Georgi Gerganov 5b09797321 ggml : remove old quantization functions (#5942) hai 1 ano
..
android 3ce7e8f8e7 llava : MobileVLM support (#4954) %!s(int64=2) %!d(string=hai) anos
CMakeLists.txt ce18d727a4 clip : enable gpu backend (#4205) %!s(int64=2) %!d(string=hai) anos
MobileVLM-README.md 15606309a0 llava : add MobileVLM support (#5132) hai 1 ano
README.md cc6cac08e3 llava : add --skip-unknown to 1.6 convert.py (#5632) hai 1 ano
clip.cpp 5b09797321 ggml : remove old quantization functions (#5942) hai 1 ano
clip.h 0d4177126b llava : fix memory management bug (#5491) hai 1 ano
convert-image-encoder-to-gguf.py aa23412989 llava : support v1.6 (#5267) hai 1 ano
llava-cli.cpp f486f6e1e5 ggml : add numa options (#5377) hai 1 ano
llava-surgery-v2.py cc6cac08e3 llava : add --skip-unknown to 1.6 convert.py (#5632) hai 1 ano
llava-surgery.py 7084755396 llava : avoid changing the original BakLLaVA model (#5577) hai 1 ano
llava.cpp ab336a9d5e code : normalize enum names (#5697) hai 1 ano
llava.h 6560bed3f0 server : support llava 1.6 (#5553) hai 1 ano
requirements.txt e00d2a62dd llava : add requirements.txt and update README.md (#5428) hai 1 ano

README.md

LLaVA

Currently this implementation supports llava-v1.5 variants, as well as llava-1.6 llava-v1.6 variants.

The pre-converted 7b and 13b models are available. For llava-1.6 a variety of prepared gguf models are available as well 7b-34b

After API is confirmed, more models will be supported / uploaded.

Usage

Build with cmake or run make llava-cli to build it.

After building, run: ./llava-cli to see the usage. For example:

./llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg

note: A lower temperature like 0.1 is recommended for better quality. add --temp 0.1 to the command to do so. note: For GPU offloading ensure to use the -ngl flag just like usual

LLaVA 1.5

  • Clone a LLaVA and a CLIP model (available options). For example:

    git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
    
    git clone https://huggingface.co/openai/clip-vit-large-patch14-336
    
  1. Install the required Python packages:

    pip install -r examples/llava/requirements.txt
    
  2. Use llava-surgery.py to split the LLaVA model to LLaMA and multimodel projector constituents:

    python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
    
  3. Use convert-image-encoder-to-gguf.py to convert the LLaVA image encoder to GGUF:

    python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
    
  4. Use convert.py to convert the LLaMA part of LLaVA to GGUF:

    python ./convert.py ../llava-v1.5-7b --skip-unknown
    

Now both the LLaMA part and the image encoder is in the llava-v1.5-7b directory.

LLaVA 1.6 gguf conversion

1) First clone a LLaVA 1.6 model:

git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b

2) Use llava-surgery-v2.py which also supports llava-1.5 variants pytorch as well as safetensor models:

python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
  • you will find a llava.projector and a llava.clip file in your model directory 3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:

    mkdir vit
    cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
    cp ../llava-v1.6-vicuna-7b/llava.projector vit/
    curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
    

4) Create the visual gguf model:

python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
  • This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP

5) Then convert the model to gguf format:

python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown

6) And finally we can run the llava-cli using the 1.6 model version:

./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096

note llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096) note llava-1.6 greatly benefits from batched prompt processing (defaults work)

llava-cli templating and llava-1.6 prompting

llava-1.5 models all use the same vicuna prompt, here you can just add your image question like -p "Provide a full description." For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system:

For Mistral and using llava-cli binary: Add this: -p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n" The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role

For the 34B this should work: Add this: -e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n

How to know if you are running in llava-1.5 or llava-1.6 mode

When running llava-cli you will see a visual information right before the prompt is being processed:

Llava-1.5: encode_image_with_clip: image embedding created: 576 tokens

Llava-1.6 (anything above 576): encode_image_with_clip: image embedding created: 2880 tokens

Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6

TODO

  • Support non-CPU backend for the image encoding part.
  • Support different sampling methods.
  • Support more model variants.