. {
  13565. ggml_compute_forward_hardsigmoid(params, dst);
  13566. } break;
  13567. case GGML_UNARY_OP_EXP:
  13568. {
  13569. ggml_compute_forward_exp(params, dst);
  13570. } break;
  13571. default:
  13572. {
  13573. GGML_ABORT("fatal error");
  13574. }
  13575. }
  13576. }
  13577. // ggml_compute_forward_get_rel_pos
  13578. static void ggml_compute_forward_get_rel_pos_f16(
  13579. const struct ggml_compute_params * params,
  13580. struct ggml_tensor * dst) {
  13581. UNUSED(params);
  13582. const struct ggml_tensor * src0 = dst->src[0];
  13583. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13584. GGML_TENSOR_UNARY_OP_LOCALS
  13585. const int64_t w = ne1;
  13586. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13587. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13588. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13589. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13590. const int64_t pos = (w - i1 - 1) + i2;
  13591. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13592. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13593. }
  13594. }
  13595. }
  13596. }
  13597. static void ggml_compute_forward_get_rel_pos(
  13598. const struct ggml_compute_params * params,
  13599. struct ggml_tensor * dst) {
  13600. const struct ggml_tensor * src0 = dst->src[0];
  13601. switch (src0->type) {
  13602. case GGML_TYPE_F16:
  13603. case GGML_TYPE_BF16:
  13604. {
  13605. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13606. } break;
  13607. default:
  13608. {
  13609. GGML_ABORT("fatal error");
  13610. }
  13611. }
  13612. }
  13613. // ggml_compute_forward_add_rel_pos
  13614. static void ggml_compute_forward_add_rel_pos_f32(
  13615. const struct ggml_compute_params * params,
  13616. struct ggml_tensor * dst) {
  13617. const struct ggml_tensor * src0 = dst->src[0];
  13618. const struct ggml_tensor * src1 = dst->src[1];
  13619. const struct ggml_tensor * src2 = dst->src[2];
  13620. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13621. if (!inplace) {
  13622. if (params->ith == 0) {
  13623. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13624. }
  13625. ggml_barrier(params->threadpool);
  13626. }
  13627. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13628. float * src1_data = (float *) src1->data;
  13629. float * src2_data = (float *) src2->data;
  13630. float * dst_data = (float *) dst->data;
  13631. const int64_t ne10 = src1->ne[0];
  13632. const int64_t ne11 = src1->ne[1];
  13633. const int64_t ne12 = src1->ne[2];
  13634. const int64_t ne13 = src1->ne[3];
  13635. const int ith = params->ith;
  13636. const int nth = params->nth;
  13637. // total patches in dst
  13638. const int np = ne13;
  13639. // patches per thread
  13640. const int dp = (np + nth - 1)/nth;
  13641. // patch range for this thread
  13642. const int ip0 = dp*ith;
  13643. const int ip1 = MIN(ip0 + dp, np);
  13644. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13645. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13646. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13647. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13648. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13649. const int64_t jp0 = jp1 + i10;
  13650. const float src1_e = src1_data[jp0];
  13651. const float src2_e = src2_data[jp0];
  13652. const int64_t jdh = jp0 * ne10;
  13653. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13654. for (int64_t j = 0; j < ne10; ++j) {
  13655. dst_data[jdh + j ] += src2_e;
  13656. dst_data[jdw + j*ne10] += src1_e;
  13657. }
  13658. }
  13659. }
  13660. }
  13661. }
  13662. }
  13663. static void ggml_compute_forward_add_rel_pos(
  13664. const struct ggml_compute_params * params,
  13665. struct ggml_tensor * dst) {
  13666. const struct ggml_tensor * src0 = dst->src[0];
  13667. switch (src0->type) {
  13668. case GGML_TYPE_F32:
  13669. {
  13670. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13671. } break;
  13672. default:
  13673. {
  13674. GGML_ABORT("fatal error");
  13675. }
  13676. }
  13677. }
  13678. // ggml_compute_forward_rwkv_wkv
  13679. static void ggml_compute_forward_rwkv_wkv_f32(
  13680. const struct ggml_compute_params * params,
  13681. struct ggml_tensor * dst) {
  13682. const size_t T = dst->src[1]->ne[3];
  13683. const size_t C = dst->ne[0];
  13684. const size_t H = dst->src[1]->ne[2];
  13685. const size_t n_seqs = dst->src[5]->ne[1];
  13686. float * dst_data = (float *) dst->data;
  13687. float * state = ((float *) dst->data) + C * T;
  13688. if (params->ith != 0) {
  13689. return;
  13690. }
  13691. memset(dst_data, 0, T * C * sizeof(float));
  13692. float * k = (float *) dst->src[0]->data;
  13693. float * v = (float *) dst->src[1]->data;
  13694. float * r = (float *) dst->src[2]->data;
  13695. float * time_faaaa = (float *) dst->src[3]->data;
  13696. float * time_decay = (float *) dst->src[4]->data;
  13697. size_t t_stride = H * (C / H);
  13698. size_t h_stride = C / H;
  13699. size_t h_stride_2d = (C / H) * (C / H);
  13700. // basically fused operations:
  13701. // dst = r @ (time_faaaa * (k @ v) + state),
  13702. // state = time_decay * state + (k @ v),
  13703. // recursive through each token
  13704. for (size_t t = 0; t < T; t++) {
  13705. size_t t_offset = t * t_stride;
  13706. size_t state_offset = (C / H) * C * (t / (T / n_seqs));
  13707. float * state_cur = state + state_offset;
  13708. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  13709. for (size_t h = 0; h < H; h++) {
  13710. size_t h_offset = h * h_stride;
  13711. size_t t_h_offset = t_offset + h_offset;
  13712. size_t h_2d_offset = h * h_stride_2d;
  13713. for (size_t i = 0; i < C / H; i++) {
  13714. size_t t_h_i_offset = t_h_offset + i;
  13715. size_t h_i_offset = h_offset + i;
  13716. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  13717. float k_val = k[t_h_i_offset];
  13718. float r_val = r[t_h_i_offset];
  13719. float time_faaaa_val = time_faaaa[h_i_offset];
  13720. // RWKV v6: different time_decay for each token.
  13721. float time_decay_val = time_decay[t_h_i_offset];
  13722. for (size_t j = 0; j < C / H; j ++) {
  13723. size_t t_h_j_offset = t_h_offset + j;
  13724. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  13725. float v_val = v[t_h_j_offset];
  13726. float kv_val = v_val * k_val;
  13727. float prev_state_val = state_prev[h_2d_i_j_offset];
  13728. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  13729. dst_data[t_h_j_offset] += temp_val * r_val;
  13730. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  13731. }
  13732. }
  13733. }
  13734. }
  13735. }
  13736. static void ggml_compute_forward_rwkv_wkv(
  13737. const struct ggml_compute_params * params,
  13738. struct ggml_tensor * dst) {
  13739. const struct ggml_tensor * src0 = dst->src[0];
  13740. switch (src0->type) {
  13741. case GGML_TYPE_F32:
  13742. {
  13743. ggml_compute_forward_rwkv_wkv_f32(params, dst);
  13744. } break;
  13745. default:
  13746. {
  13747. GGML_ABORT("fatal error");
  13748. }
  13749. }
  13750. }
  13751. // ggml_compute_forward_map_unary
  13752. static void ggml_compute_forward_map_unary_f32(
  13753. const struct ggml_compute_params * params,
  13754. struct ggml_tensor * dst,
  13755. const ggml_unary_op_f32_t fun) {
  13756. const struct ggml_tensor * src0 = dst->src[0];
  13757. if (params->ith != 0) {
  13758. return;
  13759. }
  13760. assert(ggml_is_contiguous_1(src0));
  13761. assert(ggml_is_contiguous_1(dst));
  13762. assert(ggml_are_same_shape(src0, dst));
  13763. const int n = ggml_nrows(src0);
  13764. const int nc = src0->ne[0];
  13765. for (int i = 0; i < n; i++) {
  13766. fun(nc,
  13767. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13768. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13769. }
  13770. }
  13771. static void ggml_compute_forward_map_unary(
  13772. const struct ggml_compute_params * params,
  13773. struct ggml_tensor * dst,
  13774. const ggml_unary_op_f32_t fun) {
  13775. const struct ggml_tensor * src0 = dst->src[0];
  13776. switch (src0->type) {
  13777. case GGML_TYPE_F32:
  13778. {
  13779. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13780. } break;
  13781. default:
  13782. {
  13783. GGML_ABORT("fatal error");
  13784. }
  13785. }
  13786. }
  13787. // ggml_compute_forward_map_binary
  13788. static void ggml_compute_forward_map_binary_f32(
  13789. const struct ggml_compute_params * params,
  13790. struct ggml_tensor * dst,
  13791. const ggml_binary_op_f32_t fun) {
  13792. const struct ggml_tensor * src0 = dst->src[0];
  13793. const struct ggml_tensor * src1 = dst->src[1];
  13794. if (params->ith != 0) {
  13795. return;
  13796. }
  13797. assert(ggml_is_contiguous_1(src0));
  13798. assert(ggml_is_contiguous_1(src1));
  13799. assert(ggml_is_contiguous_1(dst));
  13800. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13801. const int n = ggml_nrows(src0);
  13802. const int nc = src0->ne[0];
  13803. for (int i = 0; i < n; i++) {
  13804. fun(nc,
  13805. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13806. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13807. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13808. }
  13809. }
  13810. static void ggml_compute_forward_map_binary(
  13811. const struct ggml_compute_params * params,
  13812. struct ggml_tensor * dst,
  13813. const ggml_binary_op_f32_t fun) {
  13814. const struct ggml_tensor * src0 = dst->src[0];
  13815. switch (src0->type) {
  13816. case GGML_TYPE_F32:
  13817. {
  13818. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13819. } break;
  13820. default:
  13821. {
  13822. GGML_ABORT("fatal error");
  13823. }
  13824. }
  13825. }
  13826. // ggml_compute_forward_map_custom1
  13827. static void ggml_compute_forward_map_custom1_f32(
  13828. const struct ggml_compute_params * params,
  13829. struct ggml_tensor * dst,
  13830. const ggml_custom1_op_f32_t fun) {
  13831. const struct ggml_tensor * a = dst->src[0];
  13832. if (params->ith != 0) {
  13833. return;
  13834. }
  13835. fun(dst, a);
  13836. }
  13837. // ggml_compute_forward_map_custom2
  13838. static void ggml_compute_forward_map_custom2_f32(
  13839. const struct ggml_compute_params * params,
  13840. struct ggml_tensor * dst,
  13841. const ggml_custom2_op_f32_t fun) {
  13842. const struct ggml_tensor * a = dst->src[0];
  13843. const struct ggml_tensor * b = dst->src[1];
  13844. if (params->ith != 0) {
  13845. return;
  13846. }
  13847. fun(dst, a, b);
  13848. }
  13849. // ggml_compute_forward_map_custom3
  13850. static void ggml_compute_forward_map_custom3_f32(
  13851. const struct ggml_compute_params * params,
  13852. struct ggml_tensor * dst,
  13853. const ggml_custom3_op_f32_t fun) {
  13854. const struct ggml_tensor * a = dst->src[0];
  13855. const struct ggml_tensor * b = dst->src[1];
  13856. const struct ggml_tensor * c = dst->src[1];
  13857. if (params->ith != 0) {
  13858. return;
  13859. }
  13860. fun(dst, a, b, c);
  13861. }
  13862. // ggml_compute_forward_map_custom1
  13863. static void ggml_compute_forward_map_custom1(
  13864. const struct ggml_compute_params * params,
  13865. struct ggml_tensor * dst) {
  13866. const struct ggml_tensor * a = dst->src[0];
  13867. struct ggml_map_custom1_op_params p;
  13868. memcpy(&p, dst->op_params, sizeof(p));
  13869. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13870. }
  13871. // ggml_compute_forward_map_custom2
  13872. static void ggml_compute_forward_map_custom2(
  13873. const struct ggml_compute_params * params,
  13874. struct ggml_tensor * dst) {
  13875. const struct ggml_tensor * a = dst->src[0];
  13876. const struct ggml_tensor * b = dst->src[1];
  13877. struct ggml_map_custom2_op_params p;
  13878. memcpy(&p, dst->op_params, sizeof(p));
  13879. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13880. }
  13881. // ggml_compute_forward_map_custom3
  13882. static void ggml_compute_forward_map_custom3(
  13883. const struct ggml_compute_params * params,
  13884. struct ggml_tensor * dst) {
  13885. const struct ggml_tensor * a = dst->src[0];
  13886. const struct ggml_tensor * b = dst->src[1];
  13887. const struct ggml_tensor * c = dst->src[2];
  13888. struct ggml_map_custom3_op_params p;
  13889. memcpy(&p, dst->op_params, sizeof(p));
  13890. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13891. }
  13892. // ggml_compute_forward_cross_entropy_loss
  13893. static void ggml_compute_forward_cross_entropy_loss_f32(
  13894. const struct ggml_compute_params * params,
  13895. struct ggml_tensor * dst) {
  13896. const struct ggml_tensor * src0 = dst->src[0];
  13897. const struct ggml_tensor * src1 = dst->src[1];
  13898. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  13899. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  13900. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  13901. GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
  13902. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13903. GGML_ASSERT(ggml_is_scalar(dst));
  13904. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  13905. // TODO: handle transposed/permuted matrices
  13906. const int64_t nc = src0->ne[0];
  13907. const int64_t nr = ggml_nrows(src0);
  13908. const int ith = params->ith;
  13909. const int nth = params->nth;
  13910. float * sums = (float *) params->wdata;
  13911. float * st = ((float *) params->wdata) + nth + ith*nc;
  13912. float sum_thread = 0.0f;
  13913. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13914. // rows per thread
  13915. const int64_t dr = (nr + nth - 1)/nth;
  13916. // row range for this thread
  13917. const int64_t ir0 = dr*ith;
  13918. const int64_t ir1 = MIN(ir0 + dr, nr);
  13919. for (int64_t i1 = ir0; i1 < ir1; ++i1) {
  13920. const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
  13921. const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
  13922. #ifndef NDEBUG
  13923. for (int64_t i = 0; i < nc; ++i) {
  13924. //printf("p[%d] = %f\n", i, p[i]);
  13925. assert(!isnan(s0[i]));
  13926. assert(!isnan(s1[i]));
  13927. }
  13928. #endif
  13929. float max = -INFINITY;
  13930. ggml_vec_max_f32(nc, &max, s0);
  13931. const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
  13932. assert(sum_softmax >= 0.0);
  13933. ggml_vec_add1_f32(nc, st, st, -sum_softmax);
  13934. ggml_vec_mul_f32(nc, st, st, s1);
  13935. float sum_st = 0.0f;
  13936. ggml_vec_sum_f32(nc, &sum_st, st);
  13937. sum_thread += sum_st;
  13938. #ifndef NDEBUG
  13939. for (int64_t i = 0; i < nc; ++i) {
  13940. assert(!isnan(st[i]));
  13941. assert(!isinf(st[i]));
  13942. }
  13943. #endif
  13944. }
  13945. sums[ith] = sum_thread;
  13946. ggml_barrier(params->threadpool);
  13947. if (ith == 0) {
  13948. float * dp = (float *) dst->data;
  13949. ggml_vec_sum_f32(nth, dp, sums);
  13950. dp[0] *= -1.0f / (float) nr;
  13951. }
  13952. }
  13953. static void ggml_compute_forward_cross_entropy_loss(
  13954. const struct ggml_compute_params * params,
  13955. struct ggml_tensor * dst) {
  13956. const struct ggml_tensor * src0 = dst->src[0];
  13957. switch (src0->type) {
  13958. case GGML_TYPE_F32:
  13959. {
  13960. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13961. } break;
  13962. default:
  13963. {
  13964. GGML_ABORT("fatal error");
  13965. }
  13966. }
  13967. }
  13968. // ggml_compute_forward_cross_entropy_loss_back
  13969. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13970. const struct ggml_compute_params * params,
  13971. struct ggml_tensor * dst) {
  13972. const struct ggml_tensor * src0 = dst->src[0];
  13973. const struct ggml_tensor * src1 = dst->src[1];
  13974. const struct ggml_tensor * opt0 = dst->src[2];
  13975. GGML_ASSERT(ggml_is_contiguous(dst));
  13976. GGML_ASSERT(ggml_is_contiguous(src0));
  13977. GGML_ASSERT(ggml_is_contiguous(src1));
  13978. GGML_ASSERT(ggml_is_contiguous(opt0));
  13979. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13980. const int64_t ith = params->ith;
  13981. const int64_t nth = params->nth;
  13982. // TODO: handle transposed/permuted matrices
  13983. const int64_t nc = src0->ne[0];
  13984. const int64_t nr = ggml_nrows(src0);
  13985. // rows per thread
  13986. const int64_t dr = (nr + nth - 1)/nth;
  13987. // row range for this thread
  13988. const int64_t ir0 = dr*ith;
  13989. const int64_t ir1 = MIN(ir0 + dr, nr);
  13990. const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
  13991. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13992. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13993. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13994. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13995. #ifndef NDEBUG
  13996. for (int64_t i = 0; i < nc; ++i) {
  13997. //printf("p[%d] = %f\n", i, p[i]);
  13998. assert(!isnan(s0[i]));
  13999. assert(!isnan(s1[i]));
  14000. }
  14001. #endif
  14002. // soft_max
  14003. float max = -INFINITY;
  14004. ggml_vec_max_f32(nc, &max, s0);
  14005. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14006. assert(sum > 0.0);
  14007. ggml_vec_scale_f32(nc, ds0, 1.0/sum);
  14008. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14009. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14010. ggml_vec_scale_f32(nc, ds0, d_by_nr);
  14011. #ifndef NDEBUG
  14012. for (int64_t i = 0; i < nc; ++i) {
  14013. assert(!isnan(ds0[i]));
  14014. assert(!isinf(ds0[i]));
  14015. }
  14016. #endif
  14017. }
  14018. }
  14019. static void ggml_compute_forward_cross_entropy_loss_back(
  14020. const struct ggml_compute_params * params,
  14021. struct ggml_tensor * dst) {
  14022. const struct ggml_tensor * src0 = dst->src[0];
  14023. switch (src0->type) {
  14024. case GGML_TYPE_F32:
  14025. {
  14026. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14027. } break;
  14028. default:
  14029. {
  14030. GGML_ABORT("fatal error");
  14031. }
  14032. }
  14033. }
  14034. static void ggml_compute_forward_opt_step_adamw_f32(
  14035. const struct ggml_compute_params * params,
  14036. struct ggml_tensor * dst) {
  14037. const struct ggml_tensor * src0 = dst->src[0];
  14038. const struct ggml_tensor * src0_grad = dst->src[1];
  14039. const struct ggml_tensor * src0_grad_m = dst->src[2];
  14040. const struct ggml_tensor * src0_grad_v = dst->src[3];
  14041. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  14042. const int ith = params->ith;
  14043. const int nth = params->nth;
  14044. const int nr = ggml_nrows(src0);
  14045. GGML_TENSOR_UNARY_OP_LOCALS
  14046. GGML_ASSERT(nb00 == sizeof(float));
  14047. // rows per thread
  14048. const int dr = (nr + nth - 1)/nth;
  14049. // row range for this thread
  14050. const int ir0 = dr*ith;
  14051. const int ir1 = MIN(ir0 + dr, nr);
  14052. /* const float gnorm = 1.0f; */
  14053. int64_t iter; memcpy(&iter, &dst->op_params[0], sizeof(int64_t));
  14054. const float alpha = ggml_get_op_params_f32(dst, 2);
  14055. const float beta1 = ggml_get_op_params_f32(dst, 3);
  14056. const float beta2 = ggml_get_op_params_f32(dst, 4);
  14057. const float eps = ggml_get_op_params_f32(dst, 5);
  14058. const float wd = ggml_get_op_params_f32(dst, 6);
  14059. const float beta1h = alpha/(1.0f - powf(beta1, iter));
  14060. const float beta2h = 1.0f/(1.0f - powf(beta2, iter));
  14061. for (int ir = ir0; ir < ir1; ++ir) {
  14062. const int64_t i03 = ir/(ne02*ne01);
  14063. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  14064. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  14065. const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
  14066. float * w = (float *) ((char *) src0->data + offset); // weight
  14067. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  14068. float * m = (float *) ((char *) src0_grad_m->data + offset);
  14069. float * v = (float *) ((char *) src0_grad_v->data + offset);
  14070. for (int i00 = 0; i00 < ne00; ++i00) {
  14071. m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
  14072. v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
  14073. const float mh = m[i00]*beta1h;
  14074. const float vh = sqrtf(v[i00]*beta2h) + eps;
  14075. // The weight decay is applied independently of the Adam momenta m and v.
  14076. // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
  14077. // See: https://arxiv.org/pdf/1711.05101v3.pdf
  14078. w[i00] = w[i00]*(1.0f - alpha*wd) - mh/vh;
  14079. }
  14080. }
  14081. ggml_barrier(params->threadpool);
  14082. if (ith != 0) {
  14083. return;
  14084. }
  14085. iter++;
  14086. memcpy(&dst->op_params[0], &iter, sizeof(int64_t));
  14087. }
  14088. static void ggml_compute_forward_opt_step_adamw(
  14089. const struct ggml_compute_params * params,
  14090. struct ggml_tensor * dst) {
  14091. const struct ggml_tensor * src0 = dst->src[0];
  14092. switch (src0->type) {
  14093. case GGML_TYPE_F32:
  14094. {
  14095. ggml_compute_forward_opt_step_adamw_f32(params, dst);
  14096. } break;
  14097. default:
  14098. {
  14099. GGML_ABORT("fatal error");
  14100. }
  14101. }
  14102. }
  14103. /////////////////////////////////
  14104. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  14105. GGML_ASSERT(params);
  14106. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14107. return;
  14108. }
  14109. switch (tensor->op) {
  14110. case GGML_OP_DUP:
  14111. {
  14112. ggml_compute_forward_dup(params, tensor);
  14113. } break;
  14114. case GGML_OP_ADD:
  14115. {
  14116. ggml_compute_forward_add(params, tensor);
  14117. } break;
  14118. case GGML_OP_ADD1:
  14119. {
  14120. ggml_compute_forward_add1(params, tensor);
  14121. } break;
  14122. case GGML_OP_ACC:
  14123. {
  14124. ggml_compute_forward_acc(params, tensor);
  14125. } break;
  14126. case GGML_OP_SUB:
  14127. {
  14128. ggml_compute_forward_sub(params, tensor);
  14129. } break;
  14130. case GGML_OP_MUL:
  14131. {
  14132. ggml_compute_forward_mul(params, tensor);
  14133. } break;
  14134. case GGML_OP_DIV:
  14135. {
  14136. ggml_compute_forward_div(params, tensor);
  14137. } break;
  14138. case GGML_OP_SQR:
  14139. {
  14140. ggml_compute_forward_sqr(params, tensor);
  14141. } break;
  14142. case GGML_OP_SQRT:
  14143. {
  14144. ggml_compute_forward_sqrt(params, tensor);
  14145. } break;
  14146. case GGML_OP_LOG:
  14147. {
  14148. ggml_compute_forward_log(params, tensor);
  14149. } break;
  14150. case GGML_OP_SIN:
  14151. {
  14152. ggml_compute_forward_sin(params, tensor);
  14153. } break;
  14154. case GGML_OP_COS:
  14155. {
  14156. ggml_compute_forward_cos(params, tensor);
  14157. } break;
  14158. case GGML_OP_SUM:
  14159. {
  14160. ggml_compute_forward_sum(params, tensor);
  14161. } break;
  14162. case GGML_OP_SUM_ROWS:
  14163. {
  14164. ggml_compute_forward_sum_rows(params, tensor);
  14165. } break;
  14166. case GGML_OP_MEAN:
  14167. {
  14168. ggml_compute_forward_mean(params, tensor);
  14169. } break;
  14170. case GGML_OP_ARGMAX:
  14171. {
  14172. ggml_compute_forward_argmax(params, tensor);
  14173. } break;
  14174. case GGML_OP_COUNT_EQUAL:
  14175. {
  14176. ggml_compute_forward_count_equal(params, tensor);
  14177. } break;
  14178. case GGML_OP_REPEAT:
  14179. {
  14180. ggml_compute_forward_repeat(params, tensor);
  14181. } break;
  14182. case GGML_OP_REPEAT_BACK:
  14183. {
  14184. ggml_compute_forward_repeat_back(params, tensor);
  14185. } break;
  14186. case GGML_OP_CONCAT:
  14187. {
  14188. ggml_compute_forward_concat(params, tensor);
  14189. } break;
  14190. case GGML_OP_SILU_BACK:
  14191. {
  14192. ggml_compute_forward_silu_back(params, tensor);
  14193. } break;
  14194. case GGML_OP_NORM:
  14195. {
  14196. ggml_compute_forward_norm(params, tensor);
  14197. } break;
  14198. case GGML_OP_RMS_NORM:
  14199. {
  14200. ggml_compute_forward_rms_norm(params, tensor);
  14201. } break;
  14202. case GGML_OP_RMS_NORM_BACK:
  14203. {
  14204. ggml_compute_forward_rms_norm_back(params, tensor);
  14205. } break;
  14206. case GGML_OP_GROUP_NORM:
  14207. {
  14208. ggml_compute_forward_group_norm(params, tensor);
  14209. } break;
  14210. case GGML_OP_MUL_MAT:
  14211. {
  14212. ggml_compute_forward_mul_mat(params, tensor);
  14213. } break;
  14214. case GGML_OP_MUL_MAT_ID:
  14215. {
  14216. ggml_compute_forward_mul_mat_id(params, tensor);
  14217. } break;
  14218. case GGML_OP_OUT_PROD:
  14219. {
  14220. ggml_compute_forward_out_prod(params, tensor);
  14221. } break;
  14222. case GGML_OP_SCALE:
  14223. {
  14224. ggml_compute_forward_scale(params, tensor);
  14225. } break;
  14226. case GGML_OP_SET:
  14227. {
  14228. ggml_compute_forward_set(params, tensor);
  14229. } break;
  14230. case GGML_OP_CPY:
  14231. {
  14232. ggml_compute_forward_cpy(params, tensor);
  14233. } break;
  14234. case GGML_OP_CONT:
  14235. {
  14236. ggml_compute_forward_cont(params, tensor);
  14237. } break;
  14238. case GGML_OP_RESHAPE:
  14239. {
  14240. ggml_compute_forward_reshape(params, tensor);
  14241. } break;
  14242. case GGML_OP_VIEW:
  14243. {
  14244. ggml_compute_forward_view(params, tensor);
  14245. } break;
  14246. case GGML_OP_PERMUTE:
  14247. {
  14248. ggml_compute_forward_permute(params, tensor);
  14249. } break;
  14250. case GGML_OP_TRANSPOSE:
  14251. {
  14252. ggml_compute_forward_transpose(params, tensor);
  14253. } break;
  14254. case GGML_OP_GET_ROWS:
  14255. {
  14256. ggml_compute_forward_get_rows(params, tensor);
  14257. } break;
  14258. case GGML_OP_GET_ROWS_BACK:
  14259. {
  14260. ggml_compute_forward_get_rows_back(params, tensor);
  14261. } break;
  14262. case GGML_OP_DIAG:
  14263. {
  14264. ggml_compute_forward_diag(params, tensor);
  14265. } break;
  14266. case GGML_OP_DIAG_MASK_INF:
  14267. {
  14268. ggml_compute_forward_diag_mask_inf(params, tensor);
  14269. } break;
  14270. case GGML_OP_DIAG_MASK_ZERO:
  14271. {
  14272. ggml_compute_forward_diag_mask_zero(params, tensor);
  14273. } break;
  14274. case GGML_OP_SOFT_MAX:
  14275. {
  14276. ggml_compute_forward_soft_max(params, tensor);
  14277. } break;
  14278. case GGML_OP_SOFT_MAX_BACK:
  14279. {
  14280. ggml_compute_forward_soft_max_back(params, tensor);
  14281. } break;
  14282. case GGML_OP_ROPE:
  14283. {
  14284. ggml_compute_forward_rope(params, tensor);
  14285. } break;
  14286. case GGML_OP_ROPE_BACK:
  14287. {
  14288. ggml_compute_forward_rope_back(params, tensor);
  14289. } break;
  14290. case GGML_OP_CLAMP:
  14291. {
  14292. ggml_compute_forward_clamp(params, tensor);
  14293. } break;
  14294. case GGML_OP_CONV_TRANSPOSE_1D:
  14295. {
  14296. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14297. } break;
  14298. case GGML_OP_IM2COL:
  14299. {
  14300. ggml_compute_forward_im2col(params, tensor);
  14301. } break;
  14302. case GGML_OP_IM2COL_BACK:
  14303. {
  14304. ggml_compute_forward_im2col_back_f32(params, tensor);
  14305. } break;
  14306. case GGML_OP_CONV_TRANSPOSE_2D:
  14307. {
  14308. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14309. } break;
  14310. case GGML_OP_POOL_1D:
  14311. {
  14312. ggml_compute_forward_pool_1d(params, tensor);
  14313. } break;
  14314. case GGML_OP_POOL_2D:
  14315. {
  14316. ggml_compute_forward_pool_2d(params, tensor);
  14317. } break;
  14318. case GGML_OP_POOL_2D_BACK:
  14319. {
  14320. ggml_compute_forward_pool_2d_back(params, tensor);
  14321. } break;
  14322. case GGML_OP_UPSCALE:
  14323. {
  14324. ggml_compute_forward_upscale(params, tensor);
  14325. } break;
  14326. case GGML_OP_PAD:
  14327. {
  14328. ggml_compute_forward_pad(params, tensor);
  14329. } break;
  14330. case GGML_OP_ARANGE:
  14331. {
  14332. ggml_compute_forward_arange(params, tensor);
  14333. } break;
  14334. case GGML_OP_TIMESTEP_EMBEDDING:
  14335. {
  14336. ggml_compute_forward_timestep_embedding(params, tensor);
  14337. } break;
  14338. case GGML_OP_ARGSORT:
  14339. {
  14340. ggml_compute_forward_argsort(params, tensor);
  14341. } break;
  14342. case GGML_OP_LEAKY_RELU:
  14343. {
  14344. ggml_compute_forward_leaky_relu(params, tensor);
  14345. } break;
  14346. case GGML_OP_FLASH_ATTN_EXT:
  14347. {
  14348. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14349. } break;
  14350. case GGML_OP_FLASH_ATTN_BACK:
  14351. {
  14352. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14353. GGML_ASSERT(t == 0 || t == 1);
  14354. bool masked = t != 0;
  14355. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14356. } break;
  14357. case GGML_OP_SSM_CONV:
  14358. {
  14359. ggml_compute_forward_ssm_conv(params, tensor);
  14360. } break;
  14361. case GGML_OP_SSM_SCAN:
  14362. {
  14363. ggml_compute_forward_ssm_scan(params, tensor);
  14364. } break;
  14365. case GGML_OP_WIN_PART:
  14366. {
  14367. ggml_compute_forward_win_part(params, tensor);
  14368. } break;
  14369. case GGML_OP_WIN_UNPART:
  14370. {
  14371. ggml_compute_forward_win_unpart(params, tensor);
  14372. } break;
  14373. case GGML_OP_UNARY:
  14374. {
  14375. ggml_compute_forward_unary(params, tensor);
  14376. } break;
  14377. case GGML_OP_GET_REL_POS:
  14378. {
  14379. ggml_compute_forward_get_rel_pos(params, tensor);
  14380. } break;
  14381. case GGML_OP_ADD_REL_POS:
  14382. {
  14383. ggml_compute_forward_add_rel_pos(params, tensor);
  14384. } break;
  14385. case GGML_OP_RWKV_WKV:
  14386. {
  14387. ggml_compute_forward_rwkv_wkv(params, tensor);
  14388. } break;
  14389. case GGML_OP_MAP_UNARY:
  14390. {
  14391. ggml_unary_op_f32_t fun;
  14392. memcpy(&fun, tensor->op_params, sizeof(fun));
  14393. ggml_compute_forward_map_unary(params, tensor, fun);
  14394. }
  14395. break;
  14396. case GGML_OP_MAP_BINARY:
  14397. {
  14398. ggml_binary_op_f32_t fun;
  14399. memcpy(&fun, tensor->op_params, sizeof(fun));
  14400. ggml_compute_forward_map_binary(params, tensor, fun);
  14401. }
  14402. break;
  14403. case GGML_OP_MAP_CUSTOM1_F32:
  14404. {
  14405. ggml_custom1_op_f32_t fun;
  14406. memcpy(&fun, tensor->op_params, sizeof(fun));
  14407. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14408. }
  14409. break;
  14410. case GGML_OP_MAP_CUSTOM2_F32:
  14411. {
  14412. ggml_custom2_op_f32_t fun;
  14413. memcpy(&fun, tensor->op_params, sizeof(fun));
  14414. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14415. }
  14416. break;
  14417. case GGML_OP_MAP_CUSTOM3_F32:
  14418. {
  14419. ggml_custom3_op_f32_t fun;
  14420. memcpy(&fun, tensor->op_params, sizeof(fun));
  14421. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14422. }
  14423. break;
  14424. case GGML_OP_MAP_CUSTOM1:
  14425. {
  14426. ggml_compute_forward_map_custom1(params, tensor);
  14427. }
  14428. break;
  14429. case GGML_OP_MAP_CUSTOM2:
  14430. {
  14431. ggml_compute_forward_map_custom2(params, tensor);
  14432. }
  14433. break;
  14434. case GGML_OP_MAP_CUSTOM3:
  14435. {
  14436. ggml_compute_forward_map_custom3(params, tensor);
  14437. }
  14438. break;
  14439. case GGML_OP_CROSS_ENTROPY_LOSS:
  14440. {
  14441. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14442. }
  14443. break;
  14444. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14445. {
  14446. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14447. }
  14448. break;
  14449. case GGML_OP_OPT_STEP_ADAMW:
  14450. {
  14451. ggml_compute_forward_opt_step_adamw(params, tensor);
  14452. }
  14453. break;
  14454. case GGML_OP_NONE:
  14455. {
  14456. // nop
  14457. } break;
  14458. case GGML_OP_COUNT:
  14459. {
  14460. GGML_ABORT("fatal error");
  14461. }
  14462. }
  14463. }
  14464. ////////////////////////////////////////////////////////////////////////////////
  14465. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14466. size = ggml_hash_size(size);
  14467. struct ggml_hash_set result;
  14468. result.size = size;
  14469. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14470. result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
  14471. return result;
  14472. }
  14473. void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
  14474. memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
  14475. }
  14476. void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
  14477. GGML_FREE(hash_set->used);
  14478. GGML_FREE(hash_set->keys);
  14479. }
  14480. size_t ggml_hash_size(size_t min_sz) {
  14481. // next primes after powers of two
  14482. static const size_t primes[] = {
  14483. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14484. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14485. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14486. 16777259, 33554467, 67108879, 134217757, 268435459,
  14487. 536870923, 1073741827, 2147483659
  14488. };
  14489. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14490. // find the smallest prime that is larger or equal than min_sz
  14491. size_t l = 0;
  14492. size_t r = n_primes;
  14493. while (l < r) {
  14494. size_t m = (l + r)/2;
  14495. if (primes[m] < min_sz) {
  14496. l = m + 1;
  14497. } else {
  14498. r = m;
  14499. }
  14500. }
  14501. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14502. return sz;
  14503. }
  14504. struct hash_map {
  14505. struct ggml_hash_set set;
  14506. struct ggml_tensor ** vals;
  14507. };
  14508. static struct hash_map * ggml_new_hash_map(size_t size) {
  14509. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14510. result->set = ggml_hash_set_new(size);
  14511. result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
  14512. return result;
  14513. }
  14514. static void ggml_hash_map_free(struct hash_map * map) {
  14515. ggml_hash_set_free(&map->set);
  14516. GGML_FREE(map->vals);
  14517. GGML_FREE(map);
  14518. }
  14519. // gradient checkpointing
  14520. static struct ggml_tensor * ggml_recompute_graph_node(
  14521. struct ggml_context * ctx,
  14522. struct ggml_cgraph * graph,
  14523. struct hash_map * replacements,
  14524. struct ggml_tensor * node) {
  14525. if (node == NULL) {
  14526. return NULL;
  14527. }
  14528. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14529. return node;
  14530. }
  14531. if (!ggml_hash_contains(&graph->visited_hash_set, node)) {
  14532. return node;
  14533. }
  14534. int count_children = 0;
  14535. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14536. if (node->src[k]) {
  14537. ++count_children;
  14538. }
  14539. }
  14540. if (count_children == 0) {
  14541. return node;
  14542. }
  14543. size_t i = ggml_hash_find(&replacements->set, node);
  14544. GGML_ASSERT(i != GGML_HASHSET_FULL); // assert that not full
  14545. if (replacements->set.keys[i] == node) {
  14546. return replacements->vals[i];
  14547. }
  14548. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14549. // insert clone into replacements
  14550. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14551. replacements->set.keys[i] = node;
  14552. replacements->vals[i] = clone;
  14553. clone->op = node->op;
  14554. clone->grad = node->grad;
  14555. clone->flags = node->flags;
  14556. clone->extra = node->extra;
  14557. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14558. clone->nb[k] = node->nb[k];
  14559. }
  14560. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14561. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14562. }
  14563. if (node->view_src != NULL) {
  14564. clone->data = (node->view_src->data == NULL)
  14565. ? NULL // view_src not yet allocated
  14566. : (char *) node->view_src->data // view_src already allocated
  14567. + node->view_offs;
  14568. clone->view_src = node->view_src;
  14569. clone->view_offs = node->view_offs;
  14570. }
  14571. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14572. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14573. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14574. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14575. return clone;
  14576. }
  14577. void ggml_build_backward_gradient_checkpointing(
  14578. struct ggml_context * ctx,
  14579. struct ggml_cgraph * gf,
  14580. struct ggml_cgraph * gb,
  14581. struct ggml_cgraph * gb_tmp,
  14582. struct ggml_tensor * * checkpoints,
  14583. int n_checkpoints) {
  14584. ggml_graph_cpy(gf, gb_tmp);
  14585. ggml_build_backward_expand(ctx, gf, gb_tmp, false);
  14586. if (n_checkpoints <= 0) {
  14587. ggml_graph_cpy(gb_tmp, gb);
  14588. return;
  14589. }
  14590. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14591. // insert checkpoints in replacements
  14592. for (int i = 0; i < n_checkpoints; ++i) {
  14593. size_t k = ggml_hash_find(&replacements->set, checkpoints[i]);
  14594. GGML_ASSERT(k != GGML_HASHSET_FULL); // assert that not full
  14595. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14596. replacements->set.keys[k] = checkpoints[i];
  14597. replacements->vals[k] = checkpoints[i];
  14598. }
  14599. ggml_graph_cpy(gf, gb);
  14600. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14601. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14602. // by recomputing them from checkpoints
  14603. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14604. struct ggml_tensor * node = gb_tmp->nodes[i];
  14605. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14606. // insert new tensors recomputing src, reusing already made replacements,
  14607. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14608. // recurse for input tensors,
  14609. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14610. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14611. }
  14612. // insert rewritten backward node with replacements made into resulting backward graph gb
  14613. ggml_build_forward_expand(gb, node);
  14614. }
  14615. ggml_hash_map_free(replacements);
  14616. }
  14617. // utility functions to change gradients
  14618. // if a is in acc_table, modify gradients in-place and mark result as gradient accumulator
  14619. // else if a is in zero_table, replace a
  14620. // else, just add/subtract/etc. the gradients
  14621. static struct ggml_tensor * ggml_add_or_set(
  14622. struct ggml_context * ctx,
  14623. struct ggml_tensor * a,
  14624. struct ggml_tensor * b,
  14625. struct ggml_hash_set * zero_table,
  14626. struct ggml_hash_set * acc_table) {
  14627. if (ggml_hash_contains(acc_table, a)) {
  14628. struct ggml_tensor * ret = ggml_add_impl(ctx, a, b, true);
  14629. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14630. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14631. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14632. return ret;
  14633. }
  14634. if (ggml_hash_contains(zero_table, a)) {
  14635. return b;
  14636. }
  14637. return ggml_add_impl(ctx, a, b, false);
  14638. }
  14639. static struct ggml_tensor * ggml_acc_or_set(
  14640. struct ggml_context * ctx,
  14641. struct ggml_tensor * a,
  14642. struct ggml_tensor * b,
  14643. const size_t nb1,
  14644. const size_t nb2,
  14645. const size_t nb3,
  14646. const size_t offset,
  14647. struct ggml_hash_set * zero_table,
  14648. struct ggml_hash_set * acc_table) {
  14649. if (ggml_hash_contains(acc_table, a)) {
  14650. struct ggml_tensor * ret = ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  14651. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14652. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14653. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14654. return ret;
  14655. }
  14656. if (ggml_hash_contains(zero_table, a)) {
  14657. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
  14658. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14659. }
  14660. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14661. }
  14662. static struct ggml_tensor * ggml_add1_or_set(
  14663. struct ggml_context * ctx,
  14664. struct ggml_tensor * a,
  14665. struct ggml_tensor * b,
  14666. struct ggml_hash_set * zero_table,
  14667. struct ggml_hash_set * acc_table) {
  14668. if (ggml_hash_contains(acc_table, a)) {
  14669. struct ggml_tensor * ret = ggml_add1_impl(ctx, a, b, true);
  14670. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14671. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14672. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14673. return ret;
  14674. }
  14675. if (ggml_hash_contains(zero_table, a)) {
  14676. return ggml_repeat(ctx, b, a);
  14677. }
  14678. return ggml_add1_impl(ctx, a, b, false);
  14679. }
  14680. static struct ggml_tensor * ggml_sub_or_set(
  14681. struct ggml_context * ctx,
  14682. struct ggml_tensor * a,
  14683. struct ggml_tensor * b,
  14684. struct ggml_hash_set * zero_table,
  14685. struct ggml_hash_set * acc_table) {
  14686. if (ggml_hash_contains(acc_table, a)) {
  14687. struct ggml_tensor * ret = ggml_sub_impl(ctx, a, b, true);
  14688. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14689. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14690. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14691. return ret;
  14692. }
  14693. if (ggml_hash_contains(zero_table, a)) {
  14694. return ggml_neg(ctx, b);
  14695. }
  14696. return ggml_sub_impl(ctx, a, b, false);
  14697. }
  14698. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table, struct ggml_hash_set * acc_table) {
  14699. struct ggml_tensor * src0 = tensor->src[0];
  14700. struct ggml_tensor * src1 = tensor->src[1];
  14701. struct ggml_tensor * src2 = tensor->src[2];
  14702. switch (tensor->op) {
  14703. case GGML_OP_DUP:
  14704. {
  14705. if (src0->grad) {
  14706. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14707. }
  14708. } break;
  14709. case GGML_OP_ADD:
  14710. {
  14711. if (src0->grad) {
  14712. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14713. }
  14714. if (src1->grad) {
  14715. if (ggml_are_same_shape(src0, src1)) {
  14716. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
  14717. } else {
  14718. src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_repeat_back(ctx, tensor->grad, src1), zero_table, acc_table);
  14719. }
  14720. }
  14721. } break;
  14722. case GGML_OP_ADD1:
  14723. {
  14724. if (src0->grad) {
  14725. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14726. }
  14727. if (src1->grad) {
  14728. src1->grad = ggml_add_or_set(ctx,
  14729. src1->grad,
  14730. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14731. zero_table, acc_table);
  14732. }
  14733. } break;
  14734. case GGML_OP_ACC:
  14735. {
  14736. if (src0->grad) {
  14737. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14738. }
  14739. if (src1->grad) {
  14740. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14741. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14742. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14743. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14744. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14745. tensor->grad,
  14746. src1->grad->ne[0],
  14747. src1->grad->ne[1],
  14748. src1->grad->ne[2],
  14749. src1->grad->ne[3],
  14750. nb1, nb2, nb3, offset);
  14751. src1->grad =
  14752. ggml_add_or_set(ctx,
  14753. src1->grad,
  14754. ggml_reshape(ctx,
  14755. ggml_cont(ctx, tensor_grad_view),
  14756. src1->grad),
  14757. zero_table, acc_table);
  14758. }
  14759. } break;
  14760. case GGML_OP_SUB:
  14761. {
  14762. if (src0->grad) {
  14763. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14764. }
  14765. if (src1->grad) {
  14766. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
  14767. }
  14768. } break;
  14769. case GGML_OP_MUL:
  14770. {
  14771. if (src0->grad) {
  14772. src0->grad =
  14773. ggml_add_or_set(ctx,
  14774. src0->grad,
  14775. ggml_mul(ctx, src1, tensor->grad),
  14776. zero_table, acc_table);
  14777. }
  14778. if (src1->grad) {
  14779. src1->grad =
  14780. ggml_add_or_set(ctx,
  14781. src1->grad,
  14782. ggml_mul(ctx, src0, tensor->grad),
  14783. zero_table, acc_table);
  14784. }
  14785. } break;
  14786. case GGML_OP_DIV:
  14787. {
  14788. if (src0->grad) {
  14789. src0->grad =
  14790. ggml_add_or_set(ctx,
  14791. src0->grad,
  14792. ggml_div(ctx, tensor->grad, src1),
  14793. zero_table, acc_table);
  14794. }
  14795. if (src1->grad) {
  14796. src1->grad =
  14797. ggml_sub_or_set(ctx,
  14798. src1->grad,
  14799. ggml_mul(ctx,
  14800. tensor->grad,
  14801. ggml_div(ctx, tensor, src1)),
  14802. zero_table, acc_table);
  14803. }
  14804. } break;
  14805. case GGML_OP_SQR:
  14806. {
  14807. if (src0->grad) {
  14808. src0->grad =
  14809. ggml_add_or_set(ctx,
  14810. src0->grad,
  14811. ggml_scale(ctx,
  14812. ggml_mul(ctx, src0, tensor->grad),
  14813. 2.0f),
  14814. zero_table, acc_table);
  14815. }
  14816. } break;
  14817. case GGML_OP_SQRT:
  14818. {
  14819. if (src0->grad) {
  14820. src0->grad =
  14821. ggml_add_or_set(ctx,
  14822. src0->grad,
  14823. ggml_scale(ctx,
  14824. ggml_div(ctx,
  14825. tensor->grad,
  14826. tensor),
  14827. 0.5f),
  14828. zero_table, acc_table);
  14829. }
  14830. } break;
  14831. case GGML_OP_LOG:
  14832. {
  14833. if (src0->grad) {
  14834. src0->grad =
  14835. ggml_add_or_set(ctx,
  14836. src0->grad,
  14837. ggml_div(ctx,
  14838. tensor->grad,
  14839. src0),
  14840. zero_table, acc_table);
  14841. }
  14842. } break;
  14843. case GGML_OP_SIN:
  14844. {
  14845. if (src0->grad) {
  14846. src0->grad =
  14847. ggml_add_or_set(ctx,
  14848. src0->grad,
  14849. ggml_mul(ctx,
  14850. tensor->grad,
  14851. ggml_cos(ctx, src0)),
  14852. zero_table, acc_table);
  14853. }
  14854. } break;
  14855. case GGML_OP_COS:
  14856. {
  14857. if (src0->grad) {
  14858. src0->grad =
  14859. ggml_sub_or_set(ctx,
  14860. src0->grad,
  14861. ggml_mul(ctx,
  14862. tensor->grad,
  14863. ggml_sin(ctx, src0)),
  14864. zero_table, acc_table);
  14865. }
  14866. } break;
  14867. case GGML_OP_SUM:
  14868. {
  14869. if (src0->grad) {
  14870. src0->grad =
  14871. ggml_add1_or_set(ctx,
  14872. src0->grad,
  14873. tensor->grad,
  14874. zero_table, acc_table);
  14875. }
  14876. } break;
  14877. case GGML_OP_SUM_ROWS:
  14878. {
  14879. if (src0->grad) {
  14880. src0->grad =
  14881. ggml_add_or_set(ctx,
  14882. src0->grad,
  14883. ggml_repeat(ctx,
  14884. tensor->grad,
  14885. src0->grad),
  14886. zero_table, acc_table);
  14887. }
  14888. } break;
  14889. case GGML_OP_MEAN:
  14890. case GGML_OP_ARGMAX:
  14891. case GGML_OP_COUNT_EQUAL:
  14892. {
  14893. GGML_ABORT("fatal error"); // TODO: implement
  14894. }
  14895. case GGML_OP_REPEAT:
  14896. {
  14897. // necessary for llama
  14898. if (src0->grad) {
  14899. src0->grad = ggml_add_or_set(ctx,
  14900. src0->grad,
  14901. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14902. zero_table, acc_table);
  14903. }
  14904. } break;
  14905. case GGML_OP_REPEAT_BACK:
  14906. {
  14907. if (src0->grad) {
  14908. // TODO: test this
  14909. src0->grad = ggml_add_or_set(ctx,
  14910. src0->grad,
  14911. ggml_repeat(ctx, tensor->grad, src0->grad),
  14912. zero_table, acc_table);
  14913. }
  14914. } break;
  14915. case GGML_OP_CONCAT:
  14916. {
  14917. GGML_ABORT("fatal error"); // TODO: implement
  14918. }
  14919. case GGML_OP_SILU_BACK:
  14920. {
  14921. GGML_ABORT("fatal error"); // TODO: not implemented
  14922. }
  14923. case GGML_OP_NORM:
  14924. {
  14925. GGML_ABORT("fatal error"); // TODO: not implemented
  14926. }
  14927. case GGML_OP_RMS_NORM:
  14928. {
  14929. // necessary for llama
  14930. if (src0->grad) {
  14931. float eps;
  14932. memcpy(&eps, tensor->op_params, sizeof(float));
  14933. src0->grad = ggml_add_or_set(ctx,
  14934. src0->grad,
  14935. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14936. zero_table, acc_table);
  14937. }
  14938. } break;
  14939. case GGML_OP_RMS_NORM_BACK:
  14940. {
  14941. GGML_ABORT("fatal error"); // TODO: not implemented
  14942. }
  14943. case GGML_OP_GROUP_NORM:
  14944. {
  14945. GGML_ABORT("fatal error"); // TODO: not implemented
  14946. }
  14947. case GGML_OP_MUL_MAT:
  14948. {
  14949. // https://cs231n.github.io/optimization-2/#staged
  14950. // # forward pass
  14951. // s0 = np.random.randn(5, 10)
  14952. // s1 = np.random.randn(10, 3)
  14953. // t = s0.dot(s1)
  14954. // # now suppose we had the gradient on t from above in the circuit
  14955. // dt = np.random.randn(*t.shape) # same shape as t
  14956. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14957. // ds1 = t.T.dot(dt)
  14958. // tensor.shape [m,p,qq,rr]
  14959. // src0.shape [n,m,q1,r1]
  14960. // src1.shape [n,p,qq,rr]
  14961. // necessary for llama
  14962. if (src0->grad) {
  14963. struct ggml_tensor * s1_tg =
  14964. ggml_out_prod(ctx, // [n,m,qq,rr]
  14965. src1, // [n,p,qq,rr]
  14966. tensor->grad); // [m,p,qq,rr]
  14967. const int64_t qq = s1_tg->ne[2];
  14968. const int64_t rr = s1_tg->ne[3];
  14969. const int64_t q1 = src0->ne[2];
  14970. const int64_t r1 = src0->ne[3];
  14971. const bool ne2_broadcasted = qq > q1;
  14972. const bool ne3_broadcasted = rr > r1;
  14973. if (ne2_broadcasted || ne3_broadcasted) {
  14974. // sum broadcast repetitions of s1_tg into shape of src0
  14975. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14976. }
  14977. src0->grad =
  14978. ggml_add_or_set(ctx,
  14979. src0->grad, // [n,m,q1,r1]
  14980. s1_tg, // [n,m,q1,r1]
  14981. zero_table, acc_table);
  14982. }
  14983. if (src1->grad) {
  14984. src1->grad =
  14985. ggml_add_or_set(ctx,
  14986. src1->grad, // [n,p,qq,rr]
  14987. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14988. // ggml_cont(ctx, // [m,n,q1,r1]
  14989. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14990. // tensor->grad), // [m,p,qq,rr]
  14991. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14992. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14993. // // and then use ggml_out_prod
  14994. ggml_out_prod(ctx, // [n,p,qq,rr]
  14995. src0, // [n,m,q1,r1]
  14996. ggml_transpose(ctx, // [p,m,qq,rr]
  14997. tensor->grad)), // [m,p,qq,rr]
  14998. zero_table, acc_table);
  14999. }
  15000. } break;
  15001. case GGML_OP_MUL_MAT_ID:
  15002. {
  15003. GGML_ABORT("fatal error"); // TODO: not implemented
  15004. }
  15005. case GGML_OP_OUT_PROD:
  15006. {
  15007. GGML_ABORT("fatal error"); // TODO: not implemented
  15008. }
  15009. case GGML_OP_SCALE:
  15010. {
  15011. // necessary for llama
  15012. if (src0->grad) {
  15013. float s;
  15014. memcpy(&s, tensor->op_params, sizeof(float));
  15015. src0->grad =
  15016. ggml_add_or_set(ctx,
  15017. src0->grad,
  15018. ggml_scale_impl(ctx, tensor->grad, s, false),
  15019. zero_table, acc_table);
  15020. }
  15021. } break;
  15022. case GGML_OP_SET:
  15023. {
  15024. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15025. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15026. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15027. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15028. struct ggml_tensor * tensor_grad_view = NULL;
  15029. if (src0->grad || src1->grad) {
  15030. GGML_ASSERT(src0->type == tensor->type);
  15031. GGML_ASSERT(tensor->grad->type == tensor->type);
  15032. GGML_ASSERT(!src1->grad || src1->grad->type == tensor->grad->type);
  15033. tensor_grad_view = ggml_view_4d(ctx,
  15034. tensor->grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
  15035. nb1, nb2, nb3, offset);
  15036. }
  15037. if (src0->grad) {
  15038. src0->grad = ggml_add_or_set(ctx,
  15039. src0->grad,
  15040. ggml_acc_impl(ctx,
  15041. tensor->grad,
  15042. ggml_neg(ctx, tensor_grad_view),
  15043. nb1, nb2, nb3, offset, false),
  15044. zero_table, acc_table);
  15045. }
  15046. if (src1->grad) {
  15047. src1->grad =
  15048. ggml_add_or_set(ctx,
  15049. src1->grad,
  15050. ggml_reshape(ctx,
  15051. ggml_cont(ctx, tensor_grad_view),
  15052. src1->grad),
  15053. zero_table, acc_table);
  15054. }
  15055. } break;
  15056. case GGML_OP_CPY:
  15057. {
  15058. // necessary for llama
  15059. // cpy overwrites value of src1 by src0 and returns view(src1)
  15060. // the overwriting is mathematically equivalent to:
  15061. // tensor = src0 * 1 + src1 * 0
  15062. if (src0->grad) {
  15063. // dsrc0 = dtensor * 1
  15064. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15065. }
  15066. if (src1->grad) {
  15067. // dsrc1 = dtensor * 0 -> noop
  15068. }
  15069. } break;
  15070. case GGML_OP_CONT:
  15071. {
  15072. // same as cpy
  15073. if (src0->grad) {
  15074. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15075. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15076. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15077. }
  15078. } break;
  15079. case GGML_OP_RESHAPE:
  15080. {
  15081. // necessary for llama
  15082. if (src0->grad) {
  15083. src0->grad =
  15084. ggml_add_or_set(ctx, src0->grad,
  15085. ggml_reshape(ctx,
  15086. ggml_is_contiguous(tensor->grad)
  15087. ? tensor->grad
  15088. : ggml_cont(ctx, tensor->grad),
  15089. src0->grad),
  15090. zero_table, acc_table);
  15091. }
  15092. } break;
  15093. case GGML_OP_VIEW:
  15094. {
  15095. // necessary for llama
  15096. if (src0->grad) {
  15097. size_t offset;
  15098. memcpy(&offset, tensor->op_params, sizeof(offset));
  15099. size_t nb1 = tensor->nb[1];
  15100. size_t nb2 = tensor->nb[2];
  15101. size_t nb3 = tensor->nb[3];
  15102. if (src0->type != src0->grad->type) {
  15103. // gradient is typically F32, but src0 could be other type
  15104. size_t ng = ggml_element_size(src0->grad);
  15105. size_t n0 = ggml_element_size(src0);
  15106. GGML_ASSERT(offset % n0 == 0);
  15107. GGML_ASSERT(nb1 % n0 == 0);
  15108. GGML_ASSERT(nb2 % n0 == 0);
  15109. GGML_ASSERT(nb3 % n0 == 0);
  15110. offset = (offset / n0) * ng;
  15111. nb1 = (nb1 / n0) * ng;
  15112. nb2 = (nb2 / n0) * ng;
  15113. nb3 = (nb3 / n0) * ng;
  15114. }
  15115. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table, acc_table);
  15116. }
  15117. } break;
  15118. case GGML_OP_PERMUTE:
  15119. {
  15120. // necessary for llama
  15121. if (src0->grad) {
  15122. int32_t * axes = (int32_t *) tensor->op_params;
  15123. int axis0 = axes[0] & 0x3;
  15124. int axis1 = axes[1] & 0x3;
  15125. int axis2 = axes[2] & 0x3;
  15126. int axis3 = axes[3] & 0x3;
  15127. int axes_backward[4] = {0,0,0,0};
  15128. axes_backward[axis0] = 0;
  15129. axes_backward[axis1] = 1;
  15130. axes_backward[axis2] = 2;
  15131. axes_backward[axis3] = 3;
  15132. src0->grad =
  15133. ggml_add_or_set(ctx, src0->grad,
  15134. ggml_permute(ctx,
  15135. tensor->grad,
  15136. axes_backward[0],
  15137. axes_backward[1],
  15138. axes_backward[2],
  15139. axes_backward[3]),
  15140. zero_table, acc_table);
  15141. }
  15142. } break;
  15143. case GGML_OP_TRANSPOSE:
  15144. {
  15145. // necessary for llama
  15146. if (src0->grad) {
  15147. src0->grad =
  15148. ggml_add_or_set(ctx, src0->grad,
  15149. ggml_transpose(ctx, tensor->grad),
  15150. zero_table, acc_table);
  15151. }
  15152. } break;
  15153. case GGML_OP_GET_ROWS:
  15154. {
  15155. // necessary for llama (only for tokenizer)
  15156. if (src0->grad) {
  15157. src0->grad =
  15158. ggml_add_or_set(ctx, src0->grad,
  15159. // last ggml_get_rows_back argument src0->grad is only
  15160. // necessary to setup correct output shape
  15161. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15162. zero_table, acc_table);
  15163. }
  15164. if (src1->grad) {
  15165. // noop
  15166. }
  15167. } break;
  15168. case GGML_OP_GET_ROWS_BACK:
  15169. {
  15170. GGML_ABORT("fatal error"); // TODO: not implemented
  15171. }
  15172. case GGML_OP_DIAG:
  15173. {
  15174. GGML_ABORT("fatal error"); // TODO: not implemented
  15175. }
  15176. case GGML_OP_DIAG_MASK_INF:
  15177. {
  15178. // necessary for llama
  15179. if (src0->grad) {
  15180. const int n_past = ((int32_t *) tensor->op_params)[0];
  15181. src0->grad =
  15182. ggml_add_or_set(ctx, src0->grad,
  15183. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15184. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15185. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15186. zero_table, acc_table);
  15187. }
  15188. } break;
  15189. case GGML_OP_DIAG_MASK_ZERO:
  15190. {
  15191. // necessary for llama
  15192. if (src0->grad) {
  15193. const int n_past = ((int32_t *) tensor->op_params)[0];
  15194. src0->grad =
  15195. ggml_add_or_set(ctx, src0->grad,
  15196. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15197. zero_table, acc_table);
  15198. }
  15199. } break;
  15200. case GGML_OP_SOFT_MAX:
  15201. {
  15202. // necessary for llama
  15203. if (src0->grad) {
  15204. src0->grad =
  15205. ggml_add_or_set(ctx, src0->grad,
  15206. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15207. zero_table, acc_table);
  15208. }
  15209. GGML_ASSERT((!src1 || !src1->grad) && "backward pass for softmax mask not implemented");
  15210. } break;
  15211. case GGML_OP_SOFT_MAX_BACK:
  15212. {
  15213. GGML_ABORT("fatal error"); // TODO: not implemented
  15214. }
  15215. case GGML_OP_ROPE:
  15216. {
  15217. // necessary for llama
  15218. if (src0->grad) {
  15219. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15220. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15221. const int mode = ((int32_t *) tensor->op_params)[2];
  15222. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15223. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  15224. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  15225. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15226. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15227. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15228. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15229. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15230. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15231. src0->grad = ggml_add_or_set(ctx,
  15232. src0->grad,
  15233. ggml_rope_back(ctx,
  15234. tensor->grad,
  15235. src1,
  15236. src2,
  15237. n_dims,
  15238. mode,
  15239. n_ctx_orig,
  15240. freq_base,
  15241. freq_scale,
  15242. ext_factor,
  15243. attn_factor,
  15244. beta_fast,
  15245. beta_slow),
  15246. zero_table, acc_table);
  15247. }
  15248. GGML_ASSERT((!src2 || !src2->grad) && "gradients for freq factors not implemented");
  15249. } break;
  15250. case GGML_OP_ROPE_BACK:
  15251. {
  15252. if (src0->grad) {
  15253. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15254. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15255. const int mode = ((int32_t *) tensor->op_params)[2];
  15256. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15257. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  15258. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  15259. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15260. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15261. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15262. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15263. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15264. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15265. src0->grad = ggml_add_or_set(ctx,
  15266. src0->grad,
  15267. ggml_rope_impl(ctx,
  15268. tensor->grad,
  15269. src1,
  15270. src2,
  15271. n_dims,
  15272. mode,
  15273. n_ctx_orig,
  15274. freq_base,
  15275. freq_scale,
  15276. ext_factor,
  15277. attn_factor,
  15278. beta_fast,
  15279. beta_slow,
  15280. false),
  15281. zero_table, acc_table);
  15282. }
  15283. } break;
  15284. case GGML_OP_CLAMP:
  15285. {
  15286. GGML_ABORT("fatal error"); // TODO: not implemented
  15287. }
  15288. case GGML_OP_CONV_TRANSPOSE_1D:
  15289. {
  15290. GGML_ABORT("fatal error"); // TODO: not implemented
  15291. }
  15292. case GGML_OP_IM2COL:
  15293. {
  15294. if (src1->grad) {
  15295. const int32_t s0 = ggml_get_op_params_i32(tensor, 0);
  15296. const int32_t s1 = ggml_get_op_params_i32(tensor, 1);
  15297. const int32_t p0 = ggml_get_op_params_i32(tensor, 2);
  15298. const int32_t p1 = ggml_get_op_params_i32(tensor, 3);
  15299. const int32_t d0 = ggml_get_op_params_i32(tensor, 4);
  15300. const int32_t d1 = ggml_get_op_params_i32(tensor, 5);
  15301. const bool is_2D = ggml_get_op_params_i32(tensor, 6) == 1;
  15302. src1->grad = ggml_add_or_set(ctx,
  15303. src1->grad,
  15304. ggml_im2col_back(ctx, src0, tensor->grad, src1->ne, s0, s1, p0, p1, d0, d1, is_2D),
  15305. zero_table, acc_table);
  15306. }
  15307. } break;
  15308. case GGML_OP_IM2COL_BACK:
  15309. {
  15310. GGML_ABORT("fatal error"); // TODO: not implemented
  15311. }
  15312. case GGML_OP_CONV_TRANSPOSE_2D:
  15313. {
  15314. GGML_ABORT("fatal error"); // TODO: not implemented
  15315. }
  15316. case GGML_OP_POOL_1D:
  15317. {
  15318. GGML_ABORT("fatal error"); // TODO: not implemented
  15319. }
  15320. case GGML_OP_POOL_2D:
  15321. {
  15322. if (src0->grad) {
  15323. const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0);
  15324. const int32_t k0 = ggml_get_op_params_i32(tensor, 1);
  15325. const int32_t k1 = ggml_get_op_params_i32(tensor, 2);
  15326. const int32_t s0 = ggml_get_op_params_i32(tensor, 3);
  15327. const int32_t s1 = ggml_get_op_params_i32(tensor, 4);
  15328. const int32_t p0 = ggml_get_op_params_i32(tensor, 5);
  15329. const int32_t p1 = ggml_get_op_params_i32(tensor, 6);
  15330. src0->grad = ggml_add_or_set(ctx,
  15331. src0->grad,
  15332. ggml_pool_2d_back(ctx, tensor->grad, src0, op, k0, k1, s0, s1, p0, p1),
  15333. zero_table, acc_table);
  15334. }
  15335. } break;
  15336. case GGML_OP_POOL_2D_BACK:
  15337. {
  15338. GGML_ABORT("fatal error"); // TODO: not implemented
  15339. }
  15340. case GGML_OP_UPSCALE:
  15341. {
  15342. GGML_ABORT("fatal error"); // TODO: not implemented
  15343. }
  15344. case GGML_OP_PAD:
  15345. {
  15346. GGML_ABORT("fatal error"); // TODO: not implemented
  15347. }
  15348. case GGML_OP_ARANGE:
  15349. {
  15350. GGML_ABORT("fatal error"); // TODO: not implemented
  15351. }
  15352. case GGML_OP_TIMESTEP_EMBEDDING:
  15353. {
  15354. GGML_ABORT("fatal error"); // TODO: not implemented
  15355. }
  15356. case GGML_OP_ARGSORT:
  15357. {
  15358. GGML_ABORT("fatal error"); // TODO: not implemented
  15359. }
  15360. case GGML_OP_LEAKY_RELU:
  15361. {
  15362. GGML_ABORT("fatal error"); // TODO: not implemented
  15363. }
  15364. case GGML_OP_FLASH_ATTN_EXT:
  15365. {
  15366. GGML_ABORT("FA backward pass not adapted after rework");
  15367. struct ggml_tensor * flash_grad = NULL;
  15368. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15369. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15370. GGML_ASSERT(t == 0 || t == 1);
  15371. bool masked = t != 0;
  15372. flash_grad =
  15373. ggml_flash_attn_back(ctx,
  15374. src0,
  15375. src1,
  15376. tensor->src[2],
  15377. tensor->grad,
  15378. masked);
  15379. }
  15380. const int64_t elem_q = ggml_nelements(src0);
  15381. const int64_t elem_k = ggml_nelements(src1);
  15382. const int64_t elem_v = ggml_nelements(src2);
  15383. enum ggml_type result_type = flash_grad->type;
  15384. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15385. const size_t tsize = ggml_type_size(result_type);
  15386. const size_t offs_q = 0;
  15387. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15388. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15389. if (src0->grad) {
  15390. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15391. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15392. src0->grad = ggml_add_or_set(ctx,
  15393. src0->grad,
  15394. grad_q,
  15395. zero_table, acc_table);
  15396. }
  15397. if (src1->grad) {
  15398. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15399. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15400. src1->grad = ggml_add_or_set(ctx,
  15401. src1->grad,
  15402. grad_k,
  15403. zero_table, acc_table);
  15404. }
  15405. if (src2->grad) {
  15406. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15407. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15408. src2->grad = ggml_add_or_set(ctx,
  15409. src2->grad,
  15410. grad_v,
  15411. zero_table, acc_table);
  15412. }
  15413. } break;
  15414. case GGML_OP_FLASH_ATTN_BACK:
  15415. {
  15416. GGML_ABORT("fatal error"); // not supported
  15417. }
  15418. case GGML_OP_SSM_CONV:
  15419. case GGML_OP_SSM_SCAN:
  15420. {
  15421. GGML_ABORT("fatal error"); // TODO: not implemented
  15422. }
  15423. case GGML_OP_WIN_PART:
  15424. case GGML_OP_WIN_UNPART:
  15425. case GGML_OP_UNARY:
  15426. {
  15427. switch (ggml_get_unary_op(tensor)) {
  15428. case GGML_UNARY_OP_ABS:
  15429. {
  15430. if (src0->grad) {
  15431. src0->grad =
  15432. ggml_add_or_set(ctx,
  15433. src0->grad,
  15434. ggml_mul(ctx,
  15435. ggml_sgn(ctx, src0),
  15436. tensor->grad),
  15437. zero_table, acc_table);
  15438. }
  15439. } break;
  15440. case GGML_UNARY_OP_SGN:
  15441. {
  15442. if (src0->grad) {
  15443. // noop
  15444. }
  15445. } break;
  15446. case GGML_UNARY_OP_NEG:
  15447. {
  15448. if (src0->grad) {
  15449. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15450. }
  15451. } break;
  15452. case GGML_UNARY_OP_STEP:
  15453. {
  15454. if (src0->grad) {
  15455. // noop
  15456. }
  15457. } break;
  15458. case GGML_UNARY_OP_TANH:
  15459. {
  15460. GGML_ABORT("fatal error"); // TODO: not implemented
  15461. }
  15462. case GGML_UNARY_OP_ELU:
  15463. {
  15464. GGML_ABORT("fatal error"); // TODO: not implemented
  15465. }
  15466. case GGML_UNARY_OP_RELU:
  15467. {
  15468. if (src0->grad) {
  15469. src0->grad = ggml_add_or_set(ctx,
  15470. src0->grad,
  15471. ggml_mul(ctx,
  15472. ggml_step(ctx, src0),
  15473. tensor->grad),
  15474. zero_table, acc_table);
  15475. }
  15476. } break;
  15477. case GGML_UNARY_OP_SIGMOID:
  15478. {
  15479. GGML_ABORT("fatal error"); // TODO: not implemented
  15480. }
  15481. case GGML_UNARY_OP_GELU:
  15482. {
  15483. GGML_ABORT("fatal error"); // TODO: not implemented
  15484. }
  15485. case GGML_UNARY_OP_GELU_QUICK:
  15486. {
  15487. GGML_ABORT("fatal error"); // TODO: not implemented
  15488. }
  15489. case GGML_UNARY_OP_SILU:
  15490. {
  15491. // necessary for llama
  15492. if (src0->grad) {
  15493. src0->grad = ggml_add_or_set(ctx,
  15494. src0->grad,
  15495. ggml_silu_back(ctx, src0, tensor->grad),
  15496. zero_table, acc_table);
  15497. }
  15498. } break;
  15499. case GGML_UNARY_OP_EXP:
  15500. {
  15501. if (src0->grad) {
  15502. src0->grad = ggml_add_or_set(ctx,
  15503. src0->grad,
  15504. ggml_mul(ctx, tensor, tensor->grad),
  15505. zero_table, acc_table);
  15506. }
  15507. } break;
  15508. default:
  15509. GGML_ABORT("fatal error");
  15510. }
  15511. } break;
  15512. case GGML_OP_GET_REL_POS:
  15513. case GGML_OP_ADD_REL_POS:
  15514. case GGML_OP_RWKV_WKV:
  15515. case GGML_OP_MAP_UNARY:
  15516. case GGML_OP_MAP_BINARY:
  15517. case GGML_OP_MAP_CUSTOM1_F32:
  15518. case GGML_OP_MAP_CUSTOM2_F32:
  15519. case GGML_OP_MAP_CUSTOM3_F32:
  15520. case GGML_OP_MAP_CUSTOM1:
  15521. case GGML_OP_MAP_CUSTOM2:
  15522. case GGML_OP_MAP_CUSTOM3:
  15523. {
  15524. GGML_ABORT("fatal error"); // not supported
  15525. }
  15526. case GGML_OP_CROSS_ENTROPY_LOSS:
  15527. {
  15528. if (src0->grad) {
  15529. src0->grad = ggml_add_or_set(ctx,
  15530. src0->grad,
  15531. ggml_cross_entropy_loss_back(ctx,
  15532. src0,
  15533. src1,
  15534. tensor->grad),
  15535. zero_table, acc_table);
  15536. }
  15537. GGML_ASSERT(!src1->grad && "backward pass for labels not implemented");
  15538. } break;
  15539. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15540. {
  15541. GGML_ABORT("fatal error"); // not supported
  15542. }
  15543. case GGML_OP_OPT_STEP_ADAMW:
  15544. {
  15545. GGML_ABORT("fatal error"); // not supported
  15546. }
  15547. case GGML_OP_NONE:
  15548. {
  15549. // nop
  15550. } break;
  15551. case GGML_OP_COUNT:
  15552. {
  15553. GGML_ABORT("fatal error");
  15554. }
  15555. }
  15556. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15557. if (tensor->src[i] && tensor->src[i]->grad) {
  15558. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15559. }
  15560. }
  15561. }
  15562. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15563. if (node->grad == NULL) {
  15564. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15565. // it can also happen during forward pass, if the user performs computations with constants
  15566. if (node->op != GGML_OP_NONE) {
  15567. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15568. }
  15569. }
  15570. // check if already visited
  15571. if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
  15572. return;
  15573. }
  15574. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15575. const int k =
  15576. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15577. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15578. /* unknown order, just fall back to using i*/ i;
  15579. if (node->src[k]) {
  15580. ggml_visit_parents(cgraph, node->src[k]);
  15581. }
  15582. }
  15583. if (node->op == GGML_OP_NONE && !(node->flags & GGML_TENSOR_FLAG_PARAM)) {
  15584. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15585. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15586. if (strlen(node->name) == 0) {
  15587. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15588. }
  15589. cgraph->leafs[cgraph->n_leafs] = node;
  15590. cgraph->n_leafs++;
  15591. } else {
  15592. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15593. if (strlen(node->name) == 0) {
  15594. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15595. }
  15596. cgraph->nodes[cgraph->n_nodes] = node;
  15597. cgraph->n_nodes++;
  15598. }
  15599. }
  15600. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15601. if (!expand) {
  15602. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15603. ggml_graph_clear(cgraph);
  15604. }
  15605. const int n0 = cgraph->n_nodes;
  15606. ggml_visit_parents(cgraph, tensor);
  15607. const int n_new = cgraph->n_nodes - n0;
  15608. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15609. if (n_new > 0) {
  15610. // the last added node should always be starting point
  15611. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15612. }
  15613. }
  15614. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15615. ggml_build_forward_impl(cgraph, tensor, true);
  15616. }
  15617. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate) {
  15618. GGML_ASSERT(gf->n_nodes > 0);
  15619. GGML_ASSERT(gf->grads);
  15620. for (int i = 0; i < gf->n_nodes; ++i) {
  15621. struct ggml_tensor * node = gf->nodes[i];
  15622. if (node->type == GGML_TYPE_I32) {
  15623. continue;
  15624. }
  15625. bool needs_grad = node->flags & GGML_TENSOR_FLAG_PARAM;
  15626. bool ignore_src[GGML_MAX_SRC] = {false};
  15627. switch (node->op) {
  15628. // gradients in node->src[0] for one reason or another have no effect on output gradients
  15629. case GGML_OP_IM2COL: // only used for its shape
  15630. case GGML_OP_IM2COL_BACK: // same as IM2COL
  15631. ignore_src[0] = true;
  15632. break;
  15633. case GGML_OP_UNARY: {
  15634. const enum ggml_unary_op uop = ggml_get_unary_op(node);
  15635. // SGN and STEP unary ops are piecewise constant
  15636. if (uop == GGML_UNARY_OP_SGN || uop == GGML_UNARY_OP_STEP) {
  15637. ignore_src[0] = true;
  15638. }
  15639. } break;
  15640. // gradients in node->src[1] for one reason or another have no effect on output gradients
  15641. case GGML_OP_CPY: // gradients in CPY target are irrelevant
  15642. case GGML_OP_GET_ROWS: // row indices not differentiable
  15643. case GGML_OP_GET_ROWS_BACK: // same as for GET_ROWS
  15644. case GGML_OP_ROPE: // positions not differentiable
  15645. ignore_src[1] = true;
  15646. break;
  15647. default:
  15648. break;
  15649. }
  15650. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15651. if (!node->src[j] || !node->src[j]->grad || ignore_src[j]) {
  15652. continue;
  15653. }
  15654. GGML_ASSERT(node->src[j]->type == GGML_TYPE_F32 || node->src[j]->type == GGML_TYPE_F16);
  15655. needs_grad = true;
  15656. break;
  15657. }
  15658. if (!needs_grad) {
  15659. continue;
  15660. }
  15661. // inplace operations are currently not supported
  15662. GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW ||
  15663. node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE);
  15664. // create a new tensor with the same type and shape as the node and set it as grad
  15665. node->grad = ggml_dup_tensor(ctx, node);
  15666. }
  15667. // keep tables of original gradients for replacement/accumulation logic
  15668. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15669. struct ggml_hash_set acc_table = ggml_hash_set_new(gf->size);
  15670. for (int i = 0; i < gf->n_nodes; i++) {
  15671. struct ggml_tensor * node = gf->nodes[i];
  15672. if (node->grad) {
  15673. {
  15674. const size_t insert_result = ggml_hash_insert(&zero_table, node->grad);
  15675. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  15676. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  15677. }
  15678. // only gradients of trainable parameters should be accumulated
  15679. if (accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) {
  15680. const size_t insert_result = ggml_hash_insert(&acc_table, node->grad);
  15681. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  15682. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  15683. }
  15684. }
  15685. }
  15686. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15687. struct ggml_tensor * node = gf->nodes[i];
  15688. // inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
  15689. // use allocator to automatically make inplace operations
  15690. if (node->grad) {
  15691. ggml_compute_backward(ctx, node, &zero_table, &acc_table);
  15692. }
  15693. }
  15694. for (int i = 0; i < gf->n_nodes; i++) {
  15695. struct ggml_tensor * node = gf->nodes[i];
  15696. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15697. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15698. ggml_build_forward_expand(gb, node->grad);
  15699. }
  15700. }
  15701. ggml_hash_set_free(&zero_table);
  15702. ggml_hash_set_free(&acc_table);
  15703. }
  15704. void ggml_build_opt_adamw(
  15705. struct ggml_context * ctx,
  15706. struct ggml_cgraph * gf,
  15707. struct ggml_cgraph * gb,
  15708. float alpha,
  15709. float beta1,
  15710. float beta2,
  15711. float eps,
  15712. float wd) {
  15713. for (int i = 0; i < gf->n_nodes; i++) {
  15714. struct ggml_tensor * node = gf->nodes[i];
  15715. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15716. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15717. struct ggml_tensor * opt_step = ggml_opt_step_adamw(ctx, node, node->grad, alpha, beta1, beta2, eps, wd);
  15718. ggml_build_forward_expand(gb, opt_step);
  15719. }
  15720. }
  15721. }
  15722. static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
  15723. void * ptr = *p;
  15724. ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
  15725. *p = (void *) ((char *) ptr + size);
  15726. return ptr;
  15727. }
  15728. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15729. size_t hash_size = ggml_hash_size(size * 2);
  15730. void * p = 0;
  15731. incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
  15732. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
  15733. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
  15734. incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
  15735. if (grads) {
  15736. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
  15737. }
  15738. incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15739. size_t nbytes = (size_t) p;
  15740. return nbytes;
  15741. }
  15742. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15743. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15744. }
  15745. size_t ggml_graph_overhead(void) {
  15746. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15747. }
  15748. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15749. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15750. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15751. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15752. // the size of the hash table is doubled since it needs to hold both nodes and leafs
  15753. size_t hash_size = ggml_hash_size(size * 2);
  15754. void * p = cgraph + 1;
  15755. struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15756. struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15757. struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15758. struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
  15759. ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15760. // check that we allocated the correct amount of memory
  15761. assert(obj_size == (size_t)((char *)p - (char *)cgraph));
  15762. *cgraph = (struct ggml_cgraph) {
  15763. /*.size =*/ size,
  15764. /*.n_nodes =*/ 0,
  15765. /*.n_leafs =*/ 0,
  15766. /*.nodes =*/ nodes_ptr,
  15767. /*.grads =*/ grads_ptr,
  15768. /*.leafs =*/ leafs_ptr,
  15769. /*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
  15770. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15771. };
  15772. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15773. return cgraph;
  15774. }
  15775. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15776. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15777. }
  15778. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15779. struct ggml_cgraph cgraph = {
  15780. /*.size =*/ 0,
  15781. /*.n_nodes =*/ i1 - i0,
  15782. /*.n_leafs =*/ 0,
  15783. /*.nodes =*/ cgraph0->nodes + i0,
  15784. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15785. /*.leafs =*/ NULL,
  15786. /*.hash_table =*/ { 0, NULL, NULL },
  15787. /*.order =*/ cgraph0->order,
  15788. };
  15789. return cgraph;
  15790. }
  15791. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15792. GGML_ASSERT(dst->size >= src->n_leafs);
  15793. GGML_ASSERT(dst->size >= src->n_nodes);
  15794. GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
  15795. dst->n_leafs = src->n_leafs;
  15796. dst->n_nodes = src->n_nodes;
  15797. dst->order = src->order;
  15798. for (int i = 0; i < src->n_leafs; ++i) {
  15799. dst->leafs[i] = src->leafs[i];
  15800. }
  15801. for (int i = 0; i < src->n_nodes; ++i) {
  15802. dst->nodes[i] = src->nodes[i];
  15803. }
  15804. if (src->grads) {
  15805. GGML_ASSERT(dst->grads != NULL);
  15806. for (int i = 0; i < src->n_nodes; ++i) {
  15807. dst->grads[i] = src->grads[i];
  15808. }
  15809. }
  15810. for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
  15811. // copy all hashset keys (tensors) that are in use
  15812. if (ggml_bitset_get(src->visited_hash_set.used, i)) {
  15813. ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
  15814. }
  15815. }
  15816. }
  15817. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15818. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15819. ggml_graph_cpy(cgraph, result);
  15820. return result;
  15821. }
  15822. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15823. GGML_ASSERT(cgraph->grads != NULL);
  15824. for (int i = 0; i < cgraph->n_nodes; i++) {
  15825. struct ggml_tensor * node = cgraph->nodes[i];
  15826. // initial gradients of loss should be 1, 0 otherwise
  15827. if (node->grad) {
  15828. if (node->flags & GGML_TENSOR_FLAG_LOSS) {
  15829. GGML_ASSERT(node->grad->buffer);
  15830. GGML_ASSERT(node->type == GGML_TYPE_F32);
  15831. GGML_ASSERT(ggml_is_scalar(node));
  15832. const float onef = 1.0f;
  15833. ggml_backend_tensor_set(node->grad, &onef, 0, ggml_nbytes(node->grad));
  15834. } else {
  15835. ggml_set_zero(node->grad);
  15836. }
  15837. }
  15838. GGML_ASSERT(node);
  15839. if (node->op == GGML_OP_OPT_STEP_ADAMW) {
  15840. // set iteration to 1 and clear momenta
  15841. ggml_set_op_params_i32(node, 0, 1);
  15842. ggml_set_zero(node->src[2]);
  15843. ggml_set_zero(node->src[3]);
  15844. }
  15845. }
  15846. }
  15847. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15848. cgraph->n_leafs = 0;
  15849. cgraph->n_nodes = 0;
  15850. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15851. }
  15852. int ggml_graph_size(struct ggml_cgraph * cgraph) {
  15853. return cgraph->size;
  15854. }
  15855. struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) {
  15856. if (i < 0) {
  15857. GGML_ASSERT(cgraph->n_nodes + i >= 0);
  15858. return cgraph->nodes[cgraph->n_nodes + i];
  15859. }
  15860. GGML_ASSERT(i < cgraph->n_nodes);
  15861. return cgraph->nodes[i];
  15862. }
  15863. struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) {
  15864. return cgraph->nodes;
  15865. }
  15866. int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) {
  15867. return cgraph->n_nodes;
  15868. }
  15869. void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15870. GGML_ASSERT(cgraph->size > cgraph->n_nodes);
  15871. cgraph->nodes[cgraph->n_nodes] = tensor;
  15872. cgraph->n_nodes++;
  15873. }
  15874. // Android's libc implementation "bionic" does not support setting affinity
  15875. #if defined(__gnu_linux__)
  15876. static void set_numa_thread_affinity(int thread_n) {
  15877. if (!ggml_is_numa()) {
  15878. return;
  15879. }
  15880. int node_num;
  15881. int rv;
  15882. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15883. switch(g_state.numa.numa_strategy) {
  15884. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15885. // run thread on node_num thread_n / (threads per node)
  15886. node_num = thread_n % g_state.numa.n_nodes;
  15887. break;
  15888. case GGML_NUMA_STRATEGY_ISOLATE:
  15889. // run thread on current_node
  15890. node_num = g_state.numa.current_node;
  15891. break;
  15892. case GGML_NUMA_STRATEGY_NUMACTL:
  15893. // use the cpuset that numactl gave us
  15894. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15895. if (rv) {
  15896. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15897. }
  15898. return;
  15899. default:
  15900. return;
  15901. }
  15902. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15903. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15904. CPU_ZERO_S(setsize, cpus);
  15905. for (size_t i = 0; i < node->n_cpus; ++i) {
  15906. CPU_SET_S(node->cpus[i], setsize, cpus);
  15907. }
  15908. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15909. if (rv) {
  15910. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15911. }
  15912. CPU_FREE(cpus);
  15913. }
  15914. static void clear_numa_thread_affinity(void) {
  15915. if (!ggml_is_numa()) {
  15916. return;
  15917. }
  15918. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15919. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15920. CPU_ZERO_S(setsize, cpus);
  15921. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15922. CPU_SET_S(i, setsize, cpus);
  15923. }
  15924. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15925. if (rv) {
  15926. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15927. }
  15928. CPU_FREE(cpus);
  15929. }
  15930. #else
  15931. // TODO: Windows etc.
  15932. // (the linux implementation may also work on BSD, someone should test)
  15933. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15934. static void clear_numa_thread_affinity(void) {}
  15935. #endif
  15936. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  15937. int n_tasks = 0;
  15938. if (ggml_is_empty(node)) {
  15939. // no need to multi-thread a no-op
  15940. n_tasks = 1;
  15941. return n_tasks;
  15942. }
  15943. switch (node->op) {
  15944. case GGML_OP_CPY:
  15945. case GGML_OP_DUP:
  15946. case GGML_OP_CONT:
  15947. case GGML_OP_ADD:
  15948. case GGML_OP_ADD1:
  15949. case GGML_OP_ACC:
  15950. {
  15951. n_tasks = n_threads;
  15952. } break;
  15953. case GGML_OP_SUB:
  15954. case GGML_OP_SQR:
  15955. case GGML_OP_SQRT:
  15956. case GGML_OP_LOG:
  15957. case GGML_OP_SIN:
  15958. case GGML_OP_COS:
  15959. case GGML_OP_SUM:
  15960. case GGML_OP_SUM_ROWS:
  15961. case GGML_OP_MEAN:
  15962. case GGML_OP_ARGMAX:
  15963. {
  15964. n_tasks = 1;
  15965. } break;
  15966. case GGML_OP_COUNT_EQUAL:
  15967. {
  15968. n_tasks = n_threads;
  15969. } break;
  15970. case GGML_OP_REPEAT:
  15971. case GGML_OP_REPEAT_BACK:
  15972. case GGML_OP_LEAKY_RELU:
  15973. {
  15974. n_tasks = 1;
  15975. } break;
  15976. case GGML_OP_UNARY:
  15977. switch (ggml_get_unary_op(node)) {
  15978. case GGML_UNARY_OP_ABS:
  15979. case GGML_UNARY_OP_SGN:
  15980. case GGML_UNARY_OP_NEG:
  15981. case GGML_UNARY_OP_STEP:
  15982. case GGML_UNARY_OP_TANH:
  15983. case GGML_UNARY_OP_ELU:
  15984. case GGML_UNARY_OP_RELU:
  15985. case GGML_UNARY_OP_SIGMOID:
  15986. case GGML_UNARY_OP_HARDSWISH:
  15987. case GGML_UNARY_OP_HARDSIGMOID:
  15988. case GGML_UNARY_OP_EXP:
  15989. {
  15990. n_tasks = 1;
  15991. } break;
  15992. case GGML_UNARY_OP_GELU:
  15993. case GGML_UNARY_OP_GELU_QUICK:
  15994. case GGML_UNARY_OP_SILU:
  15995. {
  15996. n_tasks = n_threads;
  15997. } break;
  15998. default:
  15999. GGML_ABORT("fatal error");
  16000. }
  16001. break;
  16002. case GGML_OP_SILU_BACK:
  16003. case GGML_OP_MUL:
  16004. case GGML_OP_DIV:
  16005. case GGML_OP_NORM:
  16006. case GGML_OP_RMS_NORM:
  16007. case GGML_OP_RMS_NORM_BACK:
  16008. case GGML_OP_GROUP_NORM:
  16009. case GGML_OP_CONCAT:
  16010. case GGML_OP_MUL_MAT:
  16011. case GGML_OP_MUL_MAT_ID:
  16012. case GGML_OP_OUT_PROD:
  16013. {
  16014. n_tasks = n_threads;
  16015. } break;
  16016. case GGML_OP_GET_ROWS:
  16017. {
  16018. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  16019. // decreases performance with GPU offloading
  16020. //n_tasks = n_threads;
  16021. n_tasks = 1;
  16022. } break;
  16023. case GGML_OP_SCALE:
  16024. case GGML_OP_SET:
  16025. case GGML_OP_RESHAPE:
  16026. case GGML_OP_VIEW:
  16027. case GGML_OP_PERMUTE:
  16028. case GGML_OP_TRANSPOSE:
  16029. case GGML_OP_GET_ROWS_BACK:
  16030. case GGML_OP_DIAG:
  16031. {
  16032. n_tasks = 1;
  16033. } break;
  16034. case GGML_OP_DIAG_MASK_ZERO:
  16035. case GGML_OP_DIAG_MASK_INF:
  16036. case GGML_OP_SOFT_MAX_BACK:
  16037. case GGML_OP_ROPE:
  16038. case GGML_OP_ROPE_BACK:
  16039. case GGML_OP_ADD_REL_POS:
  16040. {
  16041. n_tasks = n_threads;
  16042. } break;
  16043. case GGML_OP_CLAMP:
  16044. {
  16045. n_tasks = 1; //TODO
  16046. } break;
  16047. case GGML_OP_SOFT_MAX:
  16048. {
  16049. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  16050. } break;
  16051. case GGML_OP_IM2COL:
  16052. case GGML_OP_IM2COL_BACK:
  16053. case GGML_OP_CONV_TRANSPOSE_1D:
  16054. case GGML_OP_CONV_TRANSPOSE_2D:
  16055. {
  16056. n_tasks = n_threads;
  16057. } break;
  16058. case GGML_OP_POOL_1D:
  16059. case GGML_OP_POOL_2D:
  16060. case GGML_OP_POOL_2D_BACK:
  16061. {
  16062. n_tasks = 1;
  16063. } break;
  16064. case GGML_OP_UPSCALE:
  16065. case GGML_OP_PAD:
  16066. case GGML_OP_ARANGE:
  16067. case GGML_OP_TIMESTEP_EMBEDDING:
  16068. case GGML_OP_ARGSORT:
  16069. case GGML_OP_FLASH_ATTN_EXT:
  16070. case GGML_OP_FLASH_ATTN_BACK:
  16071. case GGML_OP_SSM_CONV:
  16072. case GGML_OP_SSM_SCAN:
  16073. {
  16074. n_tasks = n_threads;
  16075. } break;
  16076. case GGML_OP_WIN_PART:
  16077. case GGML_OP_WIN_UNPART:
  16078. case GGML_OP_GET_REL_POS:
  16079. case GGML_OP_RWKV_WKV:
  16080. case GGML_OP_MAP_UNARY:
  16081. case GGML_OP_MAP_BINARY:
  16082. case GGML_OP_MAP_CUSTOM1_F32:
  16083. case GGML_OP_MAP_CUSTOM2_F32:
  16084. case GGML_OP_MAP_CUSTOM3_F32:
  16085. {
  16086. n_tasks = 1;
  16087. } break;
  16088. case GGML_OP_MAP_CUSTOM1:
  16089. {
  16090. struct ggml_map_custom1_op_params p;
  16091. memcpy(&p, node->op_params, sizeof(p));
  16092. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16093. n_tasks = n_threads;
  16094. } else {
  16095. n_tasks = MIN(p.n_tasks, n_threads);
  16096. }
  16097. } break;
  16098. case GGML_OP_MAP_CUSTOM2:
  16099. {
  16100. struct ggml_map_custom2_op_params p;
  16101. memcpy(&p, node->op_params, sizeof(p));
  16102. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16103. n_tasks = n_threads;
  16104. } else {
  16105. n_tasks = MIN(p.n_tasks, n_threads);
  16106. }
  16107. } break;
  16108. case GGML_OP_MAP_CUSTOM3:
  16109. {
  16110. struct ggml_map_custom3_op_params p;
  16111. memcpy(&p, node->op_params, sizeof(p));
  16112. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16113. n_tasks = n_threads;
  16114. } else {
  16115. n_tasks = MIN(p.n_tasks, n_threads);
  16116. }
  16117. } break;
  16118. case GGML_OP_CROSS_ENTROPY_LOSS:
  16119. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16120. case GGML_OP_OPT_STEP_ADAMW:
  16121. {
  16122. n_tasks = n_threads;
  16123. } break;
  16124. case GGML_OP_NONE:
  16125. {
  16126. n_tasks = 1;
  16127. } break;
  16128. case GGML_OP_COUNT:
  16129. {
  16130. GGML_ABORT("fatal error");
  16131. }
  16132. default:
  16133. {
  16134. fprintf(stderr, "%s: op not implemented: ", __func__);
  16135. if (node->op < GGML_OP_COUNT) {
  16136. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16137. } else {
  16138. fprintf(stderr, "%d\n", node->op);
  16139. }
  16140. GGML_ABORT("fatal error");
  16141. }
  16142. }
  16143. assert(n_tasks > 0);
  16144. return n_tasks;
  16145. }
  16146. static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
  16147. #if defined(_WIN32)
  16148. #include "windows.h"
  16149. // TODO: support > 64 CPUs
  16150. bool ggml_thread_apply_affinity(bool * mask) {
  16151. HANDLE h = GetCurrentThread();
  16152. uint64_t bitmask = 0ULL;
  16153. assert(GGML_MAX_N_THREADS >= 64);
  16154. for (int32_t i = 0; i < 8; i++) {
  16155. int32_t idx = i * 8;
  16156. uint8_t val = 0;
  16157. val |= mask[idx + 0] << 0;
  16158. val |= mask[idx + 1] << 1;
  16159. val |= mask[idx + 2] << 2;
  16160. val |= mask[idx + 3] << 3;
  16161. val |= mask[idx + 4] << 4;
  16162. val |= mask[idx + 5] << 5;
  16163. val |= mask[idx + 6] << 6;
  16164. val |= mask[idx + 7] << 7;
  16165. bitmask |= (uint64_t)val << idx;
  16166. }
  16167. for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) {
  16168. if (mask[i]) {
  16169. fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n");
  16170. break;
  16171. }
  16172. }
  16173. DWORD_PTR m = (DWORD_PTR)bitmask;
  16174. m = SetThreadAffinityMask(h, m);
  16175. return m != 0;
  16176. }
  16177. static bool ggml_thread_apply_priority(int32_t prio) {
  16178. // Note that on Windows the Process Priority Class must be updated in order to set Thread priority.
  16179. // This is up to the applications.
  16180. DWORD p = THREAD_PRIORITY_NORMAL;
  16181. switch (prio) {
  16182. case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
  16183. case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
  16184. case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
  16185. case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
  16186. }
  16187. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16188. // Keep inherited policy/priority
  16189. return true;
  16190. }
  16191. if (!SetThreadPriority(GetCurrentThread(), p)) {
  16192. fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError());
  16193. return false;
  16194. }
  16195. return true;
  16196. }
  16197. #elif defined(__APPLE__)
  16198. #include <sys/types.h>
  16199. #include <sys/resource.h>
  16200. static bool ggml_thread_apply_affinity(const bool * mask) {
  16201. // Not supported on Apple platforms
  16202. UNUSED(mask);
  16203. return true;
  16204. }
  16205. static bool ggml_thread_apply_priority(int32_t prio) {
  16206. struct sched_param p;
  16207. int32_t policy = SCHED_OTHER;
  16208. switch (prio) {
  16209. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  16210. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  16211. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  16212. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  16213. }
  16214. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16215. // Keep inherited policy/priority
  16216. return true;
  16217. }
  16218. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  16219. if (err != 0) {
  16220. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  16221. return false;
  16222. }
  16223. return true;
  16224. }
  16225. #elif defined(__gnu_linux__)
  16226. // TODO: this may not work on BSD, to be verified
  16227. static bool ggml_thread_apply_affinity(const bool * mask) {
  16228. cpu_set_t cpuset;
  16229. int err;
  16230. CPU_ZERO(&cpuset);
  16231. for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  16232. if (mask[i]) {
  16233. GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i);
  16234. CPU_SET(i, &cpuset);
  16235. }
  16236. }
  16237. #ifdef __ANDROID__
  16238. err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
  16239. if (err < 0) {
  16240. err = errno;
  16241. }
  16242. #else
  16243. err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
  16244. #endif
  16245. if (err != 0) {
  16246. fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err);
  16247. return false;
  16248. }
  16249. return true;
  16250. }
  16251. static bool ggml_thread_apply_priority(int32_t prio) {
  16252. struct sched_param p;
  16253. int32_t policy = SCHED_OTHER;
  16254. switch (prio) {
  16255. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  16256. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  16257. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  16258. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  16259. }
  16260. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16261. // Keep inherited policy/priority
  16262. return true;
  16263. }
  16264. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  16265. if (err != 0) {
  16266. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  16267. return false;
  16268. }
  16269. return true;
  16270. }
  16271. #else // unsupported platforms
  16272. static bool ggml_thread_apply_affinity(const bool * mask) {
  16273. UNUSED(mask);
  16274. return true;
  16275. }
  16276. static bool ggml_thread_apply_priority(int32_t prio) {
  16277. UNUSED(prio);
  16278. return true;
  16279. }
  16280. #endif
  16281. static bool ggml_thread_cpumask_is_valid(const bool * mask) {
  16282. for (int i = 0; i < GGML_MAX_N_THREADS; i++) {
  16283. if (mask[i]) { return true; }
  16284. }
  16285. return false;
  16286. }
  16287. static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) {
  16288. if (!strict) {
  16289. memcpy(local_mask, global_mask, GGML_MAX_N_THREADS);
  16290. return;
  16291. } else {
  16292. memset(local_mask, 0, GGML_MAX_N_THREADS);
  16293. int32_t base_idx = *iter;
  16294. for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  16295. int32_t idx = base_idx + i;
  16296. if (idx >= GGML_MAX_N_THREADS) {
  16297. // Just a cheaper modulo
  16298. idx -= GGML_MAX_N_THREADS;
  16299. }
  16300. if (global_mask[idx]) {
  16301. local_mask[idx] = 1;
  16302. *iter = idx + 1;
  16303. return;
  16304. }
  16305. }
  16306. }
  16307. }
  16308. void ggml_threadpool_free(struct ggml_threadpool* threadpool) {
  16309. if (!threadpool) return;
  16310. const int n_threads = threadpool->n_threads_max;
  16311. #ifndef GGML_USE_OPENMP
  16312. struct ggml_compute_state* workers = threadpool->workers;
  16313. ggml_mutex_lock(&threadpool->mutex);
  16314. threadpool->stop = true;
  16315. threadpool->pause = false;
  16316. ggml_cond_broadcast(&threadpool->cond);
  16317. ggml_mutex_unlock(&threadpool->mutex);
  16318. for (int j = 1; j < n_threads; j++) {
  16319. int32_t rc = ggml_thread_join(workers[j].thrd, NULL);
  16320. GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED);
  16321. UNUSED(rc);
  16322. }
  16323. ggml_mutex_destroy(&threadpool->mutex);
  16324. ggml_cond_destroy(&threadpool->cond);
  16325. #endif // GGML_USE_OPENMP
  16326. const size_t workers_size = sizeof(struct ggml_compute_state) * n_threads;
  16327. ggml_aligned_free(threadpool->workers, workers_size);
  16328. ggml_aligned_free(threadpool, sizeof(struct ggml_threadpool));
  16329. }
  16330. #ifndef GGML_USE_OPENMP
  16331. // pause/resume must be called under mutex
  16332. static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) {
  16333. GGML_PRINT_DEBUG("Pausing threadpool\n");
  16334. threadpool->pause = true;
  16335. ggml_cond_broadcast(&threadpool->cond);
  16336. }
  16337. static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) {
  16338. GGML_PRINT_DEBUG("Resuming threadpool\n");
  16339. threadpool->pause = false;
  16340. ggml_cond_broadcast(&threadpool->cond);
  16341. }
  16342. #endif
  16343. void ggml_threadpool_pause(struct ggml_threadpool * threadpool) {
  16344. #ifndef GGML_USE_OPENMP
  16345. ggml_mutex_lock(&threadpool->mutex);
  16346. if (!threadpool->pause) {
  16347. ggml_threadpool_pause_locked(threadpool);
  16348. }
  16349. ggml_mutex_unlock(&threadpool->mutex);
  16350. #else
  16351. UNUSED(threadpool);
  16352. #endif
  16353. }
  16354. void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
  16355. #ifndef GGML_USE_OPENMP
  16356. ggml_mutex_lock(&threadpool->mutex);
  16357. if (threadpool->pause) {
  16358. ggml_threadpool_resume_locked(threadpool);
  16359. }
  16360. ggml_mutex_unlock(&threadpool->mutex);
  16361. #else
  16362. UNUSED(threadpool);
  16363. #endif
  16364. }
  16365. struct ggml_cplan ggml_graph_plan(
  16366. const struct ggml_cgraph * cgraph,
  16367. int n_threads,
  16368. struct ggml_threadpool * threadpool) {
  16369. if (threadpool == NULL) {
  16370. GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  16371. }
  16372. if (n_threads <= 0) {
  16373. n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
  16374. }
  16375. size_t work_size = 0;
  16376. struct ggml_cplan cplan;
  16377. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16378. int max_tasks = 1;
  16379. // thread scheduling for the different operations + work buffer size estimation
  16380. for (int i = 0; i < cgraph->n_nodes; i++) {
  16381. struct ggml_tensor * node = cgraph->nodes[i];
  16382. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  16383. max_tasks = MAX(max_tasks, n_tasks);
  16384. size_t cur = 0;
  16385. switch (node->op) {
  16386. case GGML_OP_CPY:
  16387. case GGML_OP_DUP:
  16388. {
  16389. if (ggml_is_quantized(node->type) ||
  16390. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16391. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16392. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16393. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16394. }
  16395. } break;
  16396. case GGML_OP_ADD:
  16397. case GGML_OP_ADD1:
  16398. {
  16399. if (ggml_is_quantized(node->src[0]->type)) {
  16400. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16401. }
  16402. } break;
  16403. case GGML_OP_ACC:
  16404. {
  16405. if (ggml_is_quantized(node->src[0]->type)) {
  16406. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16407. }
  16408. } break;
  16409. case GGML_OP_COUNT_EQUAL:
  16410. {
  16411. cur = ggml_type_size(node->type)*n_tasks;
  16412. } break;
  16413. case GGML_OP_MUL_MAT:
  16414. {
  16415. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16416. if (node->src[1]->type != vec_dot_type) {
  16417. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16418. }
  16419. } break;
  16420. case GGML_OP_MUL_MAT_ID:
  16421. {
  16422. cur = 0;
  16423. const struct ggml_tensor * src0 = node->src[0];
  16424. const struct ggml_tensor * src1 = node->src[1];
  16425. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16426. if (src1->type != vec_dot_type) {
  16427. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16428. }
  16429. const int n_as = src0->ne[2];
  16430. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16431. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16432. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16433. } break;
  16434. case GGML_OP_OUT_PROD:
  16435. {
  16436. if (ggml_is_quantized(node->src[0]->type)) {
  16437. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16438. }
  16439. } break;
  16440. case GGML_OP_SOFT_MAX:
  16441. case GGML_OP_ROPE:
  16442. {
  16443. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16444. } break;
  16445. case GGML_OP_CONV_TRANSPOSE_1D:
  16446. {
  16447. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16448. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16449. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16450. const int64_t ne00 = node->src[0]->ne[0]; // K
  16451. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16452. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16453. const int64_t ne10 = node->src[1]->ne[0]; // L
  16454. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16455. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16456. node->src[0]->type == GGML_TYPE_BF16) &&
  16457. node->src[1]->type == GGML_TYPE_F32) {
  16458. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16459. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16460. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16461. node->src[1]->type == GGML_TYPE_F32) {
  16462. cur += sizeof(float)*ne00*ne01*ne02;
  16463. cur += sizeof(float)*ne10*ne11;
  16464. } else {
  16465. GGML_ABORT("fatal error");
  16466. }
  16467. } break;
  16468. case GGML_OP_CONV_TRANSPOSE_2D:
  16469. {
  16470. const int64_t ne00 = node->src[0]->ne[0]; // W
  16471. const int64_t ne01 = node->src[0]->ne[1]; // H
  16472. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16473. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16474. const int64_t ne10 = node->src[1]->ne[0]; // W
  16475. const int64_t ne11 = node->src[1]->ne[1]; // H
  16476. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16477. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16478. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16479. } break;
  16480. case GGML_OP_FLASH_ATTN_EXT:
  16481. {
  16482. const int64_t ne00 = node->src[0]->ne[0]; // D
  16483. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16484. } break;
  16485. case GGML_OP_FLASH_ATTN_BACK:
  16486. {
  16487. const int64_t D = node->src[0]->ne[0];
  16488. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16489. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16490. if (node->src[1]->type == GGML_TYPE_F32) {
  16491. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16492. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16493. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16494. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16495. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16496. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16497. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16498. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16499. }
  16500. } break;
  16501. case GGML_OP_CROSS_ENTROPY_LOSS:
  16502. {
  16503. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16504. } break;
  16505. case GGML_OP_COUNT:
  16506. {
  16507. GGML_ABORT("fatal error");
  16508. }
  16509. default:
  16510. break;
  16511. }
  16512. work_size = MAX(work_size, cur);
  16513. }
  16514. if (work_size > 0) {
  16515. work_size += CACHE_LINE_SIZE*(n_threads);
  16516. }
  16517. cplan.threadpool = threadpool;
  16518. cplan.n_threads = MIN(max_tasks, n_threads);
  16519. cplan.work_size = work_size;
  16520. cplan.work_data = NULL;
  16521. return cplan;
  16522. }
  16523. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16524. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16525. struct ggml_threadpool * tp = state->threadpool;
  16526. const struct ggml_cgraph * cgraph = tp->cgraph;
  16527. const struct ggml_cplan * cplan = tp->cplan;
  16528. set_numa_thread_affinity(state->ith);
  16529. struct ggml_compute_params params = {
  16530. /*.ith =*/ state->ith,
  16531. /*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed),
  16532. /*.wsize =*/ cplan->work_size,
  16533. /*.wdata =*/ cplan->work_data,
  16534. /*.threadpool=*/ tp,
  16535. };
  16536. for (int node_n = 0; node_n < cgraph->n_nodes && !tp->abort; node_n++) {
  16537. struct ggml_tensor * node = cgraph->nodes[node_n];
  16538. ggml_compute_forward(&params, node);
  16539. if (state->ith == 0 && cplan->abort_callback &&
  16540. cplan->abort_callback(cplan->abort_callback_data)) {
  16541. tp->abort = true;
  16542. tp->ec = GGML_STATUS_ABORTED;
  16543. }
  16544. ggml_barrier(state->threadpool);
  16545. }
  16546. return 0;
  16547. }
  16548. #ifndef GGML_USE_OPENMP
  16549. // check if thread is active
  16550. static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) {
  16551. struct ggml_threadpool * threadpool = state->threadpool;
  16552. int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed);
  16553. return (state->ith < n_threads);
  16554. }
  16555. // check if thread is ready to proceed (exit from polling or sleeping)
  16556. static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) {
  16557. struct ggml_threadpool * threadpool = state->threadpool;
  16558. if (state->pending || threadpool->stop || threadpool->pause) { return true; }
  16559. // check for new graph/work
  16560. int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed);
  16561. if (new_graph != state->last_graph) {
  16562. state->pending = ggml_graph_compute_thread_active(state);
  16563. state->last_graph = new_graph;
  16564. }
  16565. return state->pending;
  16566. }
  16567. // sync thread state after polling
  16568. static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) {
  16569. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  16570. #ifdef GGML_TSAN_ENABLED
  16571. atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst);
  16572. #else
  16573. atomic_thread_fence(memory_order_seq_cst);
  16574. #endif
  16575. UNUSED(state);
  16576. }
  16577. static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) {
  16578. struct ggml_threadpool * threadpool = state->threadpool;
  16579. // Skip polling for unused threads
  16580. if (!ggml_graph_compute_thread_active(state)) {
  16581. return state->pending;
  16582. }
  16583. // This seems to make 0 ... 100 a decent range for polling level across modern processors.
  16584. // Perhaps, we can adjust it dynamically based on load and things.
  16585. const uint64_t n_rounds = 1024UL * 128 * threadpool->poll;
  16586. for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) {
  16587. // No new work. Keep polling.
  16588. ggml_thread_cpu_relax();
  16589. }
  16590. return state->pending;
  16591. }
  16592. static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) {
  16593. struct ggml_threadpool * threadpool = state->threadpool;
  16594. if (ggml_graph_compute_poll_for_work(state)) {
  16595. ggml_graph_compute_thread_sync(state);
  16596. return state->pending;
  16597. }
  16598. ggml_mutex_lock_shared(&threadpool->mutex);
  16599. while (!ggml_graph_compute_thread_ready(state)) {
  16600. // No new work. Wait for the signal.
  16601. GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith);
  16602. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  16603. }
  16604. ggml_mutex_unlock_shared(&threadpool->mutex);
  16605. return state->pending;
  16606. }
  16607. static thread_ret_t ggml_graph_compute_secondary_thread(void* data) {
  16608. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16609. struct ggml_threadpool * threadpool = state->threadpool;
  16610. ggml_thread_apply_priority(threadpool->prio);
  16611. if (ggml_thread_cpumask_is_valid(state->cpumask)) {
  16612. ggml_thread_apply_affinity(state->cpumask);
  16613. }
  16614. while (true) {
  16615. // Check if we need to sleep
  16616. while (threadpool->pause) {
  16617. GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith);
  16618. ggml_mutex_lock_shared(&threadpool->mutex);
  16619. if (threadpool->pause) {
  16620. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  16621. }
  16622. GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith);
  16623. ggml_mutex_unlock_shared(&threadpool->mutex);
  16624. }
  16625. // This needs to be checked for after the cond_wait
  16626. if (threadpool->stop) break;
  16627. // Check if there is new work
  16628. // The main thread is the only one that can dispatch new work
  16629. ggml_graph_compute_check_for_work(state);
  16630. if (state->pending) {
  16631. state->pending = false;
  16632. ggml_graph_compute_thread(state);
  16633. }
  16634. }
  16635. return (thread_ret_t) 0;
  16636. }
  16637. // Start processing new graph
  16638. static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads)
  16639. {
  16640. // Always take the mutex here because the worker threads are doing hybrid poll/wait
  16641. ggml_mutex_lock(&threadpool->mutex);
  16642. GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n", threadpool->n_threads_cur, n_threads);
  16643. // Update the number of active threads
  16644. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  16645. // Indicate the graph is ready to be processed
  16646. // We need the full seq-cst fence here because of the polling threads (used in thread_sync)
  16647. atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst);
  16648. if (threadpool->pause) {
  16649. // Update main thread prio and affinity to match the threadpool settings
  16650. ggml_thread_apply_priority(threadpool->prio);
  16651. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  16652. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  16653. }
  16654. // resume does cond broadcast
  16655. ggml_threadpool_resume_locked(threadpool);
  16656. } else {
  16657. ggml_cond_broadcast(&threadpool->cond);
  16658. }
  16659. ggml_mutex_unlock(&threadpool->mutex);
  16660. }
  16661. #endif // GGML_USE_OPENMP
  16662. void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
  16663. p->n_threads = n_threads;
  16664. p->prio = 0; // default priority (usually means normal or inherited)
  16665. p->poll = 50; // hybrid-polling enabled
  16666. p->strict_cpu = false; // no strict placement (all threads share same cpumask)
  16667. p->paused = false; // threads are ready to go
  16668. memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
  16669. }
  16670. struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
  16671. struct ggml_threadpool_params p;
  16672. ggml_threadpool_params_init(&p, n_threads);
  16673. return p;
  16674. }
  16675. bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
  16676. if (p0->n_threads != p1->n_threads ) return false;
  16677. if (p0->prio != p1->prio ) return false;
  16678. if (p0->poll != p1->poll ) return false;
  16679. if (p0->strict_cpu != p1->strict_cpu ) return false;
  16680. return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
  16681. }
  16682. static struct ggml_threadpool * ggml_threadpool_new_impl(
  16683. struct ggml_threadpool_params * tpp,
  16684. struct ggml_cgraph * cgraph,
  16685. struct ggml_cplan * cplan) {
  16686. struct ggml_threadpool * threadpool =
  16687. ggml_aligned_malloc(sizeof(struct ggml_threadpool));
  16688. {
  16689. threadpool->cgraph = cgraph;
  16690. threadpool->cplan = cplan;
  16691. threadpool->n_graph = 0;
  16692. threadpool->n_barrier = 0;
  16693. threadpool->n_barrier_passed = 0;
  16694. threadpool->current_chunk = 0;
  16695. threadpool->stop = false;
  16696. threadpool->pause = tpp->paused;
  16697. threadpool->abort = false;
  16698. threadpool->workers = NULL;
  16699. threadpool->n_threads_max = tpp->n_threads;
  16700. threadpool->n_threads_cur = tpp->n_threads;
  16701. threadpool->poll = tpp->poll;
  16702. threadpool->prio = tpp->prio;
  16703. threadpool->ec = GGML_STATUS_SUCCESS;
  16704. }
  16705. // Allocate and init workers state
  16706. const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads;
  16707. struct ggml_compute_state * workers = ggml_aligned_malloc(workers_size);
  16708. memset(workers, 0, workers_size);
  16709. for (int j = 0; j < tpp->n_threads; j++) {
  16710. workers[j].threadpool = threadpool;
  16711. workers[j].ith = j;
  16712. }
  16713. threadpool->workers = workers;
  16714. #ifndef GGML_USE_OPENMP
  16715. ggml_mutex_init(&threadpool->mutex);
  16716. ggml_cond_init(&threadpool->cond);
  16717. // Spin the threads for all workers, and update CPU placements.
  16718. // Place the main thread last (towards the higher numbered CPU cores).
  16719. int32_t cpumask_iter = 0;
  16720. for (int j = 1; j < tpp->n_threads; j++) {
  16721. ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
  16722. int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]);
  16723. GGML_ASSERT(rc == 0);
  16724. }
  16725. ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter);
  16726. if (!threadpool->pause) {
  16727. // Update main thread prio and affinity at the start, otherwise we'll do it in resume
  16728. ggml_thread_apply_priority(threadpool->prio);
  16729. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  16730. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  16731. }
  16732. }
  16733. #endif // GGML_USE_OPENMP
  16734. return threadpool;
  16735. }
  16736. struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
  16737. return ggml_threadpool_new_impl(tpp, NULL, NULL);
  16738. }
  16739. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16740. GGML_ASSERT(cplan);
  16741. GGML_ASSERT(cplan->n_threads > 0);
  16742. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  16743. int n_threads = cplan->n_threads;
  16744. struct ggml_threadpool * threadpool = cplan->threadpool;
  16745. bool disposable_threadpool = false;
  16746. if (threadpool == NULL) {
  16747. GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  16748. disposable_threadpool = true;
  16749. struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
  16750. threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
  16751. } else {
  16752. // Reset some of the parameters that need resetting
  16753. // No worker threads should be accessing the parameters below at this stage
  16754. threadpool->cgraph = cgraph;
  16755. threadpool->cplan = cplan;
  16756. threadpool->current_chunk = 0;
  16757. threadpool->abort = false;
  16758. threadpool->ec = GGML_STATUS_SUCCESS;
  16759. }
  16760. #ifdef GGML_USE_OPENMP
  16761. if (n_threads > 1) {
  16762. #pragma omp parallel num_threads(n_threads)
  16763. {
  16764. #pragma omp single
  16765. {
  16766. // update the number of threads from the actual number of threads that we got from OpenMP
  16767. n_threads = omp_get_num_threads();
  16768. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  16769. }
  16770. ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
  16771. }
  16772. } else {
  16773. atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed);
  16774. ggml_graph_compute_thread(&threadpool->workers[0]);
  16775. }
  16776. #else
  16777. if (n_threads > threadpool->n_threads_max) {
  16778. GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads_max);
  16779. n_threads = threadpool->n_threads_max;
  16780. }
  16781. // Kick all threads to start the new graph
  16782. ggml_graph_compute_kickoff(threadpool, n_threads);
  16783. // This is a work thread too
  16784. ggml_graph_compute_thread(&threadpool->workers[0]);
  16785. #endif
  16786. // don't leave affinity set on the main thread
  16787. clear_numa_thread_affinity();
  16788. enum ggml_status ret = threadpool->ec;
  16789. if (disposable_threadpool) {
  16790. ggml_threadpool_free(threadpool);
  16791. }
  16792. return ret;
  16793. }
  16794. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16795. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
  16796. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16797. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16798. return ggml_graph_compute(cgraph, &cplan);
  16799. }
  16800. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16801. for (int i = 0; i < cgraph->n_leafs; i++) {
  16802. struct ggml_tensor * leaf = cgraph->leafs[i];
  16803. if (strcmp(leaf->name, name) == 0) {
  16804. return leaf;
  16805. }
  16806. }
  16807. for (int i = 0; i < cgraph->n_nodes; i++) {
  16808. struct ggml_tensor * node = cgraph->nodes[i];
  16809. if (strcmp(node->name, name) == 0) {
  16810. return node;
  16811. }
  16812. }
  16813. return NULL;
  16814. }
  16815. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16816. const int64_t * ne = tensor->ne;
  16817. const size_t * nb = tensor->nb;
  16818. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16819. ggml_type_name(tensor->type),
  16820. ggml_op_name (tensor->op),
  16821. ggml_n_dims(tensor),
  16822. ne[0], ne[1], ne[2], ne[3],
  16823. nb[0], nb[1], nb[2], nb[3],
  16824. tensor->data,
  16825. tensor->name);
  16826. }
  16827. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16828. const int64_t * ne = tensor->ne;
  16829. const size_t * nb = tensor->nb;
  16830. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16831. arg,
  16832. ggml_type_name(tensor->type),
  16833. ggml_op_name (tensor->op),
  16834. ggml_n_dims(tensor),
  16835. ne[0], ne[1], ne[2], ne[3],
  16836. nb[0], nb[1], nb[2], nb[3],
  16837. tensor->data,
  16838. tensor->name);
  16839. }
  16840. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16841. uint64_t size_eval = 0;
  16842. // compute size of intermediate results
  16843. // TODO: does not take into account scratch buffers !!!!
  16844. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16845. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16846. }
  16847. // print
  16848. {
  16849. FILE * fout = stdout;
  16850. fprintf(fout, "\n");
  16851. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16852. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16853. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16854. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16855. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16856. // header
  16857. fprintf(fout, "\n");
  16858. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16859. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16860. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16861. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16862. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16863. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16864. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16865. }
  16866. // header
  16867. fprintf(fout, "\n");
  16868. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16869. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16870. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16871. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16872. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16873. if (cgraph->nodes[i]->src[j]) {
  16874. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16875. }
  16876. }
  16877. fprintf(fout, "\n");
  16878. }
  16879. fprintf(fout, "\n");
  16880. }
  16881. // write binary data
  16882. {
  16883. FILE * fout = ggml_fopen(fname, "wb");
  16884. if (!fout) {
  16885. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  16886. return;
  16887. }
  16888. // header
  16889. {
  16890. const uint32_t magic = GGML_FILE_MAGIC;
  16891. const uint32_t version = GGML_FILE_VERSION;
  16892. const uint32_t n_leafs = cgraph->n_leafs;
  16893. const uint32_t n_nodes = cgraph->n_nodes;
  16894. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16895. fwrite(&version, sizeof(uint32_t), 1, fout);
  16896. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16897. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16898. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16899. }
  16900. // leafs
  16901. {
  16902. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16903. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16904. const uint32_t type = tensor->type;
  16905. const uint32_t op = tensor->op;
  16906. const int32_t flags = tensor->flags;
  16907. fwrite(&type, sizeof(uint32_t), 1, fout);
  16908. fwrite(&op, sizeof(uint32_t), 1, fout);
  16909. fwrite(&flags, sizeof(int32_t), 1, fout);
  16910. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16911. const uint64_t ne = tensor->ne[j];
  16912. const uint64_t nb = tensor->nb[j];
  16913. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16914. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16915. }
  16916. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16917. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16918. // dump the data
  16919. // TODO: pad this to 32 byte boundary
  16920. {
  16921. const size_t size = ggml_nbytes(tensor);
  16922. fwrite(tensor->data, sizeof(char), size, fout);
  16923. }
  16924. }
  16925. }
  16926. // nodes
  16927. {
  16928. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16929. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16930. const uint32_t type = tensor->type;
  16931. const uint32_t op = tensor->op;
  16932. const int32_t flags = tensor->flags;
  16933. fwrite(&type, sizeof(uint32_t), 1, fout);
  16934. fwrite(&op, sizeof(uint32_t), 1, fout);
  16935. fwrite(&flags, sizeof(int32_t), 1, fout);
  16936. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16937. const uint64_t ne = tensor->ne[j];
  16938. const uint64_t nb = tensor->nb[j];
  16939. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16940. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16941. }
  16942. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16943. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16944. // output the op arguments
  16945. {
  16946. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16947. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16948. args[j] = tensor->src[j];
  16949. }
  16950. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16951. if (args[j]) {
  16952. int32_t idx = -1;
  16953. // check if leaf
  16954. {
  16955. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16956. if (args[j] == cgraph->leafs[k]) {
  16957. idx = k;
  16958. break;
  16959. }
  16960. }
  16961. }
  16962. // check if node
  16963. if (idx == -1) {
  16964. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16965. if (args[j] == cgraph->nodes[k]) {
  16966. idx = cgraph->n_leafs + k;
  16967. break;
  16968. }
  16969. }
  16970. }
  16971. if (idx == -1) {
  16972. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16973. fclose(fout);
  16974. return;
  16975. }
  16976. fwrite(&idx, sizeof(int32_t), 1, fout);
  16977. } else {
  16978. const int32_t nul = -1;
  16979. fwrite(&nul, sizeof(int32_t), 1, fout);
  16980. }
  16981. }
  16982. }
  16983. // dump the data
  16984. // TODO: pad this to 32 byte boundary
  16985. if ((flags & GGML_TENSOR_FLAG_PARAM)) {
  16986. const size_t size = ggml_nbytes(tensor);
  16987. fwrite(tensor->data, sizeof(char), size, fout);
  16988. }
  16989. }
  16990. }
  16991. fclose(fout);
  16992. }
  16993. }
  16994. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16995. assert(*ctx_data == NULL);
  16996. assert(*ctx_eval == NULL);
  16997. struct ggml_cgraph * result = NULL;
  16998. struct ggml_tensor * data = NULL;
  16999. // read file into data
  17000. {
  17001. FILE * fin = ggml_fopen(fname, "rb");
  17002. if (!fin) {
  17003. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  17004. return result;
  17005. }
  17006. size_t fsize = 0;
  17007. fseek(fin, 0, SEEK_END);
  17008. fsize = ftell(fin);
  17009. fseek(fin, 0, SEEK_SET);
  17010. // create the data context
  17011. {
  17012. const size_t overhead = 1*ggml_tensor_overhead();
  17013. struct ggml_init_params params = {
  17014. .mem_size = fsize + overhead,
  17015. .mem_buffer = NULL,
  17016. .no_alloc = false,
  17017. };
  17018. *ctx_data = ggml_init(params);
  17019. if (!*ctx_data) {
  17020. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17021. fclose(fin);
  17022. return result;
  17023. }
  17024. }
  17025. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  17026. {
  17027. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  17028. if (ret != fsize) {
  17029. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  17030. fclose(fin);
  17031. return result;
  17032. }
  17033. }
  17034. fclose(fin);
  17035. }
  17036. // populate result
  17037. {
  17038. char * ptr = (char *) data->data;
  17039. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  17040. if (magic != GGML_FILE_MAGIC) {
  17041. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  17042. return result;
  17043. }
  17044. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  17045. if (version != GGML_FILE_VERSION) {
  17046. fprintf(stderr, "%s: invalid version number\n", __func__);
  17047. return result;
  17048. }
  17049. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  17050. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  17051. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  17052. const int graph_size = MAX(n_leafs, n_nodes);
  17053. // create the data context
  17054. {
  17055. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  17056. struct ggml_init_params params = {
  17057. .mem_size = size_eval + overhead,
  17058. .mem_buffer = NULL,
  17059. .no_alloc = true,
  17060. };
  17061. *ctx_eval = ggml_init(params);
  17062. if (!*ctx_eval) {
  17063. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17064. return result;
  17065. }
  17066. }
  17067. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  17068. result->n_leafs = n_leafs;
  17069. result->n_nodes = n_nodes;
  17070. // leafs
  17071. {
  17072. uint32_t type;
  17073. uint32_t op;
  17074. int32_t flags;
  17075. for (uint32_t i = 0; i < n_leafs; ++i) {
  17076. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17077. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17078. flags = *(const int32_t *) ptr; ptr += sizeof(flags);
  17079. int64_t ne[GGML_MAX_DIMS];
  17080. size_t nb[GGML_MAX_DIMS];
  17081. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17082. uint64_t ne_cur;
  17083. uint64_t nb_cur;
  17084. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17085. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17086. ne[j] = ne_cur;
  17087. nb[j] = nb_cur;
  17088. }
  17089. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17090. tensor->op = (enum ggml_op) op;
  17091. tensor->flags = flags;
  17092. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  17093. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  17094. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17095. tensor->nb[j] = nb[j];
  17096. }
  17097. tensor->data = (void *) ptr; ptr += ggml_nbytes(tensor);
  17098. result->leafs[i] = tensor;
  17099. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17100. }
  17101. }
  17102. ggml_set_no_alloc(*ctx_eval, false);
  17103. // nodes
  17104. {
  17105. uint32_t type;
  17106. uint32_t op;
  17107. int32_t flags;
  17108. for (uint32_t i = 0; i < n_nodes; ++i) {
  17109. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17110. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17111. flags = *(const int32_t *) ptr; ptr += sizeof(flags);
  17112. enum ggml_op eop = (enum ggml_op) op;
  17113. int64_t ne[GGML_MAX_DIMS];
  17114. size_t nb[GGML_MAX_DIMS];
  17115. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17116. uint64_t ne_cur;
  17117. uint64_t nb_cur;
  17118. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17119. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17120. ne[j] = ne_cur;
  17121. nb[j] = nb_cur;
  17122. }
  17123. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  17124. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  17125. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  17126. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  17127. // parse args
  17128. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17129. const int32_t arg_idx = ptr_arg_idx[j];
  17130. if (arg_idx == -1) {
  17131. continue;
  17132. }
  17133. if (arg_idx < result->n_leafs) {
  17134. args[j] = result->leafs[arg_idx];
  17135. } else {
  17136. args[j] = result->nodes[arg_idx - result->n_leafs];
  17137. }
  17138. }
  17139. // create the tensor
  17140. // "view" operations are handled differently
  17141. // TODO: handle inplace ops - currently a copy is always made
  17142. struct ggml_tensor * tensor = NULL;
  17143. switch (eop) {
  17144. // TODO: implement other view ops
  17145. case GGML_OP_RESHAPE:
  17146. {
  17147. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  17148. } break;
  17149. case GGML_OP_VIEW:
  17150. {
  17151. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17152. size_t offs;
  17153. memcpy(&offs, ptr_op_params, sizeof(offs));
  17154. tensor->data = ((char *) tensor->data) + offs;
  17155. } break;
  17156. case GGML_OP_TRANSPOSE:
  17157. {
  17158. tensor = ggml_transpose(*ctx_eval, args[0]);
  17159. } break;
  17160. case GGML_OP_PERMUTE:
  17161. {
  17162. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17163. } break;
  17164. default:
  17165. {
  17166. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17167. tensor->op = eop;
  17168. } break;
  17169. }
  17170. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  17171. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  17172. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17173. tensor->nb[j] = nb[j];
  17174. }
  17175. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17176. tensor->src[j] = args[j];
  17177. }
  17178. result->nodes[i] = tensor;
  17179. // TODO tensor data is be duplicated due to ggml_new_tensor call above
  17180. if (flags & GGML_TENSOR_FLAG_PARAM) {
  17181. tensor->data = (void *) ptr; ptr += ggml_nbytes(tensor);
  17182. }
  17183. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17184. }
  17185. }
  17186. }
  17187. return result;
  17188. }
  17189. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  17190. GGML_LOG_INFO("=== GRAPH ===\n");
  17191. GGML_LOG_INFO("n_nodes = %d\n", cgraph->n_nodes);
  17192. for (int i = 0; i < cgraph->n_nodes; i++) {
  17193. struct ggml_tensor * node = cgraph->nodes[i];
  17194. GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
  17195. i,
  17196. node->ne[0], node->ne[1], node->ne[2],
  17197. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
  17198. }
  17199. GGML_LOG_INFO("n_leafs = %d\n", cgraph->n_leafs);
  17200. for (int i = 0; i < cgraph->n_leafs; i++) {
  17201. struct ggml_tensor * node = cgraph->leafs[i];
  17202. GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  17203. i,
  17204. node->ne[0], node->ne[1],
  17205. ggml_op_name(node->op),
  17206. ggml_get_name(node));
  17207. }
  17208. GGML_LOG_INFO("========================================\n");
  17209. }
  17210. // check if node is part of the graph
  17211. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17212. if (cgraph == NULL) {
  17213. return true;
  17214. }
  17215. for (int i = 0; i < cgraph->n_nodes; i++) {
  17216. if (cgraph->nodes[i] == node) {
  17217. return true;
  17218. }
  17219. }
  17220. return false;
  17221. }
  17222. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17223. for (int i = 0; i < cgraph->n_nodes; i++) {
  17224. struct ggml_tensor * parent = cgraph->nodes[i];
  17225. if (parent->grad == node) {
  17226. return parent;
  17227. }
  17228. }
  17229. return NULL;
  17230. }
  17231. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17232. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  17233. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  17234. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  17235. gparent0 ? (void *) gparent0 : (void *) parent,
  17236. gparent0 ? "g" : "x",
  17237. gparent ? (void *) gparent : (void *) node,
  17238. gparent ? "g" : "x",
  17239. gparent ? "empty" : "vee",
  17240. gparent ? "dashed" : "solid",
  17241. label);
  17242. }
  17243. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17244. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  17245. (void *) parent, "x",
  17246. (void *) node, "x",
  17247. label);
  17248. }
  17249. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  17250. char color[16];
  17251. FILE * fp = ggml_fopen(filename, "w");
  17252. GGML_ASSERT(fp);
  17253. fprintf(fp, "digraph G {\n");
  17254. fprintf(fp, " newrank = true;\n");
  17255. fprintf(fp, " rankdir = TB;\n");
  17256. for (int i = 0; i < gb->n_nodes; i++) {
  17257. struct ggml_tensor * node = gb->nodes[i];
  17258. if (ggml_graph_get_parent(gb, node) != NULL) {
  17259. continue;
  17260. }
  17261. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  17262. snprintf(color, sizeof(color), "yellow");
  17263. } else if (node->grad) {
  17264. if (ggml_graph_find(gf, node)) {
  17265. snprintf(color, sizeof(color), "green");
  17266. } else {
  17267. snprintf(color, sizeof(color), "lightblue");
  17268. }
  17269. } else {
  17270. snprintf(color, sizeof(color), "white");
  17271. }
  17272. fprintf(fp, " \"%p\" [ "
  17273. "style = filled; fillcolor = %s; shape = record; "
  17274. "label=\"",
  17275. (void *) node, color);
  17276. if (strlen(node->name) > 0) {
  17277. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17278. } else {
  17279. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17280. }
  17281. if (ggml_is_matrix(node)) {
  17282. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  17283. } else {
  17284. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  17285. }
  17286. if (node->grad) {
  17287. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  17288. } else {
  17289. fprintf(fp, "\"; ]\n");
  17290. }
  17291. }
  17292. for (int i = 0; i < gb->n_leafs; i++) {
  17293. struct ggml_tensor * node = gb->leafs[i];
  17294. snprintf(color, sizeof(color), "pink");
  17295. fprintf(fp, " \"%p\" [ "
  17296. "style = filled; fillcolor = %s; shape = record; "
  17297. "label=\"<x>",
  17298. (void *) node, color);
  17299. if (strlen(node->name) > 0) {
  17300. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17301. } else {
  17302. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17303. }
  17304. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17305. if (ggml_nelements(node) < 5 && node->data != NULL) {
  17306. fprintf(fp, " | (");
  17307. for (int j = 0; j < ggml_nelements(node); j++) {
  17308. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17309. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17310. }
  17311. else if (node->type == GGML_TYPE_F32 ||
  17312. node->type == GGML_TYPE_F16 ||
  17313. node->type == GGML_TYPE_BF16) {
  17314. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17315. }
  17316. else {
  17317. fprintf(fp, "#");
  17318. }
  17319. if (j < ggml_nelements(node) - 1) {
  17320. fprintf(fp, ", ");
  17321. }
  17322. }
  17323. fprintf(fp, ")");
  17324. }
  17325. fprintf(fp, "\"; ]\n");
  17326. }
  17327. for (int i = 0; i < gb->n_nodes; i++) {
  17328. struct ggml_tensor * node = gb->nodes[i];
  17329. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17330. if (node->src[j]) {
  17331. char label[16];
  17332. snprintf(label, sizeof(label), "src %d", j);
  17333. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17334. }
  17335. }
  17336. }
  17337. for (int i = 0; i < gb->n_leafs; i++) {
  17338. struct ggml_tensor * node = gb->leafs[i];
  17339. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17340. if (node->src[j]) {
  17341. char label[16];
  17342. snprintf(label, sizeof(label), "src %d", j);
  17343. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17344. }
  17345. }
  17346. }
  17347. fprintf(fp, "}\n");
  17348. fclose(fp);
  17349. GGML_LOG_INFO("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17350. }
  17351. ////////////////////////////////////////////////////////////////////////////////
  17352. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17353. int i = 0;
  17354. for (int p = 0; p < np; ++p) {
  17355. const int64_t ne = ggml_nelements(ps[p]) ;
  17356. // TODO: add function to set tensor from array
  17357. for (int64_t j = 0; j < ne; ++j) {
  17358. ggml_set_f32_1d(ps[p], j, x[i++]);
  17359. }
  17360. }
  17361. }
  17362. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17363. int i = 0;
  17364. for (int p = 0; p < np; ++p) {
  17365. const int64_t ne = ggml_nelements(ps[p]) ;
  17366. // TODO: add function to get all elements at once
  17367. for (int64_t j = 0; j < ne; ++j) {
  17368. x[i++] = ggml_get_f32_1d(ps[p], j);
  17369. }
  17370. }
  17371. }
  17372. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17373. int64_t i = 0;
  17374. for (int p = 0; p < np; ++p) {
  17375. const int64_t ne = ggml_nelements(ps[p]) ;
  17376. // TODO: add function to get all elements at once
  17377. for (int64_t j = 0; j < ne; ++j) {
  17378. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17379. }
  17380. }
  17381. }
  17382. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17383. int64_t i = 0;
  17384. for (int p = 0; p < np; ++p) {
  17385. const int64_t ne = ggml_nelements(ps[p]) ;
  17386. // TODO: add function to get all elements at once
  17387. for (int64_t j = 0; j < ne; ++j) {
  17388. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17389. }
  17390. }
  17391. }
  17392. //
  17393. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17394. //
  17395. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17396. //
  17397. static enum ggml_opt_result ggml_opt_adam(
  17398. struct ggml_context * ctx,
  17399. struct ggml_opt_context * opt,
  17400. struct ggml_opt_params params,
  17401. struct ggml_tensor * f,
  17402. struct ggml_cgraph * gf,
  17403. struct ggml_cgraph * gb,
  17404. ggml_opt_callback callback,
  17405. void * callback_data) {
  17406. GGML_ASSERT(ggml_is_scalar(f));
  17407. GGML_ASSERT(f->type == GGML_TYPE_F32);
  17408. // these will store the parameters we want to optimize
  17409. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17410. int np = 0;
  17411. int64_t nx = 0;
  17412. for (int i = 0; i < gf->n_nodes; ++i) {
  17413. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17414. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17415. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17416. ps[np++] = gf->nodes[i];
  17417. nx += ggml_nelements(gf->nodes[i]);
  17418. }
  17419. }
  17420. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17421. int iter = opt->iter;
  17422. ggml_opt_init(opt->ctx, opt, params, nx);
  17423. opt->iter = iter;
  17424. }
  17425. // constants
  17426. float sched = params.adam.sched;
  17427. const float alpha = params.adam.alpha;
  17428. const float decay = params.adam.decay * alpha;
  17429. const float beta1 = params.adam.beta1;
  17430. const float beta2 = params.adam.beta2;
  17431. const float eps = params.adam.eps;
  17432. const float gclip = params.adam.gclip;
  17433. const int decay_min_ndim = params.adam.decay_min_ndim;
  17434. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17435. const float accum_norm = 1.0f / (float) n_accum;
  17436. float * g = opt->adam.g->data; // gradients
  17437. float * m = opt->adam.m->data; // first moment
  17438. float * v = opt->adam.v->data; // second moment
  17439. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17440. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
  17441. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17442. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17443. bool cancel = false;
  17444. // compute the function value
  17445. float fx = 0;
  17446. ggml_set_zero(opt->adam.g);
  17447. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17448. if (callback) {
  17449. callback(callback_data, accum_step, &sched, &cancel);
  17450. if (cancel) {
  17451. return GGML_OPT_RESULT_CANCEL;
  17452. }
  17453. }
  17454. // ggml_graph_reset (gf);
  17455. ggml_set_f32 (f->grad, 1.0f);
  17456. ggml_graph_compute(gb, &cplan);
  17457. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17458. fx += ggml_get_f32_1d(f, 0);
  17459. }
  17460. fx *= accum_norm;
  17461. opt->adam.fx_prev = fx;
  17462. opt->adam.fx_best = opt->adam.fx_prev;
  17463. if (pf) {
  17464. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17465. }
  17466. opt->loss_before = opt->adam.fx_prev;
  17467. opt->loss_after = opt->adam.fx_prev;
  17468. // initialize
  17469. if (opt->just_initialized) {
  17470. opt->adam.n_no_improvement = 0;
  17471. opt->just_initialized = false;
  17472. }
  17473. float * fx_best = &opt->adam.fx_best;
  17474. float * fx_prev = &opt->adam.fx_prev;
  17475. int * n_no_improvement = &opt->adam.n_no_improvement;
  17476. int iter0 = opt->iter;
  17477. // run the optimizer
  17478. for (int t = 0; t < params.adam.n_iter; ++t) {
  17479. opt->iter = iter0 + t + 1;
  17480. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17481. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17482. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17483. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17484. for (int i = 0; i < np; ++i) {
  17485. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17486. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17487. }
  17488. const int64_t t_start_wall = ggml_time_us();
  17489. const int64_t t_start_cpu = ggml_cycles();
  17490. UNUSED(t_start_wall);
  17491. UNUSED(t_start_cpu);
  17492. {
  17493. float gnorm = 1.0f;
  17494. if (gclip > 0.0f) {
  17495. // gradient clipping
  17496. ggml_float sum = 0.0;
  17497. for (int64_t i = 0; i < nx; ++i) {
  17498. sum += (ggml_float)(g[i]*g[i]);
  17499. }
  17500. ggml_float norm = sqrt(sum);
  17501. if (norm > (ggml_float) gclip) {
  17502. gnorm = (float) ((ggml_float) gclip / norm);
  17503. }
  17504. }
  17505. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17506. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17507. int64_t i = 0;
  17508. for (int p = 0; p < np; ++p) {
  17509. const int64_t ne = ggml_nelements(ps[p]);
  17510. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17511. for (int64_t j = 0; j < ne; ++j) {
  17512. float x = ggml_get_f32_1d(ps[p], j);
  17513. float g_ = g[i]*gnorm;
  17514. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17515. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17516. float mh = m[i]*beta1h;
  17517. float vh = v[i]*beta2h;
  17518. vh = sqrtf(vh) + eps;
  17519. x = x*(1.0f - p_decay) - mh/vh;
  17520. ggml_set_f32_1d(ps[p], j, x);
  17521. ++i;
  17522. }
  17523. }
  17524. }
  17525. fx = 0;
  17526. ggml_set_zero(opt->adam.g);
  17527. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17528. if (callback) {
  17529. callback(callback_data, accum_step, &sched, &cancel);
  17530. if (cancel) {
  17531. return GGML_OPT_RESULT_CANCEL;;
  17532. }
  17533. }
  17534. // ggml_graph_reset (gf);
  17535. ggml_set_f32 (f->grad, 1.0f);
  17536. ggml_graph_compute(gb, &cplan);
  17537. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17538. fx += ggml_get_f32_1d(f, 0);
  17539. }
  17540. fx *= accum_norm;
  17541. opt->loss_after = fx;
  17542. // check convergence
  17543. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17544. GGML_PRINT_DEBUG("converged\n");
  17545. return GGML_OPT_RESULT_OK;
  17546. }
  17547. // delta-based convergence test
  17548. if (pf != NULL) {
  17549. // need at least params.past iterations to start checking for convergence
  17550. if (params.past <= iter0 + t) {
  17551. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17552. if (fabsf(rate) < params.delta) {
  17553. return GGML_OPT_RESULT_OK;
  17554. }
  17555. }
  17556. pf[(iter0 + t)%params.past] = fx;
  17557. }
  17558. // check for improvement
  17559. if (params.max_no_improvement > 0) {
  17560. if (fx_best[0] > fx) {
  17561. fx_best[0] = fx;
  17562. n_no_improvement[0] = 0;
  17563. } else {
  17564. ++n_no_improvement[0];
  17565. if (n_no_improvement[0] >= params.max_no_improvement) {
  17566. return GGML_OPT_RESULT_OK;
  17567. }
  17568. }
  17569. }
  17570. fx_prev[0] = fx;
  17571. {
  17572. const int64_t t_end_cpu = ggml_cycles();
  17573. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17574. UNUSED(t_end_cpu);
  17575. const int64_t t_end_wall = ggml_time_us();
  17576. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17577. UNUSED(t_end_wall);
  17578. }
  17579. }
  17580. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17581. }
  17582. //
  17583. // L-BFGS
  17584. //
  17585. // the L-BFGS implementation below is based on the following implementation:
  17586. //
  17587. // https://github.com/chokkan/liblbfgs
  17588. //
  17589. struct ggml_lbfgs_iteration_data {
  17590. float alpha;
  17591. float ys;
  17592. float * s;
  17593. float * y;
  17594. };
  17595. static enum ggml_opt_result linesearch_backtracking(
  17596. const struct ggml_opt_params * params,
  17597. int nx,
  17598. float * x,
  17599. float * fx,
  17600. float * g,
  17601. float * d,
  17602. float * step,
  17603. const float * xp,
  17604. struct ggml_tensor * f,
  17605. struct ggml_cgraph * gb,
  17606. struct ggml_cplan * cplan,
  17607. const int np,
  17608. struct ggml_tensor * ps[],
  17609. bool * cancel,
  17610. ggml_opt_callback callback,
  17611. void * callback_data) {
  17612. int count = 0;
  17613. float width = 0.0f;
  17614. float dg = 0.0f;
  17615. float finit = 0.0f;
  17616. float dginit = 0.0f;
  17617. float dgtest = 0.0f;
  17618. const float dec = 0.5f;
  17619. const float inc = 2.1f;
  17620. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17621. const float accum_norm = 1.0f / (float) n_accum;
  17622. if (*step <= 0.f) {
  17623. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17624. }
  17625. // compute the initial gradient in the search direction
  17626. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17627. // make sure that d points to a descent direction
  17628. if (0 < dginit) {
  17629. return GGML_LINESEARCH_FAIL;
  17630. }
  17631. // initialize local variables
  17632. finit = *fx;
  17633. dgtest = params->lbfgs.ftol*dginit;
  17634. while (true) {
  17635. ggml_vec_cpy_f32(nx, x, xp);
  17636. ggml_vec_mad_f32(nx, x, d, *step);
  17637. // evaluate the function and gradient values
  17638. {
  17639. ggml_opt_set_params(np, ps, x);
  17640. *fx = 0;
  17641. memset(g, 0, sizeof(float)*nx);
  17642. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17643. if (callback) {
  17644. // LBFG-S does not support learning rate -> ignore learning schedule
  17645. float sched = 0;
  17646. callback(callback_data, accum_step, &sched, cancel);
  17647. if (*cancel) {
  17648. return GGML_OPT_RESULT_CANCEL;
  17649. }
  17650. }
  17651. // ggml_graph_reset (gf);
  17652. ggml_set_f32 (f->grad, 1.0f);
  17653. ggml_graph_compute(gb, cplan);
  17654. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17655. *fx += ggml_get_f32_1d(f, 0);
  17656. }
  17657. *fx *= accum_norm;
  17658. }
  17659. ++count;
  17660. if (*fx > finit + (*step)*dgtest) {
  17661. width = dec;
  17662. } else {
  17663. // Armijo condition is satisfied
  17664. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17665. return count;
  17666. }
  17667. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17668. // check the Wolfe condition
  17669. if (dg < params->lbfgs.wolfe * dginit) {
  17670. width = inc;
  17671. } else {
  17672. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17673. // regular Wolfe conditions
  17674. return count;
  17675. }
  17676. if(dg > -params->lbfgs.wolfe*dginit) {
  17677. width = dec;
  17678. } else {
  17679. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17680. return count;
  17681. }
  17682. }
  17683. }
  17684. if (*step < params->lbfgs.min_step) {
  17685. return GGML_LINESEARCH_MINIMUM_STEP;
  17686. }
  17687. if (*step > params->lbfgs.max_step) {
  17688. return GGML_LINESEARCH_MAXIMUM_STEP;
  17689. }
  17690. if (params->lbfgs.max_linesearch <= count) {
  17691. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17692. }
  17693. (*step) *= width;
  17694. }
  17695. GGML_ABORT("line search failed");
  17696. //return GGML_LINESEARCH_FAIL;
  17697. }
  17698. static enum ggml_opt_result ggml_opt_lbfgs(
  17699. struct ggml_context * ctx,
  17700. struct ggml_opt_context * opt,
  17701. struct ggml_opt_params params,
  17702. struct ggml_tensor * f,
  17703. struct ggml_cgraph * gf,
  17704. struct ggml_cgraph * gb,
  17705. ggml_opt_callback callback,
  17706. void * callback_data) {
  17707. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17708. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17709. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17710. return GGML_OPT_RESULT_INVALID_WOLFE;
  17711. }
  17712. }
  17713. const int m = params.lbfgs.m;
  17714. // these will store the parameters we want to optimize
  17715. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17716. int np = 0;
  17717. int nx = 0;
  17718. for (int i = 0; i < gf->n_nodes; ++i) {
  17719. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17720. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17721. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17722. ps[np++] = gf->nodes[i];
  17723. nx += ggml_nelements(gf->nodes[i]);
  17724. }
  17725. }
  17726. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17727. int iter = opt->iter;
  17728. ggml_opt_init(ctx, opt, params, nx);
  17729. opt->iter = iter;
  17730. }
  17731. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
  17732. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17733. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17734. float * x = opt->lbfgs.x->data; // current parameters
  17735. float * xp = opt->lbfgs.xp->data; // previous parameters
  17736. float * g = opt->lbfgs.g->data; // current gradient
  17737. float * gp = opt->lbfgs.gp->data; // previous gradient
  17738. float * d = opt->lbfgs.d->data; // search direction
  17739. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17740. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17741. const float accum_norm = 1.0f / (float) n_accum;
  17742. float fx = 0.0f; // cost function value
  17743. float xnorm = 0.0f; // ||x||
  17744. float gnorm = 0.0f; // ||g||
  17745. // initialize x from the graph nodes
  17746. ggml_opt_get_params(np, ps, x);
  17747. // the L-BFGS memory
  17748. float * lm_alpha = opt->lbfgs.lmal->data;
  17749. float * lm_ys = opt->lbfgs.lmys->data;
  17750. float * lm_s = opt->lbfgs.lms->data;
  17751. float * lm_y = opt->lbfgs.lmy->data;
  17752. bool cancel = false;
  17753. // evaluate the function value and its gradient
  17754. {
  17755. ggml_opt_set_params(np, ps, x);
  17756. fx = 0;
  17757. memset(g, 0, sizeof(float)*nx);
  17758. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17759. if (callback) {
  17760. // LBFG-S does not support learning rate -> ignore learning schedule
  17761. float sched = 0;
  17762. callback(callback_data, accum_step, &sched, &cancel);
  17763. if (cancel) {
  17764. return GGML_OPT_RESULT_CANCEL;
  17765. }
  17766. }
  17767. // ggml_graph_reset (gf);
  17768. ggml_set_f32 (f->grad, 1.0f);
  17769. ggml_graph_compute(gb, &cplan);
  17770. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17771. fx += ggml_get_f32_1d(f, 0);
  17772. }
  17773. fx *= accum_norm;
  17774. opt->loss_before = fx;
  17775. opt->loss_after = fx;
  17776. }
  17777. // search direction = -gradient
  17778. ggml_vec_neg_f32(nx, d, g);
  17779. // ||x||, ||g||
  17780. ggml_vec_norm_f32(nx, &xnorm, x);
  17781. ggml_vec_norm_f32(nx, &gnorm, g);
  17782. if (xnorm < 1.0f) {
  17783. xnorm = 1.0f;
  17784. }
  17785. // already optimized
  17786. if (gnorm/xnorm <= params.lbfgs.eps) {
  17787. return GGML_OPT_RESULT_OK;
  17788. }
  17789. if (opt->just_initialized) {
  17790. if (pf) {
  17791. pf[0] = fx;
  17792. }
  17793. opt->lbfgs.fx_best = fx;
  17794. // initial step
  17795. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17796. opt->lbfgs.j = 0;
  17797. opt->lbfgs.k = 1;
  17798. opt->lbfgs.end = 0;
  17799. opt->lbfgs.n_no_improvement = 0;
  17800. opt->just_initialized = false;
  17801. }
  17802. float * fx_best = &opt->lbfgs.fx_best;
  17803. float * step = &opt->lbfgs.step;
  17804. int * j = &opt->lbfgs.j;
  17805. int * k = &opt->lbfgs.k;
  17806. int * end = &opt->lbfgs.end;
  17807. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17808. int ls = 0;
  17809. int bound = 0;
  17810. float ys = 0.0f;
  17811. float yy = 0.0f;
  17812. float beta = 0.0f;
  17813. int it = 0;
  17814. while (true) {
  17815. // store the current position and gradient vectors
  17816. ggml_vec_cpy_f32(nx, xp, x);
  17817. ggml_vec_cpy_f32(nx, gp, g);
  17818. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17819. // to determine if the optimization should be cancelled
  17820. // this is a simple change, but not doing this atm, since I don't have a nice
  17821. // way to test and don't want to break something with so many changes lined up
  17822. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17823. if (cancel) {
  17824. return GGML_OPT_RESULT_CANCEL;
  17825. }
  17826. if (ls < 0) {
  17827. // linesearch failed - go back to the previous point and return
  17828. ggml_vec_cpy_f32(nx, x, xp);
  17829. ggml_vec_cpy_f32(nx, g, gp);
  17830. return ls;
  17831. }
  17832. opt->loss_after = fx;
  17833. ggml_vec_norm_f32(nx, &xnorm, x);
  17834. ggml_vec_norm_f32(nx, &gnorm, g);
  17835. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17836. if (xnorm < 1.0f) {
  17837. xnorm = 1.0f;
  17838. }
  17839. if (gnorm/xnorm <= params.lbfgs.eps) {
  17840. // converged
  17841. return GGML_OPT_RESULT_OK;
  17842. }
  17843. // delta-based convergence test
  17844. if (pf != NULL) {
  17845. // need at least params.past iterations to start checking for convergence
  17846. if (params.past <= k[0]) {
  17847. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17848. if (fabsf(rate) < params.delta) {
  17849. return GGML_OPT_RESULT_OK;
  17850. }
  17851. }
  17852. pf[k[0]%params.past] = fx;
  17853. }
  17854. // check for improvement
  17855. if (params.max_no_improvement > 0) {
  17856. if (fx < fx_best[0]) {
  17857. fx_best[0] = fx;
  17858. n_no_improvement[0] = 0;
  17859. } else {
  17860. n_no_improvement[0]++;
  17861. if (n_no_improvement[0] >= params.max_no_improvement) {
  17862. return GGML_OPT_RESULT_OK;
  17863. }
  17864. }
  17865. }
  17866. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17867. // reached the maximum number of iterations
  17868. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17869. }
  17870. // update vectors s and y:
  17871. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17872. // y_{k+1} = g_{k+1} - g_{k}.
  17873. //
  17874. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17875. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17876. // compute scalars ys and yy:
  17877. // ys = y^t \cdot s -> 1 / \rho.
  17878. // yy = y^t \cdot y.
  17879. //
  17880. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17881. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17882. lm_ys[end[0]] = ys;
  17883. // find new search direction
  17884. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17885. bound = (m <= k[0]) ? m : k[0];
  17886. k[0]++;
  17887. it++;
  17888. end[0] = (end[0] + 1)%m;
  17889. // initialize search direction with -g
  17890. ggml_vec_neg_f32(nx, d, g);
  17891. j[0] = end[0];
  17892. for (int i = 0; i < bound; ++i) {
  17893. j[0] = (j[0] + m - 1) % m;
  17894. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17895. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17896. lm_alpha[j[0]] /= lm_ys[j[0]];
  17897. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17898. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17899. }
  17900. ggml_vec_scale_f32(nx, d, ys/yy);
  17901. for (int i = 0; i < bound; ++i) {
  17902. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17903. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17904. beta /= lm_ys[j[0]];
  17905. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17906. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17907. j[0] = (j[0] + 1)%m;
  17908. }
  17909. step[0] = 1.0;
  17910. }
  17911. GGML_ABORT("lbfgs failed");
  17912. //return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17913. }
  17914. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17915. struct ggml_opt_params result;
  17916. switch (type) {
  17917. case GGML_OPT_TYPE_ADAM:
  17918. {
  17919. result = (struct ggml_opt_params) {
  17920. .type = GGML_OPT_TYPE_ADAM,
  17921. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17922. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17923. .past = 0,
  17924. .delta = 1e-5f,
  17925. .max_no_improvement = 100,
  17926. .print_forward_graph = true,
  17927. .print_backward_graph = true,
  17928. .n_gradient_accumulation = 1,
  17929. .adam = {
  17930. .n_iter = 10000,
  17931. .sched = 1.000f,
  17932. .decay = 0.0f,
  17933. .decay_min_ndim = 2,
  17934. .alpha = 0.001f,
  17935. .beta1 = 0.9f,
  17936. .beta2 = 0.999f,
  17937. .eps = 1e-8f,
  17938. .eps_f = 1e-5f,
  17939. .eps_g = 1e-3f,
  17940. .gclip = 0.0f,
  17941. },
  17942. };
  17943. } break;
  17944. case GGML_OPT_TYPE_LBFGS:
  17945. {
  17946. result = (struct ggml_opt_params) {
  17947. .type = GGML_OPT_TYPE_LBFGS,
  17948. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17949. .n_threads = 1,
  17950. .past = 0,
  17951. .delta = 1e-5f,
  17952. .max_no_improvement = 0,
  17953. .print_forward_graph = true,
  17954. .print_backward_graph = true,
  17955. .n_gradient_accumulation = 1,
  17956. .lbfgs = {
  17957. .m = 6,
  17958. .n_iter = 100,
  17959. .max_linesearch = 20,
  17960. .eps = 1e-5f,
  17961. .ftol = 1e-4f,
  17962. .wolfe = 0.9f,
  17963. .min_step = 1e-20f,
  17964. .max_step = 1e+20f,
  17965. .linesearch = GGML_LINESEARCH_DEFAULT,
  17966. },
  17967. };
  17968. } break;
  17969. }
  17970. return result;
  17971. }
  17972. GGML_API void ggml_opt_init(
  17973. struct ggml_context * ctx,
  17974. struct ggml_opt_context * opt,
  17975. struct ggml_opt_params params,
  17976. int64_t nx) {
  17977. opt->ctx = ctx;
  17978. opt->params = params;
  17979. opt->iter = 0;
  17980. opt->nx = nx;
  17981. opt->just_initialized = true;
  17982. if (opt->ctx == NULL) {
  17983. struct ggml_init_params ctx_opt_params;
  17984. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17985. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17986. if (opt->params.past > 0) {
  17987. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17988. }
  17989. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17990. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17991. if (opt->params.past > 0) {
  17992. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17993. }
  17994. }
  17995. ctx_opt_params.mem_buffer = NULL;
  17996. ctx_opt_params.no_alloc = false;
  17997. opt->ctx = ggml_init(ctx_opt_params);
  17998. }
  17999. switch (opt->params.type) {
  18000. case GGML_OPT_TYPE_ADAM:
  18001. {
  18002. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18003. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18004. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18005. opt->adam.pf = params.past > 0
  18006. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  18007. : NULL;
  18008. ggml_set_zero(opt->adam.m);
  18009. ggml_set_zero(opt->adam.v);
  18010. if (opt->adam.pf) {
  18011. ggml_set_zero(opt->adam.pf);
  18012. }
  18013. } break;
  18014. case GGML_OPT_TYPE_LBFGS:
  18015. {
  18016. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18017. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18018. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18019. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18020. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18021. opt->lbfgs.pf = params.past > 0
  18022. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  18023. : NULL;
  18024. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  18025. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  18026. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18027. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18028. ggml_set_zero(opt->lbfgs.x);
  18029. ggml_set_zero(opt->lbfgs.xp);
  18030. ggml_set_zero(opt->lbfgs.g);
  18031. ggml_set_zero(opt->lbfgs.gp);
  18032. ggml_set_zero(opt->lbfgs.d);
  18033. if (opt->lbfgs.pf) {
  18034. ggml_set_zero(opt->lbfgs.pf);
  18035. }
  18036. ggml_set_zero(opt->lbfgs.lmal);
  18037. ggml_set_zero(opt->lbfgs.lmys);
  18038. ggml_set_zero(opt->lbfgs.lms);
  18039. ggml_set_zero(opt->lbfgs.lmy);
  18040. } break;
  18041. }
  18042. }
  18043. enum ggml_opt_result ggml_opt(
  18044. struct ggml_context * ctx,
  18045. struct ggml_opt_params params,
  18046. struct ggml_tensor * f) {
  18047. bool free_ctx = false;
  18048. if (ctx == NULL) {
  18049. struct ggml_init_params params_ctx = {
  18050. .mem_size = 16*1024*1024,
  18051. .mem_buffer = NULL,
  18052. .no_alloc = false,
  18053. };
  18054. ctx = ggml_init(params_ctx);
  18055. if (ctx == NULL) {
  18056. return GGML_OPT_RESULT_NO_CONTEXT;
  18057. }
  18058. free_ctx = true;
  18059. }
  18060. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18061. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  18062. ggml_opt_init(ctx, opt, params, 0);
  18063. result = ggml_opt_resume(ctx, opt, f);
  18064. if (free_ctx) {
  18065. ggml_free(ctx);
  18066. }
  18067. return result;
  18068. }
  18069. enum ggml_opt_result ggml_opt_resume(
  18070. struct ggml_context * ctx,
  18071. struct ggml_opt_context * opt,
  18072. struct ggml_tensor * f) {
  18073. // build forward + backward compute graphs
  18074. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  18075. ggml_build_forward_expand(gf, f);
  18076. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  18077. ggml_build_backward_expand(ctx, gf, gb, false);
  18078. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  18079. }
  18080. enum ggml_opt_result ggml_opt_resume_g(
  18081. struct ggml_context * ctx,
  18082. struct ggml_opt_context * opt,
  18083. struct ggml_tensor * f,
  18084. struct ggml_cgraph * gf,
  18085. struct ggml_cgraph * gb,
  18086. ggml_opt_callback callback,
  18087. void * callback_data) {
  18088. GGML_ASSERT(f->grad && "ggml_set_param must be called for at least one ancestor");
  18089. // build forward + backward compute graphs
  18090. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18091. switch (opt->params.type) {
  18092. case GGML_OPT_TYPE_ADAM:
  18093. {
  18094. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18095. } break;
  18096. case GGML_OPT_TYPE_LBFGS:
  18097. {
  18098. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18099. } break;
  18100. }
  18101. if (opt->params.print_forward_graph) {
  18102. ggml_graph_print (gf);
  18103. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  18104. }
  18105. if (opt->params.print_backward_graph) {
  18106. ggml_graph_print (gb);
  18107. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  18108. }
  18109. return result;
  18110. }
  18111. ////////////////////////////////////////////////////////////////////////////////
  18112. void ggml_set_input(struct ggml_tensor * tensor) {
  18113. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  18114. }
  18115. void ggml_set_output(struct ggml_tensor * tensor) {
  18116. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  18117. }
  18118. void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  18119. GGML_UNUSED(ctx); // TODO: remove this parameter
  18120. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  18121. }
  18122. void ggml_set_loss(struct ggml_tensor * tensor) {
  18123. GGML_ASSERT(ggml_is_scalar(tensor));
  18124. GGML_ASSERT(tensor->type == GGML_TYPE_F32);
  18125. tensor->flags |= GGML_TENSOR_FLAG_LOSS;
  18126. }
  18127. ////////////////////////////////////////////////////////////////////////////////
  18128. void ggml_quantize_init(enum ggml_type type) {
  18129. ggml_critical_section_start();
  18130. switch (type) {
  18131. case GGML_TYPE_IQ2_XXS:
  18132. case GGML_TYPE_IQ2_XS:
  18133. case GGML_TYPE_IQ2_S:
  18134. case GGML_TYPE_IQ1_S:
  18135. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  18136. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  18137. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  18138. default: // nothing
  18139. break;
  18140. }
  18141. ggml_critical_section_end();
  18142. }
  18143. void ggml_quantize_free(void) {
  18144. ggml_critical_section_start();
  18145. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  18146. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  18147. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  18148. iq3xs_free_impl(256);
  18149. ggml_critical_section_end();
  18150. }
  18151. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  18152. return
  18153. type == GGML_TYPE_IQ2_XXS ||
  18154. type == GGML_TYPE_IQ2_XS ||
  18155. type == GGML_TYPE_IQ1_S;// ||
  18156. //type == GGML_TYPE_IQ1_M;
  18157. }
  18158. size_t ggml_quantize_chunk(
  18159. enum ggml_type type,
  18160. const float * src,
  18161. void * dst,
  18162. int64_t start,
  18163. int64_t nrows,
  18164. int64_t n_per_row,
  18165. const float * imatrix) {
  18166. const int64_t n = (int64_t) nrows * n_per_row;
  18167. if (ggml_quantize_requires_imatrix(type)) {
  18168. GGML_ASSERT(imatrix != NULL);
  18169. }
  18170. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  18171. GGML_ASSERT(start % n_per_row == 0);
  18172. ggml_quantize_init(type); // this is noop if already initialized
  18173. const size_t start_row = start / n_per_row;
  18174. const size_t row_size = ggml_row_size(type, n_per_row);
  18175. size_t result = 0;
  18176. switch (type) {
  18177. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18178. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18179. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18180. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18181. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18182. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18183. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18184. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18185. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18186. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18187. case GGML_TYPE_TQ1_0: result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18188. case GGML_TYPE_TQ2_0: result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18189. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18190. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18191. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18192. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18193. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18194. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18195. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18196. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18197. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18198. case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18199. case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18200. case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18201. case GGML_TYPE_F16:
  18202. {
  18203. size_t elemsize = sizeof(ggml_fp16_t);
  18204. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  18205. result = n * elemsize;
  18206. } break;
  18207. case GGML_TYPE_BF16:
  18208. {
  18209. size_t elemsize = sizeof(ggml_bf16_t);
  18210. ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
  18211. result = n * elemsize;
  18212. } break;
  18213. case GGML_TYPE_F32:
  18214. {
  18215. size_t elemsize = sizeof(float);
  18216. result = n * elemsize;
  18217. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  18218. } break;
  18219. default:
  18220. assert(false);
  18221. }
  18222. GGML_ASSERT(result == nrows * row_size);
  18223. return result;
  18224. }
  18225. ////////////////////////////////////////////////////////////////////////////////
  18226. struct gguf_str {
  18227. uint64_t n; // GGUFv2
  18228. char * data;
  18229. };
  18230. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  18231. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  18232. [GGUF_TYPE_INT8] = sizeof(int8_t),
  18233. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  18234. [GGUF_TYPE_INT16] = sizeof(int16_t),
  18235. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  18236. [GGUF_TYPE_INT32] = sizeof(int32_t),
  18237. [GGUF_TYPE_FLOAT32] = sizeof(float),
  18238. [GGUF_TYPE_BOOL] = sizeof(bool),
  18239. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  18240. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  18241. [GGUF_TYPE_INT64] = sizeof(int64_t),
  18242. [GGUF_TYPE_FLOAT64] = sizeof(double),
  18243. [GGUF_TYPE_ARRAY] = 0, // undefined
  18244. };
  18245. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18246. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  18247. [GGUF_TYPE_UINT8] = "u8",
  18248. [GGUF_TYPE_INT8] = "i8",
  18249. [GGUF_TYPE_UINT16] = "u16",
  18250. [GGUF_TYPE_INT16] = "i16",
  18251. [GGUF_TYPE_UINT32] = "u32",
  18252. [GGUF_TYPE_INT32] = "i32",
  18253. [GGUF_TYPE_FLOAT32] = "f32",
  18254. [GGUF_TYPE_BOOL] = "bool",
  18255. [GGUF_TYPE_STRING] = "str",
  18256. [GGUF_TYPE_ARRAY] = "arr",
  18257. [GGUF_TYPE_UINT64] = "u64",
  18258. [GGUF_TYPE_INT64] = "i64",
  18259. [GGUF_TYPE_FLOAT64] = "f64",
  18260. };
  18261. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18262. union gguf_value {
  18263. uint8_t uint8;
  18264. int8_t int8;
  18265. uint16_t uint16;
  18266. int16_t int16;
  18267. uint32_t uint32;
  18268. int32_t int32;
  18269. float float32;
  18270. uint64_t uint64;
  18271. int64_t int64;
  18272. double float64;
  18273. bool bool_;
  18274. struct gguf_str str;
  18275. struct {
  18276. enum gguf_type type;
  18277. uint64_t n; // GGUFv2
  18278. void * data;
  18279. } arr;
  18280. };
  18281. struct gguf_kv {
  18282. struct gguf_str key;
  18283. enum gguf_type type;
  18284. union gguf_value value;
  18285. };
  18286. struct gguf_header {
  18287. char magic[4];
  18288. uint32_t version;
  18289. uint64_t n_tensors; // GGUFv2
  18290. uint64_t n_kv; // GGUFv2
  18291. };
  18292. struct gguf_tensor_info {
  18293. struct gguf_str name;
  18294. uint32_t n_dims;
  18295. uint64_t ne[GGML_MAX_DIMS];
  18296. enum ggml_type type;
  18297. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  18298. // for writing API
  18299. const void * data;
  18300. size_t size;
  18301. };
  18302. struct gguf_context {
  18303. struct gguf_header header;
  18304. struct gguf_kv * kv;
  18305. struct gguf_tensor_info * infos;
  18306. size_t alignment;
  18307. size_t offset; // offset of `data` from beginning of file
  18308. size_t size; // size of `data` in bytes
  18309. //uint8_t * padding;
  18310. void * data;
  18311. };
  18312. static size_t gguf_type_size(enum gguf_type type) {
  18313. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18314. return GGUF_TYPE_SIZE[type];
  18315. }
  18316. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18317. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18318. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18319. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18320. GGML_ASSERT(info->ne[i] > 0);
  18321. }
  18322. // prevent overflow for total number of elements
  18323. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18324. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18325. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18326. }
  18327. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18328. const size_t n = fread(dst, 1, size, file);
  18329. *offset += n;
  18330. return n == size;
  18331. }
  18332. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18333. p->n = 0;
  18334. p->data = NULL;
  18335. bool ok = true;
  18336. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18337. // early exit if string length is invalid, prevents from integer overflow
  18338. if (p->n == SIZE_MAX) {
  18339. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18340. return false;
  18341. }
  18342. p->data = GGML_CALLOC(p->n + 1, 1);
  18343. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18344. return ok;
  18345. }
  18346. static void gguf_free_kv(struct gguf_kv * kv) {
  18347. if (kv->key.data) {
  18348. GGML_FREE(kv->key.data);
  18349. }
  18350. if (kv->type == GGUF_TYPE_STRING) {
  18351. if (kv->value.str.data) {
  18352. GGML_FREE(kv->value.str.data);
  18353. }
  18354. }
  18355. if (kv->type == GGUF_TYPE_ARRAY) {
  18356. if (kv->value.arr.data) {
  18357. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18358. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18359. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18360. if (str->data) {
  18361. GGML_FREE(str->data);
  18362. }
  18363. }
  18364. }
  18365. GGML_FREE(kv->value.arr.data);
  18366. }
  18367. }
  18368. }
  18369. struct gguf_context * gguf_init_empty(void) {
  18370. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18371. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18372. ctx->header.version = GGUF_VERSION;
  18373. ctx->header.n_tensors = 0;
  18374. ctx->header.n_kv = 0;
  18375. ctx->kv = NULL;
  18376. ctx->infos = NULL;
  18377. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18378. ctx->offset = 0;
  18379. ctx->size = 0;
  18380. ctx->data = NULL;
  18381. return ctx;
  18382. }
  18383. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18384. FILE * file = ggml_fopen(fname, "rb");
  18385. if (!file) {
  18386. fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
  18387. return NULL;
  18388. }
  18389. // offset from start of file
  18390. size_t offset = 0;
  18391. char magic[4];
  18392. // check the magic before making allocations
  18393. {
  18394. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18395. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18396. if (magic[i] != GGUF_MAGIC[i]) {
  18397. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18398. fclose(file);
  18399. return NULL;
  18400. }
  18401. }
  18402. }
  18403. bool ok = true;
  18404. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18405. // read the header
  18406. {
  18407. strncpy(ctx->header.magic, magic, 4);
  18408. ctx->kv = NULL;
  18409. ctx->infos = NULL;
  18410. ctx->data = NULL;
  18411. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18412. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18413. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18414. if (ctx->header.version == 1) {
  18415. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18416. fclose(file);
  18417. gguf_free(ctx);
  18418. return NULL;
  18419. }
  18420. // sanity-checks to prevent from integer/buffer overflows
  18421. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18422. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18423. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18424. if (!ok) {
  18425. fprintf(stderr, "%s: failed to read header\n", __func__);
  18426. fclose(file);
  18427. gguf_free(ctx);
  18428. return NULL;
  18429. }
  18430. }
  18431. // read the kv pairs
  18432. {
  18433. const uint64_t n_kv = ctx->header.n_kv;
  18434. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18435. ctx->header.n_kv = 0;
  18436. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18437. for (uint64_t i = 0; i < n_kv; ++i) {
  18438. struct gguf_kv * kv = &ctx->kv[i];
  18439. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18440. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18441. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18442. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18443. switch (kv->type) {
  18444. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18445. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18446. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18447. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18448. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18449. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18450. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18451. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18452. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18453. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18454. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18455. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18456. case GGUF_TYPE_ARRAY:
  18457. {
  18458. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18459. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18460. switch (kv->value.arr.type) {
  18461. case GGUF_TYPE_UINT8:
  18462. case GGUF_TYPE_INT8:
  18463. case GGUF_TYPE_UINT16:
  18464. case GGUF_TYPE_INT16:
  18465. case GGUF_TYPE_UINT32:
  18466. case GGUF_TYPE_INT32:
  18467. case GGUF_TYPE_FLOAT32:
  18468. case GGUF_TYPE_UINT64:
  18469. case GGUF_TYPE_INT64:
  18470. case GGUF_TYPE_FLOAT64:
  18471. case GGUF_TYPE_BOOL:
  18472. {
  18473. // prevent from integer overflow in the malloc below
  18474. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18475. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18476. fclose(file);
  18477. gguf_free(ctx);
  18478. return NULL;
  18479. }
  18480. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18481. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18482. } break;
  18483. case GGUF_TYPE_STRING:
  18484. {
  18485. // prevent from integer overflow in the malloc below
  18486. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18487. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18488. fclose(file);
  18489. gguf_free(ctx);
  18490. return NULL;
  18491. }
  18492. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18493. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18494. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18495. }
  18496. } break;
  18497. case GGUF_TYPE_ARRAY:
  18498. default: GGML_ABORT("invalid type");
  18499. }
  18500. } break;
  18501. default: GGML_ABORT("invalid type");
  18502. }
  18503. if (!ok) {
  18504. break;
  18505. }
  18506. ctx->header.n_kv++;
  18507. }
  18508. if (!ok) {
  18509. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18510. fclose(file);
  18511. gguf_free(ctx);
  18512. return NULL;
  18513. }
  18514. }
  18515. // read the tensor infos
  18516. if (ctx->header.n_tensors > 0) {
  18517. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18518. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18519. struct gguf_tensor_info * info = &ctx->infos[i];
  18520. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18521. info->ne[j] = 1;
  18522. }
  18523. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18524. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18525. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18526. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18527. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18528. }
  18529. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18530. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18531. // TODO: return an error instead of crashing with GGML_ASSERT
  18532. gguf_tensor_info_sanitize(info);
  18533. // make sure there is no duplicated tensor names
  18534. for (uint64_t j = 0; j < i && ok; ++j) {
  18535. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18536. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18537. ok = false;
  18538. }
  18539. }
  18540. if (!ok) {
  18541. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18542. fclose(file);
  18543. gguf_free(ctx);
  18544. return NULL;
  18545. }
  18546. }
  18547. }
  18548. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18549. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18550. if (alignment_idx != -1) {
  18551. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18552. }
  18553. // we require the data section to be aligned, so take into account any padding
  18554. {
  18555. const size_t offset_pad = offset % ctx->alignment;
  18556. if (offset_pad != 0) {
  18557. offset += ctx->alignment - offset_pad;
  18558. fseek(file, offset, SEEK_SET);
  18559. }
  18560. }
  18561. // store the current file offset - this is where the data section starts
  18562. ctx->offset = offset;
  18563. // compute the total size of the data section, taking into account the alignment
  18564. {
  18565. ctx->size = 0;
  18566. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18567. struct gguf_tensor_info * info = &ctx->infos[i];
  18568. const int64_t ne =
  18569. (int64_t) info->ne[0] *
  18570. (int64_t) info->ne[1] *
  18571. (int64_t) info->ne[2] *
  18572. (int64_t) info->ne[3];
  18573. if (ggml_blck_size(info->type) == 0 || ne % ggml_blck_size(info->type) != 0) {
  18574. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
  18575. __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18576. fclose(file);
  18577. gguf_free(ctx);
  18578. return NULL;
  18579. }
  18580. const size_t size_cur = ggml_row_size(info->type, ne);
  18581. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18582. }
  18583. }
  18584. // load the tensor data only if requested
  18585. if (params.ctx != NULL) {
  18586. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18587. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18588. // the ggml_tensor structs to the appropriate locations in the binary blob
  18589. // compute the exact size needed for the new ggml_context
  18590. const size_t mem_size =
  18591. params.no_alloc ?
  18592. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18593. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18594. struct ggml_init_params pdata = {
  18595. .mem_size = mem_size,
  18596. .mem_buffer = NULL,
  18597. .no_alloc = params.no_alloc,
  18598. };
  18599. *params.ctx = ggml_init(pdata);
  18600. if (*params.ctx == NULL) {
  18601. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  18602. fclose(file);
  18603. gguf_free(ctx);
  18604. return NULL;
  18605. }
  18606. struct ggml_context * ctx_data = *params.ctx;
  18607. struct ggml_tensor * data = NULL;
  18608. if (!params.no_alloc) {
  18609. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18610. ok = ok && data != NULL;
  18611. // read the binary blob with the tensor data
  18612. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18613. if (!ok) {
  18614. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18615. fclose(file);
  18616. ggml_free(ctx_data);
  18617. gguf_free(ctx);
  18618. return NULL;
  18619. }
  18620. ctx->data = data->data;
  18621. }
  18622. ggml_set_no_alloc(ctx_data, true);
  18623. // create the tensors
  18624. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18625. const int64_t ne[GGML_MAX_DIMS] = {
  18626. ctx->infos[i].ne[0],
  18627. ctx->infos[i].ne[1],
  18628. ctx->infos[i].ne[2],
  18629. ctx->infos[i].ne[3],
  18630. };
  18631. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18632. ok = ok && cur != NULL;
  18633. if (!ok) {
  18634. break;
  18635. }
  18636. ggml_set_name(cur, ctx->infos[i].name.data);
  18637. // point the data member to the appropriate location in the binary blob using the tensor infos
  18638. if (!params.no_alloc) {
  18639. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18640. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18641. }
  18642. }
  18643. if (!ok) {
  18644. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18645. fclose(file);
  18646. ggml_free(ctx_data);
  18647. gguf_free(ctx);
  18648. return NULL;
  18649. }
  18650. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18651. }
  18652. fclose(file);
  18653. return ctx;
  18654. }
  18655. void gguf_free(struct gguf_context * ctx) {
  18656. if (ctx == NULL) {
  18657. return;
  18658. }
  18659. if (ctx->kv) {
  18660. // free string memory - not great..
  18661. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18662. gguf_free_kv(&ctx->kv[i]);
  18663. }
  18664. GGML_FREE(ctx->kv);
  18665. }
  18666. if (ctx->infos) {
  18667. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18668. struct gguf_tensor_info * info = &ctx->infos[i];
  18669. if (info->name.data) {
  18670. GGML_FREE(info->name.data);
  18671. }
  18672. }
  18673. GGML_FREE(ctx->infos);
  18674. }
  18675. GGML_FREE(ctx);
  18676. }
  18677. const char * gguf_type_name(enum gguf_type type) {
  18678. return GGUF_TYPE_NAME[type];
  18679. }
  18680. int gguf_get_version(const struct gguf_context * ctx) {
  18681. return ctx->header.version;
  18682. }
  18683. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18684. return ctx->alignment;
  18685. }
  18686. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18687. return ctx->offset;
  18688. }
  18689. void * gguf_get_data(const struct gguf_context * ctx) {
  18690. return ctx->data;
  18691. }
  18692. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18693. return ctx->header.n_kv;
  18694. }
  18695. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18696. // return -1 if key not found
  18697. int keyfound = -1;
  18698. const int n_kv = gguf_get_n_kv(ctx);
  18699. for (int i = 0; i < n_kv; ++i) {
  18700. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18701. keyfound = i;
  18702. break;
  18703. }
  18704. }
  18705. return keyfound;
  18706. }
  18707. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18708. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18709. return ctx->kv[key_id].key.data;
  18710. }
  18711. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18712. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18713. return ctx->kv[key_id].type;
  18714. }
  18715. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18716. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18717. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18718. return ctx->kv[key_id].value.arr.type;
  18719. }
  18720. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18721. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18722. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18723. return ctx->kv[key_id].value.arr.data;
  18724. }
  18725. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18726. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18727. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18728. struct gguf_kv * kv = &ctx->kv[key_id];
  18729. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18730. return str->data;
  18731. }
  18732. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18733. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18734. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18735. return ctx->kv[key_id].value.arr.n;
  18736. }
  18737. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18738. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18739. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18740. return ctx->kv[key_id].value.uint8;
  18741. }
  18742. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18743. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18744. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18745. return ctx->kv[key_id].value.int8;
  18746. }
  18747. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18748. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18749. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18750. return ctx->kv[key_id].value.uint16;
  18751. }
  18752. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18753. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18754. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18755. return ctx->kv[key_id].value.int16;
  18756. }
  18757. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18758. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18759. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18760. return ctx->kv[key_id].value.uint32;
  18761. }
  18762. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18763. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18764. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18765. return ctx->kv[key_id].value.int32;
  18766. }
  18767. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18768. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18769. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18770. return ctx->kv[key_id].value.float32;
  18771. }
  18772. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18773. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18774. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18775. return ctx->kv[key_id].value.uint64;
  18776. }
  18777. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18778. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18779. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18780. return ctx->kv[key_id].value.int64;
  18781. }
  18782. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18783. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18784. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18785. return ctx->kv[key_id].value.float64;
  18786. }
  18787. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18788. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18789. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18790. return ctx->kv[key_id].value.bool_;
  18791. }
  18792. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18793. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18794. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18795. return ctx->kv[key_id].value.str.data;
  18796. }
  18797. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18798. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18799. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18800. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18801. return &ctx->kv[key_id].value;
  18802. }
  18803. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18804. return ctx->header.n_tensors;
  18805. }
  18806. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18807. // return -1 if tensor not found
  18808. int tensorfound = -1;
  18809. const int n_tensors = gguf_get_n_tensors(ctx);
  18810. for (int i = 0; i < n_tensors; ++i) {
  18811. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18812. tensorfound = i;
  18813. break;
  18814. }
  18815. }
  18816. return tensorfound;
  18817. }
  18818. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18819. return ctx->infos[i].offset;
  18820. }
  18821. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18822. return ctx->infos[i].name.data;
  18823. }
  18824. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18825. return ctx->infos[i].type;
  18826. }
  18827. // returns the index
  18828. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18829. const int idx = gguf_find_key(ctx, key);
  18830. if (idx >= 0) {
  18831. return idx;
  18832. }
  18833. const int n_kv = gguf_get_n_kv(ctx);
  18834. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18835. ctx->kv[n_kv].key.n = strlen(key);
  18836. ctx->kv[n_kv].key.data = strdup(key);
  18837. ctx->header.n_kv++;
  18838. return n_kv;
  18839. }
  18840. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18841. const int idx = gguf_find_key(ctx, key);
  18842. if (idx >= 0) {
  18843. const int n_kv = gguf_get_n_kv(ctx);
  18844. gguf_free_kv(&ctx->kv[idx]);
  18845. for (int i = idx; i < n_kv-1; ++i) {
  18846. ctx->kv[i] = ctx->kv[i+1];
  18847. }
  18848. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18849. ctx->header.n_kv--;
  18850. }
  18851. }
  18852. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18853. const int idx = gguf_get_or_add_key(ctx, key);
  18854. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18855. ctx->kv[idx].value.uint8 = val;
  18856. }
  18857. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18858. const int idx = gguf_get_or_add_key(ctx, key);
  18859. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18860. ctx->kv[idx].value.int8 = val;
  18861. }
  18862. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18863. const int idx = gguf_get_or_add_key(ctx, key);
  18864. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18865. ctx->kv[idx].value.uint16 = val;
  18866. }
  18867. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18868. const int idx = gguf_get_or_add_key(ctx, key);
  18869. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18870. ctx->kv[idx].value.int16 = val;
  18871. }
  18872. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18873. const int idx = gguf_get_or_add_key(ctx, key);
  18874. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18875. ctx->kv[idx].value.uint32 = val;
  18876. }
  18877. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18878. const int idx = gguf_get_or_add_key(ctx, key);
  18879. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18880. ctx->kv[idx].value.int32 = val;
  18881. }
  18882. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18883. const int idx = gguf_get_or_add_key(ctx, key);
  18884. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18885. ctx->kv[idx].value.float32 = val;
  18886. }
  18887. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18888. const int idx = gguf_get_or_add_key(ctx, key);
  18889. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18890. ctx->kv[idx].value.uint64 = val;
  18891. }
  18892. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18893. const int idx = gguf_get_or_add_key(ctx, key);
  18894. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18895. ctx->kv[idx].value.int64 = val;
  18896. }
  18897. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18898. const int idx = gguf_get_or_add_key(ctx, key);
  18899. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18900. ctx->kv[idx].value.float64 = val;
  18901. }
  18902. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18903. const int idx = gguf_get_or_add_key(ctx, key);
  18904. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18905. ctx->kv[idx].value.bool_ = val;
  18906. }
  18907. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18908. const int idx = gguf_get_or_add_key(ctx, key);
  18909. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18910. ctx->kv[idx].value.str.n = strlen(val);
  18911. ctx->kv[idx].value.str.data = strdup(val);
  18912. }
  18913. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18914. const int idx = gguf_get_or_add_key(ctx, key);
  18915. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18916. ctx->kv[idx].value.arr.type = type;
  18917. ctx->kv[idx].value.arr.n = n;
  18918. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18919. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18920. }
  18921. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18922. const int idx = gguf_get_or_add_key(ctx, key);
  18923. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18924. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18925. ctx->kv[idx].value.arr.n = n;
  18926. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18927. for (int i = 0; i < n; i++) {
  18928. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18929. str->n = strlen(data[i]);
  18930. str->data = strdup(data[i]);
  18931. }
  18932. }
  18933. // set or add KV pairs from another context
  18934. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18935. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18936. switch (src->kv[i].type) {
  18937. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18938. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18939. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18940. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18941. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18942. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18943. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18944. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18945. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18946. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18947. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18948. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18949. case GGUF_TYPE_ARRAY:
  18950. {
  18951. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18952. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18953. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18954. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18955. }
  18956. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18957. GGML_FREE((void *)data);
  18958. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18959. GGML_ABORT("nested arrays not supported");
  18960. } else {
  18961. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18962. }
  18963. } break;
  18964. default: GGML_ABORT("invalid type");
  18965. }
  18966. }
  18967. }
  18968. void gguf_add_tensor(
  18969. struct gguf_context * ctx,
  18970. const struct ggml_tensor * tensor) {
  18971. GGML_ASSERT(tensor);
  18972. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18973. GGML_ABORT("duplicated tensor name");
  18974. }
  18975. const int idx = ctx->header.n_tensors;
  18976. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18977. ctx->infos[idx].name.n = strlen(tensor->name);
  18978. ctx->infos[idx].name.data = strdup(tensor->name);
  18979. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18980. ctx->infos[idx].ne[i] = 1;
  18981. }
  18982. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18983. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18984. ctx->infos[idx].ne[i] = tensor->ne[i];
  18985. }
  18986. ctx->infos[idx].type = tensor->type;
  18987. ctx->infos[idx].offset = 0;
  18988. ctx->infos[idx].data = tensor->data;
  18989. ctx->infos[idx].size = ggml_nbytes(tensor);
  18990. if (ctx->header.n_tensors > 0) {
  18991. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18992. }
  18993. ctx->header.n_tensors++;
  18994. }
  18995. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18996. const int idx = gguf_find_tensor(ctx, name);
  18997. if (idx < 0) {
  18998. GGML_ABORT("tensor not found");
  18999. }
  19000. ctx->infos[idx].type = type;
  19001. }
  19002. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  19003. const int idx = gguf_find_tensor(ctx, name);
  19004. if (idx < 0) {
  19005. GGML_ABORT("tensor not found");
  19006. }
  19007. ctx->infos[idx].data = data;
  19008. ctx->infos[idx].size = size;
  19009. // update offsets
  19010. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  19011. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  19012. }
  19013. }
  19014. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  19015. // fwrite(&val->n, sizeof(val->n), 1, file);
  19016. // fwrite(val->data, sizeof(char), val->n, file);
  19017. //}
  19018. //
  19019. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  19020. // fwrite(val, sizeof(char), size, file);
  19021. //}
  19022. struct gguf_buf {
  19023. void * data;
  19024. size_t size;
  19025. size_t offset;
  19026. };
  19027. static struct gguf_buf gguf_buf_init(size_t size) {
  19028. struct gguf_buf buf = {
  19029. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  19030. /*buf.size =*/ size,
  19031. /*buf.offset =*/ 0,
  19032. };
  19033. return buf;
  19034. }
  19035. static void gguf_buf_free(struct gguf_buf buf) {
  19036. if (buf.data) {
  19037. GGML_FREE(buf.data);
  19038. }
  19039. }
  19040. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  19041. if (buf->offset + size > buf->size) {
  19042. buf->size = 1.5*(buf->offset + size);
  19043. if (buf->data) {
  19044. buf->data = realloc(buf->data, buf->size);
  19045. }
  19046. }
  19047. }
  19048. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  19049. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  19050. if (buf->data) {
  19051. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  19052. }
  19053. buf->offset += sizeof(val->n);
  19054. if (buf->data) {
  19055. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  19056. }
  19057. buf->offset += val->n;
  19058. }
  19059. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  19060. gguf_buf_grow(buf, el_size);
  19061. if (buf->data) {
  19062. memcpy((char *) buf->data + buf->offset, val, el_size);
  19063. }
  19064. buf->offset += el_size;
  19065. }
  19066. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  19067. // write header
  19068. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  19069. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  19070. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  19071. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  19072. // write key-value pairs
  19073. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  19074. struct gguf_kv * kv = &ctx->kv[i];
  19075. gguf_bwrite_str(buf, &kv->key);
  19076. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  19077. switch (kv->type) {
  19078. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  19079. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  19080. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  19081. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  19082. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  19083. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  19084. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  19085. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  19086. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  19087. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  19088. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  19089. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  19090. case GGUF_TYPE_ARRAY:
  19091. {
  19092. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  19093. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  19094. switch (kv->value.arr.type) {
  19095. case GGUF_TYPE_UINT8:
  19096. case GGUF_TYPE_INT8:
  19097. case GGUF_TYPE_UINT16:
  19098. case GGUF_TYPE_INT16:
  19099. case GGUF_TYPE_UINT32:
  19100. case GGUF_TYPE_INT32:
  19101. case GGUF_TYPE_FLOAT32:
  19102. case GGUF_TYPE_UINT64:
  19103. case GGUF_TYPE_INT64:
  19104. case GGUF_TYPE_FLOAT64:
  19105. case GGUF_TYPE_BOOL:
  19106. {
  19107. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  19108. } break;
  19109. case GGUF_TYPE_STRING:
  19110. {
  19111. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  19112. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  19113. }
  19114. } break;
  19115. case GGUF_TYPE_ARRAY:
  19116. default: GGML_ABORT("invalid type");
  19117. }
  19118. } break;
  19119. default: GGML_ABORT("invalid type");
  19120. }
  19121. }
  19122. // write tensor infos
  19123. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19124. struct gguf_tensor_info * info = &ctx->infos[i];
  19125. gguf_bwrite_str(buf, &info->name);
  19126. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  19127. for (uint32_t j = 0; j < info->n_dims; ++j) {
  19128. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  19129. }
  19130. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  19131. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  19132. }
  19133. // we require the data section to be aligned, so take into account any padding
  19134. {
  19135. const size_t offset = buf->offset;
  19136. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  19137. if (offset_pad != offset) {
  19138. uint8_t pad = 0;
  19139. for (size_t i = 0; i < offset_pad - offset; ++i) {
  19140. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19141. }
  19142. }
  19143. }
  19144. if (only_meta) {
  19145. return;
  19146. }
  19147. size_t offset = 0;
  19148. // write tensor data
  19149. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19150. struct gguf_tensor_info * info = &ctx->infos[i];
  19151. const size_t size = info->size;
  19152. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  19153. gguf_bwrite_el(buf, info->data, size);
  19154. if (size_pad != size) {
  19155. uint8_t pad = 0;
  19156. for (size_t j = 0; j < size_pad - size; ++j) {
  19157. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19158. }
  19159. }
  19160. GGML_ASSERT(offset == info->offset);
  19161. offset += size_pad;
  19162. }
  19163. }
  19164. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  19165. FILE * file = ggml_fopen(fname, "wb");
  19166. if (!file) {
  19167. GGML_ABORT("failed to open file for writing");
  19168. }
  19169. struct gguf_buf buf = gguf_buf_init(16*1024);
  19170. gguf_write_to_buf(ctx, &buf, only_meta);
  19171. fwrite(buf.data, 1, buf.offset, file);
  19172. gguf_buf_free(buf);
  19173. fclose(file);
  19174. }
  19175. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  19176. // no allocs - only compute size
  19177. struct gguf_buf buf = gguf_buf_init(0);
  19178. gguf_write_to_buf(ctx, &buf, true);
  19179. return buf.offset;
  19180. }
  19181. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  19182. struct gguf_buf buf = gguf_buf_init(16*1024);
  19183. gguf_write_to_buf(ctx, &buf, true);
  19184. memcpy(data, buf.data, buf.offset);
  19185. gguf_buf_free(buf);
  19186. }
  19187. ////////////////////////////////////////////////////////////////////////////////
  19188. int ggml_cpu_has_avx(void) {
  19189. #if defined(__AVX__)
  19190. return 1;
  19191. #else
  19192. return 0;
  19193. #endif
  19194. }
  19195. int ggml_cpu_has_avx_vnni(void) {
  19196. #if defined(__AVXVNNI__)
  19197. return 1;
  19198. #else
  19199. return 0;
  19200. #endif
  19201. }
  19202. int ggml_cpu_has_avx2(void) {
  19203. #if defined(__AVX2__)
  19204. return 1;
  19205. #else
  19206. return 0;
  19207. #endif
  19208. }
  19209. int ggml_cpu_has_avx512(void) {
  19210. #if defined(__AVX512F__)
  19211. return 1;
  19212. #else
  19213. return 0;
  19214. #endif
  19215. }
  19216. int ggml_cpu_has_avx512_vbmi(void) {
  19217. #if defined(__AVX512VBMI__)
  19218. return 1;
  19219. #else
  19220. return 0;
  19221. #endif
  19222. }
  19223. int ggml_cpu_has_avx512_vnni(void) {
  19224. #if defined(__AVX512VNNI__)
  19225. return 1;
  19226. #else
  19227. return 0;
  19228. #endif
  19229. }
  19230. int ggml_cpu_has_avx512_bf16(void) {
  19231. #if defined(__AVX512BF16__)
  19232. return 1;
  19233. #else
  19234. return 0;
  19235. #endif
  19236. }
  19237. int ggml_cpu_has_amx_int8(void) {
  19238. #if defined(__AMX_INT8__)
  19239. return 1;
  19240. #else
  19241. return 0;
  19242. #endif
  19243. }
  19244. int ggml_cpu_has_fma(void) {
  19245. #if defined(__FMA__)
  19246. return 1;
  19247. #else
  19248. return 0;
  19249. #endif
  19250. }
  19251. int ggml_cpu_has_neon(void) {
  19252. #if defined(__ARM_ARCH)
  19253. return ggml_arm_arch_features.has_neon;
  19254. #else
  19255. return 0;
  19256. #endif
  19257. }
  19258. int ggml_cpu_has_sve(void) {
  19259. #if defined(__ARM_ARCH)
  19260. return ggml_arm_arch_features.has_sve;
  19261. #else
  19262. return 0;
  19263. #endif
  19264. }
  19265. int ggml_cpu_has_arm_fma(void) {
  19266. #if defined(__ARM_FEATURE_FMA)
  19267. return 1;
  19268. #else
  19269. return 0;
  19270. #endif
  19271. }
  19272. int ggml_cpu_has_riscv_v(void) {
  19273. #if defined(__riscv_v_intrinsic)
  19274. return 1;
  19275. #else
  19276. return 0;
  19277. #endif
  19278. }
  19279. int ggml_cpu_has_metal(void) {
  19280. #if defined(GGML_USE_METAL)
  19281. return 1;
  19282. #else
  19283. return 0;
  19284. #endif
  19285. }
  19286. int ggml_cpu_has_f16c(void) {
  19287. #if defined(__F16C__)
  19288. return 1;
  19289. #else
  19290. return 0;
  19291. #endif
  19292. }
  19293. int ggml_cpu_has_fp16_va(void) {
  19294. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  19295. return 1;
  19296. #else
  19297. return 0;
  19298. #endif
  19299. }
  19300. int ggml_cpu_has_wasm_simd(void) {
  19301. #if defined(__wasm_simd128__)
  19302. return 1;
  19303. #else
  19304. return 0;
  19305. #endif
  19306. }
  19307. int ggml_cpu_has_blas(void) {
  19308. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  19309. return 1;
  19310. #else
  19311. return 0;
  19312. #endif
  19313. }
  19314. int ggml_cpu_has_cuda(void) {
  19315. #if defined(GGML_USE_CUDA)
  19316. return 1;
  19317. #else
  19318. return 0;
  19319. #endif
  19320. }
  19321. int ggml_cpu_has_vulkan(void) {
  19322. #if defined(GGML_USE_VULKAN)
  19323. return 1;
  19324. #else
  19325. return 0;
  19326. #endif
  19327. }
  19328. int ggml_cpu_has_kompute(void) {
  19329. #if defined(GGML_USE_KOMPUTE)
  19330. return 1;
  19331. #else
  19332. return 0;
  19333. #endif
  19334. }
  19335. int ggml_cpu_has_sycl(void) {
  19336. #if defined(GGML_USE_SYCL)
  19337. return 1;
  19338. #else
  19339. return 0;
  19340. #endif
  19341. }
  19342. int ggml_cpu_has_rpc(void) {
  19343. #if defined(GGML_USE_RPC)
  19344. return 1;
  19345. #else
  19346. return 0;
  19347. #endif
  19348. }
  19349. int ggml_cpu_has_cann(void) {
  19350. #if defined(GGML_USE_CANN)
  19351. return 1;
  19352. #else
  19353. return 0;
  19354. #endif
  19355. }
  19356. int ggml_cpu_has_llamafile(void) {
  19357. #if defined(GGML_USE_LLAMAFILE)
  19358. return 1;
  19359. #else
  19360. return 0;
  19361. #endif
  19362. }
  19363. int ggml_cpu_has_gpublas(void) {
  19364. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  19365. }
  19366. int ggml_cpu_has_sse3(void) {
  19367. #if defined(__SSE3__)
  19368. return 1;
  19369. #else
  19370. return 0;
  19371. #endif
  19372. }
  19373. int ggml_cpu_has_ssse3(void) {
  19374. #if defined(__SSSE3__)
  19375. return 1;
  19376. #else
  19377. return 0;
  19378. #endif
  19379. }
  19380. int ggml_cpu_has_vsx(void) {
  19381. #if defined(__POWER9_VECTOR__)
  19382. return 1;
  19383. #else
  19384. return 0;
  19385. #endif
  19386. }
  19387. int ggml_cpu_has_matmul_int8(void) {
  19388. #if defined(__ARM_ARCH)
  19389. return ggml_arm_arch_features.has_i8mm;
  19390. #else
  19391. return 0;
  19392. #endif
  19393. }
  19394. int ggml_cpu_get_sve_cnt(void) {
  19395. #if defined(__ARM_ARCH)
  19396. return ggml_arm_arch_features.sve_cnt;
  19397. #else
  19398. return 0;
  19399. #endif
  19400. }
  19401. void ggml_log_set(ggml_log_callback log_callback, void * user_data) {
  19402. g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default;
  19403. g_logger_state.log_callback_user_data = user_data;
  19404. }
  19405. ////////////////////////////////////////////////////////////////////////////////