ggml.c 481 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. #if __AVX__ || __AVX2__ || __AVX512F__
  410. // horizontally add 8 floats
  411. static inline float hsum_float_8(const __m256 x) {
  412. __m128 res = _mm256_extractf128_ps(x, 1);
  413. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  414. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  415. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  416. return _mm_cvtss_f32(res);
  417. }
  418. // horizontally add 8 int32_t
  419. static inline int hsum_i32_8(const __m256i a) {
  420. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  421. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  422. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  423. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  424. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  425. }
  426. // horizontally add 4 int32_t
  427. static inline int hsum_i32_4(const __m128i a) {
  428. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  429. const __m128i sum64 = _mm_add_epi32(hi64, a);
  430. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  431. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  432. }
  433. #if __AVX2__ || __AVX512F__
  434. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  435. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  436. uint32_t x32;
  437. memcpy(&x32, x, sizeof(uint32_t));
  438. const __m256i shuf_mask = _mm256_set_epi64x(
  439. 0x0303030303030303, 0x0202020202020202,
  440. 0x0101010101010101, 0x0000000000000000);
  441. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  442. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  443. bytes = _mm256_or_si256(bytes, bit_mask);
  444. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  445. }
  446. // Unpack 32 4-bit fields into 32 bytes
  447. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  448. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  449. {
  450. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  451. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  452. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  453. return _mm256_and_si256(lowMask, bytes);
  454. }
  455. // add int16_t pairwise and return as float vector
  456. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  457. const __m256i ones = _mm256_set1_epi16(1);
  458. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  459. return _mm256_cvtepi32_ps(summed_pairs);
  460. }
  461. // multiply int8_t, add results pairwise twice and return as float vector
  462. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  463. // Get absolute values of x vectors
  464. const __m256i ax = _mm256_sign_epi8(x, x);
  465. // Sign the values of the y vectors
  466. const __m256i sy = _mm256_sign_epi8(y, x);
  467. #if __AVXVNNI__
  468. const __m256i zero = _mm256_setzero_si256();
  469. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  470. return _mm256_cvtepi32_ps(summed_pairs);
  471. #else
  472. // Perform multiplication and create 16-bit values
  473. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  474. return sum_i16_pairs_float(dot);
  475. #endif
  476. }
  477. static inline __m128i packNibbles( __m256i bytes )
  478. {
  479. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  480. #if __AVX512F__
  481. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  482. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  483. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  484. #else
  485. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  486. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  487. __m256i low = _mm256_and_si256( lowByte, bytes );
  488. high = _mm256_srli_epi16( high, 4 );
  489. bytes = _mm256_or_si256( low, high );
  490. // Compress uint16_t lanes into bytes
  491. __m128i r0 = _mm256_castsi256_si128( bytes );
  492. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  493. return _mm_packus_epi16( r0, r1 );
  494. #endif
  495. }
  496. #elif defined(__AVX__)
  497. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  498. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  499. uint32_t x32;
  500. memcpy(&x32, x, sizeof(uint32_t));
  501. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  502. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  503. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  504. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  505. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  506. bytesl = _mm_or_si128(bytesl, bit_mask);
  507. bytesh = _mm_or_si128(bytesh, bit_mask);
  508. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  509. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  510. return _mm256_set_m128i(bytesh, bytesl);
  511. }
  512. // Unpack 32 4-bit fields into 32 bytes
  513. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  514. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  515. {
  516. // Load 16 bytes from memory
  517. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  518. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  519. const __m128i lowMask = _mm_set1_epi8(0xF);
  520. tmpl = _mm_and_si128(lowMask, tmpl);
  521. tmph = _mm_and_si128(lowMask, tmph);
  522. return _mm256_set_m128i(tmph, tmpl);
  523. }
  524. // add int16_t pairwise and return as float vector
  525. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  526. const __m128i ones = _mm_set1_epi16(1);
  527. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  528. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  529. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  530. return _mm256_cvtepi32_ps(summed_pairs);
  531. }
  532. // multiply int8_t, add results pairwise twice and return as float vector
  533. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  534. const __m128i xl = _mm256_castsi256_si128(x);
  535. const __m128i xh = _mm256_extractf128_si256(x, 1);
  536. const __m128i yl = _mm256_castsi256_si128(y);
  537. const __m128i yh = _mm256_extractf128_si256(y, 1);
  538. // Get absolute values of x vectors
  539. const __m128i axl = _mm_sign_epi8(xl, xl);
  540. const __m128i axh = _mm_sign_epi8(xh, xh);
  541. // Sign the values of the y vectors
  542. const __m128i syl = _mm_sign_epi8(yl, xl);
  543. const __m128i syh = _mm_sign_epi8(yh, xh);
  544. // Perform multiplication and create 16-bit values
  545. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  546. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  547. return sum_i16_pairs_float(doth, dotl);
  548. }
  549. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  550. {
  551. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  552. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  553. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  554. __m128i low = _mm_and_si128( lowByte, bytes1 );
  555. high = _mm_srli_epi16( high, 4 );
  556. bytes1 = _mm_or_si128( low, high );
  557. high = _mm_andnot_si128( lowByte, bytes2 );
  558. low = _mm_and_si128( lowByte, bytes2 );
  559. high = _mm_srli_epi16( high, 4 );
  560. bytes2 = _mm_or_si128( low, high );
  561. return _mm_packus_epi16( bytes1, bytes2);
  562. }
  563. #endif
  564. #elif defined(__SSSE3__)
  565. // horizontally add 4x4 floats
  566. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  567. __m128 res_0 =_mm_hadd_ps(a, b);
  568. __m128 res_1 =_mm_hadd_ps(c, d);
  569. __m128 res =_mm_hadd_ps(res_0, res_1);
  570. res =_mm_hadd_ps(res, res);
  571. res =_mm_hadd_ps(res, res);
  572. return _mm_cvtss_f32(res);
  573. }
  574. #endif // __AVX__ || __AVX2__ || __AVX512F__
  575. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  576. #if __ARM_NEON
  577. #if !defined(__aarch64__)
  578. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  579. return
  580. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  581. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  582. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  583. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  584. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  585. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  586. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  587. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  588. }
  589. inline static int16_t vaddvq_s8(int8x16_t v) {
  590. return
  591. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  592. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  593. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  594. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  595. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  596. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  597. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  598. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  599. }
  600. inline static int32_t vaddvq_s16(int16x8_t v) {
  601. return
  602. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  603. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  604. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  605. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  606. }
  607. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  608. return
  609. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  610. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  611. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  612. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  613. }
  614. inline static int32_t vaddvq_s32(int32x4_t v) {
  615. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  616. }
  617. inline static float vaddvq_f32(float32x4_t v) {
  618. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  619. }
  620. float vminvq_f32(float32x4_t v) {
  621. return
  622. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  623. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  624. }
  625. float vmaxvq_f32(float32x4_t v) {
  626. return
  627. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  628. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  629. }
  630. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  631. int32x4_t res;
  632. res[0] = roundf(vgetq_lane_f32(v, 0));
  633. res[1] = roundf(vgetq_lane_f32(v, 1));
  634. res[2] = roundf(vgetq_lane_f32(v, 2));
  635. res[3] = roundf(vgetq_lane_f32(v, 3));
  636. return res;
  637. }
  638. #endif
  639. #endif
  640. #define QK4_0 32
  641. typedef struct {
  642. float d; // delta
  643. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  644. } block_q4_0;
  645. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  646. #define QK4_1 32
  647. typedef struct {
  648. float d; // delta
  649. float m; // min
  650. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  651. } block_q4_1;
  652. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  653. #define QK5_0 32
  654. typedef struct {
  655. ggml_fp16_t d; // delta
  656. uint8_t qh[4]; // 5-th bit of quants
  657. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  658. } block_q5_0;
  659. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  660. #define QK5_1 32
  661. typedef struct {
  662. ggml_fp16_t d; // delta
  663. ggml_fp16_t m; // min
  664. uint8_t qh[4]; // 5-th bit of quants
  665. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  666. } block_q5_1;
  667. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  668. #define QK8_0 32
  669. typedef struct {
  670. float d; // delta
  671. int8_t qs[QK8_0]; // quants
  672. } block_q8_0;
  673. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  674. #define QK8_1 32
  675. typedef struct {
  676. float d; // delta
  677. float s; // d * sum(qs[i])
  678. int8_t qs[QK8_1]; // quants
  679. } block_q8_1;
  680. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  681. // reference implementation for deterministic creation of model files
  682. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  683. static const int qk = QK4_0;
  684. assert(k % qk == 0);
  685. const int nb = k / qk;
  686. for (int i = 0; i < nb; i++) {
  687. float amax = 0.0f; // absolute max
  688. float max = 0.0f;
  689. for (int j = 0; j < qk; j++) {
  690. const float v = x[i*qk + j];
  691. if (amax < fabsf(v)) {
  692. amax = fabsf(v);
  693. max = v;
  694. }
  695. }
  696. const float d = max / -8;
  697. const float id = d ? 1.0f/d : 0.0f;
  698. y[i].d = d;
  699. for (int j = 0; j < qk/2; ++j) {
  700. const float x0 = x[i*qk + 0 + j]*id;
  701. const float x1 = x[i*qk + qk/2 + j]*id;
  702. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  703. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  704. y[i].qs[j] = xi0;
  705. y[i].qs[j] |= xi1 << 4;
  706. }
  707. }
  708. }
  709. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  710. quantize_row_q4_0_reference(x, y, k);
  711. }
  712. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  713. const int qk = QK4_1;
  714. assert(k % qk == 0);
  715. const int nb = k / qk;
  716. for (int i = 0; i < nb; i++) {
  717. float min = FLT_MAX;
  718. float max = -FLT_MAX;
  719. for (int j = 0; j < qk; j++) {
  720. const float v = x[i*qk + j];
  721. if (v < min) min = v;
  722. if (v > max) max = v;
  723. }
  724. const float d = (max - min) / ((1 << 4) - 1);
  725. const float id = d ? 1.0f/d : 0.0f;
  726. y[i].d = d;
  727. y[i].m = min;
  728. for (int j = 0; j < qk/2; ++j) {
  729. const float x0 = (x[i*qk + 0 + j] - min)*id;
  730. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  731. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  732. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  733. y[i].qs[j] = xi0;
  734. y[i].qs[j] |= xi1 << 4;
  735. }
  736. }
  737. }
  738. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  739. quantize_row_q4_1_reference(x, y, k);
  740. }
  741. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  742. static const int qk = QK5_0;
  743. assert(k % qk == 0);
  744. const int nb = k / qk;
  745. for (int i = 0; i < nb; i++) {
  746. float amax = 0.0f; // absolute max
  747. float max = 0.0f;
  748. for (int j = 0; j < qk; j++) {
  749. const float v = x[i*qk + j];
  750. if (amax < fabsf(v)) {
  751. amax = fabsf(v);
  752. max = v;
  753. }
  754. }
  755. const float d = max / -16;
  756. const float id = d ? 1.0f/d : 0.0f;
  757. y[i].d = GGML_FP32_TO_FP16(d);
  758. uint32_t qh = 0;
  759. for (int j = 0; j < qk/2; ++j) {
  760. const float x0 = x[i*qk + 0 + j]*id;
  761. const float x1 = x[i*qk + qk/2 + j]*id;
  762. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  763. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  764. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  765. // get the 5-th bit and store it in qh at the right position
  766. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  767. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  768. }
  769. memcpy(&y[i].qh, &qh, sizeof(qh));
  770. }
  771. }
  772. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  773. quantize_row_q5_0_reference(x, y, k);
  774. }
  775. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  776. const int qk = QK5_1;
  777. assert(k % qk == 0);
  778. const int nb = k / qk;
  779. for (int i = 0; i < nb; i++) {
  780. float min = FLT_MAX;
  781. float max = -FLT_MAX;
  782. for (int j = 0; j < qk; j++) {
  783. const float v = x[i*qk + j];
  784. if (v < min) min = v;
  785. if (v > max) max = v;
  786. }
  787. const float d = (max - min) / ((1 << 5) - 1);
  788. const float id = d ? 1.0f/d : 0.0f;
  789. y[i].d = GGML_FP32_TO_FP16(d);
  790. y[i].m = GGML_FP32_TO_FP16(min);
  791. uint32_t qh = 0;
  792. for (int j = 0; j < qk/2; ++j) {
  793. const float x0 = (x[i*qk + 0 + j] - min)*id;
  794. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  795. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  796. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  797. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  798. // get the 5-th bit and store it in qh at the right position
  799. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  800. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  801. }
  802. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  803. }
  804. }
  805. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  806. quantize_row_q5_1_reference(x, y, k);
  807. }
  808. // reference implementation for deterministic creation of model files
  809. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  810. assert(k % QK8_0 == 0);
  811. const int nb = k / QK8_0;
  812. for (int i = 0; i < nb; i++) {
  813. float amax = 0.0f; // absolute max
  814. for (int j = 0; j < QK8_0; j++) {
  815. const float v = x[i*QK8_0 + j];
  816. amax = MAX(amax, fabsf(v));
  817. }
  818. const float d = amax / ((1 << 7) - 1);
  819. const float id = d ? 1.0f/d : 0.0f;
  820. y[i].d = d;
  821. for (int j = 0; j < QK8_0; ++j) {
  822. const float x0 = x[i*QK8_0 + j]*id;
  823. y[i].qs[j] = roundf(x0);
  824. }
  825. }
  826. }
  827. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  828. assert(QK8_0 == 32);
  829. assert(k % QK8_0 == 0);
  830. const int nb = k / QK8_0;
  831. block_q8_0 * restrict y = vy;
  832. #if defined(__ARM_NEON)
  833. for (int i = 0; i < nb; i++) {
  834. float32x4_t srcv [8];
  835. float32x4_t asrcv[8];
  836. float32x4_t amaxv[8];
  837. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  838. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  839. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  840. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  841. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  842. const float amax = vmaxvq_f32(amaxv[0]);
  843. const float d = amax / ((1 << 7) - 1);
  844. const float id = d ? 1.0f/d : 0.0f;
  845. y[i].d = d;
  846. for (int j = 0; j < 8; j++) {
  847. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  848. const int32x4_t vi = vcvtnq_s32_f32(v);
  849. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  850. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  851. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  852. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  853. }
  854. }
  855. #elif defined(__AVX2__) || defined(__AVX__)
  856. for (int i = 0; i < nb; i++) {
  857. // Load elements into 4 AVX vectors
  858. __m256 v0 = _mm256_loadu_ps( x );
  859. __m256 v1 = _mm256_loadu_ps( x + 8 );
  860. __m256 v2 = _mm256_loadu_ps( x + 16 );
  861. __m256 v3 = _mm256_loadu_ps( x + 24 );
  862. x += 32;
  863. // Compute max(abs(e)) for the block
  864. const __m256 signBit = _mm256_set1_ps( -0.0f );
  865. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  866. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  867. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  868. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  869. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  870. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  871. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  872. const float maxScalar = _mm_cvtss_f32( max4 );
  873. // Quantize these floats
  874. const float d = maxScalar / 127.f;
  875. y[i].d = d;
  876. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  877. const __m256 mul = _mm256_set1_ps( id );
  878. // Apply the multiplier
  879. v0 = _mm256_mul_ps( v0, mul );
  880. v1 = _mm256_mul_ps( v1, mul );
  881. v2 = _mm256_mul_ps( v2, mul );
  882. v3 = _mm256_mul_ps( v3, mul );
  883. // Round to nearest integer
  884. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  885. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  886. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  887. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  888. // Convert floats to integers
  889. __m256i i0 = _mm256_cvtps_epi32( v0 );
  890. __m256i i1 = _mm256_cvtps_epi32( v1 );
  891. __m256i i2 = _mm256_cvtps_epi32( v2 );
  892. __m256i i3 = _mm256_cvtps_epi32( v3 );
  893. #if defined(__AVX2__)
  894. // Convert int32 to int16
  895. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  896. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  897. // Convert int16 to int8
  898. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  899. // We got our precious signed bytes, but the order is now wrong
  900. // These AVX2 pack instructions process 16-byte pieces independently
  901. // The following instruction is fixing the order
  902. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  903. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  904. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  905. #else
  906. // Since we don't have in AVX some necessary functions,
  907. // we split the registers in half and call AVX2 analogs from SSE
  908. __m128i ni0 = _mm256_castsi256_si128( i0 );
  909. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  910. __m128i ni2 = _mm256_castsi256_si128( i1 );
  911. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  912. __m128i ni4 = _mm256_castsi256_si128( i2 );
  913. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  914. __m128i ni6 = _mm256_castsi256_si128( i3 );
  915. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  916. // Convert int32 to int16
  917. ni0 = _mm_packs_epi32( ni0, ni1 );
  918. ni2 = _mm_packs_epi32( ni2, ni3 );
  919. ni4 = _mm_packs_epi32( ni4, ni5 );
  920. ni6 = _mm_packs_epi32( ni6, ni7 );
  921. // Convert int16 to int8
  922. ni0 = _mm_packs_epi16( ni0, ni2 );
  923. ni4 = _mm_packs_epi16( ni4, ni6 );
  924. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  925. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  926. #endif
  927. }
  928. #else
  929. // scalar
  930. quantize_row_q8_0_reference(x, y, k);
  931. #endif
  932. }
  933. // reference implementation for deterministic creation of model files
  934. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  935. assert(QK8_1 == 32);
  936. assert(k % QK8_1 == 0);
  937. const int nb = k / QK8_1;
  938. for (int i = 0; i < nb; i++) {
  939. float amax = 0.0f; // absolute max
  940. for (int j = 0; j < QK8_1; j++) {
  941. const float v = x[i*QK8_1 + j];
  942. amax = MAX(amax, fabsf(v));
  943. }
  944. const float d = amax / ((1 << 7) - 1);
  945. const float id = d ? 1.0f/d : 0.0f;
  946. y[i].d = d;
  947. int sum = 0;
  948. for (int j = 0; j < QK8_1/2; ++j) {
  949. const float v0 = x[i*QK8_1 + j]*id;
  950. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  951. y[i].qs[ j] = roundf(v0);
  952. y[i].qs[QK8_1/2 + j] = roundf(v1);
  953. sum += y[i].qs[ j];
  954. sum += y[i].qs[QK8_1/2 + j];
  955. }
  956. y[i].s = d * sum;
  957. }
  958. }
  959. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  960. assert(k % QK8_1 == 0);
  961. const int nb = k / QK8_1;
  962. block_q8_1 * restrict y = vy;
  963. #if defined(__ARM_NEON)
  964. for (int i = 0; i < nb; i++) {
  965. float32x4_t srcv [8];
  966. float32x4_t asrcv[8];
  967. float32x4_t amaxv[8];
  968. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  969. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  970. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  971. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  972. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  973. const float amax = vmaxvq_f32(amaxv[0]);
  974. const float d = amax / ((1 << 7) - 1);
  975. const float id = d ? 1.0f/d : 0.0f;
  976. y[i].d = d;
  977. int32x4_t accv = vdupq_n_s32(0);
  978. for (int j = 0; j < 8; j++) {
  979. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  980. const int32x4_t vi = vcvtnq_s32_f32(v);
  981. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  982. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  983. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  984. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  985. accv = vaddq_s32(accv, vi);
  986. }
  987. y[i].s = d * vaddvq_s32(accv);
  988. }
  989. #elif defined(__AVX2__) || defined(__AVX__)
  990. for (int i = 0; i < nb; i++) {
  991. // Load elements into 4 AVX vectors
  992. __m256 v0 = _mm256_loadu_ps( x );
  993. __m256 v1 = _mm256_loadu_ps( x + 8 );
  994. __m256 v2 = _mm256_loadu_ps( x + 16 );
  995. __m256 v3 = _mm256_loadu_ps( x + 24 );
  996. x += 32;
  997. // Compute max(abs(e)) for the block
  998. const __m256 signBit = _mm256_set1_ps( -0.0f );
  999. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1000. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1001. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1002. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1003. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1004. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1005. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1006. const float maxScalar = _mm_cvtss_f32( max4 );
  1007. // Quantize these floats
  1008. const float d = maxScalar / 127.f;
  1009. y[i].d = d;
  1010. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1011. const __m256 mul = _mm256_set1_ps( id );
  1012. // Apply the multiplier
  1013. v0 = _mm256_mul_ps( v0, mul );
  1014. v1 = _mm256_mul_ps( v1, mul );
  1015. v2 = _mm256_mul_ps( v2, mul );
  1016. v3 = _mm256_mul_ps( v3, mul );
  1017. // Round to nearest integer
  1018. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1019. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1020. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1021. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1022. // Convert floats to integers
  1023. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1024. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1025. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1026. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1027. #if defined(__AVX2__)
  1028. // Compute the sum of the quants and set y[i].s
  1029. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1030. // Convert int32 to int16
  1031. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1032. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1033. // Convert int16 to int8
  1034. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1035. // We got our precious signed bytes, but the order is now wrong
  1036. // These AVX2 pack instructions process 16-byte pieces independently
  1037. // The following instruction is fixing the order
  1038. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1039. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1040. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1041. #else
  1042. // Since we don't have in AVX some necessary functions,
  1043. // we split the registers in half and call AVX2 analogs from SSE
  1044. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1045. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1046. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1047. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1048. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1049. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1050. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1051. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1052. // Compute the sum of the quants and set y[i].s
  1053. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1054. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1055. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1056. // Convert int32 to int16
  1057. ni0 = _mm_packs_epi32( ni0, ni1 );
  1058. ni2 = _mm_packs_epi32( ni2, ni3 );
  1059. ni4 = _mm_packs_epi32( ni4, ni5 );
  1060. ni6 = _mm_packs_epi32( ni6, ni7 );
  1061. // Convert int16 to int8
  1062. ni0 = _mm_packs_epi16( ni0, ni2 );
  1063. ni4 = _mm_packs_epi16( ni4, ni6 );
  1064. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1065. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1066. #endif
  1067. }
  1068. #else
  1069. // scalar
  1070. quantize_row_q8_1_reference(x, y, k);
  1071. #endif
  1072. }
  1073. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1074. static const int qk = QK4_0;
  1075. assert(k % qk == 0);
  1076. const int nb = k / qk;
  1077. for (int i = 0; i < nb; i++) {
  1078. const float d = x[i].d;
  1079. for (int j = 0; j < qk/2; ++j) {
  1080. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1081. const int x1 = (x[i].qs[j] >> 4) - 8;
  1082. y[i*qk + j + 0 ] = x0*d;
  1083. y[i*qk + j + qk/2] = x1*d;
  1084. }
  1085. }
  1086. }
  1087. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1088. static const int qk = QK4_1;
  1089. assert(k % qk == 0);
  1090. const int nb = k / qk;
  1091. for (int i = 0; i < nb; i++) {
  1092. const float d = x[i].d;
  1093. const float m = x[i].m;
  1094. for (int j = 0; j < qk/2; ++j) {
  1095. const int x0 = (x[i].qs[j] & 0x0F);
  1096. const int x1 = (x[i].qs[j] >> 4);
  1097. y[i*qk + j + 0 ] = x0*d + m;
  1098. y[i*qk + j + qk/2] = x1*d + m;
  1099. }
  1100. }
  1101. }
  1102. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1103. static const int qk = QK5_0;
  1104. assert(k % qk == 0);
  1105. const int nb = k / qk;
  1106. for (int i = 0; i < nb; i++) {
  1107. const float d = GGML_FP16_TO_FP32(x[i].d);
  1108. uint32_t qh;
  1109. memcpy(&qh, x[i].qh, sizeof(qh));
  1110. for (int j = 0; j < qk/2; ++j) {
  1111. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1112. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1113. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1114. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1115. y[i*qk + j + 0 ] = x0*d;
  1116. y[i*qk + j + qk/2] = x1*d;
  1117. }
  1118. }
  1119. }
  1120. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1121. static const int qk = QK5_1;
  1122. assert(k % qk == 0);
  1123. const int nb = k / qk;
  1124. for (int i = 0; i < nb; i++) {
  1125. const float d = GGML_FP16_TO_FP32(x[i].d);
  1126. const float m = GGML_FP16_TO_FP32(x[i].m);
  1127. uint32_t qh;
  1128. memcpy(&qh, x[i].qh, sizeof(qh));
  1129. for (int j = 0; j < qk/2; ++j) {
  1130. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1131. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1132. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1133. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1134. y[i*qk + j + 0 ] = x0*d + m;
  1135. y[i*qk + j + qk/2] = x1*d + m;
  1136. }
  1137. }
  1138. }
  1139. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1140. static const int qk = QK8_0;
  1141. assert(k % qk == 0);
  1142. const int nb = k / qk;
  1143. const block_q8_0 * restrict x = vx;
  1144. for (int i = 0; i < nb; i++) {
  1145. const float d = x[i].d;
  1146. for (int j = 0; j < qk; ++j) {
  1147. y[i*qk + j] = x[i].qs[j]*d;
  1148. }
  1149. }
  1150. }
  1151. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1152. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1153. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1154. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1155. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1156. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1157. [GGML_TYPE_Q4_0] = {
  1158. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1159. .quantize_row_q = quantize_row_q4_0,
  1160. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1161. .quantize_row_q_dot = quantize_row_q8_0,
  1162. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1163. .vec_dot_type = GGML_TYPE_Q8_0,
  1164. },
  1165. [GGML_TYPE_Q4_1] = {
  1166. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1167. .quantize_row_q = quantize_row_q4_1,
  1168. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1169. .quantize_row_q_dot = quantize_row_q8_1,
  1170. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1171. .vec_dot_type = GGML_TYPE_Q8_1,
  1172. },
  1173. [GGML_TYPE_Q5_0] = {
  1174. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1175. .quantize_row_q = quantize_row_q5_0,
  1176. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1177. .quantize_row_q_dot = quantize_row_q8_0,
  1178. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1179. .vec_dot_type = GGML_TYPE_Q8_0,
  1180. },
  1181. [GGML_TYPE_Q5_1] = {
  1182. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1183. .quantize_row_q = quantize_row_q5_1,
  1184. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1185. .quantize_row_q_dot = quantize_row_q8_1,
  1186. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1187. .vec_dot_type = GGML_TYPE_Q8_1,
  1188. },
  1189. [GGML_TYPE_Q8_0] = {
  1190. .dequantize_row_q = dequantize_row_q8_0,
  1191. .quantize_row_q = quantize_row_q8_0,
  1192. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1193. .quantize_row_q_dot = quantize_row_q8_0,
  1194. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1195. .vec_dot_type = GGML_TYPE_Q8_0,
  1196. },
  1197. [GGML_TYPE_Q8_1] = {
  1198. .dequantize_row_q = NULL, // TODO
  1199. .quantize_row_q = quantize_row_q8_1,
  1200. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1201. .quantize_row_q_dot = quantize_row_q8_1,
  1202. .vec_dot_q = NULL, // TODO
  1203. .vec_dot_type = GGML_TYPE_Q8_1,
  1204. },
  1205. };
  1206. // For internal test use
  1207. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1208. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1209. return quantize_fns[i];
  1210. }
  1211. //
  1212. // simd mappings
  1213. //
  1214. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1215. // we then implement the fundamental computation operations below using only these macros
  1216. // adding support for new architectures requires to define the corresponding SIMD macros
  1217. //
  1218. // GGML_F32_STEP / GGML_F16_STEP
  1219. // number of elements to process in a single step
  1220. //
  1221. // GGML_F32_EPR / GGML_F16_EPR
  1222. // number of elements to fit in a single register
  1223. //
  1224. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1225. #define GGML_SIMD
  1226. // F32 NEON
  1227. #define GGML_F32_STEP 16
  1228. #define GGML_F32_EPR 4
  1229. #define GGML_F32x4 float32x4_t
  1230. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1231. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1232. #define GGML_F32x4_LOAD vld1q_f32
  1233. #define GGML_F32x4_STORE vst1q_f32
  1234. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1235. #define GGML_F32x4_ADD vaddq_f32
  1236. #define GGML_F32x4_MUL vmulq_f32
  1237. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1238. #define GGML_F32x4_REDUCE(res, x) \
  1239. { \
  1240. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1241. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1242. } \
  1243. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1244. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1245. } \
  1246. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1247. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1248. } \
  1249. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1250. }
  1251. #define GGML_F32_VEC GGML_F32x4
  1252. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1253. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1254. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1255. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1256. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1257. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1258. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1259. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1260. // F16 NEON
  1261. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1262. #define GGML_F16_STEP 32
  1263. #define GGML_F16_EPR 8
  1264. #define GGML_F16x8 float16x8_t
  1265. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1266. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1267. #define GGML_F16x8_LOAD vld1q_f16
  1268. #define GGML_F16x8_STORE vst1q_f16
  1269. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1270. #define GGML_F16x8_ADD vaddq_f16
  1271. #define GGML_F16x8_MUL vmulq_f16
  1272. #define GGML_F16x8_REDUCE(res, x) \
  1273. { \
  1274. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1275. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1276. } \
  1277. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1278. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1279. } \
  1280. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1281. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1282. } \
  1283. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1284. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1285. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1286. }
  1287. #define GGML_F16_VEC GGML_F16x8
  1288. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1289. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1290. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1291. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1292. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1293. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1294. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1295. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1296. #else
  1297. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1298. // and take advantage of the vcvt_ functions to convert to/from FP16
  1299. #define GGML_F16_STEP 16
  1300. #define GGML_F16_EPR 4
  1301. #define GGML_F32Cx4 float32x4_t
  1302. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1303. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1304. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1305. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1306. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1307. #define GGML_F32Cx4_ADD vaddq_f32
  1308. #define GGML_F32Cx4_MUL vmulq_f32
  1309. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1310. #define GGML_F16_VEC GGML_F32Cx4
  1311. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1312. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1313. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1314. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1315. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1316. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1317. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1318. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1319. #endif
  1320. #elif defined(__AVX__)
  1321. #define GGML_SIMD
  1322. // F32 AVX
  1323. #define GGML_F32_STEP 32
  1324. #define GGML_F32_EPR 8
  1325. #define GGML_F32x8 __m256
  1326. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1327. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1328. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1329. #define GGML_F32x8_STORE _mm256_storeu_ps
  1330. #if defined(__FMA__)
  1331. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1332. #else
  1333. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1334. #endif
  1335. #define GGML_F32x8_ADD _mm256_add_ps
  1336. #define GGML_F32x8_MUL _mm256_mul_ps
  1337. #define GGML_F32x8_REDUCE(res, x) \
  1338. { \
  1339. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1340. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1341. } \
  1342. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1343. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1344. } \
  1345. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1346. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1347. } \
  1348. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1349. _mm256_extractf128_ps(x[0], 1)); \
  1350. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1351. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1352. }
  1353. // TODO: is this optimal ?
  1354. #define GGML_F32_VEC GGML_F32x8
  1355. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1356. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1357. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1358. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1359. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1360. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1361. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1362. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1363. // F16 AVX
  1364. #define GGML_F16_STEP 32
  1365. #define GGML_F16_EPR 8
  1366. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1367. #define GGML_F32Cx8 __m256
  1368. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1369. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1370. #if defined(__F16C__)
  1371. // the _mm256_cvt intrinsics require F16C
  1372. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1373. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1374. #else
  1375. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1376. float tmp[8];
  1377. for (int i = 0; i < 8; i++)
  1378. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1379. return _mm256_loadu_ps(tmp);
  1380. }
  1381. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1382. float arr[8];
  1383. _mm256_storeu_ps(arr, y);
  1384. for (int i = 0; i < 8; i++)
  1385. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1386. }
  1387. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1388. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1389. #endif
  1390. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1391. #define GGML_F32Cx8_ADD _mm256_add_ps
  1392. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1393. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1394. #define GGML_F16_VEC GGML_F32Cx8
  1395. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1396. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1397. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1398. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1399. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1400. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1401. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1402. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1403. #elif defined(__POWER9_VECTOR__)
  1404. #define GGML_SIMD
  1405. // F32 POWER9
  1406. #define GGML_F32_STEP 32
  1407. #define GGML_F32_EPR 4
  1408. #define GGML_F32x4 vector float
  1409. #define GGML_F32x4_ZERO 0.0f
  1410. #define GGML_F32x4_SET1 vec_splats
  1411. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1412. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1413. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1414. #define GGML_F32x4_ADD vec_add
  1415. #define GGML_F32x4_MUL vec_mul
  1416. #define GGML_F32x4_REDUCE(res, x) \
  1417. { \
  1418. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1419. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1420. } \
  1421. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1422. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1423. } \
  1424. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1425. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1426. } \
  1427. res = vec_extract(x[0], 0) + \
  1428. vec_extract(x[0], 1) + \
  1429. vec_extract(x[0], 2) + \
  1430. vec_extract(x[0], 3); \
  1431. }
  1432. #define GGML_F32_VEC GGML_F32x4
  1433. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1434. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1435. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1436. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1437. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1438. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1439. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1440. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1441. // F16 POWER9
  1442. #define GGML_F16_STEP GGML_F32_STEP
  1443. #define GGML_F16_EPR GGML_F32_EPR
  1444. #define GGML_F16_VEC GGML_F32x4
  1445. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1446. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1447. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1448. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1449. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1450. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1451. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1452. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1453. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1454. #define GGML_F16_VEC_STORE(p, r, i) \
  1455. if (i & 0x1) \
  1456. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1457. r[i - GGML_ENDIAN_BYTE(0)]), \
  1458. 0, p - GGML_F16_EPR)
  1459. #elif defined(__wasm_simd128__)
  1460. #define GGML_SIMD
  1461. // F32 WASM
  1462. #define GGML_F32_STEP 16
  1463. #define GGML_F32_EPR 4
  1464. #define GGML_F32x4 v128_t
  1465. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1466. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1467. #define GGML_F32x4_LOAD wasm_v128_load
  1468. #define GGML_F32x4_STORE wasm_v128_store
  1469. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1470. #define GGML_F32x4_ADD wasm_f32x4_add
  1471. #define GGML_F32x4_MUL wasm_f32x4_mul
  1472. #define GGML_F32x4_REDUCE(res, x) \
  1473. { \
  1474. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1475. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1476. } \
  1477. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1478. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1479. } \
  1480. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1481. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1482. } \
  1483. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1484. wasm_f32x4_extract_lane(x[0], 1) + \
  1485. wasm_f32x4_extract_lane(x[0], 2) + \
  1486. wasm_f32x4_extract_lane(x[0], 3); \
  1487. }
  1488. #define GGML_F32_VEC GGML_F32x4
  1489. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1490. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1491. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1492. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1493. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1494. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1495. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1496. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1497. // F16 WASM
  1498. #define GGML_F16_STEP 16
  1499. #define GGML_F16_EPR 4
  1500. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1501. float tmp[4];
  1502. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1503. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1504. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1505. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1506. return wasm_v128_load(tmp);
  1507. }
  1508. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1509. float tmp[4];
  1510. wasm_v128_store(tmp, x);
  1511. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1512. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1513. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1514. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1515. }
  1516. #define GGML_F16x4 v128_t
  1517. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1518. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1519. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1520. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1521. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1522. #define GGML_F16x4_ADD wasm_f32x4_add
  1523. #define GGML_F16x4_MUL wasm_f32x4_mul
  1524. #define GGML_F16x4_REDUCE(res, x) \
  1525. { \
  1526. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1527. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1528. } \
  1529. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1530. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1531. } \
  1532. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1533. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1534. } \
  1535. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1536. wasm_f32x4_extract_lane(x[0], 1) + \
  1537. wasm_f32x4_extract_lane(x[0], 2) + \
  1538. wasm_f32x4_extract_lane(x[0], 3); \
  1539. }
  1540. #define GGML_F16_VEC GGML_F16x4
  1541. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1542. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1543. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1544. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1545. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1546. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1547. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1548. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1549. #elif defined(__SSE3__)
  1550. #define GGML_SIMD
  1551. // F32 SSE
  1552. #define GGML_F32_STEP 32
  1553. #define GGML_F32_EPR 4
  1554. #define GGML_F32x4 __m128
  1555. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1556. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1557. #define GGML_F32x4_LOAD _mm_loadu_ps
  1558. #define GGML_F32x4_STORE _mm_storeu_ps
  1559. #if defined(__FMA__)
  1560. // TODO: Does this work?
  1561. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1562. #else
  1563. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1564. #endif
  1565. #define GGML_F32x4_ADD _mm_add_ps
  1566. #define GGML_F32x4_MUL _mm_mul_ps
  1567. #define GGML_F32x4_REDUCE(res, x) \
  1568. { \
  1569. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1570. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1571. } \
  1572. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1573. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1574. } \
  1575. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1576. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1577. } \
  1578. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1579. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1580. }
  1581. // TODO: is this optimal ?
  1582. #define GGML_F32_VEC GGML_F32x4
  1583. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1584. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1585. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1586. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1587. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1588. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1589. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1590. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1591. // F16 SSE
  1592. #define GGML_F16_STEP 32
  1593. #define GGML_F16_EPR 4
  1594. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1595. float tmp[4];
  1596. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1597. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1598. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1599. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1600. return _mm_loadu_ps(tmp);
  1601. }
  1602. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1603. float arr[4];
  1604. _mm_storeu_ps(arr, y);
  1605. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1606. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1607. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1608. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1609. }
  1610. #define GGML_F32Cx4 __m128
  1611. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1612. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1613. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1614. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1615. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1616. #define GGML_F32Cx4_ADD _mm_add_ps
  1617. #define GGML_F32Cx4_MUL _mm_mul_ps
  1618. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1619. #define GGML_F16_VEC GGML_F32Cx4
  1620. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1621. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1622. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1623. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1624. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1625. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1626. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1627. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1628. #endif
  1629. // GGML_F32_ARR / GGML_F16_ARR
  1630. // number of registers to use per step
  1631. #ifdef GGML_SIMD
  1632. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1633. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1634. #endif
  1635. //
  1636. // fundamental operations
  1637. //
  1638. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1639. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1640. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1641. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1642. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1643. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1644. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1645. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1646. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1647. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1648. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1649. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1650. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1651. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1652. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1653. #ifdef GGML_SIMD
  1654. float sumf = 0.0f;
  1655. const int np = (n & ~(GGML_F32_STEP - 1));
  1656. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1657. GGML_F32_VEC ax[GGML_F32_ARR];
  1658. GGML_F32_VEC ay[GGML_F32_ARR];
  1659. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1660. for (int j = 0; j < GGML_F32_ARR; j++) {
  1661. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1662. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1663. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1664. }
  1665. }
  1666. // reduce sum0..sum3 to sum0
  1667. GGML_F32_VEC_REDUCE(sumf, sum);
  1668. // leftovers
  1669. for (int i = np; i < n; ++i) {
  1670. sumf += x[i]*y[i];
  1671. }
  1672. #else
  1673. // scalar
  1674. ggml_float sumf = 0.0;
  1675. for (int i = 0; i < n; ++i) {
  1676. sumf += (ggml_float)(x[i]*y[i]);
  1677. }
  1678. #endif
  1679. *s = sumf;
  1680. }
  1681. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1682. ggml_float sumf = 0.0;
  1683. #if defined(GGML_SIMD)
  1684. const int np = (n & ~(GGML_F16_STEP - 1));
  1685. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1686. GGML_F16_VEC ax[GGML_F16_ARR];
  1687. GGML_F16_VEC ay[GGML_F16_ARR];
  1688. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1689. for (int j = 0; j < GGML_F16_ARR; j++) {
  1690. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1691. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1692. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1693. }
  1694. }
  1695. // reduce sum0..sum3 to sum0
  1696. GGML_F16_VEC_REDUCE(sumf, sum);
  1697. // leftovers
  1698. for (int i = np; i < n; ++i) {
  1699. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1700. }
  1701. #else
  1702. for (int i = 0; i < n; ++i) {
  1703. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1704. }
  1705. #endif
  1706. *s = sumf;
  1707. }
  1708. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1709. const int qk = QK8_0;
  1710. const int nb = n / qk;
  1711. assert(n % qk == 0);
  1712. assert(nb % 2 == 0);
  1713. const block_q4_0 * restrict x = vx;
  1714. const block_q8_0 * restrict y = vy;
  1715. #if defined(__ARM_NEON)
  1716. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1717. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1718. for (int i = 0; i < nb; i += 2) {
  1719. const block_q4_0 * restrict x0 = &x[i + 0];
  1720. const block_q4_0 * restrict x1 = &x[i + 1];
  1721. const block_q8_0 * restrict y0 = &y[i + 0];
  1722. const block_q8_0 * restrict y1 = &y[i + 1];
  1723. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1724. const int8x16_t s8b = vdupq_n_s8(0x8);
  1725. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1726. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1727. // 4-bit -> 8-bit
  1728. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1729. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1730. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1731. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1732. // sub 8
  1733. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1734. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1735. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1736. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1737. // load y
  1738. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1739. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1740. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1741. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1742. #if defined(__ARM_FEATURE_DOTPROD)
  1743. // dot product into int32x4_t
  1744. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1745. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1746. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1747. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1748. #else
  1749. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1750. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1751. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1752. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1753. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1754. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1755. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1756. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1757. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1758. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1759. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1760. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1761. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1762. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1763. #endif
  1764. }
  1765. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1766. #elif defined(__AVX2__)
  1767. // Initialize accumulator with zeros
  1768. __m256 acc = _mm256_setzero_ps();
  1769. // Main loop
  1770. for (int i = 0; i < nb; ++i) {
  1771. /* Compute combined scale for the block */
  1772. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1773. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1774. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1775. const __m256i off = _mm256_set1_epi8( 8 );
  1776. bx = _mm256_sub_epi8( bx, off );
  1777. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1778. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1779. /* Multiply q with scale and accumulate */
  1780. acc = _mm256_fmadd_ps( d, q, acc );
  1781. }
  1782. *s = hsum_float_8(acc);
  1783. #elif defined(__AVX__)
  1784. // Initialize accumulator with zeros
  1785. __m256 acc = _mm256_setzero_ps();
  1786. // Main loop
  1787. for (int i = 0; i < nb; ++i) {
  1788. // Compute combined scale for the block
  1789. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1790. const __m128i lowMask = _mm_set1_epi8(0xF);
  1791. const __m128i off = _mm_set1_epi8(8);
  1792. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1793. __m128i bx = _mm_and_si128(lowMask, tmp);
  1794. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1795. bx = _mm_sub_epi8(bx, off);
  1796. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1797. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1798. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1799. bx = _mm_sub_epi8(bx, off);
  1800. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1801. // Convert int32_t to float
  1802. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1803. // Apply the scale, and accumulate
  1804. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1805. }
  1806. *s = hsum_float_8(acc);
  1807. #elif defined(__SSSE3__)
  1808. // set constants
  1809. const __m128i lowMask = _mm_set1_epi8(0xF);
  1810. const __m128i off = _mm_set1_epi8(8);
  1811. // Initialize accumulator with zeros
  1812. __m128 acc_0 = _mm_setzero_ps();
  1813. __m128 acc_1 = _mm_setzero_ps();
  1814. __m128 acc_2 = _mm_setzero_ps();
  1815. __m128 acc_3 = _mm_setzero_ps();
  1816. // First round without accumulation
  1817. {
  1818. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1819. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1820. // Compute combined scale for the block 0 and 1
  1821. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[0].d ), _mm_set1_ps( y[0].d ) );
  1822. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1823. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1824. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1825. bx_0 = _mm_sub_epi8(bx_0, off);
  1826. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1827. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1828. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1829. bx_1 = _mm_sub_epi8(bx_1, off);
  1830. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1831. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1832. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1833. // Compute combined scale for the block 2 and 3
  1834. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[1].d ), _mm_set1_ps( y[1].d ) );
  1835. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1836. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1837. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1838. bx_2 = _mm_sub_epi8(bx_2, off);
  1839. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1840. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1841. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1842. bx_3 = _mm_sub_epi8(bx_3, off);
  1843. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1844. // Convert int32_t to float
  1845. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1846. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1847. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1848. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1849. // Apply the scale
  1850. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1851. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1852. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1853. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1854. }
  1855. // Main loop
  1856. for (int i = 2; i < nb; i+=2) {
  1857. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1858. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1859. // Compute combined scale for the block 0 and 1
  1860. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[i].d ), _mm_set1_ps( y[i].d ) );
  1861. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1862. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1863. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1864. bx_0 = _mm_sub_epi8(bx_0, off);
  1865. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1866. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1867. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1868. bx_1 = _mm_sub_epi8(bx_1, off);
  1869. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1870. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1871. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1872. // Compute combined scale for the block 2 and 3
  1873. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[i + 1].d ), _mm_set1_ps( y[i + 1].d ) );
  1874. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1875. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1876. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1877. bx_2 = _mm_sub_epi8(bx_2, off);
  1878. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1879. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1880. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1881. bx_3 = _mm_sub_epi8(bx_3, off);
  1882. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1883. // Convert int32_t to float
  1884. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1885. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1886. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1887. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1888. // Apply the scale
  1889. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1890. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1891. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1892. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1893. // Acummulate
  1894. acc_0 = _mm_add_ps(p0_d, acc_0);
  1895. acc_1 = _mm_add_ps(p1_d, acc_1);
  1896. acc_2 = _mm_add_ps(p2_d, acc_2);
  1897. acc_3 = _mm_add_ps(p3_d, acc_3);
  1898. }
  1899. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1900. #else
  1901. // scalar
  1902. float sumf = 0.0;
  1903. for (int i = 0; i < nb; i++) {
  1904. int sumi = 0;
  1905. for (int j = 0; j < qk/2; ++j) {
  1906. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1907. const int v1 = (x[i].qs[j] >> 4) - 8;
  1908. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1909. }
  1910. sumf += (x[i].d*y[i].d)*sumi;
  1911. }
  1912. *s = sumf;
  1913. #endif
  1914. }
  1915. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1916. const int qk = QK8_1;
  1917. const int nb = n / qk;
  1918. assert(n % qk == 0);
  1919. assert(nb % 2 == 0);
  1920. const block_q4_1 * restrict x = vx;
  1921. const block_q8_1 * restrict y = vy;
  1922. // TODO: add WASM SIMD
  1923. #if defined(__ARM_NEON)
  1924. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1925. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1926. float summs = 0;
  1927. for (int i = 0; i < nb; i += 2) {
  1928. const block_q4_1 * restrict x0 = &x[i + 0];
  1929. const block_q4_1 * restrict x1 = &x[i + 1];
  1930. const block_q8_1 * restrict y0 = &y[i + 0];
  1931. const block_q8_1 * restrict y1 = &y[i + 1];
  1932. summs += x0->m * y0->s + x1->m * y1->s;
  1933. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1934. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1935. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1936. // 4-bit -> 8-bit
  1937. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1938. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1939. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1940. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1941. // load y
  1942. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1943. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1944. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1945. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1946. #if defined(__ARM_FEATURE_DOTPROD)
  1947. // dot product into int32x4_t
  1948. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  1949. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  1950. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1951. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1952. #else
  1953. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  1954. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  1955. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  1956. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  1957. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  1958. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  1959. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  1960. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  1961. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1962. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1963. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1964. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1965. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1966. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1967. #endif
  1968. }
  1969. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  1970. #elif defined(__AVX2__) || defined(__AVX__)
  1971. // Initialize accumulator with zeros
  1972. __m256 acc = _mm256_setzero_ps();
  1973. float summs = 0;
  1974. // Main loop
  1975. for (int i = 0; i < nb; ++i) {
  1976. const float * d0 = &x[i].d;
  1977. const float * d1 = &y[i].d;
  1978. summs += x[i].m * y[i].s;
  1979. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1980. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1981. // Compute combined scales
  1982. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  1983. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1984. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1985. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  1986. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  1987. // Accumulate d0*d1*x*y
  1988. #if defined(__AVX2__)
  1989. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  1990. #else
  1991. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  1992. #endif
  1993. }
  1994. *s = hsum_float_8(acc) + summs;
  1995. #else
  1996. // scalar
  1997. float sumf = 0.0;
  1998. for (int i = 0; i < nb; i++) {
  1999. int sumi = 0;
  2000. for (int j = 0; j < qk/2; ++j) {
  2001. const int v0 = (x[i].qs[j] & 0x0F);
  2002. const int v1 = (x[i].qs[j] >> 4);
  2003. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2004. }
  2005. sumf += (x[i].d*y[i].d)*sumi + x[i].m*y[i].s;
  2006. }
  2007. *s = sumf;
  2008. #endif
  2009. }
  2010. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2011. const int qk = QK8_0;
  2012. const int nb = n / qk;
  2013. assert(n % qk == 0);
  2014. assert(nb % 2 == 0);
  2015. assert(qk == QK5_0);
  2016. const block_q5_0 * restrict x = vx;
  2017. const block_q8_0 * restrict y = vy;
  2018. #if defined(__ARM_NEON)
  2019. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2020. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2021. uint32_t qh0;
  2022. uint32_t qh1;
  2023. uint64_t tmp0[4];
  2024. uint64_t tmp1[4];
  2025. for (int i = 0; i < nb; i += 2) {
  2026. const block_q5_0 * restrict x0 = &x[i];
  2027. const block_q5_0 * restrict x1 = &x[i + 1];
  2028. const block_q8_0 * restrict y0 = &y[i];
  2029. const block_q8_0 * restrict y1 = &y[i + 1];
  2030. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2031. // extract the 5th bit via lookup table ((!b) << 4)
  2032. memcpy(&qh0, x0->qh, sizeof(qh0));
  2033. memcpy(&qh1, x1->qh, sizeof(qh1));
  2034. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2035. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2036. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2037. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2038. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2039. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2040. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2041. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2042. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2043. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2044. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2045. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2046. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2047. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2048. // 4-bit -> 8-bit
  2049. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2050. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2051. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2052. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2053. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2054. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2055. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2056. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2057. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2058. // load y
  2059. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2060. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2061. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2062. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2063. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2064. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2065. #if defined(__ARM_FEATURE_DOTPROD)
  2066. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2067. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2068. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2069. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2070. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2071. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2072. #else
  2073. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2074. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2075. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2076. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2077. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2078. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2079. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2080. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2081. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2082. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2083. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2084. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2085. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2086. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2087. #endif
  2088. }
  2089. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2090. #elif defined(__wasm_simd128__)
  2091. v128_t sumv = wasm_f32x4_splat(0.0f);
  2092. uint32_t qh;
  2093. uint64_t tmp[4];
  2094. // TODO: check if unrolling this is better
  2095. for (int i = 0; i < nb; ++i) {
  2096. const block_q5_0 * restrict x0 = &x[i];
  2097. const block_q8_0 * restrict y0 = &y[i];
  2098. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2099. const v128_t s16b = wasm_i8x16_splat(0x10);
  2100. // extract the 5th bit
  2101. memcpy(&qh, x0->qh, sizeof(qh));
  2102. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2103. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2104. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2105. tmp[3] = table_b2b_1[(qh >> 24) ];
  2106. const v128_t qhl = wasm_v128_load(tmp + 0);
  2107. const v128_t qhh = wasm_v128_load(tmp + 2);
  2108. const v128_t v0 = wasm_v128_load(x0->qs);
  2109. // 4-bit -> 8-bit
  2110. const v128_t v0l = wasm_v128_and (v0, m4b);
  2111. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2112. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2113. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2114. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2115. // load y
  2116. const v128_t v1l = wasm_v128_load(y0->qs);
  2117. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2118. // int8x16 -> int16x8
  2119. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2120. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2121. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2122. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2123. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2124. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2125. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2126. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2127. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2128. // dot product
  2129. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2130. wasm_i32x4_add(
  2131. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2132. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2133. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2134. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2135. }
  2136. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2137. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2138. #elif defined(__AVX2__)
  2139. // Initialize accumulator with zeros
  2140. __m256 acc = _mm256_setzero_ps();
  2141. // Main loop
  2142. for (int i = 0; i < nb; i++) {
  2143. /* Compute combined scale for the block */
  2144. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2145. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2146. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2147. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2148. bx = _mm256_or_si256(bx, bxhi);
  2149. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2150. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2151. /* Multiply q with scale and accumulate */
  2152. acc = _mm256_fmadd_ps(d, q, acc);
  2153. }
  2154. *s = hsum_float_8(acc);
  2155. #elif defined(__AVX__)
  2156. // Initialize accumulator with zeros
  2157. __m256 acc = _mm256_setzero_ps();
  2158. __m128i mask = _mm_set1_epi8((char)0xF0);
  2159. // Main loop
  2160. for (int i = 0; i < nb; i++) {
  2161. /* Compute combined scale for the block */
  2162. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2163. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2164. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2165. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2166. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2167. bxhil = _mm_andnot_si128(bxhil, mask);
  2168. bxhih = _mm_andnot_si128(bxhih, mask);
  2169. __m128i bxl = _mm256_castsi256_si128(bx);
  2170. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2171. bxl = _mm_or_si128(bxl, bxhil);
  2172. bxh = _mm_or_si128(bxh, bxhih);
  2173. bx = _mm256_set_m128i(bxh, bxl);
  2174. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2175. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2176. /* Multiply q with scale and accumulate */
  2177. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2178. }
  2179. *s = hsum_float_8(acc);
  2180. #else
  2181. // scalar
  2182. float sumf = 0.0;
  2183. for (int i = 0; i < nb; i++) {
  2184. uint32_t qh;
  2185. memcpy(&qh, x[i].qh, sizeof(qh));
  2186. int sumi = 0;
  2187. for (int j = 0; j < qk/2; ++j) {
  2188. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2189. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2190. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2191. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2192. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2193. }
  2194. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi;
  2195. }
  2196. *s = sumf;
  2197. #endif
  2198. }
  2199. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2200. const int qk = QK8_1;
  2201. const int nb = n / qk;
  2202. assert(n % qk == 0);
  2203. assert(nb % 2 == 0);
  2204. assert(qk == QK5_1);
  2205. const block_q5_1 * restrict x = vx;
  2206. const block_q8_1 * restrict y = vy;
  2207. #if defined(__ARM_NEON)
  2208. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2209. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2210. float summs0 = 0.0f;
  2211. float summs1 = 0.0f;
  2212. uint32_t qh0;
  2213. uint32_t qh1;
  2214. uint64_t tmp0[4];
  2215. uint64_t tmp1[4];
  2216. for (int i = 0; i < nb; i += 2) {
  2217. const block_q5_1 * restrict x0 = &x[i];
  2218. const block_q5_1 * restrict x1 = &x[i + 1];
  2219. const block_q8_1 * restrict y0 = &y[i];
  2220. const block_q8_1 * restrict y1 = &y[i + 1];
  2221. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2222. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2223. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2224. // extract the 5th bit via lookup table ((b) << 4)
  2225. memcpy(&qh0, x0->qh, sizeof(qh0));
  2226. memcpy(&qh1, x1->qh, sizeof(qh1));
  2227. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2228. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2229. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2230. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2231. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2232. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2233. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2234. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2235. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2236. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2237. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2238. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2239. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2240. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2241. // 4-bit -> 8-bit
  2242. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2243. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2244. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2245. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2246. // add high bit
  2247. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2248. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2249. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2250. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2251. // load y
  2252. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2253. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2254. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2255. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2256. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2257. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2258. #if defined(__ARM_FEATURE_DOTPROD)
  2259. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2260. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2261. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2262. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2263. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2264. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2265. #else
  2266. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2267. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2268. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2269. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2270. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2271. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2272. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2273. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2274. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2275. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2276. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2277. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2278. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2279. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2280. #endif
  2281. }
  2282. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2283. #elif defined(__wasm_simd128__)
  2284. v128_t sumv = wasm_f32x4_splat(0.0f);
  2285. float summs = 0.0f;
  2286. uint32_t qh;
  2287. uint64_t tmp[4];
  2288. // TODO: check if unrolling this is better
  2289. for (int i = 0; i < nb; ++i) {
  2290. const block_q5_1 * restrict x0 = &x[i];
  2291. const block_q8_1 * restrict y0 = &y[i];
  2292. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2293. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2294. // extract the 5th bit
  2295. memcpy(&qh, x0->qh, sizeof(qh));
  2296. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2297. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2298. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2299. tmp[3] = table_b2b_0[(qh >> 24) ];
  2300. const v128_t qhl = wasm_v128_load(tmp + 0);
  2301. const v128_t qhh = wasm_v128_load(tmp + 2);
  2302. const v128_t v0 = wasm_v128_load(x0->qs);
  2303. // 4-bit -> 8-bit
  2304. const v128_t v0l = wasm_v128_and (v0, m4b);
  2305. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2306. static bool x = true;
  2307. // add high bit
  2308. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2309. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2310. // load y
  2311. const v128_t v1l = wasm_v128_load(y0->qs);
  2312. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2313. // int8x16 -> int16x8
  2314. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2315. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2316. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2317. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2318. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2319. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2320. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2321. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2322. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2323. // dot product
  2324. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2325. wasm_i32x4_add(
  2326. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2327. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2328. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2329. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2330. }
  2331. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2332. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2333. #elif defined(__AVX2__)
  2334. // Initialize accumulator with zeros
  2335. __m256 acc = _mm256_setzero_ps();
  2336. float summs = 0.0f;
  2337. // Main loop
  2338. for (int i = 0; i < nb; i++) {
  2339. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2340. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2341. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2342. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2343. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2344. bx = _mm256_or_si256(bx, bxhi);
  2345. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2346. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2347. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2348. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2349. }
  2350. *s = hsum_float_8(acc) + summs;
  2351. #elif defined(__AVX__)
  2352. // Initialize accumulator with zeros
  2353. __m256 acc = _mm256_setzero_ps();
  2354. __m128i mask = _mm_set1_epi8(0x10);
  2355. float summs = 0.0f;
  2356. // Main loop
  2357. for (int i = 0; i < nb; i++) {
  2358. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2359. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2360. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2361. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2362. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2363. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2364. bxhil = _mm_and_si128(bxhil, mask);
  2365. bxhih = _mm_and_si128(bxhih, mask);
  2366. __m128i bxl = _mm256_castsi256_si128(bx);
  2367. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2368. bxl = _mm_or_si128(bxl, bxhil);
  2369. bxh = _mm_or_si128(bxh, bxhih);
  2370. bx = _mm256_set_m128i(bxh, bxl);
  2371. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2372. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2373. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2374. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2375. }
  2376. *s = hsum_float_8(acc) + summs;
  2377. #else
  2378. // scalar
  2379. float sumf = 0.0;
  2380. for (int i = 0; i < nb; i++) {
  2381. uint32_t qh;
  2382. memcpy(&qh, x[i].qh, sizeof(qh));
  2383. int sumi = 0;
  2384. for (int j = 0; j < qk/2; ++j) {
  2385. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2386. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2387. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2388. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2389. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2390. }
  2391. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2392. }
  2393. *s = sumf;
  2394. #endif
  2395. }
  2396. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2397. const int qk = QK8_0;
  2398. const int nb = n / qk;
  2399. assert(n % qk == 0);
  2400. assert(nb % 2 == 0);
  2401. const block_q8_0 * restrict x = vx;
  2402. const block_q8_0 * restrict y = vy;
  2403. #if defined(__ARM_NEON)
  2404. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2405. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2406. for (int i = 0; i < nb; i += 2) {
  2407. const block_q8_0 * restrict x0 = &x[i + 0];
  2408. const block_q8_0 * restrict x1 = &x[i + 1];
  2409. const block_q8_0 * restrict y0 = &y[i + 0];
  2410. const block_q8_0 * restrict y1 = &y[i + 1];
  2411. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2412. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2413. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2414. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2415. // load y
  2416. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2417. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2418. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2419. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2420. #if defined(__ARM_FEATURE_DOTPROD)
  2421. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2422. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2423. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2424. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2425. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2426. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2427. #else
  2428. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2429. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2430. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2431. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2432. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2433. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2434. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2435. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2436. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2437. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2438. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2439. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2440. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2441. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2442. #endif
  2443. }
  2444. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2445. #elif defined(__AVX2__) || defined(__AVX__)
  2446. // Initialize accumulator with zeros
  2447. __m256 acc = _mm256_setzero_ps();
  2448. // Main loop
  2449. for (int i = 0; i < nb; ++i) {
  2450. // Compute combined scale for the block
  2451. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2452. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2453. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2454. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2455. // Multiply q with scale and accumulate
  2456. #if defined(__AVX2__)
  2457. acc = _mm256_fmadd_ps( d, q, acc );
  2458. #else
  2459. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2460. #endif
  2461. }
  2462. *s = hsum_float_8(acc);
  2463. #else
  2464. // scalar
  2465. float sumf = 0.0;
  2466. for (int i = 0; i < nb; i++) {
  2467. int sumi = 0;
  2468. for (int j = 0; j < qk; j++) {
  2469. sumi += x[i].qs[j]*y[i].qs[j];
  2470. }
  2471. sumf += (x[i].d*y[i].d)*sumi;
  2472. }
  2473. *s = sumf;
  2474. #endif
  2475. }
  2476. // compute GGML_VEC_DOT_UNROLL dot products at once
  2477. // xs - x row stride in bytes
  2478. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2479. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2480. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2481. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2482. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2483. }
  2484. #if defined(GGML_SIMD)
  2485. const int np = (n & ~(GGML_F16_STEP - 1));
  2486. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2487. GGML_F16_VEC ax[GGML_F16_ARR];
  2488. GGML_F16_VEC ay[GGML_F16_ARR];
  2489. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2490. for (int j = 0; j < GGML_F16_ARR; j++) {
  2491. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2492. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2493. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2494. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2495. }
  2496. }
  2497. }
  2498. // reduce sum0..sum3 to sum0
  2499. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2500. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2501. }
  2502. // leftovers
  2503. for (int i = np; i < n; ++i) {
  2504. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2505. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2506. }
  2507. }
  2508. #else
  2509. for (int i = 0; i < n; ++i) {
  2510. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2511. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2512. }
  2513. }
  2514. #endif
  2515. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2516. s[i] = sumf[i];
  2517. }
  2518. }
  2519. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2520. #if defined(GGML_SIMD)
  2521. const int np = (n & ~(GGML_F32_STEP - 1));
  2522. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2523. GGML_F32_VEC ax[GGML_F32_ARR];
  2524. GGML_F32_VEC ay[GGML_F32_ARR];
  2525. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2526. for (int j = 0; j < GGML_F32_ARR; j++) {
  2527. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2528. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2529. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2530. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2531. }
  2532. }
  2533. // leftovers
  2534. for (int i = np; i < n; ++i) {
  2535. y[i] += x[i]*v;
  2536. }
  2537. #else
  2538. // scalar
  2539. for (int i = 0; i < n; ++i) {
  2540. y[i] += x[i]*v;
  2541. }
  2542. #endif
  2543. }
  2544. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2545. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2546. #if defined(GGML_SIMD)
  2547. const int np = (n & ~(GGML_F32_STEP - 1));
  2548. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2549. GGML_F32_VEC ay[GGML_F32_ARR];
  2550. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2551. for (int j = 0; j < GGML_F32_ARR; j++) {
  2552. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2553. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2554. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2555. }
  2556. }
  2557. // leftovers
  2558. for (int i = np; i < n; ++i) {
  2559. y[i] *= v;
  2560. }
  2561. #else
  2562. // scalar
  2563. for (int i = 0; i < n; ++i) {
  2564. y[i] *= v;
  2565. }
  2566. #endif
  2567. }
  2568. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2569. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2570. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2571. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2572. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2573. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2574. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2575. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2576. static const float GELU_COEF_A = 0.044715f;
  2577. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2578. inline static float ggml_gelu_f32(float x) {
  2579. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2580. }
  2581. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2582. const uint16_t * i16 = (const uint16_t *) x;
  2583. for (int i = 0; i < n; ++i) {
  2584. y[i] = table_gelu_f16[i16[i]];
  2585. }
  2586. }
  2587. #ifdef GGML_GELU_FP16
  2588. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2589. uint16_t t;
  2590. for (int i = 0; i < n; ++i) {
  2591. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2592. memcpy(&t, &fp16, sizeof(uint16_t));
  2593. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2594. }
  2595. }
  2596. #else
  2597. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2598. for (int i = 0; i < n; ++i) {
  2599. y[i] = ggml_gelu_f32(x[i]);
  2600. }
  2601. }
  2602. #endif
  2603. // Sigmoid Linear Unit (SiLU) function
  2604. inline static float ggml_silu_f32(float x) {
  2605. return x/(1.0f + expf(-x));
  2606. }
  2607. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2608. // const uint16_t * i16 = (const uint16_t *) x;
  2609. // for (int i = 0; i < n; ++i) {
  2610. // y[i] = table_silu_f16[i16[i]];
  2611. // }
  2612. //}
  2613. #ifdef GGML_SILU_FP16
  2614. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2615. uint16_t t;
  2616. for (int i = 0; i < n; ++i) {
  2617. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2618. memcpy(&t, &fp16, sizeof(uint16_t));
  2619. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2620. }
  2621. }
  2622. #else
  2623. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2624. for (int i = 0; i < n; ++i) {
  2625. y[i] = ggml_silu_f32(x[i]);
  2626. }
  2627. }
  2628. #endif
  2629. inline static float ggml_silu_backward_f32(float x, float dy) {
  2630. const float s = 1.0f/(1.0f + expf(-x));
  2631. return dy*s*(1.0f + x*(1.0f - s));
  2632. }
  2633. #ifdef GGML_SILU_FP16
  2634. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2635. for (int i = 0; i < n; ++i) {
  2636. // we did not use x[i] to compute forward silu but its f16 equivalent
  2637. // take derivative at f16 of x[i]:
  2638. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2639. float usedx = GGML_FP16_TO_FP32(fp16);
  2640. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2641. }
  2642. }
  2643. #else
  2644. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2645. for (int i = 0; i < n; ++i) {
  2646. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2647. }
  2648. }
  2649. #endif
  2650. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2651. #ifndef GGML_USE_ACCELERATE
  2652. ggml_float sum = 0.0;
  2653. for (int i = 0; i < n; ++i) {
  2654. sum += (ggml_float)x[i];
  2655. }
  2656. *s = sum;
  2657. #else
  2658. vDSP_sve(x, 1, s, n);
  2659. #endif
  2660. }
  2661. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2662. ggml_float sum = 0.0;
  2663. for (int i = 0; i < n; ++i) {
  2664. sum += (ggml_float)x[i];
  2665. }
  2666. *s = sum;
  2667. }
  2668. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2669. #ifndef GGML_USE_ACCELERATE
  2670. float max = -INFINITY;
  2671. for (int i = 0; i < n; ++i) {
  2672. max = MAX(max, x[i]);
  2673. }
  2674. *s = max;
  2675. #else
  2676. vDSP_maxv(x, 1, s, n);
  2677. #endif
  2678. }
  2679. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2680. ggml_vec_norm_f32(n, s, x);
  2681. *s = 1.f/(*s);
  2682. }
  2683. //
  2684. // logging
  2685. //
  2686. #if (GGML_DEBUG >= 1)
  2687. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2688. #else
  2689. #define GGML_PRINT_DEBUG(...)
  2690. #endif
  2691. #if (GGML_DEBUG >= 5)
  2692. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2693. #else
  2694. #define GGML_PRINT_DEBUG_5(...)
  2695. #endif
  2696. #if (GGML_DEBUG >= 10)
  2697. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2698. #else
  2699. #define GGML_PRINT_DEBUG_10(...)
  2700. #endif
  2701. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2702. //
  2703. // data types
  2704. //
  2705. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2706. [GGML_TYPE_F32] = 1,
  2707. [GGML_TYPE_F16] = 1,
  2708. [GGML_TYPE_Q4_0] = QK4_0,
  2709. [GGML_TYPE_Q4_1] = QK4_1,
  2710. [GGML_TYPE_Q5_0] = QK5_0,
  2711. [GGML_TYPE_Q5_1] = QK5_1,
  2712. [GGML_TYPE_Q8_0] = QK8_0,
  2713. [GGML_TYPE_Q8_1] = QK8_1,
  2714. [GGML_TYPE_I8] = 1,
  2715. [GGML_TYPE_I16] = 1,
  2716. [GGML_TYPE_I32] = 1,
  2717. };
  2718. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2719. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2720. [GGML_TYPE_F32] = sizeof(float),
  2721. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2722. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2723. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2724. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2725. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2726. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2727. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2728. [GGML_TYPE_I8] = sizeof(int8_t),
  2729. [GGML_TYPE_I16] = sizeof(int16_t),
  2730. [GGML_TYPE_I32] = sizeof(int32_t),
  2731. };
  2732. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2733. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2734. [GGML_TYPE_F32] = "f32",
  2735. [GGML_TYPE_F16] = "f16",
  2736. [GGML_TYPE_Q4_0] = "q4_0",
  2737. [GGML_TYPE_Q4_1] = "q4_1",
  2738. [GGML_TYPE_Q5_0] = "q5_0",
  2739. [GGML_TYPE_Q5_1] = "q5_1",
  2740. [GGML_TYPE_Q8_0] = "q8_0",
  2741. [GGML_TYPE_Q8_1] = "q8_1",
  2742. [GGML_TYPE_I8] = "i8",
  2743. [GGML_TYPE_I16] = "i16",
  2744. [GGML_TYPE_I32] = "i32",
  2745. };
  2746. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2747. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2748. [GGML_TYPE_F32] = false,
  2749. [GGML_TYPE_F16] = false,
  2750. [GGML_TYPE_Q4_0] = true,
  2751. [GGML_TYPE_Q4_1] = true,
  2752. [GGML_TYPE_Q5_0] = true,
  2753. [GGML_TYPE_Q5_1] = true,
  2754. [GGML_TYPE_Q8_0] = true,
  2755. [GGML_TYPE_Q8_1] = true,
  2756. [GGML_TYPE_I8] = false,
  2757. [GGML_TYPE_I16] = false,
  2758. [GGML_TYPE_I32] = false,
  2759. };
  2760. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2761. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2762. "NONE",
  2763. "DUP",
  2764. "ADD",
  2765. "ADD1",
  2766. "ACC",
  2767. "SUB",
  2768. "MUL",
  2769. "DIV",
  2770. "SQR",
  2771. "SQRT",
  2772. "LOG",
  2773. "SUM",
  2774. "SUM_ROWS",
  2775. "MEAN",
  2776. "REPEAT",
  2777. "ABS",
  2778. "SGN",
  2779. "NEG",
  2780. "STEP",
  2781. "RELU",
  2782. "GELU",
  2783. "SILU",
  2784. "SILU_BACK",
  2785. "NORM",
  2786. "RMS_NORM",
  2787. "RMS_NORM_BACK",
  2788. "MUL_MAT",
  2789. "SCALE",
  2790. "SET",
  2791. "CPY",
  2792. "CONT",
  2793. "RESHAPE",
  2794. "VIEW",
  2795. "PERMUTE",
  2796. "TRANSPOSE",
  2797. "GET_ROWS",
  2798. "GET_ROWS_BACK",
  2799. "DIAG",
  2800. "DIAG_MASK_INF",
  2801. "DIAG_MASK_ZERO",
  2802. "SOFT_MAX",
  2803. "ROPE",
  2804. "ROPE_BACK",
  2805. "ALIBI",
  2806. "CONV_1D_1S",
  2807. "CONV_1D_2S",
  2808. "FLASH_ATTN",
  2809. "FLASH_FF",
  2810. "MAP_UNARY",
  2811. "MAP_BINARY",
  2812. };
  2813. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2814. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2815. "none",
  2816. "x",
  2817. "x+y",
  2818. "x+y",
  2819. "view(x,nb,offset)+=y->x",
  2820. "x-y",
  2821. "x*y",
  2822. "x/y",
  2823. "x^2",
  2824. "√x",
  2825. "log(x)",
  2826. "Σx",
  2827. "Σx_k",
  2828. "Σx/n",
  2829. "repeat(x)",
  2830. "abs(x)",
  2831. "sgn(x)",
  2832. "-x",
  2833. "step(x)",
  2834. "relu(x)",
  2835. "gelu(x)",
  2836. "silu(x)",
  2837. "silu_back(x)",
  2838. "norm(x)",
  2839. "rms_norm(x)",
  2840. "rms_norm_back(x)",
  2841. "X*Y",
  2842. "x*v",
  2843. "y-\\>view(x)",
  2844. "x-\\>y",
  2845. "cont(x)",
  2846. "reshape(x)",
  2847. "view(x)",
  2848. "permute(x)",
  2849. "transpose(x)",
  2850. "get_rows(x)",
  2851. "get_rows_back(x)",
  2852. "diag(x)",
  2853. "diag_mask_inf(x)",
  2854. "diag_mask_zero(x)",
  2855. "soft_max(x)",
  2856. "rope(x)",
  2857. "rope_back(x)",
  2858. "alibi(x)",
  2859. "conv_1d_1s(x)",
  2860. "conv_1d_2s(x)",
  2861. "flash_attn(x)",
  2862. "flash_ff(x)",
  2863. "f(x)",
  2864. "f(x,y)",
  2865. };
  2866. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2867. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2868. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2869. //
  2870. // ggml context
  2871. //
  2872. struct ggml_context {
  2873. size_t mem_size;
  2874. void * mem_buffer;
  2875. bool mem_buffer_owned;
  2876. bool no_alloc;
  2877. int n_objects;
  2878. struct ggml_object * objects_begin;
  2879. struct ggml_object * objects_end;
  2880. struct ggml_scratch scratch;
  2881. struct ggml_scratch scratch_save;
  2882. };
  2883. struct ggml_context_container {
  2884. bool used;
  2885. struct ggml_context context;
  2886. };
  2887. //
  2888. // compute types
  2889. //
  2890. enum ggml_task_type {
  2891. GGML_TASK_INIT = 0,
  2892. GGML_TASK_COMPUTE,
  2893. GGML_TASK_FINALIZE,
  2894. };
  2895. struct ggml_compute_params {
  2896. enum ggml_task_type type;
  2897. int ith, nth;
  2898. // work buffer for all threads
  2899. size_t wsize;
  2900. void * wdata;
  2901. };
  2902. //
  2903. // ggml state
  2904. //
  2905. struct ggml_state {
  2906. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2907. };
  2908. // global state
  2909. static struct ggml_state g_state;
  2910. static atomic_int g_state_barrier = 0;
  2911. // barrier via spin lock
  2912. inline static void ggml_critical_section_start(void) {
  2913. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2914. while (processing > 0) {
  2915. // wait for other threads to finish
  2916. atomic_fetch_sub(&g_state_barrier, 1);
  2917. sched_yield(); // TODO: reconsider this
  2918. processing = atomic_fetch_add(&g_state_barrier, 1);
  2919. }
  2920. }
  2921. // TODO: make this somehow automatically executed
  2922. // some sort of "sentry" mechanism
  2923. inline static void ggml_critical_section_end(void) {
  2924. atomic_fetch_sub(&g_state_barrier, 1);
  2925. }
  2926. ////////////////////////////////////////////////////////////////////////////////
  2927. void ggml_print_object(const struct ggml_object * obj) {
  2928. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2929. obj->offs, obj->size, (const void *) obj->next);
  2930. }
  2931. void ggml_print_objects(const struct ggml_context * ctx) {
  2932. struct ggml_object * obj = ctx->objects_begin;
  2933. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2934. while (obj != NULL) {
  2935. ggml_print_object(obj);
  2936. obj = obj->next;
  2937. }
  2938. GGML_PRINT("%s: --- end ---\n", __func__);
  2939. }
  2940. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2941. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2942. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2943. }
  2944. int ggml_nrows(const struct ggml_tensor * tensor) {
  2945. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2946. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2947. }
  2948. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2949. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2950. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2951. }
  2952. int ggml_blck_size(enum ggml_type type) {
  2953. return GGML_BLCK_SIZE[type];
  2954. }
  2955. size_t ggml_type_size(enum ggml_type type) {
  2956. return GGML_TYPE_SIZE[type];
  2957. }
  2958. float ggml_type_sizef(enum ggml_type type) {
  2959. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2960. }
  2961. const char * ggml_type_name(enum ggml_type type) {
  2962. return GGML_TYPE_NAME[type];
  2963. }
  2964. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2965. return GGML_TYPE_SIZE[tensor->type];
  2966. }
  2967. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2968. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2969. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2970. }
  2971. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2972. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2973. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2974. }
  2975. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2976. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2977. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2978. }
  2979. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2980. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2981. return
  2982. (t0->ne[0] == t1->ne[0]) &&
  2983. (t0->ne[2] == t1->ne[2]) &&
  2984. (t0->ne[3] == t1->ne[3]);
  2985. }
  2986. bool ggml_is_quantized(enum ggml_type type) {
  2987. return GGML_IS_QUANTIZED[type];
  2988. }
  2989. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2990. enum ggml_type wtype = GGML_TYPE_COUNT;
  2991. switch (ftype) {
  2992. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2993. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2994. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2995. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2996. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2997. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2998. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2999. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3000. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3001. }
  3002. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3003. return wtype;
  3004. }
  3005. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3006. return tensor->nb[0] > tensor->nb[1];
  3007. }
  3008. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3009. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3010. return
  3011. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3012. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3013. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3014. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3015. }
  3016. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3017. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3018. return
  3019. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3020. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3021. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3022. }
  3023. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3024. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3025. return
  3026. (t0->ne[0] == t1->ne[0] ) &&
  3027. (t0->ne[1] == t1->ne[1] ) &&
  3028. (t0->ne[2] == t1->ne[2] ) &&
  3029. (t0->ne[3] == t1->ne[3] );
  3030. }
  3031. // check if t1 can be represented as a repeatition of t0
  3032. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3033. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3034. return
  3035. (t1->ne[0]%t0->ne[0] == 0) &&
  3036. (t1->ne[1]%t0->ne[1] == 0) &&
  3037. (t1->ne[2]%t0->ne[2] == 0) &&
  3038. (t1->ne[3]%t0->ne[3] == 0);
  3039. }
  3040. static inline int ggml_up32(int n) {
  3041. return (n + 31) & ~31;
  3042. }
  3043. //static inline int ggml_up64(int n) {
  3044. // return (n + 63) & ~63;
  3045. //}
  3046. static inline int ggml_up(int n, int m) {
  3047. // assert m is a power of 2
  3048. GGML_ASSERT((m & (m - 1)) == 0);
  3049. return (n + m - 1) & ~(m - 1);
  3050. }
  3051. // assert that pointer is aligned to GGML_MEM_ALIGN
  3052. #define ggml_assert_aligned(ptr) \
  3053. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3054. ////////////////////////////////////////////////////////////////////////////////
  3055. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3056. // make this function thread safe
  3057. ggml_critical_section_start();
  3058. static bool is_first_call = true;
  3059. if (is_first_call) {
  3060. // initialize time system (required on Windows)
  3061. ggml_time_init();
  3062. // initialize GELU, SILU and EXP F32 tables
  3063. {
  3064. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3065. ggml_fp16_t ii;
  3066. for (int i = 0; i < (1 << 16); ++i) {
  3067. uint16_t ui = i;
  3068. memcpy(&ii, &ui, sizeof(ii));
  3069. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3070. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3071. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3072. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3073. }
  3074. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3075. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3076. }
  3077. // initialize g_state
  3078. {
  3079. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3080. g_state = (struct ggml_state) {
  3081. /*.contexts =*/ { { 0 } },
  3082. };
  3083. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3084. g_state.contexts[i].used = false;
  3085. }
  3086. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3087. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3088. }
  3089. #if defined(GGML_USE_CUBLAS)
  3090. ggml_init_cublas();
  3091. #elif defined(GGML_USE_CLBLAST)
  3092. ggml_cl_init();
  3093. #endif
  3094. is_first_call = false;
  3095. }
  3096. // find non-used context in g_state
  3097. struct ggml_context * ctx = NULL;
  3098. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3099. if (!g_state.contexts[i].used) {
  3100. g_state.contexts[i].used = true;
  3101. ctx = &g_state.contexts[i].context;
  3102. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3103. break;
  3104. }
  3105. }
  3106. if (ctx == NULL) {
  3107. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3108. ggml_critical_section_end();
  3109. return NULL;
  3110. }
  3111. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3112. *ctx = (struct ggml_context) {
  3113. /*.mem_size =*/ mem_size,
  3114. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3115. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3116. /*.no_alloc =*/ params.no_alloc,
  3117. /*.n_objects =*/ 0,
  3118. /*.objects_begin =*/ NULL,
  3119. /*.objects_end =*/ NULL,
  3120. /*.scratch =*/ { 0, 0, NULL, },
  3121. /*.scratch_save =*/ { 0, 0, NULL, },
  3122. };
  3123. GGML_ASSERT(ctx->mem_buffer != NULL);
  3124. ggml_assert_aligned(ctx->mem_buffer);
  3125. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3126. ggml_critical_section_end();
  3127. return ctx;
  3128. }
  3129. void ggml_free(struct ggml_context * ctx) {
  3130. // make this function thread safe
  3131. ggml_critical_section_start();
  3132. bool found = false;
  3133. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3134. if (&g_state.contexts[i].context == ctx) {
  3135. g_state.contexts[i].used = false;
  3136. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3137. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3138. if (ctx->mem_buffer_owned) {
  3139. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3140. }
  3141. found = true;
  3142. break;
  3143. }
  3144. }
  3145. if (!found) {
  3146. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3147. }
  3148. ggml_critical_section_end();
  3149. }
  3150. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3151. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3152. }
  3153. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3154. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3155. ctx->scratch = scratch;
  3156. return result;
  3157. }
  3158. ////////////////////////////////////////////////////////////////////////////////
  3159. struct ggml_tensor * ggml_new_tensor_impl(
  3160. struct ggml_context * ctx,
  3161. enum ggml_type type,
  3162. int n_dims,
  3163. const int64_t* ne,
  3164. void* data) {
  3165. // always insert objects at the end of the context's memory pool
  3166. struct ggml_object * obj_cur = ctx->objects_end;
  3167. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3168. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3169. const size_t cur_end = cur_offs + cur_size;
  3170. size_t size_needed = 0;
  3171. if (data == NULL && !ctx->no_alloc) {
  3172. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3173. for (int i = 1; i < n_dims; i++) {
  3174. size_needed *= ne[i];
  3175. }
  3176. // align to GGML_MEM_ALIGN
  3177. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3178. }
  3179. char * const mem_buffer = ctx->mem_buffer;
  3180. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3181. if (ctx->scratch.data == NULL || data != NULL) {
  3182. size_needed += sizeof(struct ggml_tensor);
  3183. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3184. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3185. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3186. assert(false);
  3187. return NULL;
  3188. }
  3189. *obj_new = (struct ggml_object) {
  3190. .offs = cur_end + GGML_OBJECT_SIZE,
  3191. .size = size_needed,
  3192. .next = NULL,
  3193. };
  3194. } else {
  3195. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3196. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3197. assert(false);
  3198. return NULL;
  3199. }
  3200. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3201. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3202. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3203. assert(false);
  3204. return NULL;
  3205. }
  3206. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3207. *obj_new = (struct ggml_object) {
  3208. .offs = cur_end + GGML_OBJECT_SIZE,
  3209. .size = sizeof(struct ggml_tensor),
  3210. .next = NULL,
  3211. };
  3212. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3213. ctx->scratch.offs += size_needed;
  3214. }
  3215. if (obj_cur != NULL) {
  3216. obj_cur->next = obj_new;
  3217. } else {
  3218. // this is the first object in this context
  3219. ctx->objects_begin = obj_new;
  3220. }
  3221. ctx->objects_end = obj_new;
  3222. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3223. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3224. ggml_assert_aligned(result);
  3225. *result = (struct ggml_tensor) {
  3226. /*.type =*/ type,
  3227. /*.backend =*/ GGML_BACKEND_CPU,
  3228. /*.n_dims =*/ n_dims,
  3229. /*.ne =*/ { 1, 1, 1, 1 },
  3230. /*.nb =*/ { 0, 0, 0, 0 },
  3231. /*.op =*/ GGML_OP_NONE,
  3232. /*.is_param =*/ false,
  3233. /*.grad =*/ NULL,
  3234. /*.src0 =*/ NULL,
  3235. /*.src1 =*/ NULL,
  3236. /*.opt =*/ { NULL },
  3237. /*.n_tasks =*/ 0,
  3238. /*.perf_runs =*/ 0,
  3239. /*.perf_cycles =*/ 0,
  3240. /*.perf_time_us =*/ 0,
  3241. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3242. /*.name =*/ { 0 },
  3243. /*.pad =*/ { 0 },
  3244. };
  3245. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3246. //ggml_assert_aligned(result->data);
  3247. for (int i = 0; i < n_dims; i++) {
  3248. result->ne[i] = ne[i];
  3249. }
  3250. result->nb[0] = GGML_TYPE_SIZE[type];
  3251. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3252. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3253. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3254. }
  3255. ctx->n_objects++;
  3256. return result;
  3257. }
  3258. struct ggml_tensor * ggml_new_tensor(
  3259. struct ggml_context * ctx,
  3260. enum ggml_type type,
  3261. int n_dims,
  3262. const int64_t * ne) {
  3263. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3264. }
  3265. struct ggml_tensor * ggml_new_tensor_1d(
  3266. struct ggml_context * ctx,
  3267. enum ggml_type type,
  3268. int64_t ne0) {
  3269. return ggml_new_tensor(ctx, type, 1, &ne0);
  3270. }
  3271. struct ggml_tensor * ggml_new_tensor_2d(
  3272. struct ggml_context * ctx,
  3273. enum ggml_type type,
  3274. int64_t ne0,
  3275. int64_t ne1) {
  3276. const int64_t ne[2] = { ne0, ne1 };
  3277. return ggml_new_tensor(ctx, type, 2, ne);
  3278. }
  3279. struct ggml_tensor * ggml_new_tensor_3d(
  3280. struct ggml_context * ctx,
  3281. enum ggml_type type,
  3282. int64_t ne0,
  3283. int64_t ne1,
  3284. int64_t ne2) {
  3285. const int64_t ne[3] = { ne0, ne1, ne2 };
  3286. return ggml_new_tensor(ctx, type, 3, ne);
  3287. }
  3288. struct ggml_tensor * ggml_new_tensor_4d(
  3289. struct ggml_context * ctx,
  3290. enum ggml_type type,
  3291. int64_t ne0,
  3292. int64_t ne1,
  3293. int64_t ne2,
  3294. int64_t ne3) {
  3295. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3296. return ggml_new_tensor(ctx, type, 4, ne);
  3297. }
  3298. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3299. ctx->scratch_save = ctx->scratch;
  3300. ctx->scratch.data = NULL;
  3301. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3302. ctx->scratch = ctx->scratch_save;
  3303. ggml_set_i32(result, value);
  3304. return result;
  3305. }
  3306. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3307. ctx->scratch_save = ctx->scratch;
  3308. ctx->scratch.data = NULL;
  3309. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3310. ctx->scratch = ctx->scratch_save;
  3311. ggml_set_f32(result, value);
  3312. return result;
  3313. }
  3314. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3315. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3316. }
  3317. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3318. memset(tensor->data, 0, ggml_nbytes(tensor));
  3319. return tensor;
  3320. }
  3321. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3322. const int n = ggml_nrows(tensor);
  3323. const int nc = tensor->ne[0];
  3324. const size_t n1 = tensor->nb[1];
  3325. char * const data = tensor->data;
  3326. switch (tensor->type) {
  3327. case GGML_TYPE_I8:
  3328. {
  3329. assert(tensor->nb[0] == sizeof(int8_t));
  3330. for (int i = 0; i < n; i++) {
  3331. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3332. }
  3333. } break;
  3334. case GGML_TYPE_I16:
  3335. {
  3336. assert(tensor->nb[0] == sizeof(int16_t));
  3337. for (int i = 0; i < n; i++) {
  3338. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3339. }
  3340. } break;
  3341. case GGML_TYPE_I32:
  3342. {
  3343. assert(tensor->nb[0] == sizeof(int32_t));
  3344. for (int i = 0; i < n; i++) {
  3345. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3346. }
  3347. } break;
  3348. case GGML_TYPE_F16:
  3349. {
  3350. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3351. for (int i = 0; i < n; i++) {
  3352. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3353. }
  3354. } break;
  3355. case GGML_TYPE_F32:
  3356. {
  3357. assert(tensor->nb[0] == sizeof(float));
  3358. for (int i = 0; i < n; i++) {
  3359. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3360. }
  3361. } break;
  3362. default:
  3363. {
  3364. GGML_ASSERT(false);
  3365. } break;
  3366. }
  3367. return tensor;
  3368. }
  3369. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3370. const int n = ggml_nrows(tensor);
  3371. const int nc = tensor->ne[0];
  3372. const size_t n1 = tensor->nb[1];
  3373. char * const data = tensor->data;
  3374. switch (tensor->type) {
  3375. case GGML_TYPE_I8:
  3376. {
  3377. assert(tensor->nb[0] == sizeof(int8_t));
  3378. for (int i = 0; i < n; i++) {
  3379. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3380. }
  3381. } break;
  3382. case GGML_TYPE_I16:
  3383. {
  3384. assert(tensor->nb[0] == sizeof(int16_t));
  3385. for (int i = 0; i < n; i++) {
  3386. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3387. }
  3388. } break;
  3389. case GGML_TYPE_I32:
  3390. {
  3391. assert(tensor->nb[0] == sizeof(int32_t));
  3392. for (int i = 0; i < n; i++) {
  3393. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3394. }
  3395. } break;
  3396. case GGML_TYPE_F16:
  3397. {
  3398. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3399. for (int i = 0; i < n; i++) {
  3400. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3401. }
  3402. } break;
  3403. case GGML_TYPE_F32:
  3404. {
  3405. assert(tensor->nb[0] == sizeof(float));
  3406. for (int i = 0; i < n; i++) {
  3407. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3408. }
  3409. } break;
  3410. default:
  3411. {
  3412. GGML_ASSERT(false);
  3413. } break;
  3414. }
  3415. return tensor;
  3416. }
  3417. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3418. switch (tensor->type) {
  3419. case GGML_TYPE_I8:
  3420. {
  3421. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3422. return ((int8_t *)(tensor->data))[i];
  3423. } break;
  3424. case GGML_TYPE_I16:
  3425. {
  3426. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3427. return ((int16_t *)(tensor->data))[i];
  3428. } break;
  3429. case GGML_TYPE_I32:
  3430. {
  3431. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3432. return ((int32_t *)(tensor->data))[i];
  3433. } break;
  3434. case GGML_TYPE_F16:
  3435. {
  3436. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3437. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3438. } break;
  3439. case GGML_TYPE_F32:
  3440. {
  3441. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3442. return ((float *)(tensor->data))[i];
  3443. } break;
  3444. default:
  3445. {
  3446. GGML_ASSERT(false);
  3447. } break;
  3448. }
  3449. return 0.0f;
  3450. }
  3451. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3452. switch (tensor->type) {
  3453. case GGML_TYPE_I8:
  3454. {
  3455. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3456. ((int8_t *)(tensor->data))[i] = value;
  3457. } break;
  3458. case GGML_TYPE_I16:
  3459. {
  3460. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3461. ((int16_t *)(tensor->data))[i] = value;
  3462. } break;
  3463. case GGML_TYPE_I32:
  3464. {
  3465. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3466. ((int32_t *)(tensor->data))[i] = value;
  3467. } break;
  3468. case GGML_TYPE_F16:
  3469. {
  3470. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3471. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3472. } break;
  3473. case GGML_TYPE_F32:
  3474. {
  3475. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3476. ((float *)(tensor->data))[i] = value;
  3477. } break;
  3478. default:
  3479. {
  3480. GGML_ASSERT(false);
  3481. } break;
  3482. }
  3483. }
  3484. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3485. switch (tensor->type) {
  3486. case GGML_TYPE_I8:
  3487. {
  3488. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3489. return ((int8_t *)(tensor->data))[i];
  3490. } break;
  3491. case GGML_TYPE_I16:
  3492. {
  3493. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3494. return ((int16_t *)(tensor->data))[i];
  3495. } break;
  3496. case GGML_TYPE_I32:
  3497. {
  3498. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3499. return ((int32_t *)(tensor->data))[i];
  3500. } break;
  3501. case GGML_TYPE_F16:
  3502. {
  3503. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3504. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3505. } break;
  3506. case GGML_TYPE_F32:
  3507. {
  3508. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3509. return ((float *)(tensor->data))[i];
  3510. } break;
  3511. default:
  3512. {
  3513. GGML_ASSERT(false);
  3514. } break;
  3515. }
  3516. return 0.0f;
  3517. }
  3518. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3519. switch (tensor->type) {
  3520. case GGML_TYPE_I8:
  3521. {
  3522. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3523. ((int8_t *)(tensor->data))[i] = value;
  3524. } break;
  3525. case GGML_TYPE_I16:
  3526. {
  3527. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3528. ((int16_t *)(tensor->data))[i] = value;
  3529. } break;
  3530. case GGML_TYPE_I32:
  3531. {
  3532. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3533. ((int32_t *)(tensor->data))[i] = value;
  3534. } break;
  3535. case GGML_TYPE_F16:
  3536. {
  3537. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3538. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3539. } break;
  3540. case GGML_TYPE_F32:
  3541. {
  3542. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3543. ((float *)(tensor->data))[i] = value;
  3544. } break;
  3545. default:
  3546. {
  3547. GGML_ASSERT(false);
  3548. } break;
  3549. }
  3550. }
  3551. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3552. return tensor->data;
  3553. }
  3554. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3555. assert(tensor->type == GGML_TYPE_F32);
  3556. return (float *)(tensor->data);
  3557. }
  3558. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3559. return tensor->name;
  3560. }
  3561. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3562. strncpy(tensor->name, name, sizeof(tensor->name));
  3563. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3564. }
  3565. struct ggml_tensor * ggml_view_tensor(
  3566. struct ggml_context * ctx,
  3567. const struct ggml_tensor * src) {
  3568. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3569. result->nb[0] = src->nb[0];
  3570. result->nb[1] = src->nb[1];
  3571. result->nb[2] = src->nb[2];
  3572. result->nb[3] = src->nb[3];
  3573. return result;
  3574. }
  3575. ////////////////////////////////////////////////////////////////////////////////
  3576. // ggml_dup
  3577. struct ggml_tensor * ggml_dup_impl(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a,
  3580. bool inplace) {
  3581. bool is_node = false;
  3582. if (!inplace && (a->grad)) {
  3583. is_node = true;
  3584. }
  3585. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3586. result->op = GGML_OP_DUP;
  3587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3588. result->src0 = a;
  3589. result->src1 = NULL;
  3590. return result;
  3591. }
  3592. struct ggml_tensor * ggml_dup(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a) {
  3595. return ggml_dup_impl(ctx, a, false);
  3596. }
  3597. struct ggml_tensor * ggml_dup_inplace(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * a) {
  3600. return ggml_dup_impl(ctx, a, true);
  3601. }
  3602. // ggml_add
  3603. struct ggml_tensor * ggml_add_impl(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a,
  3606. struct ggml_tensor * b,
  3607. bool inplace) {
  3608. GGML_ASSERT(ggml_are_same_shape(a, b));
  3609. bool is_node = false;
  3610. if (!inplace && (a->grad || b->grad)) {
  3611. is_node = true;
  3612. }
  3613. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3614. result->op = GGML_OP_ADD;
  3615. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3616. result->src0 = a;
  3617. result->src1 = b;
  3618. return result;
  3619. }
  3620. struct ggml_tensor * ggml_add(
  3621. struct ggml_context * ctx,
  3622. struct ggml_tensor * a,
  3623. struct ggml_tensor * b) {
  3624. return ggml_add_impl(ctx, a, b, false);
  3625. }
  3626. struct ggml_tensor * ggml_add_inplace(
  3627. struct ggml_context * ctx,
  3628. struct ggml_tensor * a,
  3629. struct ggml_tensor * b) {
  3630. return ggml_add_impl(ctx, a, b, true);
  3631. }
  3632. // ggml_add1
  3633. struct ggml_tensor * ggml_add1_impl(
  3634. struct ggml_context * ctx,
  3635. struct ggml_tensor * a,
  3636. struct ggml_tensor * b,
  3637. bool inplace) {
  3638. GGML_ASSERT(ggml_is_scalar(b));
  3639. GGML_ASSERT(ggml_is_padded_1d(a));
  3640. bool is_node = false;
  3641. if (!inplace && (a->grad || b->grad)) {
  3642. is_node = true;
  3643. }
  3644. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3645. result->op = GGML_OP_ADD1;
  3646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3647. result->src0 = a;
  3648. result->src1 = b;
  3649. return result;
  3650. }
  3651. struct ggml_tensor * ggml_add1(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * a,
  3654. struct ggml_tensor * b) {
  3655. return ggml_add1_impl(ctx, a, b, false);
  3656. }
  3657. struct ggml_tensor * ggml_add1_inplace(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a,
  3660. struct ggml_tensor * b) {
  3661. return ggml_add1_impl(ctx, a, b, true);
  3662. }
  3663. // ggml_acc
  3664. struct ggml_tensor * ggml_acc_impl(
  3665. struct ggml_context * ctx,
  3666. struct ggml_tensor * a,
  3667. struct ggml_tensor * b,
  3668. size_t nb1,
  3669. size_t nb2,
  3670. size_t nb3,
  3671. size_t offset,
  3672. bool inplace) {
  3673. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3674. GGML_ASSERT(ggml_is_contiguous(a));
  3675. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3676. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3677. bool is_node = false;
  3678. if (!inplace && (a->grad || b->grad)) {
  3679. is_node = true;
  3680. }
  3681. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3682. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3683. ((int32_t *) c->data)[0] = nb1;
  3684. ((int32_t *) c->data)[1] = nb2;
  3685. ((int32_t *) c->data)[2] = nb3;
  3686. ((int32_t *) c->data)[3] = offset;
  3687. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3688. result->op = GGML_OP_ACC;
  3689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3690. result->src0 = a;
  3691. result->src1 = b;
  3692. result->opt[0] = c;
  3693. return result;
  3694. }
  3695. struct ggml_tensor * ggml_acc(
  3696. struct ggml_context * ctx,
  3697. struct ggml_tensor * a,
  3698. struct ggml_tensor * b,
  3699. size_t nb1,
  3700. size_t nb2,
  3701. size_t nb3,
  3702. size_t offset) {
  3703. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3704. }
  3705. struct ggml_tensor * ggml_acc_inplace(
  3706. struct ggml_context * ctx,
  3707. struct ggml_tensor * a,
  3708. struct ggml_tensor * b,
  3709. size_t nb1,
  3710. size_t nb2,
  3711. size_t nb3,
  3712. size_t offset) {
  3713. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3714. }
  3715. // ggml_sub
  3716. struct ggml_tensor * ggml_sub_impl(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a,
  3719. struct ggml_tensor * b,
  3720. bool inplace) {
  3721. GGML_ASSERT(ggml_are_same_shape(a, b));
  3722. bool is_node = false;
  3723. if (!inplace && (a->grad || b->grad)) {
  3724. is_node = true;
  3725. }
  3726. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3727. result->op = GGML_OP_SUB;
  3728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3729. result->src0 = a;
  3730. result->src1 = b;
  3731. return result;
  3732. }
  3733. struct ggml_tensor * ggml_sub(
  3734. struct ggml_context * ctx,
  3735. struct ggml_tensor * a,
  3736. struct ggml_tensor * b) {
  3737. return ggml_sub_impl(ctx, a, b, false);
  3738. }
  3739. struct ggml_tensor * ggml_sub_inplace(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a,
  3742. struct ggml_tensor * b) {
  3743. return ggml_sub_impl(ctx, a, b, true);
  3744. }
  3745. // ggml_mul
  3746. struct ggml_tensor * ggml_mul_impl(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a,
  3749. struct ggml_tensor * b,
  3750. bool inplace) {
  3751. GGML_ASSERT(ggml_are_same_shape(a, b));
  3752. bool is_node = false;
  3753. if (!inplace && (a->grad || b->grad)) {
  3754. is_node = true;
  3755. }
  3756. if (inplace) {
  3757. GGML_ASSERT(is_node == false);
  3758. }
  3759. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3760. result->op = GGML_OP_MUL;
  3761. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3762. result->src0 = a;
  3763. result->src1 = b;
  3764. return result;
  3765. }
  3766. struct ggml_tensor * ggml_mul(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a,
  3769. struct ggml_tensor * b) {
  3770. return ggml_mul_impl(ctx, a, b, false);
  3771. }
  3772. struct ggml_tensor * ggml_mul_inplace(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a,
  3775. struct ggml_tensor * b) {
  3776. return ggml_mul_impl(ctx, a, b, true);
  3777. }
  3778. // ggml_div
  3779. struct ggml_tensor * ggml_div_impl(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. struct ggml_tensor * b,
  3783. bool inplace) {
  3784. GGML_ASSERT(ggml_are_same_shape(a, b));
  3785. bool is_node = false;
  3786. if (!inplace && (a->grad || b->grad)) {
  3787. is_node = true;
  3788. }
  3789. if (inplace) {
  3790. GGML_ASSERT(is_node == false);
  3791. }
  3792. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3793. result->op = GGML_OP_DIV;
  3794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3795. result->src0 = a;
  3796. result->src1 = b;
  3797. return result;
  3798. }
  3799. struct ggml_tensor * ggml_div(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. struct ggml_tensor * b) {
  3803. return ggml_div_impl(ctx, a, b, false);
  3804. }
  3805. struct ggml_tensor * ggml_div_inplace(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a,
  3808. struct ggml_tensor * b) {
  3809. return ggml_div_impl(ctx, a, b, true);
  3810. }
  3811. // ggml_sqr
  3812. struct ggml_tensor * ggml_sqr_impl(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a,
  3815. bool inplace) {
  3816. bool is_node = false;
  3817. if (!inplace && (a->grad)) {
  3818. is_node = true;
  3819. }
  3820. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3821. result->op = GGML_OP_SQR;
  3822. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3823. result->src0 = a;
  3824. result->src1 = NULL;
  3825. return result;
  3826. }
  3827. struct ggml_tensor * ggml_sqr(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a) {
  3830. return ggml_sqr_impl(ctx, a, false);
  3831. }
  3832. struct ggml_tensor * ggml_sqr_inplace(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a) {
  3835. return ggml_sqr_impl(ctx, a, true);
  3836. }
  3837. // ggml_sqrt
  3838. struct ggml_tensor * ggml_sqrt_impl(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a,
  3841. bool inplace) {
  3842. bool is_node = false;
  3843. if (!inplace && (a->grad)) {
  3844. is_node = true;
  3845. }
  3846. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3847. result->op = GGML_OP_SQRT;
  3848. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3849. result->src0 = a;
  3850. result->src1 = NULL;
  3851. return result;
  3852. }
  3853. struct ggml_tensor * ggml_sqrt(
  3854. struct ggml_context * ctx,
  3855. struct ggml_tensor * a) {
  3856. return ggml_sqrt_impl(ctx, a, false);
  3857. }
  3858. struct ggml_tensor * ggml_sqrt_inplace(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a) {
  3861. return ggml_sqrt_impl(ctx, a, true);
  3862. }
  3863. // ggml_log
  3864. struct ggml_tensor * ggml_log_impl(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a,
  3867. bool inplace) {
  3868. bool is_node = false;
  3869. if (!inplace && (a->grad)) {
  3870. is_node = true;
  3871. }
  3872. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3873. result->op = GGML_OP_LOG;
  3874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3875. result->src0 = a;
  3876. result->src1 = NULL;
  3877. return result;
  3878. }
  3879. struct ggml_tensor * ggml_log(
  3880. struct ggml_context * ctx,
  3881. struct ggml_tensor * a) {
  3882. return ggml_log_impl(ctx, a, false);
  3883. }
  3884. struct ggml_tensor * ggml_log_inplace(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a) {
  3887. return ggml_log_impl(ctx, a, true);
  3888. }
  3889. // ggml_sum
  3890. struct ggml_tensor * ggml_sum(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a) {
  3893. bool is_node = false;
  3894. if (a->grad) {
  3895. is_node = true;
  3896. }
  3897. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3898. result->op = GGML_OP_SUM;
  3899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3900. result->src0 = a;
  3901. result->src1 = NULL;
  3902. return result;
  3903. }
  3904. // ggml_sum_rows
  3905. struct ggml_tensor * ggml_sum_rows(
  3906. struct ggml_context * ctx,
  3907. struct ggml_tensor * a) {
  3908. bool is_node = false;
  3909. if (a->grad) {
  3910. is_node = true;
  3911. }
  3912. int64_t ne[4] = {1,1,1,1};
  3913. for (int i=1; i<a->n_dims; ++i) {
  3914. ne[i] = a->ne[i];
  3915. }
  3916. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  3917. result->op = GGML_OP_SUM_ROWS;
  3918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3919. result->src0 = a;
  3920. result->src1 = NULL;
  3921. return result;
  3922. }
  3923. // ggml_mean
  3924. struct ggml_tensor * ggml_mean(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a) {
  3927. bool is_node = false;
  3928. if (a->grad) {
  3929. GGML_ASSERT(false); // TODO: implement
  3930. is_node = true;
  3931. }
  3932. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3933. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3934. result->op = GGML_OP_MEAN;
  3935. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3936. result->src0 = a;
  3937. result->src1 = NULL;
  3938. return result;
  3939. }
  3940. // ggml_repeat
  3941. struct ggml_tensor * ggml_repeat(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a,
  3944. struct ggml_tensor * b) {
  3945. GGML_ASSERT(ggml_can_repeat(a, b));
  3946. bool is_node = false;
  3947. if (a->grad) {
  3948. is_node = true;
  3949. }
  3950. if (ggml_are_same_shape(a, b) && !is_node) {
  3951. return a;
  3952. }
  3953. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3954. result->op = GGML_OP_REPEAT;
  3955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3956. result->src0 = a;
  3957. result->src1 = b;
  3958. return result;
  3959. }
  3960. // ggml_abs
  3961. struct ggml_tensor * ggml_abs_impl(
  3962. struct ggml_context * ctx,
  3963. struct ggml_tensor * a,
  3964. bool inplace) {
  3965. bool is_node = false;
  3966. if (!inplace && (a->grad)) {
  3967. is_node = true;
  3968. }
  3969. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3970. result->op = GGML_OP_ABS;
  3971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3972. result->src0 = a;
  3973. result->src1 = NULL;
  3974. return result;
  3975. }
  3976. struct ggml_tensor * ggml_abs(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a) {
  3979. return ggml_abs_impl(ctx, a, false);
  3980. }
  3981. struct ggml_tensor * ggml_abs_inplace(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a) {
  3984. return ggml_abs_impl(ctx, a, true);
  3985. }
  3986. // ggml_sgn
  3987. struct ggml_tensor * ggml_sgn_impl(
  3988. struct ggml_context * ctx,
  3989. struct ggml_tensor * a,
  3990. bool inplace) {
  3991. bool is_node = false;
  3992. if (!inplace && (a->grad)) {
  3993. is_node = true;
  3994. }
  3995. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3996. result->op = GGML_OP_SGN;
  3997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3998. result->src0 = a;
  3999. result->src1 = NULL;
  4000. return result;
  4001. }
  4002. struct ggml_tensor * ggml_sgn(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a) {
  4005. return ggml_sgn_impl(ctx, a, false);
  4006. }
  4007. struct ggml_tensor * ggml_sgn_inplace(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a) {
  4010. return ggml_sgn_impl(ctx, a, true);
  4011. }
  4012. // ggml_neg
  4013. struct ggml_tensor * ggml_neg_impl(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a,
  4016. bool inplace) {
  4017. bool is_node = false;
  4018. if (!inplace && (a->grad)) {
  4019. is_node = true;
  4020. }
  4021. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4022. result->op = GGML_OP_NEG;
  4023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4024. result->src0 = a;
  4025. result->src1 = NULL;
  4026. return result;
  4027. }
  4028. struct ggml_tensor * ggml_neg(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a) {
  4031. return ggml_neg_impl(ctx, a, false);
  4032. }
  4033. struct ggml_tensor * ggml_neg_inplace(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a) {
  4036. return ggml_neg_impl(ctx, a, true);
  4037. }
  4038. // ggml_step
  4039. struct ggml_tensor * ggml_step_impl(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. bool inplace) {
  4043. bool is_node = false;
  4044. if (!inplace && (a->grad)) {
  4045. is_node = true;
  4046. }
  4047. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4048. result->op = GGML_OP_STEP;
  4049. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4050. result->src0 = a;
  4051. result->src1 = NULL;
  4052. return result;
  4053. }
  4054. struct ggml_tensor * ggml_step(
  4055. struct ggml_context * ctx,
  4056. struct ggml_tensor * a) {
  4057. return ggml_step_impl(ctx, a, false);
  4058. }
  4059. struct ggml_tensor * ggml_step_inplace(
  4060. struct ggml_context * ctx,
  4061. struct ggml_tensor * a) {
  4062. return ggml_step_impl(ctx, a, true);
  4063. }
  4064. // ggml_relu
  4065. struct ggml_tensor * ggml_relu_impl(
  4066. struct ggml_context * ctx,
  4067. struct ggml_tensor * a,
  4068. bool inplace) {
  4069. bool is_node = false;
  4070. if (!inplace && (a->grad)) {
  4071. is_node = true;
  4072. }
  4073. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4074. result->op = GGML_OP_RELU;
  4075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4076. result->src0 = a;
  4077. result->src1 = NULL;
  4078. return result;
  4079. }
  4080. struct ggml_tensor * ggml_relu(
  4081. struct ggml_context * ctx,
  4082. struct ggml_tensor * a) {
  4083. return ggml_relu_impl(ctx, a, false);
  4084. }
  4085. struct ggml_tensor * ggml_relu_inplace(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a) {
  4088. return ggml_relu_impl(ctx, a, true);
  4089. }
  4090. // ggml_gelu
  4091. struct ggml_tensor * ggml_gelu_impl(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a,
  4094. bool inplace) {
  4095. bool is_node = false;
  4096. if (!inplace && (a->grad)) {
  4097. is_node = true;
  4098. }
  4099. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4100. result->op = GGML_OP_GELU;
  4101. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4102. result->src0 = a;
  4103. result->src1 = NULL;
  4104. return result;
  4105. }
  4106. struct ggml_tensor * ggml_gelu(
  4107. struct ggml_context * ctx,
  4108. struct ggml_tensor * a) {
  4109. return ggml_gelu_impl(ctx, a, false);
  4110. }
  4111. struct ggml_tensor * ggml_gelu_inplace(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a) {
  4114. return ggml_gelu_impl(ctx, a, true);
  4115. }
  4116. // ggml_silu
  4117. struct ggml_tensor * ggml_silu_impl(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a,
  4120. bool inplace) {
  4121. bool is_node = false;
  4122. if (!inplace && (a->grad)) {
  4123. is_node = true;
  4124. }
  4125. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4126. result->op = GGML_OP_SILU;
  4127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4128. result->src0 = a;
  4129. result->src1 = NULL;
  4130. return result;
  4131. }
  4132. struct ggml_tensor * ggml_silu(
  4133. struct ggml_context * ctx,
  4134. struct ggml_tensor * a) {
  4135. return ggml_silu_impl(ctx, a, false);
  4136. }
  4137. struct ggml_tensor * ggml_silu_inplace(
  4138. struct ggml_context * ctx,
  4139. struct ggml_tensor * a) {
  4140. return ggml_silu_impl(ctx, a, true);
  4141. }
  4142. // ggml_silu_back
  4143. struct ggml_tensor * ggml_silu_back(
  4144. struct ggml_context * ctx,
  4145. struct ggml_tensor * a,
  4146. struct ggml_tensor * b) {
  4147. bool is_node = false;
  4148. if (a->grad || b->grad) {
  4149. // TODO: implement backward
  4150. is_node = true;
  4151. }
  4152. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4153. result->op = GGML_OP_SILU_BACK;
  4154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4155. result->src0 = a;
  4156. result->src1 = b;
  4157. return result;
  4158. }
  4159. // ggml_norm
  4160. struct ggml_tensor * ggml_norm_impl(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a,
  4163. bool inplace) {
  4164. bool is_node = false;
  4165. if (!inplace && (a->grad)) {
  4166. GGML_ASSERT(false); // TODO: implement backward
  4167. is_node = true;
  4168. }
  4169. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4170. result->op = GGML_OP_NORM;
  4171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4172. result->src0 = a;
  4173. result->src1 = NULL; // TODO: maybe store epsilon here?
  4174. return result;
  4175. }
  4176. struct ggml_tensor * ggml_norm(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a) {
  4179. return ggml_norm_impl(ctx, a, false);
  4180. }
  4181. struct ggml_tensor * ggml_norm_inplace(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. return ggml_norm_impl(ctx, a, true);
  4185. }
  4186. struct ggml_tensor * ggml_rms_norm_impl(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. bool inplace) {
  4190. bool is_node = false;
  4191. if (!inplace && (a->grad)) {
  4192. is_node = true;
  4193. }
  4194. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4195. result->op = GGML_OP_RMS_NORM;
  4196. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4197. result->src0 = a;
  4198. result->src1 = NULL; // TODO: maybe store epsilon here?
  4199. return result;
  4200. }
  4201. struct ggml_tensor * ggml_rms_norm(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a) {
  4204. return ggml_rms_norm_impl(ctx, a, false);
  4205. }
  4206. struct ggml_tensor * ggml_rms_norm_inplace(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a) {
  4209. return ggml_rms_norm_impl(ctx, a, true);
  4210. }
  4211. struct ggml_tensor * ggml_rms_norm_back(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. struct ggml_tensor * b) {
  4215. bool is_node = false;
  4216. if (a->grad) {
  4217. // TODO: implement backward
  4218. is_node = true;
  4219. }
  4220. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4221. result->op = GGML_OP_RMS_NORM_BACK;
  4222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4223. result->src0 = a;
  4224. result->src1 = b;
  4225. return result;
  4226. }
  4227. // ggml_mul_mat
  4228. struct ggml_tensor * ggml_mul_mat(
  4229. struct ggml_context * ctx,
  4230. struct ggml_tensor * a,
  4231. struct ggml_tensor * b) {
  4232. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4233. GGML_ASSERT(!ggml_is_transposed(a));
  4234. bool is_node = false;
  4235. if (a->grad || b->grad) {
  4236. is_node = true;
  4237. }
  4238. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4239. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4240. result->op = GGML_OP_MUL_MAT;
  4241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4242. result->src0 = a;
  4243. result->src1 = b;
  4244. return result;
  4245. }
  4246. // ggml_scale
  4247. struct ggml_tensor * ggml_scale_impl(
  4248. struct ggml_context * ctx,
  4249. struct ggml_tensor * a,
  4250. struct ggml_tensor * b,
  4251. bool inplace) {
  4252. GGML_ASSERT(ggml_is_scalar(b));
  4253. GGML_ASSERT(ggml_is_padded_1d(a));
  4254. bool is_node = false;
  4255. if (!inplace && (a->grad || b->grad)) {
  4256. is_node = true;
  4257. }
  4258. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4259. result->op = GGML_OP_SCALE;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src0 = a;
  4262. result->src1 = b;
  4263. return result;
  4264. }
  4265. struct ggml_tensor * ggml_scale(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a,
  4268. struct ggml_tensor * b) {
  4269. return ggml_scale_impl(ctx, a, b, false);
  4270. }
  4271. struct ggml_tensor * ggml_scale_inplace(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a,
  4274. struct ggml_tensor * b) {
  4275. return ggml_scale_impl(ctx, a, b, true);
  4276. }
  4277. // ggml_set
  4278. struct ggml_tensor * ggml_set_impl(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. struct ggml_tensor * b,
  4282. size_t nb1,
  4283. size_t nb2,
  4284. size_t nb3,
  4285. size_t offset,
  4286. bool inplace) {
  4287. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4288. bool is_node = false;
  4289. if (!inplace && (a->grad || b->grad)) {
  4290. is_node = true;
  4291. }
  4292. // make a view of the destination
  4293. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4294. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4295. (( int32_t * ) c->data)[0] = nb1;
  4296. (( int32_t * ) c->data)[1] = nb2;
  4297. (( int32_t * ) c->data)[2] = nb3;
  4298. (( int32_t * ) c->data)[3] = offset;
  4299. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4300. result->op = GGML_OP_SET;
  4301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4302. result->src0 = a;
  4303. result->src1 = b;
  4304. result->opt[0] = c;
  4305. return result;
  4306. }
  4307. struct ggml_tensor * ggml_set(
  4308. struct ggml_context * ctx,
  4309. struct ggml_tensor * a,
  4310. struct ggml_tensor * b,
  4311. size_t nb1,
  4312. size_t nb2,
  4313. size_t nb3,
  4314. size_t offset) {
  4315. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4316. }
  4317. struct ggml_tensor * ggml_set_inplace(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a,
  4320. struct ggml_tensor * b,
  4321. size_t nb1,
  4322. size_t nb2,
  4323. size_t nb3,
  4324. size_t offset) {
  4325. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4326. }
  4327. struct ggml_tensor * ggml_set_1d(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a,
  4330. struct ggml_tensor * b,
  4331. size_t offset) {
  4332. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4333. }
  4334. struct ggml_tensor * ggml_set_1d_inplace(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a,
  4337. struct ggml_tensor * b,
  4338. size_t offset) {
  4339. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4340. }
  4341. struct ggml_tensor * ggml_set_2d(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. struct ggml_tensor * b,
  4345. size_t nb1,
  4346. size_t offset) {
  4347. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4348. }
  4349. struct ggml_tensor * ggml_set_2d_inplace(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a,
  4352. struct ggml_tensor * b,
  4353. size_t nb1,
  4354. size_t offset) {
  4355. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4356. }
  4357. // ggml_cpy
  4358. struct ggml_tensor * ggml_cpy_impl(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a,
  4361. struct ggml_tensor * b,
  4362. bool inplace) {
  4363. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4364. bool is_node = false;
  4365. if (!inplace && (a->grad || b->grad)) {
  4366. is_node = true;
  4367. }
  4368. // make a view of the destination
  4369. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4370. result->op = GGML_OP_CPY;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src0 = a;
  4373. result->src1 = b;
  4374. return result;
  4375. }
  4376. struct ggml_tensor * ggml_cpy(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. struct ggml_tensor * b) {
  4380. return ggml_cpy_impl(ctx, a, b, false);
  4381. }
  4382. struct ggml_tensor * ggml_cpy_inplace(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. struct ggml_tensor * b) {
  4386. return ggml_cpy_impl(ctx, a, b, true);
  4387. }
  4388. // ggml_cont
  4389. struct ggml_tensor * ggml_cont_impl(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a,
  4392. bool inplace) {
  4393. bool is_node = false;
  4394. if (!inplace && a->grad) {
  4395. is_node = true;
  4396. }
  4397. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4398. result->op = GGML_OP_CONT;
  4399. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4400. result->src0 = a;
  4401. result->src1 = NULL;
  4402. return result;
  4403. }
  4404. struct ggml_tensor * ggml_cont(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a) {
  4407. return ggml_cont_impl(ctx, a, false);
  4408. }
  4409. struct ggml_tensor * ggml_cont_inplace(
  4410. struct ggml_context * ctx,
  4411. struct ggml_tensor * a) {
  4412. return ggml_cont_impl(ctx, a, true);
  4413. }
  4414. // ggml_reshape
  4415. struct ggml_tensor * ggml_reshape(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b) {
  4419. GGML_ASSERT(ggml_is_contiguous(a));
  4420. GGML_ASSERT(ggml_is_contiguous(b));
  4421. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4422. bool is_node = false;
  4423. if (a->grad) {
  4424. is_node = true;
  4425. }
  4426. if (b->grad) {
  4427. // gradient propagation is not supported
  4428. //GGML_ASSERT(false);
  4429. }
  4430. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4431. result->op = GGML_OP_RESHAPE;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src0 = a;
  4434. result->src1 = NULL;
  4435. return result;
  4436. }
  4437. struct ggml_tensor * ggml_reshape_1d(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a,
  4440. int64_t ne0) {
  4441. GGML_ASSERT(ggml_is_contiguous(a));
  4442. GGML_ASSERT(ggml_nelements(a) == ne0);
  4443. bool is_node = false;
  4444. if (a->grad) {
  4445. is_node = true;
  4446. }
  4447. const int64_t ne[1] = { ne0 };
  4448. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4449. result->op = GGML_OP_RESHAPE;
  4450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4451. result->src0 = a;
  4452. result->src1 = NULL;
  4453. return result;
  4454. }
  4455. struct ggml_tensor * ggml_reshape_2d(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. int64_t ne0,
  4459. int64_t ne1) {
  4460. GGML_ASSERT(ggml_is_contiguous(a));
  4461. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4462. bool is_node = false;
  4463. if (a->grad) {
  4464. is_node = true;
  4465. }
  4466. const int64_t ne[2] = { ne0, ne1 };
  4467. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4468. result->op = GGML_OP_RESHAPE;
  4469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4470. result->src0 = a;
  4471. result->src1 = NULL;
  4472. return result;
  4473. }
  4474. struct ggml_tensor * ggml_reshape_3d(
  4475. struct ggml_context * ctx,
  4476. struct ggml_tensor * a,
  4477. int64_t ne0,
  4478. int64_t ne1,
  4479. int64_t ne2) {
  4480. GGML_ASSERT(ggml_is_contiguous(a));
  4481. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4482. bool is_node = false;
  4483. if (a->grad) {
  4484. is_node = true;
  4485. }
  4486. const int64_t ne[3] = { ne0, ne1, ne2 };
  4487. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4488. result->op = GGML_OP_RESHAPE;
  4489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4490. result->src0 = a;
  4491. result->src1 = NULL;
  4492. return result;
  4493. }
  4494. struct ggml_tensor * ggml_reshape_4d(
  4495. struct ggml_context * ctx,
  4496. struct ggml_tensor * a,
  4497. int64_t ne0,
  4498. int64_t ne1,
  4499. int64_t ne2,
  4500. int64_t ne3) {
  4501. GGML_ASSERT(ggml_is_contiguous(a));
  4502. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4503. bool is_node = false;
  4504. if (a->grad) {
  4505. is_node = true;
  4506. }
  4507. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4508. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4509. result->op = GGML_OP_RESHAPE;
  4510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4511. result->src0 = a;
  4512. result->src1 = NULL;
  4513. return result;
  4514. }
  4515. // ggml_view_1d
  4516. struct ggml_tensor * ggml_view_1d(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a,
  4519. int64_t ne0,
  4520. size_t offset) {
  4521. bool is_node = false;
  4522. if (a->grad) {
  4523. is_node = true;
  4524. }
  4525. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4526. result->op = GGML_OP_VIEW;
  4527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4528. result->src0 = a;
  4529. result->src1 = NULL;
  4530. if (is_node) {
  4531. memcpy(result->padding, &offset, sizeof(offset));
  4532. }
  4533. return result;
  4534. }
  4535. // ggml_view_2d
  4536. struct ggml_tensor * ggml_view_2d(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. int64_t ne0,
  4540. int64_t ne1,
  4541. size_t nb1,
  4542. size_t offset) {
  4543. bool is_node = false;
  4544. if (a->grad) {
  4545. is_node = true;
  4546. }
  4547. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4548. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4549. result->nb[1] = nb1;
  4550. result->nb[2] = result->nb[1]*ne1;
  4551. result->nb[3] = result->nb[2];
  4552. result->op = GGML_OP_VIEW;
  4553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4554. result->src0 = a;
  4555. result->src1 = NULL;
  4556. if (is_node) {
  4557. memcpy(result->padding, &offset, sizeof(offset));
  4558. }
  4559. return result;
  4560. }
  4561. // ggml_view_3d
  4562. struct ggml_tensor * ggml_view_3d(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a,
  4565. int64_t ne0,
  4566. int64_t ne1,
  4567. int64_t ne2,
  4568. size_t nb1,
  4569. size_t nb2,
  4570. size_t offset) {
  4571. bool is_node = false;
  4572. if (a->grad) {
  4573. is_node = true;
  4574. }
  4575. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4576. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4577. result->nb[1] = nb1;
  4578. result->nb[2] = nb2;
  4579. result->nb[3] = result->nb[2]*ne2;
  4580. result->op = GGML_OP_VIEW;
  4581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4582. result->src0 = a;
  4583. result->src1 = NULL;
  4584. if (is_node) {
  4585. memcpy(result->padding, &offset, sizeof(offset));
  4586. }
  4587. return result;
  4588. }
  4589. // ggml_view_4d
  4590. struct ggml_tensor * ggml_view_4d(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a,
  4593. int64_t ne0,
  4594. int64_t ne1,
  4595. int64_t ne2,
  4596. int64_t ne3,
  4597. size_t nb1,
  4598. size_t nb2,
  4599. size_t nb3,
  4600. size_t offset) {
  4601. bool is_node = false;
  4602. if (a->grad) {
  4603. is_node = true;
  4604. }
  4605. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4606. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4607. result->nb[1] = nb1;
  4608. result->nb[2] = nb2;
  4609. result->nb[3] = nb3;
  4610. result->op = GGML_OP_VIEW;
  4611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4612. result->src0 = a;
  4613. result->src1 = NULL;
  4614. if (is_node) {
  4615. memcpy(result->padding, &offset, sizeof(offset));
  4616. }
  4617. return result;
  4618. }
  4619. // ggml_permute
  4620. struct ggml_tensor * ggml_permute(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. int axis0,
  4624. int axis1,
  4625. int axis2,
  4626. int axis3) {
  4627. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4628. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4629. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4630. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4631. GGML_ASSERT(axis0 != axis1);
  4632. GGML_ASSERT(axis0 != axis2);
  4633. GGML_ASSERT(axis0 != axis3);
  4634. GGML_ASSERT(axis1 != axis2);
  4635. GGML_ASSERT(axis1 != axis3);
  4636. GGML_ASSERT(axis2 != axis3);
  4637. bool is_node = false;
  4638. if (a->grad) {
  4639. is_node = true;
  4640. }
  4641. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4642. int ne[GGML_MAX_DIMS];
  4643. int nb[GGML_MAX_DIMS];
  4644. ne[axis0] = a->ne[0];
  4645. ne[axis1] = a->ne[1];
  4646. ne[axis2] = a->ne[2];
  4647. ne[axis3] = a->ne[3];
  4648. nb[axis0] = a->nb[0];
  4649. nb[axis1] = a->nb[1];
  4650. nb[axis2] = a->nb[2];
  4651. nb[axis3] = a->nb[3];
  4652. result->ne[0] = ne[0];
  4653. result->ne[1] = ne[1];
  4654. result->ne[2] = ne[2];
  4655. result->ne[3] = ne[3];
  4656. result->nb[0] = nb[0];
  4657. result->nb[1] = nb[1];
  4658. result->nb[2] = nb[2];
  4659. result->nb[3] = nb[3];
  4660. result->op = GGML_OP_PERMUTE;
  4661. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4662. result->src0 = a;
  4663. result->src1 = NULL;
  4664. if (is_node) {
  4665. result->padding[0] = axis0;
  4666. result->padding[1] = axis1;
  4667. result->padding[2] = axis2;
  4668. result->padding[3] = axis3;
  4669. }
  4670. return result;
  4671. }
  4672. // ggml_transpose
  4673. struct ggml_tensor * ggml_transpose(
  4674. struct ggml_context * ctx,
  4675. struct ggml_tensor * a) {
  4676. bool is_node = false;
  4677. if (a->grad) {
  4678. is_node = true;
  4679. }
  4680. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4681. result->ne[0] = a->ne[1];
  4682. result->ne[1] = a->ne[0];
  4683. result->nb[0] = a->nb[1];
  4684. result->nb[1] = a->nb[0];
  4685. result->op = GGML_OP_TRANSPOSE;
  4686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4687. result->src0 = a;
  4688. result->src1 = NULL;
  4689. return result;
  4690. }
  4691. // ggml_get_rows
  4692. struct ggml_tensor * ggml_get_rows(
  4693. struct ggml_context * ctx,
  4694. struct ggml_tensor * a,
  4695. struct ggml_tensor * b) {
  4696. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4697. bool is_node = false;
  4698. if (a->grad || b->grad) {
  4699. is_node = true;
  4700. }
  4701. // TODO: implement non F32 return
  4702. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4703. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4704. result->op = GGML_OP_GET_ROWS;
  4705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4706. result->src0 = a;
  4707. result->src1 = b;
  4708. return result;
  4709. }
  4710. // ggml_get_rows_back
  4711. struct ggml_tensor * ggml_get_rows_back(
  4712. struct ggml_context * ctx,
  4713. struct ggml_tensor * a,
  4714. struct ggml_tensor * b,
  4715. struct ggml_tensor * c) {
  4716. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4717. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4718. bool is_node = false;
  4719. if (a->grad || b->grad) {
  4720. is_node = true;
  4721. }
  4722. // TODO: implement non F32 return
  4723. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4724. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4725. result->op = GGML_OP_GET_ROWS_BACK;
  4726. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4727. result->src0 = a;
  4728. result->src1 = b;
  4729. result->opt[0] = c;
  4730. return result;
  4731. }
  4732. // ggml_diag
  4733. struct ggml_tensor * ggml_diag(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a) {
  4736. GGML_ASSERT(a->ne[1] == 1);
  4737. bool is_node = false;
  4738. if (a->grad) {
  4739. is_node = true;
  4740. }
  4741. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4742. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4743. result->op = GGML_OP_DIAG;
  4744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4745. result->src0 = a;
  4746. result->src1 = NULL;
  4747. return result;
  4748. }
  4749. // ggml_diag_mask_inf
  4750. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. int n_past,
  4754. bool inplace) {
  4755. bool is_node = false;
  4756. if (a->grad) {
  4757. is_node = true;
  4758. }
  4759. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4760. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4761. ((int32_t *) b->data)[0] = n_past;
  4762. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4763. result->op = GGML_OP_DIAG_MASK_INF;
  4764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4765. result->src0 = a;
  4766. result->src1 = b;
  4767. return result;
  4768. }
  4769. struct ggml_tensor * ggml_diag_mask_inf(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a,
  4772. int n_past) {
  4773. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4774. }
  4775. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4776. struct ggml_context * ctx,
  4777. struct ggml_tensor * a,
  4778. int n_past) {
  4779. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4780. }
  4781. // ggml_diag_mask_zero
  4782. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. int n_past,
  4786. bool inplace) {
  4787. bool is_node = false;
  4788. if (a->grad) {
  4789. is_node = true;
  4790. }
  4791. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4792. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4793. ggml_set_name(b, "n_past, inplace");
  4794. ((int32_t *) b->data)[0] = n_past;
  4795. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4796. result->op = GGML_OP_DIAG_MASK_ZERO;
  4797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4798. result->src0 = a;
  4799. result->src1 = b;
  4800. return result;
  4801. }
  4802. struct ggml_tensor * ggml_diag_mask_zero(
  4803. struct ggml_context * ctx,
  4804. struct ggml_tensor * a,
  4805. int n_past) {
  4806. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4807. }
  4808. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. int n_past) {
  4812. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4813. }
  4814. // ggml_soft_max
  4815. struct ggml_tensor * ggml_soft_max_impl(
  4816. struct ggml_context * ctx,
  4817. struct ggml_tensor * a,
  4818. bool inplace) {
  4819. bool is_node = false;
  4820. if (a->grad) {
  4821. is_node = true;
  4822. }
  4823. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4824. result->op = GGML_OP_SOFT_MAX;
  4825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4826. result->src0 = a;
  4827. result->src1 = NULL;
  4828. return result;
  4829. }
  4830. struct ggml_tensor * ggml_soft_max(
  4831. struct ggml_context * ctx,
  4832. struct ggml_tensor * a) {
  4833. return ggml_soft_max_impl(ctx, a, false);
  4834. }
  4835. struct ggml_tensor * ggml_soft_max_inplace(
  4836. struct ggml_context * ctx,
  4837. struct ggml_tensor * a) {
  4838. return ggml_soft_max_impl(ctx, a, true);
  4839. }
  4840. // ggml_rope
  4841. struct ggml_tensor * ggml_rope_impl(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. int n_past,
  4845. int n_dims,
  4846. int mode,
  4847. bool inplace) {
  4848. GGML_ASSERT(n_past >= 0);
  4849. bool is_node = false;
  4850. if (!inplace && a->grad) {
  4851. is_node = true;
  4852. }
  4853. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4854. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4855. ((int32_t *) b->data)[0] = n_past;
  4856. ((int32_t *) b->data)[1] = n_dims;
  4857. ((int32_t *) b->data)[2] = mode;
  4858. result->op = GGML_OP_ROPE;
  4859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4860. result->src0 = a;
  4861. result->src1 = b;
  4862. return result;
  4863. }
  4864. struct ggml_tensor * ggml_rope(
  4865. struct ggml_context * ctx,
  4866. struct ggml_tensor * a,
  4867. int n_past,
  4868. int n_dims,
  4869. int mode) {
  4870. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  4871. }
  4872. struct ggml_tensor * ggml_rope_inplace(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a,
  4875. int n_past,
  4876. int n_dims,
  4877. int mode) {
  4878. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  4879. }
  4880. // ggml_rope_back
  4881. struct ggml_tensor * ggml_rope_back(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a,
  4884. int n_past,
  4885. int n_dims,
  4886. int mode) {
  4887. GGML_ASSERT(n_past >= 0);
  4888. bool is_node = false;
  4889. if (a->grad) {
  4890. GGML_ASSERT(false); // TODO: implement backward
  4891. is_node = true;
  4892. }
  4893. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4894. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4895. ((int32_t *) b->data)[0] = n_past;
  4896. ((int32_t *) b->data)[1] = n_dims;
  4897. ((int32_t *) b->data)[2] = mode;
  4898. ggml_set_name(b, "n_past, n_dims, mode");
  4899. result->op = GGML_OP_ROPE_BACK;
  4900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4901. result->src0 = a;
  4902. result->src1 = b;
  4903. return result;
  4904. }
  4905. // ggml_alibi
  4906. struct ggml_tensor * ggml_alibi(
  4907. struct ggml_context * ctx,
  4908. struct ggml_tensor * a,
  4909. int n_past,
  4910. int n_head) {
  4911. GGML_ASSERT(n_past >= 0);
  4912. bool is_node = false;
  4913. if (a->grad) {
  4914. GGML_ASSERT(false); // TODO: implement backward
  4915. is_node = true;
  4916. }
  4917. // TODO: when implement backward, fix this:
  4918. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4919. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4920. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4921. ((int32_t *) b->data)[0] = n_past;
  4922. ((int32_t *) b->data)[1] = n_head;
  4923. result->op = GGML_OP_ALIBI;
  4924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4925. result->src0 = a;
  4926. result->src1 = b;
  4927. return result;
  4928. }
  4929. // ggml_conv_1d_1s
  4930. struct ggml_tensor * ggml_conv_1d_1s(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. struct ggml_tensor * b) {
  4934. GGML_ASSERT(ggml_is_matrix(b));
  4935. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4936. GGML_ASSERT(a->ne[3] == 1);
  4937. bool is_node = false;
  4938. if (a->grad || b->grad) {
  4939. GGML_ASSERT(false); // TODO: implement backward
  4940. is_node = true;
  4941. }
  4942. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4943. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4944. result->op = GGML_OP_CONV_1D_1S;
  4945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4946. result->src0 = a;
  4947. result->src1 = b;
  4948. return result;
  4949. }
  4950. // ggml_conv_1d_2s
  4951. struct ggml_tensor * ggml_conv_1d_2s(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a,
  4954. struct ggml_tensor * b) {
  4955. GGML_ASSERT(ggml_is_matrix(b));
  4956. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4957. GGML_ASSERT(a->ne[3] == 1);
  4958. bool is_node = false;
  4959. if (a->grad || b->grad) {
  4960. GGML_ASSERT(false); // TODO: implement backward
  4961. is_node = true;
  4962. }
  4963. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4964. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4965. result->op = GGML_OP_CONV_1D_2S;
  4966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4967. result->src0 = a;
  4968. result->src1 = b;
  4969. return result;
  4970. }
  4971. // ggml_flash_attn
  4972. struct ggml_tensor * ggml_flash_attn(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * q,
  4975. struct ggml_tensor * k,
  4976. struct ggml_tensor * v,
  4977. bool masked) {
  4978. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4979. // TODO: check if vT can be multiplied by (k*qT)
  4980. bool is_node = false;
  4981. if (q->grad || k->grad || v->grad) {
  4982. GGML_ASSERT(false); // TODO: implement backward
  4983. is_node = true;
  4984. }
  4985. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4986. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4987. result->op = GGML_OP_FLASH_ATTN;
  4988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4989. result->src0 = q;
  4990. result->src1 = k;
  4991. result->opt[0] = v;
  4992. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4993. return result;
  4994. }
  4995. // ggml_flash_ff
  4996. struct ggml_tensor * ggml_flash_ff(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a,
  4999. struct ggml_tensor * b0,
  5000. struct ggml_tensor * b1,
  5001. struct ggml_tensor * c0,
  5002. struct ggml_tensor * c1) {
  5003. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5004. // TODO: more checks
  5005. bool is_node = false;
  5006. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5007. GGML_ASSERT(false); // TODO: implement backward
  5008. is_node = true;
  5009. }
  5010. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5011. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5012. result->op = GGML_OP_FLASH_FF;
  5013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5014. result->src0 = a;
  5015. result->src1 = b0;
  5016. result->opt[0] = b1;
  5017. result->opt[1] = c0;
  5018. result->opt[2] = c1;
  5019. return result;
  5020. }
  5021. // ggml_map_unary
  5022. struct ggml_tensor * ggml_map_unary_impl_f32(
  5023. struct ggml_context * ctx,
  5024. struct ggml_tensor * a,
  5025. const ggml_unary_op_f32_t fun,
  5026. bool inplace) {
  5027. bool is_node = false;
  5028. if (!inplace && a->grad) {
  5029. is_node = true;
  5030. }
  5031. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5032. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5033. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5034. result->op = GGML_OP_MAP_UNARY;
  5035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5036. result->src0 = a;
  5037. result->opt[0] = addr_tensor;
  5038. return result;
  5039. }
  5040. struct ggml_tensor * ggml_map_unary_f32(
  5041. struct ggml_context * ctx,
  5042. struct ggml_tensor * a,
  5043. const ggml_unary_op_f32_t fun) {
  5044. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5045. }
  5046. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. const ggml_unary_op_f32_t fun) {
  5050. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5051. }
  5052. // ggml_map_binary
  5053. struct ggml_tensor * ggml_map_binary_impl_f32(
  5054. struct ggml_context * ctx,
  5055. struct ggml_tensor * a,
  5056. struct ggml_tensor * b,
  5057. const ggml_binary_op_f32_t fun,
  5058. bool inplace) {
  5059. GGML_ASSERT(ggml_are_same_shape(a, b));
  5060. bool is_node = false;
  5061. if (!inplace && (a->grad || b->grad)) {
  5062. is_node = true;
  5063. }
  5064. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5065. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5066. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5067. result->op = GGML_OP_MAP_BINARY;
  5068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5069. result->src0 = a;
  5070. result->src1 = b;
  5071. result->opt[0] = addr_tensor;
  5072. return result;
  5073. }
  5074. struct ggml_tensor * ggml_map_binary_f32(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. struct ggml_tensor * b,
  5078. const ggml_binary_op_f32_t fun) {
  5079. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5080. }
  5081. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. struct ggml_tensor * b,
  5085. const ggml_binary_op_f32_t fun) {
  5086. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5087. }
  5088. ////////////////////////////////////////////////////////////////////////////////
  5089. void ggml_set_param(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * tensor) {
  5092. tensor->is_param = true;
  5093. GGML_ASSERT(tensor->grad == NULL);
  5094. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5095. }
  5096. // ggml_compute_forward_dup
  5097. static void ggml_compute_forward_dup_same_cont(
  5098. const struct ggml_compute_params * params,
  5099. const struct ggml_tensor * src0,
  5100. struct ggml_tensor * dst) {
  5101. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5102. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5103. GGML_ASSERT(src0->type == dst->type);
  5104. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5105. return;
  5106. }
  5107. const size_t nb00 = src0->nb[0];
  5108. const size_t nb0 = dst->nb[0];
  5109. const int ith = params->ith; // thread index
  5110. const int nth = params->nth; // number of threads
  5111. // parallelize by elements
  5112. const int ne = ggml_nelements(dst);
  5113. const int dr = (ne + nth - 1) / nth;
  5114. const int ie0 = dr * ith;
  5115. const int ie1 = MIN(ie0 + dr, ne);
  5116. if (ie0 < ie1) {
  5117. memcpy(
  5118. ((char *) dst->data + ie0*nb0),
  5119. ((char *) src0->data + ie0*nb00),
  5120. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5121. }
  5122. }
  5123. static void ggml_compute_forward_dup_f16(
  5124. const struct ggml_compute_params * params,
  5125. const struct ggml_tensor * src0,
  5126. struct ggml_tensor * dst) {
  5127. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5128. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5129. return;
  5130. }
  5131. const int64_t ne00 = src0->ne[0];
  5132. const int64_t ne01 = src0->ne[1];
  5133. const int64_t ne02 = src0->ne[2];
  5134. const int64_t ne03 = src0->ne[3];
  5135. const int64_t ne0 = dst->ne[0];
  5136. const int64_t ne1 = dst->ne[1];
  5137. const int64_t ne2 = dst->ne[2];
  5138. const int64_t ne3 = dst->ne[3];
  5139. const size_t nb00 = src0->nb[0];
  5140. const size_t nb01 = src0->nb[1];
  5141. const size_t nb02 = src0->nb[2];
  5142. const size_t nb03 = src0->nb[3];
  5143. const size_t nb0 = dst->nb[0];
  5144. const size_t nb1 = dst->nb[1];
  5145. const size_t nb2 = dst->nb[2];
  5146. const size_t nb3 = dst->nb[3];
  5147. const int ith = params->ith; // thread index
  5148. const int nth = params->nth; // number of threads
  5149. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5150. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5151. return;
  5152. }
  5153. // parallelize by rows
  5154. const int nr = ne01;
  5155. // number of rows per thread
  5156. const int dr = (nr + nth - 1) / nth;
  5157. // row range for this thread
  5158. const int ir0 = dr * ith;
  5159. const int ir1 = MIN(ir0 + dr, nr);
  5160. if (src0->type == dst->type &&
  5161. ne00 == ne0 &&
  5162. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5163. // copy by rows
  5164. const size_t rs = ne00*nb00;
  5165. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5166. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5167. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5168. memcpy(
  5169. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5170. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5171. rs);
  5172. }
  5173. }
  5174. }
  5175. return;
  5176. }
  5177. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5178. if (ggml_is_contiguous(dst)) {
  5179. if (nb00 == sizeof(ggml_fp16_t)) {
  5180. if (dst->type == GGML_TYPE_F16) {
  5181. size_t id = 0;
  5182. const size_t rs = ne00 * nb00;
  5183. char * dst_ptr = (char *) dst->data;
  5184. for (int i03 = 0; i03 < ne03; i03++) {
  5185. for (int i02 = 0; i02 < ne02; i02++) {
  5186. id += rs * ir0;
  5187. for (int i01 = ir0; i01 < ir1; i01++) {
  5188. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5189. memcpy(dst_ptr + id, src0_ptr, rs);
  5190. id += rs;
  5191. }
  5192. id += rs * (ne01 - ir1);
  5193. }
  5194. }
  5195. } else if (dst->type == GGML_TYPE_F32) {
  5196. size_t id = 0;
  5197. float * dst_ptr = (float *) dst->data;
  5198. for (int i03 = 0; i03 < ne03; i03++) {
  5199. for (int i02 = 0; i02 < ne02; i02++) {
  5200. id += ne00 * ir0;
  5201. for (int i01 = ir0; i01 < ir1; i01++) {
  5202. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5203. for (int i00 = 0; i00 < ne00; i00++) {
  5204. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5205. id++;
  5206. }
  5207. }
  5208. id += ne00 * (ne01 - ir1);
  5209. }
  5210. }
  5211. } else if (ggml_is_quantized(dst->type)) {
  5212. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5213. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5214. size_t id = 0;
  5215. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5216. char * dst_ptr = (char *) dst->data;
  5217. for (int i03 = 0; i03 < ne03; i03++) {
  5218. for (int i02 = 0; i02 < ne02; i02++) {
  5219. id += rs * ir0;
  5220. for (int i01 = ir0; i01 < ir1; i01++) {
  5221. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5222. for (int i00 = 0; i00 < ne00; i00++) {
  5223. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5224. }
  5225. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5226. id += rs;
  5227. }
  5228. id += rs * (ne01 - ir1);
  5229. }
  5230. }
  5231. } else {
  5232. GGML_ASSERT(false); // TODO: implement
  5233. }
  5234. } else {
  5235. //printf("%s: this is not optimal - fix me\n", __func__);
  5236. if (dst->type == GGML_TYPE_F32) {
  5237. size_t id = 0;
  5238. float * dst_ptr = (float *) dst->data;
  5239. for (int i03 = 0; i03 < ne03; i03++) {
  5240. for (int i02 = 0; i02 < ne02; i02++) {
  5241. id += ne00 * ir0;
  5242. for (int i01 = ir0; i01 < ir1; i01++) {
  5243. for (int i00 = 0; i00 < ne00; i00++) {
  5244. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5245. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5246. id++;
  5247. }
  5248. }
  5249. id += ne00 * (ne01 - ir1);
  5250. }
  5251. }
  5252. } else if (dst->type == GGML_TYPE_F16) {
  5253. size_t id = 0;
  5254. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5255. for (int i03 = 0; i03 < ne03; i03++) {
  5256. for (int i02 = 0; i02 < ne02; i02++) {
  5257. id += ne00 * ir0;
  5258. for (int i01 = ir0; i01 < ir1; i01++) {
  5259. for (int i00 = 0; i00 < ne00; i00++) {
  5260. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5261. dst_ptr[id] = *src0_ptr;
  5262. id++;
  5263. }
  5264. }
  5265. id += ne00 * (ne01 - ir1);
  5266. }
  5267. }
  5268. } else {
  5269. GGML_ASSERT(false); // TODO: implement
  5270. }
  5271. }
  5272. return;
  5273. }
  5274. // dst counters
  5275. int64_t i10 = 0;
  5276. int64_t i11 = 0;
  5277. int64_t i12 = 0;
  5278. int64_t i13 = 0;
  5279. if (dst->type == GGML_TYPE_F16) {
  5280. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5281. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5282. i10 += ne00 * ir0;
  5283. while (i10 >= ne0) {
  5284. i10 -= ne0;
  5285. if (++i11 == ne1) {
  5286. i11 = 0;
  5287. if (++i12 == ne2) {
  5288. i12 = 0;
  5289. if (++i13 == ne3) {
  5290. i13 = 0;
  5291. }
  5292. }
  5293. }
  5294. }
  5295. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5296. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5297. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5298. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5299. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5300. if (++i10 == ne00) {
  5301. i10 = 0;
  5302. if (++i11 == ne01) {
  5303. i11 = 0;
  5304. if (++i12 == ne02) {
  5305. i12 = 0;
  5306. if (++i13 == ne03) {
  5307. i13 = 0;
  5308. }
  5309. }
  5310. }
  5311. }
  5312. }
  5313. }
  5314. i10 += ne00 * (ne01 - ir1);
  5315. while (i10 >= ne0) {
  5316. i10 -= ne0;
  5317. if (++i11 == ne1) {
  5318. i11 = 0;
  5319. if (++i12 == ne2) {
  5320. i12 = 0;
  5321. if (++i13 == ne3) {
  5322. i13 = 0;
  5323. }
  5324. }
  5325. }
  5326. }
  5327. }
  5328. }
  5329. } else if (dst->type == GGML_TYPE_F32) {
  5330. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5331. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5332. i10 += ne00 * ir0;
  5333. while (i10 >= ne0) {
  5334. i10 -= ne0;
  5335. if (++i11 == ne1) {
  5336. i11 = 0;
  5337. if (++i12 == ne2) {
  5338. i12 = 0;
  5339. if (++i13 == ne3) {
  5340. i13 = 0;
  5341. }
  5342. }
  5343. }
  5344. }
  5345. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5346. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5347. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5348. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5349. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5350. if (++i10 == ne0) {
  5351. i10 = 0;
  5352. if (++i11 == ne1) {
  5353. i11 = 0;
  5354. if (++i12 == ne2) {
  5355. i12 = 0;
  5356. if (++i13 == ne3) {
  5357. i13 = 0;
  5358. }
  5359. }
  5360. }
  5361. }
  5362. }
  5363. }
  5364. i10 += ne00 * (ne01 - ir1);
  5365. while (i10 >= ne0) {
  5366. i10 -= ne0;
  5367. if (++i11 == ne1) {
  5368. i11 = 0;
  5369. if (++i12 == ne2) {
  5370. i12 = 0;
  5371. if (++i13 == ne3) {
  5372. i13 = 0;
  5373. }
  5374. }
  5375. }
  5376. }
  5377. }
  5378. }
  5379. } else {
  5380. GGML_ASSERT(false); // TODO: implement
  5381. }
  5382. }
  5383. static void ggml_compute_forward_dup_f32(
  5384. const struct ggml_compute_params * params,
  5385. const struct ggml_tensor * src0,
  5386. struct ggml_tensor * dst) {
  5387. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5388. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5389. return;
  5390. }
  5391. const int64_t ne00 = src0->ne[0];
  5392. const int64_t ne01 = src0->ne[1];
  5393. const int64_t ne02 = src0->ne[2];
  5394. const int64_t ne03 = src0->ne[3];
  5395. const int64_t ne0 = dst->ne[0];
  5396. const int64_t ne1 = dst->ne[1];
  5397. const int64_t ne2 = dst->ne[2];
  5398. const int64_t ne3 = dst->ne[3];
  5399. const size_t nb00 = src0->nb[0];
  5400. const size_t nb01 = src0->nb[1];
  5401. const size_t nb02 = src0->nb[2];
  5402. const size_t nb03 = src0->nb[3];
  5403. const size_t nb0 = dst->nb[0];
  5404. const size_t nb1 = dst->nb[1];
  5405. const size_t nb2 = dst->nb[2];
  5406. const size_t nb3 = dst->nb[3];
  5407. const int ith = params->ith; // thread index
  5408. const int nth = params->nth; // number of threads
  5409. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5410. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5411. return;
  5412. }
  5413. // parallelize by rows
  5414. const int nr = ne01;
  5415. // number of rows per thread
  5416. const int dr = (nr + nth - 1) / nth;
  5417. // row range for this thread
  5418. const int ir0 = dr * ith;
  5419. const int ir1 = MIN(ir0 + dr, nr);
  5420. if (src0->type == dst->type &&
  5421. ne00 == ne0 &&
  5422. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5423. // copy by rows
  5424. const size_t rs = ne00*nb00;
  5425. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5426. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5427. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5428. memcpy(
  5429. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5430. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5431. rs);
  5432. }
  5433. }
  5434. }
  5435. return;
  5436. }
  5437. if (ggml_is_contiguous(dst)) {
  5438. // TODO: simplify
  5439. if (nb00 == sizeof(float)) {
  5440. if (dst->type == GGML_TYPE_F32) {
  5441. size_t id = 0;
  5442. const size_t rs = ne00 * nb00;
  5443. char * dst_ptr = (char *) dst->data;
  5444. for (int i03 = 0; i03 < ne03; i03++) {
  5445. for (int i02 = 0; i02 < ne02; i02++) {
  5446. id += rs * ir0;
  5447. for (int i01 = ir0; i01 < ir1; i01++) {
  5448. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5449. memcpy(dst_ptr + id, src0_ptr, rs);
  5450. id += rs;
  5451. }
  5452. id += rs * (ne01 - ir1);
  5453. }
  5454. }
  5455. } else if (dst->type == GGML_TYPE_F16) {
  5456. size_t id = 0;
  5457. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5458. for (int i03 = 0; i03 < ne03; i03++) {
  5459. for (int i02 = 0; i02 < ne02; i02++) {
  5460. id += ne00 * ir0;
  5461. for (int i01 = ir0; i01 < ir1; i01++) {
  5462. for (int i00 = 0; i00 < ne00; i00++) {
  5463. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5464. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5465. id++;
  5466. }
  5467. }
  5468. id += ne00 * (ne01 - ir1);
  5469. }
  5470. }
  5471. } else if (ggml_is_quantized(dst->type)) {
  5472. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5473. size_t id = 0;
  5474. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5475. char * dst_ptr = (char *) dst->data;
  5476. for (int i03 = 0; i03 < ne03; i03++) {
  5477. for (int i02 = 0; i02 < ne02; i02++) {
  5478. id += rs * ir0;
  5479. for (int i01 = ir0; i01 < ir1; i01++) {
  5480. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5481. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5482. id += rs;
  5483. }
  5484. id += rs * (ne01 - ir1);
  5485. }
  5486. }
  5487. } else {
  5488. GGML_ASSERT(false); // TODO: implement
  5489. }
  5490. } else {
  5491. //printf("%s: this is not optimal - fix me\n", __func__);
  5492. if (dst->type == GGML_TYPE_F32) {
  5493. size_t id = 0;
  5494. float * dst_ptr = (float *) dst->data;
  5495. for (int i03 = 0; i03 < ne03; i03++) {
  5496. for (int i02 = 0; i02 < ne02; i02++) {
  5497. id += ne00 * ir0;
  5498. for (int i01 = ir0; i01 < ir1; i01++) {
  5499. for (int i00 = 0; i00 < ne00; i00++) {
  5500. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5501. dst_ptr[id] = *src0_ptr;
  5502. id++;
  5503. }
  5504. }
  5505. id += ne00 * (ne01 - ir1);
  5506. }
  5507. }
  5508. } else if (dst->type == GGML_TYPE_F16) {
  5509. size_t id = 0;
  5510. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5511. for (int i03 = 0; i03 < ne03; i03++) {
  5512. for (int i02 = 0; i02 < ne02; i02++) {
  5513. id += ne00 * ir0;
  5514. for (int i01 = ir0; i01 < ir1; i01++) {
  5515. for (int i00 = 0; i00 < ne00; i00++) {
  5516. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5517. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5518. id++;
  5519. }
  5520. }
  5521. id += ne00 * (ne01 - ir1);
  5522. }
  5523. }
  5524. } else {
  5525. GGML_ASSERT(false); // TODO: implement
  5526. }
  5527. }
  5528. return;
  5529. }
  5530. // dst counters
  5531. int64_t i10 = 0;
  5532. int64_t i11 = 0;
  5533. int64_t i12 = 0;
  5534. int64_t i13 = 0;
  5535. if (dst->type == GGML_TYPE_F32) {
  5536. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5537. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5538. i10 += ne00 * ir0;
  5539. while (i10 >= ne0) {
  5540. i10 -= ne0;
  5541. if (++i11 == ne1) {
  5542. i11 = 0;
  5543. if (++i12 == ne2) {
  5544. i12 = 0;
  5545. if (++i13 == ne3) {
  5546. i13 = 0;
  5547. }
  5548. }
  5549. }
  5550. }
  5551. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5552. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5553. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5554. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5555. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5556. if (++i10 == ne0) {
  5557. i10 = 0;
  5558. if (++i11 == ne1) {
  5559. i11 = 0;
  5560. if (++i12 == ne2) {
  5561. i12 = 0;
  5562. if (++i13 == ne3) {
  5563. i13 = 0;
  5564. }
  5565. }
  5566. }
  5567. }
  5568. }
  5569. }
  5570. i10 += ne00 * (ne01 - ir1);
  5571. while (i10 >= ne0) {
  5572. i10 -= ne0;
  5573. if (++i11 == ne1) {
  5574. i11 = 0;
  5575. if (++i12 == ne2) {
  5576. i12 = 0;
  5577. if (++i13 == ne3) {
  5578. i13 = 0;
  5579. }
  5580. }
  5581. }
  5582. }
  5583. }
  5584. }
  5585. } else if (dst->type == GGML_TYPE_F16) {
  5586. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5587. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5588. i10 += ne00 * ir0;
  5589. while (i10 >= ne0) {
  5590. i10 -= ne0;
  5591. if (++i11 == ne1) {
  5592. i11 = 0;
  5593. if (++i12 == ne2) {
  5594. i12 = 0;
  5595. if (++i13 == ne3) {
  5596. i13 = 0;
  5597. }
  5598. }
  5599. }
  5600. }
  5601. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5602. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5603. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5604. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5605. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5606. if (++i10 == ne0) {
  5607. i10 = 0;
  5608. if (++i11 == ne1) {
  5609. i11 = 0;
  5610. if (++i12 == ne2) {
  5611. i12 = 0;
  5612. if (++i13 == ne3) {
  5613. i13 = 0;
  5614. }
  5615. }
  5616. }
  5617. }
  5618. }
  5619. }
  5620. i10 += ne00 * (ne01 - ir1);
  5621. while (i10 >= ne0) {
  5622. i10 -= ne0;
  5623. if (++i11 == ne1) {
  5624. i11 = 0;
  5625. if (++i12 == ne2) {
  5626. i12 = 0;
  5627. if (++i13 == ne3) {
  5628. i13 = 0;
  5629. }
  5630. }
  5631. }
  5632. }
  5633. }
  5634. }
  5635. } else {
  5636. GGML_ASSERT(false); // TODO: implement
  5637. }
  5638. }
  5639. static void ggml_compute_forward_dup(
  5640. const struct ggml_compute_params * params,
  5641. const struct ggml_tensor * src0,
  5642. struct ggml_tensor * dst) {
  5643. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5644. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5645. return;
  5646. }
  5647. switch (src0->type) {
  5648. case GGML_TYPE_F16:
  5649. {
  5650. ggml_compute_forward_dup_f16(params, src0, dst);
  5651. } break;
  5652. case GGML_TYPE_F32:
  5653. {
  5654. ggml_compute_forward_dup_f32(params, src0, dst);
  5655. } break;
  5656. default:
  5657. {
  5658. GGML_ASSERT(false);
  5659. } break;
  5660. }
  5661. }
  5662. // ggml_compute_forward_add
  5663. static void ggml_compute_forward_add_f32(
  5664. const struct ggml_compute_params * params,
  5665. const struct ggml_tensor * src0,
  5666. const struct ggml_tensor * src1,
  5667. struct ggml_tensor * dst) {
  5668. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5669. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5670. return;
  5671. }
  5672. const int ith = params->ith;
  5673. const int nth = params->nth;
  5674. const int nr = ggml_nrows(src0);
  5675. const int64_t ne0 = src0->ne[0];
  5676. const int64_t ne1 = src0->ne[1];
  5677. const int64_t ne2 = src0->ne[2];
  5678. const size_t nb00 = src0->nb[0];
  5679. const size_t nb01 = src0->nb[1];
  5680. const size_t nb02 = src0->nb[2];
  5681. const size_t nb03 = src0->nb[3];
  5682. const size_t nb10 = src1->nb[0];
  5683. const size_t nb11 = src1->nb[1];
  5684. const size_t nb12 = src1->nb[2];
  5685. const size_t nb13 = src1->nb[3];
  5686. const size_t nb0 = dst->nb[0];
  5687. const size_t nb1 = dst->nb[1];
  5688. const size_t nb2 = dst->nb[2];
  5689. const size_t nb3 = dst->nb[3];
  5690. GGML_ASSERT( nb0 == sizeof(float));
  5691. GGML_ASSERT(nb00 == sizeof(float));
  5692. // rows per thread
  5693. const int dr = (nr + nth - 1)/nth;
  5694. // row range for this thread
  5695. const int ir0 = dr*ith;
  5696. const int ir1 = MIN(ir0 + dr, nr);
  5697. if (nb10 == sizeof(float)) {
  5698. for (int ir = ir0; ir < ir1; ++ir) {
  5699. // src0, src1 and dst are same shape => same indices
  5700. const int i3 = ir/(ne2*ne1);
  5701. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5702. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5703. #ifdef GGML_USE_ACCELERATE
  5704. vDSP_vadd(
  5705. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5706. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5707. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5708. ne0);
  5709. #else
  5710. ggml_vec_add_f32(ne0,
  5711. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5712. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5713. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5714. #endif
  5715. // }
  5716. // }
  5717. }
  5718. } else {
  5719. // src1 is not contiguous
  5720. for (int ir = ir0; ir < ir1; ++ir) {
  5721. // src0, src1 and dst are same shape => same indices
  5722. const int i3 = ir/(ne2*ne1);
  5723. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5724. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5725. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5726. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5727. for (int i0 = 0; i0 < ne0; i0++) {
  5728. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5729. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5730. }
  5731. }
  5732. }
  5733. }
  5734. static void ggml_compute_forward_add_f16_f32(
  5735. const struct ggml_compute_params * params,
  5736. const struct ggml_tensor * src0,
  5737. const struct ggml_tensor * src1,
  5738. struct ggml_tensor * dst) {
  5739. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5740. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5741. return;
  5742. }
  5743. const int ith = params->ith;
  5744. const int nth = params->nth;
  5745. const int nr = ggml_nrows(src0);
  5746. const int64_t ne0 = src0->ne[0];
  5747. const int64_t ne1 = src0->ne[1];
  5748. const int64_t ne2 = src0->ne[2];
  5749. const size_t nb00 = src0->nb[0];
  5750. const size_t nb01 = src0->nb[1];
  5751. const size_t nb02 = src0->nb[2];
  5752. const size_t nb03 = src0->nb[3];
  5753. const size_t nb10 = src1->nb[0];
  5754. const size_t nb11 = src1->nb[1];
  5755. const size_t nb12 = src1->nb[2];
  5756. const size_t nb13 = src1->nb[3];
  5757. const size_t nb0 = dst->nb[0];
  5758. const size_t nb1 = dst->nb[1];
  5759. const size_t nb2 = dst->nb[2];
  5760. const size_t nb3 = dst->nb[3];
  5761. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5762. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5763. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5764. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5765. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5766. // rows per thread
  5767. const int dr = (nr + nth - 1)/nth;
  5768. // row range for this thread
  5769. const int ir0 = dr*ith;
  5770. const int ir1 = MIN(ir0 + dr, nr);
  5771. if (nb10 == sizeof(float)) {
  5772. for (int ir = ir0; ir < ir1; ++ir) {
  5773. // src0, src1 and dst are same shape => same indices
  5774. const int i3 = ir/(ne2*ne1);
  5775. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5776. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5777. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5778. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5779. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5780. for (int i = 0; i < ne0; i++) {
  5781. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5782. }
  5783. }
  5784. }
  5785. else {
  5786. // src1 is not contiguous
  5787. GGML_ASSERT(false);
  5788. }
  5789. }
  5790. static void ggml_compute_forward_add_f16_f16(
  5791. const struct ggml_compute_params * params,
  5792. const struct ggml_tensor * src0,
  5793. const struct ggml_tensor * src1,
  5794. struct ggml_tensor * dst) {
  5795. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5796. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5797. return;
  5798. }
  5799. const int ith = params->ith;
  5800. const int nth = params->nth;
  5801. const int nr = ggml_nrows(src0);
  5802. const int64_t ne0 = src0->ne[0];
  5803. const int64_t ne1 = src0->ne[1];
  5804. const int64_t ne2 = src0->ne[2];
  5805. const size_t nb00 = src0->nb[0];
  5806. const size_t nb01 = src0->nb[1];
  5807. const size_t nb02 = src0->nb[2];
  5808. const size_t nb03 = src0->nb[3];
  5809. const size_t nb10 = src1->nb[0];
  5810. const size_t nb11 = src1->nb[1];
  5811. const size_t nb12 = src1->nb[2];
  5812. const size_t nb13 = src1->nb[3];
  5813. const size_t nb0 = dst->nb[0];
  5814. const size_t nb1 = dst->nb[1];
  5815. const size_t nb2 = dst->nb[2];
  5816. const size_t nb3 = dst->nb[3];
  5817. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5818. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5819. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5820. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5821. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5822. // rows per thread
  5823. const int dr = (nr + nth - 1)/nth;
  5824. // row range for this thread
  5825. const int ir0 = dr*ith;
  5826. const int ir1 = MIN(ir0 + dr, nr);
  5827. if (nb10 == sizeof(ggml_fp16_t)) {
  5828. for (int ir = ir0; ir < ir1; ++ir) {
  5829. // src0, src1 and dst are same shape => same indices
  5830. const int i3 = ir/(ne2*ne1);
  5831. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5832. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5833. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5834. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5835. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5836. for (int i = 0; i < ne0; i++) {
  5837. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5838. }
  5839. }
  5840. }
  5841. else {
  5842. // src1 is not contiguous
  5843. GGML_ASSERT(false);
  5844. }
  5845. }
  5846. static void ggml_compute_forward_add_q_f32(
  5847. const struct ggml_compute_params * params,
  5848. const struct ggml_tensor * src0,
  5849. const struct ggml_tensor * src1,
  5850. struct ggml_tensor * dst) {
  5851. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5852. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5853. return;
  5854. }
  5855. const int nr = ggml_nrows(src0);
  5856. const int64_t ne00 = src0->ne[0];
  5857. const int64_t ne01 = src0->ne[1];
  5858. const int64_t ne02 = src0->ne[2];
  5859. //const int64_t ne03 = src0->ne[3];
  5860. const size_t nb00 = src0->nb[0];
  5861. const size_t nb01 = src0->nb[1];
  5862. const size_t nb02 = src0->nb[2];
  5863. const size_t nb03 = src0->nb[3];
  5864. const size_t nb10 = src1->nb[0];
  5865. const size_t nb11 = src1->nb[1];
  5866. const size_t nb12 = src1->nb[2];
  5867. const size_t nb13 = src1->nb[3];
  5868. const size_t nb0 = dst->nb[0];
  5869. const size_t nb1 = dst->nb[1];
  5870. const size_t nb2 = dst->nb[2];
  5871. const size_t nb3 = dst->nb[3];
  5872. const int ith = params->ith;
  5873. const int nth = params->nth;
  5874. const enum ggml_type type = src0->type;
  5875. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5876. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5877. // we don't support permuted src0 or src1
  5878. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  5879. GGML_ASSERT(nb10 == sizeof(float));
  5880. // dst cannot be transposed or permuted
  5881. GGML_ASSERT(nb0 <= nb1);
  5882. GGML_ASSERT(nb1 <= nb2);
  5883. GGML_ASSERT(nb2 <= nb3);
  5884. GGML_ASSERT(ggml_is_quantized(src0->type));
  5885. GGML_ASSERT(dst->type == src0->type);
  5886. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5887. // rows per thread
  5888. const int dr = (nr + nth - 1)/nth;
  5889. // row range for this thread
  5890. const int ir0 = dr*ith;
  5891. const int ir1 = MIN(ir0 + dr, nr);
  5892. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5893. for (int ir = ir0; ir < ir1; ++ir) {
  5894. // src0 indices
  5895. const int i03 = ir/(ne02*ne01);
  5896. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5897. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5898. // src1 and dst are same shape as src0 => same indices
  5899. const int i13 = i03;
  5900. const int i12 = i02;
  5901. const int i11 = i01;
  5902. const int i3 = i03;
  5903. const int i2 = i02;
  5904. const int i1 = i01;
  5905. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5906. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5907. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5908. assert(ne00 % 32 == 0);
  5909. // unquantize row from src0 to temp buffer
  5910. dequantize_row_q(src0_row, wdata, ne00);
  5911. // add src1
  5912. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5913. // quantize row to dst
  5914. quantize_row_q(wdata, dst_row, ne00);
  5915. }
  5916. }
  5917. static void ggml_compute_forward_add(
  5918. const struct ggml_compute_params * params,
  5919. const struct ggml_tensor * src0,
  5920. const struct ggml_tensor * src1,
  5921. struct ggml_tensor * dst) {
  5922. switch (src0->type) {
  5923. case GGML_TYPE_F32:
  5924. {
  5925. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5926. } break;
  5927. case GGML_TYPE_F16:
  5928. {
  5929. if (src1->type == GGML_TYPE_F16) {
  5930. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5931. }
  5932. else if (src1->type == GGML_TYPE_F32) {
  5933. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5934. }
  5935. else {
  5936. GGML_ASSERT(false);
  5937. }
  5938. } break;
  5939. case GGML_TYPE_Q4_0:
  5940. case GGML_TYPE_Q4_1:
  5941. case GGML_TYPE_Q5_0:
  5942. case GGML_TYPE_Q5_1:
  5943. case GGML_TYPE_Q8_0:
  5944. {
  5945. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5946. } break;
  5947. default:
  5948. {
  5949. GGML_ASSERT(false);
  5950. } break;
  5951. }
  5952. }
  5953. // ggml_compute_forward_add1
  5954. static void ggml_compute_forward_add1_f32(
  5955. const struct ggml_compute_params * params,
  5956. const struct ggml_tensor * src0,
  5957. const struct ggml_tensor * src1,
  5958. struct ggml_tensor * dst) {
  5959. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5960. GGML_ASSERT(ggml_is_scalar(src1));
  5961. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5962. return;
  5963. }
  5964. const int ith = params->ith;
  5965. const int nth = params->nth;
  5966. const int nr = ggml_nrows(src0);
  5967. const int64_t ne0 = src0->ne[0];
  5968. const int64_t ne1 = src0->ne[1];
  5969. const int64_t ne2 = src0->ne[2];
  5970. const size_t nb00 = src0->nb[0];
  5971. const size_t nb01 = src0->nb[1];
  5972. const size_t nb02 = src0->nb[2];
  5973. const size_t nb03 = src0->nb[3];
  5974. const size_t nb0 = dst->nb[0];
  5975. const size_t nb1 = dst->nb[1];
  5976. const size_t nb2 = dst->nb[2];
  5977. const size_t nb3 = dst->nb[3];
  5978. GGML_ASSERT( nb0 == sizeof(float));
  5979. GGML_ASSERT(nb00 == sizeof(float));
  5980. // rows per thread
  5981. const int dr = (nr + nth - 1)/nth;
  5982. // row range for this thread
  5983. const int ir0 = dr*ith;
  5984. const int ir1 = MIN(ir0 + dr, nr);
  5985. for (int ir = ir0; ir < ir1; ++ir) {
  5986. // src0 and dst are same shape => same indices
  5987. const int i3 = ir/(ne2*ne1);
  5988. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5989. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5990. #ifdef GGML_USE_ACCELERATE
  5991. UNUSED(ggml_vec_add1_f32);
  5992. vDSP_vadd(
  5993. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5994. (float *) ((char *) src1->data), 0,
  5995. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5996. ne0);
  5997. #else
  5998. ggml_vec_add1_f32(ne0,
  5999. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6000. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6001. *(float *) src1->data);
  6002. #endif
  6003. }
  6004. }
  6005. static void ggml_compute_forward_add1_f16_f32(
  6006. const struct ggml_compute_params * params,
  6007. const struct ggml_tensor * src0,
  6008. const struct ggml_tensor * src1,
  6009. struct ggml_tensor * dst) {
  6010. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6011. GGML_ASSERT(ggml_is_scalar(src1));
  6012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6013. return;
  6014. }
  6015. // scalar to add
  6016. const float v = *(float *) src1->data;
  6017. const int ith = params->ith;
  6018. const int nth = params->nth;
  6019. const int nr = ggml_nrows(src0);
  6020. const int64_t ne0 = src0->ne[0];
  6021. const int64_t ne1 = src0->ne[1];
  6022. const int64_t ne2 = src0->ne[2];
  6023. const size_t nb00 = src0->nb[0];
  6024. const size_t nb01 = src0->nb[1];
  6025. const size_t nb02 = src0->nb[2];
  6026. const size_t nb03 = src0->nb[3];
  6027. const size_t nb0 = dst->nb[0];
  6028. const size_t nb1 = dst->nb[1];
  6029. const size_t nb2 = dst->nb[2];
  6030. const size_t nb3 = dst->nb[3];
  6031. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6032. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6033. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6034. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6035. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6036. // rows per thread
  6037. const int dr = (nr + nth - 1)/nth;
  6038. // row range for this thread
  6039. const int ir0 = dr*ith;
  6040. const int ir1 = MIN(ir0 + dr, nr);
  6041. for (int ir = ir0; ir < ir1; ++ir) {
  6042. // src0 and dst are same shape => same indices
  6043. const int i3 = ir/(ne2*ne1);
  6044. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6045. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6046. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6047. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6048. for (int i = 0; i < ne0; i++) {
  6049. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6050. }
  6051. }
  6052. }
  6053. static void ggml_compute_forward_add1_f16_f16(
  6054. const struct ggml_compute_params * params,
  6055. const struct ggml_tensor * src0,
  6056. const struct ggml_tensor * src1,
  6057. struct ggml_tensor * dst) {
  6058. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6059. GGML_ASSERT(ggml_is_scalar(src1));
  6060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6061. return;
  6062. }
  6063. // scalar to add
  6064. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6065. const int ith = params->ith;
  6066. const int nth = params->nth;
  6067. const int nr = ggml_nrows(src0);
  6068. const int64_t ne0 = src0->ne[0];
  6069. const int64_t ne1 = src0->ne[1];
  6070. const int64_t ne2 = src0->ne[2];
  6071. const size_t nb00 = src0->nb[0];
  6072. const size_t nb01 = src0->nb[1];
  6073. const size_t nb02 = src0->nb[2];
  6074. const size_t nb03 = src0->nb[3];
  6075. const size_t nb0 = dst->nb[0];
  6076. const size_t nb1 = dst->nb[1];
  6077. const size_t nb2 = dst->nb[2];
  6078. const size_t nb3 = dst->nb[3];
  6079. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6080. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6081. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6082. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6083. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6084. // rows per thread
  6085. const int dr = (nr + nth - 1)/nth;
  6086. // row range for this thread
  6087. const int ir0 = dr*ith;
  6088. const int ir1 = MIN(ir0 + dr, nr);
  6089. for (int ir = ir0; ir < ir1; ++ir) {
  6090. // src0 and dst are same shape => same indices
  6091. const int i3 = ir/(ne2*ne1);
  6092. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6093. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6094. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6095. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6096. for (int i = 0; i < ne0; i++) {
  6097. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6098. }
  6099. }
  6100. }
  6101. static void ggml_compute_forward_add1_q_f32(
  6102. const struct ggml_compute_params * params,
  6103. const struct ggml_tensor * src0,
  6104. const struct ggml_tensor * src1,
  6105. struct ggml_tensor * dst) {
  6106. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6107. GGML_ASSERT(ggml_is_scalar(src1));
  6108. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6109. return;
  6110. }
  6111. // scalar to add
  6112. const float v = *(float *) src1->data;
  6113. const int ith = params->ith;
  6114. const int nth = params->nth;
  6115. const int nr = ggml_nrows(src0);
  6116. const int64_t ne0 = src0->ne[0];
  6117. const int64_t ne1 = src0->ne[1];
  6118. const int64_t ne2 = src0->ne[2];
  6119. const size_t nb00 = src0->nb[0];
  6120. const size_t nb01 = src0->nb[1];
  6121. const size_t nb02 = src0->nb[2];
  6122. const size_t nb03 = src0->nb[3];
  6123. const size_t nb0 = dst->nb[0];
  6124. const size_t nb1 = dst->nb[1];
  6125. const size_t nb2 = dst->nb[2];
  6126. const size_t nb3 = dst->nb[3];
  6127. const enum ggml_type type = src0->type;
  6128. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6129. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6130. // we don't support permuted src0
  6131. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6132. // dst cannot be transposed or permuted
  6133. GGML_ASSERT(nb0 <= nb1);
  6134. GGML_ASSERT(nb1 <= nb2);
  6135. GGML_ASSERT(nb2 <= nb3);
  6136. GGML_ASSERT(ggml_is_quantized(src0->type));
  6137. GGML_ASSERT(dst->type == src0->type);
  6138. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6139. // rows per thread
  6140. const int dr = (nr + nth - 1)/nth;
  6141. // row range for this thread
  6142. const int ir0 = dr*ith;
  6143. const int ir1 = MIN(ir0 + dr, nr);
  6144. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6145. for (int ir = ir0; ir < ir1; ++ir) {
  6146. // src0 and dst are same shape => same indices
  6147. const int i3 = ir/(ne2*ne1);
  6148. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6149. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6150. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6151. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6152. assert(ne0 % 32 == 0);
  6153. // unquantize row from src0 to temp buffer
  6154. dequantize_row_q(src0_row, wdata, ne0);
  6155. // add src1
  6156. ggml_vec_acc1_f32(ne0, wdata, v);
  6157. // quantize row to dst
  6158. quantize_row_q(wdata, dst_row, ne0);
  6159. }
  6160. }
  6161. static void ggml_compute_forward_add1(
  6162. const struct ggml_compute_params * params,
  6163. const struct ggml_tensor * src0,
  6164. const struct ggml_tensor * src1,
  6165. struct ggml_tensor * dst) {
  6166. switch (src0->type) {
  6167. case GGML_TYPE_F32:
  6168. {
  6169. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6170. } break;
  6171. case GGML_TYPE_F16:
  6172. {
  6173. if (src1->type == GGML_TYPE_F16) {
  6174. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6175. }
  6176. else if (src1->type == GGML_TYPE_F32) {
  6177. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6178. }
  6179. else {
  6180. GGML_ASSERT(false);
  6181. }
  6182. } break;
  6183. case GGML_TYPE_Q4_0:
  6184. case GGML_TYPE_Q4_1:
  6185. case GGML_TYPE_Q5_0:
  6186. case GGML_TYPE_Q5_1:
  6187. case GGML_TYPE_Q8_0:
  6188. case GGML_TYPE_Q8_1:
  6189. {
  6190. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6191. } break;
  6192. default:
  6193. {
  6194. GGML_ASSERT(false);
  6195. } break;
  6196. }
  6197. }
  6198. // ggml_compute_forward_acc
  6199. static void ggml_compute_forward_acc_f32(
  6200. const struct ggml_compute_params * params,
  6201. const struct ggml_tensor * src0,
  6202. const struct ggml_tensor * src1,
  6203. const struct ggml_tensor * opt0,
  6204. struct ggml_tensor * dst) {
  6205. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6206. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6207. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6208. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6209. // view src0 and dst with these strides and data offset inbytes during acc
  6210. // nb0 is implicitely element_size because src0 and dst are contiguous
  6211. size_t nb1 = ((int32_t *) opt0->data)[0];
  6212. size_t nb2 = ((int32_t *) opt0->data)[1];
  6213. size_t nb3 = ((int32_t *) opt0->data)[2];
  6214. size_t offset = ((int32_t *) opt0->data)[3];
  6215. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6216. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6217. // memcpy needs to be synchronized across threads to avoid race conditions.
  6218. // => do it in INIT phase
  6219. memcpy(
  6220. ((char *) dst->data),
  6221. ((char *) src0->data),
  6222. ggml_nbytes(dst));
  6223. }
  6224. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6225. return;
  6226. }
  6227. const int ith = params->ith;
  6228. const int nth = params->nth;
  6229. const int nr = ggml_nrows(src1);
  6230. const int nc = src1->ne[0];
  6231. const int64_t ne10 = src1->ne[0];
  6232. const int64_t ne11 = src1->ne[1];
  6233. const int64_t ne12 = src1->ne[2];
  6234. const int64_t ne13 = src1->ne[3];
  6235. const size_t nb10 = src1->nb[0];
  6236. const size_t nb11 = src1->nb[1];
  6237. const size_t nb12 = src1->nb[2];
  6238. const size_t nb13 = src1->nb[3];
  6239. // src0 and dst as viewed during acc
  6240. const size_t nb0 = ggml_element_size(src0);
  6241. const size_t nb00 = nb0;
  6242. const size_t nb01 = nb1;
  6243. const size_t nb02 = nb2;
  6244. const size_t nb03 = nb3;
  6245. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6246. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6247. GGML_ASSERT(nb10 == sizeof(float));
  6248. // rows per thread
  6249. const int dr = (nr + nth - 1)/nth;
  6250. // row range for this thread
  6251. const int ir0 = dr*ith;
  6252. const int ir1 = MIN(ir0 + dr, nr);
  6253. for (int ir = ir0; ir < ir1; ++ir) {
  6254. // src0 and dst are viewed with shape of src1 and offset
  6255. // => same indices
  6256. const int i3 = ir/(ne12*ne11);
  6257. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6258. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6259. #ifdef GGML_USE_ACCELERATE
  6260. vDSP_vadd(
  6261. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6262. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6263. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6264. #else
  6265. ggml_vec_add_f32(nc,
  6266. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6267. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6268. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6269. #endif
  6270. }
  6271. }
  6272. static void ggml_compute_forward_acc(
  6273. const struct ggml_compute_params * params,
  6274. const struct ggml_tensor * src0,
  6275. const struct ggml_tensor * src1,
  6276. const struct ggml_tensor * opt0,
  6277. struct ggml_tensor * dst) {
  6278. switch (src0->type) {
  6279. case GGML_TYPE_F32:
  6280. {
  6281. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6282. } break;
  6283. case GGML_TYPE_F16:
  6284. case GGML_TYPE_Q4_0:
  6285. case GGML_TYPE_Q4_1:
  6286. case GGML_TYPE_Q5_0:
  6287. case GGML_TYPE_Q5_1:
  6288. case GGML_TYPE_Q8_0:
  6289. case GGML_TYPE_Q8_1:
  6290. default:
  6291. {
  6292. GGML_ASSERT(false);
  6293. } break;
  6294. }
  6295. }
  6296. // ggml_compute_forward_sub
  6297. static void ggml_compute_forward_sub_f32(
  6298. const struct ggml_compute_params * params,
  6299. const struct ggml_tensor * src0,
  6300. const struct ggml_tensor * src1,
  6301. struct ggml_tensor * dst) {
  6302. assert(params->ith == 0);
  6303. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6304. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6305. return;
  6306. }
  6307. const int nr = ggml_nrows(src0);
  6308. const int64_t ne0 = src0->ne[0];
  6309. const int64_t ne1 = src0->ne[1];
  6310. const int64_t ne2 = src0->ne[2];
  6311. const size_t nb00 = src0->nb[0];
  6312. const size_t nb01 = src0->nb[1];
  6313. const size_t nb02 = src0->nb[2];
  6314. const size_t nb03 = src0->nb[3];
  6315. const size_t nb10 = src1->nb[0];
  6316. const size_t nb11 = src1->nb[1];
  6317. const size_t nb12 = src1->nb[2];
  6318. const size_t nb13 = src1->nb[3];
  6319. const size_t nb0 = dst->nb[0];
  6320. const size_t nb1 = dst->nb[1];
  6321. const size_t nb2 = dst->nb[2];
  6322. const size_t nb3 = dst->nb[3];
  6323. GGML_ASSERT( nb0 == sizeof(float));
  6324. GGML_ASSERT(nb00 == sizeof(float));
  6325. if (nb10 == sizeof(float)) {
  6326. for (int ir = 0; ir < nr; ++ir) {
  6327. // src0, src1 and dst are same shape => same indices
  6328. const int i3 = ir/(ne2*ne1);
  6329. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6330. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6331. #ifdef GGML_USE_ACCELERATE
  6332. vDSP_vsub(
  6333. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6334. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6335. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6336. ne0);
  6337. #else
  6338. ggml_vec_sub_f32(ne0,
  6339. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6340. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6341. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6342. #endif
  6343. // }
  6344. // }
  6345. }
  6346. } else {
  6347. // src1 is not contiguous
  6348. for (int ir = 0; ir < nr; ++ir) {
  6349. // src0, src1 and dst are same shape => same indices
  6350. const int i3 = ir/(ne2*ne1);
  6351. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6352. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6353. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6354. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6355. for (int i0 = 0; i0 < ne0; i0++) {
  6356. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6357. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6358. }
  6359. }
  6360. }
  6361. }
  6362. static void ggml_compute_forward_sub(
  6363. const struct ggml_compute_params * params,
  6364. const struct ggml_tensor * src0,
  6365. const struct ggml_tensor * src1,
  6366. struct ggml_tensor * dst) {
  6367. switch (src0->type) {
  6368. case GGML_TYPE_F32:
  6369. {
  6370. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6371. } break;
  6372. default:
  6373. {
  6374. GGML_ASSERT(false);
  6375. } break;
  6376. }
  6377. }
  6378. // ggml_compute_forward_mul
  6379. static void ggml_compute_forward_mul_f32(
  6380. const struct ggml_compute_params * params,
  6381. const struct ggml_tensor * src0,
  6382. const struct ggml_tensor * src1,
  6383. struct ggml_tensor * dst) {
  6384. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6385. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6386. return;
  6387. }
  6388. const int ith = params->ith;
  6389. const int nth = params->nth;
  6390. const int nr = ggml_nrows(src0);
  6391. const int64_t ne0 = src0->ne[0];
  6392. const int64_t ne1 = src0->ne[1];
  6393. const int64_t ne2 = src0->ne[2];
  6394. const size_t nb00 = src0->nb[0];
  6395. const size_t nb01 = src0->nb[1];
  6396. const size_t nb02 = src0->nb[2];
  6397. const size_t nb03 = src0->nb[3];
  6398. const size_t nb10 = src1->nb[0];
  6399. const size_t nb11 = src1->nb[1];
  6400. const size_t nb12 = src1->nb[2];
  6401. const size_t nb13 = src1->nb[3];
  6402. const size_t nb0 = dst->nb[0];
  6403. const size_t nb1 = dst->nb[1];
  6404. const size_t nb2 = dst->nb[2];
  6405. const size_t nb3 = dst->nb[3];
  6406. GGML_ASSERT( nb0 == sizeof(float));
  6407. GGML_ASSERT(nb00 == sizeof(float));
  6408. if (nb10 == sizeof(float)) {
  6409. for (int ir = ith; ir < nr; ir += nth) {
  6410. // src0, src1 and dst are same shape => same indices
  6411. const int i3 = ir/(ne2*ne1);
  6412. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6413. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6414. #ifdef GGML_USE_ACCELERATE
  6415. UNUSED(ggml_vec_mul_f32);
  6416. vDSP_vmul(
  6417. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6418. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6419. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6420. ne0);
  6421. #else
  6422. ggml_vec_mul_f32(ne0,
  6423. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6424. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6425. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6426. #endif
  6427. // }
  6428. // }
  6429. }
  6430. } else {
  6431. // src1 is not contiguous
  6432. for (int ir = ith; ir < nr; ir += nth) {
  6433. // src0, src1 and dst are same shape => same indices
  6434. const int i3 = ir/(ne2*ne1);
  6435. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6436. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6437. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6438. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6439. for (int i0 = 0; i0 < ne0; i0++) {
  6440. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6441. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6442. }
  6443. }
  6444. }
  6445. }
  6446. static void ggml_compute_forward_mul(
  6447. const struct ggml_compute_params * params,
  6448. const struct ggml_tensor * src0,
  6449. const struct ggml_tensor * src1,
  6450. struct ggml_tensor * dst) {
  6451. switch (src0->type) {
  6452. case GGML_TYPE_F32:
  6453. {
  6454. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6455. } break;
  6456. default:
  6457. {
  6458. GGML_ASSERT(false);
  6459. } break;
  6460. }
  6461. }
  6462. // ggml_compute_forward_div
  6463. static void ggml_compute_forward_div_f32(
  6464. const struct ggml_compute_params * params,
  6465. const struct ggml_tensor * src0,
  6466. const struct ggml_tensor * src1,
  6467. struct ggml_tensor * dst) {
  6468. assert(params->ith == 0);
  6469. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6470. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6471. return;
  6472. }
  6473. const int nr = ggml_nrows(src0);
  6474. const int64_t ne0 = src0->ne[0];
  6475. const int64_t ne1 = src0->ne[1];
  6476. const int64_t ne2 = src0->ne[2];
  6477. const size_t nb00 = src0->nb[0];
  6478. const size_t nb01 = src0->nb[1];
  6479. const size_t nb02 = src0->nb[2];
  6480. const size_t nb03 = src0->nb[3];
  6481. const size_t nb10 = src1->nb[0];
  6482. const size_t nb11 = src1->nb[1];
  6483. const size_t nb12 = src1->nb[2];
  6484. const size_t nb13 = src1->nb[3];
  6485. const size_t nb0 = dst->nb[0];
  6486. const size_t nb1 = dst->nb[1];
  6487. const size_t nb2 = dst->nb[2];
  6488. const size_t nb3 = dst->nb[3];
  6489. GGML_ASSERT( nb0 == sizeof(float));
  6490. GGML_ASSERT(nb00 == sizeof(float));
  6491. if (nb10 == sizeof(float)) {
  6492. for (int ir = 0; ir < nr; ++ir) {
  6493. // src0, src1 and dst are same shape => same indices
  6494. const int i3 = ir/(ne2*ne1);
  6495. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6496. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6497. #ifdef GGML_USE_ACCELERATE
  6498. vDSP_vdiv(
  6499. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6500. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6501. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6502. ne0);
  6503. #else
  6504. ggml_vec_div_f32(ne0,
  6505. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6506. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6507. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6508. #endif
  6509. // }
  6510. // }
  6511. }
  6512. } else {
  6513. // src1 is not contiguous
  6514. for (int ir = 0; ir < nr; ++ir) {
  6515. // src0, src1 and dst are same shape => same indices
  6516. const int i3 = ir/(ne2*ne1);
  6517. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6518. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6519. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6520. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6521. for (int i0 = 0; i0 < ne0; i0++) {
  6522. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6523. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6524. }
  6525. }
  6526. }
  6527. }
  6528. static void ggml_compute_forward_div(
  6529. const struct ggml_compute_params * params,
  6530. const struct ggml_tensor * src0,
  6531. const struct ggml_tensor * src1,
  6532. struct ggml_tensor * dst) {
  6533. switch (src0->type) {
  6534. case GGML_TYPE_F32:
  6535. {
  6536. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6537. } break;
  6538. default:
  6539. {
  6540. GGML_ASSERT(false);
  6541. } break;
  6542. }
  6543. }
  6544. // ggml_compute_forward_sqr
  6545. static void ggml_compute_forward_sqr_f32(
  6546. const struct ggml_compute_params * params,
  6547. const struct ggml_tensor * src0,
  6548. struct ggml_tensor * dst) {
  6549. assert(params->ith == 0);
  6550. assert(ggml_are_same_shape(src0, dst));
  6551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6552. return;
  6553. }
  6554. const int n = ggml_nrows(src0);
  6555. const int nc = src0->ne[0];
  6556. assert( dst->nb[0] == sizeof(float));
  6557. assert(src0->nb[0] == sizeof(float));
  6558. for (int i = 0; i < n; i++) {
  6559. ggml_vec_sqr_f32(nc,
  6560. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6561. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6562. }
  6563. }
  6564. static void ggml_compute_forward_sqr(
  6565. const struct ggml_compute_params * params,
  6566. const struct ggml_tensor * src0,
  6567. struct ggml_tensor * dst) {
  6568. switch (src0->type) {
  6569. case GGML_TYPE_F32:
  6570. {
  6571. ggml_compute_forward_sqr_f32(params, src0, dst);
  6572. } break;
  6573. default:
  6574. {
  6575. GGML_ASSERT(false);
  6576. } break;
  6577. }
  6578. }
  6579. // ggml_compute_forward_sqrt
  6580. static void ggml_compute_forward_sqrt_f32(
  6581. const struct ggml_compute_params * params,
  6582. const struct ggml_tensor * src0,
  6583. struct ggml_tensor * dst) {
  6584. assert(params->ith == 0);
  6585. assert(ggml_are_same_shape(src0, dst));
  6586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6587. return;
  6588. }
  6589. const int n = ggml_nrows(src0);
  6590. const int nc = src0->ne[0];
  6591. assert( dst->nb[0] == sizeof(float));
  6592. assert(src0->nb[0] == sizeof(float));
  6593. for (int i = 0; i < n; i++) {
  6594. ggml_vec_sqrt_f32(nc,
  6595. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6596. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6597. }
  6598. }
  6599. static void ggml_compute_forward_sqrt(
  6600. const struct ggml_compute_params * params,
  6601. const struct ggml_tensor * src0,
  6602. struct ggml_tensor * dst) {
  6603. switch (src0->type) {
  6604. case GGML_TYPE_F32:
  6605. {
  6606. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6607. } break;
  6608. default:
  6609. {
  6610. GGML_ASSERT(false);
  6611. } break;
  6612. }
  6613. }
  6614. // ggml_compute_forward_log
  6615. static void ggml_compute_forward_log_f32(
  6616. const struct ggml_compute_params * params,
  6617. const struct ggml_tensor * src0,
  6618. struct ggml_tensor * dst) {
  6619. GGML_ASSERT(params->ith == 0);
  6620. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6621. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6622. return;
  6623. }
  6624. const int n = ggml_nrows(src0);
  6625. const int nc = src0->ne[0];
  6626. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6627. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6628. for (int i = 0; i < n; i++) {
  6629. ggml_vec_log_f32(nc,
  6630. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6631. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6632. }
  6633. }
  6634. static void ggml_compute_forward_log(
  6635. const struct ggml_compute_params * params,
  6636. const struct ggml_tensor * src0,
  6637. struct ggml_tensor * dst) {
  6638. switch (src0->type) {
  6639. case GGML_TYPE_F32:
  6640. {
  6641. ggml_compute_forward_log_f32(params, src0, dst);
  6642. } break;
  6643. default:
  6644. {
  6645. GGML_ASSERT(false);
  6646. } break;
  6647. }
  6648. }
  6649. // ggml_compute_forward_sum
  6650. static void ggml_compute_forward_sum_f32(
  6651. const struct ggml_compute_params * params,
  6652. const struct ggml_tensor * src0,
  6653. struct ggml_tensor * dst) {
  6654. assert(params->ith == 0);
  6655. assert(ggml_is_scalar(dst));
  6656. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6657. return;
  6658. }
  6659. assert(ggml_is_scalar(dst));
  6660. assert(src0->nb[0] == sizeof(float));
  6661. const int64_t ne00 = src0->ne[0];
  6662. const int64_t ne01 = src0->ne[1];
  6663. const int64_t ne02 = src0->ne[2];
  6664. const int64_t ne03 = src0->ne[3];
  6665. const size_t nb01 = src0->nb[1];
  6666. const size_t nb02 = src0->nb[2];
  6667. const size_t nb03 = src0->nb[3];
  6668. ggml_float sum = 0;
  6669. ggml_float row_sum = 0;
  6670. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6671. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6672. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6673. ggml_vec_sum_ggf(ne00,
  6674. &row_sum,
  6675. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6676. sum += row_sum;
  6677. }
  6678. }
  6679. }
  6680. ((float *) dst->data)[0] = sum;
  6681. }
  6682. static void ggml_compute_forward_sum(
  6683. const struct ggml_compute_params * params,
  6684. const struct ggml_tensor * src0,
  6685. struct ggml_tensor * dst) {
  6686. switch (src0->type) {
  6687. case GGML_TYPE_F32:
  6688. {
  6689. ggml_compute_forward_sum_f32(params, src0, dst);
  6690. } break;
  6691. default:
  6692. {
  6693. GGML_ASSERT(false);
  6694. } break;
  6695. }
  6696. }
  6697. // ggml_compute_forward_sum_rows
  6698. static void ggml_compute_forward_sum_rows_f32(
  6699. const struct ggml_compute_params * params,
  6700. const struct ggml_tensor * src0,
  6701. struct ggml_tensor * dst) {
  6702. GGML_ASSERT(params->ith == 0);
  6703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6704. return;
  6705. }
  6706. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6707. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6708. const int64_t ne00 = src0->ne[0];
  6709. const int64_t ne01 = src0->ne[1];
  6710. const int64_t ne02 = src0->ne[2];
  6711. const int64_t ne03 = src0->ne[3];
  6712. const int64_t ne0 = dst->ne[0];
  6713. const int64_t ne1 = dst->ne[1];
  6714. const int64_t ne2 = dst->ne[2];
  6715. const int64_t ne3 = dst->ne[3];
  6716. GGML_ASSERT(ne0 == 1);
  6717. GGML_ASSERT(ne1 == ne01);
  6718. GGML_ASSERT(ne2 == ne02);
  6719. GGML_ASSERT(ne3 == ne03);
  6720. const size_t nb01 = src0->nb[1];
  6721. const size_t nb02 = src0->nb[2];
  6722. const size_t nb03 = src0->nb[3];
  6723. const size_t nb1 = dst->nb[1];
  6724. const size_t nb2 = dst->nb[2];
  6725. const size_t nb3 = dst->nb[3];
  6726. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6727. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6728. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6729. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6730. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6731. float row_sum = 0;
  6732. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6733. dst_row[0] = row_sum;
  6734. }
  6735. }
  6736. }
  6737. }
  6738. static void ggml_compute_forward_sum_rows(
  6739. const struct ggml_compute_params * params,
  6740. const struct ggml_tensor * src0,
  6741. struct ggml_tensor * dst) {
  6742. switch (src0->type) {
  6743. case GGML_TYPE_F32:
  6744. {
  6745. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6746. } break;
  6747. default:
  6748. {
  6749. GGML_ASSERT(false);
  6750. } break;
  6751. }
  6752. }
  6753. // ggml_compute_forward_mean
  6754. static void ggml_compute_forward_mean_f32(
  6755. const struct ggml_compute_params * params,
  6756. const struct ggml_tensor * src0,
  6757. struct ggml_tensor * dst) {
  6758. assert(params->ith == 0);
  6759. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6760. return;
  6761. }
  6762. assert(src0->nb[0] == sizeof(float));
  6763. const int64_t ne00 = src0->ne[0];
  6764. const int64_t ne01 = src0->ne[1];
  6765. const int64_t ne02 = src0->ne[2];
  6766. const int64_t ne03 = src0->ne[3];
  6767. const size_t nb01 = src0->nb[1];
  6768. const size_t nb02 = src0->nb[2];
  6769. const size_t nb03 = src0->nb[3];
  6770. const int64_t ne0 = dst->ne[0];
  6771. const int64_t ne1 = dst->ne[1];
  6772. const int64_t ne2 = dst->ne[2];
  6773. const int64_t ne3 = dst->ne[3];
  6774. assert(ne0 == 1);
  6775. assert(ne1 == ne01);
  6776. assert(ne2 == ne02);
  6777. assert(ne3 == ne03);
  6778. UNUSED(ne0);
  6779. UNUSED(ne1);
  6780. UNUSED(ne2);
  6781. UNUSED(ne3);
  6782. const size_t nb1 = dst->nb[1];
  6783. const size_t nb2 = dst->nb[2];
  6784. const size_t nb3 = dst->nb[3];
  6785. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6786. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6787. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6788. ggml_vec_sum_f32(ne00,
  6789. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6790. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6791. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6792. }
  6793. }
  6794. }
  6795. }
  6796. static void ggml_compute_forward_mean(
  6797. const struct ggml_compute_params * params,
  6798. const struct ggml_tensor * src0,
  6799. struct ggml_tensor * dst) {
  6800. switch (src0->type) {
  6801. case GGML_TYPE_F32:
  6802. {
  6803. ggml_compute_forward_mean_f32(params, src0, dst);
  6804. } break;
  6805. default:
  6806. {
  6807. GGML_ASSERT(false);
  6808. } break;
  6809. }
  6810. }
  6811. // ggml_compute_forward_repeat
  6812. static void ggml_compute_forward_repeat_f32(
  6813. const struct ggml_compute_params * params,
  6814. const struct ggml_tensor * src0,
  6815. struct ggml_tensor * dst) {
  6816. GGML_ASSERT(params->ith == 0);
  6817. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6818. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6819. return;
  6820. }
  6821. const int64_t ne0 = dst->ne[0];
  6822. const int64_t ne1 = dst->ne[1];
  6823. const int64_t ne2 = dst->ne[2];
  6824. const int64_t ne3 = dst->ne[3];
  6825. const int64_t ne00 = src0->ne[0];
  6826. const int64_t ne01 = src0->ne[1];
  6827. const int64_t ne02 = src0->ne[2];
  6828. const int64_t ne03 = src0->ne[3];
  6829. const size_t nb0 = dst->nb[0];
  6830. const size_t nb1 = dst->nb[1];
  6831. const size_t nb2 = dst->nb[2];
  6832. const size_t nb3 = dst->nb[3];
  6833. const size_t nb00 = src0->nb[0];
  6834. const size_t nb01 = src0->nb[1];
  6835. const size_t nb02 = src0->nb[2];
  6836. const size_t nb03 = src0->nb[3];
  6837. // guaranteed to be an integer due to the check in ggml_can_repeat
  6838. const int nr0 = (int)(ne0/ne00);
  6839. const int nr1 = (int)(ne1/ne01);
  6840. const int nr2 = (int)(ne2/ne02);
  6841. const int nr3 = (int)(ne3/ne03);
  6842. // TODO: support for transposed / permuted tensors
  6843. GGML_ASSERT(nb0 == sizeof(float));
  6844. GGML_ASSERT(nb00 == sizeof(float));
  6845. // TODO: maybe this is not optimal?
  6846. for (int i3 = 0; i3 < nr3; i3++) {
  6847. for (int k3 = 0; k3 < ne03; k3++) {
  6848. for (int i2 = 0; i2 < nr2; i2++) {
  6849. for (int k2 = 0; k2 < ne02; k2++) {
  6850. for (int i1 = 0; i1 < nr1; i1++) {
  6851. for (int k1 = 0; k1 < ne01; k1++) {
  6852. for (int i0 = 0; i0 < nr0; i0++) {
  6853. ggml_vec_cpy_f32(ne00,
  6854. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6855. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6856. }
  6857. }
  6858. }
  6859. }
  6860. }
  6861. }
  6862. }
  6863. }
  6864. static void ggml_compute_forward_repeat(
  6865. const struct ggml_compute_params * params,
  6866. const struct ggml_tensor * src0,
  6867. struct ggml_tensor * dst) {
  6868. switch (src0->type) {
  6869. case GGML_TYPE_F32:
  6870. {
  6871. ggml_compute_forward_repeat_f32(params, src0, dst);
  6872. } break;
  6873. default:
  6874. {
  6875. GGML_ASSERT(false);
  6876. } break;
  6877. }
  6878. }
  6879. // ggml_compute_forward_abs
  6880. static void ggml_compute_forward_abs_f32(
  6881. const struct ggml_compute_params * params,
  6882. const struct ggml_tensor * src0,
  6883. struct ggml_tensor * dst) {
  6884. assert(params->ith == 0);
  6885. assert(ggml_are_same_shape(src0, dst));
  6886. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6887. return;
  6888. }
  6889. const int n = ggml_nrows(src0);
  6890. const int nc = src0->ne[0];
  6891. assert(dst->nb[0] == sizeof(float));
  6892. assert(src0->nb[0] == sizeof(float));
  6893. for (int i = 0; i < n; i++) {
  6894. ggml_vec_abs_f32(nc,
  6895. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6896. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6897. }
  6898. }
  6899. static void ggml_compute_forward_abs(
  6900. const struct ggml_compute_params * params,
  6901. const struct ggml_tensor * src0,
  6902. struct ggml_tensor * dst) {
  6903. switch (src0->type) {
  6904. case GGML_TYPE_F32:
  6905. {
  6906. ggml_compute_forward_abs_f32(params, src0, dst);
  6907. } break;
  6908. default:
  6909. {
  6910. GGML_ASSERT(false);
  6911. } break;
  6912. }
  6913. }
  6914. // ggml_compute_forward_sgn
  6915. static void ggml_compute_forward_sgn_f32(
  6916. const struct ggml_compute_params * params,
  6917. const struct ggml_tensor * src0,
  6918. struct ggml_tensor * dst) {
  6919. assert(params->ith == 0);
  6920. assert(ggml_are_same_shape(src0, dst));
  6921. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6922. return;
  6923. }
  6924. const int n = ggml_nrows(src0);
  6925. const int nc = src0->ne[0];
  6926. assert(dst->nb[0] == sizeof(float));
  6927. assert(src0->nb[0] == sizeof(float));
  6928. for (int i = 0; i < n; i++) {
  6929. ggml_vec_sgn_f32(nc,
  6930. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6931. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6932. }
  6933. }
  6934. static void ggml_compute_forward_sgn(
  6935. const struct ggml_compute_params * params,
  6936. const struct ggml_tensor * src0,
  6937. struct ggml_tensor * dst) {
  6938. switch (src0->type) {
  6939. case GGML_TYPE_F32:
  6940. {
  6941. ggml_compute_forward_sgn_f32(params, src0, dst);
  6942. } break;
  6943. default:
  6944. {
  6945. GGML_ASSERT(false);
  6946. } break;
  6947. }
  6948. }
  6949. // ggml_compute_forward_neg
  6950. static void ggml_compute_forward_neg_f32(
  6951. const struct ggml_compute_params * params,
  6952. const struct ggml_tensor * src0,
  6953. struct ggml_tensor * dst) {
  6954. assert(params->ith == 0);
  6955. assert(ggml_are_same_shape(src0, dst));
  6956. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6957. return;
  6958. }
  6959. const int n = ggml_nrows(src0);
  6960. const int nc = src0->ne[0];
  6961. assert(dst->nb[0] == sizeof(float));
  6962. assert(src0->nb[0] == sizeof(float));
  6963. for (int i = 0; i < n; i++) {
  6964. ggml_vec_neg_f32(nc,
  6965. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6966. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6967. }
  6968. }
  6969. static void ggml_compute_forward_neg(
  6970. const struct ggml_compute_params * params,
  6971. const struct ggml_tensor * src0,
  6972. struct ggml_tensor * dst) {
  6973. switch (src0->type) {
  6974. case GGML_TYPE_F32:
  6975. {
  6976. ggml_compute_forward_neg_f32(params, src0, dst);
  6977. } break;
  6978. default:
  6979. {
  6980. GGML_ASSERT(false);
  6981. } break;
  6982. }
  6983. }
  6984. // ggml_compute_forward_step
  6985. static void ggml_compute_forward_step_f32(
  6986. const struct ggml_compute_params * params,
  6987. const struct ggml_tensor * src0,
  6988. struct ggml_tensor * dst) {
  6989. assert(params->ith == 0);
  6990. assert(ggml_are_same_shape(src0, dst));
  6991. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6992. return;
  6993. }
  6994. const int n = ggml_nrows(src0);
  6995. const int nc = src0->ne[0];
  6996. assert(dst->nb[0] == sizeof(float));
  6997. assert(src0->nb[0] == sizeof(float));
  6998. for (int i = 0; i < n; i++) {
  6999. ggml_vec_step_f32(nc,
  7000. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7001. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7002. }
  7003. }
  7004. static void ggml_compute_forward_step(
  7005. const struct ggml_compute_params * params,
  7006. const struct ggml_tensor * src0,
  7007. struct ggml_tensor * dst) {
  7008. switch (src0->type) {
  7009. case GGML_TYPE_F32:
  7010. {
  7011. ggml_compute_forward_step_f32(params, src0, dst);
  7012. } break;
  7013. default:
  7014. {
  7015. GGML_ASSERT(false);
  7016. } break;
  7017. }
  7018. }
  7019. // ggml_compute_forward_relu
  7020. static void ggml_compute_forward_relu_f32(
  7021. const struct ggml_compute_params * params,
  7022. const struct ggml_tensor * src0,
  7023. struct ggml_tensor * dst) {
  7024. assert(params->ith == 0);
  7025. assert(ggml_are_same_shape(src0, dst));
  7026. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7027. return;
  7028. }
  7029. const int n = ggml_nrows(src0);
  7030. const int nc = src0->ne[0];
  7031. assert(dst->nb[0] == sizeof(float));
  7032. assert(src0->nb[0] == sizeof(float));
  7033. for (int i = 0; i < n; i++) {
  7034. ggml_vec_relu_f32(nc,
  7035. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7036. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7037. }
  7038. }
  7039. static void ggml_compute_forward_relu(
  7040. const struct ggml_compute_params * params,
  7041. const struct ggml_tensor * src0,
  7042. struct ggml_tensor * dst) {
  7043. switch (src0->type) {
  7044. case GGML_TYPE_F32:
  7045. {
  7046. ggml_compute_forward_relu_f32(params, src0, dst);
  7047. } break;
  7048. default:
  7049. {
  7050. GGML_ASSERT(false);
  7051. } break;
  7052. }
  7053. }
  7054. // ggml_compute_forward_gelu
  7055. static void ggml_compute_forward_gelu_f32(
  7056. const struct ggml_compute_params * params,
  7057. const struct ggml_tensor * src0,
  7058. struct ggml_tensor * dst) {
  7059. GGML_ASSERT(ggml_is_contiguous(src0));
  7060. GGML_ASSERT(ggml_is_contiguous(dst));
  7061. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7062. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7063. return;
  7064. }
  7065. const int ith = params->ith;
  7066. const int nth = params->nth;
  7067. const int nc = src0->ne[0];
  7068. const int nr = ggml_nrows(src0);
  7069. // rows per thread
  7070. const int dr = (nr + nth - 1)/nth;
  7071. // row range for this thread
  7072. const int ir0 = dr*ith;
  7073. const int ir1 = MIN(ir0 + dr, nr);
  7074. for (int i1 = ir0; i1 < ir1; i1++) {
  7075. ggml_vec_gelu_f32(nc,
  7076. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7077. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7078. #ifndef NDEBUG
  7079. for (int k = 0; k < nc; k++) {
  7080. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7081. UNUSED(x);
  7082. assert(!isnan(x));
  7083. assert(!isinf(x));
  7084. }
  7085. #endif
  7086. }
  7087. }
  7088. static void ggml_compute_forward_gelu(
  7089. const struct ggml_compute_params * params,
  7090. const struct ggml_tensor * src0,
  7091. struct ggml_tensor * dst) {
  7092. switch (src0->type) {
  7093. case GGML_TYPE_F32:
  7094. {
  7095. ggml_compute_forward_gelu_f32(params, src0, dst);
  7096. } break;
  7097. default:
  7098. {
  7099. GGML_ASSERT(false);
  7100. } break;
  7101. }
  7102. //printf("XXXXXXXX gelu\n");
  7103. }
  7104. // ggml_compute_forward_silu
  7105. static void ggml_compute_forward_silu_f32(
  7106. const struct ggml_compute_params * params,
  7107. const struct ggml_tensor * src0,
  7108. struct ggml_tensor * dst) {
  7109. GGML_ASSERT(ggml_is_contiguous(src0));
  7110. GGML_ASSERT(ggml_is_contiguous(dst));
  7111. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7112. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7113. return;
  7114. }
  7115. const int ith = params->ith;
  7116. const int nth = params->nth;
  7117. const int nc = src0->ne[0];
  7118. const int nr = ggml_nrows(src0);
  7119. // rows per thread
  7120. const int dr = (nr + nth - 1)/nth;
  7121. // row range for this thread
  7122. const int ir0 = dr*ith;
  7123. const int ir1 = MIN(ir0 + dr, nr);
  7124. for (int i1 = ir0; i1 < ir1; i1++) {
  7125. ggml_vec_silu_f32(nc,
  7126. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7127. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7128. #ifndef NDEBUG
  7129. for (int k = 0; k < nc; k++) {
  7130. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7131. UNUSED(x);
  7132. assert(!isnan(x));
  7133. assert(!isinf(x));
  7134. }
  7135. #endif
  7136. }
  7137. }
  7138. static void ggml_compute_forward_silu(
  7139. const struct ggml_compute_params * params,
  7140. const struct ggml_tensor * src0,
  7141. struct ggml_tensor * dst) {
  7142. switch (src0->type) {
  7143. case GGML_TYPE_F32:
  7144. {
  7145. ggml_compute_forward_silu_f32(params, src0, dst);
  7146. } break;
  7147. default:
  7148. {
  7149. GGML_ASSERT(false);
  7150. } break;
  7151. }
  7152. }
  7153. // ggml_compute_forward_silu_back
  7154. static void ggml_compute_forward_silu_back_f32(
  7155. const struct ggml_compute_params * params,
  7156. const struct ggml_tensor * src0,
  7157. const struct ggml_tensor * grad,
  7158. struct ggml_tensor * dst) {
  7159. GGML_ASSERT(ggml_is_contiguous(grad));
  7160. GGML_ASSERT(ggml_is_contiguous(src0));
  7161. GGML_ASSERT(ggml_is_contiguous(dst));
  7162. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7163. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7165. return;
  7166. }
  7167. const int ith = params->ith;
  7168. const int nth = params->nth;
  7169. const int nc = src0->ne[0];
  7170. const int nr = ggml_nrows(src0);
  7171. // rows per thread
  7172. const int dr = (nr + nth - 1)/nth;
  7173. // row range for this thread
  7174. const int ir0 = dr*ith;
  7175. const int ir1 = MIN(ir0 + dr, nr);
  7176. for (int i1 = ir0; i1 < ir1; i1++) {
  7177. ggml_vec_silu_backward_f32(nc,
  7178. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7179. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7180. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7181. #ifndef NDEBUG
  7182. for (int k = 0; k < nc; k++) {
  7183. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7184. UNUSED(x);
  7185. assert(!isnan(x));
  7186. assert(!isinf(x));
  7187. }
  7188. #endif
  7189. }
  7190. }
  7191. static void ggml_compute_forward_silu_back(
  7192. const struct ggml_compute_params * params,
  7193. const struct ggml_tensor * src0,
  7194. const struct ggml_tensor * grad,
  7195. struct ggml_tensor * dst) {
  7196. switch (src0->type) {
  7197. case GGML_TYPE_F32:
  7198. {
  7199. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7200. } break;
  7201. default:
  7202. {
  7203. GGML_ASSERT(false);
  7204. } break;
  7205. }
  7206. }
  7207. // ggml_compute_forward_norm
  7208. static void ggml_compute_forward_norm_f32(
  7209. const struct ggml_compute_params * params,
  7210. const struct ggml_tensor * src0,
  7211. struct ggml_tensor * dst) {
  7212. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7213. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7214. return;
  7215. }
  7216. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7217. const int ith = params->ith;
  7218. const int nth = params->nth;
  7219. const int64_t ne00 = src0->ne[0];
  7220. const int64_t ne01 = src0->ne[1];
  7221. const int64_t ne02 = src0->ne[2];
  7222. const int64_t ne03 = src0->ne[3];
  7223. const size_t nb01 = src0->nb[1];
  7224. const size_t nb02 = src0->nb[2];
  7225. const size_t nb03 = src0->nb[3];
  7226. const size_t nb1 = dst->nb[1];
  7227. const size_t nb2 = dst->nb[2];
  7228. const size_t nb3 = dst->nb[3];
  7229. const float eps = 1e-5f; // TODO: make this a parameter
  7230. // TODO: optimize
  7231. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7232. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7233. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7234. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7235. ggml_float sum = 0.0;
  7236. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7237. sum += (ggml_float)x[i00];
  7238. }
  7239. float mean = sum/ne00;
  7240. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7241. ggml_float sum2 = 0.0;
  7242. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7243. float v = x[i00] - mean;
  7244. y[i00] = v;
  7245. sum2 += (ggml_float)(v*v);
  7246. }
  7247. float variance = sum2/ne00;
  7248. const float scale = 1.0f/sqrtf(variance + eps);
  7249. ggml_vec_scale_f32(ne00, y, scale);
  7250. }
  7251. }
  7252. }
  7253. }
  7254. static void ggml_compute_forward_norm(
  7255. const struct ggml_compute_params * params,
  7256. const struct ggml_tensor * src0,
  7257. struct ggml_tensor * dst) {
  7258. switch (src0->type) {
  7259. case GGML_TYPE_F32:
  7260. {
  7261. ggml_compute_forward_norm_f32(params, src0, dst);
  7262. } break;
  7263. default:
  7264. {
  7265. GGML_ASSERT(false);
  7266. } break;
  7267. }
  7268. }
  7269. static void ggml_compute_forward_rms_norm_f32(
  7270. const struct ggml_compute_params * params,
  7271. const struct ggml_tensor * src0,
  7272. struct ggml_tensor * dst) {
  7273. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7275. return;
  7276. }
  7277. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7278. const int ith = params->ith;
  7279. const int nth = params->nth;
  7280. const int64_t ne00 = src0->ne[0];
  7281. const int64_t ne01 = src0->ne[1];
  7282. const int64_t ne02 = src0->ne[2];
  7283. const int64_t ne03 = src0->ne[3];
  7284. const size_t nb01 = src0->nb[1];
  7285. const size_t nb02 = src0->nb[2];
  7286. const size_t nb03 = src0->nb[3];
  7287. const size_t nb1 = dst->nb[1];
  7288. const size_t nb2 = dst->nb[2];
  7289. const size_t nb3 = dst->nb[3];
  7290. const float eps = 1e-6f; // TODO: make this a parameter
  7291. // TODO: optimize
  7292. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7293. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7294. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7295. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7296. ggml_float sum = 0.0;
  7297. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7298. sum += (ggml_float)(x[i00] * x[i00]);
  7299. }
  7300. float mean = sum/ne00;
  7301. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7302. memcpy(y, x, ne00 * sizeof(float));
  7303. // for (int i00 = 0; i00 < ne00; i00++) {
  7304. // y[i00] = x[i00];
  7305. // }
  7306. const float scale = 1.0f/sqrtf(mean + eps);
  7307. ggml_vec_scale_f32(ne00, y, scale);
  7308. }
  7309. }
  7310. }
  7311. }
  7312. static void ggml_compute_forward_rms_norm(
  7313. const struct ggml_compute_params * params,
  7314. const struct ggml_tensor * src0,
  7315. struct ggml_tensor * dst) {
  7316. switch (src0->type) {
  7317. case GGML_TYPE_F32:
  7318. {
  7319. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7320. } break;
  7321. default:
  7322. {
  7323. GGML_ASSERT(false);
  7324. } break;
  7325. }
  7326. }
  7327. static void ggml_compute_forward_rms_norm_back_f32(
  7328. const struct ggml_compute_params * params,
  7329. const struct ggml_tensor * src0,
  7330. const struct ggml_tensor * src1,
  7331. struct ggml_tensor * dst) {
  7332. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7333. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7334. return;
  7335. }
  7336. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7337. const int ith = params->ith;
  7338. const int nth = params->nth;
  7339. const int64_t ne00 = src0->ne[0];
  7340. const int64_t ne01 = src0->ne[1];
  7341. const int64_t ne02 = src0->ne[2];
  7342. const int64_t ne03 = src0->ne[3];
  7343. const size_t nb01 = src0->nb[1];
  7344. const size_t nb02 = src0->nb[2];
  7345. const size_t nb03 = src0->nb[3];
  7346. const size_t nb11 = src1->nb[1];
  7347. const size_t nb12 = src1->nb[2];
  7348. const size_t nb13 = src1->nb[3];
  7349. const size_t nb1 = dst->nb[1];
  7350. const size_t nb2 = dst->nb[2];
  7351. const size_t nb3 = dst->nb[3];
  7352. const float eps = 1e-6f; // TODO: make this a parameter
  7353. // TODO: optimize
  7354. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7355. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7356. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7357. // src1 is same shape as src0 => same indices
  7358. const int64_t i11 = i01;
  7359. const int64_t i12 = i02;
  7360. const int64_t i13 = i03;
  7361. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7362. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7363. ggml_float sum_xx = 0.0;
  7364. ggml_float sum_xdz = 0.0;
  7365. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7366. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7367. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7368. }
  7369. //const float mean = (float)(sum_xx)/ne00;
  7370. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7371. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7372. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7373. // we could cache rms from forward pass to improve performance.
  7374. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7375. //const float rms = sqrtf(mean_eps);
  7376. const float rrms = 1.0f / sqrtf(mean_eps);
  7377. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7378. {
  7379. // z = rms_norm(x)
  7380. //
  7381. // rms_norm(src0) =
  7382. // scale(
  7383. // src0,
  7384. // div(
  7385. // 1,
  7386. // sqrt(
  7387. // add(
  7388. // scale(
  7389. // sum(
  7390. // sqr(
  7391. // src0)),
  7392. // (1.0/N)),
  7393. // eps))));
  7394. // postorder:
  7395. // ## op args grad
  7396. // 00 param src0 grad[#00]
  7397. // 01 const 1
  7398. // 02 sqr (#00) grad[#02]
  7399. // 03 sum (#02) grad[#03]
  7400. // 04 const 1/N
  7401. // 05 scale (#03, #04) grad[#05]
  7402. // 06 const eps
  7403. // 07 add (#05, #06) grad[#07]
  7404. // 08 sqrt (#07) grad[#08]
  7405. // 09 div (#01,#08) grad[#09]
  7406. // 10 scale (#00,#09) grad[#10]
  7407. //
  7408. // backward pass, given grad[#10]
  7409. // #10: scale
  7410. // grad[#00] += scale(grad[#10],#09)
  7411. // grad[#09] += sum(mul(grad[#10],#00))
  7412. // #09: div
  7413. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7414. // #08: sqrt
  7415. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7416. // #07: add
  7417. // grad[#05] += grad[#07]
  7418. // #05: scale
  7419. // grad[#03] += scale(grad[#05],#04)
  7420. // #03: sum
  7421. // grad[#02] += repeat(grad[#03], #02)
  7422. // #02:
  7423. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7424. //
  7425. // substitute and simplify:
  7426. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7427. // grad[#02] = repeat(grad[#03], #02)
  7428. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7429. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7430. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7431. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7432. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7433. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7434. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7435. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7436. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7437. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7438. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7439. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7440. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7441. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7442. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7443. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7444. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7445. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7446. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7447. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7448. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7449. // a = b*c + d*e
  7450. // a = b*c*f/f + d*e*f/f
  7451. // a = (b*c*f + d*e*f)*(1/f)
  7452. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7453. // a = (b + d*e/c)*c
  7454. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7455. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7456. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7457. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7458. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7459. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7460. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7461. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7462. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7463. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7464. }
  7465. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7466. // post-order:
  7467. // dx := x
  7468. // dx := scale(dx,-mean_xdz/mean_eps)
  7469. // dx := add(dx, dz)
  7470. // dx := scale(dx, rrms)
  7471. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7472. ggml_vec_cpy_f32 (ne00, dx, x);
  7473. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7474. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7475. ggml_vec_acc_f32 (ne00, dx, dz);
  7476. ggml_vec_scale_f32(ne00, dx, rrms);
  7477. }
  7478. }
  7479. }
  7480. }
  7481. static void ggml_compute_forward_rms_norm_back(
  7482. const struct ggml_compute_params * params,
  7483. const struct ggml_tensor * src0,
  7484. const struct ggml_tensor * src1,
  7485. struct ggml_tensor * dst) {
  7486. switch (src0->type) {
  7487. case GGML_TYPE_F32:
  7488. {
  7489. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7490. } break;
  7491. default:
  7492. {
  7493. GGML_ASSERT(false);
  7494. } break;
  7495. }
  7496. }
  7497. // ggml_compute_forward_mul_mat
  7498. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7499. // helper function to determine if it is better to use BLAS or not
  7500. // for large matrices, BLAS is faster
  7501. static bool ggml_compute_forward_mul_mat_use_blas(
  7502. const struct ggml_tensor * src0,
  7503. const struct ggml_tensor * src1,
  7504. struct ggml_tensor * dst) {
  7505. //const int64_t ne00 = src0->ne[0];
  7506. //const int64_t ne01 = src0->ne[1];
  7507. const int64_t ne10 = src1->ne[0];
  7508. const int64_t ne0 = dst->ne[0];
  7509. const int64_t ne1 = dst->ne[1];
  7510. // TODO: find the optimal values for these
  7511. if (ggml_is_contiguous(src0) &&
  7512. ggml_is_contiguous(src1) &&
  7513. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7514. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7515. return true;
  7516. }
  7517. return false;
  7518. }
  7519. #endif
  7520. static void ggml_compute_forward_mul_mat_f32(
  7521. const struct ggml_compute_params * params,
  7522. const struct ggml_tensor * src0,
  7523. const struct ggml_tensor * src1,
  7524. struct ggml_tensor * dst) {
  7525. int64_t t0 = ggml_perf_time_us();
  7526. UNUSED(t0);
  7527. const int64_t ne00 = src0->ne[0];
  7528. const int64_t ne01 = src0->ne[1];
  7529. const int64_t ne02 = src0->ne[2];
  7530. const int64_t ne03 = src0->ne[3];
  7531. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7532. const int64_t ne10 = src1->ne[0];
  7533. #endif
  7534. const int64_t ne11 = src1->ne[1];
  7535. #ifndef NDEBUG
  7536. const int64_t ne12 = src1->ne[2];
  7537. const int64_t ne13 = src1->ne[3];
  7538. const int64_t ne0 = dst->ne[0];
  7539. const int64_t ne1 = dst->ne[1];
  7540. const int64_t ne2 = dst->ne[2];
  7541. const int64_t ne3 = dst->ne[3];
  7542. const int nb00 = src0->nb[0];
  7543. #endif
  7544. const int nb01 = src0->nb[1];
  7545. const int nb02 = src0->nb[2];
  7546. const int nb03 = src0->nb[3];
  7547. #ifndef NDEBUG
  7548. const int nb10 = src1->nb[0];
  7549. #endif
  7550. const int nb11 = src1->nb[1];
  7551. const int nb12 = src1->nb[2];
  7552. const int nb13 = src1->nb[3];
  7553. const int nb0 = dst->nb[0];
  7554. const int nb1 = dst->nb[1];
  7555. const int nb2 = dst->nb[2];
  7556. const int nb3 = dst->nb[3];
  7557. const int ith = params->ith;
  7558. const int nth = params->nth;
  7559. assert(ne02 == ne12);
  7560. assert(ne03 == ne13);
  7561. assert(ne2 == ne12);
  7562. assert(ne3 == ne13);
  7563. // we don't support permuted src0 or src1
  7564. assert(nb00 == sizeof(float));
  7565. assert(nb10 == sizeof(float));
  7566. // dst cannot be transposed or permuted
  7567. assert(nb0 == sizeof(float));
  7568. assert(nb0 <= nb1);
  7569. assert(nb1 <= nb2);
  7570. assert(nb2 <= nb3);
  7571. assert(ne0 == ne01);
  7572. assert(ne1 == ne11);
  7573. assert(ne2 == ne02);
  7574. assert(ne3 == ne03);
  7575. // nb01 >= nb00 - src0 is not transposed
  7576. // compute by src0 rows
  7577. #if defined(GGML_USE_CUBLAS)
  7578. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7579. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7580. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7581. }
  7582. return;
  7583. }
  7584. #endif
  7585. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7586. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7587. if (params->ith != 0) {
  7588. return;
  7589. }
  7590. if (params->type == GGML_TASK_INIT) {
  7591. return;
  7592. }
  7593. if (params->type == GGML_TASK_FINALIZE) {
  7594. return;
  7595. }
  7596. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7597. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7598. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7599. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7600. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7601. #if defined(GGML_USE_CLBLAST)
  7602. // zT = y * xT
  7603. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7604. ne11, ne01, ne10,
  7605. 1.0f, y, ne10,
  7606. x, ne10,
  7607. 0.0f, d, ne01,
  7608. GGML_TYPE_F32);
  7609. #else
  7610. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7611. ne11, ne01, ne10,
  7612. 1.0f, y, ne10,
  7613. x, ne00,
  7614. 0.0f, d, ne01);
  7615. #endif
  7616. }
  7617. }
  7618. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7619. return;
  7620. }
  7621. #endif
  7622. if (params->type == GGML_TASK_INIT) {
  7623. return;
  7624. }
  7625. if (params->type == GGML_TASK_FINALIZE) {
  7626. return;
  7627. }
  7628. // parallelize by src0 rows using ggml_vec_dot_f32
  7629. // total rows in src0
  7630. const int nr = ne01*ne02*ne03;
  7631. // rows per thread
  7632. const int dr = (nr + nth - 1)/nth;
  7633. // row range for this thread
  7634. const int ir0 = dr*ith;
  7635. const int ir1 = MIN(ir0 + dr, nr);
  7636. for (int ir = ir0; ir < ir1; ++ir) {
  7637. // src0 indices
  7638. const int i03 = ir/(ne02*ne01);
  7639. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7640. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7641. for (int64_t ic = 0; ic < ne11; ++ic) {
  7642. // src1 indices
  7643. const int i13 = i03;
  7644. const int i12 = i02;
  7645. const int i11 = ic;
  7646. // dst indices
  7647. const int i0 = i01;
  7648. const int i1 = i11;
  7649. const int i2 = i02;
  7650. const int i3 = i03;
  7651. ggml_vec_dot_f32(ne00,
  7652. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7653. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7654. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7655. }
  7656. }
  7657. //int64_t t1 = ggml_perf_time_us();
  7658. //static int64_t acc = 0;
  7659. //acc += t1 - t0;
  7660. //if (t1 - t0 > 10) {
  7661. // printf("\n");
  7662. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7663. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7664. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7665. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7666. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7667. //}
  7668. }
  7669. static void ggml_compute_forward_mul_mat_f16_f32(
  7670. const struct ggml_compute_params * params,
  7671. const struct ggml_tensor * src0,
  7672. const struct ggml_tensor * src1,
  7673. struct ggml_tensor * dst) {
  7674. int64_t t0 = ggml_perf_time_us();
  7675. UNUSED(t0);
  7676. const int64_t ne00 = src0->ne[0];
  7677. const int64_t ne01 = src0->ne[1];
  7678. const int64_t ne02 = src0->ne[2];
  7679. const int64_t ne03 = src0->ne[3];
  7680. const int64_t ne10 = src1->ne[0];
  7681. const int64_t ne11 = src1->ne[1];
  7682. const int64_t ne12 = src1->ne[2];
  7683. const int64_t ne13 = src1->ne[3];
  7684. const int64_t ne0 = dst->ne[0];
  7685. const int64_t ne1 = dst->ne[1];
  7686. const int64_t ne2 = dst->ne[2];
  7687. const int64_t ne3 = dst->ne[3];
  7688. //const int64_t ne = ne0*ne1*ne2*ne3;
  7689. const int nb00 = src0->nb[0];
  7690. const int nb01 = src0->nb[1];
  7691. const int nb02 = src0->nb[2];
  7692. const int nb03 = src0->nb[3];
  7693. const int nb10 = src1->nb[0];
  7694. const int nb11 = src1->nb[1];
  7695. const int nb12 = src1->nb[2];
  7696. const int nb13 = src1->nb[3];
  7697. const int nb0 = dst->nb[0];
  7698. const int nb1 = dst->nb[1];
  7699. const int nb2 = dst->nb[2];
  7700. const int nb3 = dst->nb[3];
  7701. const int ith = params->ith;
  7702. const int nth = params->nth;
  7703. GGML_ASSERT(ne02 == ne12);
  7704. GGML_ASSERT(ne03 == ne13);
  7705. GGML_ASSERT(ne2 == ne12);
  7706. GGML_ASSERT(ne3 == ne13);
  7707. // TODO: we don't support permuted src0
  7708. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7709. // dst cannot be transposed or permuted
  7710. GGML_ASSERT(nb0 == sizeof(float));
  7711. GGML_ASSERT(nb0 <= nb1);
  7712. GGML_ASSERT(nb1 <= nb2);
  7713. GGML_ASSERT(nb2 <= nb3);
  7714. GGML_ASSERT(ne0 == ne01);
  7715. GGML_ASSERT(ne1 == ne11);
  7716. GGML_ASSERT(ne2 == ne02);
  7717. GGML_ASSERT(ne3 == ne03);
  7718. // nb01 >= nb00 - src0 is not transposed
  7719. // compute by src0 rows
  7720. #if defined(GGML_USE_CUBLAS)
  7721. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7722. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7723. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7724. }
  7725. return;
  7726. }
  7727. #endif
  7728. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7729. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7730. GGML_ASSERT(nb10 == sizeof(float));
  7731. if (params->ith != 0) {
  7732. return;
  7733. }
  7734. if (params->type == GGML_TASK_INIT) {
  7735. return;
  7736. }
  7737. if (params->type == GGML_TASK_FINALIZE) {
  7738. return;
  7739. }
  7740. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7741. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7742. float * const wdata = params->wdata;
  7743. {
  7744. size_t id = 0;
  7745. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7746. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7747. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7748. }
  7749. }
  7750. assert(id*sizeof(float) <= params->wsize);
  7751. }
  7752. #if defined(GGML_USE_CLBLAST)
  7753. const float * x = wdata;
  7754. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7755. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7756. // zT = y * xT
  7757. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7758. ne11, ne01, ne10,
  7759. 1.0f, y, ne10,
  7760. x, ne10,
  7761. 0.0f, d, ne01,
  7762. GGML_TYPE_F32);
  7763. #else
  7764. const float * x = wdata;
  7765. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7766. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7767. // zT = y * xT
  7768. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7769. ne11, ne01, ne10,
  7770. 1.0f, y, ne10,
  7771. x, ne00,
  7772. 0.0f, d, ne01);
  7773. #endif
  7774. }
  7775. }
  7776. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7777. return;
  7778. }
  7779. #endif
  7780. if (params->type == GGML_TASK_INIT) {
  7781. ggml_fp16_t * const wdata = params->wdata;
  7782. size_t id = 0;
  7783. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7784. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7785. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7786. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7787. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7788. }
  7789. }
  7790. }
  7791. }
  7792. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7793. return;
  7794. }
  7795. if (params->type == GGML_TASK_FINALIZE) {
  7796. return;
  7797. }
  7798. // fp16 -> half the size, so divide by 2
  7799. // TODO: do not support transposed src1
  7800. assert(nb10/2 == sizeof(ggml_fp16_t));
  7801. // parallelize by src0 rows using ggml_vec_dot_f16
  7802. // total rows in src0
  7803. const int nr = ne01*ne02*ne03;
  7804. // rows per thread
  7805. const int dr = (nr + nth - 1)/nth;
  7806. // row range for this thread
  7807. const int ir0 = dr*ith;
  7808. const int ir1 = MIN(ir0 + dr, nr);
  7809. ggml_fp16_t * wdata = params->wdata;
  7810. for (int ir = ir0; ir < ir1; ++ir) {
  7811. // src0 indices
  7812. const int i03 = ir/(ne02*ne01);
  7813. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7814. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7815. const int i13 = i03;
  7816. const int i12 = i02;
  7817. const int i0 = i01;
  7818. const int i2 = i02;
  7819. const int i3 = i03;
  7820. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7821. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7822. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7823. for (int64_t ic = 0; ic < ne11; ++ic) {
  7824. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7825. }
  7826. }
  7827. //int64_t t1 = ggml_time_us();
  7828. //static int64_t acc = 0;
  7829. //acc += t1 - t0;
  7830. //if (t1 - t0 > 10) {
  7831. // printf("\n");
  7832. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7833. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7834. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7835. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7836. //}
  7837. }
  7838. static void ggml_compute_forward_mul_mat_q_f32(
  7839. const struct ggml_compute_params * params,
  7840. const struct ggml_tensor * src0,
  7841. const struct ggml_tensor * src1,
  7842. struct ggml_tensor * dst) {
  7843. int64_t t0 = ggml_perf_time_us();
  7844. UNUSED(t0);
  7845. const int64_t ne00 = src0->ne[0];
  7846. const int64_t ne01 = src0->ne[1];
  7847. const int64_t ne02 = src0->ne[2];
  7848. const int64_t ne03 = src0->ne[3];
  7849. const int64_t ne10 = src1->ne[0];
  7850. const int64_t ne11 = src1->ne[1];
  7851. const int64_t ne12 = src1->ne[2];
  7852. const int64_t ne13 = src1->ne[3];
  7853. const int64_t ne0 = dst->ne[0];
  7854. const int64_t ne1 = dst->ne[1];
  7855. const int64_t ne2 = dst->ne[2];
  7856. const int64_t ne3 = dst->ne[3];
  7857. const int nb00 = src0->nb[0];
  7858. const int nb01 = src0->nb[1];
  7859. const int nb02 = src0->nb[2];
  7860. const int nb03 = src0->nb[3];
  7861. const int nb10 = src1->nb[0];
  7862. const int nb11 = src1->nb[1];
  7863. const int nb12 = src1->nb[2];
  7864. const int nb13 = src1->nb[3];
  7865. const int nb0 = dst->nb[0];
  7866. const int nb1 = dst->nb[1];
  7867. const int nb2 = dst->nb[2];
  7868. const int nb3 = dst->nb[3];
  7869. const int ith = params->ith;
  7870. const int nth = params->nth;
  7871. GGML_ASSERT(ne02 == ne12);
  7872. GGML_ASSERT(ne03 == ne13);
  7873. GGML_ASSERT(ne2 == ne12);
  7874. GGML_ASSERT(ne3 == ne13);
  7875. const enum ggml_type type = src0->type;
  7876. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  7877. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  7878. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  7879. // we don't support permuted src0 or src1
  7880. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  7881. GGML_ASSERT(nb10 == sizeof(float));
  7882. // dst cannot be transposed or permuted
  7883. GGML_ASSERT(nb0 == sizeof(float));
  7884. GGML_ASSERT(nb0 <= nb1);
  7885. GGML_ASSERT(nb1 <= nb2);
  7886. GGML_ASSERT(nb2 <= nb3);
  7887. GGML_ASSERT(ne0 == ne01);
  7888. GGML_ASSERT(ne1 == ne11);
  7889. GGML_ASSERT(ne2 == ne02);
  7890. GGML_ASSERT(ne3 == ne03);
  7891. // nb01 >= nb00 - src0 is not transposed
  7892. // compute by src0 rows
  7893. #if defined(GGML_USE_CUBLAS)
  7894. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7895. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7896. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7897. }
  7898. return;
  7899. }
  7900. #endif
  7901. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7902. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7903. if (params->ith != 0) {
  7904. return;
  7905. }
  7906. if (params->type == GGML_TASK_INIT) {
  7907. return;
  7908. }
  7909. if (params->type == GGML_TASK_FINALIZE) {
  7910. return;
  7911. }
  7912. float * const wdata = params->wdata;
  7913. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7914. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7915. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7916. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7917. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7918. #if defined(GGML_USE_CLBLAST)
  7919. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7920. #else
  7921. {
  7922. size_t id = 0;
  7923. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7924. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7925. id += ne00;
  7926. }
  7927. assert(id*sizeof(float) <= params->wsize);
  7928. }
  7929. const float * x = wdata;
  7930. #endif
  7931. #if defined(GGML_USE_CLBLAST)
  7932. // zT = y * xT
  7933. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7934. ne11, ne01, ne10,
  7935. 1.0f, y, ne10,
  7936. x, ne10,
  7937. 0.0f, d, ne01,
  7938. type);
  7939. #else
  7940. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7941. ne11, ne01, ne10,
  7942. 1.0f, y, ne10,
  7943. x, ne00,
  7944. 0.0f, d, ne01);
  7945. #endif
  7946. }
  7947. }
  7948. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7949. return;
  7950. }
  7951. #endif
  7952. if (params->type == GGML_TASK_INIT) {
  7953. char * wdata = params->wdata;
  7954. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7955. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7956. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7957. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7958. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7959. wdata += row_size;
  7960. }
  7961. }
  7962. }
  7963. return;
  7964. }
  7965. if (params->type == GGML_TASK_FINALIZE) {
  7966. return;
  7967. }
  7968. // parallelize by src0 rows using ggml_vec_dot_q
  7969. // total rows in src0
  7970. const int nr = ne01*ne02*ne03;
  7971. // rows per thread
  7972. const int dr = (nr + nth - 1)/nth;
  7973. // row range for this thread
  7974. const int ir0 = dr*ith;
  7975. const int ir1 = MIN(ir0 + dr, nr);
  7976. void * wdata = params->wdata;
  7977. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7978. for (int ir = ir0; ir < ir1; ++ir) {
  7979. // src0 indices
  7980. const int i03 = ir/(ne02*ne01);
  7981. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7982. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7983. const int i13 = i03;
  7984. const int i12 = i02;
  7985. const int i0 = i01;
  7986. const int i2 = i02;
  7987. const int i3 = i03;
  7988. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7989. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7990. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7991. assert(ne00 % 32 == 0);
  7992. for (int64_t ic = 0; ic < ne11; ++ic) {
  7993. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7994. }
  7995. }
  7996. //int64_t t1 = ggml_time_us();
  7997. //static int64_t acc = 0;
  7998. //acc += t1 - t0;
  7999. //if (t1 - t0 > 10) {
  8000. // printf("\n");
  8001. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8002. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8003. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8004. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8005. //}
  8006. }
  8007. static void ggml_compute_forward_mul_mat(
  8008. const struct ggml_compute_params * params,
  8009. const struct ggml_tensor * src0,
  8010. const struct ggml_tensor * src1,
  8011. struct ggml_tensor * dst) {
  8012. switch (src0->type) {
  8013. case GGML_TYPE_Q4_0:
  8014. case GGML_TYPE_Q4_1:
  8015. case GGML_TYPE_Q5_0:
  8016. case GGML_TYPE_Q5_1:
  8017. case GGML_TYPE_Q8_0:
  8018. case GGML_TYPE_Q8_1:
  8019. {
  8020. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8021. } break;
  8022. case GGML_TYPE_F16:
  8023. {
  8024. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8025. } break;
  8026. case GGML_TYPE_F32:
  8027. {
  8028. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8029. } break;
  8030. default:
  8031. {
  8032. GGML_ASSERT(false);
  8033. } break;
  8034. }
  8035. }
  8036. // ggml_compute_forward_scale
  8037. static void ggml_compute_forward_scale_f32(
  8038. const struct ggml_compute_params * params,
  8039. const struct ggml_tensor * src0,
  8040. const struct ggml_tensor * src1,
  8041. struct ggml_tensor * dst) {
  8042. GGML_ASSERT(ggml_is_contiguous(src0));
  8043. GGML_ASSERT(ggml_is_contiguous(dst));
  8044. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8045. GGML_ASSERT(ggml_is_scalar(src1));
  8046. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8047. return;
  8048. }
  8049. // scale factor
  8050. const float v = *(float *) src1->data;
  8051. const int ith = params->ith;
  8052. const int nth = params->nth;
  8053. const int nc = src0->ne[0];
  8054. const int nr = ggml_nrows(src0);
  8055. // rows per thread
  8056. const int dr = (nr + nth - 1)/nth;
  8057. // row range for this thread
  8058. const int ir0 = dr*ith;
  8059. const int ir1 = MIN(ir0 + dr, nr);
  8060. const size_t nb01 = src0->nb[1];
  8061. const size_t nb1 = dst->nb[1];
  8062. for (int i1 = ir0; i1 < ir1; i1++) {
  8063. if (dst->data != src0->data) {
  8064. // src0 is same shape as dst => same indices
  8065. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8066. }
  8067. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8068. }
  8069. }
  8070. static void ggml_compute_forward_scale(
  8071. const struct ggml_compute_params * params,
  8072. const struct ggml_tensor * src0,
  8073. const struct ggml_tensor * src1,
  8074. struct ggml_tensor * dst) {
  8075. switch (src0->type) {
  8076. case GGML_TYPE_F32:
  8077. {
  8078. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8079. } break;
  8080. default:
  8081. {
  8082. GGML_ASSERT(false);
  8083. } break;
  8084. }
  8085. }
  8086. // ggml_compute_forward_set
  8087. static void ggml_compute_forward_set_f32(
  8088. const struct ggml_compute_params * params,
  8089. const struct ggml_tensor * src0,
  8090. const struct ggml_tensor * src1,
  8091. const struct ggml_tensor * opt0,
  8092. struct ggml_tensor * dst) {
  8093. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8094. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8095. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8096. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8097. // view src0 and dst with these strides and data offset inbytes during set
  8098. // nb0 is implicitely element_size because src0 and dst are contiguous
  8099. size_t nb1 = ((int32_t *) opt0->data)[0];
  8100. size_t nb2 = ((int32_t *) opt0->data)[1];
  8101. size_t nb3 = ((int32_t *) opt0->data)[2];
  8102. size_t offset = ((int32_t *) opt0->data)[3];
  8103. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8104. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8105. // memcpy needs to be synchronized across threads to avoid race conditions.
  8106. // => do it in INIT phase
  8107. memcpy(
  8108. ((char *) dst->data),
  8109. ((char *) src0->data),
  8110. ggml_nbytes(dst));
  8111. }
  8112. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8113. return;
  8114. }
  8115. const int ith = params->ith;
  8116. const int nth = params->nth;
  8117. const int nr = ggml_nrows(src1);
  8118. const int nc = src1->ne[0];
  8119. const int64_t ne10 = src1->ne[0];
  8120. const int64_t ne11 = src1->ne[1];
  8121. const int64_t ne12 = src1->ne[2];
  8122. const int64_t ne13 = src1->ne[3];
  8123. const size_t nb10 = src1->nb[0];
  8124. const size_t nb11 = src1->nb[1];
  8125. const size_t nb12 = src1->nb[2];
  8126. const size_t nb13 = src1->nb[3];
  8127. // src0 and dst as viewed during set
  8128. const size_t nb0 = ggml_element_size(src0);
  8129. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8130. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8131. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8132. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8133. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8134. GGML_ASSERT(nb10 == sizeof(float));
  8135. // rows per thread
  8136. const int dr = (nr + nth - 1)/nth;
  8137. // row range for this thread
  8138. const int ir0 = dr*ith;
  8139. const int ir1 = MIN(ir0 + dr, nr);
  8140. for (int ir = ir0; ir < ir1; ++ir) {
  8141. // src0 and dst are viewed with shape of src1 and offset
  8142. // => same indices
  8143. const int i3 = ir/(ne12*ne11);
  8144. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8145. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8146. ggml_vec_cpy_f32(nc,
  8147. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8148. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8149. }
  8150. }
  8151. static void ggml_compute_forward_set(
  8152. const struct ggml_compute_params * params,
  8153. const struct ggml_tensor * src0,
  8154. const struct ggml_tensor * src1,
  8155. const struct ggml_tensor * opt0,
  8156. struct ggml_tensor * dst) {
  8157. switch (src0->type) {
  8158. case GGML_TYPE_F32:
  8159. {
  8160. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8161. } break;
  8162. case GGML_TYPE_F16:
  8163. case GGML_TYPE_Q4_0:
  8164. case GGML_TYPE_Q4_1:
  8165. case GGML_TYPE_Q5_0:
  8166. case GGML_TYPE_Q5_1:
  8167. case GGML_TYPE_Q8_0:
  8168. case GGML_TYPE_Q8_1:
  8169. default:
  8170. {
  8171. GGML_ASSERT(false);
  8172. } break;
  8173. }
  8174. }
  8175. // ggml_compute_forward_cpy
  8176. static void ggml_compute_forward_cpy(
  8177. const struct ggml_compute_params * params,
  8178. const struct ggml_tensor * src0,
  8179. struct ggml_tensor * dst) {
  8180. ggml_compute_forward_dup(params, src0, dst);
  8181. }
  8182. // ggml_compute_forward_cont
  8183. static void ggml_compute_forward_cont(
  8184. const struct ggml_compute_params * params,
  8185. const struct ggml_tensor * src0,
  8186. struct ggml_tensor * dst) {
  8187. ggml_compute_forward_dup(params, src0, dst);
  8188. }
  8189. // ggml_compute_forward_reshape
  8190. static void ggml_compute_forward_reshape(
  8191. const struct ggml_compute_params * params,
  8192. const struct ggml_tensor * src0,
  8193. struct ggml_tensor * dst) {
  8194. // NOP
  8195. UNUSED(params);
  8196. UNUSED(src0);
  8197. UNUSED(dst);
  8198. }
  8199. // ggml_compute_forward_view
  8200. static void ggml_compute_forward_view(
  8201. const struct ggml_compute_params * params,
  8202. const struct ggml_tensor * src0) {
  8203. // NOP
  8204. UNUSED(params);
  8205. UNUSED(src0);
  8206. }
  8207. // ggml_compute_forward_permute
  8208. static void ggml_compute_forward_permute(
  8209. const struct ggml_compute_params * params,
  8210. const struct ggml_tensor * src0) {
  8211. // NOP
  8212. UNUSED(params);
  8213. UNUSED(src0);
  8214. }
  8215. // ggml_compute_forward_transpose
  8216. static void ggml_compute_forward_transpose(
  8217. const struct ggml_compute_params * params,
  8218. const struct ggml_tensor * src0) {
  8219. // NOP
  8220. UNUSED(params);
  8221. UNUSED(src0);
  8222. }
  8223. // ggml_compute_forward_get_rows
  8224. static void ggml_compute_forward_get_rows_q(
  8225. const struct ggml_compute_params * params,
  8226. const struct ggml_tensor * src0,
  8227. const struct ggml_tensor * src1,
  8228. struct ggml_tensor * dst) {
  8229. assert(params->ith == 0);
  8230. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8231. return;
  8232. }
  8233. const int nc = src0->ne[0];
  8234. const int nr = ggml_nelements(src1);
  8235. const enum ggml_type type = src0->type;
  8236. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8237. assert( dst->ne[0] == nc);
  8238. assert( dst->ne[1] == nr);
  8239. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8240. for (int i = 0; i < nr; ++i) {
  8241. const int r = ((int32_t *) src1->data)[i];
  8242. dequantize_row_q(
  8243. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8244. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8245. }
  8246. }
  8247. static void ggml_compute_forward_get_rows_f16(
  8248. const struct ggml_compute_params * params,
  8249. const struct ggml_tensor * src0,
  8250. const struct ggml_tensor * src1,
  8251. struct ggml_tensor * dst) {
  8252. assert(params->ith == 0);
  8253. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8254. return;
  8255. }
  8256. const int nc = src0->ne[0];
  8257. const int nr = ggml_nelements(src1);
  8258. assert( dst->ne[0] == nc);
  8259. assert( dst->ne[1] == nr);
  8260. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8261. for (int i = 0; i < nr; ++i) {
  8262. const int r = ((int32_t *) src1->data)[i];
  8263. for (int j = 0; j < nc; ++j) {
  8264. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8265. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8266. }
  8267. }
  8268. }
  8269. static void ggml_compute_forward_get_rows_f32(
  8270. const struct ggml_compute_params * params,
  8271. const struct ggml_tensor * src0,
  8272. const struct ggml_tensor * src1,
  8273. struct ggml_tensor * dst) {
  8274. assert(params->ith == 0);
  8275. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8276. return;
  8277. }
  8278. const int nc = src0->ne[0];
  8279. const int nr = ggml_nelements(src1);
  8280. assert( dst->ne[0] == nc);
  8281. assert( dst->ne[1] == nr);
  8282. assert(src0->nb[0] == sizeof(float));
  8283. for (int i = 0; i < nr; ++i) {
  8284. const int r = ((int32_t *) src1->data)[i];
  8285. ggml_vec_cpy_f32(nc,
  8286. (float *) ((char *) dst->data + i*dst->nb[1]),
  8287. (float *) ((char *) src0->data + r*src0->nb[1]));
  8288. }
  8289. }
  8290. static void ggml_compute_forward_get_rows(
  8291. const struct ggml_compute_params * params,
  8292. const struct ggml_tensor * src0,
  8293. const struct ggml_tensor * src1,
  8294. struct ggml_tensor * dst) {
  8295. switch (src0->type) {
  8296. case GGML_TYPE_Q4_0:
  8297. case GGML_TYPE_Q4_1:
  8298. case GGML_TYPE_Q5_0:
  8299. case GGML_TYPE_Q5_1:
  8300. case GGML_TYPE_Q8_0:
  8301. case GGML_TYPE_Q8_1:
  8302. {
  8303. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8304. } break;
  8305. case GGML_TYPE_F16:
  8306. {
  8307. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8308. } break;
  8309. case GGML_TYPE_F32:
  8310. {
  8311. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8312. } break;
  8313. default:
  8314. {
  8315. GGML_ASSERT(false);
  8316. } break;
  8317. }
  8318. //static bool first = true;
  8319. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8320. //if (first) {
  8321. // first = false;
  8322. //} else {
  8323. // for (int k = 0; k < dst->ne[1]; ++k) {
  8324. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8325. // for (int i = 0; i < 16; ++i) {
  8326. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8327. // }
  8328. // printf("\n");
  8329. // }
  8330. // printf("\n");
  8331. // }
  8332. // printf("\n");
  8333. // exit(0);
  8334. //}
  8335. }
  8336. // ggml_compute_forward_get_rows_back
  8337. static void ggml_compute_forward_get_rows_back_f32_f16(
  8338. const struct ggml_compute_params * params,
  8339. const struct ggml_tensor * src0,
  8340. const struct ggml_tensor * src1,
  8341. const struct ggml_tensor * opt0,
  8342. struct ggml_tensor * dst) {
  8343. GGML_ASSERT(params->ith == 0);
  8344. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8345. GGML_ASSERT(ggml_is_contiguous(opt0));
  8346. GGML_ASSERT(ggml_is_contiguous(dst));
  8347. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8348. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8349. return;
  8350. }
  8351. const int nc = src0->ne[0];
  8352. const int nr = ggml_nelements(src1);
  8353. GGML_ASSERT( dst->ne[0] == nc);
  8354. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8355. for (int i = 0; i < nr; ++i) {
  8356. const int r = ((int32_t *) src1->data)[i];
  8357. for (int j = 0; j < nc; ++j) {
  8358. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8359. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8360. }
  8361. }
  8362. }
  8363. static void ggml_compute_forward_get_rows_back_f32(
  8364. const struct ggml_compute_params * params,
  8365. const struct ggml_tensor * src0,
  8366. const struct ggml_tensor * src1,
  8367. const struct ggml_tensor * opt0,
  8368. struct ggml_tensor * dst) {
  8369. GGML_ASSERT(params->ith == 0);
  8370. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8371. GGML_ASSERT(ggml_is_contiguous(opt0));
  8372. GGML_ASSERT(ggml_is_contiguous(dst));
  8373. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8375. return;
  8376. }
  8377. const int nc = src0->ne[0];
  8378. const int nr = ggml_nelements(src1);
  8379. GGML_ASSERT( dst->ne[0] == nc);
  8380. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8381. for (int i = 0; i < nr; ++i) {
  8382. const int r = ((int32_t *) src1->data)[i];
  8383. ggml_vec_add_f32(nc,
  8384. (float *) ((char *) dst->data + r*dst->nb[1]),
  8385. (float *) ((char *) dst->data + r*dst->nb[1]),
  8386. (float *) ((char *) src0->data + i*src0->nb[1]));
  8387. }
  8388. }
  8389. static void ggml_compute_forward_get_rows_back(
  8390. const struct ggml_compute_params * params,
  8391. const struct ggml_tensor * src0,
  8392. const struct ggml_tensor * src1,
  8393. const struct ggml_tensor * opt0,
  8394. struct ggml_tensor * dst) {
  8395. switch (src0->type) {
  8396. case GGML_TYPE_F16:
  8397. {
  8398. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8399. } break;
  8400. case GGML_TYPE_F32:
  8401. {
  8402. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8403. } break;
  8404. default:
  8405. {
  8406. GGML_ASSERT(false);
  8407. } break;
  8408. }
  8409. //static bool first = true;
  8410. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8411. //if (first) {
  8412. // first = false;
  8413. //} else {
  8414. // for (int k = 0; k < dst->ne[1]; ++k) {
  8415. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8416. // for (int i = 0; i < 16; ++i) {
  8417. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8418. // }
  8419. // printf("\n");
  8420. // }
  8421. // printf("\n");
  8422. // }
  8423. // printf("\n");
  8424. // exit(0);
  8425. //}
  8426. }
  8427. // ggml_compute_forward_diag
  8428. static void ggml_compute_forward_diag_f32(
  8429. const struct ggml_compute_params * params,
  8430. const struct ggml_tensor * src0,
  8431. struct ggml_tensor * dst) {
  8432. GGML_ASSERT(params->ith == 0);
  8433. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8434. return;
  8435. }
  8436. // TODO: handle transposed/permuted matrices
  8437. const int ne00 = src0->ne[0];
  8438. const int ne01 = src0->ne[1];
  8439. const int ne02 = src0->ne[2];
  8440. const int ne03 = src0->ne[3];
  8441. const int ne0 = dst->ne[0];
  8442. const int ne1 = dst->ne[1];
  8443. const int ne2 = dst->ne[2];
  8444. const int ne3 = dst->ne[3];
  8445. GGML_ASSERT(ne00 == ne0);
  8446. GGML_ASSERT(ne00 == ne1);
  8447. GGML_ASSERT(ne01 == 1);
  8448. GGML_ASSERT(ne02 == ne2);
  8449. GGML_ASSERT(ne03 == ne3);
  8450. const int nb00 = src0->nb[0];
  8451. //const int nb01 = src0->nb[1];
  8452. const int nb02 = src0->nb[2];
  8453. const int nb03 = src0->nb[3];
  8454. const int nb0 = dst->nb[0];
  8455. const int nb1 = dst->nb[1];
  8456. const int nb2 = dst->nb[2];
  8457. const int nb3 = dst->nb[3];
  8458. GGML_ASSERT(nb00 == sizeof(float));
  8459. GGML_ASSERT(nb0 == sizeof(float));
  8460. for (int i3 = 0; i3 < ne3; i3++) {
  8461. for (int i2 = 0; i2 < ne2; i2++) {
  8462. for (int i1 = 0; i1 < ne1; i1++) {
  8463. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8464. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8465. for (int i0 = 0; i0 < i1; i0++) {
  8466. d[i0] = 0;
  8467. }
  8468. d[i1] = s[i1];
  8469. for (int i0 = i1+1; i0 < ne0; i0++) {
  8470. d[i0] = 0;
  8471. }
  8472. }
  8473. }
  8474. }
  8475. }
  8476. static void ggml_compute_forward_diag(
  8477. const struct ggml_compute_params * params,
  8478. const struct ggml_tensor * src0,
  8479. struct ggml_tensor * dst) {
  8480. switch (src0->type) {
  8481. case GGML_TYPE_F32:
  8482. {
  8483. ggml_compute_forward_diag_f32(params, src0, dst);
  8484. } break;
  8485. default:
  8486. {
  8487. GGML_ASSERT(false);
  8488. } break;
  8489. }
  8490. }
  8491. // ggml_compute_forward_diag_mask_inf
  8492. static void ggml_compute_forward_diag_mask_f32(
  8493. const struct ggml_compute_params * params,
  8494. const struct ggml_tensor * src0,
  8495. const struct ggml_tensor * src1,
  8496. struct ggml_tensor * dst,
  8497. const float value) {
  8498. assert(src1->type == GGML_TYPE_I32);
  8499. assert(ggml_nelements(src1) == 2);
  8500. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8501. return;
  8502. }
  8503. const int ith = params->ith;
  8504. const int nth = params->nth;
  8505. const int n_past = ((int32_t *) src1->data)[0];
  8506. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8507. if (!inplace) {
  8508. ggml_compute_forward_dup_same_cont(params, src0, dst);
  8509. }
  8510. // TODO: handle transposed/permuted matrices
  8511. const int n = ggml_nrows(src0);
  8512. const int nc = src0->ne[0];
  8513. const int nr = src0->ne[1];
  8514. const int nz = n/nr;
  8515. assert( dst->nb[0] == sizeof(float));
  8516. assert(src0->nb[0] == sizeof(float));
  8517. for (int k = 0; k < nz; k++) {
  8518. for (int j = ith; j < nr; j += nth) {
  8519. for (int i = n_past; i < nc; i++) {
  8520. if (i > n_past + j) {
  8521. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8522. }
  8523. }
  8524. }
  8525. }
  8526. }
  8527. static void ggml_compute_forward_diag_mask_inf(
  8528. const struct ggml_compute_params * params,
  8529. const struct ggml_tensor * src0,
  8530. const struct ggml_tensor * src1,
  8531. struct ggml_tensor * dst) {
  8532. switch (src0->type) {
  8533. case GGML_TYPE_F32:
  8534. {
  8535. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8536. } break;
  8537. default:
  8538. {
  8539. GGML_ASSERT(false);
  8540. } break;
  8541. }
  8542. }
  8543. static void ggml_compute_forward_diag_mask_zero(
  8544. const struct ggml_compute_params * params,
  8545. const struct ggml_tensor * src0,
  8546. const struct ggml_tensor * src1,
  8547. struct ggml_tensor * dst) {
  8548. switch (src0->type) {
  8549. case GGML_TYPE_F32:
  8550. {
  8551. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8552. } break;
  8553. default:
  8554. {
  8555. GGML_ASSERT(false);
  8556. } break;
  8557. }
  8558. }
  8559. // ggml_compute_forward_soft_max
  8560. static void ggml_compute_forward_soft_max_f32(
  8561. const struct ggml_compute_params * params,
  8562. const struct ggml_tensor * src0,
  8563. struct ggml_tensor * dst) {
  8564. GGML_ASSERT(ggml_is_contiguous(src0));
  8565. GGML_ASSERT(ggml_is_contiguous(dst));
  8566. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8568. return;
  8569. }
  8570. // TODO: handle transposed/permuted matrices
  8571. const int ith = params->ith;
  8572. const int nth = params->nth;
  8573. const int nc = src0->ne[0];
  8574. const int nr = ggml_nrows(src0);
  8575. // rows per thread
  8576. const int dr = (nr + nth - 1)/nth;
  8577. // row range for this thread
  8578. const int ir0 = dr*ith;
  8579. const int ir1 = MIN(ir0 + dr, nr);
  8580. for (int i1 = ir0; i1 < ir1; i1++) {
  8581. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8582. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8583. #ifndef NDEBUG
  8584. for (int i = 0; i < nc; ++i) {
  8585. //printf("p[%d] = %f\n", i, p[i]);
  8586. assert(!isnan(sp[i]));
  8587. }
  8588. #endif
  8589. float max = -INFINITY;
  8590. ggml_vec_max_f32(nc, &max, sp);
  8591. ggml_float sum = 0.0;
  8592. uint16_t scvt;
  8593. for (int i = 0; i < nc; i++) {
  8594. if (sp[i] == -INFINITY) {
  8595. dp[i] = 0.0f;
  8596. } else {
  8597. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8598. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8599. memcpy(&scvt, &s, sizeof(scvt));
  8600. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8601. sum += (ggml_float)val;
  8602. dp[i] = val;
  8603. }
  8604. }
  8605. assert(sum > 0.0);
  8606. sum = 1.0/sum;
  8607. ggml_vec_scale_f32(nc, dp, sum);
  8608. #ifndef NDEBUG
  8609. for (int i = 0; i < nc; ++i) {
  8610. assert(!isnan(dp[i]));
  8611. assert(!isinf(dp[i]));
  8612. }
  8613. #endif
  8614. }
  8615. }
  8616. static void ggml_compute_forward_soft_max(
  8617. const struct ggml_compute_params * params,
  8618. const struct ggml_tensor * src0,
  8619. struct ggml_tensor * dst) {
  8620. switch (src0->type) {
  8621. case GGML_TYPE_F32:
  8622. {
  8623. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8624. } break;
  8625. default:
  8626. {
  8627. GGML_ASSERT(false);
  8628. } break;
  8629. }
  8630. }
  8631. // ggml_compute_forward_alibi
  8632. static void ggml_compute_forward_alibi_f32(
  8633. const struct ggml_compute_params * params,
  8634. const struct ggml_tensor * src0,
  8635. const struct ggml_tensor * src1,
  8636. struct ggml_tensor * dst) {
  8637. assert(params->ith == 0);
  8638. assert(src1->type == GGML_TYPE_I32);
  8639. assert(ggml_nelements(src1) == 2);
  8640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8641. return;
  8642. }
  8643. const int n_past = ((int32_t *) src1->data)[0];
  8644. const int n_head = ((int32_t *) src1->data)[1];
  8645. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8646. const int ne1 = src0->ne[1]; // seq_len_without_past
  8647. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8648. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8649. const int n = ggml_nrows(src0);
  8650. const int ne2_ne3 = n/ne1; // ne2*ne3
  8651. const int nb0 = src0->nb[0];
  8652. const int nb1 = src0->nb[1];
  8653. const int nb2 = src0->nb[2];
  8654. //const int nb3 = src0->nb[3];
  8655. assert(nb0 == sizeof(float));
  8656. assert(ne1 + n_past == ne0); (void) n_past;
  8657. // add alibi to src0 (KQ_scaled)
  8658. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8659. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8660. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8661. for (int i = 0; i < ne0; i++) {
  8662. for (int j = 0; j < ne1; j++) {
  8663. for (int k = 0; k < ne2_ne3; k++) {
  8664. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8665. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8666. // TODO: k*nb2 or k*nb3
  8667. float m_k;
  8668. if (k < n_heads_log2_floor) {
  8669. m_k = powf(m0, k + 1);
  8670. } else {
  8671. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8672. }
  8673. pdst[0] = i * m_k + src[0];
  8674. }
  8675. }
  8676. }
  8677. }
  8678. static void ggml_compute_forward_alibi_f16(
  8679. const struct ggml_compute_params * params,
  8680. const struct ggml_tensor * src0,
  8681. const struct ggml_tensor * src1,
  8682. struct ggml_tensor * dst) {
  8683. assert(params->ith == 0);
  8684. assert(src1->type == GGML_TYPE_I32);
  8685. assert(ggml_nelements(src1) == 2);
  8686. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8687. return;
  8688. }
  8689. const int n_past = ((int32_t *) src1->data)[0];
  8690. const int n_head = ((int32_t *) src1->data)[1];
  8691. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8692. const int ne1 = src0->ne[1]; // seq_len_without_past
  8693. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8694. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8695. const int n = ggml_nrows(src0);
  8696. const int ne2_ne3 = n/ne1; // ne2*ne3
  8697. const int nb0 = src0->nb[0];
  8698. const int nb1 = src0->nb[1];
  8699. const int nb2 = src0->nb[2];
  8700. //const int nb3 = src0->nb[3];
  8701. assert(nb0 == sizeof(ggml_fp16_t));
  8702. assert(ne1 + n_past == ne0); (void) n_past;
  8703. // add alibi to src0 (KQ_scaled)
  8704. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8705. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8706. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8707. for (int i = 0; i < ne0; i++) {
  8708. for (int j = 0; j < ne1; j++) {
  8709. for (int k = 0; k < ne2_ne3; k++) {
  8710. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8711. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8712. // TODO: k*nb2 or k*nb3
  8713. float m_k;
  8714. if (k < n_heads_log2_floor) {
  8715. m_k = powf(m0, k + 1);
  8716. } else {
  8717. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8718. }
  8719. // we return F32
  8720. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8721. }
  8722. }
  8723. }
  8724. }
  8725. static void ggml_compute_forward_alibi(
  8726. const struct ggml_compute_params * params,
  8727. const struct ggml_tensor * src0,
  8728. const struct ggml_tensor * src1,
  8729. struct ggml_tensor * dst) {
  8730. switch (src0->type) {
  8731. case GGML_TYPE_F16:
  8732. {
  8733. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8734. } break;
  8735. case GGML_TYPE_F32:
  8736. {
  8737. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8738. } break;
  8739. case GGML_TYPE_Q4_0:
  8740. case GGML_TYPE_Q4_1:
  8741. case GGML_TYPE_Q5_0:
  8742. case GGML_TYPE_Q5_1:
  8743. case GGML_TYPE_Q8_0:
  8744. case GGML_TYPE_Q8_1:
  8745. case GGML_TYPE_I8:
  8746. case GGML_TYPE_I16:
  8747. case GGML_TYPE_I32:
  8748. case GGML_TYPE_COUNT:
  8749. {
  8750. GGML_ASSERT(false);
  8751. } break;
  8752. }
  8753. }
  8754. // ggml_compute_forward_rope
  8755. static void ggml_compute_forward_rope_f32(
  8756. const struct ggml_compute_params * params,
  8757. const struct ggml_tensor * src0,
  8758. const struct ggml_tensor * src1,
  8759. struct ggml_tensor * dst) {
  8760. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8761. GGML_ASSERT(ggml_nelements(src1) == 3);
  8762. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8763. return;
  8764. }
  8765. const int n_past = ((int32_t *) src1->data)[0];
  8766. const int n_dims = ((int32_t *) src1->data)[1];
  8767. const int mode = ((int32_t *) src1->data)[2];
  8768. //const int64_t ne0 = src0->ne[0];
  8769. const int64_t ne1 = src0->ne[1];
  8770. const int64_t ne2 = src0->ne[2];
  8771. const int64_t ne3 = src0->ne[3];
  8772. const int nb0 = src0->nb[0];
  8773. const int nb1 = src0->nb[1];
  8774. const int nb2 = src0->nb[2];
  8775. const int nb3 = src0->nb[3];
  8776. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8777. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8778. GGML_ASSERT(nb0 == sizeof(float));
  8779. const int ith = params->ith;
  8780. const int nth = params->nth;
  8781. const int nr = ggml_nrows(src0);
  8782. const int nc = src0->ne[0];
  8783. GGML_ASSERT(n_dims <= nc);
  8784. GGML_ASSERT(n_dims % 2 == 0);
  8785. // rows per thread
  8786. const int dr = (nr + nth - 1)/nth;
  8787. // row range for this thread
  8788. const int ir0 = dr*ith;
  8789. const int ir1 = MIN(ir0 + dr, nr);
  8790. // row index used to determine which thread to use
  8791. int ir = 0;
  8792. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8793. const bool is_neox = mode & 2;
  8794. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8795. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8796. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8797. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8798. if (ir++ < ir0) continue;
  8799. if (ir > ir1) break;
  8800. float theta = (float)p;
  8801. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  8802. const float cos_theta = cosf(theta);
  8803. const float sin_theta = sinf(theta);
  8804. theta *= theta_scale;
  8805. if (!is_neox) {
  8806. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8807. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8808. const float x0 = src[0];
  8809. const float x1 = src[1];
  8810. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8811. dst_data[1] = x0*sin_theta + x1*cos_theta;
  8812. } else {
  8813. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8814. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8815. const float x0 = src[0];
  8816. const float x1 = src[n_dims/2];
  8817. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8818. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  8819. }
  8820. }
  8821. }
  8822. }
  8823. }
  8824. }
  8825. static void ggml_compute_forward_rope_f16(
  8826. const struct ggml_compute_params * params,
  8827. const struct ggml_tensor * src0,
  8828. const struct ggml_tensor * src1,
  8829. struct ggml_tensor * dst) {
  8830. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8831. GGML_ASSERT(ggml_nelements(src1) == 3);
  8832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8833. return;
  8834. }
  8835. const int n_past = ((int32_t *) src1->data)[0];
  8836. const int n_dims = ((int32_t *) src1->data)[1];
  8837. const int mode = ((int32_t *) src1->data)[2];
  8838. //const int64_t ne0 = src0->ne[0];
  8839. const int64_t ne1 = src0->ne[1];
  8840. const int64_t ne2 = src0->ne[2];
  8841. const int64_t ne3 = src0->ne[3];
  8842. const int nb0 = src0->nb[0];
  8843. const int nb1 = src0->nb[1];
  8844. const int nb2 = src0->nb[2];
  8845. const int nb3 = src0->nb[3];
  8846. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8847. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8848. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8849. const int ith = params->ith;
  8850. const int nth = params->nth;
  8851. const int nr = ggml_nrows(src0);
  8852. const int nc = src0->ne[0];
  8853. GGML_ASSERT(n_dims <= nc);
  8854. GGML_ASSERT(n_dims % 2 == 0);
  8855. // rows per thread
  8856. const int dr = (nr + nth - 1)/nth;
  8857. // row range for this thread
  8858. const int ir0 = dr*ith;
  8859. const int ir1 = MIN(ir0 + dr, nr);
  8860. // row index used to determine which thread to use
  8861. int ir = 0;
  8862. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8863. const bool is_neox = mode & 2;
  8864. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8865. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8866. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8867. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8868. if (ir++ < ir0) continue;
  8869. if (ir > ir1) break;
  8870. float theta = (float)p;
  8871. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  8872. const float cos_theta = cosf(theta);
  8873. const float sin_theta = sinf(theta);
  8874. theta *= theta_scale;
  8875. if (!is_neox) {
  8876. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8877. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8878. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8879. const float x1 = GGML_FP16_TO_FP32(src[1]);
  8880. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8881. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8882. } else {
  8883. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8884. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8885. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8886. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  8887. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8888. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8889. }
  8890. }
  8891. }
  8892. }
  8893. }
  8894. }
  8895. static void ggml_compute_forward_rope(
  8896. const struct ggml_compute_params * params,
  8897. const struct ggml_tensor * src0,
  8898. const struct ggml_tensor * src1,
  8899. struct ggml_tensor * dst) {
  8900. switch (src0->type) {
  8901. case GGML_TYPE_F16:
  8902. {
  8903. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  8904. } break;
  8905. case GGML_TYPE_F32:
  8906. {
  8907. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  8908. } break;
  8909. default:
  8910. {
  8911. GGML_ASSERT(false);
  8912. } break;
  8913. }
  8914. }
  8915. // ggml_compute_forward_rope_back
  8916. static void ggml_compute_forward_rope_back_f32(
  8917. const struct ggml_compute_params * params,
  8918. const struct ggml_tensor * src0,
  8919. const struct ggml_tensor * src1,
  8920. struct ggml_tensor * dst) {
  8921. assert(src1->type == GGML_TYPE_I32);
  8922. assert(ggml_nelements(src1) == 3);
  8923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8924. return;
  8925. }
  8926. // y = rope(x, src1)
  8927. // dx = rope_back(dy, src1)
  8928. // src0 is dy, src1 contains options
  8929. const int n_past = ((int32_t *) src1->data)[0];
  8930. const int n_dims = ((int32_t *) src1->data)[1];
  8931. const int mode = ((int32_t *) src1->data)[2];
  8932. //const int64_t ne0 = src0->ne[0];
  8933. const int64_t ne1 = src0->ne[1];
  8934. const int64_t ne2 = src0->ne[2];
  8935. const int64_t ne3 = src0->ne[3];
  8936. const int nb0 = src0->nb[0];
  8937. const int nb1 = src0->nb[1];
  8938. const int nb2 = src0->nb[2];
  8939. const int nb3 = src0->nb[3];
  8940. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8941. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8942. assert(nb0 == sizeof(float));
  8943. const int ith = params->ith;
  8944. const int nth = params->nth;
  8945. const int nr = ggml_nrows(src0);
  8946. // rows per thread
  8947. const int dr = (nr + nth - 1)/nth;
  8948. // row range for this thread
  8949. const int ir0 = dr*ith;
  8950. const int ir1 = MIN(ir0 + dr, nr);
  8951. // row index used to determine which thread to use
  8952. int ir = 0;
  8953. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8954. const bool is_neox = mode & 2;
  8955. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8956. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8957. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8958. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8959. if (ir++ < ir0) continue;
  8960. if (ir > ir1) break;
  8961. float theta = (float)p;
  8962. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  8963. const float cos_theta = cosf(theta);
  8964. const float sin_theta = sinf(theta);
  8965. theta *= theta_scale;
  8966. if (!is_neox) {
  8967. const float * const dy = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8968. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8969. const float dy0 = dy[0];
  8970. const float dy1 = dy[1];
  8971. dx[0] = dy0*cos_theta + dy1*sin_theta;
  8972. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  8973. } else {
  8974. const float * const dy = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8975. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8976. const float dy0 = dy[0];
  8977. const float dy1 = dy[n_dims/2];
  8978. dx[0] = dy0*cos_theta + dy1*sin_theta;
  8979. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  8980. }
  8981. }
  8982. }
  8983. }
  8984. }
  8985. }
  8986. static void ggml_compute_forward_rope_back_f16(
  8987. const struct ggml_compute_params * params,
  8988. const struct ggml_tensor * src0,
  8989. const struct ggml_tensor * src1,
  8990. struct ggml_tensor * dst) {
  8991. assert(src1->type == GGML_TYPE_I32);
  8992. assert(ggml_nelements(src1) == 3);
  8993. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8994. return;
  8995. }
  8996. // y = rope(x, src1)
  8997. // dx = rope_back(dy, src1)
  8998. // src0 is dy, src1 contains options
  8999. const int n_past = ((int32_t *) src1->data)[0];
  9000. const int n_dims = ((int32_t *) src1->data)[1];
  9001. const int mode = ((int32_t *) src1->data)[2];
  9002. //const int64_t ne0 = src0->ne[0];
  9003. const int64_t ne1 = src0->ne[1];
  9004. const int64_t ne2 = src0->ne[2];
  9005. const int64_t ne3 = src0->ne[3];
  9006. const int nb0 = src0->nb[0];
  9007. const int nb1 = src0->nb[1];
  9008. const int nb2 = src0->nb[2];
  9009. const int nb3 = src0->nb[3];
  9010. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9011. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9012. assert(nb0 == sizeof(ggml_fp16_t));
  9013. const int ith = params->ith;
  9014. const int nth = params->nth;
  9015. const int nr = ggml_nrows(src0);
  9016. // rows per thread
  9017. const int dr = (nr + nth - 1)/nth;
  9018. // row range for this thread
  9019. const int ir0 = dr*ith;
  9020. const int ir1 = MIN(ir0 + dr, nr);
  9021. // row index used to determine which thread to use
  9022. int ir = 0;
  9023. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9024. const bool is_neox = mode & 2;
  9025. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9026. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9027. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9028. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9029. if (ir++ < ir0) continue;
  9030. if (ir > ir1) break;
  9031. float theta = (float)p;
  9032. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  9033. const float cos_theta = cosf(theta);
  9034. const float sin_theta = sinf(theta);
  9035. theta *= theta_scale;
  9036. if (!is_neox) {
  9037. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9038. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9039. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9040. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9041. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9042. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9043. } else {
  9044. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  9045. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  9046. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9047. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9048. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9049. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9050. }
  9051. }
  9052. }
  9053. }
  9054. }
  9055. }
  9056. static void ggml_compute_forward_rope_back(
  9057. const struct ggml_compute_params * params,
  9058. const struct ggml_tensor * src0,
  9059. const struct ggml_tensor * src1,
  9060. struct ggml_tensor * dst) {
  9061. switch (src0->type) {
  9062. case GGML_TYPE_F16:
  9063. {
  9064. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9065. } break;
  9066. case GGML_TYPE_F32:
  9067. {
  9068. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9069. } break;
  9070. default:
  9071. {
  9072. GGML_ASSERT(false);
  9073. } break;
  9074. }
  9075. }
  9076. // ggml_compute_forward_conv_1d_1s
  9077. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9078. const struct ggml_compute_params * params,
  9079. const struct ggml_tensor * src0,
  9080. const struct ggml_tensor * src1,
  9081. struct ggml_tensor * dst) {
  9082. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9083. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9084. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9085. int64_t t0 = ggml_perf_time_us();
  9086. UNUSED(t0);
  9087. const int64_t ne00 = src0->ne[0];
  9088. const int64_t ne01 = src0->ne[1];
  9089. const int64_t ne02 = src0->ne[2];
  9090. //const int64_t ne03 = src0->ne[3];
  9091. const int64_t ne10 = src1->ne[0];
  9092. const int64_t ne11 = src1->ne[1];
  9093. //const int64_t ne12 = src1->ne[2];
  9094. //const int64_t ne13 = src1->ne[3];
  9095. //const int64_t ne0 = dst->ne[0];
  9096. //const int64_t ne1 = dst->ne[1];
  9097. //const int64_t ne2 = dst->ne[2];
  9098. //const int64_t ne3 = dst->ne[3];
  9099. //const int64_t ne = ne0*ne1*ne2*ne3;
  9100. const int nb00 = src0->nb[0];
  9101. const int nb01 = src0->nb[1];
  9102. const int nb02 = src0->nb[2];
  9103. //const int nb03 = src0->nb[3];
  9104. const int nb10 = src1->nb[0];
  9105. const int nb11 = src1->nb[1];
  9106. //const int nb12 = src1->nb[2];
  9107. //const int nb13 = src1->nb[3];
  9108. //const int nb0 = dst->nb[0];
  9109. const int nb1 = dst->nb[1];
  9110. //const int nb2 = dst->nb[2];
  9111. //const int nb3 = dst->nb[3];
  9112. const int ith = params->ith;
  9113. const int nth = params->nth;
  9114. const int nk = ne00;
  9115. const int nh = nk/2;
  9116. const int ew0 = ggml_up32(ne01);
  9117. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9118. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9119. GGML_ASSERT(nb10 == sizeof(float));
  9120. if (params->type == GGML_TASK_INIT) {
  9121. // TODO: fix this memset (wsize is overestimated)
  9122. memset(params->wdata, 0, params->wsize);
  9123. // prepare kernel data (src0)
  9124. {
  9125. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9126. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9127. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9128. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9129. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9130. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9131. dst_data[i00*ew0 + i01] = src[i00];
  9132. }
  9133. }
  9134. }
  9135. }
  9136. // prepare source data (src1)
  9137. {
  9138. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9139. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9140. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9141. ggml_fp16_t * dst_data = wdata;
  9142. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9143. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9144. }
  9145. }
  9146. }
  9147. return;
  9148. }
  9149. if (params->type == GGML_TASK_FINALIZE) {
  9150. return;
  9151. }
  9152. // total rows in dst
  9153. const int nr = ne02;
  9154. // rows per thread
  9155. const int dr = (nr + nth - 1)/nth;
  9156. // row range for this thread
  9157. const int ir0 = dr*ith;
  9158. const int ir1 = MIN(ir0 + dr, nr);
  9159. for (int i1 = ir0; i1 < ir1; i1++) {
  9160. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9161. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9162. dst_data[i0] = 0;
  9163. for (int k = -nh; k <= nh; k++) {
  9164. float v = 0.0f;
  9165. ggml_vec_dot_f16(ew0, &v,
  9166. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9167. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9168. dst_data[i0] += v;
  9169. }
  9170. }
  9171. }
  9172. }
  9173. static void ggml_compute_forward_conv_1d_1s_f32(
  9174. const struct ggml_compute_params * params,
  9175. const struct ggml_tensor * src0,
  9176. const struct ggml_tensor * src1,
  9177. struct ggml_tensor * dst) {
  9178. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9179. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9180. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9181. int64_t t0 = ggml_perf_time_us();
  9182. UNUSED(t0);
  9183. const int64_t ne00 = src0->ne[0];
  9184. const int64_t ne01 = src0->ne[1];
  9185. const int64_t ne02 = src0->ne[2];
  9186. //const int64_t ne03 = src0->ne[3];
  9187. const int64_t ne10 = src1->ne[0];
  9188. const int64_t ne11 = src1->ne[1];
  9189. //const int64_t ne12 = src1->ne[2];
  9190. //const int64_t ne13 = src1->ne[3];
  9191. //const int64_t ne0 = dst->ne[0];
  9192. //const int64_t ne1 = dst->ne[1];
  9193. //const int64_t ne2 = dst->ne[2];
  9194. //const int64_t ne3 = dst->ne[3];
  9195. //const int64_t ne = ne0*ne1*ne2*ne3;
  9196. const int nb00 = src0->nb[0];
  9197. const int nb01 = src0->nb[1];
  9198. const int nb02 = src0->nb[2];
  9199. //const int nb03 = src0->nb[3];
  9200. const int nb10 = src1->nb[0];
  9201. const int nb11 = src1->nb[1];
  9202. //const int nb12 = src1->nb[2];
  9203. //const int nb13 = src1->nb[3];
  9204. //const int nb0 = dst->nb[0];
  9205. const int nb1 = dst->nb[1];
  9206. //const int nb2 = dst->nb[2];
  9207. //const int nb3 = dst->nb[3];
  9208. const int ith = params->ith;
  9209. const int nth = params->nth;
  9210. const int nk = ne00;
  9211. const int nh = nk/2;
  9212. const int ew0 = ggml_up32(ne01);
  9213. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9214. GGML_ASSERT(nb00 == sizeof(float));
  9215. GGML_ASSERT(nb10 == sizeof(float));
  9216. if (params->type == GGML_TASK_INIT) {
  9217. // TODO: fix this memset (wsize is overestimated)
  9218. memset(params->wdata, 0, params->wsize);
  9219. // prepare kernel data (src0)
  9220. {
  9221. float * const wdata = (float *) params->wdata + 0;
  9222. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9223. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9224. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9225. float * dst_data = wdata + i02*ew0*ne00;
  9226. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9227. dst_data[i00*ew0 + i01] = src[i00];
  9228. }
  9229. }
  9230. }
  9231. }
  9232. // prepare source data (src1)
  9233. {
  9234. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9235. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9236. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9237. float * dst_data = wdata;
  9238. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9239. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9240. }
  9241. }
  9242. }
  9243. return;
  9244. }
  9245. if (params->type == GGML_TASK_FINALIZE) {
  9246. return;
  9247. }
  9248. // total rows in dst
  9249. const int nr = ne02;
  9250. // rows per thread
  9251. const int dr = (nr + nth - 1)/nth;
  9252. // row range for this thread
  9253. const int ir0 = dr*ith;
  9254. const int ir1 = MIN(ir0 + dr, nr);
  9255. for (int i1 = ir0; i1 < ir1; i1++) {
  9256. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9257. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9258. dst_data[i0] = 0;
  9259. for (int k = -nh; k <= nh; k++) {
  9260. float v = 0.0f;
  9261. ggml_vec_dot_f32(ew0, &v,
  9262. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9263. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9264. dst_data[i0] += v;
  9265. }
  9266. }
  9267. }
  9268. }
  9269. static void ggml_compute_forward_conv_1d_1s(
  9270. const struct ggml_compute_params * params,
  9271. const struct ggml_tensor * src0,
  9272. const struct ggml_tensor * src1,
  9273. struct ggml_tensor * dst) {
  9274. switch (src0->type) {
  9275. case GGML_TYPE_F16:
  9276. {
  9277. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9278. } break;
  9279. case GGML_TYPE_F32:
  9280. {
  9281. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9282. } break;
  9283. default:
  9284. {
  9285. GGML_ASSERT(false);
  9286. } break;
  9287. }
  9288. }
  9289. // ggml_compute_forward_conv_1d_2s
  9290. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9291. const struct ggml_compute_params * params,
  9292. const struct ggml_tensor * src0,
  9293. const struct ggml_tensor * src1,
  9294. struct ggml_tensor * dst) {
  9295. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9296. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9297. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9298. int64_t t0 = ggml_perf_time_us();
  9299. UNUSED(t0);
  9300. const int64_t ne00 = src0->ne[0];
  9301. const int64_t ne01 = src0->ne[1];
  9302. const int64_t ne02 = src0->ne[2];
  9303. //const int64_t ne03 = src0->ne[3];
  9304. const int64_t ne10 = src1->ne[0];
  9305. const int64_t ne11 = src1->ne[1];
  9306. //const int64_t ne12 = src1->ne[2];
  9307. //const int64_t ne13 = src1->ne[3];
  9308. //const int64_t ne0 = dst->ne[0];
  9309. //const int64_t ne1 = dst->ne[1];
  9310. //const int64_t ne2 = dst->ne[2];
  9311. //const int64_t ne3 = dst->ne[3];
  9312. //const int64_t ne = ne0*ne1*ne2*ne3;
  9313. const int nb00 = src0->nb[0];
  9314. const int nb01 = src0->nb[1];
  9315. const int nb02 = src0->nb[2];
  9316. //const int nb03 = src0->nb[3];
  9317. const int nb10 = src1->nb[0];
  9318. const int nb11 = src1->nb[1];
  9319. //const int nb12 = src1->nb[2];
  9320. //const int nb13 = src1->nb[3];
  9321. //const int nb0 = dst->nb[0];
  9322. const int nb1 = dst->nb[1];
  9323. //const int nb2 = dst->nb[2];
  9324. //const int nb3 = dst->nb[3];
  9325. const int ith = params->ith;
  9326. const int nth = params->nth;
  9327. const int nk = ne00;
  9328. const int nh = nk/2;
  9329. const int ew0 = ggml_up32(ne01);
  9330. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9331. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9332. GGML_ASSERT(nb10 == sizeof(float));
  9333. if (params->type == GGML_TASK_INIT) {
  9334. // TODO: fix this memset (wsize is overestimated)
  9335. memset(params->wdata, 0, params->wsize);
  9336. // prepare kernel data (src0)
  9337. {
  9338. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9339. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9340. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9341. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9342. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9343. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9344. dst_data[i00*ew0 + i01] = src[i00];
  9345. }
  9346. }
  9347. }
  9348. }
  9349. // prepare source data (src1)
  9350. {
  9351. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9352. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9353. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9354. ggml_fp16_t * dst_data = wdata;
  9355. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9356. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9357. }
  9358. }
  9359. }
  9360. return;
  9361. }
  9362. if (params->type == GGML_TASK_FINALIZE) {
  9363. return;
  9364. }
  9365. // total rows in dst
  9366. const int nr = ne02;
  9367. // rows per thread
  9368. const int dr = (nr + nth - 1)/nth;
  9369. // row range for this thread
  9370. const int ir0 = dr*ith;
  9371. const int ir1 = MIN(ir0 + dr, nr);
  9372. for (int i1 = ir0; i1 < ir1; i1++) {
  9373. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9374. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9375. dst_data[i0/2] = 0;
  9376. for (int k = -nh; k <= nh; k++) {
  9377. float v = 0.0f;
  9378. ggml_vec_dot_f16(ew0, &v,
  9379. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9380. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9381. dst_data[i0/2] += v;
  9382. }
  9383. }
  9384. }
  9385. }
  9386. static void ggml_compute_forward_conv_1d_2s_f32(
  9387. const struct ggml_compute_params * params,
  9388. const struct ggml_tensor * src0,
  9389. const struct ggml_tensor * src1,
  9390. struct ggml_tensor * dst) {
  9391. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9392. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9393. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9394. int64_t t0 = ggml_perf_time_us();
  9395. UNUSED(t0);
  9396. const int64_t ne00 = src0->ne[0];
  9397. const int64_t ne01 = src0->ne[1];
  9398. const int64_t ne02 = src0->ne[2];
  9399. //const int64_t ne03 = src0->ne[3];
  9400. const int64_t ne10 = src1->ne[0];
  9401. const int64_t ne11 = src1->ne[1];
  9402. //const int64_t ne12 = src1->ne[2];
  9403. //const int64_t ne13 = src1->ne[3];
  9404. //const int64_t ne0 = dst->ne[0];
  9405. //const int64_t ne1 = dst->ne[1];
  9406. //const int64_t ne2 = dst->ne[2];
  9407. //const int64_t ne3 = dst->ne[3];
  9408. //const int64_t ne = ne0*ne1*ne2*ne3;
  9409. const int nb00 = src0->nb[0];
  9410. const int nb01 = src0->nb[1];
  9411. const int nb02 = src0->nb[2];
  9412. //const int nb03 = src0->nb[3];
  9413. const int nb10 = src1->nb[0];
  9414. const int nb11 = src1->nb[1];
  9415. //const int nb12 = src1->nb[2];
  9416. //const int nb13 = src1->nb[3];
  9417. //const int nb0 = dst->nb[0];
  9418. const int nb1 = dst->nb[1];
  9419. //const int nb2 = dst->nb[2];
  9420. //const int nb3 = dst->nb[3];
  9421. const int ith = params->ith;
  9422. const int nth = params->nth;
  9423. const int nk = ne00;
  9424. const int nh = nk/2;
  9425. const int ew0 = ggml_up32(ne01);
  9426. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9427. GGML_ASSERT(nb00 == sizeof(float));
  9428. GGML_ASSERT(nb10 == sizeof(float));
  9429. if (params->type == GGML_TASK_INIT) {
  9430. // TODO: fix this memset (wsize is overestimated)
  9431. memset(params->wdata, 0, params->wsize);
  9432. // prepare kernel data (src0)
  9433. {
  9434. float * const wdata = (float *) params->wdata + 0;
  9435. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9436. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9437. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9438. float * dst_data = wdata + i02*ew0*ne00;
  9439. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9440. dst_data[i00*ew0 + i01] = src[i00];
  9441. }
  9442. }
  9443. }
  9444. }
  9445. // prepare source data (src1)
  9446. {
  9447. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9448. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9449. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9450. float * dst_data = wdata;
  9451. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9452. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9453. }
  9454. }
  9455. }
  9456. return;
  9457. }
  9458. if (params->type == GGML_TASK_FINALIZE) {
  9459. return;
  9460. }
  9461. // total rows in dst
  9462. const int nr = ne02;
  9463. // rows per thread
  9464. const int dr = (nr + nth - 1)/nth;
  9465. // row range for this thread
  9466. const int ir0 = dr*ith;
  9467. const int ir1 = MIN(ir0 + dr, nr);
  9468. for (int i1 = ir0; i1 < ir1; i1++) {
  9469. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9470. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9471. dst_data[i0/2] = 0;
  9472. for (int k = -nh; k <= nh; k++) {
  9473. float v = 0.0f;
  9474. ggml_vec_dot_f32(ew0, &v,
  9475. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9476. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9477. dst_data[i0/2] += v;
  9478. }
  9479. }
  9480. }
  9481. }
  9482. static void ggml_compute_forward_conv_1d_2s(
  9483. const struct ggml_compute_params * params,
  9484. const struct ggml_tensor * src0,
  9485. const struct ggml_tensor * src1,
  9486. struct ggml_tensor * dst) {
  9487. switch (src0->type) {
  9488. case GGML_TYPE_F16:
  9489. {
  9490. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9491. } break;
  9492. case GGML_TYPE_F32:
  9493. {
  9494. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9495. } break;
  9496. default:
  9497. {
  9498. GGML_ASSERT(false);
  9499. } break;
  9500. }
  9501. }
  9502. // ggml_compute_forward_flash_attn
  9503. static void ggml_compute_forward_flash_attn_f32(
  9504. const struct ggml_compute_params * params,
  9505. const struct ggml_tensor * q,
  9506. const struct ggml_tensor * k,
  9507. const struct ggml_tensor * v,
  9508. const bool masked,
  9509. struct ggml_tensor * dst) {
  9510. int64_t t0 = ggml_perf_time_us();
  9511. UNUSED(t0);
  9512. const int64_t neq0 = q->ne[0];
  9513. const int64_t neq1 = q->ne[1];
  9514. const int64_t neq2 = q->ne[2];
  9515. const int64_t neq3 = q->ne[3];
  9516. const int64_t nek0 = k->ne[0];
  9517. const int64_t nek1 = k->ne[1];
  9518. //const int64_t nek2 = k->ne[2];
  9519. //const int64_t nek3 = k->ne[3];
  9520. //const int64_t nev0 = v->ne[0];
  9521. const int64_t nev1 = v->ne[1];
  9522. //const int64_t nev2 = v->ne[2];
  9523. //const int64_t nev3 = v->ne[3];
  9524. const int64_t ne0 = dst->ne[0];
  9525. const int64_t ne1 = dst->ne[1];
  9526. //const int64_t ne2 = dst->ne[2];
  9527. //const int64_t ne3 = dst->ne[3];
  9528. const int nbk0 = k->nb[0];
  9529. const int nbk1 = k->nb[1];
  9530. const int nbk2 = k->nb[2];
  9531. const int nbk3 = k->nb[3];
  9532. const int nbq0 = q->nb[0];
  9533. const int nbq1 = q->nb[1];
  9534. const int nbq2 = q->nb[2];
  9535. const int nbq3 = q->nb[3];
  9536. const int nbv0 = v->nb[0];
  9537. const int nbv1 = v->nb[1];
  9538. const int nbv2 = v->nb[2];
  9539. const int nbv3 = v->nb[3];
  9540. const int nb0 = dst->nb[0];
  9541. const int nb1 = dst->nb[1];
  9542. const int nb2 = dst->nb[2];
  9543. const int nb3 = dst->nb[3];
  9544. const int ith = params->ith;
  9545. const int nth = params->nth;
  9546. const int64_t D = neq0;
  9547. const int64_t N = neq1;
  9548. const int64_t P = nek1 - N;
  9549. const int64_t M = P + N;
  9550. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9551. GGML_ASSERT(ne0 == D);
  9552. GGML_ASSERT(ne1 == N);
  9553. GGML_ASSERT(P >= 0);
  9554. GGML_ASSERT(nbq0 == sizeof(float));
  9555. GGML_ASSERT(nbk0 == sizeof(float));
  9556. GGML_ASSERT(nbv0 == sizeof(float));
  9557. GGML_ASSERT(neq0 == D);
  9558. GGML_ASSERT(nek0 == D);
  9559. GGML_ASSERT(nev1 == D);
  9560. GGML_ASSERT(neq1 == N);
  9561. GGML_ASSERT(nek1 == N + P);
  9562. GGML_ASSERT(nev1 == D);
  9563. // dst cannot be transposed or permuted
  9564. GGML_ASSERT(nb0 == sizeof(float));
  9565. GGML_ASSERT(nb0 <= nb1);
  9566. GGML_ASSERT(nb1 <= nb2);
  9567. GGML_ASSERT(nb2 <= nb3);
  9568. if (params->type == GGML_TASK_INIT) {
  9569. return;
  9570. }
  9571. if (params->type == GGML_TASK_FINALIZE) {
  9572. return;
  9573. }
  9574. // parallelize by q rows using ggml_vec_dot_f32
  9575. // total rows in q
  9576. const int nr = neq1*neq2*neq3;
  9577. // rows per thread
  9578. const int dr = (nr + nth - 1)/nth;
  9579. // row range for this thread
  9580. const int ir0 = dr*ith;
  9581. const int ir1 = MIN(ir0 + dr, nr);
  9582. const float scale = 1.0f/sqrtf(D);
  9583. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9584. for (int ir = ir0; ir < ir1; ++ir) {
  9585. // q indices
  9586. const int iq3 = ir/(neq2*neq1);
  9587. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9588. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9589. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9590. for (int i = M; i < Mup; ++i) {
  9591. S[i] = -INFINITY;
  9592. }
  9593. for (int64_t ic = 0; ic < nek1; ++ic) {
  9594. // k indices
  9595. const int ik3 = iq3;
  9596. const int ik2 = iq2;
  9597. const int ik1 = ic;
  9598. // S indices
  9599. const int i1 = ik1;
  9600. ggml_vec_dot_f32(neq0,
  9601. S + i1,
  9602. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9603. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9604. }
  9605. // scale
  9606. ggml_vec_scale_f32(nek1, S, scale);
  9607. if (masked) {
  9608. for (int64_t i = P; i < M; i++) {
  9609. if (i > P + iq1) {
  9610. S[i] = -INFINITY;
  9611. }
  9612. }
  9613. }
  9614. // softmax
  9615. {
  9616. float max = -INFINITY;
  9617. ggml_vec_max_f32(M, &max, S);
  9618. ggml_float sum = 0.0;
  9619. {
  9620. #ifdef GGML_SOFT_MAX_ACCELERATE
  9621. max = -max;
  9622. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9623. vvexpf(S, S, &Mup);
  9624. ggml_vec_sum_f32(Mup, &sum, S);
  9625. #else
  9626. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9627. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9628. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9629. float * SS = S + i;
  9630. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9631. if (SS[j] == -INFINITY) {
  9632. SS[j] = 0.0f;
  9633. } else {
  9634. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9635. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9636. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9637. sump[j] += (ggml_float)val;
  9638. SS[j] = val;
  9639. }
  9640. }
  9641. }
  9642. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9643. sum += sump[i];
  9644. }
  9645. #endif
  9646. }
  9647. assert(sum > 0.0);
  9648. sum = 1.0/sum;
  9649. ggml_vec_scale_f32(M, S, sum);
  9650. #ifndef NDEBUG
  9651. for (int i = 0; i < M; ++i) {
  9652. assert(!isnan(S[i]));
  9653. assert(!isinf(S[i]));
  9654. }
  9655. #endif
  9656. }
  9657. for (int64_t ic = 0; ic < nev1; ++ic) {
  9658. // dst indices
  9659. const int i1 = iq1;
  9660. const int i2 = iq2;
  9661. const int i3 = iq3;
  9662. ggml_vec_dot_f32(nek1,
  9663. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9664. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9665. S);
  9666. }
  9667. }
  9668. }
  9669. static void ggml_compute_forward_flash_attn_f16(
  9670. const struct ggml_compute_params * params,
  9671. const struct ggml_tensor * q,
  9672. const struct ggml_tensor * k,
  9673. const struct ggml_tensor * v,
  9674. const bool masked,
  9675. struct ggml_tensor * dst) {
  9676. int64_t t0 = ggml_perf_time_us();
  9677. UNUSED(t0);
  9678. const int64_t neq0 = q->ne[0];
  9679. const int64_t neq1 = q->ne[1];
  9680. const int64_t neq2 = q->ne[2];
  9681. const int64_t neq3 = q->ne[3];
  9682. const int64_t nek0 = k->ne[0];
  9683. const int64_t nek1 = k->ne[1];
  9684. //const int64_t nek2 = k->ne[2];
  9685. //const int64_t nek3 = k->ne[3];
  9686. //const int64_t nev0 = v->ne[0];
  9687. const int64_t nev1 = v->ne[1];
  9688. //const int64_t nev2 = v->ne[2];
  9689. //const int64_t nev3 = v->ne[3];
  9690. const int64_t ne0 = dst->ne[0];
  9691. const int64_t ne1 = dst->ne[1];
  9692. //const int64_t ne2 = dst->ne[2];
  9693. //const int64_t ne3 = dst->ne[3];
  9694. const int nbk0 = k->nb[0];
  9695. const int nbk1 = k->nb[1];
  9696. const int nbk2 = k->nb[2];
  9697. const int nbk3 = k->nb[3];
  9698. const int nbq0 = q->nb[0];
  9699. const int nbq1 = q->nb[1];
  9700. const int nbq2 = q->nb[2];
  9701. const int nbq3 = q->nb[3];
  9702. const int nbv0 = v->nb[0];
  9703. const int nbv1 = v->nb[1];
  9704. const int nbv2 = v->nb[2];
  9705. const int nbv3 = v->nb[3];
  9706. const int nb0 = dst->nb[0];
  9707. const int nb1 = dst->nb[1];
  9708. const int nb2 = dst->nb[2];
  9709. const int nb3 = dst->nb[3];
  9710. const int ith = params->ith;
  9711. const int nth = params->nth;
  9712. const int64_t D = neq0;
  9713. const int64_t N = neq1;
  9714. const int64_t P = nek1 - N;
  9715. const int64_t M = P + N;
  9716. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9717. GGML_ASSERT(ne0 == D);
  9718. GGML_ASSERT(ne1 == N);
  9719. GGML_ASSERT(P >= 0);
  9720. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9721. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9722. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9723. GGML_ASSERT(neq0 == D);
  9724. GGML_ASSERT(nek0 == D);
  9725. GGML_ASSERT(nev1 == D);
  9726. GGML_ASSERT(neq1 == N);
  9727. GGML_ASSERT(nek1 == N + P);
  9728. GGML_ASSERT(nev1 == D);
  9729. // dst cannot be transposed or permuted
  9730. GGML_ASSERT(nb0 == sizeof(float));
  9731. GGML_ASSERT(nb0 <= nb1);
  9732. GGML_ASSERT(nb1 <= nb2);
  9733. GGML_ASSERT(nb2 <= nb3);
  9734. if (params->type == GGML_TASK_INIT) {
  9735. return;
  9736. }
  9737. if (params->type == GGML_TASK_FINALIZE) {
  9738. return;
  9739. }
  9740. // parallelize by q rows using ggml_vec_dot_f32
  9741. // total rows in q
  9742. const int nr = neq1*neq2*neq3;
  9743. // rows per thread
  9744. const int dr = (nr + nth - 1)/nth;
  9745. // row range for this thread
  9746. const int ir0 = dr*ith;
  9747. const int ir1 = MIN(ir0 + dr, nr);
  9748. const float scale = 1.0f/sqrtf(D);
  9749. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9750. for (int ir = ir0; ir < ir1; ++ir) {
  9751. // q indices
  9752. const int iq3 = ir/(neq2*neq1);
  9753. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9754. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9755. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  9756. for (int i = M; i < Mup; ++i) {
  9757. S[i] = -INFINITY;
  9758. }
  9759. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  9760. for (int64_t ic = 0; ic < nek1; ++ic) {
  9761. // k indices
  9762. const int ik3 = iq3;
  9763. const int ik2 = iq2;
  9764. const int ik1 = ic;
  9765. // S indices
  9766. const int i1 = ik1;
  9767. ggml_vec_dot_f16(neq0,
  9768. S + i1,
  9769. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9770. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9771. }
  9772. } else {
  9773. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  9774. // k indices
  9775. const int ik3 = iq3;
  9776. const int ik2 = iq2;
  9777. const int ik1 = ic;
  9778. // S indices
  9779. const int i1 = ik1;
  9780. ggml_vec_dot_f16_unroll(neq0, nbk1,
  9781. S + i1,
  9782. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9783. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9784. }
  9785. }
  9786. // scale
  9787. ggml_vec_scale_f32(nek1, S, scale);
  9788. if (masked) {
  9789. for (int64_t i = P; i < M; i++) {
  9790. if (i > P + iq1) {
  9791. S[i] = -INFINITY;
  9792. }
  9793. }
  9794. }
  9795. // softmax
  9796. {
  9797. float max = -INFINITY;
  9798. ggml_vec_max_f32(M, &max, S);
  9799. ggml_float sum = 0.0;
  9800. {
  9801. #ifdef GGML_SOFT_MAX_ACCELERATE
  9802. max = -max;
  9803. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9804. vvexpf(S, S, &Mup);
  9805. ggml_vec_sum_f32(Mup, &sum, S);
  9806. #else
  9807. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9808. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9809. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9810. float * SS = S + i;
  9811. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9812. if (SS[j] == -INFINITY) {
  9813. SS[j] = 0.0f;
  9814. } else {
  9815. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9816. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9817. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9818. sump[j] += (ggml_float)val;
  9819. SS[j] = val;
  9820. }
  9821. }
  9822. }
  9823. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9824. sum += sump[i];
  9825. }
  9826. #endif
  9827. }
  9828. assert(sum > 0.0);
  9829. sum = 1.0/sum;
  9830. ggml_vec_scale_f32(M, S, sum);
  9831. #ifndef NDEBUG
  9832. for (int i = 0; i < M; ++i) {
  9833. assert(!isnan(S[i]));
  9834. assert(!isinf(S[i]));
  9835. }
  9836. #endif
  9837. }
  9838. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  9839. for (int64_t i = 0; i < M; i++) {
  9840. S16[i] = GGML_FP32_TO_FP16(S[i]);
  9841. }
  9842. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  9843. for (int64_t ic = 0; ic < nev1; ++ic) {
  9844. // dst indices
  9845. const int i1 = iq1;
  9846. const int i2 = iq2;
  9847. const int i3 = iq3;
  9848. ggml_vec_dot_f16(nek1,
  9849. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9850. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9851. S16);
  9852. }
  9853. } else {
  9854. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  9855. // dst indices
  9856. const int i1 = iq1;
  9857. const int i2 = iq2;
  9858. const int i3 = iq3;
  9859. ggml_vec_dot_f16_unroll(nek1, nbv1,
  9860. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9861. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9862. S16);
  9863. }
  9864. }
  9865. }
  9866. }
  9867. static void ggml_compute_forward_flash_attn(
  9868. const struct ggml_compute_params * params,
  9869. const struct ggml_tensor * q,
  9870. const struct ggml_tensor * k,
  9871. const struct ggml_tensor * v,
  9872. const bool masked,
  9873. struct ggml_tensor * dst) {
  9874. switch (q->type) {
  9875. case GGML_TYPE_F16:
  9876. {
  9877. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  9878. } break;
  9879. case GGML_TYPE_F32:
  9880. {
  9881. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  9882. } break;
  9883. default:
  9884. {
  9885. GGML_ASSERT(false);
  9886. } break;
  9887. }
  9888. }
  9889. // ggml_compute_forward_flash_ff
  9890. static void ggml_compute_forward_flash_ff_f16(
  9891. const struct ggml_compute_params * params,
  9892. const struct ggml_tensor * a, // F16
  9893. const struct ggml_tensor * b0, // F16 fc_w
  9894. const struct ggml_tensor * b1, // F32 fc_b
  9895. const struct ggml_tensor * c0, // F16 proj_w
  9896. const struct ggml_tensor * c1, // F32 proj_b
  9897. struct ggml_tensor * dst) {
  9898. int64_t t0 = ggml_perf_time_us();
  9899. UNUSED(t0);
  9900. const int64_t nea0 = a->ne[0];
  9901. const int64_t nea1 = a->ne[1];
  9902. const int64_t nea2 = a->ne[2];
  9903. const int64_t nea3 = a->ne[3];
  9904. const int64_t neb00 = b0->ne[0];
  9905. const int64_t neb01 = b0->ne[1];
  9906. //const int64_t neb02 = b0->ne[2];
  9907. //const int64_t neb03 = b0->ne[3];
  9908. const int64_t neb10 = b1->ne[0];
  9909. const int64_t neb11 = b1->ne[1];
  9910. //const int64_t neb12 = b1->ne[2];
  9911. //const int64_t neb13 = b1->ne[3];
  9912. const int64_t nec00 = c0->ne[0];
  9913. const int64_t nec01 = c0->ne[1];
  9914. //const int64_t nec02 = c0->ne[2];
  9915. //const int64_t nec03 = c0->ne[3];
  9916. const int64_t nec10 = c1->ne[0];
  9917. const int64_t nec11 = c1->ne[1];
  9918. //const int64_t nec12 = c1->ne[2];
  9919. //const int64_t nec13 = c1->ne[3];
  9920. const int64_t ne0 = dst->ne[0];
  9921. const int64_t ne1 = dst->ne[1];
  9922. const int64_t ne2 = dst->ne[2];
  9923. //const int64_t ne3 = dst->ne[3];
  9924. const int nba0 = a->nb[0];
  9925. const int nba1 = a->nb[1];
  9926. const int nba2 = a->nb[2];
  9927. const int nba3 = a->nb[3];
  9928. const int nbb00 = b0->nb[0];
  9929. const int nbb01 = b0->nb[1];
  9930. const int nbb02 = b0->nb[2];
  9931. const int nbb03 = b0->nb[3];
  9932. const int nbb10 = b1->nb[0];
  9933. //const int nbb11 = b1->nb[1];
  9934. //const int nbb12 = b1->nb[2];
  9935. //const int nbb13 = b1->nb[3];
  9936. const int nbc00 = c0->nb[0];
  9937. const int nbc01 = c0->nb[1];
  9938. const int nbc02 = c0->nb[2];
  9939. const int nbc03 = c0->nb[3];
  9940. const int nbc10 = c1->nb[0];
  9941. //const int nbc11 = c1->nb[1];
  9942. //const int nbc12 = c1->nb[2];
  9943. //const int nbc13 = c1->nb[3];
  9944. const int nb0 = dst->nb[0];
  9945. const int nb1 = dst->nb[1];
  9946. const int nb2 = dst->nb[2];
  9947. const int nb3 = dst->nb[3];
  9948. const int ith = params->ith;
  9949. const int nth = params->nth;
  9950. const int64_t D = nea0;
  9951. //const int64_t N = nea1;
  9952. const int64_t M = neb01;
  9953. GGML_ASSERT(ne0 == nea0);
  9954. GGML_ASSERT(ne1 == nea1);
  9955. GGML_ASSERT(ne2 == nea2);
  9956. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  9957. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  9958. GGML_ASSERT(nbb10 == sizeof(float));
  9959. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  9960. GGML_ASSERT(nbc10 == sizeof(float));
  9961. GGML_ASSERT(neb00 == D);
  9962. GGML_ASSERT(neb01 == M);
  9963. GGML_ASSERT(neb10 == M);
  9964. GGML_ASSERT(neb11 == 1);
  9965. GGML_ASSERT(nec00 == M);
  9966. GGML_ASSERT(nec01 == D);
  9967. GGML_ASSERT(nec10 == D);
  9968. GGML_ASSERT(nec11 == 1);
  9969. // dst cannot be transposed or permuted
  9970. GGML_ASSERT(nb0 == sizeof(float));
  9971. GGML_ASSERT(nb0 <= nb1);
  9972. GGML_ASSERT(nb1 <= nb2);
  9973. GGML_ASSERT(nb2 <= nb3);
  9974. if (params->type == GGML_TASK_INIT) {
  9975. return;
  9976. }
  9977. if (params->type == GGML_TASK_FINALIZE) {
  9978. return;
  9979. }
  9980. // parallelize by a rows using ggml_vec_dot_f32
  9981. // total rows in a
  9982. const int nr = nea1*nea2*nea3;
  9983. // rows per thread
  9984. const int dr = (nr + nth - 1)/nth;
  9985. // row range for this thread
  9986. const int ir0 = dr*ith;
  9987. const int ir1 = MIN(ir0 + dr, nr);
  9988. for (int ir = ir0; ir < ir1; ++ir) {
  9989. // a indices
  9990. const int ia3 = ir/(nea2*nea1);
  9991. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  9992. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  9993. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  9994. for (int64_t ic = 0; ic < neb01; ++ic) {
  9995. // b0 indices
  9996. const int ib03 = ia3;
  9997. const int ib02 = ia2;
  9998. const int ib01 = ic;
  9999. // S indices
  10000. const int i1 = ib01;
  10001. ggml_vec_dot_f16(nea0,
  10002. S + i1,
  10003. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10004. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10005. }
  10006. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10007. //ggml_vec_gelu_f32(neb01, S, S);
  10008. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10009. for (int64_t i = 0; i < M; i++) {
  10010. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10011. }
  10012. ggml_vec_gelu_f16(neb01, S16, S16);
  10013. {
  10014. // dst indices
  10015. const int i1 = ia1;
  10016. const int i2 = ia2;
  10017. const int i3 = ia3;
  10018. for (int64_t ic = 0; ic < nec01; ++ic) {
  10019. ggml_vec_dot_f16(neb01,
  10020. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10021. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10022. S16);
  10023. }
  10024. ggml_vec_add_f32(nec01,
  10025. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10026. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10027. (float *) c1->data);
  10028. }
  10029. }
  10030. }
  10031. static void ggml_compute_forward_flash_ff(
  10032. const struct ggml_compute_params * params,
  10033. const struct ggml_tensor * a,
  10034. const struct ggml_tensor * b0,
  10035. const struct ggml_tensor * b1,
  10036. const struct ggml_tensor * c0,
  10037. const struct ggml_tensor * c1,
  10038. struct ggml_tensor * dst) {
  10039. switch (b0->type) {
  10040. case GGML_TYPE_F16:
  10041. {
  10042. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10043. } break;
  10044. case GGML_TYPE_F32:
  10045. {
  10046. GGML_ASSERT(false); // TODO
  10047. } break;
  10048. default:
  10049. {
  10050. GGML_ASSERT(false);
  10051. } break;
  10052. }
  10053. }
  10054. // ggml_compute_forward_map_unary
  10055. static void ggml_compute_forward_map_unary_f32(
  10056. const struct ggml_compute_params * params,
  10057. const struct ggml_tensor * src0,
  10058. struct ggml_tensor * dst,
  10059. const ggml_unary_op_f32_t fun) {
  10060. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10061. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10062. return;
  10063. }
  10064. const int n = ggml_nrows(src0);
  10065. const int nc = src0->ne[0];
  10066. assert( dst->nb[0] == sizeof(float));
  10067. assert(src0->nb[0] == sizeof(float));
  10068. for (int i = 0; i < n; i++) {
  10069. fun(nc,
  10070. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10071. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10072. }
  10073. }
  10074. static void ggml_compute_forward_map_unary(
  10075. const struct ggml_compute_params * params,
  10076. const struct ggml_tensor * src0,
  10077. struct ggml_tensor * dst,
  10078. const ggml_unary_op_f32_t fun) {
  10079. switch (src0->type) {
  10080. case GGML_TYPE_F32:
  10081. {
  10082. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10083. } break;
  10084. default:
  10085. {
  10086. GGML_ASSERT(false);
  10087. } break;
  10088. }
  10089. }
  10090. // ggml_compute_forward_map_binary
  10091. static void ggml_compute_forward_map_binary_f32(
  10092. const struct ggml_compute_params * params,
  10093. const struct ggml_tensor * src0,
  10094. const struct ggml_tensor * src1,
  10095. struct ggml_tensor * dst,
  10096. const ggml_binary_op_f32_t fun) {
  10097. assert(params->ith == 0);
  10098. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10099. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10100. return;
  10101. }
  10102. const int n = ggml_nrows(src0);
  10103. const int nc = src0->ne[0];
  10104. assert( dst->nb[0] == sizeof(float));
  10105. assert(src0->nb[0] == sizeof(float));
  10106. assert(src1->nb[0] == sizeof(float));
  10107. for (int i = 0; i < n; i++) {
  10108. fun(nc,
  10109. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10110. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10111. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10112. }
  10113. }
  10114. static void ggml_compute_forward_map_binary(
  10115. const struct ggml_compute_params * params,
  10116. const struct ggml_tensor * src0,
  10117. const struct ggml_tensor * src1,
  10118. struct ggml_tensor * dst,
  10119. const ggml_binary_op_f32_t fun) {
  10120. switch (src0->type) {
  10121. case GGML_TYPE_F32:
  10122. {
  10123. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10124. } break;
  10125. default:
  10126. {
  10127. GGML_ASSERT(false);
  10128. } break;
  10129. }
  10130. }
  10131. /////////////////////////////////
  10132. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10133. GGML_ASSERT(params);
  10134. switch (tensor->op) {
  10135. case GGML_OP_DUP:
  10136. {
  10137. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10138. } break;
  10139. case GGML_OP_ADD:
  10140. {
  10141. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10142. } break;
  10143. case GGML_OP_ADD1:
  10144. {
  10145. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10146. } break;
  10147. case GGML_OP_ACC:
  10148. {
  10149. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10150. } break;
  10151. case GGML_OP_SUB:
  10152. {
  10153. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10154. } break;
  10155. case GGML_OP_MUL:
  10156. {
  10157. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10158. } break;
  10159. case GGML_OP_DIV:
  10160. {
  10161. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10162. } break;
  10163. case GGML_OP_SQR:
  10164. {
  10165. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10166. } break;
  10167. case GGML_OP_SQRT:
  10168. {
  10169. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10170. } break;
  10171. case GGML_OP_LOG:
  10172. {
  10173. ggml_compute_forward_log(params, tensor->src0, tensor);
  10174. } break;
  10175. case GGML_OP_SUM:
  10176. {
  10177. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10178. } break;
  10179. case GGML_OP_SUM_ROWS:
  10180. {
  10181. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10182. } break;
  10183. case GGML_OP_MEAN:
  10184. {
  10185. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10186. } break;
  10187. case GGML_OP_REPEAT:
  10188. {
  10189. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10190. } break;
  10191. case GGML_OP_ABS:
  10192. {
  10193. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10194. } break;
  10195. case GGML_OP_SGN:
  10196. {
  10197. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10198. } break;
  10199. case GGML_OP_NEG:
  10200. {
  10201. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10202. } break;
  10203. case GGML_OP_STEP:
  10204. {
  10205. ggml_compute_forward_step(params, tensor->src0, tensor);
  10206. } break;
  10207. case GGML_OP_RELU:
  10208. {
  10209. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10210. } break;
  10211. case GGML_OP_GELU:
  10212. {
  10213. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10214. } break;
  10215. case GGML_OP_SILU:
  10216. {
  10217. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10218. } break;
  10219. case GGML_OP_SILU_BACK:
  10220. {
  10221. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10222. } break;
  10223. case GGML_OP_NORM:
  10224. {
  10225. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10226. } break;
  10227. case GGML_OP_RMS_NORM:
  10228. {
  10229. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10230. } break;
  10231. case GGML_OP_RMS_NORM_BACK:
  10232. {
  10233. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10234. } break;
  10235. case GGML_OP_MUL_MAT:
  10236. {
  10237. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10238. } break;
  10239. case GGML_OP_SCALE:
  10240. {
  10241. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10242. } break;
  10243. case GGML_OP_SET:
  10244. {
  10245. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10246. } break;
  10247. case GGML_OP_CPY:
  10248. {
  10249. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10250. } break;
  10251. case GGML_OP_CONT:
  10252. {
  10253. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10254. } break;
  10255. case GGML_OP_RESHAPE:
  10256. {
  10257. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10258. } break;
  10259. case GGML_OP_VIEW:
  10260. {
  10261. ggml_compute_forward_view(params, tensor->src0);
  10262. } break;
  10263. case GGML_OP_PERMUTE:
  10264. {
  10265. ggml_compute_forward_permute(params, tensor->src0);
  10266. } break;
  10267. case GGML_OP_TRANSPOSE:
  10268. {
  10269. ggml_compute_forward_transpose(params, tensor->src0);
  10270. } break;
  10271. case GGML_OP_GET_ROWS:
  10272. {
  10273. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10274. } break;
  10275. case GGML_OP_GET_ROWS_BACK:
  10276. {
  10277. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10278. } break;
  10279. case GGML_OP_DIAG:
  10280. {
  10281. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10282. } break;
  10283. case GGML_OP_DIAG_MASK_INF:
  10284. {
  10285. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10286. } break;
  10287. case GGML_OP_DIAG_MASK_ZERO:
  10288. {
  10289. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10290. } break;
  10291. case GGML_OP_SOFT_MAX:
  10292. {
  10293. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10294. } break;
  10295. case GGML_OP_ROPE:
  10296. {
  10297. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10298. } break;
  10299. case GGML_OP_ROPE_BACK:
  10300. {
  10301. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10302. } break;
  10303. case GGML_OP_ALIBI:
  10304. {
  10305. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10306. } break;
  10307. case GGML_OP_CONV_1D_1S:
  10308. {
  10309. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10310. } break;
  10311. case GGML_OP_CONV_1D_2S:
  10312. {
  10313. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10314. } break;
  10315. case GGML_OP_FLASH_ATTN:
  10316. {
  10317. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10318. GGML_ASSERT(t == 0 || t == 1);
  10319. bool masked = t != 0;
  10320. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10321. } break;
  10322. case GGML_OP_FLASH_FF:
  10323. {
  10324. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10325. } break;
  10326. case GGML_OP_MAP_UNARY:
  10327. {
  10328. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10329. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10330. }
  10331. break;
  10332. case GGML_OP_MAP_BINARY:
  10333. {
  10334. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10335. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10336. }
  10337. break;
  10338. case GGML_OP_NONE:
  10339. {
  10340. // nop
  10341. } break;
  10342. case GGML_OP_COUNT:
  10343. {
  10344. GGML_ASSERT(false);
  10345. } break;
  10346. }
  10347. }
  10348. ////////////////////////////////////////////////////////////////////////////////
  10349. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10350. struct ggml_tensor * src0 = tensor->src0;
  10351. struct ggml_tensor * src1 = tensor->src1;
  10352. switch (tensor->op) {
  10353. case GGML_OP_DUP:
  10354. {
  10355. if (src0->grad) {
  10356. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10357. }
  10358. } break;
  10359. case GGML_OP_ADD:
  10360. {
  10361. if (src0->grad) {
  10362. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10363. }
  10364. if (src1->grad) {
  10365. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10366. }
  10367. } break;
  10368. case GGML_OP_ADD1:
  10369. {
  10370. if (src0->grad) {
  10371. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10372. }
  10373. if (src1->grad) {
  10374. src1->grad = ggml_add_impl(ctx,
  10375. src1->grad,
  10376. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10377. inplace);
  10378. }
  10379. } break;
  10380. case GGML_OP_ACC:
  10381. {
  10382. if (src0->grad) {
  10383. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10384. }
  10385. if (src1->grad) {
  10386. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10387. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10388. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10389. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10390. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10391. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10392. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10393. tensor->grad,
  10394. src1->grad->ne[0],
  10395. src1->grad->ne[1],
  10396. src1->grad->ne[2],
  10397. src1->grad->ne[3],
  10398. nb1, nb2, nb3, offset);
  10399. src1->grad =
  10400. ggml_add_impl(ctx,
  10401. src1->grad,
  10402. ggml_reshape(ctx,
  10403. ggml_cont(ctx, tensor_grad_view),
  10404. src1->grad),
  10405. inplace);
  10406. }
  10407. } break;
  10408. case GGML_OP_SUB:
  10409. {
  10410. if (src0->grad) {
  10411. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10412. }
  10413. if (src1->grad) {
  10414. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10415. }
  10416. } break;
  10417. case GGML_OP_MUL:
  10418. {
  10419. if (src0->grad) {
  10420. src0->grad =
  10421. ggml_add_impl(ctx,
  10422. src0->grad,
  10423. ggml_mul(ctx, src1, tensor->grad),
  10424. inplace);
  10425. }
  10426. if (src1->grad) {
  10427. src1->grad =
  10428. ggml_add_impl(ctx,
  10429. src1->grad,
  10430. ggml_mul(ctx, src0, tensor->grad),
  10431. inplace);
  10432. }
  10433. } break;
  10434. case GGML_OP_DIV:
  10435. {
  10436. if (src0->grad) {
  10437. src0->grad =
  10438. ggml_add_impl(ctx,
  10439. src0->grad,
  10440. ggml_div(ctx, tensor->grad, src1),
  10441. inplace);
  10442. }
  10443. if (src1->grad) {
  10444. src1->grad =
  10445. ggml_sub_impl(ctx,
  10446. src1->grad,
  10447. ggml_mul(ctx,
  10448. tensor->grad,
  10449. ggml_div(ctx, tensor, src1)),
  10450. inplace);
  10451. }
  10452. } break;
  10453. case GGML_OP_SQR:
  10454. {
  10455. if (src0->grad) {
  10456. src0->grad =
  10457. ggml_add_impl(ctx,
  10458. src0->grad,
  10459. ggml_scale(ctx,
  10460. ggml_mul(ctx, src0, tensor->grad),
  10461. ggml_new_f32(ctx, 2.0f)),
  10462. inplace);
  10463. }
  10464. } break;
  10465. case GGML_OP_SQRT:
  10466. {
  10467. if (src0->grad) {
  10468. src0->grad =
  10469. ggml_add_impl(ctx,
  10470. src0->grad,
  10471. ggml_mul(ctx,
  10472. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10473. ggml_div(ctx,
  10474. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10475. tensor)),
  10476. inplace);
  10477. }
  10478. } break;
  10479. case GGML_OP_LOG:
  10480. {
  10481. if (src0->grad) {
  10482. src0->grad =
  10483. ggml_add_impl(ctx,
  10484. src0->grad,
  10485. ggml_div(ctx,
  10486. tensor->grad,
  10487. src0),
  10488. inplace);
  10489. }
  10490. } break;
  10491. case GGML_OP_SUM:
  10492. {
  10493. if (src0->grad) {
  10494. src0->grad =
  10495. ggml_add1_impl(ctx,
  10496. src0->grad,
  10497. tensor->grad,
  10498. inplace);
  10499. }
  10500. } break;
  10501. case GGML_OP_SUM_ROWS:
  10502. {
  10503. if (src0->grad) {
  10504. src0->grad =
  10505. ggml_add_impl(ctx,
  10506. src0->grad,
  10507. ggml_repeat(ctx,
  10508. tensor->grad,
  10509. src0->grad),
  10510. inplace);
  10511. }
  10512. } break;
  10513. case GGML_OP_MEAN:
  10514. {
  10515. GGML_ASSERT(false); // TODO: implement
  10516. } break;
  10517. case GGML_OP_REPEAT:
  10518. {
  10519. // necessary for llama
  10520. if (src0->grad) {
  10521. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10522. const int nc = tensor->ne[0];
  10523. const int nr = tensor->ne[1];
  10524. const int nc0 = src0->ne[0];
  10525. const int nr0 = src0->ne[1];
  10526. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10527. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10528. // tensor->grad [nc,nr,1,1]
  10529. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10530. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10531. // substitute [nc0,nr0,ncr,nrr]
  10532. // reshape [nc0*nr0,ncr*nrr,1,1]
  10533. // transpose [ncr*nrr,nc0*nr0,1,1]
  10534. // sum rows [1,nc0*nr0,1,1]
  10535. // transpose [nc0*nr0,1,1]
  10536. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10537. // add to src0->grad
  10538. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10539. struct ggml_tensor* F00 = tensor->grad;
  10540. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10541. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10542. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10543. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10544. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10545. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10546. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10547. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10548. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10549. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10550. src0->grad =
  10551. ggml_add_impl(ctx,
  10552. src0->grad,
  10553. F10,
  10554. inplace);
  10555. }
  10556. } break;
  10557. case GGML_OP_ABS:
  10558. {
  10559. if (src0->grad) {
  10560. src0->grad =
  10561. ggml_add_impl(ctx,
  10562. src0->grad,
  10563. ggml_mul(ctx,
  10564. ggml_sgn(ctx, src0),
  10565. tensor->grad),
  10566. inplace);
  10567. }
  10568. } break;
  10569. case GGML_OP_SGN:
  10570. {
  10571. if (src0->grad) {
  10572. // noop
  10573. }
  10574. } break;
  10575. case GGML_OP_NEG:
  10576. {
  10577. if (src0->grad) {
  10578. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10579. }
  10580. } break;
  10581. case GGML_OP_STEP:
  10582. {
  10583. if (src0->grad) {
  10584. // noop
  10585. }
  10586. } break;
  10587. case GGML_OP_RELU:
  10588. {
  10589. if (src0->grad) {
  10590. src0->grad = ggml_sub_impl(ctx,
  10591. src0->grad,
  10592. ggml_mul(ctx,
  10593. ggml_step(ctx, src0),
  10594. tensor->grad),
  10595. inplace);
  10596. }
  10597. } break;
  10598. case GGML_OP_GELU:
  10599. {
  10600. GGML_ASSERT(false); // TODO: not implemented
  10601. } break;
  10602. case GGML_OP_ALIBI:
  10603. {
  10604. GGML_ASSERT(false); // TODO: not implemented
  10605. } break;
  10606. case GGML_OP_SILU:
  10607. {
  10608. // necessary for llama
  10609. if (src0->grad) {
  10610. src0->grad = ggml_add_impl(ctx,
  10611. src0->grad,
  10612. ggml_silu_back(ctx, src0, tensor->grad),
  10613. inplace);
  10614. }
  10615. } break;
  10616. case GGML_OP_SILU_BACK:
  10617. {
  10618. GGML_ASSERT(false); // TODO: not implemented
  10619. } break;
  10620. case GGML_OP_NORM:
  10621. {
  10622. GGML_ASSERT(false); // TODO: not implemented
  10623. } break;
  10624. case GGML_OP_RMS_NORM:
  10625. {
  10626. // necessary for llama
  10627. if (src0->grad) {
  10628. src0->grad = ggml_add_impl(ctx,
  10629. src0->grad,
  10630. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10631. inplace);
  10632. }
  10633. } break;
  10634. case GGML_OP_RMS_NORM_BACK:
  10635. {
  10636. GGML_ASSERT(false); // TODO: not implemented
  10637. } break;
  10638. case GGML_OP_MUL_MAT:
  10639. {
  10640. // https://cs231n.github.io/optimization-2/#staged
  10641. // # forward pass
  10642. // s0 = np.random.randn(5, 10)
  10643. // s1 = np.random.randn(10, 3)
  10644. // t = s0.dot(s1)
  10645. // # now suppose we had the gradient on t from above in the circuit
  10646. // dt = np.random.randn(*t.shape) # same shape as t
  10647. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10648. // ds1 = t.T.dot(dt)
  10649. // tensor.shape [m,p]
  10650. // src0.shape [n,m]
  10651. // src1.shape [n,p]
  10652. // necessary for llama
  10653. if (src0->grad) {
  10654. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10655. src0->grad =
  10656. ggml_add_impl(ctx,
  10657. src0->grad,
  10658. // ds0 = dt.dot(s1.T)
  10659. // ggml_out_prod(ctx, // [n,m]
  10660. // src1, // [n,p]
  10661. // tensor->grad), // [m,p]
  10662. // for now just using A*B==(B.T*A.T).T
  10663. ggml_cont(ctx, // [n,m]
  10664. ggml_transpose(ctx, // [n,m]
  10665. ggml_mul_mat(ctx, // [m,n]
  10666. ggml_cont(ctx, // [p,m]
  10667. ggml_transpose(ctx, // [p,m]
  10668. tensor->grad)), // [m,p]
  10669. ggml_cont(ctx, // [p,n]
  10670. ggml_transpose(ctx, // [p,n]
  10671. src1))))), // [n,p]
  10672. inplace);
  10673. }
  10674. if (src1->grad) {
  10675. src1->grad =
  10676. ggml_add_impl(ctx,
  10677. src1->grad,
  10678. // ds1 = s0.T.dot(dt):
  10679. ggml_mul_mat(ctx, // [n,p]
  10680. ggml_cont(ctx, // [m,n]
  10681. ggml_transpose(ctx, src0)), // [m,n]
  10682. tensor->grad), // [m,p]
  10683. inplace);
  10684. }
  10685. } break;
  10686. case GGML_OP_SCALE:
  10687. {
  10688. // necessary for llama
  10689. if (src0->grad) {
  10690. src0->grad =
  10691. ggml_add_impl(ctx,
  10692. src0->grad,
  10693. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10694. inplace);
  10695. }
  10696. if (src1->grad) {
  10697. src1->grad =
  10698. ggml_add_impl(ctx,
  10699. src1->grad,
  10700. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10701. inplace);
  10702. }
  10703. } break;
  10704. case GGML_OP_SET:
  10705. {
  10706. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10707. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10708. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10709. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10710. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10711. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10712. struct ggml_tensor * tensor_grad_view = NULL;
  10713. if (src0->grad || src1->grad) {
  10714. GGML_ASSERT(src0->type == tensor->type);
  10715. GGML_ASSERT(tensor->grad->type == tensor->type);
  10716. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  10717. tensor_grad_view = ggml_view_4d(ctx,
  10718. tensor->grad,
  10719. src1->grad->ne[0],
  10720. src1->grad->ne[1],
  10721. src1->grad->ne[2],
  10722. src1->grad->ne[3],
  10723. nb1, nb2, nb3, offset);
  10724. }
  10725. if (src0->grad) {
  10726. src0->grad = ggml_add_impl(ctx,
  10727. src0->grad,
  10728. ggml_acc_impl(ctx,
  10729. tensor->grad,
  10730. ggml_neg(ctx, tensor_grad_view),
  10731. nb1, nb2, nb3, offset, false),
  10732. inplace);
  10733. }
  10734. if (src1->grad) {
  10735. src1->grad =
  10736. ggml_add_impl(ctx,
  10737. src1->grad,
  10738. ggml_reshape(ctx,
  10739. ggml_cont(ctx, tensor_grad_view),
  10740. src1->grad),
  10741. inplace);
  10742. }
  10743. } break;
  10744. case GGML_OP_CPY:
  10745. {
  10746. // necessary for llama
  10747. // cpy overwrites value of src1 by src0 and returns view(src1)
  10748. // the overwriting is mathematically equivalent to:
  10749. // tensor = src0 * 1 + src1 * 0
  10750. if (src0->grad) {
  10751. // dsrc0 = dtensor * 1
  10752. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10753. }
  10754. if (src1->grad) {
  10755. // dsrc1 = dtensor * 0 -> noop
  10756. }
  10757. } break;
  10758. case GGML_OP_CONT:
  10759. {
  10760. // same as cpy
  10761. if (src0->grad) {
  10762. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  10763. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  10764. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10765. }
  10766. } break;
  10767. case GGML_OP_RESHAPE:
  10768. {
  10769. // necessary for llama
  10770. if (src0->grad) {
  10771. src0->grad =
  10772. ggml_add_impl(ctx, src0->grad,
  10773. ggml_reshape(ctx, tensor->grad, src0->grad),
  10774. inplace);
  10775. }
  10776. } break;
  10777. case GGML_OP_VIEW:
  10778. {
  10779. // necessary for llama
  10780. if (src0->grad) {
  10781. size_t offset;
  10782. memcpy(&offset, tensor->padding, sizeof(offset));
  10783. size_t nb1 = tensor->nb[1];
  10784. size_t nb2 = tensor->nb[2];
  10785. size_t nb3 = tensor->nb[3];
  10786. if (src0->type != src0->grad->type) {
  10787. // gradient is typically F32, but src0 could be other type
  10788. size_t ng = ggml_element_size(src0->grad);
  10789. size_t n0 = ggml_element_size(src0);
  10790. GGML_ASSERT(offset % n0 == 0);
  10791. GGML_ASSERT(nb1 % n0 == 0);
  10792. GGML_ASSERT(nb2 % n0 == 0);
  10793. GGML_ASSERT(nb3 % n0 == 0);
  10794. offset = (offset / n0) * ng;
  10795. nb1 = (nb1 / n0) * ng;
  10796. nb2 = (nb2 / n0) * ng;
  10797. nb3 = (nb3 / n0) * ng;
  10798. }
  10799. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  10800. }
  10801. } break;
  10802. case GGML_OP_PERMUTE:
  10803. {
  10804. // necessary for llama
  10805. if (src0->grad) {
  10806. int axis0 = tensor->padding[0] & 0x3;
  10807. int axis1 = tensor->padding[1] & 0x3;
  10808. int axis2 = tensor->padding[2] & 0x3;
  10809. int axis3 = tensor->padding[3] & 0x3;
  10810. int axes_backward[4] = {0,0,0,0};
  10811. axes_backward[axis0] = 0;
  10812. axes_backward[axis1] = 1;
  10813. axes_backward[axis2] = 2;
  10814. axes_backward[axis3] = 3;
  10815. src0->grad =
  10816. ggml_add_impl(ctx, src0->grad,
  10817. ggml_permute(ctx,
  10818. tensor->grad,
  10819. axes_backward[0],
  10820. axes_backward[1],
  10821. axes_backward[2],
  10822. axes_backward[3]),
  10823. inplace);
  10824. }
  10825. } break;
  10826. case GGML_OP_TRANSPOSE:
  10827. {
  10828. // necessary for llama
  10829. if (src0->grad) {
  10830. src0->grad =
  10831. ggml_add_impl(ctx, src0->grad,
  10832. ggml_transpose(ctx, tensor->grad),
  10833. inplace);
  10834. }
  10835. } break;
  10836. case GGML_OP_GET_ROWS:
  10837. {
  10838. // necessary for llama (only for tokenizer)
  10839. if (src0->grad) {
  10840. src0->grad =
  10841. ggml_add_impl(ctx, src0->grad,
  10842. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  10843. inplace);
  10844. }
  10845. if (src1->grad) {
  10846. // noop
  10847. }
  10848. } break;
  10849. case GGML_OP_GET_ROWS_BACK:
  10850. {
  10851. GGML_ASSERT(false); // TODO: not implemented
  10852. } break;
  10853. case GGML_OP_DIAG:
  10854. {
  10855. GGML_ASSERT(false); // TODO: not implemented
  10856. } break;
  10857. case GGML_OP_DIAG_MASK_INF:
  10858. {
  10859. // necessary for llama
  10860. if (src0->grad) {
  10861. assert(src1->type == GGML_TYPE_I32);
  10862. assert(ggml_nelements(src1) == 2);
  10863. const int n_past = ((int32_t *) src1->data)[0];
  10864. src0->grad =
  10865. ggml_add_impl(ctx, src0->grad,
  10866. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10867. inplace);
  10868. }
  10869. if (src1->grad) {
  10870. // noop
  10871. }
  10872. } break;
  10873. case GGML_OP_DIAG_MASK_ZERO:
  10874. {
  10875. // necessary for llama
  10876. if (src0->grad) {
  10877. assert(src1->type == GGML_TYPE_I32);
  10878. assert(ggml_nelements(src1) == 2);
  10879. const int n_past = ((int32_t *) src1->data)[0];
  10880. src0->grad =
  10881. ggml_add_impl(ctx, src0->grad,
  10882. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10883. inplace);
  10884. }
  10885. if (src1->grad) {
  10886. // noop
  10887. }
  10888. } break;
  10889. case GGML_OP_SOFT_MAX:
  10890. {
  10891. // necessary for llama
  10892. if (src0->grad) {
  10893. // y = softmax(x)
  10894. //
  10895. // Jii = yi - yi*yi
  10896. // Jij = -yi*yj
  10897. // J = diag(y)-y.*y
  10898. // dx = J * dy
  10899. // dxk = sum(Jkj * dyk)
  10900. int64_t ne2[4] = {
  10901. tensor->ne[0],
  10902. 1,
  10903. tensor->ne[1]*tensor->ne[2],
  10904. tensor->ne[3]
  10905. };
  10906. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  10907. ggml_reshape_4d(ctx,
  10908. ggml_cont(ctx, tensor),
  10909. ne2[0], ne2[1], ne2[2], ne2[3]));
  10910. struct ggml_tensor * grad2 = ggml_cont(ctx,
  10911. ggml_reshape_4d(ctx,
  10912. ggml_cont(ctx, tensor->grad),
  10913. ne2[0], ne2[1], ne2[2], ne2[3]));
  10914. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  10915. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  10916. tensor2, // [ne0,1,ne1*ne2,ne3]
  10917. 1, 0, 2, 3));
  10918. src0->grad =
  10919. ggml_add_impl(ctx,
  10920. src0->grad, // [ne0,ne1,ne2,ne3]
  10921. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  10922. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  10923. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  10924. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  10925. tensor2), // [ne0,1,ne1*ne2,ne3]
  10926. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  10927. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  10928. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  10929. grad2), // [ne0,1,ne1*ne2,ne3]
  10930. src0->grad),
  10931. inplace);
  10932. }
  10933. } break;
  10934. case GGML_OP_ROPE:
  10935. {
  10936. // necessary for llama
  10937. if (src0->grad) {
  10938. assert(src1->type == GGML_TYPE_I32);
  10939. assert(ggml_nelements(src1) == 3);
  10940. const int n_past = ((int32_t *) src1->data)[0];
  10941. const int n_dims = ((int32_t *) src1->data)[1];
  10942. const int mode = ((int32_t *) src1->data)[2];
  10943. src0->grad = ggml_add_impl(ctx,
  10944. src0->grad,
  10945. ggml_rope_back(ctx,
  10946. tensor->grad,
  10947. n_past,
  10948. n_dims,
  10949. mode),
  10950. inplace);
  10951. }
  10952. if (src1->grad) {
  10953. // noop
  10954. }
  10955. } break;
  10956. case GGML_OP_ROPE_BACK:
  10957. {
  10958. if (src0->grad) {
  10959. assert(src1->type == GGML_TYPE_I32);
  10960. assert(ggml_nelements(src1) == 3);
  10961. const int n_past = ((int32_t *) src1->data)[0];
  10962. const int n_dims = ((int32_t *) src1->data)[1];
  10963. const int mode = ((int32_t *) src1->data)[2];
  10964. src0->grad = ggml_add_impl(ctx,
  10965. src0->grad,
  10966. ggml_rope(ctx,
  10967. tensor->grad,
  10968. n_past,
  10969. n_dims,
  10970. mode),
  10971. inplace);
  10972. }
  10973. if (src1->grad) {
  10974. // noop
  10975. }
  10976. } break;
  10977. case GGML_OP_CONV_1D_1S:
  10978. {
  10979. GGML_ASSERT(false); // TODO: not implemented
  10980. } break;
  10981. case GGML_OP_CONV_1D_2S:
  10982. {
  10983. GGML_ASSERT(false); // TODO: not implemented
  10984. } break;
  10985. case GGML_OP_FLASH_ATTN:
  10986. {
  10987. GGML_ASSERT(false); // not supported
  10988. } break;
  10989. case GGML_OP_FLASH_FF:
  10990. {
  10991. GGML_ASSERT(false); // not supported
  10992. } break;
  10993. case GGML_OP_MAP_UNARY:
  10994. case GGML_OP_MAP_BINARY:
  10995. {
  10996. GGML_ASSERT(false); // not supported
  10997. } break;
  10998. case GGML_OP_NONE:
  10999. {
  11000. // nop
  11001. } break;
  11002. case GGML_OP_COUNT:
  11003. {
  11004. GGML_ASSERT(false);
  11005. } break;
  11006. }
  11007. }
  11008. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11009. if (node->grad == NULL) {
  11010. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11011. // it can also happen during forward pass, if the user performs computations with constants
  11012. if (node->op != GGML_OP_NONE) {
  11013. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11014. }
  11015. }
  11016. // check if already visited
  11017. for (int i = 0; i < cgraph->n_nodes; i++) {
  11018. if (cgraph->nodes[i] == node) {
  11019. return;
  11020. }
  11021. }
  11022. for (int i = 0; i < cgraph->n_leafs; i++) {
  11023. if (cgraph->leafs[i] == node) {
  11024. return;
  11025. }
  11026. }
  11027. if (node->src0) {
  11028. ggml_visit_parents(cgraph, node->src0);
  11029. }
  11030. if (node->src1) {
  11031. ggml_visit_parents(cgraph, node->src1);
  11032. }
  11033. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11034. if (node->opt[i]) {
  11035. ggml_visit_parents(cgraph, node->opt[i]);
  11036. }
  11037. }
  11038. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11039. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11040. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11041. cgraph->leafs[cgraph->n_leafs] = node;
  11042. cgraph->n_leafs++;
  11043. } else {
  11044. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11045. cgraph->nodes[cgraph->n_nodes] = node;
  11046. cgraph->grads[cgraph->n_nodes] = node->grad;
  11047. cgraph->n_nodes++;
  11048. }
  11049. }
  11050. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11051. if (!expand) {
  11052. cgraph->n_nodes = 0;
  11053. cgraph->n_leafs = 0;
  11054. }
  11055. const int n0 = cgraph->n_nodes;
  11056. UNUSED(n0);
  11057. ggml_visit_parents(cgraph, tensor);
  11058. const int n_new = cgraph->n_nodes - n0;
  11059. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11060. if (n_new > 0) {
  11061. // the last added node should always be starting point
  11062. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11063. }
  11064. }
  11065. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11066. ggml_build_forward_impl(cgraph, tensor, true);
  11067. }
  11068. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11069. struct ggml_cgraph result = {
  11070. /*.n_nodes =*/ 0,
  11071. /*.n_leafs =*/ 0,
  11072. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11073. /*.work_size =*/ 0,
  11074. /*.work =*/ NULL,
  11075. /*.nodes =*/ { NULL },
  11076. /*.grads =*/ { NULL },
  11077. /*.leafs =*/ { NULL },
  11078. /*.perf_runs =*/ 0,
  11079. /*.perf_cycles =*/ 0,
  11080. /*.perf_time_us =*/ 0,
  11081. };
  11082. ggml_build_forward_impl(&result, tensor, false);
  11083. return result;
  11084. }
  11085. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11086. struct ggml_cgraph result = *gf;
  11087. GGML_ASSERT(gf->n_nodes > 0);
  11088. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11089. if (keep) {
  11090. for (int i = 0; i < gf->n_nodes; i++) {
  11091. struct ggml_tensor * node = gf->nodes[i];
  11092. if (node->grad) {
  11093. node->grad = ggml_dup_tensor(ctx, node);
  11094. gf->grads[i] = node->grad;
  11095. }
  11096. }
  11097. }
  11098. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11099. struct ggml_tensor * node = gf->nodes[i];
  11100. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11101. if (node->grad) {
  11102. ggml_compute_backward(ctx, node, keep);
  11103. }
  11104. }
  11105. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11106. struct ggml_tensor * node = gf->nodes[i];
  11107. if (node->is_param) {
  11108. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11109. ggml_build_forward_impl(&result, node->grad, true);
  11110. }
  11111. }
  11112. return result;
  11113. }
  11114. //
  11115. // thread data
  11116. //
  11117. // synchronization is done via busy loops
  11118. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11119. //
  11120. #ifdef __APPLE__
  11121. //#include <os/lock.h>
  11122. //
  11123. //typedef os_unfair_lock ggml_lock_t;
  11124. //
  11125. //#define ggml_lock_init(x) UNUSED(x)
  11126. //#define ggml_lock_destroy(x) UNUSED(x)
  11127. //#define ggml_lock_lock os_unfair_lock_lock
  11128. //#define ggml_lock_unlock os_unfair_lock_unlock
  11129. //
  11130. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11131. typedef int ggml_lock_t;
  11132. #define ggml_lock_init(x) UNUSED(x)
  11133. #define ggml_lock_destroy(x) UNUSED(x)
  11134. #define ggml_lock_lock(x) UNUSED(x)
  11135. #define ggml_lock_unlock(x) UNUSED(x)
  11136. #define GGML_LOCK_INITIALIZER 0
  11137. typedef pthread_t ggml_thread_t;
  11138. #define ggml_thread_create pthread_create
  11139. #define ggml_thread_join pthread_join
  11140. #else
  11141. //typedef pthread_spinlock_t ggml_lock_t;
  11142. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11143. //#define ggml_lock_destroy pthread_spin_destroy
  11144. //#define ggml_lock_lock pthread_spin_lock
  11145. //#define ggml_lock_unlock pthread_spin_unlock
  11146. typedef int ggml_lock_t;
  11147. #define ggml_lock_init(x) UNUSED(x)
  11148. #define ggml_lock_destroy(x) UNUSED(x)
  11149. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11150. #define ggml_lock_lock(x) _mm_pause()
  11151. #else
  11152. #define ggml_lock_lock(x) UNUSED(x)
  11153. #endif
  11154. #define ggml_lock_unlock(x) UNUSED(x)
  11155. #define GGML_LOCK_INITIALIZER 0
  11156. typedef pthread_t ggml_thread_t;
  11157. #define ggml_thread_create pthread_create
  11158. #define ggml_thread_join pthread_join
  11159. #endif
  11160. struct ggml_compute_state_shared {
  11161. ggml_lock_t spin;
  11162. int n_threads;
  11163. // synchronization primitives
  11164. atomic_int n_ready;
  11165. atomic_bool has_work;
  11166. atomic_bool stop; // stop all threads
  11167. };
  11168. struct ggml_compute_state {
  11169. ggml_thread_t thrd;
  11170. struct ggml_compute_params params;
  11171. struct ggml_tensor * node;
  11172. struct ggml_compute_state_shared * shared;
  11173. };
  11174. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11175. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11176. const int n_threads = state->shared->n_threads;
  11177. while (true) {
  11178. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11179. atomic_store(&state->shared->has_work, false);
  11180. } else {
  11181. while (atomic_load(&state->shared->has_work)) {
  11182. if (atomic_load(&state->shared->stop)) {
  11183. return 0;
  11184. }
  11185. ggml_lock_lock (&state->shared->spin);
  11186. ggml_lock_unlock(&state->shared->spin);
  11187. }
  11188. }
  11189. atomic_fetch_sub(&state->shared->n_ready, 1);
  11190. // wait for work
  11191. while (!atomic_load(&state->shared->has_work)) {
  11192. if (atomic_load(&state->shared->stop)) {
  11193. return 0;
  11194. }
  11195. ggml_lock_lock (&state->shared->spin);
  11196. ggml_lock_unlock(&state->shared->spin);
  11197. }
  11198. // check if we should stop
  11199. if (atomic_load(&state->shared->stop)) {
  11200. break;
  11201. }
  11202. if (state->node) {
  11203. if (state->params.ith < state->params.nth) {
  11204. ggml_compute_forward(&state->params, state->node);
  11205. }
  11206. state->node = NULL;
  11207. } else {
  11208. break;
  11209. }
  11210. }
  11211. return 0;
  11212. }
  11213. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11214. const int n_threads = cgraph->n_threads;
  11215. struct ggml_compute_state_shared state_shared = {
  11216. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11217. /*.n_threads =*/ n_threads,
  11218. /*.n_ready =*/ 0,
  11219. /*.has_work =*/ false,
  11220. /*.stop =*/ false,
  11221. };
  11222. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11223. // create thread pool
  11224. if (n_threads > 1) {
  11225. ggml_lock_init(&state_shared.spin);
  11226. atomic_store(&state_shared.has_work, true);
  11227. for (int j = 0; j < n_threads - 1; j++) {
  11228. workers[j] = (struct ggml_compute_state) {
  11229. .thrd = 0,
  11230. .params = {
  11231. .type = GGML_TASK_COMPUTE,
  11232. .ith = j + 1,
  11233. .nth = n_threads,
  11234. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11235. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11236. },
  11237. .node = NULL,
  11238. .shared = &state_shared,
  11239. };
  11240. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11241. GGML_ASSERT(rc == 0);
  11242. UNUSED(rc);
  11243. }
  11244. }
  11245. // initialize tasks + work buffer
  11246. {
  11247. size_t work_size = 0;
  11248. // thread scheduling for the different operations
  11249. for (int i = 0; i < cgraph->n_nodes; i++) {
  11250. struct ggml_tensor * node = cgraph->nodes[i];
  11251. switch (node->op) {
  11252. case GGML_OP_CPY:
  11253. case GGML_OP_DUP:
  11254. {
  11255. node->n_tasks = n_threads;
  11256. size_t cur = 0;
  11257. if (ggml_is_quantized(node->type)) {
  11258. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11259. }
  11260. work_size = MAX(work_size, cur);
  11261. } break;
  11262. case GGML_OP_ADD:
  11263. case GGML_OP_ADD1:
  11264. {
  11265. node->n_tasks = n_threads;
  11266. size_t cur = 0;
  11267. if (ggml_is_quantized(node->src0->type)) {
  11268. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11269. }
  11270. work_size = MAX(work_size, cur);
  11271. } break;
  11272. case GGML_OP_ACC:
  11273. {
  11274. node->n_tasks = n_threads;
  11275. size_t cur = 0;
  11276. if (ggml_is_quantized(node->src0->type)) {
  11277. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11278. }
  11279. work_size = MAX(work_size, cur);
  11280. } break;
  11281. case GGML_OP_SUB:
  11282. case GGML_OP_DIV:
  11283. case GGML_OP_SQR:
  11284. case GGML_OP_SQRT:
  11285. case GGML_OP_LOG:
  11286. case GGML_OP_SUM:
  11287. case GGML_OP_SUM_ROWS:
  11288. case GGML_OP_MEAN:
  11289. case GGML_OP_REPEAT:
  11290. case GGML_OP_ABS:
  11291. case GGML_OP_SGN:
  11292. case GGML_OP_NEG:
  11293. case GGML_OP_STEP:
  11294. case GGML_OP_RELU:
  11295. {
  11296. node->n_tasks = 1;
  11297. } break;
  11298. case GGML_OP_MUL:
  11299. case GGML_OP_GELU:
  11300. case GGML_OP_SILU:
  11301. case GGML_OP_SILU_BACK:
  11302. case GGML_OP_NORM:
  11303. case GGML_OP_RMS_NORM:
  11304. case GGML_OP_RMS_NORM_BACK:
  11305. {
  11306. node->n_tasks = n_threads;
  11307. } break;
  11308. case GGML_OP_MUL_MAT:
  11309. {
  11310. node->n_tasks = n_threads;
  11311. // TODO: use different scheduling for different matrix sizes
  11312. //const int nr0 = ggml_nrows(node->src0);
  11313. //const int nr1 = ggml_nrows(node->src1);
  11314. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11315. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11316. size_t cur = 0;
  11317. #if defined(GGML_USE_CUBLAS)
  11318. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11319. node->n_tasks = 1; // TODO: this actually is doing nothing
  11320. // the threads are still spinning
  11321. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11322. }
  11323. else
  11324. #endif
  11325. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11326. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11327. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11328. node->n_tasks = 1; // TODO: this actually is doing nothing
  11329. // the threads are still spinning
  11330. // here we need memory just for single 2D matrix from src0
  11331. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11332. } else {
  11333. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11334. }
  11335. #else
  11336. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11337. #endif
  11338. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11339. cur = 0;
  11340. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11341. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11342. node->n_tasks = 1;
  11343. }
  11344. #endif
  11345. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11346. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11347. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11348. node->n_tasks = 1;
  11349. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11350. } else
  11351. #endif
  11352. {
  11353. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11354. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11355. }
  11356. } else {
  11357. GGML_ASSERT(false);
  11358. }
  11359. work_size = MAX(work_size, cur);
  11360. } break;
  11361. case GGML_OP_SCALE:
  11362. {
  11363. node->n_tasks = n_threads;
  11364. } break;
  11365. case GGML_OP_SET:
  11366. case GGML_OP_CONT:
  11367. case GGML_OP_RESHAPE:
  11368. case GGML_OP_VIEW:
  11369. case GGML_OP_PERMUTE:
  11370. case GGML_OP_TRANSPOSE:
  11371. case GGML_OP_GET_ROWS:
  11372. case GGML_OP_GET_ROWS_BACK:
  11373. case GGML_OP_DIAG:
  11374. case GGML_OP_DIAG_MASK_ZERO:
  11375. {
  11376. node->n_tasks = 1;
  11377. } break;
  11378. case GGML_OP_DIAG_MASK_INF:
  11379. case GGML_OP_SOFT_MAX:
  11380. case GGML_OP_ROPE:
  11381. case GGML_OP_ROPE_BACK:
  11382. {
  11383. node->n_tasks = n_threads;
  11384. } break;
  11385. case GGML_OP_ALIBI:
  11386. {
  11387. node->n_tasks = 1; //TODO
  11388. } break;
  11389. case GGML_OP_CONV_1D_1S:
  11390. case GGML_OP_CONV_1D_2S:
  11391. {
  11392. node->n_tasks = n_threads;
  11393. GGML_ASSERT(node->src0->ne[3] == 1);
  11394. GGML_ASSERT(node->src1->ne[2] == 1);
  11395. GGML_ASSERT(node->src1->ne[3] == 1);
  11396. size_t cur = 0;
  11397. const int nk = node->src0->ne[0];
  11398. if (node->src0->type == GGML_TYPE_F16 &&
  11399. node->src1->type == GGML_TYPE_F32) {
  11400. cur = sizeof(ggml_fp16_t)*(
  11401. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11402. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11403. );
  11404. } else if (node->src0->type == GGML_TYPE_F32 &&
  11405. node->src1->type == GGML_TYPE_F32) {
  11406. cur = sizeof(float)*(
  11407. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11408. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11409. );
  11410. } else {
  11411. GGML_ASSERT(false);
  11412. }
  11413. work_size = MAX(work_size, cur);
  11414. } break;
  11415. case GGML_OP_FLASH_ATTN:
  11416. {
  11417. node->n_tasks = n_threads;
  11418. size_t cur = 0;
  11419. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11420. if (node->src1->type == GGML_TYPE_F32) {
  11421. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11422. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11423. }
  11424. if (node->src1->type == GGML_TYPE_F16) {
  11425. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11426. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11427. }
  11428. work_size = MAX(work_size, cur);
  11429. } break;
  11430. case GGML_OP_FLASH_FF:
  11431. {
  11432. node->n_tasks = n_threads;
  11433. size_t cur = 0;
  11434. if (node->src1->type == GGML_TYPE_F32) {
  11435. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11436. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11437. }
  11438. if (node->src1->type == GGML_TYPE_F16) {
  11439. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11440. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11441. }
  11442. work_size = MAX(work_size, cur);
  11443. } break;
  11444. case GGML_OP_MAP_UNARY:
  11445. case GGML_OP_MAP_BINARY:
  11446. {
  11447. node->n_tasks = 1;
  11448. } break;
  11449. case GGML_OP_NONE:
  11450. {
  11451. node->n_tasks = 1;
  11452. } break;
  11453. case GGML_OP_COUNT:
  11454. {
  11455. GGML_ASSERT(false);
  11456. } break;
  11457. }
  11458. }
  11459. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11460. GGML_ASSERT(false); // TODO: better handling
  11461. }
  11462. if (work_size > 0 && cgraph->work == NULL) {
  11463. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11464. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11465. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11466. }
  11467. }
  11468. const int64_t perf_start_cycles = ggml_perf_cycles();
  11469. const int64_t perf_start_time_us = ggml_perf_time_us();
  11470. for (int i = 0; i < cgraph->n_nodes; i++) {
  11471. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11472. struct ggml_tensor * node = cgraph->nodes[i];
  11473. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11474. //if (node->grad == NULL && node->perf_runs > 0) {
  11475. // continue;
  11476. //}
  11477. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11478. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11479. // INIT
  11480. struct ggml_compute_params params = {
  11481. /*.type =*/ GGML_TASK_INIT,
  11482. /*.ith =*/ 0,
  11483. /*.nth =*/ node->n_tasks,
  11484. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11485. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11486. };
  11487. ggml_compute_forward(&params, node);
  11488. // COMPUTE
  11489. if (node->n_tasks > 1) {
  11490. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11491. atomic_store(&state_shared.has_work, false);
  11492. }
  11493. while (atomic_load(&state_shared.has_work)) {
  11494. ggml_lock_lock (&state_shared.spin);
  11495. ggml_lock_unlock(&state_shared.spin);
  11496. }
  11497. // launch thread pool
  11498. for (int j = 0; j < n_threads - 1; j++) {
  11499. workers[j].params = (struct ggml_compute_params) {
  11500. .type = GGML_TASK_COMPUTE,
  11501. .ith = j + 1,
  11502. .nth = node->n_tasks,
  11503. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11504. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11505. };
  11506. workers[j].node = node;
  11507. }
  11508. atomic_fetch_sub(&state_shared.n_ready, 1);
  11509. while (atomic_load(&state_shared.n_ready) > 0) {
  11510. ggml_lock_lock (&state_shared.spin);
  11511. ggml_lock_unlock(&state_shared.spin);
  11512. }
  11513. atomic_store(&state_shared.has_work, true);
  11514. }
  11515. params.type = GGML_TASK_COMPUTE;
  11516. ggml_compute_forward(&params, node);
  11517. // wait for thread pool
  11518. if (node->n_tasks > 1) {
  11519. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11520. atomic_store(&state_shared.has_work, false);
  11521. }
  11522. while (atomic_load(&state_shared.has_work)) {
  11523. ggml_lock_lock (&state_shared.spin);
  11524. ggml_lock_unlock(&state_shared.spin);
  11525. }
  11526. atomic_fetch_sub(&state_shared.n_ready, 1);
  11527. while (atomic_load(&state_shared.n_ready) != 0) {
  11528. ggml_lock_lock (&state_shared.spin);
  11529. ggml_lock_unlock(&state_shared.spin);
  11530. }
  11531. }
  11532. // FINALIZE
  11533. if (node->n_tasks > 1) {
  11534. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11535. atomic_store(&state_shared.has_work, false);
  11536. }
  11537. while (atomic_load(&state_shared.has_work)) {
  11538. ggml_lock_lock (&state_shared.spin);
  11539. ggml_lock_unlock(&state_shared.spin);
  11540. }
  11541. // launch thread pool
  11542. for (int j = 0; j < n_threads - 1; j++) {
  11543. workers[j].params = (struct ggml_compute_params) {
  11544. .type = GGML_TASK_FINALIZE,
  11545. .ith = j + 1,
  11546. .nth = node->n_tasks,
  11547. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11548. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11549. };
  11550. workers[j].node = node;
  11551. }
  11552. atomic_fetch_sub(&state_shared.n_ready, 1);
  11553. while (atomic_load(&state_shared.n_ready) > 0) {
  11554. ggml_lock_lock (&state_shared.spin);
  11555. ggml_lock_unlock(&state_shared.spin);
  11556. }
  11557. atomic_store(&state_shared.has_work, true);
  11558. }
  11559. params.type = GGML_TASK_FINALIZE;
  11560. ggml_compute_forward(&params, node);
  11561. // wait for thread pool
  11562. if (node->n_tasks > 1) {
  11563. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11564. atomic_store(&state_shared.has_work, false);
  11565. }
  11566. while (atomic_load(&state_shared.has_work)) {
  11567. ggml_lock_lock (&state_shared.spin);
  11568. ggml_lock_unlock(&state_shared.spin);
  11569. }
  11570. atomic_fetch_sub(&state_shared.n_ready, 1);
  11571. while (atomic_load(&state_shared.n_ready) != 0) {
  11572. ggml_lock_lock (&state_shared.spin);
  11573. ggml_lock_unlock(&state_shared.spin);
  11574. }
  11575. }
  11576. // performance stats (node)
  11577. {
  11578. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11579. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11580. node->perf_runs++;
  11581. node->perf_cycles += perf_cycles_cur;
  11582. node->perf_time_us += perf_time_us_cur;
  11583. }
  11584. }
  11585. // join thread pool
  11586. if (n_threads > 1) {
  11587. atomic_store(&state_shared.stop, true);
  11588. atomic_store(&state_shared.has_work, true);
  11589. for (int j = 0; j < n_threads - 1; j++) {
  11590. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11591. GGML_ASSERT(rc == 0);
  11592. UNUSED(rc);
  11593. }
  11594. ggml_lock_destroy(&state_shared.spin);
  11595. }
  11596. // performance stats (graph)
  11597. {
  11598. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11599. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11600. cgraph->perf_runs++;
  11601. cgraph->perf_cycles += perf_cycles_cur;
  11602. cgraph->perf_time_us += perf_time_us_cur;
  11603. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11604. __func__, cgraph->perf_runs,
  11605. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11606. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11607. (double) perf_time_us_cur / 1000.0,
  11608. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11609. }
  11610. }
  11611. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11612. for (int i = 0; i < cgraph->n_nodes; i++) {
  11613. struct ggml_tensor * grad = cgraph->grads[i];
  11614. if (grad) {
  11615. ggml_set_zero(grad);
  11616. }
  11617. }
  11618. }
  11619. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  11620. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  11621. GGML_PRINT("=== GRAPH ===\n");
  11622. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  11623. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  11624. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  11625. for (int i = 0; i < cgraph->n_nodes; i++) {
  11626. struct ggml_tensor * node = cgraph->nodes[i];
  11627. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  11628. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  11629. i,
  11630. node->ne[0], node->ne[1], node->ne[2],
  11631. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  11632. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  11633. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  11634. (double) node->perf_time_us / 1000.0,
  11635. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  11636. }
  11637. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  11638. for (int i = 0; i < cgraph->n_leafs; i++) {
  11639. struct ggml_tensor * node = cgraph->leafs[i];
  11640. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  11641. i,
  11642. node->ne[0], node->ne[1],
  11643. GGML_OP_LABEL[node->op]);
  11644. }
  11645. for (int i = 0; i < GGML_OP_COUNT; i++) {
  11646. if (perf_total_per_op_us[i] == 0) {
  11647. continue;
  11648. }
  11649. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  11650. }
  11651. GGML_PRINT("========================================\n");
  11652. }
  11653. // check if node is part of the graph
  11654. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11655. if (cgraph == NULL) {
  11656. return true;
  11657. }
  11658. for (int i = 0; i < cgraph->n_nodes; i++) {
  11659. if (cgraph->nodes[i] == node) {
  11660. return true;
  11661. }
  11662. }
  11663. return false;
  11664. }
  11665. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11666. for (int i = 0; i < cgraph->n_nodes; i++) {
  11667. struct ggml_tensor * parent = cgraph->nodes[i];
  11668. if (parent->grad == node) {
  11669. return parent;
  11670. }
  11671. }
  11672. return NULL;
  11673. }
  11674. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  11675. char color[16];
  11676. FILE * fp = fopen(filename, "w");
  11677. GGML_ASSERT(fp);
  11678. fprintf(fp, "digraph G {\n");
  11679. fprintf(fp, " newrank = true;\n");
  11680. fprintf(fp, " rankdir = LR;\n");
  11681. for (int i = 0; i < gb->n_nodes; i++) {
  11682. struct ggml_tensor * node = gb->nodes[i];
  11683. if (ggml_graph_get_parent(gb, node) != NULL) {
  11684. continue;
  11685. }
  11686. if (node->is_param) {
  11687. snprintf(color, sizeof(color), "yellow");
  11688. } else if (node->grad) {
  11689. if (ggml_graph_find(gf, node)) {
  11690. snprintf(color, sizeof(color), "green");
  11691. } else {
  11692. snprintf(color, sizeof(color), "lightblue");
  11693. }
  11694. } else {
  11695. snprintf(color, sizeof(color), "white");
  11696. }
  11697. fprintf(fp, " \"%p\" [ "
  11698. "style = filled; fillcolor = %s; shape = record; "
  11699. "label=\"",
  11700. (void *) node, color);
  11701. if (strlen(node->name) > 0) {
  11702. fprintf(fp, "%s |", node->name);
  11703. }
  11704. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  11705. i, node->ne[0], node->ne[1],
  11706. GGML_OP_SYMBOL[node->op]);
  11707. if (node->grad) {
  11708. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  11709. } else {
  11710. fprintf(fp, "\"; ]\n");
  11711. }
  11712. }
  11713. for (int i = 0; i < gb->n_leafs; i++) {
  11714. struct ggml_tensor * node = gb->leafs[i];
  11715. snprintf(color, sizeof(color), "pink");
  11716. fprintf(fp, " \"%p\" [ "
  11717. "style = filled; fillcolor = %s; shape = record; "
  11718. "label=\"<x>",
  11719. (void *) node, color);
  11720. if (strlen(node->name) > 0) {
  11721. fprintf(fp, "%s | ", node->name);
  11722. }
  11723. if (ggml_nelements(node) == 1) {
  11724. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  11725. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  11726. }
  11727. else {
  11728. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  11729. }
  11730. }
  11731. else {
  11732. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  11733. }
  11734. fprintf(fp, "\"; ]\n");
  11735. }
  11736. for (int i = 0; i < gb->n_nodes; i++) {
  11737. struct ggml_tensor * node = gb->nodes[i];
  11738. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  11739. if (node->src0) {
  11740. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  11741. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  11742. parent0 ? (void *) parent0 : (void *) node->src0,
  11743. parent0 ? "g" : "x",
  11744. parent ? (void *) parent : (void *) node,
  11745. parent ? "g" : "x",
  11746. parent ? "empty" : "vee",
  11747. parent ? "dashed" : "solid");
  11748. }
  11749. if (node->src1) {
  11750. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  11751. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  11752. parent1 ? (void *) parent1 : (void *) node->src1,
  11753. parent1 ? "g" : "x",
  11754. parent ? (void *) parent : (void *) node,
  11755. parent ? "g" : "x",
  11756. parent ? "empty" : "vee",
  11757. parent ? "dashed" : "solid");
  11758. }
  11759. }
  11760. for (int i = 0; i < gb->n_leafs; i++) {
  11761. struct ggml_tensor * node = gb->leafs[i];
  11762. if (node->src0) {
  11763. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  11764. (void *) node->src0, "x",
  11765. (void *) node, "x");
  11766. }
  11767. if (node->src1) {
  11768. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  11769. (void *) node->src1, "x",
  11770. (void *) node, "x");
  11771. }
  11772. }
  11773. fprintf(fp, "}\n");
  11774. fclose(fp);
  11775. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  11776. }
  11777. ////////////////////////////////////////////////////////////////////////////////
  11778. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  11779. int i = 0;
  11780. for (int p = 0; p < np; ++p) {
  11781. const int64_t ne = ggml_nelements(ps[p]) ;
  11782. // TODO: add function to set tensor from array
  11783. for (int64_t j = 0; j < ne; ++j) {
  11784. ggml_set_f32_1d(ps[p], j, x[i++]);
  11785. }
  11786. }
  11787. }
  11788. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  11789. int i = 0;
  11790. for (int p = 0; p < np; ++p) {
  11791. const int64_t ne = ggml_nelements(ps[p]) ;
  11792. // TODO: add function to get all elements at once
  11793. for (int64_t j = 0; j < ne; ++j) {
  11794. x[i++] = ggml_get_f32_1d(ps[p], j);
  11795. }
  11796. }
  11797. }
  11798. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  11799. int i = 0;
  11800. for (int p = 0; p < np; ++p) {
  11801. const int64_t ne = ggml_nelements(ps[p]) ;
  11802. // TODO: add function to get all elements at once
  11803. for (int64_t j = 0; j < ne; ++j) {
  11804. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  11805. }
  11806. }
  11807. }
  11808. //
  11809. // ADAM
  11810. //
  11811. // ref: https://arxiv.org/pdf/1412.6980.pdf
  11812. //
  11813. static enum ggml_opt_result ggml_opt_adam(
  11814. struct ggml_context * ctx,
  11815. struct ggml_opt_params params,
  11816. struct ggml_tensor * f,
  11817. struct ggml_cgraph * gf,
  11818. struct ggml_cgraph * gb) {
  11819. GGML_ASSERT(ggml_is_scalar(f));
  11820. gf->n_threads = params.n_threads;
  11821. gb->n_threads = params.n_threads;
  11822. // these will store the parameters we want to optimize
  11823. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  11824. int np = 0;
  11825. int nx = 0;
  11826. for (int i = 0; i < gf->n_nodes; ++i) {
  11827. if (gf->nodes[i]->is_param) {
  11828. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  11829. GGML_ASSERT(np < GGML_MAX_PARAMS);
  11830. ps[np++] = gf->nodes[i];
  11831. nx += ggml_nelements(gf->nodes[i]);
  11832. }
  11833. }
  11834. // constants
  11835. const float alpha = params.adam.alpha;
  11836. const float beta1 = params.adam.beta1;
  11837. const float beta2 = params.adam.beta2;
  11838. const float eps = params.adam.eps;
  11839. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  11840. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  11841. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  11842. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  11843. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  11844. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  11845. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  11846. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  11847. // initialize
  11848. ggml_vec_set_f32(nx, m, 0.0f);
  11849. ggml_vec_set_f32(nx, v, 0.0f);
  11850. // update view
  11851. ggml_opt_get_params(np, ps, x);
  11852. // compute the function value
  11853. ggml_graph_reset (gf);
  11854. ggml_set_f32 (f->grad, 1.0f);
  11855. ggml_graph_compute(ctx, gb);
  11856. float fx_prev = ggml_get_f32_1d(f, 0);
  11857. if (pf) {
  11858. pf[0] = fx_prev;
  11859. }
  11860. int n_no_improvement = 0;
  11861. float fx_best = fx_prev;
  11862. // run the optimizer
  11863. for (int t = 0; t < params.adam.n_iter; ++t) {
  11864. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  11865. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  11866. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  11867. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  11868. for (int i = 0; i < np; ++i) {
  11869. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  11870. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  11871. }
  11872. const int64_t t_start_wall = ggml_time_us();
  11873. const int64_t t_start_cpu = ggml_cycles();
  11874. UNUSED(t_start_wall);
  11875. UNUSED(t_start_cpu);
  11876. {
  11877. // update the gradient
  11878. ggml_opt_get_grad(np, ps, g1);
  11879. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  11880. ggml_vec_scale_f32(nx, m, beta1);
  11881. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  11882. // g2 = g1^2
  11883. ggml_vec_sqr_f32 (nx, g2, g1);
  11884. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  11885. ggml_vec_scale_f32(nx, v, beta2);
  11886. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  11887. // m^hat = m_t / (1 - beta1^t)
  11888. // v^hat = v_t / (1 - beta2^t)
  11889. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  11890. ggml_vec_cpy_f32 (nx, mh, m);
  11891. ggml_vec_cpy_f32 (nx, vh, v);
  11892. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  11893. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  11894. ggml_vec_sqrt_f32 (nx, vh, vh);
  11895. ggml_vec_acc1_f32 (nx, vh, eps);
  11896. ggml_vec_div_f32 (nx, mh, mh, vh);
  11897. ggml_vec_sub_f32 (nx, x, x, mh);
  11898. // update the parameters
  11899. ggml_opt_set_params(np, ps, x);
  11900. }
  11901. ggml_graph_reset (gf);
  11902. ggml_set_f32 (f->grad, 1.0f);
  11903. ggml_graph_compute(ctx, gb);
  11904. const float fx = ggml_get_f32_1d(f, 0);
  11905. // check convergence
  11906. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  11907. GGML_PRINT_DEBUG("converged\n");
  11908. return GGML_OPT_OK;
  11909. }
  11910. // delta-based convergence test
  11911. if (pf != NULL) {
  11912. // need at least params.past iterations to start checking for convergence
  11913. if (params.past <= t) {
  11914. const float rate = (pf[t%params.past] - fx)/fx;
  11915. if (fabsf(rate) < params.delta) {
  11916. return GGML_OPT_OK;
  11917. }
  11918. }
  11919. pf[t%params.past] = fx;
  11920. }
  11921. // check for improvement
  11922. if (params.max_no_improvement > 0) {
  11923. if (fx_best > fx) {
  11924. fx_best = fx;
  11925. n_no_improvement = 0;
  11926. } else {
  11927. ++n_no_improvement;
  11928. if (n_no_improvement >= params.max_no_improvement) {
  11929. return GGML_OPT_OK;
  11930. }
  11931. }
  11932. }
  11933. fx_prev = fx;
  11934. {
  11935. const int64_t t_end_cpu = ggml_cycles();
  11936. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  11937. UNUSED(t_end_cpu);
  11938. const int64_t t_end_wall = ggml_time_us();
  11939. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  11940. UNUSED(t_end_wall);
  11941. }
  11942. }
  11943. return GGML_OPT_DID_NOT_CONVERGE;
  11944. }
  11945. //
  11946. // L-BFGS
  11947. //
  11948. // the L-BFGS implementation below is based on the following implementation:
  11949. //
  11950. // https://github.com/chokkan/liblbfgs
  11951. //
  11952. struct ggml_lbfgs_iteration_data {
  11953. float alpha;
  11954. float ys;
  11955. float * s;
  11956. float * y;
  11957. };
  11958. static enum ggml_opt_result linesearch_backtracking(
  11959. struct ggml_context * ctx,
  11960. const struct ggml_opt_params * params,
  11961. int nx,
  11962. float * x,
  11963. float * fx,
  11964. float * g,
  11965. float * d,
  11966. float * step,
  11967. const float * xp,
  11968. struct ggml_tensor * f,
  11969. struct ggml_cgraph * gf,
  11970. struct ggml_cgraph * gb,
  11971. const int np,
  11972. struct ggml_tensor * ps[]) {
  11973. int count = 0;
  11974. float width = 0.0f;
  11975. float dg = 0.0f;
  11976. float finit = 0.0f;
  11977. float dginit = 0.0f;
  11978. float dgtest = 0.0f;
  11979. const float dec = 0.5f;
  11980. const float inc = 2.1f;
  11981. if (*step <= 0.f) {
  11982. return GGML_LINESEARCH_INVALID_PARAMETERS;
  11983. }
  11984. // compute the initial gradient in the search direction
  11985. ggml_vec_dot_f32(nx, &dginit, g, d);
  11986. // make sure that d points to a descent direction
  11987. if (0 < dginit) {
  11988. return GGML_LINESEARCH_FAIL;
  11989. }
  11990. // initialize local variables
  11991. finit = *fx;
  11992. dgtest = params->lbfgs.ftol*dginit;
  11993. while (true) {
  11994. ggml_vec_cpy_f32(nx, x, xp);
  11995. ggml_vec_mad_f32(nx, x, d, *step);
  11996. // evaluate the function and gradient values
  11997. {
  11998. ggml_opt_set_params(np, ps, x);
  11999. ggml_graph_reset (gf);
  12000. ggml_set_f32 (f->grad, 1.0f);
  12001. ggml_graph_compute(ctx, gb);
  12002. ggml_opt_get_grad(np, ps, g);
  12003. *fx = ggml_get_f32_1d(f, 0);
  12004. }
  12005. ++count;
  12006. if (*fx > finit + (*step)*dgtest) {
  12007. width = dec;
  12008. } else {
  12009. // Armijo condition is satisfied
  12010. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12011. return count;
  12012. }
  12013. ggml_vec_dot_f32(nx, &dg, g, d);
  12014. // check the Wolfe condition
  12015. if (dg < params->lbfgs.wolfe * dginit) {
  12016. width = inc;
  12017. } else {
  12018. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12019. // regular Wolfe conditions
  12020. return count;
  12021. }
  12022. if(dg > -params->lbfgs.wolfe*dginit) {
  12023. width = dec;
  12024. } else {
  12025. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12026. return count;
  12027. }
  12028. return count;
  12029. }
  12030. }
  12031. if (*step < params->lbfgs.min_step) {
  12032. return GGML_LINESEARCH_MINIMUM_STEP;
  12033. }
  12034. if (*step > params->lbfgs.max_step) {
  12035. return GGML_LINESEARCH_MAXIMUM_STEP;
  12036. }
  12037. if (params->lbfgs.max_linesearch <= count) {
  12038. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12039. }
  12040. (*step) *= width;
  12041. }
  12042. return GGML_LINESEARCH_FAIL;
  12043. }
  12044. static enum ggml_opt_result ggml_opt_lbfgs(
  12045. struct ggml_context * ctx,
  12046. struct ggml_opt_params params,
  12047. struct ggml_tensor * f,
  12048. struct ggml_cgraph * gf,
  12049. struct ggml_cgraph * gb) {
  12050. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12051. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12052. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12053. return GGML_OPT_INVALID_WOLFE;
  12054. }
  12055. }
  12056. gf->n_threads = params.n_threads;
  12057. gb->n_threads = params.n_threads;
  12058. const int m = params.lbfgs.m;
  12059. // these will store the parameters we want to optimize
  12060. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12061. int np = 0;
  12062. int nx = 0;
  12063. for (int i = 0; i < gf->n_nodes; ++i) {
  12064. if (gf->nodes[i]->is_param) {
  12065. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12066. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12067. ps[np++] = gf->nodes[i];
  12068. nx += ggml_nelements(gf->nodes[i]);
  12069. }
  12070. }
  12071. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12072. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12073. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12074. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12075. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12076. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12077. float fx = 0.0f; // cost function value
  12078. float xnorm = 0.0f; // ||x||
  12079. float gnorm = 0.0f; // ||g||
  12080. float step = 0.0f;
  12081. // initialize x from the graph nodes
  12082. ggml_opt_get_params(np, ps, x);
  12083. // the L-BFGS memory
  12084. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12085. for (int i = 0; i < m; ++i) {
  12086. lm[i].alpha = 0.0f;
  12087. lm[i].ys = 0.0f;
  12088. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12089. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12090. }
  12091. // evaluate the function value and its gradient
  12092. {
  12093. ggml_opt_set_params(np, ps, x);
  12094. ggml_graph_reset (gf);
  12095. ggml_set_f32 (f->grad, 1.0f);
  12096. ggml_graph_compute(ctx, gb);
  12097. ggml_opt_get_grad(np, ps, g);
  12098. fx = ggml_get_f32_1d(f, 0);
  12099. }
  12100. if (pf) {
  12101. pf[0] = fx;
  12102. }
  12103. float fx_best = fx;
  12104. // search direction = -gradient
  12105. ggml_vec_neg_f32(nx, d, g);
  12106. // ||x||, ||g||
  12107. ggml_vec_norm_f32(nx, &xnorm, x);
  12108. ggml_vec_norm_f32(nx, &gnorm, g);
  12109. if (xnorm < 1.0f) {
  12110. xnorm = 1.0f;
  12111. }
  12112. // already optimized
  12113. if (gnorm/xnorm <= params.lbfgs.eps) {
  12114. return GGML_OPT_OK;
  12115. }
  12116. // initial step
  12117. ggml_vec_norm_inv_f32(nx, &step, d);
  12118. int j = 0;
  12119. int k = 1;
  12120. int ls = 0;
  12121. int end = 0;
  12122. int bound = 0;
  12123. int n_no_improvement = 0;
  12124. float ys = 0.0f;
  12125. float yy = 0.0f;
  12126. float beta = 0.0f;
  12127. while (true) {
  12128. // store the current position and gradient vectors
  12129. ggml_vec_cpy_f32(nx, xp, x);
  12130. ggml_vec_cpy_f32(nx, gp, g);
  12131. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12132. if (ls < 0) {
  12133. // linesearch failed - go back to the previous point and return
  12134. ggml_vec_cpy_f32(nx, x, xp);
  12135. ggml_vec_cpy_f32(nx, g, gp);
  12136. return ls;
  12137. }
  12138. ggml_vec_norm_f32(nx, &xnorm, x);
  12139. ggml_vec_norm_f32(nx, &gnorm, g);
  12140. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12141. if (xnorm < 1.0f) {
  12142. xnorm = 1.0f;
  12143. }
  12144. if (gnorm/xnorm <= params.lbfgs.eps) {
  12145. // converged
  12146. return GGML_OPT_OK;
  12147. }
  12148. // delta-based convergence test
  12149. if (pf != NULL) {
  12150. // need at least params.past iterations to start checking for convergence
  12151. if (params.past <= k) {
  12152. const float rate = (pf[k%params.past] - fx)/fx;
  12153. if (fabsf(rate) < params.delta) {
  12154. return GGML_OPT_OK;
  12155. }
  12156. }
  12157. pf[k%params.past] = fx;
  12158. }
  12159. // check for improvement
  12160. if (params.max_no_improvement > 0) {
  12161. if (fx < fx_best) {
  12162. fx_best = fx;
  12163. n_no_improvement = 0;
  12164. } else {
  12165. n_no_improvement++;
  12166. if (n_no_improvement >= params.max_no_improvement) {
  12167. return GGML_OPT_OK;
  12168. }
  12169. }
  12170. }
  12171. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12172. // reached the maximum number of iterations
  12173. return GGML_OPT_DID_NOT_CONVERGE;
  12174. }
  12175. // update vectors s and y:
  12176. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12177. // y_{k+1} = g_{k+1} - g_{k}.
  12178. //
  12179. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12180. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12181. // compute scalars ys and yy:
  12182. // ys = y^t \cdot s -> 1 / \rho.
  12183. // yy = y^t \cdot y.
  12184. //
  12185. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12186. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12187. lm[end].ys = ys;
  12188. // find new search direction
  12189. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12190. bound = (m <= k) ? m : k;
  12191. k++;
  12192. end = (end + 1)%m;
  12193. // initialize search direction with -g
  12194. ggml_vec_neg_f32(nx, d, g);
  12195. j = end;
  12196. for (int i = 0; i < bound; ++i) {
  12197. j = (j + m - 1) % m;
  12198. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12199. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12200. lm[j].alpha /= lm[j].ys;
  12201. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12202. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12203. }
  12204. ggml_vec_scale_f32(nx, d, ys/yy);
  12205. for (int i = 0; i < bound; ++i) {
  12206. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12207. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12208. beta /= lm[j].ys;
  12209. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12210. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12211. j = (j + 1)%m;
  12212. }
  12213. step = 1.0;
  12214. }
  12215. return GGML_OPT_DID_NOT_CONVERGE;
  12216. }
  12217. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12218. struct ggml_opt_params result;
  12219. switch (type) {
  12220. case GGML_OPT_ADAM:
  12221. {
  12222. result = (struct ggml_opt_params) {
  12223. .type = GGML_OPT_ADAM,
  12224. .n_threads = 1,
  12225. .past = 0,
  12226. .delta = 1e-5f,
  12227. .max_no_improvement = 100,
  12228. .print_forward_graph = true,
  12229. .print_backward_graph = true,
  12230. .adam = {
  12231. .n_iter = 10000,
  12232. .alpha = 0.001f,
  12233. .beta1 = 0.9f,
  12234. .beta2 = 0.999f,
  12235. .eps = 1e-8f,
  12236. .eps_f = 1e-5f,
  12237. .eps_g = 1e-3f,
  12238. },
  12239. };
  12240. } break;
  12241. case GGML_OPT_LBFGS:
  12242. {
  12243. result = (struct ggml_opt_params) {
  12244. .type = GGML_OPT_LBFGS,
  12245. .n_threads = 1,
  12246. .past = 0,
  12247. .delta = 1e-5f,
  12248. .max_no_improvement = 0,
  12249. .print_forward_graph = true,
  12250. .print_backward_graph = true,
  12251. .lbfgs = {
  12252. .m = 6,
  12253. .n_iter = 100,
  12254. .max_linesearch = 20,
  12255. .eps = 1e-5f,
  12256. .ftol = 1e-4f,
  12257. .wolfe = 0.9f,
  12258. .min_step = 1e-20f,
  12259. .max_step = 1e+20f,
  12260. .linesearch = GGML_LINESEARCH_DEFAULT,
  12261. },
  12262. };
  12263. } break;
  12264. }
  12265. return result;
  12266. }
  12267. enum ggml_opt_result ggml_opt(
  12268. struct ggml_context * ctx,
  12269. struct ggml_opt_params params,
  12270. struct ggml_tensor * f) {
  12271. bool free_ctx = false;
  12272. if (ctx == NULL) {
  12273. struct ggml_init_params params_ctx = {
  12274. .mem_size = 16*1024*1024,
  12275. .mem_buffer = NULL,
  12276. .no_alloc = false,
  12277. };
  12278. ctx = ggml_init(params_ctx);
  12279. if (ctx == NULL) {
  12280. return GGML_OPT_NO_CONTEXT;
  12281. }
  12282. free_ctx = true;
  12283. }
  12284. enum ggml_opt_result result = GGML_OPT_OK;
  12285. // build forward + backward compute graphs
  12286. struct ggml_cgraph gf = ggml_build_forward (f);
  12287. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12288. switch (params.type) {
  12289. case GGML_OPT_ADAM:
  12290. {
  12291. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12292. } break;
  12293. case GGML_OPT_LBFGS:
  12294. {
  12295. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12296. } break;
  12297. }
  12298. if (params.print_forward_graph) {
  12299. ggml_graph_print (&gf);
  12300. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12301. }
  12302. if (params.print_backward_graph) {
  12303. ggml_graph_print (&gb);
  12304. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12305. }
  12306. if (free_ctx) {
  12307. ggml_free(ctx);
  12308. }
  12309. return result;
  12310. }
  12311. ////////////////////////////////////////////////////////////////////////////////
  12312. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12313. assert(k % QK4_0 == 0);
  12314. const int nb = k / QK4_0;
  12315. for (int b = 0; b < n; b += k) {
  12316. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12317. quantize_row_q4_0_reference(src + b, y, k);
  12318. for (int i = 0; i < nb; i++) {
  12319. for (int j = 0; j < QK4_0; j += 2) {
  12320. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12321. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12322. hist[vi0]++;
  12323. hist[vi1]++;
  12324. }
  12325. }
  12326. }
  12327. return (n/QK4_0*sizeof(block_q4_0));
  12328. }
  12329. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12330. assert(k % QK4_1 == 0);
  12331. const int nb = k / QK4_1;
  12332. for (int b = 0; b < n; b += k) {
  12333. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  12334. quantize_row_q4_1_reference(src + b, y, k);
  12335. for (int i = 0; i < nb; i++) {
  12336. for (int j = 0; j < QK4_1; j += 2) {
  12337. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12338. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12339. hist[vi0]++;
  12340. hist[vi1]++;
  12341. }
  12342. }
  12343. }
  12344. return (n/QK4_1*sizeof(block_q4_1));
  12345. }
  12346. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12347. assert(k % QK5_0 == 0);
  12348. const int nb = k / QK5_0;
  12349. for (int b = 0; b < n; b += k) {
  12350. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  12351. quantize_row_q5_0_reference(src + b, y, k);
  12352. for (int i = 0; i < nb; i++) {
  12353. uint32_t qh;
  12354. memcpy(&qh, &y[i].qh, sizeof(qh));
  12355. for (int j = 0; j < QK5_0; j += 2) {
  12356. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12357. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12358. // cast to 16 bins
  12359. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12360. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12361. hist[vi0]++;
  12362. hist[vi1]++;
  12363. }
  12364. }
  12365. }
  12366. return (n/QK5_0*sizeof(block_q5_0));
  12367. }
  12368. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12369. assert(k % QK5_1 == 0);
  12370. const int nb = k / QK5_1;
  12371. for (int b = 0; b < n; b += k) {
  12372. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  12373. quantize_row_q5_1_reference(src + b, y, k);
  12374. for (int i = 0; i < nb; i++) {
  12375. uint32_t qh;
  12376. memcpy(&qh, &y[i].qh, sizeof(qh));
  12377. for (int j = 0; j < QK5_1; j += 2) {
  12378. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12379. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12380. // cast to 16 bins
  12381. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12382. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12383. hist[vi0]++;
  12384. hist[vi1]++;
  12385. }
  12386. }
  12387. }
  12388. return (n/QK5_1*sizeof(block_q5_1));
  12389. }
  12390. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12391. assert(k % QK8_0 == 0);
  12392. const int nb = k / QK8_0;
  12393. for (int b = 0; b < n; b += k) {
  12394. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  12395. quantize_row_q8_0_reference(src + b, y, k);
  12396. for (int i = 0; i < nb; i++) {
  12397. for (int j = 0; j < QK8_0; ++j) {
  12398. const int8_t vi = y[i].qs[j];
  12399. hist[vi/16 + 8]++;
  12400. }
  12401. }
  12402. }
  12403. return (n/QK8_0*sizeof(block_q8_0));
  12404. }
  12405. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  12406. size_t result = 0;
  12407. switch (type) {
  12408. case GGML_TYPE_Q4_0:
  12409. {
  12410. GGML_ASSERT(start % QK4_0 == 0);
  12411. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  12412. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  12413. } break;
  12414. case GGML_TYPE_Q4_1:
  12415. {
  12416. GGML_ASSERT(start % QK4_1 == 0);
  12417. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  12418. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  12419. } break;
  12420. case GGML_TYPE_Q5_0:
  12421. {
  12422. GGML_ASSERT(start % QK5_0 == 0);
  12423. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  12424. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  12425. } break;
  12426. case GGML_TYPE_Q5_1:
  12427. {
  12428. GGML_ASSERT(start % QK5_1 == 0);
  12429. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  12430. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  12431. } break;
  12432. case GGML_TYPE_Q8_0:
  12433. {
  12434. GGML_ASSERT(start % QK8_0 == 0);
  12435. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  12436. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  12437. } break;
  12438. default:
  12439. assert(false);
  12440. }
  12441. return result;
  12442. }
  12443. ////////////////////////////////////////////////////////////////////////////////
  12444. int ggml_cpu_has_avx(void) {
  12445. #if defined(__AVX__)
  12446. return 1;
  12447. #else
  12448. return 0;
  12449. #endif
  12450. }
  12451. int ggml_cpu_has_avx2(void) {
  12452. #if defined(__AVX2__)
  12453. return 1;
  12454. #else
  12455. return 0;
  12456. #endif
  12457. }
  12458. int ggml_cpu_has_avx512(void) {
  12459. #if defined(__AVX512F__)
  12460. return 1;
  12461. #else
  12462. return 0;
  12463. #endif
  12464. }
  12465. int ggml_cpu_has_avx512_vbmi(void) {
  12466. #if defined(__AVX512VBMI__)
  12467. return 1;
  12468. #else
  12469. return 0;
  12470. #endif
  12471. }
  12472. int ggml_cpu_has_avx512_vnni(void) {
  12473. #if defined(__AVX512VNNI__)
  12474. return 1;
  12475. #else
  12476. return 0;
  12477. #endif
  12478. }
  12479. int ggml_cpu_has_fma(void) {
  12480. #if defined(__FMA__)
  12481. return 1;
  12482. #else
  12483. return 0;
  12484. #endif
  12485. }
  12486. int ggml_cpu_has_neon(void) {
  12487. #if defined(__ARM_NEON)
  12488. return 1;
  12489. #else
  12490. return 0;
  12491. #endif
  12492. }
  12493. int ggml_cpu_has_arm_fma(void) {
  12494. #if defined(__ARM_FEATURE_FMA)
  12495. return 1;
  12496. #else
  12497. return 0;
  12498. #endif
  12499. }
  12500. int ggml_cpu_has_f16c(void) {
  12501. #if defined(__F16C__)
  12502. return 1;
  12503. #else
  12504. return 0;
  12505. #endif
  12506. }
  12507. int ggml_cpu_has_fp16_va(void) {
  12508. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  12509. return 1;
  12510. #else
  12511. return 0;
  12512. #endif
  12513. }
  12514. int ggml_cpu_has_wasm_simd(void) {
  12515. #if defined(__wasm_simd128__)
  12516. return 1;
  12517. #else
  12518. return 0;
  12519. #endif
  12520. }
  12521. int ggml_cpu_has_blas(void) {
  12522. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  12523. return 1;
  12524. #else
  12525. return 0;
  12526. #endif
  12527. }
  12528. int ggml_cpu_has_cublas(void) {
  12529. #if defined(GGML_USE_CUBLAS)
  12530. return 1;
  12531. #else
  12532. return 0;
  12533. #endif
  12534. }
  12535. int ggml_cpu_has_clblast(void) {
  12536. #if defined(GGML_USE_CLBLAST)
  12537. return 1;
  12538. #else
  12539. return 0;
  12540. #endif
  12541. }
  12542. int ggml_cpu_has_gpublas(void) {
  12543. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  12544. }
  12545. int ggml_cpu_has_sse3(void) {
  12546. #if defined(__SSE3__)
  12547. return 1;
  12548. #else
  12549. return 0;
  12550. #endif
  12551. }
  12552. int ggml_cpu_has_vsx(void) {
  12553. #if defined(__POWER9_VECTOR__)
  12554. return 1;
  12555. #else
  12556. return 0;
  12557. #endif
  12558. }
  12559. ////////////////////////////////////////////////////////////////////////////////