repack.cpp 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571
  1. #define GGML_COMMON_IMPL_CPP
  2. #define GGML_COMMON_DECL_CPP
  3. #include "ggml-common.h"
  4. #include "ggml-backend-impl.h"
  5. #include "ggml-impl.h"
  6. #include "ggml-cpu.h"
  7. #include "ggml-cpu-impl.h"
  8. #include "simd-mappings.h"
  9. #include "traits.h"
  10. #include "arch-fallback.h"
  11. #include <cmath>
  12. #include <cstring>
  13. #include <cassert>
  14. #include <cstdlib> // for qsort
  15. #include <cstdio> // for GGML_ASSERT
  16. #include "repack.h"
  17. #if defined(__GNUC__)
  18. #pragma GCC diagnostic ignored "-Woverlength-strings"
  19. #endif
  20. #define UNUSED GGML_UNUSED
  21. static inline int nearest_int(float fval) {
  22. assert(fabsf(fval) <= 4194303.f);
  23. float val = fval + 12582912.f;
  24. int i; memcpy(&i, &val, sizeof(int));
  25. return (i & 0x007fffff) - 0x00400000;
  26. }
  27. // Functions to create the interleaved data layout formats
  28. // interleave 4 block_q4_0s in blocks of blck_size_interleave
  29. // returns an interleaved block_q4_0x4
  30. // in the interleaved block_q4_0x4, place deltas for 4 block_q4_0 blocks
  31. // first, then interleave quants from 4 block_q4_0s in blocks of blck_size_interleave
  32. //
  33. // - in : an array of block_q4_0 pointers
  34. // - blck_size_interleave : the block_q4_0 quants bytes are interleaved in blocks of
  35. // blck_size_interleave bytes
  36. // - xor_mask : the mask to convert the nibbles in block_q4_0 quants bytes
  37. // from bias offset form to pure sign form (this saves subtract
  38. // operations durin unpacking)
  39. //
  40. extern "C" {
  41. void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
  42. assert(QK8_0 == 32);
  43. assert(k % QK8_0 == 0);
  44. const int nb = k / QK8_0;
  45. block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy;
  46. // scalar
  47. const int blck_size_interleave = 4;
  48. float srcv[4][QK8_0];
  49. float id[4];
  50. for (int i = 0; i < nb; i++) {
  51. for (int row_iter = 0; row_iter < 4; row_iter++) {
  52. float amax = 0.0f; // absolute max
  53. for (int j = 0; j < QK8_0; j++) {
  54. srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
  55. amax = MAX(amax, fabsf(srcv[row_iter][j]));
  56. }
  57. const float d = amax / ((1 << 7) - 1);
  58. id[row_iter] = d ? 1.0f / d : 0.0f;
  59. y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
  60. }
  61. for (int j = 0; j < QK8_0 * 4; j++) {
  62. int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
  63. int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
  64. src_offset += (j % blck_size_interleave);
  65. float x0 = srcv[src_id][src_offset] * id[src_id];
  66. y[i].qs[j] = roundf(x0);
  67. }
  68. }
  69. }
  70. void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
  71. assert(QK8_0 == 32);
  72. assert(k % QK8_0 == 0);
  73. const int nb = k / QK8_0;
  74. block_q8_0x4 * GGML_RESTRICT y = (block_q8_0x4 *) vy;
  75. // scalar
  76. const int blck_size_interleave = 8;
  77. float srcv[4][QK8_0];
  78. float id[4];
  79. for (int i = 0; i < nb; i++) {
  80. for (int row_iter = 0; row_iter < 4; row_iter++) {
  81. float amax = 0.0f; // absolute max
  82. for (int j = 0; j < QK8_0; j++) {
  83. srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
  84. amax = MAX(amax, fabsf(srcv[row_iter][j]));
  85. }
  86. const float d = amax / ((1 << 7) - 1);
  87. id[row_iter] = d ? 1.0f / d : 0.0f;
  88. y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
  89. }
  90. for (int j = 0; j < QK8_0 * 4; j++) {
  91. int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
  92. int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
  93. src_offset += (j % blck_size_interleave);
  94. float x0 = srcv[src_id][src_offset] * id[src_id];
  95. y[i].qs[j] = roundf(x0);
  96. }
  97. }
  98. }
  99. void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
  100. assert(QK_K == 256);
  101. assert(k % QK_K == 0);
  102. const int nb = k / QK_K;
  103. block_q8_Kx4 * GGML_RESTRICT y = (block_q8_Kx4 *) vy;
  104. // scalar
  105. const int blck_size_interleave = 8;
  106. float srcv[4][QK_K];
  107. float iscale[4];
  108. for (int i = 0; i < nb; i++) {
  109. for (int row_iter = 0; row_iter < 4; row_iter++) {
  110. float amax = 0.0f; // absolute max
  111. float max = 0;
  112. for (int j = 0; j < QK_K; j++) {
  113. srcv[row_iter][j] = x[row_iter * k + i * QK_K + j];
  114. // Update the maximum value of the corresponding super block
  115. if(amax < fabsf(srcv[row_iter][j])) {
  116. amax = fabsf(srcv[row_iter][j]);
  117. max = srcv[row_iter][j];
  118. }
  119. }
  120. iscale[row_iter] = amax ? -127.f/max : 0;
  121. y[i].d[row_iter] = amax ? 1/iscale[row_iter] : 0;
  122. }
  123. for (int j = 0; j < QK_K / 4; j++) {
  124. y[i].bsums[j] = 0;
  125. }
  126. // Quants values are interleaved in sequence of eight bytes from corresponding super blocks
  127. // Bsums values are interleaved in sequence of four bsums from each super block taken for interleaving
  128. // i.e first four bsums from the first super block, followed by first four bsums from second super block and so on
  129. for (int j = 0; j < QK_K * 4; j++) {
  130. int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
  131. int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
  132. src_offset += (j % blck_size_interleave);
  133. int index = (((j & 31) >> 3) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3);
  134. float x0 = srcv[src_id][src_offset] * iscale[src_id];
  135. y[i].qs[j] = nearest_int(x0);
  136. y[i].bsums[index] += y[i].qs[j];
  137. }
  138. }
  139. }
  140. } // extern "C"
  141. template <int64_t INTER_SIZE, ggml_type PARAM_TYPE>
  142. void ggml_quantize_mat_t(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row);
  143. template <> void ggml_quantize_mat_t<4, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
  144. assert(nrow == 4);
  145. UNUSED(nrow);
  146. ggml_quantize_mat_q8_0_4x4(x, vy, n_per_row);
  147. }
  148. template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
  149. assert(nrow == 4);
  150. UNUSED(nrow);
  151. ggml_quantize_mat_q8_0_4x8(x, vy, n_per_row);
  152. }
  153. template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
  154. assert(nrow == 4);
  155. UNUSED(nrow);
  156. ggml_quantize_mat_q8_K_4x8(x, vy, n_per_row);
  157. }
  158. extern "C" {
  159. void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
  160. const int qk = QK8_0;
  161. const int nb = n / qk;
  162. const int ncols_interleaved = 4;
  163. const int blocklen = 4;
  164. assert (n % qk == 0);
  165. assert (nc % ncols_interleaved == 0);
  166. UNUSED(s);
  167. UNUSED(bs);
  168. UNUSED(vx);
  169. UNUSED(vy);
  170. UNUSED(nr);
  171. UNUSED(nc);
  172. UNUSED(nb);
  173. UNUSED(ncols_interleaved);
  174. UNUSED(blocklen);
  175. float sumf[4];
  176. int sumi;
  177. const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
  178. for (int x = 0; x < nc / ncols_interleaved; x++) {
  179. const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
  180. for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
  181. for (int l = 0; l < nb; l++) {
  182. for (int k = 0; k < (qk / (2 * blocklen)); k++) {
  183. for (int j = 0; j < ncols_interleaved; j++) {
  184. sumi = 0;
  185. for (int i = 0; i < blocklen; ++i) {
  186. const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
  187. const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
  188. sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
  189. }
  190. sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
  191. }
  192. }
  193. }
  194. for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
  195. }
  196. }
  197. void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
  198. const int qk = QK8_0;
  199. const int nb = n / qk;
  200. const int ncols_interleaved = 4;
  201. const int blocklen = 8;
  202. assert (n % qk == 0);
  203. assert (nc % ncols_interleaved == 0);
  204. UNUSED(s);
  205. UNUSED(bs);
  206. UNUSED(vx);
  207. UNUSED(vy);
  208. UNUSED(nr);
  209. UNUSED(nc);
  210. UNUSED(nb);
  211. UNUSED(ncols_interleaved);
  212. UNUSED(blocklen);
  213. float sumf[4];
  214. int sumi;
  215. const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
  216. for (int x = 0; x < nc / ncols_interleaved; x++) {
  217. const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
  218. for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
  219. for (int l = 0; l < nb; l++) {
  220. for (int k = 0; k < (qk / (2 * blocklen)); k++) {
  221. for (int j = 0; j < ncols_interleaved; j++) {
  222. sumi = 0;
  223. for (int i = 0; i < blocklen; ++i) {
  224. const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
  225. const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
  226. sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
  227. }
  228. sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
  229. }
  230. }
  231. }
  232. for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
  233. }
  234. }
  235. void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
  236. const int qk = QK8_0;
  237. const int nb = n / qk;
  238. const int ncols_interleaved = 8;
  239. const int blocklen = 8;
  240. assert (n % qk == 0);
  241. assert (nc % ncols_interleaved == 0);
  242. UNUSED(s);
  243. UNUSED(bs);
  244. UNUSED(vx);
  245. UNUSED(vy);
  246. UNUSED(nr);
  247. UNUSED(nc);
  248. UNUSED(nb);
  249. UNUSED(ncols_interleaved);
  250. UNUSED(blocklen);
  251. {
  252. float sumf[8];
  253. int sumi;
  254. const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
  255. for (int x = 0; x < nc / ncols_interleaved; x++) {
  256. const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
  257. for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
  258. for (int l = 0; l < nb; l++) {
  259. for (int k = 0; k < (qk / (2 * blocklen)); k++) {
  260. for (int j = 0; j < ncols_interleaved; j++) {
  261. sumi = 0;
  262. for (int i = 0; i < blocklen; ++i) {
  263. const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
  264. const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
  265. sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
  266. }
  267. sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
  268. }
  269. }
  270. }
  271. for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
  272. }
  273. }
  274. }
  275. void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
  276. const int qk = QK_K;
  277. const int nb = n / qk;
  278. const int ncols_interleaved = 8;
  279. const int blocklen = 8;
  280. static const uint32_t kmask1 = 0x3f3f3f3f;
  281. static const uint32_t kmask2 = 0x0f0f0f0f;
  282. static const uint32_t kmask3 = 0x03030303;
  283. assert (n % qk == 0);
  284. assert (nc % ncols_interleaved == 0);
  285. UNUSED(s);
  286. UNUSED(bs);
  287. UNUSED(vx);
  288. UNUSED(vy);
  289. UNUSED(nr);
  290. UNUSED(nc);
  291. UNUSED(nb);
  292. UNUSED(ncols_interleaved);
  293. UNUSED(blocklen);
  294. float sumf[8];
  295. float sum_minf[8];
  296. uint32_t utmp[32];
  297. int sumi1;
  298. int sumi2;
  299. int sumi;
  300. const block_q8_K * a_ptr = (const block_q8_K *) vy;
  301. for (int x = 0; x < nc / ncols_interleaved; x++) {
  302. const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
  303. for (int j = 0; j < ncols_interleaved; j++) {
  304. sumf[j] = 0.0;
  305. sum_minf[j] = 0.0;
  306. }
  307. for (int l = 0; l < nb; l++) {
  308. for (int sb = 0; sb < 8; sb++) {
  309. memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
  310. utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
  311. const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
  312. utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
  313. utmp[sb * 4 + 2] = uaux_0;
  314. utmp[sb * 4 + 0] &= kmask1;
  315. }
  316. for (int k = 0; k < (qk / (2 * blocklen)); k++) {
  317. uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32;
  318. uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16;
  319. for (int j = 0; j < ncols_interleaved; j++) {
  320. sumi1 = 0;
  321. sumi2 = 0;
  322. sumi = 0;
  323. for (int i = 0; i < blocklen; ++i) {
  324. const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
  325. const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
  326. sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i]);
  327. sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i + 32]);
  328. sumi1 = sumi1 * scales_0[j];
  329. sumi2 = sumi2 * scales_1[j];
  330. sumi += sumi1 + sumi2;
  331. }
  332. sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d;
  333. }
  334. }
  335. for (int sb = 0; sb < 8; sb++) {
  336. uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16;
  337. for (int j = 0; j < ncols_interleaved; j++) {
  338. sum_minf[j] += mins[j] * (a_ptr[l].bsums[sb * 2] + a_ptr[l].bsums[sb * 2 + 1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d;
  339. }
  340. }
  341. }
  342. for (int j = 0; j < ncols_interleaved; j++) {
  343. s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j];
  344. }
  345. }
  346. }
  347. void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
  348. const int qk = QK8_0;
  349. const int nb = n / qk;
  350. const int ncols_interleaved = 4;
  351. const int blocklen = 4;
  352. assert (n % qk == 0);
  353. assert (nc % ncols_interleaved == 0);
  354. UNUSED(s);
  355. UNUSED(bs);
  356. UNUSED(vx);
  357. UNUSED(vy);
  358. UNUSED(nr);
  359. UNUSED(nc);
  360. UNUSED(nb);
  361. UNUSED(ncols_interleaved);
  362. UNUSED(blocklen);
  363. {
  364. float sumf[4];
  365. int sumi;
  366. const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
  367. for (int x = 0; x < nc / ncols_interleaved; x++) {
  368. const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
  369. for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
  370. for (int l = 0; l < nb; l++) {
  371. for (int k = 0; k < (qk / (2 * blocklen)); k++) {
  372. for (int j = 0; j < ncols_interleaved; j++) {
  373. sumi = 0;
  374. for (int i = 0; i < blocklen; ++i) {
  375. const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
  376. const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
  377. sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
  378. }
  379. sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
  380. }
  381. }
  382. }
  383. for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
  384. }
  385. }
  386. }
  387. void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
  388. const int qk = QK8_0;
  389. const int nb = n / qk;
  390. const int ncols_interleaved = 4;
  391. const int blocklen = 4;
  392. assert (n % qk == 0);
  393. assert (nr % 4 == 0);
  394. assert (nc % ncols_interleaved == 0);
  395. UNUSED(s);
  396. UNUSED(bs);
  397. UNUSED(vx);
  398. UNUSED(vy);
  399. UNUSED(nr);
  400. UNUSED(nc);
  401. UNUSED(nb);
  402. UNUSED(ncols_interleaved);
  403. UNUSED(blocklen);
  404. {
  405. float sumf[4][4];
  406. int sumi;
  407. for (int y = 0; y < nr / 4; y++) {
  408. const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
  409. for (int x = 0; x < nc / ncols_interleaved; x++) {
  410. const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
  411. for (int m = 0; m < 4; m++) {
  412. for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
  413. }
  414. for (int l = 0; l < nb; l++) {
  415. for (int k = 0; k < (qk / (2 * blocklen)); k++) {
  416. for (int m = 0; m < 4; m++) {
  417. for (int j = 0; j < ncols_interleaved; j++) {
  418. sumi = 0;
  419. for (int i = 0; i < blocklen; ++i) {
  420. const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
  421. const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
  422. sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
  423. (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
  424. }
  425. sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
  426. }
  427. }
  428. }
  429. }
  430. for (int m = 0; m < 4; m++) {
  431. for (int j = 0; j < ncols_interleaved; j++)
  432. s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
  433. }
  434. }
  435. }
  436. }
  437. }
  438. void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
  439. const int qk = QK8_0;
  440. const int nb = n / qk;
  441. const int ncols_interleaved = 4;
  442. const int blocklen = 8;
  443. assert (n % qk == 0);
  444. assert (nr % 4 == 0);
  445. assert (nc % ncols_interleaved == 0);
  446. UNUSED(s);
  447. UNUSED(bs);
  448. UNUSED(vx);
  449. UNUSED(vy);
  450. UNUSED(nr);
  451. UNUSED(nc);
  452. UNUSED(nb);
  453. UNUSED(ncols_interleaved);
  454. UNUSED(blocklen);
  455. float sumf[4][4];
  456. int sumi;
  457. for (int y = 0; y < nr / 4; y++) {
  458. const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
  459. for (int x = 0; x < nc / ncols_interleaved; x++) {
  460. const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
  461. for (int m = 0; m < 4; m++) {
  462. for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
  463. }
  464. for (int l = 0; l < nb; l++) {
  465. for (int k = 0; k < (qk / (2 * blocklen)); k++) {
  466. for (int m = 0; m < 4; m++) {
  467. for (int j = 0; j < ncols_interleaved; j++) {
  468. sumi = 0;
  469. for (int i = 0; i < blocklen; ++i) {
  470. const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
  471. const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
  472. sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
  473. (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
  474. }
  475. sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
  476. }
  477. }
  478. }
  479. }
  480. for (int m = 0; m < 4; m++) {
  481. for (int j = 0; j < ncols_interleaved; j++)
  482. s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
  483. }
  484. }
  485. }
  486. }
  487. void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
  488. const int qk = QK8_0;
  489. const int nb = n / qk;
  490. const int ncols_interleaved = 8;
  491. const int blocklen = 8;
  492. assert (n % qk == 0);
  493. assert (nr % 4 == 0);
  494. assert (nc % ncols_interleaved == 0);
  495. UNUSED(s);
  496. UNUSED(bs);
  497. UNUSED(vx);
  498. UNUSED(vy);
  499. UNUSED(nr);
  500. UNUSED(nc);
  501. UNUSED(nb);
  502. UNUSED(ncols_interleaved);
  503. UNUSED(blocklen);
  504. float sumf[4][8];
  505. int sumi;
  506. for (int y = 0; y < nr / 4; y++) {
  507. const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
  508. for (int x = 0; x < nc / ncols_interleaved; x++) {
  509. const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
  510. for (int m = 0; m < 4; m++) {
  511. for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
  512. }
  513. for (int l = 0; l < nb; l++) {
  514. for (int k = 0; k < (qk / (2 * blocklen)); k++) {
  515. for (int m = 0; m < 4; m++) {
  516. for (int j = 0; j < ncols_interleaved; j++) {
  517. sumi = 0;
  518. for (int i = 0; i < blocklen; ++i) {
  519. const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
  520. const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
  521. sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
  522. (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
  523. }
  524. sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
  525. }
  526. }
  527. }
  528. }
  529. for (int m = 0; m < 4; m++) {
  530. for (int j = 0; j < ncols_interleaved; j++)
  531. s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
  532. }
  533. }
  534. }
  535. }
  536. void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
  537. const int qk = QK_K;
  538. const int nb = n / qk;
  539. const int ncols_interleaved = 8;
  540. const int blocklen = 8;
  541. static const uint32_t kmask1 = 0x3f3f3f3f;
  542. static const uint32_t kmask2 = 0x0f0f0f0f;
  543. static const uint32_t kmask3 = 0x03030303;
  544. assert (n % qk == 0);
  545. assert (nr % 4 == 0);
  546. assert (nc % ncols_interleaved == 0);
  547. UNUSED(s);
  548. UNUSED(bs);
  549. UNUSED(vx);
  550. UNUSED(vy);
  551. UNUSED(nr);
  552. UNUSED(nc);
  553. UNUSED(nb);
  554. UNUSED(ncols_interleaved);
  555. UNUSED(blocklen);
  556. float sumf[4][8];
  557. float sum_minf[4][8];
  558. uint32_t utmp[32];
  559. int sumi1;
  560. int sumi2;
  561. int sumi;
  562. for (int y = 0; y < nr / 4; y++) {
  563. const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb);
  564. for (int x = 0; x < nc / ncols_interleaved; x++) {
  565. const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
  566. for (int m = 0; m < 4; m++) {
  567. for (int j = 0; j < ncols_interleaved; j++) {
  568. sumf[m][j] = 0.0;
  569. sum_minf[m][j] = 0.0;
  570. }
  571. }
  572. for (int l = 0; l < nb; l++) {
  573. for (int sb = 0; sb < 8; sb++) {
  574. memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
  575. utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
  576. const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
  577. utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
  578. utmp[sb * 4 + 2] = uaux_0;
  579. utmp[sb * 4 + 0] &= kmask1;
  580. }
  581. for (int k = 0; k < (qk / (2 * blocklen)); k++) {
  582. uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32;
  583. uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16;
  584. for (int m = 0; m < 4; m++) {
  585. for (int j = 0; j < ncols_interleaved; j++) {
  586. sumi1 = 0;
  587. sumi2 = 0;
  588. sumi = 0;
  589. for (int i = 0; i < blocklen; ++i) {
  590. const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
  591. const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
  592. sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i]);
  593. sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]);
  594. sumi1 = sumi1 * scales_0[j];
  595. sumi2 = sumi2 * scales_1[j];
  596. sumi += sumi1 + sumi2;
  597. }
  598. sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m];
  599. }
  600. }
  601. }
  602. for (int sb = 0; sb < 8; sb++) {
  603. uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16;
  604. for(int m = 0; m < 4; m++) {
  605. const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6);
  606. for(int j = 0; j < ncols_interleaved; j++) {
  607. sum_minf[m][j] += mins[j] * (bsums[0] + bsums[1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m];
  608. }
  609. }
  610. }
  611. }
  612. for (int m = 0; m < 4; m++) {
  613. for (int j = 0; j < ncols_interleaved; j++) {
  614. s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j];
  615. }
  616. }
  617. }
  618. }
  619. }
  620. void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
  621. const int qk = QK8_0;
  622. const int nb = n / qk;
  623. const int ncols_interleaved = 4;
  624. const int blocklen = 4;
  625. assert (n % qk == 0);
  626. assert (nr % 4 == 0);
  627. assert (nc % ncols_interleaved == 0);
  628. UNUSED(s);
  629. UNUSED(bs);
  630. UNUSED(vx);
  631. UNUSED(vy);
  632. UNUSED(nr);
  633. UNUSED(nc);
  634. UNUSED(nb);
  635. UNUSED(ncols_interleaved);
  636. UNUSED(blocklen);
  637. {
  638. float sumf[4][4];
  639. int sumi;
  640. for (int y = 0; y < nr / 4; y++) {
  641. const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
  642. for (int x = 0; x < nc / ncols_interleaved; x++) {
  643. const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
  644. for (int m = 0; m < 4; m++) {
  645. for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
  646. }
  647. for (int l = 0; l < nb; l++) {
  648. for (int k = 0; k < (qk / (2 * blocklen)); k++) {
  649. for (int m = 0; m < 4; m++) {
  650. for (int j = 0; j < ncols_interleaved; j++) {
  651. sumi = 0;
  652. for (int i = 0; i < blocklen; ++i) {
  653. const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
  654. const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
  655. sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
  656. (v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4]));
  657. }
  658. sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
  659. }
  660. }
  661. }
  662. }
  663. for (int m = 0; m < 4; m++) {
  664. for (int j = 0; j < ncols_interleaved; j++)
  665. s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
  666. }
  667. }
  668. }
  669. }
  670. }
  671. } // extern "C"
  672. static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) {
  673. block_q4_0x4 out;
  674. for (int i = 0; i < 4; i++) {
  675. out.d[i] = in[i].d;
  676. }
  677. const int end = QK4_0 * 2 / blck_size_interleave;
  678. if (blck_size_interleave == 8) {
  679. const uint64_t xor_mask = 0x8888888888888888ULL;
  680. for (int i = 0; i < end; ++i) {
  681. int src_id = i % 4;
  682. int src_offset = (i / 4) * blck_size_interleave;
  683. int dst_offset = i * blck_size_interleave;
  684. uint64_t elems;
  685. // Using memcpy to avoid unaligned memory accesses
  686. memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
  687. elems ^= xor_mask;
  688. memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
  689. }
  690. } else if (blck_size_interleave == 4) {
  691. const uint32_t xor_mask = 0x88888888;
  692. for (int i = 0; i < end; ++i) {
  693. int src_id = i % 4;
  694. int src_offset = (i / 4) * blck_size_interleave;
  695. int dst_offset = i * blck_size_interleave;
  696. uint32_t elems;
  697. memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint32_t));
  698. elems ^= xor_mask;
  699. memcpy(&out.qs[dst_offset], &elems, sizeof(uint32_t));
  700. }
  701. } else {
  702. GGML_ASSERT(false);
  703. }
  704. return out;
  705. }
  706. // interleave 8 block_q4_0s in blocks of blck_size_interleave
  707. // returns an interleaved block_q4_0x8
  708. // in the interleaved block_q4_0x8, place deltas for 8 block_q4_0 blocks
  709. // first, then interleave quants from 8 block_q4_0s in blocks of blck_size_interleave
  710. static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int blck_size_interleave) {
  711. block_q4_0x8 out;
  712. for (int i = 0; i < 8; i++) {
  713. out.d[i] = in[i].d;
  714. }
  715. const int end = QK4_0 * 4 / blck_size_interleave;
  716. const uint64_t xor_mask = 0x8888888888888888ULL;
  717. for (int i = 0; i < end; ++i) {
  718. int src_id = i % 8;
  719. int src_offset = (i / 8) * blck_size_interleave;
  720. int dst_offset = i * blck_size_interleave;
  721. uint64_t elems;
  722. memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
  723. elems ^= xor_mask;
  724. memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
  725. }
  726. return out;
  727. }
  728. static block_q4_Kx8 make_block_q4_Kx8(block_q4_K * in, unsigned int blck_size_interleave) {
  729. block_q4_Kx8 out;
  730. //Delta(scale) and dmin values of the eight Q4_K structures are copied onto the output interleaved structure
  731. for (int i = 0; i < 8; i++) {
  732. out.d[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d;
  733. }
  734. for (int i = 0; i < 8; i++) {
  735. out.dmin[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.dmin;
  736. }
  737. const int end = QK_K * 4 / blck_size_interleave;
  738. // Interleave Q4_K quants by taking 8 bytes at a time
  739. for (int i = 0; i < end; ++i) {
  740. int src_id = i % 8;
  741. int src_offset = (i / 8) * blck_size_interleave;
  742. int dst_offset = i * blck_size_interleave;
  743. uint64_t elems;
  744. memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
  745. memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
  746. }
  747. // The below logic is designed so as to unpack and rearrange scales and mins values in Q4_K
  748. // Currently the Q4_K structure has 8 scales and 8 mins packed in 12 bytes ( 6 bits for each value)
  749. // The output Q4_Kx8 structure has 96 bytes
  750. // Every 12 byte is packed such that it contains scales and mins for corresponding sub blocks from Q4_K structure
  751. // For eg - First 12 bytes contains 8 scales and 8 mins - each of first sub block from different Q4_K structures
  752. uint8_t s[8], m[8];
  753. for (int i = 0; i < 4; i++) {
  754. for (int j = 0; j < 8; j++) {
  755. s[j] = in[j].scales[i] & 63;
  756. m[j] = in[j].scales[i + 4] & 63;
  757. }
  758. out.scales[i * 12] = (s[0] & 63) + ((s[4] & 48) << 2);
  759. out.scales[i * 12 + 1] = (s[1] & 63) + ((s[5] & 48) << 2);
  760. out.scales[i * 12 + 2] = (s[2] & 63) + ((s[6] & 48) << 2);
  761. out.scales[i * 12 + 3] = (s[3] & 63) + ((s[7] & 48) << 2);
  762. out.scales[i * 12 + 4] = (m[0] & 63) + ((m[4] & 48) << 2);
  763. out.scales[i * 12 + 5] = (m[1] & 63) + ((m[5] & 48) << 2);
  764. out.scales[i * 12 + 6] = (m[2] & 63) + ((m[6] & 48) << 2);
  765. out.scales[i * 12 + 7] = (m[3] & 63) + ((m[7] & 48) << 2);
  766. out.scales[i * 12 + 8] = (s[4] & 15) + ((m[4] & 15) << 4);
  767. out.scales[i * 12 + 9] = (s[5] & 15) + ((m[5] & 15) << 4);
  768. out.scales[i * 12 + 10] = (s[6] & 15) + ((m[6] & 15) << 4);
  769. out.scales[i * 12 + 11] = (s[7] & 15) + ((m[7] & 15) << 4);
  770. }
  771. for (int i = 0; i < 4; i++) {
  772. for (int j = 0; j < 8; j++) {
  773. s[j] = ((in[j].scales[i] & 192) >> 2) | (in[j].scales[i+8] & 15);
  774. m[j] = ((in[j].scales[i + 4] & 192) >> 2) | ((in[j].scales[i+8] & 240) >> 4);
  775. }
  776. out.scales[i * 12 + 48] = (s[0] & 63) + ((s[4] & 48) << 2);
  777. out.scales[i * 12 + 49] = (s[1] & 63) + ((s[5] & 48) << 2);
  778. out.scales[i * 12 + 50] = (s[2] & 63) + ((s[6] & 48) << 2);
  779. out.scales[i * 12 + 51] = (s[3] & 63) + ((s[7] & 48) << 2);
  780. out.scales[i * 12 + 52] = (m[0] & 63) + ((m[4] & 48) << 2);
  781. out.scales[i * 12 + 53] = (m[1] & 63) + ((m[5] & 48) << 2);
  782. out.scales[i * 12 + 54] = (m[2] & 63) + ((m[6] & 48) << 2);
  783. out.scales[i * 12 + 55] = (m[3] & 63) + ((m[7] & 48) << 2);
  784. out.scales[i * 12 + 56] = (s[4] & 15) + ((m[4] & 15) << 4);
  785. out.scales[i * 12 + 57] = (s[5] & 15) + ((m[5] & 15) << 4);
  786. out.scales[i * 12 + 58] = (s[6] & 15) + ((m[6] & 15) << 4);
  787. out.scales[i * 12 + 59] = (s[7] & 15) + ((m[7] & 15) << 4);
  788. }
  789. return out;
  790. }
  791. static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
  792. GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
  793. GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
  794. constexpr int nrows_interleaved = 4;
  795. block_q4_0x4 * dst = (block_q4_0x4 *)t->data;
  796. const block_q4_0 * src = (const block_q4_0 *)data;
  797. block_q4_0 dst_tmp[4];
  798. int nrow = ggml_nrows(t);
  799. int nblocks = t->ne[0] / QK4_0;
  800. GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0));
  801. if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
  802. return -1;
  803. }
  804. for (int b = 0; b < nrow; b += nrows_interleaved) {
  805. for (int64_t x = 0; x < nblocks; x++) {
  806. for (int i = 0; i < nrows_interleaved; i++) {
  807. dst_tmp[i] = src[x + i * nblocks];
  808. }
  809. *dst++ = make_block_q4_0x4(dst_tmp, interleave_block);
  810. }
  811. src += nrows_interleaved * nblocks;
  812. }
  813. return 0;
  814. GGML_UNUSED(data_size);
  815. }
  816. static int repack_q4_K_to_q4_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
  817. GGML_ASSERT(t->type == GGML_TYPE_Q4_K);
  818. GGML_ASSERT(interleave_block == 8);
  819. constexpr int nrows_interleaved = 8;
  820. block_q4_Kx8 * dst = (block_q4_Kx8*)t->data;
  821. const block_q4_K * src = (const block_q4_K*) data;
  822. block_q4_K dst_tmp[8];
  823. int nrow = ggml_nrows(t);
  824. int nblocks = t->ne[0] / QK_K;
  825. GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_K));
  826. if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
  827. return -1;
  828. }
  829. for (int b = 0; b < nrow; b += nrows_interleaved) {
  830. for (int64_t x = 0; x < nblocks; x++) {
  831. for (int i = 0; i < nrows_interleaved; i++ ) {
  832. dst_tmp[i] = src[x + i * nblocks];
  833. }
  834. *dst++ = make_block_q4_Kx8(dst_tmp, interleave_block);
  835. }
  836. src += nrows_interleaved * nblocks;
  837. }
  838. return 0;
  839. GGML_UNUSED(data_size);
  840. }
  841. static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
  842. GGML_ASSERT(t->type == GGML_TYPE_Q4_0);
  843. GGML_ASSERT(interleave_block == 8);
  844. constexpr int nrows_interleaved = 8;
  845. block_q4_0x8 * dst = (block_q4_0x8*)t->data;
  846. const block_q4_0 * src = (const block_q4_0*) data;
  847. block_q4_0 dst_tmp[8];
  848. int nrow = ggml_nrows(t);
  849. int nblocks = t->ne[0] / QK4_0;
  850. GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q4_0));
  851. if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
  852. return -1;
  853. }
  854. for (int b = 0; b < nrow; b += nrows_interleaved) {
  855. for (int64_t x = 0; x < nblocks; x++) {
  856. for (int i = 0; i < nrows_interleaved; i++ ) {
  857. dst_tmp[i] = src[x + i * nblocks];
  858. }
  859. *dst++ = make_block_q4_0x8(dst_tmp, interleave_block);
  860. }
  861. src += nrows_interleaved * nblocks;
  862. }
  863. return 0;
  864. GGML_UNUSED(data_size);
  865. }
  866. static block_iq4_nlx4 make_block_iq4_nlx4(block_iq4_nl * in, unsigned int blck_size_interleave) {
  867. block_iq4_nlx4 out;
  868. for (int i = 0; i < 4; i++) {
  869. out.d[i] = in[i].d;
  870. }
  871. const int end = QK4_NL * 2 / blck_size_interleave;
  872. // TODO: this branch seems wrong
  873. //if (blck_size_interleave == 8) {
  874. // for (int i = 0; i < end; ++i) {
  875. // int src_id = i % 4;
  876. // int src_offset = (i / 4) * blck_size_interleave;
  877. // int dst_offset = i * blck_size_interleave;
  878. // // Using memcpy to avoid unaligned memory accesses
  879. // memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t));
  880. // }
  881. //} else
  882. if (blck_size_interleave == 4) {
  883. for (int i = 0; i < end; ++i) {
  884. int src_id = i % 4;
  885. int src_offset = (i / 4) * blck_size_interleave;
  886. int dst_offset = i * blck_size_interleave;
  887. memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint32_t));
  888. }
  889. } else {
  890. GGML_ASSERT(false);
  891. }
  892. return out;
  893. }
  894. static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
  895. GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL);
  896. //GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
  897. GGML_ASSERT(interleave_block == 4);
  898. block_iq4_nlx4 * dst = (block_iq4_nlx4 *)t->data;
  899. const block_iq4_nl * src = (const block_iq4_nl *)data;
  900. block_iq4_nl dst_tmp[4];
  901. int nrow = ggml_nrows(t);
  902. int nrows_interleaved = 4;
  903. int nblocks = t->ne[0] / QK4_0;
  904. GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl));
  905. if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
  906. return -1;
  907. }
  908. for (int b = 0; b < nrow; b += nrows_interleaved) {
  909. for (int64_t x = 0; x < nblocks; x++) {
  910. for (int i = 0; i < nrows_interleaved; i++) {
  911. dst_tmp[i] = src[x + i * nblocks];
  912. }
  913. *dst++ = make_block_iq4_nlx4(dst_tmp, interleave_block);
  914. }
  915. src += nrows_interleaved * nblocks;
  916. }
  917. return 0;
  918. GGML_UNUSED(data_size);
  919. }
  920. namespace ggml::cpu::repack {
  921. // repack
  922. template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS>
  923. int repack(struct ggml_tensor *, const void *, size_t);
  924. // TODO: generalise.
  925. template <> int repack<block_q4_0, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
  926. return repack_q4_0_to_q4_0_4_bl(t, 4, data, data_size);
  927. }
  928. template <> int repack<block_q4_0, 8, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
  929. return repack_q4_0_to_q4_0_4_bl(t, 8, data, data_size);
  930. }
  931. template <> int repack<block_q4_0, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
  932. return repack_q4_0_to_q4_0_8_bl(t, 8, data, data_size);
  933. }
  934. template <> int repack<block_q4_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
  935. return repack_q4_K_to_q4_K_8_bl(t, 8, data, data_size);
  936. }
  937. template <> int repack<block_iq4_nl, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
  938. return repack_iq4_nl_to_iq4_nl_4_bl(t, 4, data, data_size);
  939. }
  940. // TODO: needs to be revisited
  941. //template <> int repack<block_iq4_nl, 8, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
  942. // return repack_iq4_nl_to_iq4_nl_4_bl(t, 8, data, data_size);
  943. //}
  944. // gemv
  945. template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
  946. void gemv(int, float *, size_t, const void *, const void *, int, int);
  947. template <> void gemv<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
  948. ggml_gemv_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
  949. }
  950. template <> void gemv<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
  951. ggml_gemv_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc);
  952. }
  953. template <> void gemv<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
  954. ggml_gemv_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
  955. }
  956. template <> void gemv<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
  957. ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
  958. }
  959. template <> void gemv<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
  960. ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
  961. }
  962. // gemm
  963. template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
  964. void gemm(int, float *, size_t, const void *, const void *, int, int);
  965. template <> void gemm<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
  966. ggml_gemm_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
  967. }
  968. template <> void gemm<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
  969. ggml_gemm_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc);
  970. }
  971. template <> void gemm<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
  972. ggml_gemm_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
  973. }
  974. template <> void gemm<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
  975. ggml_gemm_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
  976. }
  977. template <> void gemm<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
  978. ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
  979. }
  980. class tensor_traits_base : public ggml::cpu::tensor_traits {
  981. public:
  982. virtual int repack(struct ggml_tensor * t, const void * data, size_t data_size) = 0;
  983. };
  984. template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE> class tensor_traits : public tensor_traits_base {
  985. bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
  986. // not realy a GGML_TYPE_Q8_0 but same size.
  987. switch (op->op) {
  988. case GGML_OP_MUL_MAT:
  989. {
  990. size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
  991. return true;
  992. }
  993. case GGML_OP_MUL_MAT_ID:
  994. {
  995. size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
  996. size = GGML_PAD(size, sizeof(int64_t)); // + padding for next bloc.
  997. const int64_t ne02 = op->src[0]->ne[2]; // n_as, n_expert
  998. const int64_t ne12 = op->src[1]->ne[2]; // n_tokens
  999. const size_t sizeof_mmid_row_mapping = sizeof(int64_t);
  1000. size += sizeof_mmid_row_mapping*ne02*(ne12 + 1);
  1001. return true;
  1002. }
  1003. default:
  1004. // GGML_ABORT("fatal error");
  1005. break;
  1006. }
  1007. return false;
  1008. }
  1009. bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) override {
  1010. switch (op->op) {
  1011. case GGML_OP_MUL_MAT:
  1012. forward_mul_mat(params, op);
  1013. return true;
  1014. case GGML_OP_MUL_MAT_ID:
  1015. forward_mul_mat_id(params, op);
  1016. return true;
  1017. default:
  1018. // GGML_ABORT("fatal error");
  1019. break;
  1020. }
  1021. return false;
  1022. }
  1023. void forward_mul_mat(ggml_compute_params * params, ggml_tensor * op) {
  1024. const ggml_tensor * src0 = op->src[0];
  1025. const ggml_tensor * src1 = op->src[1];
  1026. ggml_tensor * dst = op;
  1027. GGML_TENSOR_BINARY_OP_LOCALS
  1028. const int ith = params->ith;
  1029. const int nth = params->nth;
  1030. GGML_ASSERT(ne0 == ne01);
  1031. GGML_ASSERT(ne1 == ne11);
  1032. GGML_ASSERT(ne2 == ne12);
  1033. GGML_ASSERT(ne3 == ne13);
  1034. // dst cannot be transposed or permuted
  1035. GGML_ASSERT(nb0 == sizeof(float));
  1036. GGML_ASSERT(nb0 <= nb1);
  1037. GGML_ASSERT(nb1 <= nb2);
  1038. GGML_ASSERT(nb2 <= nb3);
  1039. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1040. GGML_ASSERT(ggml_n_dims(op->src[0]) == 2);
  1041. // GGML_ASSERT(ggml_n_dims(op->src[1]) == 2);
  1042. char * wdata = static_cast<char *>(params->wdata);
  1043. const size_t nbw1 = ggml_row_size(PARAM_TYPE, ne10);
  1044. assert(params->wsize >= nbw1 * ne11);
  1045. const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float;
  1046. int64_t i11_processed = 0;
  1047. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  1048. ggml_quantize_mat_t<INTER_SIZE, PARAM_TYPE>((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), 4, ne10);
  1049. }
  1050. i11_processed = ne11 - ne11 % 4;
  1051. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  1052. from_float((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), ne10);
  1053. }
  1054. ggml_barrier(params->threadpool);
  1055. const void * src1_wdata = params->wdata;
  1056. const size_t src1_col_stride = ggml_row_size(PARAM_TYPE, ne10);
  1057. int64_t src0_start = (ith * ne01) / nth;
  1058. int64_t src0_end = ((ith + 1) * ne01) / nth;
  1059. src0_start = (src0_start % NB_COLS) ? src0_start + NB_COLS - (src0_start % NB_COLS) : src0_start;
  1060. src0_end = (src0_end % NB_COLS) ? src0_end + NB_COLS - (src0_end % NB_COLS) : src0_end;
  1061. if (src0_start >= src0_end) {
  1062. return;
  1063. }
  1064. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  1065. if (ne11 > 3) {
  1066. gemm<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
  1067. (float *) ((char *) dst->data) + src0_start, ne01,
  1068. (const char *) src0->data + src0_start * nb01,
  1069. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  1070. }
  1071. for (int iter = ne11 - ne11 % 4; iter < ne11; iter++) {
  1072. gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
  1073. (float *) ((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  1074. (const char *) src0->data + src0_start * nb01,
  1075. (const char *) src1_wdata + (src1_col_stride * iter), 1,
  1076. src0_end - src0_start);
  1077. }
  1078. }
  1079. void forward_mul_mat_id(ggml_compute_params * params, ggml_tensor * op) {
  1080. const ggml_tensor * src0 = op->src[0];
  1081. const ggml_tensor * src1 = op->src[1];
  1082. const ggml_tensor * ids = op->src[2];
  1083. ggml_tensor * dst = op;
  1084. GGML_TENSOR_BINARY_OP_LOCALS
  1085. const int ith = params->ith;
  1086. const int nth = params->nth;
  1087. const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float;
  1088. // we don't support permuted src0 or src1
  1089. GGML_ASSERT(nb00 == ggml_type_size(src0->type));
  1090. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  1091. // dst cannot be transposed or permuted
  1092. GGML_ASSERT(nb0 == sizeof(float));
  1093. GGML_ASSERT(nb0 <= nb1);
  1094. GGML_ASSERT(nb1 <= nb2);
  1095. GGML_ASSERT(nb2 <= nb3);
  1096. GGML_ASSERT(ne03 == 1);
  1097. GGML_ASSERT(ne13 == 1);
  1098. GGML_ASSERT(ne3 == 1);
  1099. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1100. // row groups
  1101. const int n_ids = ids->ne[0]; // n_expert_used
  1102. const int n_as = ne02; // n_expert
  1103. const size_t nbw1 = ggml_row_size(PARAM_TYPE, ne10);
  1104. const size_t nbw2 = nbw1*ne11;
  1105. const size_t nbw3 = nbw2*ne12;
  1106. struct mmid_row_mapping {
  1107. int32_t i1;
  1108. int32_t i2;
  1109. };
  1110. GGML_ASSERT(params->wsize >=
  1111. (GGML_PAD(nbw3, sizeof(int64_t)) +
  1112. n_as*(ne12 + 1)*sizeof(mmid_row_mapping))
  1113. );
  1114. auto * wdata = (char *)params->wdata;
  1115. auto * wdata_src1_end = (char *)wdata + GGML_PAD(nbw3, sizeof(int64_t));
  1116. // total of [n_as][ne12 + 1] elemets of type mmid_row_mapping (2*int32_t = int64_t)
  1117. auto * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  1118. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *) (matrix_row_counts + n_as); // [n_as][ne12]
  1119. // src1: float32 => param type
  1120. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  1121. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  1122. from_float((float *)((char *) src1->data + i12 * nb12 + i11 * nb11),
  1123. (void *) (wdata + i12 * nbw2 + i11 * nbw1),
  1124. ne10);
  1125. }
  1126. }
  1127. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id) * ne12 + (i1)]
  1128. if (ith == 0) {
  1129. // initialize matrix_row_counts
  1130. memset(matrix_row_counts, 0, n_as * sizeof(int64_t));
  1131. // group rows by src0 matrix
  1132. for (int32_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  1133. for (int32_t id = 0; id < n_ids; ++id) {
  1134. const int32_t i02 =
  1135. *(const int32_t *) ((const char *) ids->data + iid1 * ids->nb[1] + id * ids->nb[0]);
  1136. GGML_ASSERT(i02 >= 0 && i02 < n_as);
  1137. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = { id, iid1 };
  1138. matrix_row_counts[i02] += 1;
  1139. }
  1140. }
  1141. }
  1142. ggml_barrier(params->threadpool);
  1143. // compute each matrix multiplication in sequence
  1144. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  1145. const int64_t cne1 = matrix_row_counts[cur_a];
  1146. if (cne1 == 0) {
  1147. continue;
  1148. }
  1149. const auto * src0_cur = (const char *) src0->data + cur_a*nb02;
  1150. //const int64_t nr0 = ne01; // src0 rows
  1151. const int64_t nr1 = cne1; // src1 rows
  1152. int64_t src0_cur_start = (ith * ne01) / nth;
  1153. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  1154. src0_cur_start = (src0_cur_start % NB_COLS) ? src0_cur_start + NB_COLS - (src0_cur_start % NB_COLS) : src0_cur_start;
  1155. src0_cur_end = (src0_cur_end % NB_COLS) ? src0_cur_end + NB_COLS - (src0_cur_end % NB_COLS) : src0_cur_end;
  1156. if (src0_cur_start >= src0_cur_end) {
  1157. return;
  1158. }
  1159. for (int ir1 = 0; ir1 < nr1; ir1++) {
  1160. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  1161. const int id = row_mapping.i1; // selected expert index
  1162. const int64_t i11 = id % ne11;
  1163. const int64_t i12 = row_mapping.i2; // row index in src1
  1164. const int64_t i1 = id; // selected expert index
  1165. const int64_t i2 = i12; // row
  1166. const auto * src1_col = (const char *) wdata + (i11 * nbw1 + i12 * nbw2);
  1167. gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
  1168. (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  1169. src0_cur + src0_cur_start * nb01,
  1170. src1_col, 1, src0_cur_end - src0_cur_start);
  1171. }
  1172. }
  1173. #undef MMID_MATRIX_ROW
  1174. }
  1175. int repack(struct ggml_tensor * t, const void * data, size_t data_size) override {
  1176. GGML_LOG_DEBUG("%s: repack tensor %s with %s_%dx%d\n", __func__, t->name, ggml_type_name(t->type),
  1177. (int) NB_COLS, (int) INTER_SIZE);
  1178. return ggml::cpu::repack::repack<BLOC_TYPE, INTER_SIZE, NB_COLS>(t, data, data_size);
  1179. }
  1180. };
  1181. } // namespace ggml::cpu::repack
  1182. static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(const struct ggml_tensor * cur) {
  1183. // instance for Q4
  1184. static const ggml::cpu::repack::tensor_traits<block_q4_0, 4, 4, GGML_TYPE_Q8_0> q4_0_4x4_q8_0;
  1185. static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 4, GGML_TYPE_Q8_0> q4_0_4x8_q8_0;
  1186. static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0;
  1187. static const ggml::cpu::repack::tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K;
  1188. // instance for IQ4
  1189. static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0;
  1190. if (cur->type == GGML_TYPE_Q4_0) {
  1191. if (ggml_cpu_has_avx2() || (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
  1192. if (cur->ne[1] % 8 == 0) {
  1193. return &q4_0_8x8_q8_0;
  1194. }
  1195. }
  1196. if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
  1197. if (cur->ne[1] % 4 == 0) {
  1198. return &q4_0_4x8_q8_0;
  1199. }
  1200. }
  1201. if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
  1202. if (cur->ne[1] % 4 == 0) {
  1203. return &q4_0_4x4_q8_0;
  1204. }
  1205. }
  1206. } else if (cur->type == GGML_TYPE_Q4_K) {
  1207. if (ggml_cpu_has_avx2()) {
  1208. if (cur->ne[1] % 8 == 0) {
  1209. return &q4_K_8x8_q8_K;
  1210. }
  1211. }
  1212. } else if (cur->type == GGML_TYPE_IQ4_NL) {
  1213. if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
  1214. if (cur->ne[1] % 4 == 0) {
  1215. return &iq4_nl_4x4_q8_0;
  1216. }
  1217. }
  1218. }
  1219. return nullptr;
  1220. }
  1221. static enum ggml_status ggml_backend_cpu_repack_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  1222. tensor->extra = (void *) const_cast<ggml::cpu::tensor_traits *>(ggml_repack_get_optimal_repack_type(tensor));
  1223. GGML_UNUSED(buffer);
  1224. return GGML_STATUS_SUCCESS;
  1225. }
  1226. static void ggml_backend_cpu_repack_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
  1227. const void * data, size_t offset, size_t size) {
  1228. GGML_ASSERT(offset == 0);
  1229. GGML_ASSERT(size == ggml_nbytes(tensor));
  1230. auto tensor_traits = (ggml::cpu::repack::tensor_traits_base *) tensor->extra;
  1231. auto OK = tensor_traits->repack(tensor, data, size);
  1232. GGML_ASSERT(OK == 0);
  1233. GGML_UNUSED(buffer);
  1234. }
  1235. static const char * ggml_backend_cpu_repack_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  1236. return "CPU_REPACK";
  1237. GGML_UNUSED(buft);
  1238. }
  1239. static ggml_backend_buffer_t ggml_backend_cpu_repack_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  1240. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
  1241. if (buffer == nullptr) {
  1242. return nullptr;
  1243. }
  1244. buffer->buft = buft;
  1245. buffer->iface.init_tensor = ggml_backend_cpu_repack_buffer_init_tensor;
  1246. buffer->iface.set_tensor = ggml_backend_cpu_repack_buffer_set_tensor;
  1247. buffer->iface.get_tensor = nullptr;
  1248. buffer->iface.cpy_tensor = nullptr;
  1249. return buffer;
  1250. }
  1251. static size_t ggml_backend_cpu_repack_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  1252. return TENSOR_ALIGNMENT;
  1253. GGML_UNUSED(buft);
  1254. }
  1255. namespace ggml::cpu::repack {
  1256. class extra_buffer_type : ggml::cpu::extra_buffer_type {
  1257. bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
  1258. if ( op->op == GGML_OP_MUL_MAT &&
  1259. op->src[0]->buffer &&
  1260. (ggml_n_dims(op->src[0]) == 2) &&
  1261. op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type() &&
  1262. ggml_repack_get_optimal_repack_type(op->src[0])
  1263. ) {
  1264. if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
  1265. return false;
  1266. }
  1267. if (op->src[1]->type == GGML_TYPE_F32) {
  1268. return true;
  1269. }
  1270. //if (op->src[1]->type == GGML_TYPE_Q8_0) {
  1271. // return true;
  1272. //}
  1273. // may be possible if Q8_0 packed...
  1274. } else if (op->op == GGML_OP_MUL_MAT_ID
  1275. && op->src[0]->buffer
  1276. && (ggml_n_dims(op->src[0]) == 3)
  1277. && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type()
  1278. && ggml_repack_get_optimal_repack_type(op->src[0])
  1279. ) {
  1280. if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
  1281. return false;
  1282. }
  1283. if (op->src[1]->type == GGML_TYPE_F32) {
  1284. return true;
  1285. }
  1286. //if (op->src[1]->type == GGML_TYPE_Q8_0) {
  1287. // return true;
  1288. //}
  1289. }
  1290. return false;
  1291. }
  1292. ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override {
  1293. if (op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_MUL_MAT_ID) {
  1294. if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_repack_buffer_type()) {
  1295. return (ggml::cpu::tensor_traits *) op->src[0]->extra;
  1296. }
  1297. }
  1298. return nullptr;
  1299. }
  1300. };
  1301. } // namespace ggml::cpu::repack
  1302. ggml_backend_buffer_type_t ggml_backend_cpu_repack_buffer_type(void) {
  1303. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_repack = {
  1304. /* .iface = */ {
  1305. /* .get_name = */ ggml_backend_cpu_repack_buffer_type_get_name,
  1306. /* .alloc_buffer = */ ggml_backend_cpu_repack_buffer_type_alloc_buffer,
  1307. /* .get_alignment = */ ggml_backend_cpu_repack_buffer_type_get_alignment,
  1308. /* .get_max_size = */ nullptr, // defaults to SIZE_MAX
  1309. /* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
  1310. /* .is_host = */ nullptr,
  1311. },
  1312. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1313. /* .context = */ new ggml::cpu::repack::extra_buffer_type(),
  1314. };
  1315. return &ggml_backend_cpu_buffer_type_repack;
  1316. }