convert_hf_to_gguf.py 467 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. else:
  173. weight_map = {}
  174. else:
  175. weight_map = {}
  176. for part_name in part_names:
  177. logger.info(f"gguf: indexing model part '{part_name}'")
  178. ctx: ContextManager[Any]
  179. if is_safetensors:
  180. from safetensors import safe_open
  181. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  182. else:
  183. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  184. with ctx as model_part:
  185. assert model_part is not None
  186. for name in model_part.keys():
  187. if is_safetensors:
  188. if self.lazy:
  189. data = model_part.get_slice(name)
  190. data_gen = lambda data=data: LazyTorchTensor.from_safetensors_slice(data) # noqa: E731
  191. else:
  192. data = model_part.get_tensor(name)
  193. data_gen = lambda data=data: data # noqa: E731
  194. else:
  195. data = model_part[name]
  196. if self.lazy:
  197. data_gen = lambda data=data: LazyTorchTensor.from_eager(data) # noqa: E731
  198. else:
  199. data_gen = lambda data=data: data # noqa: E731
  200. tensors[name] = data_gen
  201. # verify tensor name presence and identify potentially missing files
  202. if len(tensor_names_from_index) > 0:
  203. tensor_names_from_parts = set(tensors.keys())
  204. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  205. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  206. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  207. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  208. if len(extra) == 0 and len(missing_files) > 0:
  209. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  210. f"Missing tensors: {missing}")
  211. else:
  212. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  213. f"Missing tensors: {missing}\n"
  214. f"Extra tensors: {extra}")
  215. return tensors
  216. def dequant_model(self):
  217. tensors_to_remove: list[str] = []
  218. new_tensors: dict[str, Callable[[], Tensor]] = {}
  219. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  220. quant_method = quant_config.get("quant_method")
  221. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  222. weight = weight.view(torch.uint8)
  223. orig_shape = weight.shape
  224. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  225. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  226. data = data & 3
  227. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  228. # The scale is inverted
  229. return data / scale.float()
  230. def dequant_simple(weight: Tensor, scale: Tensor) -> Tensor:
  231. scale = scale.float()
  232. if (weight_block_size := quant_config.get("weight_block_size")):
  233. # TODO: make sure it's a list of integers
  234. for i, size in enumerate(weight_block_size):
  235. scale = scale.repeat_interleave(size, i)
  236. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  237. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  238. return weight.float() * scale
  239. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  240. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  241. bits = quant_config["bits"]
  242. assert bits in (2, 3, 4, 8)
  243. assert qweight.dtype == qzeros.dtype
  244. maxq = (2 ** bits) - 1
  245. weight = None
  246. zeros = None
  247. pack_dtype_bits = qweight.dtype.itemsize * 8
  248. if bits in [2, 4, 8]:
  249. pack_factor = pack_dtype_bits // bits
  250. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  251. if self.lazy:
  252. wf = LazyTorchTensor.from_eager(wf)
  253. zeros = torch.bitwise_right_shift(
  254. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  255. wf.unsqueeze(0)
  256. ).to(torch.int16 if bits == 8 else torch.int8)
  257. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  258. weight = torch.bitwise_and(
  259. torch.bitwise_right_shift(
  260. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  261. wf.unsqueeze(-1)
  262. ).to(torch.int16 if bits == 8 else torch.int8),
  263. maxq
  264. )
  265. elif bits == 3:
  266. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  267. assert weight is not None
  268. assert zeros is not None
  269. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  270. # gptq_v2 doesn't need to offset zeros
  271. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  272. zeros += 1
  273. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  274. if quant_method == "bitnet":
  275. for name in self.model_tensors.keys():
  276. if name.endswith(".weight_scale"):
  277. weight_name = name.removesuffix("_scale")
  278. w = self.model_tensors[weight_name]
  279. s = self.model_tensors[name]
  280. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  281. tensors_to_remove.append(name)
  282. elif quant_method == "fp8":
  283. for name in self.model_tensors.keys():
  284. if name.endswith(".weight_scale_inv"):
  285. weight_name = name.removesuffix("_scale_inv")
  286. w = self.model_tensors[weight_name]
  287. s = self.model_tensors[name]
  288. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s())
  289. tensors_to_remove.append(name)
  290. elif quant_method == "gptq":
  291. for name in self.model_tensors.keys():
  292. if name.endswith(".qweight"):
  293. base_name = name.removesuffix(".qweight")
  294. g_idx = self.model_tensors[base_name + ".g_idx"]
  295. qweight = self.model_tensors[base_name + ".qweight"]
  296. qzeros = self.model_tensors[base_name + ".qzeros"]
  297. scales = self.model_tensors[base_name + ".scales"]
  298. new_tensors[base_name + ".weight"] = (
  299. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  300. g(), w(), z(), s()
  301. )
  302. )
  303. tensors_to_remove += [
  304. base_name + n
  305. for n in (
  306. ".g_idx",
  307. ".qzeros",
  308. ".qweight",
  309. ".scales",
  310. )
  311. ]
  312. else:
  313. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  314. for name in tensors_to_remove:
  315. if name in self.model_tensors:
  316. del self.model_tensors[name]
  317. for name, value in new_tensors.items():
  318. self.model_tensors[name] = value
  319. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  320. for name, gen in self.model_tensors.items():
  321. yield name, gen()
  322. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  323. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  324. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  325. name: str = gguf.TENSOR_NAMES[key]
  326. if "{bid}" in name:
  327. assert bid is not None
  328. name = name.format(bid=bid)
  329. return name + suffix
  330. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  331. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  332. return False
  333. key_name: str = gguf.TENSOR_NAMES[key]
  334. if "{bid}" in key_name:
  335. if bid is None:
  336. return False
  337. key_name = key_name.format(bid=bid)
  338. else:
  339. if bid is not None:
  340. return False
  341. return name == (key_name + suffix)
  342. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  343. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  344. if new_name is None:
  345. raise ValueError(f"Can not map tensor {name!r}")
  346. return new_name
  347. def set_gguf_parameters(self):
  348. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  349. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  350. del bid # unused
  351. return [(self.map_tensor_name(name), data_torch)]
  352. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  353. del name, new_name, bid, n_dims # unused
  354. return False
  355. # some models need extra generated tensors (like rope_freqs)
  356. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  357. return ()
  358. def prepare_tensors(self):
  359. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  360. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  361. # we don't need these
  362. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  363. continue
  364. old_dtype = data_torch.dtype
  365. # convert any unsupported data types to float32
  366. if data_torch.dtype not in (torch.float16, torch.float32):
  367. data_torch = data_torch.to(torch.float32)
  368. # use the first number-like part of the tensor name as the block id
  369. bid = None
  370. for part in name.split("."):
  371. if part.isdecimal():
  372. bid = int(part)
  373. break
  374. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  375. # TODO: why do we squeeze here?
  376. # data = data_torch.squeeze().numpy()
  377. data = data_torch.numpy()
  378. n_dims = len(data.shape)
  379. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  380. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  381. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  382. data_qtype = gguf.GGMLQuantizationType.F32
  383. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  384. # Some tensor types are always in float32
  385. if data_qtype is False and (
  386. any(
  387. self.match_model_tensor_name(new_name, key, bid)
  388. for key in (
  389. gguf.MODEL_TENSOR.FFN_GATE_INP,
  390. gguf.MODEL_TENSOR.POS_EMBD,
  391. gguf.MODEL_TENSOR.TOKEN_TYPES,
  392. gguf.MODEL_TENSOR.SSM_CONV1D,
  393. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  394. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  395. gguf.MODEL_TENSOR.TIME_MIX_W1,
  396. gguf.MODEL_TENSOR.TIME_MIX_W2,
  397. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  398. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  399. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  400. gguf.MODEL_TENSOR.POSNET_NORM1,
  401. gguf.MODEL_TENSOR.POSNET_NORM2,
  402. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  403. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  404. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  405. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  406. )
  407. )
  408. or not new_name.endswith(".weight")
  409. ):
  410. data_qtype = gguf.GGMLQuantizationType.F32
  411. if data_qtype is False and any(
  412. self.match_model_tensor_name(new_name, key, bid)
  413. for key in (
  414. gguf.MODEL_TENSOR.TOKEN_EMBD,
  415. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  416. gguf.MODEL_TENSOR.OUTPUT,
  417. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  418. gguf.MODEL_TENSOR.LAUREL_L,
  419. gguf.MODEL_TENSOR.LAUREL_R,
  420. )
  421. ):
  422. if self.ftype in (
  423. gguf.LlamaFileType.MOSTLY_TQ1_0,
  424. gguf.LlamaFileType.MOSTLY_TQ2_0,
  425. ):
  426. # TODO: use Q4_K and Q6_K
  427. data_qtype = gguf.GGMLQuantizationType.F16
  428. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  429. if isinstance(data_qtype, bool):
  430. if self.ftype == gguf.LlamaFileType.ALL_F32:
  431. data_qtype = gguf.GGMLQuantizationType.F32
  432. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  433. data_qtype = gguf.GGMLQuantizationType.F16
  434. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  435. data_qtype = gguf.GGMLQuantizationType.BF16
  436. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  437. data_qtype = gguf.GGMLQuantizationType.Q8_0
  438. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  439. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  440. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  441. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  442. else:
  443. raise ValueError(f"Unknown file type: {self.ftype.name}")
  444. try:
  445. data = gguf.quants.quantize(data, data_qtype)
  446. except gguf.QuantError as e:
  447. logger.warning("%s, %s", e, "falling back to F16")
  448. data_qtype = gguf.GGMLQuantizationType.F16
  449. data = gguf.quants.quantize(data, data_qtype)
  450. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  451. # reverse shape to make it similar to the internal ggml dimension order
  452. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  453. # n_dims is implicit in the shape
  454. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  455. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  456. def set_type(self):
  457. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  458. def prepare_metadata(self, vocab_only: bool):
  459. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  460. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  461. # If we are using HF model id, set the metadata name to the model id
  462. if self.remote_hf_model_id:
  463. self.metadata.name = self.remote_hf_model_id
  464. # Fallback to model directory name if metadata name is still missing
  465. if self.metadata.name is None:
  466. self.metadata.name = self.dir_model.name
  467. # Generate parameter weight class (useful for leader boards) if not yet determined
  468. if self.metadata.size_label is None and total_params > 0:
  469. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  470. self.set_type()
  471. logger.info("Set meta model")
  472. self.metadata.set_gguf_meta_model(self.gguf_writer)
  473. logger.info("Set model parameters")
  474. self.set_gguf_parameters()
  475. logger.info("Set model quantization version")
  476. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  477. def write_vocab(self):
  478. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  479. def write(self):
  480. self.prepare_tensors()
  481. self.prepare_metadata(vocab_only=False)
  482. self.gguf_writer.write_header_to_file(path=self.fname_out)
  483. self.gguf_writer.write_kv_data_to_file()
  484. self.gguf_writer.write_tensors_to_file(progress=True)
  485. self.gguf_writer.close()
  486. @staticmethod
  487. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  488. part_names: list[str] = []
  489. for filename in os.listdir(dir_model):
  490. if filename.startswith(prefix) and filename.endswith(suffix):
  491. part_names.append(filename)
  492. part_names.sort()
  493. return part_names
  494. @staticmethod
  495. def load_hparams(dir_model: Path, is_mistral_format: bool):
  496. if is_mistral_format:
  497. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  498. config = json.load(f)
  499. return config
  500. try:
  501. # for security reason, we don't allow loading remote code by default
  502. # if a model need remote code, we will fallback to config.json
  503. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  504. except Exception as e:
  505. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  506. logger.warning("Trying to load config.json instead")
  507. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  508. config = json.load(f)
  509. if "llm_config" in config:
  510. # rename for InternVL
  511. config["text_config"] = config["llm_config"]
  512. if "thinker_config" in config:
  513. # rename for Qwen2.5-Omni
  514. config["text_config"] = config["thinker_config"]["text_config"]
  515. return config
  516. @classmethod
  517. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  518. assert names
  519. def func(modelcls: AnyModel) -> AnyModel:
  520. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  521. for name in names:
  522. cls._model_classes[model_type][name] = modelcls
  523. return modelcls
  524. return func
  525. @classmethod
  526. def print_registered_models(cls):
  527. for model_type, model_classes in cls._model_classes.items():
  528. logger.error(f"{model_type.name} models:")
  529. for name in sorted(model_classes.keys()):
  530. logger.error(f" - {name}")
  531. @classmethod
  532. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  533. try:
  534. return cls._model_classes[model_type][arch]
  535. except KeyError:
  536. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  537. class TextModel(ModelBase):
  538. model_type = ModelType.TEXT
  539. hf_arch: str
  540. def __init__(self, *args, **kwargs):
  541. super().__init__(*args, **kwargs)
  542. if not self.is_mistral_format:
  543. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  544. else:
  545. self.hf_arch = ""
  546. if "text_config" in self.hparams:
  547. # move the text_config to the root level
  548. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  549. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  550. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  551. @classmethod
  552. def __init_subclass__(cls):
  553. # can't use an abstract property, because overriding it without type errors
  554. # would require using decorated functions instead of simply defining the property
  555. if "model_arch" not in cls.__dict__:
  556. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  557. def set_vocab(self):
  558. self._set_vocab_gpt2()
  559. def prepare_metadata(self, vocab_only: bool):
  560. super().prepare_metadata(vocab_only=vocab_only)
  561. total_params = self.gguf_writer.get_total_parameter_count()[0]
  562. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  563. output_type: str = self.ftype.name.partition("_")[2]
  564. # Filename Output
  565. if self.fname_out.is_dir():
  566. # Generate default filename based on model specification and available metadata
  567. if not vocab_only:
  568. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  569. else:
  570. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  571. # Use the default filename
  572. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  573. else:
  574. # Output path is a custom defined templated filename
  575. # Note: `not is_dir()` is used because `.is_file()` will not detect
  576. # file template strings as it doesn't actually exist as a file
  577. # Process templated file name with the output ftype, useful with the "auto" ftype
  578. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  579. logger.info("Set model tokenizer")
  580. self.set_vocab()
  581. def set_gguf_parameters(self):
  582. self.gguf_writer.add_block_count(self.block_count)
  583. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  584. self.gguf_writer.add_context_length(n_ctx)
  585. logger.info(f"gguf: context length = {n_ctx}")
  586. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  587. self.gguf_writer.add_embedding_length(n_embd)
  588. logger.info(f"gguf: embedding length = {n_embd}")
  589. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  590. self.gguf_writer.add_feed_forward_length(n_ff)
  591. logger.info(f"gguf: feed forward length = {n_ff}")
  592. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  593. self.gguf_writer.add_head_count(n_head)
  594. logger.info(f"gguf: head count = {n_head}")
  595. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  596. self.gguf_writer.add_head_count_kv(n_head_kv)
  597. logger.info(f"gguf: key-value head count = {n_head_kv}")
  598. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  599. self.gguf_writer.add_rope_freq_base(rope_theta)
  600. logger.info(f"gguf: rope theta = {rope_theta}")
  601. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  602. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  603. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  604. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  605. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  606. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  607. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  608. self.gguf_writer.add_expert_count(n_experts)
  609. logger.info(f"gguf: expert count = {n_experts}")
  610. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  611. self.gguf_writer.add_expert_used_count(n_experts_used)
  612. logger.info(f"gguf: experts used count = {n_experts_used}")
  613. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  614. self.gguf_writer.add_expert_group_count(n_expert_groups)
  615. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  616. if (n_group_used := self.hparams.get("topk_group")) is not None:
  617. self.gguf_writer.add_expert_group_used_count(n_group_used)
  618. logger.info(f"gguf: expert groups used count = {n_group_used}")
  619. if (head_dim := self.hparams.get("head_dim")) is not None:
  620. self.gguf_writer.add_key_length(head_dim)
  621. self.gguf_writer.add_value_length(head_dim)
  622. self.gguf_writer.add_file_type(self.ftype)
  623. logger.info(f"gguf: file type = {self.ftype}")
  624. def write_vocab(self):
  625. if len(self.gguf_writer.tensors) != 1:
  626. raise ValueError('Splitting the vocabulary is not supported')
  627. self.prepare_metadata(vocab_only=True)
  628. self.gguf_writer.write_header_to_file(path=self.fname_out)
  629. self.gguf_writer.write_kv_data_to_file()
  630. self.gguf_writer.close()
  631. def does_token_look_special(self, token: str | bytes) -> bool:
  632. if isinstance(token, (bytes, bytearray)):
  633. token_text = token.decode(encoding="utf-8")
  634. elif isinstance(token, memoryview):
  635. token_text = token.tobytes().decode(encoding="utf-8")
  636. else:
  637. token_text = token
  638. # Some models mark some added tokens which ought to be control tokens as not special.
  639. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  640. seems_special = token_text in (
  641. "<pad>", # deepseek-coder
  642. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  643. )
  644. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  645. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  646. # TODO: should these be marked as UNUSED instead? (maybe not)
  647. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  648. return seems_special
  649. # used for GPT-2 BPE and WordPiece vocabs
  650. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  651. tokens: list[str] = []
  652. toktypes: list[int] = []
  653. from transformers import AutoTokenizer
  654. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  655. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  656. assert max(tokenizer.vocab.values()) < vocab_size
  657. tokpre = self.get_vocab_base_pre(tokenizer)
  658. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  659. added_vocab = tokenizer.get_added_vocab()
  660. added_tokens_decoder = tokenizer.added_tokens_decoder
  661. for i in range(vocab_size):
  662. if i not in reverse_vocab:
  663. tokens.append(f"[PAD{i}]")
  664. toktypes.append(gguf.TokenType.UNUSED)
  665. else:
  666. token: str = reverse_vocab[i]
  667. if token in added_vocab:
  668. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  669. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  670. if not added_tokens_decoder[i].normalized:
  671. previous_token = token
  672. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  673. if previous_token != token:
  674. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  675. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  676. toktypes.append(gguf.TokenType.CONTROL)
  677. else:
  678. # NOTE: this was added for Gemma.
  679. # Encoding and decoding the tokens above isn't sufficient for this case.
  680. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  681. toktypes.append(gguf.TokenType.USER_DEFINED)
  682. else:
  683. toktypes.append(gguf.TokenType.NORMAL)
  684. tokens.append(token)
  685. return tokens, toktypes, tokpre
  686. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  687. # do not modify it manually!
  688. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  689. # Marker: Start get_vocab_base_pre
  690. def get_vocab_base_pre(self, tokenizer) -> str:
  691. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  692. # is specific for the BPE pre-tokenizer used by the model
  693. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  694. # use in llama.cpp to implement the same pre-tokenizer
  695. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  696. chktok = tokenizer.encode(chktxt)
  697. chkhsh = sha256(str(chktok).encode()).hexdigest()
  698. logger.debug(f"chktok: {chktok}")
  699. logger.debug(f"chkhsh: {chkhsh}")
  700. res = None
  701. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  702. # or pull the latest version of the model from Huggingface
  703. # don't edit the hashes manually!
  704. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  705. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  706. res = "chatglm-bpe"
  707. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  708. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  709. res = "chatglm-bpe"
  710. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  711. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  712. res = "glm4"
  713. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  714. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  715. res = "glm4"
  716. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  717. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  718. res = "minerva-7b"
  719. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  720. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  721. res = "hunyuan"
  722. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  723. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  724. res = "hunyuan-dense"
  725. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  726. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  727. res = "falcon-h1"
  728. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  729. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  730. res = "falcon-h1"
  731. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  732. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  733. res = "falcon-h1"
  734. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  735. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  736. res = "falcon-h1"
  737. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  738. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  739. res = "kimi-k2"
  740. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  741. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  742. res = "qwen2"
  743. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  744. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  745. res = "grok-2"
  746. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  747. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  748. res = "llama-bpe"
  749. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  750. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  751. res = "deepseek-llm"
  752. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  753. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  754. res = "deepseek-coder"
  755. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  756. # ref: https://huggingface.co/tiiuae/falcon-7b
  757. res = "falcon"
  758. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  759. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  760. res = "bert-bge"
  761. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  762. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  763. res = "falcon3"
  764. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  765. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  766. res = "bert-bge-large"
  767. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  768. # ref: https://huggingface.co/mosaicml/mpt-7b
  769. res = "mpt"
  770. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  771. # ref: https://huggingface.co/bigcode/starcoder2-3b
  772. res = "starcoder"
  773. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  774. # ref: https://huggingface.co/openai-community/gpt2
  775. res = "gpt-2"
  776. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  777. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  778. res = "stablelm2"
  779. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  780. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  781. res = "refact"
  782. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  783. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  784. res = "command-r"
  785. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  786. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  787. res = "qwen2"
  788. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  789. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  790. res = "olmo"
  791. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  792. # ref: https://huggingface.co/databricks/dbrx-base
  793. res = "dbrx"
  794. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  795. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  796. res = "jina-v1-en"
  797. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  798. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  799. res = "jina-v2-en"
  800. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  801. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  802. res = "jina-v2-es"
  803. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  804. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  805. res = "jina-v2-de"
  806. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  807. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  808. res = "smaug-bpe"
  809. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  810. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  811. res = "poro-chat"
  812. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  813. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  814. res = "jina-v2-code"
  815. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  816. # ref: https://huggingface.co/LumiOpen/Viking-7B
  817. res = "viking"
  818. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  819. # ref: https://huggingface.co/core42/jais-13b
  820. res = "jais"
  821. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  822. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  823. res = "codeshell"
  824. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  825. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  826. res = "tekken"
  827. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  828. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  829. res = "smollm"
  830. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  831. # ref: https://huggingface.co/bigscience/bloom
  832. res = "bloom"
  833. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  834. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  835. res = "gpt3-finnish"
  836. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  837. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  838. res = "exaone"
  839. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  840. # ref: https://huggingface.co/microsoft/phi-2
  841. res = "phi-2"
  842. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  843. # ref: https://huggingface.co/facebook/chameleon-7b
  844. res = "chameleon"
  845. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  846. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  847. res = "roberta-bpe"
  848. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  849. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  850. res = "gigachat"
  851. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  852. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  853. res = "megrez"
  854. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  855. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  856. res = "deepseek-v3"
  857. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  858. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  859. res = "deepseek-r1-qwen"
  860. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  861. # ref: https://huggingface.co/Xenova/gpt-4o
  862. res = "gpt-4o"
  863. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  864. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  865. res = "superbpe"
  866. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  867. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  868. res = "trillion"
  869. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  870. # ref: https://huggingface.co/inclusionAI/Ling-lite
  871. res = "bailingmoe"
  872. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  873. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  874. res = "llama4"
  875. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  876. # ref: https://huggingface.co/mistral-community/pixtral-12b
  877. res = "pixtral"
  878. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  879. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  880. res = "seed-coder"
  881. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  882. # ref: https://huggingface.co/skt/A.X-4.0
  883. res = "a.x-4.0"
  884. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  885. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  886. res = "midm-2.0"
  887. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  888. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  889. res = "lfm2"
  890. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  891. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  892. res = "exaone4"
  893. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  894. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  895. res = "mellum"
  896. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  897. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  898. res = "bailingmoe2"
  899. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  900. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  901. res = "granite-docling"
  902. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  903. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  904. res = "minimax-m2"
  905. if res is None:
  906. logger.warning("\n")
  907. logger.warning("**************************************************************************************")
  908. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  909. logger.warning("** There are 2 possible reasons for this:")
  910. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  911. logger.warning("** - the pre-tokenization config has changed upstream")
  912. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  913. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  914. logger.warning("**")
  915. logger.warning(f"** chkhsh: {chkhsh}")
  916. logger.warning("**************************************************************************************")
  917. logger.warning("\n")
  918. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  919. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  920. logger.debug(f"chkhsh: {chkhsh}")
  921. return res
  922. # Marker: End get_vocab_base_pre
  923. def _set_vocab_none(self) -> None:
  924. self.gguf_writer.add_tokenizer_model("none")
  925. def _set_vocab_gpt2(self) -> None:
  926. tokens, toktypes, tokpre = self.get_vocab_base()
  927. self.gguf_writer.add_tokenizer_model("gpt2")
  928. self.gguf_writer.add_tokenizer_pre(tokpre)
  929. self.gguf_writer.add_token_list(tokens)
  930. self.gguf_writer.add_token_types(toktypes)
  931. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  932. special_vocab.add_to_gguf(self.gguf_writer)
  933. def _set_vocab_qwen(self):
  934. dir_model = self.dir_model
  935. hparams = self.hparams
  936. tokens: list[str] = []
  937. toktypes: list[int] = []
  938. from transformers import AutoTokenizer
  939. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  940. vocab_size = hparams["vocab_size"]
  941. assert max(tokenizer.get_vocab().values()) < vocab_size
  942. tokpre = self.get_vocab_base_pre(tokenizer)
  943. merges = []
  944. vocab = {}
  945. mergeable_ranks = tokenizer.mergeable_ranks
  946. for token, rank in mergeable_ranks.items():
  947. vocab[QwenModel.token_bytes_to_string(token)] = rank
  948. if len(token) == 1:
  949. continue
  950. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  951. assert len(merged) == 2
  952. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  953. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  954. added_vocab = tokenizer.special_tokens
  955. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  956. for i in range(vocab_size):
  957. if i not in reverse_vocab:
  958. tokens.append(f"[PAD{i}]")
  959. toktypes.append(gguf.TokenType.UNUSED)
  960. elif reverse_vocab[i] in added_vocab:
  961. tokens.append(reverse_vocab[i])
  962. toktypes.append(gguf.TokenType.CONTROL)
  963. else:
  964. tokens.append(reverse_vocab[i])
  965. toktypes.append(gguf.TokenType.NORMAL)
  966. self.gguf_writer.add_tokenizer_model("gpt2")
  967. self.gguf_writer.add_tokenizer_pre(tokpre)
  968. self.gguf_writer.add_token_list(tokens)
  969. self.gguf_writer.add_token_types(toktypes)
  970. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  971. special_vocab.merges = merges
  972. # only add special tokens when they were not already loaded from config.json
  973. if len(special_vocab.special_token_ids) == 0:
  974. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  975. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  976. # this one is usually not in config.json anyway
  977. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  978. special_vocab.add_to_gguf(self.gguf_writer)
  979. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  980. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  981. self.gguf_writer.add_tokenizer_model("llama")
  982. self.gguf_writer.add_tokenizer_pre("default")
  983. self.gguf_writer.add_token_list(tokens)
  984. self.gguf_writer.add_token_scores(scores)
  985. self.gguf_writer.add_token_types(toktypes)
  986. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  987. special_vocab.add_to_gguf(self.gguf_writer)
  988. def _create_vocab_sentencepiece(self):
  989. from sentencepiece import SentencePieceProcessor
  990. tokenizer_path = self.dir_model / 'tokenizer.model'
  991. if not tokenizer_path.is_file():
  992. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  993. tokenizer = SentencePieceProcessor()
  994. tokenizer.LoadFromFile(str(tokenizer_path))
  995. vocab_size = self.find_hparam([
  996. "vocab_size_per_layer_input", # gemma3n
  997. "vocab_size",
  998. ], optional=True) or tokenizer.vocab_size()
  999. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1000. scores: list[float] = [-10000.0] * vocab_size
  1001. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1002. for token_id in range(tokenizer.vocab_size()):
  1003. if token_id >= vocab_size:
  1004. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1005. break
  1006. piece = tokenizer.IdToPiece(token_id)
  1007. text = piece.encode("utf-8")
  1008. score = tokenizer.GetScore(token_id)
  1009. toktype = SentencePieceTokenTypes.NORMAL
  1010. if tokenizer.IsUnknown(token_id):
  1011. toktype = SentencePieceTokenTypes.UNKNOWN
  1012. elif tokenizer.IsControl(token_id):
  1013. toktype = SentencePieceTokenTypes.CONTROL
  1014. elif tokenizer.IsUnused(token_id):
  1015. toktype = SentencePieceTokenTypes.UNUSED
  1016. elif tokenizer.IsByte(token_id):
  1017. toktype = SentencePieceTokenTypes.BYTE
  1018. tokens[token_id] = text
  1019. scores[token_id] = score
  1020. toktypes[token_id] = toktype
  1021. added_tokens_file = self.dir_model / 'added_tokens.json'
  1022. if added_tokens_file.is_file():
  1023. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1024. added_tokens_json = json.load(f)
  1025. for key in added_tokens_json:
  1026. token_id = added_tokens_json[key]
  1027. if token_id >= vocab_size:
  1028. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1029. continue
  1030. tokens[token_id] = key.encode("utf-8")
  1031. scores[token_id] = -1000.0
  1032. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1033. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1034. if tokenizer_config_file.is_file():
  1035. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1036. tokenizer_config_json = json.load(f)
  1037. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1038. for token_id, token_data in added_tokens_decoder.items():
  1039. token_id = int(token_id)
  1040. token: str = token_data["content"]
  1041. if token_id >= vocab_size:
  1042. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1043. continue
  1044. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1045. if tokens[token_id] != token.encode("utf-8"):
  1046. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1047. if token_data.get("special") or self.does_token_look_special(token):
  1048. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1049. else:
  1050. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1051. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1052. scores[token_id] = -1000.0
  1053. tokens[token_id] = token.encode("utf-8")
  1054. if vocab_size > len(tokens):
  1055. pad_count = vocab_size - len(tokens)
  1056. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1057. for i in range(1, pad_count + 1):
  1058. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1059. scores.append(-1000.0)
  1060. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1061. return tokens, scores, toktypes
  1062. def _set_vocab_llama_hf(self):
  1063. vocab = gguf.LlamaHfVocab(self.dir_model)
  1064. tokens = []
  1065. scores = []
  1066. toktypes = []
  1067. for text, score, toktype in vocab.all_tokens():
  1068. tokens.append(text)
  1069. scores.append(score)
  1070. toktypes.append(toktype)
  1071. assert len(tokens) == vocab.vocab_size
  1072. self.gguf_writer.add_tokenizer_model("llama")
  1073. self.gguf_writer.add_tokenizer_pre("default")
  1074. self.gguf_writer.add_token_list(tokens)
  1075. self.gguf_writer.add_token_scores(scores)
  1076. self.gguf_writer.add_token_types(toktypes)
  1077. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1078. special_vocab.add_to_gguf(self.gguf_writer)
  1079. def _set_vocab_rwkv_world(self):
  1080. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1081. vocab_size = self.hparams.get("vocab_size", 65536)
  1082. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1083. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1084. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1085. lines = f.readlines()
  1086. for line in lines:
  1087. parts = line.split(' ')
  1088. assert len(parts) >= 3
  1089. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1090. token = token.encode("utf-8") if isinstance(token, str) else token
  1091. assert isinstance(token, bytes)
  1092. assert len(token) == token_len
  1093. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1094. tokens.append(token_text.encode("utf-8"))
  1095. toktypes.append(gguf.TokenType.NORMAL)
  1096. remainder = vocab_size - len(tokens)
  1097. assert remainder >= 0
  1098. for i in range(len(tokens), vocab_size):
  1099. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1100. toktypes.append(gguf.TokenType.UNUSED)
  1101. self.gguf_writer.add_tokenizer_model("rwkv")
  1102. self.gguf_writer.add_token_list(tokens)
  1103. self.gguf_writer.add_token_types(toktypes)
  1104. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1105. if special_vocab.chat_template is None:
  1106. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1107. if template_path.is_file():
  1108. with open(template_path, "r", encoding="utf-8") as f:
  1109. template = f.read()
  1110. else:
  1111. template = "rwkv-world"
  1112. special_vocab.chat_template = template
  1113. # hack: Add '\n\n' as the EOT token to make it chat normally
  1114. special_vocab._set_special_token("eot", 261)
  1115. # hack: Override these as they have already been set (incorrectly)
  1116. special_vocab.special_token_ids["bos"] = 0
  1117. special_vocab.special_token_ids["eos"] = 0
  1118. special_vocab.add_to_gguf(self.gguf_writer)
  1119. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1120. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1121. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1122. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1123. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1124. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1125. assert field # tokenizer model
  1126. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1127. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1128. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1129. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1130. assert field # token list
  1131. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1132. if model_name == "llama-spm":
  1133. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1134. assert field # token scores
  1135. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1136. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1137. assert field # token types
  1138. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1139. if model_name != "llama-spm":
  1140. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1141. assert field # token merges
  1142. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1143. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1144. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1145. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1146. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1147. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1148. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1149. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1150. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1151. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1152. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1153. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1154. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1155. def _try_set_pooling_type(self) -> None:
  1156. # get pooling path
  1157. pooling_path = None
  1158. module_path = self.dir_model / "modules.json"
  1159. if module_path.is_file():
  1160. with open(module_path, encoding="utf-8") as f:
  1161. modules = json.load(f)
  1162. for mod in modules:
  1163. if mod["type"] == "sentence_transformers.models.Pooling":
  1164. pooling_path = mod["path"]
  1165. break
  1166. # get pooling type
  1167. if pooling_path is not None:
  1168. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1169. pooling = json.load(f)
  1170. if pooling["pooling_mode_mean_tokens"]:
  1171. pooling_type = gguf.PoolingType.MEAN
  1172. elif pooling["pooling_mode_cls_token"]:
  1173. pooling_type = gguf.PoolingType.CLS
  1174. elif pooling["pooling_mode_lasttoken"]:
  1175. pooling_type = gguf.PoolingType.LAST
  1176. else:
  1177. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1178. self.gguf_writer.add_pooling_type(pooling_type)
  1179. def _set_vocab_interns1(self):
  1180. tokens: list[str] = []
  1181. toktypes: list[int] = []
  1182. from transformers import AutoTokenizer
  1183. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1184. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1185. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1186. assert max(vocab.values()) < vocab_size
  1187. tokpre = self.get_vocab_base_pre(tokenizer)
  1188. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1189. added_vocab = tokenizer.get_added_vocab()
  1190. added_tokens_decoder = tokenizer.added_tokens_decoder
  1191. for i in range(vocab_size):
  1192. if i not in reverse_vocab:
  1193. tokens.append(f"[PAD{i}]")
  1194. toktypes.append(gguf.TokenType.UNUSED)
  1195. else:
  1196. token: str = reverse_vocab[i]
  1197. if token in added_vocab:
  1198. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1199. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1200. if not added_tokens_decoder[i].normalized:
  1201. previous_token = token
  1202. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1203. if previous_token != token:
  1204. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1205. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1206. toktypes.append(gguf.TokenType.CONTROL)
  1207. else:
  1208. toktypes.append(gguf.TokenType.USER_DEFINED)
  1209. else:
  1210. toktypes.append(gguf.TokenType.NORMAL)
  1211. tokens.append(token)
  1212. self.gguf_writer.add_tokenizer_model("gpt2")
  1213. self.gguf_writer.add_tokenizer_pre(tokpre)
  1214. self.gguf_writer.add_token_list(tokens)
  1215. self.gguf_writer.add_token_types(toktypes)
  1216. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1217. special_vocab._set_special_token("bos", 151643)
  1218. special_vocab.add_to_gguf(self.gguf_writer)
  1219. class MmprojModel(ModelBase):
  1220. model_type = ModelType.MMPROJ
  1221. model_arch = gguf.MODEL_ARCH.MMPROJ
  1222. preprocessor_config: dict[str, Any]
  1223. global_config: dict[str, Any]
  1224. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1225. has_vision_encoder: bool = True # by default
  1226. has_audio_encoder: bool = False
  1227. # for models having multiple encoders, we need to separate their hparams
  1228. hparams_vision: dict[str, Any] | None = None
  1229. hparams_audio: dict[str, Any] | None = None
  1230. def __init__(self, *args, **kwargs):
  1231. super().__init__(*args, **kwargs)
  1232. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1233. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1234. # get n_embd of the text model
  1235. if not self.is_mistral_format:
  1236. if "text_config" not in self.hparams:
  1237. self.hparams["text_config"] = {}
  1238. if "audio_config" not in self.hparams:
  1239. self.hparams["audio_config"] = {}
  1240. text_config = {**self.hparams, **self.hparams["text_config"]}
  1241. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1242. else:
  1243. text_config = {
  1244. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1245. }
  1246. self.n_embd_text = text_config.get("hidden_dim", 0)
  1247. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1248. # move vision config to the top level, while preserving the original hparams in global_config
  1249. import copy
  1250. self.global_config = copy.deepcopy(self.hparams)
  1251. self.hparams_vision = self.get_vision_config()
  1252. self.hparams_audio = self.get_audio_config()
  1253. if self.hparams_vision is None and self.hparams_audio is None:
  1254. raise ValueError("vision_config / audio_config not found in hparams")
  1255. # for compat with vision-only models
  1256. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1257. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1258. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1259. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1260. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1261. # load preprocessor config
  1262. self.preprocessor_config = {}
  1263. if not self.is_mistral_format:
  1264. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1265. self.preprocessor_config = json.load(f)
  1266. def get_vision_config(self) -> dict[str, Any] | None:
  1267. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1268. return self.global_config.get(config_name)
  1269. def get_audio_config(self) -> dict[str, Any] | None:
  1270. return self.global_config.get("audio_config")
  1271. def set_type(self):
  1272. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1273. def prepare_metadata(self, vocab_only: bool):
  1274. super().prepare_metadata(vocab_only=vocab_only)
  1275. output_type: str = self.ftype.name.partition("_")[2]
  1276. if self.fname_out.is_dir():
  1277. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1278. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1279. else:
  1280. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1281. def set_gguf_parameters(self):
  1282. self.gguf_writer.add_file_type(self.ftype)
  1283. if self.has_vision_encoder:
  1284. self.gguf_writer.add_clip_has_vision_encoder(True)
  1285. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1286. # vision config
  1287. self.image_size = self.find_vparam(["image_size"])
  1288. self.gguf_writer.add_vision_image_size(self.image_size)
  1289. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1290. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1291. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1292. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1293. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1294. # preprocessor config
  1295. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1296. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1297. self.gguf_writer.add_vision_image_mean(image_mean)
  1298. self.gguf_writer.add_vision_image_std(image_std)
  1299. if self.has_audio_encoder:
  1300. self.gguf_writer.add_clip_has_audio_encoder(True)
  1301. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1302. # audio config
  1303. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1304. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1305. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1306. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1307. if not self.has_vision_encoder and not self.has_audio_encoder:
  1308. raise ValueError("MmprojModel must have either vision or audio encoder")
  1309. def write_vocab(self):
  1310. raise ValueError("MmprojModel does not support vocab writing")
  1311. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1312. assert self.hparams_vision is not None
  1313. return self._find_param(self.hparams_vision, keys, optional)
  1314. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1315. assert self.hparams_audio is not None
  1316. return self._find_param(self.hparams_audio, keys, optional)
  1317. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1318. key = next((k for k in keys if k in obj), None)
  1319. if key is not None:
  1320. return obj[key]
  1321. if optional:
  1322. return None
  1323. raise KeyError(f"could not find any of: {keys}")
  1324. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1325. del bid, name, n_dims # unused
  1326. if ".patch_embd.weight" in new_name:
  1327. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1328. return False
  1329. @ModelBase.register("GPTNeoXForCausalLM")
  1330. class GPTNeoXModel(TextModel):
  1331. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1332. def set_gguf_parameters(self):
  1333. block_count = self.hparams["num_hidden_layers"]
  1334. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1335. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1336. self.gguf_writer.add_block_count(block_count)
  1337. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1338. self.gguf_writer.add_rope_dimension_count(
  1339. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1340. )
  1341. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1342. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1343. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1345. del bid # unused
  1346. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1347. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1348. tensors: list[tuple[str, Tensor]] = []
  1349. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1350. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1351. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1352. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1353. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1354. data_torch = torch.cat(
  1355. (
  1356. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1357. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1358. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1359. ),
  1360. dim=0,
  1361. )
  1362. logger.info("re-format attention.linear_qkv.weight")
  1363. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1364. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1365. data_torch = torch.cat(
  1366. (
  1367. qkv_bias[:, 0, :].reshape((n_embed,)),
  1368. qkv_bias[:, 1, :].reshape((n_embed,)),
  1369. qkv_bias[:, 2, :].reshape((n_embed,)),
  1370. ),
  1371. dim=0,
  1372. )
  1373. logger.info("re-format attention.linear_qkv.bias")
  1374. tensors.append((self.map_tensor_name(name), data_torch))
  1375. return tensors
  1376. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1377. class BloomModel(TextModel):
  1378. model_arch = gguf.MODEL_ARCH.BLOOM
  1379. def set_gguf_parameters(self):
  1380. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1381. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1382. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1383. self.gguf_writer.add_embedding_length(n_embed)
  1384. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1385. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1386. self.gguf_writer.add_head_count(n_head)
  1387. self.gguf_writer.add_head_count_kv(n_head)
  1388. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1389. self.gguf_writer.add_file_type(self.ftype)
  1390. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1391. del bid # unused
  1392. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1393. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1394. name = re.sub(r'transformer\.', '', name)
  1395. tensors: list[tuple[str, Tensor]] = []
  1396. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1397. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1398. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1399. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1400. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1401. data_torch = torch.cat(
  1402. (
  1403. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1404. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1405. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1406. ),
  1407. dim=0,
  1408. )
  1409. logger.info("re-format attention.linear_qkv.weight")
  1410. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1411. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1412. data_torch = torch.cat(
  1413. (
  1414. qkv_bias[:, 0, :].reshape((n_embed,)),
  1415. qkv_bias[:, 1, :].reshape((n_embed,)),
  1416. qkv_bias[:, 2, :].reshape((n_embed,)),
  1417. ),
  1418. dim=0,
  1419. )
  1420. logger.info("re-format attention.linear_qkv.bias")
  1421. tensors.append((self.map_tensor_name(name), data_torch))
  1422. return tensors
  1423. @ModelBase.register("MPTForCausalLM")
  1424. class MPTModel(TextModel):
  1425. model_arch = gguf.MODEL_ARCH.MPT
  1426. def set_vocab(self):
  1427. try:
  1428. self._set_vocab_gpt2()
  1429. except Exception:
  1430. # Fallback for SEA-LION model
  1431. self._set_vocab_sentencepiece()
  1432. self.gguf_writer.add_add_bos_token(False)
  1433. self.gguf_writer.add_pad_token_id(3)
  1434. self.gguf_writer.add_eos_token_id(1)
  1435. self.gguf_writer.add_unk_token_id(0)
  1436. def set_gguf_parameters(self):
  1437. block_count = self.hparams["n_layers"]
  1438. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1439. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1440. self.gguf_writer.add_block_count(block_count)
  1441. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1442. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1443. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1444. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1445. self.gguf_writer.add_layer_norm_eps(1e-5)
  1446. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1447. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1448. if self.hparams["attn_config"]["alibi"]:
  1449. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1450. else:
  1451. self.gguf_writer.add_max_alibi_bias(0.0)
  1452. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1453. del bid # unused
  1454. if "scales" in name:
  1455. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1456. new_name = new_name.replace("scales", "act.scales")
  1457. else:
  1458. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1459. return [(new_name, data_torch)]
  1460. @ModelBase.register("OrionForCausalLM")
  1461. class OrionModel(TextModel):
  1462. model_arch = gguf.MODEL_ARCH.ORION
  1463. def set_vocab(self):
  1464. self._set_vocab_sentencepiece()
  1465. def set_gguf_parameters(self):
  1466. block_count = self.hparams["num_hidden_layers"]
  1467. head_count = self.hparams["num_attention_heads"]
  1468. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1469. ctx_length = 0
  1470. if "max_sequence_length" in self.hparams:
  1471. ctx_length = self.hparams["max_sequence_length"]
  1472. elif "max_position_embeddings" in self.hparams:
  1473. ctx_length = self.hparams["max_position_embeddings"]
  1474. elif "model_max_length" in self.hparams:
  1475. ctx_length = self.hparams["model_max_length"]
  1476. else:
  1477. raise ValueError("gguf: can not find ctx length parameter.")
  1478. self.gguf_writer.add_file_type(self.ftype)
  1479. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1480. self.gguf_writer.add_context_length(ctx_length)
  1481. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1482. self.gguf_writer.add_block_count(block_count)
  1483. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1484. self.gguf_writer.add_head_count(head_count)
  1485. self.gguf_writer.add_head_count_kv(head_count_kv)
  1486. # note: config provides rms norm but it is actually layer norm
  1487. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1488. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1489. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1490. class BaichuanModel(TextModel):
  1491. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1492. def set_vocab(self):
  1493. self._set_vocab_sentencepiece()
  1494. def set_gguf_parameters(self):
  1495. block_count = self.hparams["num_hidden_layers"]
  1496. head_count = self.hparams["num_attention_heads"]
  1497. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1498. ctx_length = 0
  1499. if "max_sequence_length" in self.hparams:
  1500. ctx_length = self.hparams["max_sequence_length"]
  1501. elif "max_position_embeddings" in self.hparams:
  1502. ctx_length = self.hparams["max_position_embeddings"]
  1503. elif "model_max_length" in self.hparams:
  1504. ctx_length = self.hparams["model_max_length"]
  1505. else:
  1506. raise ValueError("gguf: can not find ctx length parameter.")
  1507. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1508. self.gguf_writer.add_context_length(ctx_length)
  1509. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1510. self.gguf_writer.add_block_count(block_count)
  1511. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1512. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1513. self.gguf_writer.add_head_count(head_count)
  1514. self.gguf_writer.add_head_count_kv(head_count_kv)
  1515. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1516. self.gguf_writer.add_file_type(self.ftype)
  1517. rope_scaling = self.hparams.get("rope_scaling") or {}
  1518. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1519. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1520. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1521. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1522. head_count = self.hparams["num_attention_heads"]
  1523. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1524. tensors: list[tuple[str, Tensor]] = []
  1525. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1526. logger.info(f"Unpacking and permuting layer {bid}")
  1527. tensors = [
  1528. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1529. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1530. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1531. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1532. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1533. self._reverse_hf_part(data_torch, 2)),
  1534. ]
  1535. else:
  1536. tensors = [(self.map_tensor_name(name), data_torch)]
  1537. return tensors
  1538. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1539. if n_kv_head is not None and n_head != n_kv_head:
  1540. n_head //= n_kv_head
  1541. return (
  1542. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1543. .swapaxes(1, 2)
  1544. .reshape(weights.shape)
  1545. )
  1546. def _reverse_hf_permute_part(
  1547. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1548. ) -> Tensor:
  1549. r = weights.shape[0] // 3
  1550. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1551. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1552. r = weights.shape[0] // 3
  1553. return weights[r * n_part:r * n_part + r, ...]
  1554. @ModelBase.register("XverseForCausalLM")
  1555. class XverseModel(TextModel):
  1556. model_arch = gguf.MODEL_ARCH.XVERSE
  1557. def set_vocab(self):
  1558. assert (self.dir_model / "tokenizer.json").is_file()
  1559. dir_model = self.dir_model
  1560. hparams = self.hparams
  1561. tokens: list[bytes] = []
  1562. toktypes: list[int] = []
  1563. from transformers import AutoTokenizer
  1564. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1565. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1566. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1567. # because vocab_size is the count of items, and indexes start at 0.
  1568. max_vocab_index = max(tokenizer.get_vocab().values())
  1569. if max_vocab_index >= vocab_size:
  1570. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1571. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1572. added_vocab = tokenizer.get_added_vocab()
  1573. for token_id in range(vocab_size):
  1574. token_text = reverse_vocab[token_id].encode('utf-8')
  1575. # replace "\x00" to string with length > 0
  1576. if token_text == b"\x00":
  1577. toktype = gguf.TokenType.BYTE # special
  1578. token_text = f"<{token_text}>".encode('utf-8')
  1579. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1580. toktype = gguf.TokenType.BYTE # special
  1581. elif reverse_vocab[token_id] in added_vocab:
  1582. if tokenizer.added_tokens_decoder[token_id].special:
  1583. toktype = gguf.TokenType.CONTROL
  1584. else:
  1585. toktype = gguf.TokenType.USER_DEFINED
  1586. else:
  1587. toktype = gguf.TokenType.NORMAL
  1588. tokens.append(token_text)
  1589. toktypes.append(toktype)
  1590. self.gguf_writer.add_tokenizer_model("llama")
  1591. self.gguf_writer.add_tokenizer_pre("default")
  1592. self.gguf_writer.add_token_list(tokens)
  1593. self.gguf_writer.add_token_types(toktypes)
  1594. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1595. special_vocab.add_to_gguf(self.gguf_writer)
  1596. def set_gguf_parameters(self):
  1597. block_count = self.hparams["num_hidden_layers"]
  1598. head_count = self.hparams["num_attention_heads"]
  1599. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1600. ctx_length = 0
  1601. if "max_sequence_length" in self.hparams:
  1602. ctx_length = self.hparams["max_sequence_length"]
  1603. elif "max_position_embeddings" in self.hparams:
  1604. ctx_length = self.hparams["max_position_embeddings"]
  1605. elif "model_max_length" in self.hparams:
  1606. ctx_length = self.hparams["model_max_length"]
  1607. else:
  1608. raise ValueError("gguf: can not find ctx length parameter.")
  1609. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1610. self.gguf_writer.add_context_length(ctx_length)
  1611. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1612. self.gguf_writer.add_block_count(block_count)
  1613. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1614. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1615. self.gguf_writer.add_head_count(head_count)
  1616. self.gguf_writer.add_head_count_kv(head_count_kv)
  1617. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1618. self.gguf_writer.add_file_type(self.ftype)
  1619. rope_scaling = self.hparams.get("rope_scaling") or {}
  1620. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1621. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1622. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1623. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1624. del bid # unused
  1625. head_count = self.hparams["num_attention_heads"]
  1626. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1627. # HF models permute some of the tensors, so we need to undo that
  1628. if name.endswith("q_proj.weight"):
  1629. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1630. if name.endswith("k_proj.weight"):
  1631. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1632. return [(self.map_tensor_name(name), data_torch)]
  1633. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1634. if n_kv_head is not None and n_head != n_kv_head:
  1635. n_head //= n_kv_head
  1636. return (
  1637. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1638. .swapaxes(1, 2)
  1639. .reshape(weights.shape)
  1640. )
  1641. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1642. class FalconModel(TextModel):
  1643. model_arch = gguf.MODEL_ARCH.FALCON
  1644. def set_gguf_parameters(self):
  1645. block_count = self.hparams.get("num_hidden_layers")
  1646. if block_count is None:
  1647. block_count = self.hparams["n_layer"] # old name
  1648. n_head = self.hparams.get("num_attention_heads")
  1649. if n_head is None:
  1650. n_head = self.hparams["n_head"] # old name
  1651. n_head_kv = self.hparams.get("num_kv_heads")
  1652. if n_head_kv is None:
  1653. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1654. self.gguf_writer.add_context_length(2048) # not in config.json
  1655. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1656. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1657. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1658. self.gguf_writer.add_block_count(block_count)
  1659. self.gguf_writer.add_head_count(n_head)
  1660. self.gguf_writer.add_head_count_kv(n_head_kv)
  1661. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1662. self.gguf_writer.add_file_type(self.ftype)
  1663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1664. del bid # unused
  1665. # QKV tensor transform
  1666. # The original query_key_value tensor contains n_head_kv "kv groups",
  1667. # each consisting of n_head/n_head_kv query weights followed by one key
  1668. # and one value weight (shared by all query heads in the kv group).
  1669. # This layout makes it a big pain to work with in GGML.
  1670. # So we rearrange them here,, so that we have n_head query weights
  1671. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1672. # in contiguous fashion.
  1673. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1674. if "query_key_value" in name:
  1675. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1676. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1677. head_dim = self.hparams["hidden_size"] // n_head
  1678. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1679. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1680. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1681. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1682. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1683. return [(self.map_tensor_name(name), data_torch)]
  1684. @ModelBase.register("GPTBigCodeForCausalLM")
  1685. class StarCoderModel(TextModel):
  1686. model_arch = gguf.MODEL_ARCH.STARCODER
  1687. def set_gguf_parameters(self):
  1688. block_count = self.hparams["n_layer"]
  1689. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1690. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1691. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1692. self.gguf_writer.add_block_count(block_count)
  1693. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1694. self.gguf_writer.add_head_count_kv(1)
  1695. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1696. self.gguf_writer.add_file_type(self.ftype)
  1697. @ModelBase.register("GPTRefactForCausalLM")
  1698. class RefactModel(TextModel):
  1699. model_arch = gguf.MODEL_ARCH.REFACT
  1700. def set_vocab(self):
  1701. super().set_vocab()
  1702. # TODO: how to determine special FIM tokens automatically?
  1703. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1704. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1705. special_vocab._set_special_token("prefix", 1)
  1706. special_vocab._set_special_token("suffix", 3)
  1707. special_vocab._set_special_token("middle", 2)
  1708. special_vocab.chat_template = None # do not add it twice
  1709. special_vocab.add_to_gguf(self.gguf_writer)
  1710. def set_gguf_parameters(self):
  1711. hidden_dim = self.hparams["n_embd"]
  1712. inner_dim = 4 * hidden_dim
  1713. hidden_dim = int(2 * inner_dim / 3)
  1714. multiple_of = 256
  1715. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1716. block_count = self.hparams["n_layer"]
  1717. # refact uses Alibi. So this is from config.json which might be used by training.
  1718. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1719. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1720. self.gguf_writer.add_feed_forward_length(ff_dim)
  1721. self.gguf_writer.add_block_count(block_count)
  1722. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1723. self.gguf_writer.add_head_count_kv(1)
  1724. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1725. self.gguf_writer.add_file_type(self.ftype)
  1726. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1727. hidden_dim = self.hparams["n_embd"]
  1728. inner_dim = 4 * hidden_dim
  1729. hidden_dim = int(2 * inner_dim / 3)
  1730. multiple_of = 256
  1731. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1732. n_head = self.hparams["n_head"]
  1733. n_head_kv = 1
  1734. head_dim = self.hparams["n_embd"] // n_head
  1735. tensors: list[tuple[str, Tensor]] = []
  1736. if bid is not None:
  1737. if name == f"transformer.h.{bid}.attn.kv.weight":
  1738. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1739. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1740. elif name == f"transformer.h.{bid}.attn.q.weight":
  1741. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1742. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1743. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1744. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1745. if len(tensors) == 0:
  1746. tensors.append((self.map_tensor_name(name), data_torch))
  1747. return tensors
  1748. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1749. class StableLMModel(TextModel):
  1750. model_arch = gguf.MODEL_ARCH.STABLELM
  1751. def set_vocab(self):
  1752. if (self.dir_model / "tokenizer.json").is_file():
  1753. self._set_vocab_gpt2()
  1754. else:
  1755. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1756. self._set_vocab_qwen()
  1757. def set_gguf_parameters(self):
  1758. hparams = self.hparams
  1759. block_count = hparams["num_hidden_layers"]
  1760. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1761. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1762. self.gguf_writer.add_block_count(block_count)
  1763. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1764. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1765. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1766. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1767. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1768. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1769. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1770. self.gguf_writer.add_file_type(self.ftype)
  1771. _q_norms: list[dict[str, Tensor]] | None = None
  1772. _k_norms: list[dict[str, Tensor]] | None = None
  1773. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1774. n_head = self.hparams["num_attention_heads"]
  1775. n_kv_head = self.hparams["num_key_value_heads"]
  1776. if name.find("q_layernorm.norms") != -1:
  1777. assert bid is not None
  1778. if self._q_norms is None:
  1779. self._q_norms = [{} for _ in range(self.block_count)]
  1780. self._q_norms[bid][name] = data_torch
  1781. if len(self._q_norms[bid]) >= n_head:
  1782. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1783. else:
  1784. return []
  1785. if name.find("k_layernorm.norms") != -1:
  1786. assert bid is not None
  1787. if self._k_norms is None:
  1788. self._k_norms = [{} for _ in range(self.block_count)]
  1789. self._k_norms[bid][name] = data_torch
  1790. if len(self._k_norms[bid]) >= n_kv_head:
  1791. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1792. else:
  1793. return []
  1794. return [(self.map_tensor_name(name), data_torch)]
  1795. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1796. datas: list[Tensor] = []
  1797. # extract the norms in order
  1798. for xid in range(n_head):
  1799. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1800. datas.append(norms[ename])
  1801. del norms[ename]
  1802. data_torch = torch.stack(datas, dim=0)
  1803. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1804. new_name = self.map_tensor_name(merged_name)
  1805. return [(new_name, data_torch)]
  1806. def prepare_tensors(self):
  1807. super().prepare_tensors()
  1808. if self._q_norms is not None or self._k_norms is not None:
  1809. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1810. norms = (
  1811. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1812. ) + (
  1813. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1814. )
  1815. if len(norms) > 0:
  1816. raise ValueError(f"Unprocessed norms: {norms}")
  1817. @ModelBase.register(
  1818. "LLaMAForCausalLM",
  1819. "LlamaForCausalLM",
  1820. "MistralForCausalLM",
  1821. "MixtralForCausalLM",
  1822. "VLlama3ForCausalLM",
  1823. "LlavaForConditionalGeneration",
  1824. "VoxtralForConditionalGeneration",
  1825. "LlamaModel")
  1826. class LlamaModel(TextModel):
  1827. model_arch = gguf.MODEL_ARCH.LLAMA
  1828. undo_permute = True
  1829. def __init__(self, *args, **kwargs):
  1830. super().__init__(*args, **kwargs)
  1831. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1832. if self.hf_arch == "VLlama3ForCausalLM":
  1833. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1834. def _set_vocab_mistral(self):
  1835. if not _mistral_common_installed:
  1836. raise ImportError(_mistral_import_error_msg)
  1837. vocab = MistralVocab(self.dir_model)
  1838. logger.info(
  1839. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1840. )
  1841. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1842. tokens = []
  1843. scores = []
  1844. toktypes = []
  1845. for text, score, toktype in vocab.all_tokens():
  1846. tokens.append(text)
  1847. scores.append(score)
  1848. toktypes.append(toktype)
  1849. assert len(tokens) == vocab.vocab_size, (
  1850. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1851. )
  1852. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1853. self.gguf_writer.add_tokenizer_pre("tekken")
  1854. self.gguf_writer.add_token_merges(
  1855. vocab.extract_vocab_merges_from_model()
  1856. )
  1857. logger.info(
  1858. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1859. )
  1860. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1861. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1862. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1863. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1864. self.gguf_writer.add_token_list(tokens)
  1865. self.gguf_writer.add_token_scores(scores)
  1866. self.gguf_writer.add_token_types(toktypes)
  1867. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1868. self.gguf_writer.add_add_bos_token(True)
  1869. self.gguf_writer.add_add_eos_token(False)
  1870. template_dir = Path(__file__).parent / "models/templates/"
  1871. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1872. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1873. if self.is_mistral_format:
  1874. logger.info(
  1875. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1876. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1877. )
  1878. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1879. self.gguf_writer.add_chat_template(template)
  1880. else:
  1881. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1882. def set_vocab(self):
  1883. if self.is_mistral_format:
  1884. return self._set_vocab_mistral()
  1885. path_tekken_json = self.dir_model / "tekken.json"
  1886. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1887. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1888. self._set_vocab_mistral()
  1889. try:
  1890. self._set_vocab_sentencepiece()
  1891. except FileNotFoundError:
  1892. try:
  1893. self._set_vocab_llama_hf()
  1894. except (FileNotFoundError, TypeError):
  1895. # Llama 3
  1896. self._set_vocab_gpt2()
  1897. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1898. if self.hparams.get("vocab_size", 32000) == 32016:
  1899. special_vocab = gguf.SpecialVocab(
  1900. self.dir_model, load_merges=False,
  1901. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1902. )
  1903. special_vocab._set_special_token("prefix", 32007)
  1904. special_vocab._set_special_token("suffix", 32008)
  1905. special_vocab._set_special_token("middle", 32009)
  1906. special_vocab._set_special_token("eot", 32010)
  1907. special_vocab.add_to_gguf(self.gguf_writer)
  1908. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1909. if tokenizer_config_file.is_file():
  1910. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1911. tokenizer_config_json = json.load(f)
  1912. if "add_prefix_space" in tokenizer_config_json:
  1913. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1914. # Apply to granite small models only
  1915. if self.hparams.get("vocab_size", 32000) == 49152:
  1916. self.gguf_writer.add_add_bos_token(False)
  1917. def set_gguf_parameters(self):
  1918. super().set_gguf_parameters()
  1919. hparams = self.hparams
  1920. if not self.is_mistral_format:
  1921. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1922. if (rope_dim := hparams.get("head_dim")) is None:
  1923. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1924. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1925. rope_scaling = self.hparams.get("rope_scaling") or {}
  1926. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1927. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1928. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1929. @staticmethod
  1930. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1931. if n_head_kv is not None and n_head != n_head_kv:
  1932. n_head = n_head_kv
  1933. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1934. .swapaxes(1, 2)
  1935. .reshape(weights.shape))
  1936. _experts: list[dict[str, Tensor]] | None = None
  1937. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1938. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1939. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1940. vision_prefixes = [
  1941. "vision_encoder.",
  1942. "vision_language_adapter.",
  1943. "patch_merger.",
  1944. "pre_mm_projector_norm",
  1945. ]
  1946. is_multimodal_tensor = "vision_tower" in name \
  1947. or "vision_model" in name \
  1948. or "audio_tower" in name \
  1949. or "model.connector" in name \
  1950. or "multi_modal_projector" in name \
  1951. or any(
  1952. name.startswith(prefix)
  1953. for prefix in vision_prefixes
  1954. )
  1955. if is_multimodal_tensor:
  1956. return [] # skip vision tensors
  1957. elif self.hf_arch == "LlamaModel":
  1958. name = "model." + name
  1959. elif name.startswith("model.text_model"):
  1960. name = name.replace("text_model.", "") # for SmolVLM
  1961. elif name.startswith("language_model."):
  1962. name = name.replace("language_model.", "") # for the rest
  1963. if self.undo_permute:
  1964. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1965. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1966. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1967. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1968. # process the experts separately
  1969. if name.find("block_sparse_moe.experts") != -1:
  1970. n_experts = self.hparams["num_local_experts"]
  1971. assert bid is not None
  1972. if self._experts is None:
  1973. self._experts = [{} for _ in range(self.block_count)]
  1974. self._experts[bid][name] = data_torch
  1975. if len(self._experts[bid]) >= n_experts * 3:
  1976. tensors: list[tuple[str, Tensor]] = []
  1977. # merge the experts into a single 3d tensor
  1978. for wid in ["w1", "w2", "w3"]:
  1979. datas: list[Tensor] = []
  1980. for xid in range(n_experts):
  1981. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1982. datas.append(self._experts[bid][ename])
  1983. del self._experts[bid][ename]
  1984. data_torch = torch.stack(datas, dim=0)
  1985. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1986. new_name = self.map_tensor_name(merged_name)
  1987. tensors.append((new_name, data_torch))
  1988. return tensors
  1989. else:
  1990. return []
  1991. return [(self.map_tensor_name(name), data_torch)]
  1992. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1993. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1994. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1995. base = self.hparams.get("rope_theta", 10000.0)
  1996. if (dim := self.hparams.get("head_dim")) is None:
  1997. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1998. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1999. factor = rope_scaling.get("factor", 8.0)
  2000. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2001. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2002. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2003. low_freq_wavelen = old_context_len / low_freq_factor
  2004. high_freq_wavelen = old_context_len / high_freq_factor
  2005. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2006. rope_factors = []
  2007. for freq in freqs:
  2008. wavelen = 2 * math.pi / freq
  2009. if wavelen < high_freq_wavelen:
  2010. rope_factors.append(1)
  2011. elif wavelen > low_freq_wavelen:
  2012. rope_factors.append(factor)
  2013. else:
  2014. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2015. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2016. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2017. def prepare_tensors(self):
  2018. super().prepare_tensors()
  2019. if self._experts is not None:
  2020. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2021. experts = [k for d in self._experts for k in d.keys()]
  2022. if len(experts) > 0:
  2023. raise ValueError(f"Unprocessed experts: {experts}")
  2024. @ModelBase.register("ArceeForCausalLM")
  2025. class ArceeModel(LlamaModel):
  2026. model_arch = gguf.MODEL_ARCH.ARCEE
  2027. def set_gguf_parameters(self):
  2028. super().set_gguf_parameters()
  2029. self._try_set_pooling_type()
  2030. rope_scaling = self.hparams.get("rope_scaling") or {}
  2031. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2032. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2033. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2034. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2035. @ModelBase.register(
  2036. "LlavaForConditionalGeneration", # pixtral
  2037. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2038. )
  2039. class LlavaVisionModel(MmprojModel):
  2040. img_break_tok_id = -1
  2041. use_break_tok = True
  2042. def __init__(self, *args, **kwargs):
  2043. super().__init__(*args, **kwargs)
  2044. if self.hparams.get("model_type") == "pixtral":
  2045. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2046. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2047. if self.use_break_tok:
  2048. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2049. elif self.is_mistral_format:
  2050. # hparams is already vision config here so norm_eps is only defined in global_config.
  2051. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2052. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2053. if self.use_break_tok:
  2054. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2055. else:
  2056. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2057. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2058. def get_token_id(self, token: str) -> int:
  2059. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2060. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2061. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2062. for id_, token_data in added_tokens_decoder.items():
  2063. if token_data["content"] == token:
  2064. return int(id_)
  2065. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2066. def set_gguf_parameters(self):
  2067. super().set_gguf_parameters()
  2068. hparams = self.hparams
  2069. if hparams.get("model_type") == "pixtral":
  2070. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2071. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2072. # hidden_act
  2073. if hparams["hidden_act"] == "silu":
  2074. self.gguf_writer.add_vision_use_silu(True)
  2075. elif hparams["hidden_act"] == "gelu":
  2076. self.gguf_writer.add_vision_use_gelu(True)
  2077. else:
  2078. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2079. # spatial_merge_size
  2080. if "spatial_merge_size" in self.global_config:
  2081. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2082. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2083. del bid # unused
  2084. n_head = (
  2085. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2086. )
  2087. n_kv_head = n_head
  2088. valid_prefixes = (
  2089. "multi_modal_projector.",
  2090. "vision_tower.",
  2091. "vision_encoder.",
  2092. "vision_language_adapter.",
  2093. "patch_merger.",
  2094. "pre_mm_projector_norm",
  2095. )
  2096. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2097. # process vision tensors
  2098. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2099. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2100. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2101. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2102. return [(self.map_tensor_name(name), data_torch)]
  2103. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2104. if self.img_break_tok_id > 0 and embed_key in name:
  2105. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2106. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2107. img_break_embd = data_torch[self.img_break_tok_id]
  2108. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2109. return [(self.map_tensor_name(name), img_break_embd)]
  2110. return [] # skip other tensors
  2111. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2112. class SmolVLMModel(MmprojModel):
  2113. def __init__(self, *args, **kwargs):
  2114. super().__init__(*args, **kwargs)
  2115. if self.hparams["model_type"] == "smolvlm_vision":
  2116. # fix for SmolVLM2, missing some keys in config.json
  2117. # default values are taken from transformers code
  2118. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2119. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2120. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2121. def set_gguf_parameters(self):
  2122. super().set_gguf_parameters()
  2123. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2124. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2125. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2126. self.gguf_writer.add_vision_use_gelu(True)
  2127. # Add the preprocessor longest edge size
  2128. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2129. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2130. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2131. if ".embeddings." in name:
  2132. return gguf.GGMLQuantizationType.F32
  2133. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2134. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2135. del bid # unused
  2136. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2137. if is_vision_tensor:
  2138. return [(self.map_tensor_name(name), data_torch)]
  2139. return [] # skip other tensors
  2140. @ModelBase.register(
  2141. "Llama4ForConditionalGeneration",
  2142. "Llama4ForCausalLM",
  2143. )
  2144. class Llama4Model(LlamaModel):
  2145. model_arch = gguf.MODEL_ARCH.LLAMA4
  2146. undo_permute = False
  2147. def __init__(self, *args, **kwargs):
  2148. super().__init__(*args, **kwargs)
  2149. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2150. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2151. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2152. def set_vocab(self):
  2153. self._set_vocab_gpt2()
  2154. def set_gguf_parameters(self):
  2155. super().set_gguf_parameters()
  2156. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2157. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2158. if "layer_types" in self.hparams:
  2159. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2160. # all layers are full attention (for MobileLLM), disable swa
  2161. self.gguf_writer.add_sliding_window(0)
  2162. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2163. if name.startswith("language_model."):
  2164. name = name.replace("language_model.", "")
  2165. # split the gate_up into gate and up
  2166. if "gate_up_proj" in name:
  2167. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2168. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2169. dim_half = data_torch.shape[-1] // 2
  2170. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2171. return [
  2172. (self.map_tensor_name(name_gate), gate_proj_weight),
  2173. (self.map_tensor_name(name_up), up_proj_weight)
  2174. ]
  2175. if name.endswith("down_proj"):
  2176. name += ".weight"
  2177. data_torch = data_torch.transpose(-1, -2)
  2178. if "multi_modal_projector" in name or "vision_model" in name:
  2179. return []
  2180. return super().modify_tensors(data_torch, name, bid)
  2181. @ModelBase.register("Llama4ForConditionalGeneration")
  2182. class Llama4VisionModel(MmprojModel):
  2183. def set_gguf_parameters(self):
  2184. super().set_gguf_parameters()
  2185. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2186. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2187. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2188. assert self.hparams["hidden_act"] == "gelu"
  2189. self.gguf_writer.add_vision_use_gelu(True)
  2190. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2191. del bid # unused
  2192. if "multi_modal_projector" in name or "vision_model" in name:
  2193. # process vision tensors
  2194. if "positional_embedding_vlm" in name and ".weight" not in name:
  2195. name += ".weight"
  2196. if "multi_modal_projector.linear_1" in name:
  2197. # despite the name with number postfix, this is a single fully connected layer
  2198. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2199. return [(self.map_tensor_name(name), data_torch)]
  2200. return []
  2201. @ModelBase.register("Mistral3ForConditionalGeneration")
  2202. class Mistral3Model(LlamaModel):
  2203. model_arch = gguf.MODEL_ARCH.LLAMA
  2204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2205. name = name.replace("language_model.", "")
  2206. if "multi_modal_projector" in name or "vision_tower" in name:
  2207. return []
  2208. return super().modify_tensors(data_torch, name, bid)
  2209. @ModelBase.register("DeciLMForCausalLM")
  2210. class DeciModel(TextModel):
  2211. model_arch = gguf.MODEL_ARCH.DECI
  2212. @staticmethod
  2213. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2214. # DeciLM-specific code
  2215. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2216. return DeciModel._find_multiple(intermediate_size, 256)
  2217. @staticmethod
  2218. def _find_multiple(n: int, k: int) -> int:
  2219. # DeciLM-specific code
  2220. if n % k == 0:
  2221. return n
  2222. return n + k - (n % k)
  2223. def __init__(self, *args, **kwargs):
  2224. super().__init__(*args, **kwargs)
  2225. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2226. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2227. assert self.block_count == len(_block_configs)
  2228. self._num_kv_heads = list()
  2229. self._num_heads = list()
  2230. _ffn_multipliers = list()
  2231. # ***linear attention layer***
  2232. # if n_heads_in_group is None and replace_with_linear is True
  2233. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2234. # ***attention-free layer***
  2235. # if n_heads_in_group is None and replace_with_linear is False
  2236. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2237. # ***normal attention-layer***
  2238. # if n_heads_in_group is not None, then
  2239. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2240. # _num_heads[il] is num_attention_head
  2241. # ***dummy layer*** for nemotron 253B
  2242. # if n_heads_in_group is None and ffn_mult is None
  2243. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2244. for il in range(len(_block_configs)):
  2245. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2246. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2247. self._num_kv_heads.append(0)
  2248. self._num_heads.append(self.hparams["num_attention_heads"])
  2249. else:
  2250. self._num_kv_heads.append(0)
  2251. self._num_heads.append(0)
  2252. else:
  2253. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2254. self._num_heads.append(self.hparams["num_attention_heads"])
  2255. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2256. _ffn_multipliers.append(0.0)
  2257. else:
  2258. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2259. assert self.block_count == len(self._num_kv_heads)
  2260. assert self.block_count == len(self._num_heads)
  2261. assert self.block_count == len(_ffn_multipliers)
  2262. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2263. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2264. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2265. self._ffn_dims: list[int] = [
  2266. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2267. for multiplier in _ffn_multipliers
  2268. ]
  2269. def set_vocab(self):
  2270. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2271. # eos_token from '|eot_id|' to '|end_of_text|'
  2272. if self.hparams.get("vocab_size", 128256) == 128256:
  2273. tokens, toktypes, tokpre = self.get_vocab_base()
  2274. self.gguf_writer.add_tokenizer_model("gpt2")
  2275. self.gguf_writer.add_tokenizer_pre(tokpre)
  2276. self.gguf_writer.add_token_list(tokens)
  2277. self.gguf_writer.add_token_types(toktypes)
  2278. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2279. special_vocab.add_to_gguf(self.gguf_writer)
  2280. else:
  2281. # DeciLM-7B
  2282. self._set_vocab_llama_hf()
  2283. def set_gguf_parameters(self):
  2284. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2285. assert self.block_count == len(self._num_kv_heads)
  2286. assert self.block_count == len(self._num_heads)
  2287. assert self.block_count == len(self._ffn_dims)
  2288. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2289. self.gguf_writer.add_rope_freq_base(rope_theta)
  2290. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2291. self.gguf_writer.add_head_count(self._num_heads)
  2292. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2293. self.gguf_writer.add_block_count(self.block_count)
  2294. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2295. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2296. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2297. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2298. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2299. self.gguf_writer.add_file_type(self.ftype)
  2300. else: # DeciLM-7B
  2301. super().set_gguf_parameters()
  2302. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2303. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2304. assert self.block_count == len(self._num_kv_heads)
  2305. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2306. hparams = self.hparams
  2307. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2308. if (rope_dim := hparams.get("head_dim")) is None:
  2309. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2310. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2311. rope_scaling = self.hparams.get("rope_scaling") or {}
  2312. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2313. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2314. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2315. @staticmethod
  2316. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2317. if n_head_kv is not None and n_head != n_head_kv:
  2318. n_head = n_head_kv
  2319. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2320. .swapaxes(1, 2)
  2321. .reshape(weights.shape))
  2322. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2323. n_head = self.hparams["num_attention_heads"]
  2324. if bid is not None:
  2325. if "num_key_value_heads_per_layer" in self.hparams:
  2326. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2327. elif "block_configs" in self.hparams:
  2328. n_kv_head = self._num_kv_heads[bid]
  2329. n_head = self._num_heads[bid]
  2330. else:
  2331. n_kv_head = self.hparams.get("num_key_value_heads")
  2332. else:
  2333. n_kv_head = self.hparams.get("num_key_value_heads")
  2334. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2335. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2336. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2337. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2338. return [(self.map_tensor_name(name), data_torch)]
  2339. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2340. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2341. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2342. base = self.hparams.get("rope_theta", 10000.0)
  2343. if (dim := self.hparams.get("head_dim")) is None:
  2344. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2345. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2346. factor = rope_scaling.get("factor", 8.0)
  2347. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2348. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2349. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2350. low_freq_wavelen = old_context_len / low_freq_factor
  2351. high_freq_wavelen = old_context_len / high_freq_factor
  2352. assert low_freq_wavelen != high_freq_wavelen
  2353. rope_factors = []
  2354. for freq in freqs:
  2355. wavelen = 2 * math.pi / freq
  2356. if wavelen < high_freq_wavelen:
  2357. rope_factors.append(1)
  2358. elif wavelen > low_freq_wavelen:
  2359. rope_factors.append(factor)
  2360. else:
  2361. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2362. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2363. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2364. def prepare_tensors(self):
  2365. super().prepare_tensors()
  2366. @ModelBase.register("BitnetForCausalLM")
  2367. class BitnetModel(TextModel):
  2368. model_arch = gguf.MODEL_ARCH.BITNET
  2369. def set_vocab(self):
  2370. self._set_vocab_sentencepiece()
  2371. def set_gguf_parameters(self):
  2372. super().set_gguf_parameters()
  2373. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2374. self.gguf_writer.add_rope_scaling_factor(1.0)
  2375. def weight_quant(self, weight: Tensor) -> Tensor:
  2376. dtype = weight.dtype
  2377. weight = weight.float()
  2378. scale = weight.abs().mean().clamp(min=1e-5)
  2379. iscale = 1 / scale
  2380. # TODO: multiply by the scale directly instead of inverting it twice
  2381. # (this is also unnecessarily doubly inverted upstream)
  2382. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2383. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2384. return result.type(dtype)
  2385. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2386. new_name = self.map_tensor_name(name)
  2387. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2388. gguf.MODEL_TENSOR.ATTN_Q,
  2389. gguf.MODEL_TENSOR.ATTN_K,
  2390. gguf.MODEL_TENSOR.ATTN_V,
  2391. gguf.MODEL_TENSOR.ATTN_OUT,
  2392. gguf.MODEL_TENSOR.FFN_UP,
  2393. gguf.MODEL_TENSOR.FFN_DOWN,
  2394. gguf.MODEL_TENSOR.FFN_GATE,
  2395. ]):
  2396. # transform weight into 1/0/-1 (in fp32)
  2397. data_torch = self.weight_quant(data_torch)
  2398. yield (new_name, data_torch)
  2399. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2400. class GrokModel(TextModel):
  2401. model_arch = gguf.MODEL_ARCH.GROK
  2402. def set_vocab(self):
  2403. if (self.dir_model / 'tokenizer.model').is_file():
  2404. self._set_vocab_sentencepiece()
  2405. return
  2406. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2407. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2408. sys.exit(1)
  2409. self._set_vocab_gpt2()
  2410. def __init__(self, *args, **kwargs):
  2411. super().__init__(*args, **kwargs)
  2412. def set_gguf_parameters(self):
  2413. super().set_gguf_parameters()
  2414. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2415. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2416. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2417. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2418. if (rope_dim := self.hparams.get("head_dim")) is None:
  2419. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2420. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2421. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2422. # Treat "original" as "yarn", seems to have been a mistake
  2423. if self.hparams.get("rope_type") in ("yarn", "original"):
  2424. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2425. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2426. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2427. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2428. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2429. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2430. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2431. if temp_len := self.hparams.get("attn_temperature_len"):
  2432. self.gguf_writer.add_attn_temperature_length(temp_len)
  2433. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2434. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2435. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2436. _experts: list[dict[str, list[Tensor]]] | None = None
  2437. _cur_expert = ""
  2438. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2439. tensors: list[tuple[str, Tensor]] = []
  2440. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2441. if not is_expert:
  2442. tensors.append((self.map_tensor_name(name), data_torch))
  2443. # process the experts separately
  2444. if is_expert or self._cur_expert:
  2445. n_experts = self.hparams["num_local_experts"]
  2446. assert bid is not None
  2447. if self._experts is None:
  2448. self._experts = [{} for _ in range(self.block_count)]
  2449. # concatenate split tensors
  2450. if name in self._experts[bid]:
  2451. self._cur_expert = name
  2452. self._experts[bid][name].append(data_torch)
  2453. return []
  2454. elif is_expert:
  2455. self._cur_expert = name
  2456. self._experts[bid][name] = [data_torch]
  2457. return []
  2458. else:
  2459. self._cur_expert = ""
  2460. for bid in range(self.block_count):
  2461. if len(self._experts[bid]) >= n_experts * 3:
  2462. # merge the experts into a single 3d tensor
  2463. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2464. datas: list[Tensor] = []
  2465. for xid in range(n_experts):
  2466. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2467. if ename not in self._experts[bid]:
  2468. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2469. tensor_list = self._experts[bid][ename]
  2470. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2471. del self._experts[bid][ename]
  2472. data_torch = torch.stack(datas, dim=0)
  2473. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2474. new_name = self.map_tensor_name(merged_name)
  2475. yield (new_name, data_torch)
  2476. yield from tensors
  2477. @ModelBase.register("DbrxForCausalLM")
  2478. class DbrxModel(TextModel):
  2479. model_arch = gguf.MODEL_ARCH.DBRX
  2480. def set_gguf_parameters(self):
  2481. ffn_config = self.hparams["ffn_config"]
  2482. attn_config = self.hparams["attn_config"]
  2483. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2484. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2485. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2486. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2487. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2488. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2489. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2490. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2491. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2492. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2493. self.gguf_writer.add_layer_norm_eps(1e-5)
  2494. self.gguf_writer.add_file_type(self.ftype)
  2495. logger.info(f"gguf: file type = {self.ftype}")
  2496. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2497. del bid # unused
  2498. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2499. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2500. n_embd = self.hparams["d_model"]
  2501. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2502. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2503. # But llama.cpp moe graph works differently
  2504. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2505. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2506. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2507. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2508. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2509. experts = False
  2510. for exp_tensor_name in exp_tensor_names.keys():
  2511. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2512. experts = True
  2513. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2514. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2515. data_torch = data_torch.permute(*permute_tensor)
  2516. break
  2517. # map tensor names
  2518. # In MoE models the ffn tensors are typically most of the model weights,
  2519. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2520. # Every other model has the weight names ending in .weight,
  2521. # let's assume that is the convention which is not the case for dbrx:
  2522. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2523. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2524. return [(new_name, data_torch)]
  2525. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2526. del name, new_name, bid # unused
  2527. return n_dims > 1
  2528. @ModelBase.register("MiniCPMForCausalLM")
  2529. class MiniCPMModel(TextModel):
  2530. model_arch = gguf.MODEL_ARCH.MINICPM
  2531. def set_gguf_parameters(self):
  2532. super().set_gguf_parameters()
  2533. embedding_scale = float(self.hparams["scale_emb"])
  2534. self.gguf_writer.add_embedding_scale(embedding_scale)
  2535. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2536. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2537. self.gguf_writer.add_residual_scale(residual_scale)
  2538. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2539. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2540. self.gguf_writer.add_logit_scale(logit_scale)
  2541. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2542. rope_scaling = self.hparams.get("rope_scaling") or {}
  2543. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2544. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2545. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2546. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2547. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2548. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2549. if rope_scaling is not None:
  2550. long_factors = rope_scaling.get('long_factor', None)
  2551. short_factors = rope_scaling.get('short_factor', None)
  2552. if long_factors is None or short_factors is None:
  2553. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2554. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2555. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2556. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2557. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2558. def set_vocab(self):
  2559. self._set_vocab_sentencepiece()
  2560. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2561. del bid # unused
  2562. n_head = self.hparams["num_attention_heads"]
  2563. n_kv_head = self.hparams.get("num_key_value_heads")
  2564. # HF models permute some of the tensors, so we need to undo that
  2565. if name.endswith(("q_proj.weight")):
  2566. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2567. if name.endswith(("k_proj.weight")):
  2568. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2569. return [(self.map_tensor_name(name), data_torch)]
  2570. @ModelBase.register("MiniCPM3ForCausalLM")
  2571. class MiniCPM3Model(TextModel):
  2572. model_arch = gguf.MODEL_ARCH.MINICPM3
  2573. def set_gguf_parameters(self):
  2574. hparams = self.hparams
  2575. self.gguf_writer.add_file_type(self.ftype)
  2576. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2577. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2578. self.gguf_writer.add_block_count(self.block_count)
  2579. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2580. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2581. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2582. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2583. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2584. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2585. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2586. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2587. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2588. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2589. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2590. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2591. if rope_scaling is not None:
  2592. rope_dims = self.hparams["qk_rope_head_dim"]
  2593. long_factors = rope_scaling.get('long_factor', None)
  2594. short_factors = rope_scaling.get('short_factor', None)
  2595. if long_factors is None or short_factors is None:
  2596. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2597. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2598. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2599. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2600. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2601. def set_vocab(self):
  2602. self._set_vocab_sentencepiece()
  2603. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2604. if n_kv_head is not None and n_head != n_kv_head:
  2605. n_head //= n_kv_head
  2606. return (
  2607. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2608. .swapaxes(1, 2)
  2609. .reshape(weights.shape)
  2610. )
  2611. @ModelBase.register("QWenLMHeadModel")
  2612. class QwenModel(TextModel):
  2613. model_arch = gguf.MODEL_ARCH.QWEN
  2614. @staticmethod
  2615. def token_bytes_to_string(b):
  2616. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2617. byte_encoder = bytes_to_unicode()
  2618. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2619. @staticmethod
  2620. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2621. parts = [bytes([b]) for b in token]
  2622. while True:
  2623. min_idx = None
  2624. min_rank = None
  2625. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2626. rank = mergeable_ranks.get(pair[0] + pair[1])
  2627. if rank is not None and (min_rank is None or rank < min_rank):
  2628. min_idx = i
  2629. min_rank = rank
  2630. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2631. break
  2632. assert min_idx is not None
  2633. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2634. return parts
  2635. def set_vocab(self):
  2636. self._set_vocab_qwen()
  2637. def set_gguf_parameters(self):
  2638. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2639. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2640. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2641. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2642. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2643. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2644. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2645. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2646. self.gguf_writer.add_file_type(self.ftype)
  2647. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2648. class Qwen2Model(TextModel):
  2649. model_arch = gguf.MODEL_ARCH.QWEN2
  2650. def set_vocab(self):
  2651. try:
  2652. self._set_vocab_sentencepiece()
  2653. except FileNotFoundError:
  2654. self._set_vocab_gpt2()
  2655. def set_gguf_parameters(self):
  2656. super().set_gguf_parameters()
  2657. self._try_set_pooling_type()
  2658. rope_scaling = self.hparams.get("rope_scaling") or {}
  2659. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2660. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2661. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2662. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2664. if self.hf_arch == "Qwen2Model":
  2665. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2666. if "language_model." in name:
  2667. name = name.replace("language_model.", "") # for InternVL
  2668. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2669. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2670. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2671. # skip vision and audio tensors
  2672. return []
  2673. yield from super().modify_tensors(data_torch, name, bid)
  2674. @ModelBase.register("DreamModel")
  2675. class DreamModel(TextModel):
  2676. model_arch = gguf.MODEL_ARCH.DREAM
  2677. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2678. tokens: list[str] = []
  2679. toktypes: list[int] = []
  2680. from transformers import AutoTokenizer
  2681. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2682. vocab_dict = tokenizer.get_vocab()
  2683. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2684. assert max(vocab_dict.values()) < vocab_size
  2685. tokpre = self.get_vocab_base_pre(tokenizer)
  2686. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2687. added_vocab = tokenizer.get_added_vocab()
  2688. for i in range(vocab_size):
  2689. if i not in reverse_vocab:
  2690. tokens.append(f"[PAD{i}]")
  2691. toktypes.append(gguf.TokenType.UNUSED)
  2692. elif reverse_vocab[i] in added_vocab:
  2693. tokens.append(reverse_vocab[i])
  2694. # Check if it's a special token - treat special tokens as CONTROL tokens
  2695. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2696. if tokenizer.added_tokens_decoder[i].special:
  2697. toktypes.append(gguf.TokenType.CONTROL)
  2698. else:
  2699. toktypes.append(gguf.TokenType.USER_DEFINED)
  2700. else:
  2701. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2702. toktypes.append(gguf.TokenType.CONTROL)
  2703. else:
  2704. tokens.append(reverse_vocab[i])
  2705. toktypes.append(gguf.TokenType.NORMAL)
  2706. return tokens, toktypes, tokpre
  2707. def set_vocab(self):
  2708. try:
  2709. self._set_vocab_sentencepiece()
  2710. except FileNotFoundError:
  2711. self._set_vocab_gpt2()
  2712. def set_gguf_parameters(self):
  2713. super().set_gguf_parameters()
  2714. self._try_set_pooling_type()
  2715. # Dream models use non-causal attention for diffusion
  2716. self.gguf_writer.add_causal_attention(False)
  2717. # Handle RoPE scaling similar to Qwen2
  2718. rope_scaling = self.hparams.get("rope_scaling") or {}
  2719. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2720. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2721. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2722. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2723. # Add Dream-specific parameters
  2724. mask_token_id = self.hparams.get("mask_token_id")
  2725. if mask_token_id is not None:
  2726. self.gguf_writer.add_mask_token_id(mask_token_id)
  2727. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2728. # Dream model tensors should be mapped directly since it's the base model
  2729. yield from super().modify_tensors(data_torch, name, bid)
  2730. @ModelBase.register("LLaDAModelLM")
  2731. class LLaDAModel(TextModel):
  2732. model_arch = gguf.MODEL_ARCH.LLADA
  2733. undo_permute = True
  2734. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2735. tokens: list[str] = []
  2736. toktypes: list[int] = []
  2737. from transformers import AutoTokenizer
  2738. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2739. vocab_dict = tokenizer.get_vocab()
  2740. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2741. assert max(vocab_dict.values()) < vocab_size
  2742. tokpre = self.get_vocab_base_pre(tokenizer)
  2743. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2744. added_vocab = tokenizer.get_added_vocab()
  2745. for i in range(vocab_size):
  2746. if i not in reverse_vocab:
  2747. tokens.append(f"[PAD{i}]")
  2748. toktypes.append(gguf.TokenType.UNUSED)
  2749. elif reverse_vocab[i] in added_vocab:
  2750. tokens.append(reverse_vocab[i])
  2751. # Check if it's a special token - treat special tokens as CONTROL tokens
  2752. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2753. if tokenizer.added_tokens_decoder[i].special:
  2754. toktypes.append(gguf.TokenType.CONTROL)
  2755. else:
  2756. toktypes.append(gguf.TokenType.USER_DEFINED)
  2757. else:
  2758. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2759. toktypes.append(gguf.TokenType.CONTROL)
  2760. else:
  2761. tokens.append(reverse_vocab[i])
  2762. toktypes.append(gguf.TokenType.NORMAL)
  2763. return tokens, toktypes, tokpre
  2764. def set_vocab(self):
  2765. self._set_vocab_gpt2()
  2766. # LLaDA specific parameters
  2767. self.gguf_writer.add_add_bos_token(True)
  2768. def set_gguf_parameters(self):
  2769. super().set_gguf_parameters()
  2770. self._try_set_pooling_type()
  2771. # Add parameters similar to LlamaModel
  2772. hparams = self.hparams
  2773. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2774. if (rope_dim := hparams.get("head_dim")) is None:
  2775. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2776. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2777. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2778. # Set context length for LLaDA
  2779. context_length = self.hparams.get("max_sequence_length", 4096)
  2780. self.gguf_writer.add_context_length(context_length)
  2781. # Set embedding length (dimension size)
  2782. embedding_length = self.hparams.get("d_model", 4096)
  2783. self.gguf_writer.add_embedding_length(embedding_length)
  2784. # Set feed forward length (MLP hidden size)
  2785. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2786. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2787. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2788. self.gguf_writer.add_causal_attention(False)
  2789. # LLaDA models don't shift their logits
  2790. self.gguf_writer.add_diffusion_shift_logits(False)
  2791. @staticmethod
  2792. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2793. if n_head_kv is not None and n_head != n_head_kv:
  2794. n_head = n_head_kv
  2795. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2796. .swapaxes(1, 2)
  2797. .reshape(weights.shape))
  2798. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2799. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2800. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2801. if self.undo_permute:
  2802. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2803. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2804. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2805. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2806. # LLaDA model tensors should be mapped directly since it's the base model
  2807. yield from super().modify_tensors(data_torch, name, bid)
  2808. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2809. class Ernie4_5Model(TextModel):
  2810. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2811. def set_vocab(self):
  2812. self._set_vocab_sentencepiece()
  2813. def set_gguf_parameters(self):
  2814. super().set_gguf_parameters()
  2815. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2816. num_heads = self.hparams["num_attention_heads"]
  2817. num_kv_heads = self.hparams["num_key_value_heads"]
  2818. if (head_dim := self.hparams.get("head_dim")) is None:
  2819. head_dim = self.hparams["hidden_size"] // num_heads
  2820. if "ernie." in name:
  2821. name = name.replace("ernie.", "model.")
  2822. # split the qkv weights
  2823. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2824. if "qkv_proj" in name:
  2825. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2826. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2827. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2828. total_q_dim = num_heads * head_dim
  2829. total_k_dim = num_kv_heads * head_dim
  2830. total_v_dim = num_kv_heads * head_dim
  2831. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2832. return [
  2833. (self.map_tensor_name(name_q), q_proj_weight),
  2834. (self.map_tensor_name(name_k), k_proj_weight),
  2835. (self.map_tensor_name(name_v), v_proj_weight)
  2836. ]
  2837. # split the up_gate_proj into gate and up
  2838. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2839. if "up_gate_proj" in name:
  2840. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2841. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2842. dim_half = data_torch.shape[0] // 2
  2843. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2844. return [
  2845. (self.map_tensor_name(name_gate), gate_proj_weight),
  2846. (self.map_tensor_name(name_up), up_proj_weight)
  2847. ]
  2848. return [(self.map_tensor_name(name), data_torch)]
  2849. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2850. class Ernie4_5MoeModel(Ernie4_5Model):
  2851. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2852. _experts: list[dict[str, Tensor]] | None = None
  2853. def __init__(self, *args, **kwargs):
  2854. super().__init__(*args, **kwargs)
  2855. self._experts = [{} for _ in range(self.block_count)]
  2856. def set_gguf_parameters(self):
  2857. super().set_gguf_parameters()
  2858. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2859. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2860. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2861. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2862. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2863. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2864. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2865. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2866. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2867. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2868. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2869. # Modify correction bias name as in DeepseekV2
  2870. if name.endswith("e_score_correction_bias"):
  2871. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2872. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2873. match = re.match(r"model.mtp_block.(\d+)", name)
  2874. if match:
  2875. return []
  2876. # skip all other MTP tensors for now
  2877. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2878. if match:
  2879. return []
  2880. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2881. if match:
  2882. return []
  2883. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2884. if match:
  2885. return []
  2886. # process the experts separately
  2887. if name.find("mlp.experts") != -1:
  2888. n_experts = self.hparams["moe_num_experts"]
  2889. assert bid is not None
  2890. if self._experts is None:
  2891. self._experts = [{} for _ in range(self.block_count)]
  2892. self._experts[bid][name] = data_torch
  2893. if len(self._experts[bid]) >= n_experts * 3:
  2894. tensors: list[tuple[str, Tensor]] = []
  2895. # merge the experts into a single 3d tensor
  2896. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2897. datas: list[Tensor] = []
  2898. for xid in range(n_experts):
  2899. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2900. datas.append(self._experts[bid][ename_to_retrieve])
  2901. del self._experts[bid][ename_to_retrieve]
  2902. data_torch = torch.stack(datas, dim=0)
  2903. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2904. new_name = self.map_tensor_name(merged_name)
  2905. tensors.append((new_name, data_torch))
  2906. return tensors
  2907. else:
  2908. return []
  2909. return [(self.map_tensor_name(name), data_torch)]
  2910. def prepare_tensors(self):
  2911. super().prepare_tensors()
  2912. if self._experts is not None:
  2913. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2914. experts = [k for d in self._experts for k in d.keys()]
  2915. if len(experts) > 0:
  2916. raise ValueError(f"Unprocessed experts: {experts}")
  2917. @ModelBase.register(
  2918. "Qwen2VLModel",
  2919. "Qwen2VLForConditionalGeneration",
  2920. "Qwen2_5_VLForConditionalGeneration",
  2921. "Qwen2_5OmniModel",
  2922. )
  2923. class Qwen2VLModel(TextModel):
  2924. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2925. def set_gguf_parameters(self):
  2926. super().set_gguf_parameters()
  2927. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2928. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2929. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2930. def set_vocab(self):
  2931. try:
  2932. self._set_vocab_sentencepiece()
  2933. except FileNotFoundError:
  2934. self._set_vocab_gpt2()
  2935. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2936. del bid # unused
  2937. if name.startswith("thinker."):
  2938. name = name.replace("thinker.", "")
  2939. if name.startswith("visual") or name.startswith("audio") or \
  2940. name.startswith("talker") or name.startswith("token2wav"):
  2941. # skip multimodal tensors
  2942. return []
  2943. return [(self.map_tensor_name(name), data_torch)]
  2944. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2945. class Qwen2VLVisionModel(MmprojModel):
  2946. def __init__(self, *args, **kwargs):
  2947. super().__init__(*args, **kwargs)
  2948. assert self.hparams_vision is not None
  2949. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2950. # rename config.json values
  2951. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2952. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2953. if "embed_dim" in self.hparams_vision: # qwen2vl
  2954. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2955. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2956. def set_gguf_parameters(self):
  2957. super().set_gguf_parameters()
  2958. assert self.hparams_vision is not None
  2959. hparams = self.hparams_vision
  2960. model_type = self.global_config['model_type']
  2961. if model_type == 'qwen2_vl':
  2962. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2963. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2964. if model_type == 'qwen2_5_omni':
  2965. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2966. else:
  2967. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2968. self.gguf_writer.add_vision_use_silu(True)
  2969. # find n_wa_pattern (window attention pattern)
  2970. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2971. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2972. n_wa_pattern = fullatt_block_indexes[0] + 1
  2973. # validate n_wa_pattern
  2974. for i in range(1, len(fullatt_block_indexes)):
  2975. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2976. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2977. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2978. else:
  2979. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2980. # default values below are taken from HF tranformers code
  2981. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2982. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2983. if ".position_embd." in new_name:
  2984. return gguf.GGMLQuantizationType.F32
  2985. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2986. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2987. del bid # unused
  2988. if name.startswith("visual."):
  2989. # process visual tensors
  2990. # split QKV tensors if needed
  2991. if ".qkv." in name:
  2992. if data_torch.ndim == 2: # weight
  2993. c3, _ = data_torch.shape
  2994. else: # bias
  2995. c3 = data_torch.shape[0]
  2996. assert c3 % 3 == 0
  2997. c = c3 // 3
  2998. wq = data_torch[:c]
  2999. wk = data_torch[c: c * 2]
  3000. wv = data_torch[c * 2:]
  3001. return [
  3002. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3003. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3004. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3005. ]
  3006. elif 'patch_embed.proj.weight' in name:
  3007. # split Conv3D into Conv2Ds
  3008. c1, c2, kt, kh, kw = data_torch.shape
  3009. del c1, c2, kh, kw # unused
  3010. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3011. return [
  3012. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3013. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3014. ]
  3015. else:
  3016. return [(self.map_tensor_name(name), data_torch)]
  3017. return [] # skip other tensors
  3018. @ModelBase.register("Qwen2_5OmniModel")
  3019. class Qwen25OmniModel(Qwen2VLVisionModel):
  3020. has_vision_encoder = True
  3021. has_audio_encoder = True
  3022. def __init__(self, *args, **kwargs):
  3023. super().__init__(*args, **kwargs)
  3024. assert self.hparams_audio is not None
  3025. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3026. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3027. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3028. def set_gguf_parameters(self):
  3029. super().set_gguf_parameters()
  3030. assert self.hparams_audio is not None
  3031. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3032. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3033. def get_vision_config(self) -> dict[str, Any] | None:
  3034. return self.global_config["thinker_config"].get("vision_config")
  3035. def get_audio_config(self) -> dict[str, Any] | None:
  3036. return self.global_config["thinker_config"].get("audio_config")
  3037. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3038. # SinusoidsPositionEmbedding
  3039. assert self.hparams_audio is not None
  3040. max_timescale = 10000
  3041. length = 1500
  3042. channels = self.hparams_audio["hidden_size"]
  3043. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3044. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3045. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3046. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3047. yield ("audio_tower.embed_positions.weight", pos_embd)
  3048. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3049. if ".conv" in name and ".weight" in name:
  3050. return gguf.GGMLQuantizationType.F16
  3051. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3052. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3053. if name.startswith("thinker."):
  3054. name = name.replace("thinker.", "")
  3055. if name.startswith("audio_tower"):
  3056. # process audio tensors
  3057. if "conv1.bias" in name or "conv2.bias" in name:
  3058. # transpose conv1 and conv2 bias
  3059. data_torch = data_torch.unsqueeze(-1)
  3060. if "audio_bos_eos_token" in name:
  3061. # this tensor is left unused in transformers code
  3062. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3063. return []
  3064. return [(self.map_tensor_name(name), data_torch)]
  3065. return super().modify_tensors(data_torch, name, bid)
  3066. @ModelBase.register("InternVisionModel")
  3067. class InternVisionModel(MmprojModel):
  3068. def set_gguf_parameters(self):
  3069. assert self.hparams_vision is not None
  3070. if isinstance(self.hparams_vision['image_size'], list):
  3071. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3072. if isinstance(self.hparams_vision['patch_size'], list):
  3073. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3074. super().set_gguf_parameters()
  3075. hparams = self.hparams
  3076. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3077. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3078. # hidden_act
  3079. if hparams["hidden_act"] == "silu":
  3080. self.gguf_writer.add_vision_use_silu(True)
  3081. elif hparams["hidden_act"] == "gelu":
  3082. self.gguf_writer.add_vision_use_gelu(True)
  3083. else:
  3084. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3085. # downsample_ratio
  3086. downsample_ratio = self.global_config.get("downsample_ratio")
  3087. assert downsample_ratio is not None
  3088. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3089. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3090. if ".position_embd." in new_name:
  3091. return gguf.GGMLQuantizationType.F32
  3092. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3093. def _mapping_interns1_name(self, name):
  3094. names_map = {
  3095. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3096. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3097. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3098. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3099. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3100. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3101. }
  3102. if name in names_map:
  3103. name = names_map[name]
  3104. return name
  3105. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3106. del bid # unused
  3107. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3108. # deal with intern-s1 special case
  3109. name = self._mapping_interns1_name(name)
  3110. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3111. # process visual tensors
  3112. # correct name
  3113. if name.startswith("vision_model"):
  3114. name = "vision_tower." + name
  3115. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3116. name += ".weight"
  3117. # split QKV tensors if needed
  3118. if ".qkv." in name:
  3119. if data_torch.ndim == 2: # weight
  3120. c3, _ = data_torch.shape
  3121. else: # bias
  3122. c3 = data_torch.shape[0]
  3123. assert c3 % 3 == 0
  3124. c = c3 // 3
  3125. wq = data_torch[:c]
  3126. wk = data_torch[c: c * 2]
  3127. wv = data_torch[c * 2:]
  3128. return [
  3129. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3130. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3131. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3132. ]
  3133. return [(self.map_tensor_name(name), data_torch)]
  3134. return [] # skip other tensors
  3135. @ModelBase.register("WavTokenizerDec")
  3136. class WavTokenizerDecModel(TextModel):
  3137. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3138. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3139. del bid # unused
  3140. if \
  3141. name.endswith("codebook.cluster_size") or \
  3142. name.endswith("codebook.embed_avg") or \
  3143. name.endswith("codebook.inited"):
  3144. logger.debug(f"Skipping {name!r}")
  3145. return []
  3146. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3147. return [(self.map_tensor_name(name), data_torch)]
  3148. def set_vocab(self):
  3149. self._set_vocab_none()
  3150. def set_gguf_parameters(self):
  3151. super().set_gguf_parameters()
  3152. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3153. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3154. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3155. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3156. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3157. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3158. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3159. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3160. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3161. self.gguf_writer.add_causal_attention(False)
  3162. @ModelBase.register("Qwen2MoeForCausalLM")
  3163. class Qwen2MoeModel(TextModel):
  3164. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3165. def set_gguf_parameters(self):
  3166. super().set_gguf_parameters()
  3167. if (n_experts := self.hparams.get("num_experts")) is not None:
  3168. self.gguf_writer.add_expert_count(n_experts)
  3169. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3170. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3171. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3172. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3173. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3174. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3175. # YaRN is not enabled by default
  3176. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3177. rope_scaling = self.hparams.get("rope_scaling") or {}
  3178. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3179. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3180. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3181. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3182. _experts: list[dict[str, Tensor]] | None = None
  3183. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3184. # process the experts separately
  3185. name = name.replace("language_model.", "") # InternVL
  3186. # handle aggregated expert tensors
  3187. # GGUF stores dimensions reversed from PyTorch, so:
  3188. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3189. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3190. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3191. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3192. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3193. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3194. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3195. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3196. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3197. permuted = data_torch.permute(0, 2, 1).contiguous()
  3198. return [(self.map_tensor_name(mapped), permuted)]
  3199. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3200. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3201. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3202. split_dim = data_torch.shape[-1] // 2
  3203. gate = data_torch[..., :split_dim].contiguous()
  3204. up = data_torch[..., split_dim:].contiguous()
  3205. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3206. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3207. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3208. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3209. base_name = name.removesuffix(".weight")
  3210. base = base_name.rsplit('.', 1)[0]
  3211. mapped_gate = f"{base}.gate_proj.weight"
  3212. mapped_up = f"{base}.up_proj.weight"
  3213. perm_gate = gate.permute(0, 2, 1).contiguous()
  3214. perm_up = up.permute(0, 2, 1).contiguous()
  3215. return [
  3216. (self.map_tensor_name(mapped_gate), perm_gate),
  3217. (self.map_tensor_name(mapped_up), perm_up),
  3218. ]
  3219. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3220. # skip visual tensors
  3221. return []
  3222. if name.find("experts") != -1:
  3223. n_experts = self.hparams["num_experts"]
  3224. assert bid is not None
  3225. if self._experts is None:
  3226. self._experts = [{} for _ in range(self.block_count)]
  3227. self._experts[bid][name] = data_torch
  3228. if len(self._experts[bid]) >= n_experts * 3:
  3229. tensors: list[tuple[str, Tensor]] = []
  3230. # merge the experts into a single 3d tensor
  3231. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3232. datas: list[Tensor] = []
  3233. for xid in range(n_experts):
  3234. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3235. datas.append(self._experts[bid][ename])
  3236. del self._experts[bid][ename]
  3237. data_torch = torch.stack(datas, dim=0)
  3238. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3239. new_name = self.map_tensor_name(merged_name)
  3240. tensors.append((new_name, data_torch))
  3241. return tensors
  3242. else:
  3243. return []
  3244. return [(self.map_tensor_name(name), data_torch)]
  3245. def prepare_tensors(self):
  3246. super().prepare_tensors()
  3247. if self._experts is not None:
  3248. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3249. experts = [k for d in self._experts for k in d.keys()]
  3250. if len(experts) > 0:
  3251. raise ValueError(f"Unprocessed experts: {experts}")
  3252. @ModelBase.register("Qwen3ForCausalLM")
  3253. class Qwen3Model(Qwen2Model):
  3254. model_arch = gguf.MODEL_ARCH.QWEN3
  3255. # extra logic for rerank models
  3256. is_rerank: bool = False
  3257. is_tied_embeddings: bool = False
  3258. token_false_id: int | None = None
  3259. token_true_id: int | None = None
  3260. def __init__(self, *args, **kwargs):
  3261. super().__init__(*args, **kwargs)
  3262. # track for intern-s1-mini
  3263. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3264. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3265. # a bit hacky, but currently the only way to detect if this is a rerank model
  3266. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3267. readme_path = self.dir_model / "README.md"
  3268. readme_text = ""
  3269. if readme_path.exists():
  3270. with readme_path.open("r", encoding="utf-8") as f:
  3271. readme_text = f.read()
  3272. if "# Qwen3-Reranker" in readme_text:
  3273. self._find_rerank_config()
  3274. def set_vocab(self):
  3275. # deal with intern-s1-mini
  3276. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3277. self._set_vocab_interns1()
  3278. return
  3279. super().set_vocab()
  3280. def _find_rerank_config(self):
  3281. from transformers import AutoTokenizer
  3282. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3283. self.is_rerank = True
  3284. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3285. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3286. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3287. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3288. assert self.token_false_id is not None and self.token_true_id is not None
  3289. def set_gguf_parameters(self):
  3290. super().set_gguf_parameters()
  3291. if self.is_rerank:
  3292. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3293. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3294. self.gguf_writer.add_chat_template([{
  3295. "name": "rerank",
  3296. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3297. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3298. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3299. }])
  3300. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3301. # extract "yes" and "no" tokens from the output lm_head tensor
  3302. false_row = data_torch[self.token_false_id]
  3303. true_row = data_torch[self.token_true_id]
  3304. return torch.stack([true_row, false_row], dim=0)
  3305. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3306. if "model.vision_" in name:
  3307. # skip multimodal tensors
  3308. return []
  3309. if self.is_rerank:
  3310. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3311. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3312. if is_tied_head or is_real_head:
  3313. cls_out_head = (
  3314. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3315. self._get_cls_out_tensor(data_torch),
  3316. )
  3317. if is_tied_head:
  3318. embed = (self.map_tensor_name(name), data_torch)
  3319. return [cls_out_head, embed]
  3320. if is_real_head:
  3321. return [cls_out_head]
  3322. return super().modify_tensors(data_torch, name, bid)
  3323. @ModelBase.register("Qwen3MoeForCausalLM")
  3324. class Qwen3MoeModel(Qwen2MoeModel):
  3325. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3326. def __init__(self, *args, **kwargs):
  3327. super().__init__(*args, **kwargs)
  3328. hparams = ModelBase.load_hparams(self.dir_model, False)
  3329. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3330. def set_vocab(self):
  3331. # deal with intern-s1
  3332. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3333. self._set_vocab_interns1()
  3334. return
  3335. super().set_vocab()
  3336. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3337. class Qwen3VLVisionModel(MmprojModel):
  3338. def __init__(self, *args, **kwargs):
  3339. super().__init__(*args, **kwargs)
  3340. assert self.hparams_vision is not None
  3341. # Compute image_size if not present
  3342. if "image_size" not in self.hparams_vision:
  3343. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3344. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3345. patch_size = self.hparams_vision.get("patch_size", 16)
  3346. # num_position_embeddings = (image_size / patch_size) ** 2
  3347. # So image_size = sqrt(num_position_embeddings) * patch_size
  3348. image_size = int(num_pos**0.5 * patch_size)
  3349. self.hparams_vision["image_size"] = image_size
  3350. # Rename config values for compatibility
  3351. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3352. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3353. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3354. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3355. self.is_deepstack_layers[idx] = True
  3356. def set_gguf_parameters(self):
  3357. super().set_gguf_parameters()
  3358. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3359. self.gguf_writer.add_vision_use_gelu(True)
  3360. if self.hparams_vision is not None:
  3361. merge_size = self.hparams_vision.get("spatial_merge_size")
  3362. if merge_size is not None:
  3363. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3364. # Use text config's rms_norm_eps for vision attention layernorm eps
  3365. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3366. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3367. if self.is_deepstack_layers:
  3368. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3370. assert self.hparams_vision is not None
  3371. # Skip text model tensors - they go in the text model file
  3372. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3373. return []
  3374. if name.startswith("model.visual."):
  3375. name = name.replace("model.visual.", "visual.", 1)
  3376. if name.startswith("visual.deepstack_merger_list."):
  3377. prefix, rest = name.split(".", maxsplit=3)[2:]
  3378. # prefix is the layer index, convert to absolute clip layer index!
  3379. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3380. target = rest
  3381. tensor_type: gguf.MODEL_TENSOR
  3382. if target.startswith("norm."):
  3383. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3384. suffix = target.split(".", 1)[1]
  3385. elif target.startswith("linear_fc1."):
  3386. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3387. suffix = target.split(".", 1)[1]
  3388. elif target.startswith("linear_fc2."):
  3389. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3390. suffix = target.split(".", 1)[1]
  3391. else:
  3392. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3393. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3394. return [(new_name, data_torch)]
  3395. if name.startswith("visual.merger."):
  3396. suffix = name.split(".", 2)[2]
  3397. if suffix.startswith("linear_fc"):
  3398. fc_idx_str, tail = suffix.split(".", 1)
  3399. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3400. # Qwen3VL has linear_fc1 and linear_fc2
  3401. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3402. if fc_num == 1:
  3403. fc_idx = 0
  3404. elif fc_num == 2:
  3405. fc_idx = 2
  3406. else:
  3407. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3408. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3409. elif suffix.startswith("norm."):
  3410. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3411. else:
  3412. raise ValueError(f"Unexpected merger tensor: {name}")
  3413. return [(new_name, data_torch)]
  3414. if name == "visual.patch_embed.proj.weight":
  3415. # split Conv3D into Conv2Ds along temporal dimension
  3416. c1, c2, kt, _, _ = data_torch.shape
  3417. del c1, c2
  3418. if kt != 2:
  3419. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3420. return [
  3421. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3422. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3423. ]
  3424. if name == "visual.patch_embed.proj.bias":
  3425. # Include the bias - it's used by the C++ code
  3426. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3427. if name.startswith("visual."):
  3428. return [(self.map_tensor_name(name), data_torch)]
  3429. # Fall back to parent class for other tensors
  3430. return super().modify_tensors(data_torch, name, bid)
  3431. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3432. class Qwen3VLTextModel(Qwen3Model):
  3433. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3434. def set_gguf_parameters(self):
  3435. super().set_gguf_parameters()
  3436. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3437. text_config = self.hparams.get("text_config", {})
  3438. # rope_scaling is deprecated in V5, use rope_parameters instead
  3439. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3440. if rope_scaling.get("mrope_section"):
  3441. # mrope_section contains [time, height, width] dimensions
  3442. mrope_section = rope_scaling["mrope_section"]
  3443. # Pad to 4 dimensions [time, height, width, extra]
  3444. while len(mrope_section) < 4:
  3445. mrope_section.append(0)
  3446. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3447. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3448. vision_config = self.hparams.get("vision_config", {})
  3449. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3450. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3451. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3452. # Skip vision tensors - they go in the mmproj file
  3453. if name.startswith("model.visual."):
  3454. return []
  3455. return super().modify_tensors(data_torch, name, bid)
  3456. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3457. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3458. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3459. def set_gguf_parameters(self):
  3460. super().set_gguf_parameters()
  3461. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3462. text_config = self.hparams.get("text_config", {})
  3463. # rope_scaling is deprecated in V5, use rope_parameters instead
  3464. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3465. if rope_scaling.get("mrope_section"):
  3466. # mrope_section contains [time, height, width] dimensions
  3467. mrope_section = rope_scaling["mrope_section"]
  3468. # Pad to 4 dimensions [time, height, width, extra]
  3469. while len(mrope_section) < 4:
  3470. mrope_section.append(0)
  3471. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3472. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3473. vision_config = self.hparams.get("vision_config", {})
  3474. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3475. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3476. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3477. # Skip vision tensors - they go in the mmproj file
  3478. if name.startswith("model.visual."):
  3479. return []
  3480. return super().modify_tensors(data_torch, name, bid)
  3481. @ModelBase.register("GPT2LMHeadModel")
  3482. class GPT2Model(TextModel):
  3483. model_arch = gguf.MODEL_ARCH.GPT2
  3484. def set_gguf_parameters(self):
  3485. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3486. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3487. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3488. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3489. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3490. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3491. self.gguf_writer.add_file_type(self.ftype)
  3492. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3493. del bid # unused
  3494. tensors: list[tuple[str, Tensor]] = []
  3495. # we don't need these
  3496. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3497. return tensors
  3498. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3499. data_torch = data_torch.transpose(1, 0)
  3500. new_name = self.map_tensor_name(name)
  3501. tensors.append((new_name, data_torch))
  3502. return tensors
  3503. @ModelBase.register("PhiForCausalLM")
  3504. class Phi2Model(TextModel):
  3505. model_arch = gguf.MODEL_ARCH.PHI2
  3506. def set_gguf_parameters(self):
  3507. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3508. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3509. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3510. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3511. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3512. self.gguf_writer.add_embedding_length(n_embd)
  3513. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3514. self.gguf_writer.add_block_count(block_count)
  3515. self.gguf_writer.add_head_count(n_head)
  3516. self.gguf_writer.add_head_count_kv(n_head)
  3517. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3518. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3519. self.gguf_writer.add_file_type(self.ftype)
  3520. self.gguf_writer.add_add_bos_token(False)
  3521. @ModelBase.register("Phi3ForCausalLM")
  3522. class Phi3MiniModel(TextModel):
  3523. model_arch = gguf.MODEL_ARCH.PHI3
  3524. def set_vocab(self):
  3525. # Phi-4 model uses GPT2Tokenizer
  3526. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3527. if tokenizer_config_file.is_file():
  3528. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3529. tokenizer_config_json = json.load(f)
  3530. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3531. if tokenizer_class == 'GPT2Tokenizer':
  3532. return self._set_vocab_gpt2()
  3533. from sentencepiece import SentencePieceProcessor
  3534. tokenizer_path = self.dir_model / 'tokenizer.model'
  3535. if not tokenizer_path.is_file():
  3536. raise ValueError(f'Error: Missing {tokenizer_path}')
  3537. tokenizer = SentencePieceProcessor()
  3538. tokenizer.LoadFromFile(str(tokenizer_path))
  3539. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3540. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3541. scores: list[float] = [-10000.0] * vocab_size
  3542. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3543. for token_id in range(tokenizer.vocab_size()):
  3544. piece = tokenizer.IdToPiece(token_id)
  3545. text = piece.encode("utf-8")
  3546. score = tokenizer.GetScore(token_id)
  3547. toktype = SentencePieceTokenTypes.NORMAL
  3548. if tokenizer.IsUnknown(token_id):
  3549. toktype = SentencePieceTokenTypes.UNKNOWN
  3550. elif tokenizer.IsControl(token_id):
  3551. toktype = SentencePieceTokenTypes.CONTROL
  3552. elif tokenizer.IsUnused(token_id):
  3553. toktype = SentencePieceTokenTypes.UNUSED
  3554. elif tokenizer.IsByte(token_id):
  3555. toktype = SentencePieceTokenTypes.BYTE
  3556. tokens[token_id] = text
  3557. scores[token_id] = score
  3558. toktypes[token_id] = toktype
  3559. added_tokens_file = self.dir_model / 'added_tokens.json'
  3560. if added_tokens_file.is_file():
  3561. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3562. added_tokens_json = json.load(f)
  3563. for key in added_tokens_json:
  3564. token_id = added_tokens_json[key]
  3565. if token_id >= vocab_size:
  3566. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3567. continue
  3568. tokens[token_id] = key.encode("utf-8")
  3569. scores[token_id] = -1000.0
  3570. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3571. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3572. if tokenizer_config_file.is_file():
  3573. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3574. tokenizer_config_json = json.load(f)
  3575. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3576. for token_id, foken_data in added_tokens_decoder.items():
  3577. token_id = int(token_id)
  3578. token = foken_data["content"].encode("utf-8")
  3579. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3580. if tokens[token_id] != token:
  3581. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3582. tokens[token_id] = token
  3583. scores[token_id] = -1000.0
  3584. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3585. if foken_data.get("special"):
  3586. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3587. tokenizer_file = self.dir_model / 'tokenizer.json'
  3588. if tokenizer_file.is_file():
  3589. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3590. tokenizer_json = json.load(f)
  3591. added_tokens = tokenizer_json.get("added_tokens", [])
  3592. for foken_data in added_tokens:
  3593. token_id = int(foken_data["id"])
  3594. token = foken_data["content"].encode("utf-8")
  3595. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3596. if tokens[token_id] != token:
  3597. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3598. tokens[token_id] = token
  3599. scores[token_id] = -1000.0
  3600. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3601. if foken_data.get("special"):
  3602. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3603. self.gguf_writer.add_tokenizer_model("llama")
  3604. self.gguf_writer.add_tokenizer_pre("default")
  3605. self.gguf_writer.add_token_list(tokens)
  3606. self.gguf_writer.add_token_scores(scores)
  3607. self.gguf_writer.add_token_types(toktypes)
  3608. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3609. special_vocab.add_to_gguf(self.gguf_writer)
  3610. def set_gguf_parameters(self):
  3611. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3612. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3613. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3614. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3615. rms_eps = self.find_hparam(["rms_norm_eps"])
  3616. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3617. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3618. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3619. rope_dims = int(rot_pct * n_embd) // n_head
  3620. self.gguf_writer.add_context_length(max_pos_embds)
  3621. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3622. self.gguf_writer.add_embedding_length(n_embd)
  3623. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3624. self.gguf_writer.add_block_count(block_count)
  3625. self.gguf_writer.add_head_count(n_head)
  3626. self.gguf_writer.add_head_count_kv(n_head_kv)
  3627. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3628. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3629. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3630. self.gguf_writer.add_file_type(self.ftype)
  3631. sliding_window = self.hparams.get("sliding_window")
  3632. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3633. if sliding_window is None:
  3634. sliding_window = 0
  3635. self.gguf_writer.add_sliding_window(sliding_window)
  3636. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3637. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3638. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3639. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3640. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3641. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3642. rope_dims = int(rot_pct * n_embd) // n_head
  3643. # write rope scaling for long context (128k) model
  3644. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3645. if rope_scaling is None:
  3646. return
  3647. scale = max_pos_embds / orig_max_pos_embds
  3648. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3649. if len(rope_scaling_type) == 0:
  3650. raise KeyError('Missing the required key rope_scaling.type')
  3651. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3652. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3653. elif rope_scaling_type == 'yarn':
  3654. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3655. else:
  3656. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3657. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3658. long_factors = rope_scaling.get('long_factor', None)
  3659. short_factors = rope_scaling.get('short_factor', None)
  3660. if long_factors is None or short_factors is None:
  3661. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3662. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3663. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3664. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3665. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3666. @ModelBase.register("PhiMoEForCausalLM")
  3667. class PhiMoeModel(Phi3MiniModel):
  3668. model_arch = gguf.MODEL_ARCH.PHIMOE
  3669. _experts: list[dict[str, Tensor]] | None = None
  3670. def set_gguf_parameters(self):
  3671. super().set_gguf_parameters()
  3672. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3673. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3674. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3675. # process the experts separately
  3676. if name.find("block_sparse_moe.experts") != -1:
  3677. n_experts = self.hparams["num_local_experts"]
  3678. assert bid is not None
  3679. if self._experts is None:
  3680. self._experts = [{} for _ in range(self.block_count)]
  3681. self._experts[bid][name] = data_torch
  3682. if len(self._experts[bid]) >= n_experts * 3:
  3683. tensors: list[tuple[str, Tensor]] = []
  3684. # merge the experts into a single 3d tensor
  3685. for w_name in ["w1", "w2", "w3"]:
  3686. datas: list[Tensor] = []
  3687. for xid in range(n_experts):
  3688. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3689. datas.append(self._experts[bid][ename])
  3690. del self._experts[bid][ename]
  3691. data_torch = torch.stack(datas, dim=0)
  3692. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3693. new_name = self.map_tensor_name(merged_name)
  3694. tensors.append((new_name, data_torch))
  3695. return tensors
  3696. else:
  3697. return []
  3698. return [(self.map_tensor_name(name), data_torch)]
  3699. def prepare_tensors(self):
  3700. super().prepare_tensors()
  3701. if self._experts is not None:
  3702. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3703. experts = [k for d in self._experts for k in d.keys()]
  3704. if len(experts) > 0:
  3705. raise ValueError(f"Unprocessed experts: {experts}")
  3706. @ModelBase.register("PlamoForCausalLM")
  3707. class PlamoModel(TextModel):
  3708. model_arch = gguf.MODEL_ARCH.PLAMO
  3709. def set_vocab(self):
  3710. self._set_vocab_sentencepiece()
  3711. def set_gguf_parameters(self):
  3712. hparams = self.hparams
  3713. block_count = hparams["num_hidden_layers"]
  3714. self.gguf_writer.add_context_length(4096) # not in config.json
  3715. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3716. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3717. self.gguf_writer.add_block_count(block_count)
  3718. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3719. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3720. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3721. self.gguf_writer.add_file_type(self.ftype)
  3722. def shuffle_attn_q_weight(self, data_torch):
  3723. assert data_torch.size() == (5120, 5120)
  3724. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3725. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3726. data_torch = torch.reshape(data_torch, (5120, 5120))
  3727. return data_torch
  3728. def shuffle_attn_output_weight(self, data_torch):
  3729. assert data_torch.size() == (5120, 5120)
  3730. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3731. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3732. data_torch = torch.reshape(data_torch, (5120, 5120))
  3733. return data_torch
  3734. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3735. del bid # unused
  3736. new_name = self.map_tensor_name(name)
  3737. # shuffle for broadcasting of gqa in ggml_mul_mat
  3738. if new_name.endswith("attn_q.weight"):
  3739. data_torch = self.shuffle_attn_q_weight(data_torch)
  3740. elif new_name.endswith("attn_output.weight"):
  3741. data_torch = self.shuffle_attn_output_weight(data_torch)
  3742. return [(new_name, data_torch)]
  3743. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3744. class Plamo2Model(TextModel):
  3745. model_arch = gguf.MODEL_ARCH.PLAMO2
  3746. def set_vocab(self):
  3747. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3748. # We need to handle this specially
  3749. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3750. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3751. if not tokenizer_jsonl_path.is_file():
  3752. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3753. # Load tokenizer config
  3754. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3755. tokenizer_config = json.load(f)
  3756. # Load tokens from JSONL file (actually a list format)
  3757. tokens = []
  3758. scores = []
  3759. toktypes = []
  3760. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3761. for line_num, line in enumerate(f):
  3762. if line.strip():
  3763. token_data = json.loads(line)
  3764. # Format: [token, score, type, ?, ?, ?, ?]
  3765. token = token_data[0].encode("utf-8")
  3766. score = float(token_data[1])
  3767. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3768. tokens.append(token)
  3769. scores.append(score)
  3770. # Map token type strings to GGUF token types
  3771. if token_type_str == "UNKNOWN":
  3772. toktypes.append(gguf.TokenType.UNKNOWN)
  3773. elif token_type_str == "CONTROL":
  3774. toktypes.append(gguf.TokenType.CONTROL)
  3775. elif token_type_str == "BYTE":
  3776. toktypes.append(gguf.TokenType.BYTE)
  3777. else:
  3778. # Check for PLaMo-2 special tokens
  3779. token_str = token_data[0]
  3780. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3781. toktypes.append(gguf.TokenType.CONTROL)
  3782. else:
  3783. toktypes.append(gguf.TokenType.NORMAL)
  3784. vocab_size = self.hparams["vocab_size"]
  3785. if vocab_size > len(tokens):
  3786. pad_count = vocab_size - len(tokens)
  3787. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3788. for i in range(1, pad_count + 1):
  3789. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3790. scores.append(-1000.0)
  3791. toktypes.append(gguf.TokenType.UNUSED)
  3792. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3793. self.gguf_writer.add_tokenizer_model("plamo2")
  3794. self.gguf_writer.add_tokenizer_pre("default")
  3795. self.gguf_writer.add_token_list(tokens)
  3796. self.gguf_writer.add_token_scores(scores)
  3797. self.gguf_writer.add_token_types(toktypes)
  3798. # Add special tokens from config
  3799. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3800. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3801. self.gguf_writer.add_bos_token_id(token_id)
  3802. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3803. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3804. self.gguf_writer.add_eos_token_id(token_id)
  3805. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3806. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3807. self.gguf_writer.add_pad_token_id(token_id)
  3808. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3809. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3810. self.gguf_writer.add_sep_token_id(token_id)
  3811. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3812. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3813. self.gguf_writer.add_unk_token_id(token_id)
  3814. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3815. self.gguf_writer.add_eot_token_id(4)
  3816. self.gguf_writer.add_add_space_prefix(False)
  3817. def set_gguf_parameters(self):
  3818. hparams = self.hparams
  3819. block_count = hparams["num_hidden_layers"]
  3820. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3821. # Which layers are Mamba layers
  3822. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3823. # This logic matches modeling_plamo.py's is_mamba function
  3824. mamba_step = hparams.get("mamba_step", 2)
  3825. mamba_enabled = hparams.get("mamba_enabled", True)
  3826. num_key_value_heads = []
  3827. num_attention_heads = []
  3828. if mamba_enabled:
  3829. for i in range(block_count):
  3830. if block_count <= (mamba_step // 2):
  3831. # use attention in last layer
  3832. is_mamba = (i != block_count - 1)
  3833. else:
  3834. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3835. if is_mamba:
  3836. num_key_value_heads.append(0)
  3837. num_attention_heads.append(0)
  3838. else:
  3839. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  3840. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  3841. if num_key_value_heads and num_attention_heads:
  3842. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3843. self.gguf_writer.add_head_count(num_attention_heads)
  3844. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3845. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3846. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  3847. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  3848. self.gguf_writer.add_block_count(block_count)
  3849. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3850. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3851. # Mamba parameters
  3852. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3853. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3854. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3855. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3856. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3857. self.gguf_writer.add_ssm_group_count(0)
  3858. # MLP feed forward parameters (for attention layers)
  3859. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3860. self.gguf_writer.add_file_type(self.ftype)
  3861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3862. del bid # unused
  3863. if name.endswith(".A_log"):
  3864. data_torch = -torch.exp(data_torch)
  3865. elif name.endswith(".dt_bias"):
  3866. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3867. elif name.endswith(".dt_norm_weight"):
  3868. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3869. elif name.endswith(".B_norm_weight"):
  3870. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3871. elif name.endswith(".C_norm_weight"):
  3872. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3873. elif name.endswith(".k_weight"):
  3874. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3875. elif name.endswith(".q_weight"):
  3876. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3877. elif name.endswith(".conv1d.weight"):
  3878. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3879. assert data_torch.ndim == 2
  3880. elif name.endswith(".pre_mixer_norm.weight"):
  3881. data_torch += 1.0
  3882. elif name.endswith(".post_mixer_norm.weight"):
  3883. data_torch += 1.0 / 5
  3884. elif name.endswith(".pre_mlp_norm.weight"):
  3885. data_torch += 1.0
  3886. elif name.endswith(".post_mlp_norm.weight"):
  3887. data_torch += 1.0 / (5**1.5)
  3888. elif name.endswith(".norm.weight"):
  3889. data_torch += 1.0
  3890. new_name = self.map_tensor_name(name)
  3891. return [(new_name, data_torch)]
  3892. @ModelBase.register("CodeShellForCausalLM")
  3893. class CodeShellModel(TextModel):
  3894. model_arch = gguf.MODEL_ARCH.CODESHELL
  3895. def set_gguf_parameters(self):
  3896. block_count = self.hparams["n_layer"]
  3897. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3898. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3899. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3900. self.gguf_writer.add_block_count(block_count)
  3901. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3902. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3903. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3904. self.gguf_writer.add_file_type(self.ftype)
  3905. self.gguf_writer.add_rope_freq_base(10000.0)
  3906. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3907. self.gguf_writer.add_rope_scaling_factor(1.0)
  3908. @ModelBase.register("InternLM2ForCausalLM")
  3909. class InternLM2Model(TextModel):
  3910. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3911. def set_vocab(self):
  3912. # (TODO): Is there a better way?
  3913. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3914. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3915. # recognized as an empty string in C++.
  3916. from sentencepiece import SentencePieceProcessor
  3917. from sentencepiece import sentencepiece_model_pb2 as model
  3918. tokenizer_path = self.dir_model / 'tokenizer.model'
  3919. tokens: list[bytes] = []
  3920. scores: list[float] = []
  3921. toktypes: list[int] = []
  3922. if not tokenizer_path.is_file():
  3923. logger.error(f'Error: Missing {tokenizer_path}')
  3924. sys.exit(1)
  3925. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3926. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3927. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3928. tokenizer = SentencePieceProcessor()
  3929. tokenizer.LoadFromFile(str(tokenizer_path))
  3930. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3931. for token_id in range(vocab_size):
  3932. piece = tokenizer.IdToPiece(token_id)
  3933. text = piece.encode("utf-8")
  3934. score = tokenizer.GetScore(token_id)
  3935. if text == b"\x00":
  3936. # (TODO): fixme
  3937. # Hack here and replace the \x00 characters.
  3938. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3939. text = "🐉".encode("utf-8")
  3940. toktype = SentencePieceTokenTypes.NORMAL
  3941. if tokenizer.IsUnknown(token_id):
  3942. toktype = SentencePieceTokenTypes.UNKNOWN
  3943. elif tokenizer.IsControl(token_id):
  3944. toktype = SentencePieceTokenTypes.CONTROL
  3945. elif tokenizer.IsUnused(token_id):
  3946. toktype = SentencePieceTokenTypes.UNUSED
  3947. elif tokenizer.IsByte(token_id):
  3948. toktype = SentencePieceTokenTypes.BYTE
  3949. # take care of ununsed raw token
  3950. if piece.startswith('[UNUSED'):
  3951. toktype = SentencePieceTokenTypes.UNUSED
  3952. tokens.append(text)
  3953. scores.append(score)
  3954. toktypes.append(toktype)
  3955. added_tokens_file = self.dir_model / 'added_tokens.json'
  3956. if added_tokens_file.is_file():
  3957. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3958. added_tokens_json = json.load(f)
  3959. for key in added_tokens_json:
  3960. tokens.append(key.encode("utf-8"))
  3961. scores.append(-1000.0)
  3962. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3963. chat_eos_token = '<|im_end|>'
  3964. chat_eos_token_id = None
  3965. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3966. if tokenizer_config_file.is_file():
  3967. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3968. tokenizer_config_json = json.load(f)
  3969. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3970. for token_id, foken_data in added_tokens_decoder.items():
  3971. token_id = int(token_id)
  3972. token = foken_data["content"]
  3973. if token == chat_eos_token:
  3974. chat_eos_token_id = token_id
  3975. token = token.encode("utf-8")
  3976. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3977. if tokens[token_id] != token:
  3978. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3979. tokens[token_id] = token
  3980. scores[token_id] = -1000.0
  3981. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3982. if foken_data.get("special"):
  3983. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3984. tokenizer_file = self.dir_model / 'tokenizer.json'
  3985. if tokenizer_file.is_file():
  3986. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3987. tokenizer_json = json.load(f)
  3988. added_tokens = tokenizer_json.get("added_tokens", [])
  3989. for foken_data in added_tokens:
  3990. token_id = int(foken_data["id"])
  3991. token = foken_data["content"]
  3992. if token == chat_eos_token:
  3993. chat_eos_token_id = token_id
  3994. token = token.encode("utf-8")
  3995. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3996. if tokens[token_id] != token:
  3997. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3998. tokens[token_id] = token
  3999. scores[token_id] = -1000.0
  4000. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4001. if foken_data.get("special"):
  4002. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4003. self.gguf_writer.add_tokenizer_model("llama")
  4004. self.gguf_writer.add_tokenizer_pre("default")
  4005. self.gguf_writer.add_token_list(tokens)
  4006. self.gguf_writer.add_token_scores(scores)
  4007. self.gguf_writer.add_token_types(toktypes)
  4008. self.gguf_writer.add_add_space_prefix(add_prefix)
  4009. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4010. old_eos = special_vocab.special_token_ids["eos"]
  4011. if chat_eos_token_id is not None:
  4012. # For the chat model, we replace the eos with '<|im_end|>'.
  4013. # TODO: this is a hack, should be fixed
  4014. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4015. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4016. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4017. " in chat mode so that the conversation can end normally.")
  4018. special_vocab.add_to_gguf(self.gguf_writer)
  4019. def set_gguf_parameters(self):
  4020. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  4021. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  4022. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  4023. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4024. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  4025. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4026. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4027. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  4028. self.gguf_writer.add_file_type(self.ftype)
  4029. rope_scaling = self.hparams.get("rope_scaling") or {}
  4030. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4031. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4032. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4033. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4034. num_heads = self.hparams["num_attention_heads"]
  4035. num_kv_heads = self.hparams["num_key_value_heads"]
  4036. n_embd = self.hparams["hidden_size"]
  4037. q_per_kv = num_heads // num_kv_heads
  4038. head_dim = n_embd // num_heads
  4039. num_groups = num_heads // q_per_kv
  4040. name = name.replace("language_model.", "") # InternVL
  4041. if name.startswith("mlp") or name.startswith("vision_model"):
  4042. # skip visual tensors
  4043. return []
  4044. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4045. qkv = data_torch
  4046. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4047. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4048. # The model weights of q and k equire additional reshape.
  4049. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4050. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4051. v = v.reshape((-1, v.shape[-1]))
  4052. return [
  4053. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4054. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4055. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4056. ]
  4057. else:
  4058. return [(self.map_tensor_name(name), data_torch)]
  4059. @ModelBase.register("InternLM3ForCausalLM")
  4060. class InternLM3Model(TextModel):
  4061. model_arch = gguf.MODEL_ARCH.LLAMA
  4062. def set_vocab(self):
  4063. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4064. self.gguf_writer.add_tokenizer_model("llama")
  4065. self.gguf_writer.add_tokenizer_pre("default")
  4066. self.gguf_writer.add_token_list(tokens)
  4067. self.gguf_writer.add_token_scores(scores)
  4068. self.gguf_writer.add_token_types(toktypes)
  4069. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4070. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4071. if tokenizer_config_file.is_file():
  4072. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4073. tokenizer_config_json = json.load(f)
  4074. if "add_prefix_space" in tokenizer_config_json:
  4075. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4076. if "added_tokens_decoder" in tokenizer_config_json:
  4077. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4078. if token_data.get("special"):
  4079. token_id = int(token_id)
  4080. token = token_data["content"]
  4081. special_vocab._set_special_token(token, token_id)
  4082. # update eos token
  4083. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4084. special_vocab.special_token_ids["eos"] = token_id
  4085. special_vocab.add_to_gguf(self.gguf_writer)
  4086. def set_gguf_parameters(self):
  4087. super().set_gguf_parameters()
  4088. hparams = self.hparams
  4089. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4090. if (rope_dim := hparams.get("head_dim")) is None:
  4091. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4092. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4093. rope_scaling = self.hparams.get("rope_scaling") or {}
  4094. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4095. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4096. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4097. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4098. n_head = self.hparams["num_attention_heads"]
  4099. n_kv_head = self.hparams.get("num_key_value_heads")
  4100. name = name.replace("language_model.", "") # InternVL
  4101. if name.startswith("mlp") or name.startswith("vision_model"):
  4102. # skip visual tensors
  4103. return []
  4104. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4105. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4106. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4107. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4108. return [(self.map_tensor_name(name), data_torch)]
  4109. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4110. class BertModel(TextModel):
  4111. model_arch = gguf.MODEL_ARCH.BERT
  4112. def __init__(self, *args, **kwargs):
  4113. super().__init__(*args, **kwargs)
  4114. self.vocab_size = None
  4115. if cls_out_labels := self.hparams.get("id2label"):
  4116. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4117. # Remove dummy labels added by AutoConfig
  4118. cls_out_labels = None
  4119. self.cls_out_labels = cls_out_labels
  4120. def set_gguf_parameters(self):
  4121. super().set_gguf_parameters()
  4122. self.gguf_writer.add_causal_attention(False)
  4123. self._try_set_pooling_type()
  4124. if self.cls_out_labels:
  4125. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4126. def set_vocab(self):
  4127. tokens, toktypes, tokpre = self.get_vocab_base()
  4128. self.vocab_size = len(tokens)
  4129. # we need this to validate the size of the token_type embeddings
  4130. # though currently we are passing all zeros to the token_type embeddings
  4131. # "Sequence A" or "Sequence B"
  4132. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4133. # convert to phantom space vocab
  4134. def phantom(tok):
  4135. if tok.startswith("[") and tok.endswith("]"):
  4136. return tok
  4137. if tok.startswith("##"):
  4138. return tok[2:]
  4139. return "\u2581" + tok
  4140. tokens = list(map(phantom, tokens))
  4141. # add vocab to gguf
  4142. self.gguf_writer.add_tokenizer_model("bert")
  4143. self.gguf_writer.add_tokenizer_pre(tokpre)
  4144. self.gguf_writer.add_token_list(tokens)
  4145. self.gguf_writer.add_token_types(toktypes)
  4146. # handle special tokens
  4147. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4148. special_vocab.add_to_gguf(self.gguf_writer)
  4149. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4150. del bid # unused
  4151. if name.startswith("bert."):
  4152. name = name[5:]
  4153. if name.endswith(".gamma"):
  4154. name = name[:-6] + ".weight"
  4155. if name.endswith(".beta"):
  4156. name = name[:-5] + ".bias"
  4157. # we are only using BERT for embeddings so we don't need the pooling layer
  4158. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4159. return [] # we don't need these
  4160. if name.startswith("cls.predictions"):
  4161. return []
  4162. if name.startswith("cls.seq_relationship"):
  4163. return []
  4164. if self.cls_out_labels:
  4165. # For BertForSequenceClassification (direct projection layer)
  4166. if name == "classifier.weight":
  4167. name = "classifier.out_proj.weight"
  4168. if name == "classifier.bias":
  4169. name = "classifier.out_proj.bias"
  4170. return [(self.map_tensor_name(name), data_torch)]
  4171. def _xlmroberta_tokenizer_init(self) -> None:
  4172. # we need the pad_token_id to know how to chop down position_embd matrix
  4173. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4174. self._position_offset = 1 + pad_token_id
  4175. if "max_position_embeddings" in self.hparams:
  4176. self.hparams["max_position_embeddings"] -= self._position_offset
  4177. else:
  4178. self._position_offset = None
  4179. def _xlmroberta_set_vocab(self) -> None:
  4180. # to avoid TypeError: Descriptors cannot be created directly
  4181. # exception when importing sentencepiece_model_pb2
  4182. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4183. from sentencepiece import SentencePieceProcessor
  4184. from sentencepiece import sentencepiece_model_pb2 as model
  4185. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4186. tokenizer_json = {}
  4187. tokenizer_config_json = {}
  4188. if not tokenizer_path.is_file():
  4189. tokenizer_path = self.dir_model / 'tokenizer.json'
  4190. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4191. if not tokenizer_path.is_file():
  4192. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4193. from base64 import b64decode
  4194. from transformers import AutoTokenizer
  4195. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4196. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4197. tokenizer_json = json.load(fp)
  4198. if tokenizer_config_path.is_file():
  4199. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4200. tokenizer_config_json = json.load(fp)
  4201. add_prefix = tokenizer.add_prefix_space
  4202. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4203. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4204. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4205. else:
  4206. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4207. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4208. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4209. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4210. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4211. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4212. tokenizer = SentencePieceProcessor()
  4213. tokenizer.LoadFromFile(str(tokenizer_path))
  4214. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4215. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4216. scores: list[float] = [-10000.0] * vocab_size
  4217. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4218. if isinstance(tokenizer, SentencePieceProcessor):
  4219. for token_id in range(tokenizer.vocab_size()):
  4220. piece = tokenizer.IdToPiece(token_id)
  4221. text = piece.encode("utf-8")
  4222. score = tokenizer.GetScore(token_id)
  4223. toktype = SentencePieceTokenTypes.NORMAL
  4224. if tokenizer.IsUnknown(token_id):
  4225. toktype = SentencePieceTokenTypes.UNKNOWN
  4226. elif tokenizer.IsControl(token_id):
  4227. toktype = SentencePieceTokenTypes.CONTROL
  4228. elif tokenizer.IsUnused(token_id):
  4229. toktype = SentencePieceTokenTypes.UNUSED
  4230. elif tokenizer.IsByte(token_id):
  4231. toktype = SentencePieceTokenTypes.BYTE
  4232. tokens[token_id] = text
  4233. scores[token_id] = score
  4234. toktypes[token_id] = toktype
  4235. else:
  4236. added_vocab = tokenizer.get_added_vocab()
  4237. unk_token = tokenizer_config_json.get("unk_token")
  4238. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4239. for token_id in range(tokenizer.vocab_size):
  4240. piece = tokenizer._convert_id_to_token(token_id)
  4241. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4242. text = piece.encode("utf-8")
  4243. score = tokenizer_json["model"]["vocab"][token_id][1]
  4244. toktype = SentencePieceTokenTypes.NORMAL
  4245. if token_id == unk_token_id:
  4246. toktype = SentencePieceTokenTypes.UNKNOWN
  4247. elif token_id in tokenizer.all_special_ids:
  4248. toktype = SentencePieceTokenTypes.CONTROL
  4249. elif token_id in added_vocab.values():
  4250. toktype = SentencePieceTokenTypes.USER_DEFINED
  4251. # No reliable way to detect this, but jina doesn't have any
  4252. # elif tokenizer.IsByte(token_id):
  4253. # toktype = SentencePieceTokenTypes.BYTE
  4254. tokens[token_id] = text
  4255. scores[token_id] = score
  4256. toktypes[token_id] = toktype
  4257. if isinstance(tokenizer, SentencePieceProcessor):
  4258. # realign tokens (see HF tokenizer code)
  4259. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4260. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4261. toktypes = [
  4262. SentencePieceTokenTypes.CONTROL,
  4263. SentencePieceTokenTypes.CONTROL,
  4264. SentencePieceTokenTypes.CONTROL,
  4265. SentencePieceTokenTypes.UNKNOWN,
  4266. ] + toktypes[3:-1]
  4267. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4268. # Add mask token missing from sentencepiece.bpe.model
  4269. tokens[250001] = b'<mask>'
  4270. scores[250001] = 0.0
  4271. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4272. self.gguf_writer.add_tokenizer_model("t5")
  4273. self.gguf_writer.add_tokenizer_pre("default")
  4274. self.gguf_writer.add_token_list(tokens)
  4275. self.gguf_writer.add_token_scores(scores)
  4276. self.gguf_writer.add_token_types(toktypes)
  4277. self.gguf_writer.add_add_space_prefix(add_prefix)
  4278. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4279. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4280. if precompiled_charsmap:
  4281. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4282. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4283. special_vocab.add_to_gguf(self.gguf_writer)
  4284. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4285. class DistilBertModel(BertModel):
  4286. model_arch = gguf.MODEL_ARCH.BERT
  4287. def set_gguf_parameters(self):
  4288. self.gguf_writer.add_layer_norm_eps(1e-12)
  4289. logger.info("gguf: layer norm epsilon = 1e-12")
  4290. super().set_gguf_parameters()
  4291. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4292. if name.startswith("distilbert."):
  4293. name = name[11:]
  4294. # These layers act as MLM head, so we don't need them
  4295. if name.startswith("vocab_"):
  4296. return []
  4297. return super().modify_tensors(data_torch, name, bid)
  4298. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4299. class RobertaModel(BertModel):
  4300. model_arch = gguf.MODEL_ARCH.BERT
  4301. def __init__(self, *args, **kwargs):
  4302. super().__init__(*args, **kwargs)
  4303. # we need the pad_token_id to know how to chop down position_embd matrix
  4304. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4305. self._position_offset = 1 + pad_token_id
  4306. if "max_position_embeddings" in self.hparams:
  4307. self.hparams["max_position_embeddings"] -= self._position_offset
  4308. else:
  4309. self._position_offset = None
  4310. def set_vocab(self):
  4311. """Support BPE tokenizers for roberta models"""
  4312. bpe_tok_path = self.dir_model / "tokenizer.json"
  4313. if bpe_tok_path.exists():
  4314. self._set_vocab_gpt2()
  4315. # we need this to validate the size of the token_type embeddings
  4316. # though currently we are passing all zeros to the token_type embeddings
  4317. # "Sequence A" or "Sequence B"
  4318. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4319. else:
  4320. return super().set_vocab()
  4321. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4322. # if name starts with "roberta.", remove the prefix
  4323. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4324. if name.startswith("roberta."):
  4325. name = name[8:]
  4326. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4327. if name == "embeddings.position_embeddings.weight":
  4328. if self._position_offset is not None:
  4329. data_torch = data_torch[self._position_offset:,:]
  4330. return super().modify_tensors(data_torch, name, bid)
  4331. @ModelBase.register("NomicBertModel")
  4332. class NomicBertModel(BertModel):
  4333. model_arch = gguf.MODEL_ARCH.BERT
  4334. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4335. hparams = kwargs.pop("hparams", None)
  4336. if hparams is None:
  4337. hparams = ModelBase.load_hparams(dir_model, False)
  4338. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4339. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4340. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4341. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4342. if self._tokenizer_is_xlmroberta:
  4343. self._xlmroberta_tokenizer_init()
  4344. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4345. if npos == 8192 and mtp == 2048:
  4346. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4347. elif npos == 2048 and mtp == 2048:
  4348. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4349. else:
  4350. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4351. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4352. # this doesn't do anything in the HF version
  4353. assert self.hparams["causal"] is False
  4354. # no bias tensors unless MoE
  4355. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4356. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4357. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4358. # norm at end of layer
  4359. assert self.hparams["prenorm"] is False
  4360. # standard RoPE
  4361. assert self.hparams["rotary_emb_fraction"] == 1.0
  4362. assert self.hparams["rotary_emb_interleaved"] is False
  4363. assert self.hparams["rotary_emb_scale_base"] is None
  4364. def set_vocab(self) -> None:
  4365. if self._tokenizer_is_xlmroberta:
  4366. return self._xlmroberta_set_vocab()
  4367. return super().set_vocab()
  4368. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4369. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4370. if "mlp.experts.bias" in name:
  4371. return [] # Explicitly return an empty list.
  4372. if "mlp.experts.mlp.w1" in name:
  4373. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4374. name += ".weight"
  4375. if "mlp.experts.mlp.w2" in name:
  4376. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4377. data_torch = data_torch.transpose(1, 2)
  4378. name += ".weight"
  4379. return [(self.map_tensor_name(name), data_torch)]
  4380. def set_gguf_parameters(self):
  4381. super().set_gguf_parameters()
  4382. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4383. if self.is_moe:
  4384. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4385. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4386. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4387. def _is_tokenizer_xlmroberta(self) -> bool:
  4388. with open(self.dir_model / "tokenizer.json") as f:
  4389. tokenizer_json = json.load(f)
  4390. toktyp = tokenizer_json["model"]["type"]
  4391. if toktyp == "Unigram":
  4392. return True
  4393. if toktyp == "WordPiece":
  4394. return False
  4395. raise ValueError(f"unknown tokenizer: {toktyp}")
  4396. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4397. class NeoBert(BertModel):
  4398. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4399. def set_gguf_parameters(self):
  4400. super().set_gguf_parameters()
  4401. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4402. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4403. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4404. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4405. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4406. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4407. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4408. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4409. def modify_tensors(self, data_torch, name, bid):
  4410. if name.startswith("decoder."):
  4411. return []
  4412. if name.startswith("model."):
  4413. name = name[6:]
  4414. return super().modify_tensors(data_torch, name, bid)
  4415. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4416. class XLMRobertaModel(BertModel):
  4417. model_arch = gguf.MODEL_ARCH.BERT
  4418. _lora_files = {}
  4419. _lora_names = []
  4420. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4421. hparams = kwargs.pop("hparams", None)
  4422. if hparams is None:
  4423. hparams = ModelBase.load_hparams(dir_model, False)
  4424. if lora_names := hparams.get("lora_adaptations"):
  4425. self._lora_names = lora_names
  4426. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4427. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4428. self._xlmroberta_tokenizer_init()
  4429. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4430. if self._lora_names:
  4431. for name in self._lora_names:
  4432. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4433. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4434. return super().generate_extra_tensors()
  4435. def set_type(self):
  4436. for lora_writer in self._lora_files.values():
  4437. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4438. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4439. super().set_type()
  4440. def set_vocab(self):
  4441. self._xlmroberta_set_vocab()
  4442. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4443. # if name starts with "roberta.", remove the prefix
  4444. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4445. if name.startswith("roberta."):
  4446. name = name[8:]
  4447. # jina-embeddings-v3
  4448. if ".parametrizations." in name:
  4449. name = name.replace(".parametrizations.", ".")
  4450. if name.endswith(".original"):
  4451. name = name[:-9]
  4452. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4453. if name == "embeddings.position_embeddings.weight":
  4454. if self._position_offset is not None:
  4455. data_torch = data_torch[self._position_offset:,:]
  4456. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4457. if name.startswith("pooler.dense"):
  4458. return []
  4459. num_loras = data_torch.size(0)
  4460. assert num_loras == len(self._lora_names)
  4461. # Split out each LoRA in their own GGUF
  4462. for i, lora_writer in enumerate(self._lora_files.values()):
  4463. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4464. data = data_torch[i, :, :]
  4465. # Transpose/flip token_embd/types into correct shape
  4466. if new_name == "token_embd.weight.lora_b":
  4467. data = data.T
  4468. elif new_name.startswith("token_types.weight."):
  4469. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4470. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4471. return []
  4472. return super().modify_tensors(data_torch, name, bid)
  4473. def set_gguf_parameters(self):
  4474. super().set_gguf_parameters()
  4475. # jina-embeddings-v3
  4476. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4477. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4478. lora_alpha = self.hparams.get("lora_alpha")
  4479. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4480. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4481. for lora_name, lora_writer in self._lora_files.items():
  4482. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4483. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4484. if lora_prompt_prefixes:
  4485. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4486. def write(self):
  4487. super().write()
  4488. for lora_writer in self._lora_files.values():
  4489. lora_writer.write_header_to_file()
  4490. lora_writer.write_kv_data_to_file()
  4491. lora_writer.write_tensors_to_file(progress=True)
  4492. lora_writer.close()
  4493. @ModelBase.register("GemmaForCausalLM")
  4494. class GemmaModel(TextModel):
  4495. model_arch = gguf.MODEL_ARCH.GEMMA
  4496. def set_vocab(self):
  4497. self._set_vocab_sentencepiece()
  4498. # TODO: these special tokens should be exported only for the CodeGemma family
  4499. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4500. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4501. special_vocab._set_special_token("prefix", 67)
  4502. special_vocab._set_special_token("suffix", 69)
  4503. special_vocab._set_special_token("middle", 68)
  4504. special_vocab._set_special_token("fsep", 70)
  4505. special_vocab._set_special_token("eot", 107)
  4506. special_vocab.chat_template = None # do not add it twice
  4507. special_vocab.add_to_gguf(self.gguf_writer)
  4508. self.gguf_writer.add_add_space_prefix(False)
  4509. def set_gguf_parameters(self):
  4510. hparams = self.hparams
  4511. block_count = hparams["num_hidden_layers"]
  4512. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4513. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4514. self.gguf_writer.add_block_count(block_count)
  4515. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4516. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4517. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4518. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4519. self.gguf_writer.add_key_length(hparams["head_dim"])
  4520. self.gguf_writer.add_value_length(hparams["head_dim"])
  4521. self.gguf_writer.add_file_type(self.ftype)
  4522. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4523. del bid # unused
  4524. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4525. # To prevent errors, skip loading lm_head.weight.
  4526. if name == "lm_head.weight":
  4527. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4528. return []
  4529. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4530. if name.endswith("norm.weight"):
  4531. data_torch = data_torch + 1
  4532. return [(self.map_tensor_name(name), data_torch)]
  4533. @ModelBase.register("Gemma2ForCausalLM")
  4534. class Gemma2Model(TextModel):
  4535. model_arch = gguf.MODEL_ARCH.GEMMA2
  4536. def set_vocab(self):
  4537. self._set_vocab_sentencepiece()
  4538. self.gguf_writer.add_add_space_prefix(False)
  4539. def set_gguf_parameters(self):
  4540. hparams = self.hparams
  4541. block_count = hparams["num_hidden_layers"]
  4542. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4543. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4544. self.gguf_writer.add_block_count(block_count)
  4545. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4546. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4547. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4548. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4549. self.gguf_writer.add_key_length(hparams["head_dim"])
  4550. self.gguf_writer.add_value_length(hparams["head_dim"])
  4551. self.gguf_writer.add_file_type(self.ftype)
  4552. self.gguf_writer.add_attn_logit_softcapping(
  4553. self.hparams["attn_logit_softcapping"]
  4554. )
  4555. self.gguf_writer.add_final_logit_softcapping(
  4556. self.hparams["final_logit_softcapping"]
  4557. )
  4558. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4559. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4560. del bid # unused
  4561. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4562. # To prevent errors, skip loading lm_head.weight.
  4563. if name == "lm_head.weight":
  4564. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4565. return []
  4566. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4567. if name.endswith("norm.weight"):
  4568. data_torch = data_torch + 1
  4569. return [(self.map_tensor_name(name), data_torch)]
  4570. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4571. class Gemma3Model(TextModel):
  4572. model_arch = gguf.MODEL_ARCH.GEMMA3
  4573. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4574. def set_vocab(self):
  4575. self._set_vocab_sentencepiece()
  4576. self.gguf_writer.add_add_space_prefix(False)
  4577. def set_gguf_parameters(self):
  4578. hparams = self.hparams
  4579. block_count = hparams["num_hidden_layers"]
  4580. # some default values are not specified in the hparams
  4581. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4582. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4583. self.gguf_writer.add_block_count(block_count)
  4584. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4585. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4586. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4587. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4588. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4589. self.gguf_writer.add_file_type(self.ftype)
  4590. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4591. # attn_logit_softcapping is removed in Gemma3
  4592. assert hparams.get("attn_logit_softcapping") is None
  4593. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4594. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4595. if hparams.get("rope_scaling") is not None:
  4596. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4597. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4598. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4599. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4600. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4601. del bid # unused
  4602. if "language_model." in name:
  4603. name = name.replace("language_model.", "")
  4604. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4605. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4606. return [] # skip vision tensors
  4607. # remove OOV (out-of-vocabulary) rows in token_embd
  4608. if "embed_tokens.weight" in name:
  4609. vocab = self._create_vocab_sentencepiece()
  4610. tokens = vocab[0]
  4611. data_torch = data_torch[:len(tokens)]
  4612. # ref code in Gemma3RMSNorm
  4613. # output = output * (1.0 + self.weight.float())
  4614. # note: this is not the case on gemma3n
  4615. if name.endswith("norm.weight"):
  4616. data_torch = data_torch + self.norm_shift
  4617. return [(self.map_tensor_name(name), data_torch)]
  4618. @ModelBase.register("Gemma3TextModel")
  4619. class EmbeddingGemma(Gemma3Model):
  4620. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4621. module_paths = []
  4622. dense_features_dims = {}
  4623. def __init__(self, *args, **kwargs):
  4624. super().__init__(*args, **kwargs)
  4625. if self.sentence_transformers_dense_modules:
  4626. # read modules.json to determine if model has Dense layers
  4627. modules_file = self.dir_model / "modules.json"
  4628. if modules_file.is_file():
  4629. with open(modules_file, encoding="utf-8") as modules_json_file:
  4630. mods = json.load(modules_json_file)
  4631. for mod in mods:
  4632. if mod["type"] == "sentence_transformers.models.Dense":
  4633. mod_path = mod["path"]
  4634. # check if model.safetensors file for Dense layer exists
  4635. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4636. if model_tensors_file.is_file():
  4637. self.module_paths.append(mod_path)
  4638. # read config.json of the Dense layer to get in/out features
  4639. mod_conf_file = self.dir_model / mod_path / "config.json"
  4640. if mod_conf_file.is_file():
  4641. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4642. mod_conf = json.load(mod_conf_json_file)
  4643. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4644. prefix = self._get_dense_prefix(mod_path)
  4645. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4646. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4647. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4648. from safetensors.torch import load_file
  4649. module_paths = list(self.module_paths)
  4650. for i, module_path in enumerate(module_paths):
  4651. tensors_file = self.dir_model / module_path / "model.safetensors"
  4652. local_tensors = load_file(tensors_file)
  4653. tensor_name = self._get_dense_prefix(module_path)
  4654. for name, local_tensor in local_tensors.items():
  4655. if not name.endswith(".weight"):
  4656. continue
  4657. orig_name = name.replace("linear", tensor_name)
  4658. name = self.map_tensor_name(orig_name)
  4659. yield name, local_tensor.clone()
  4660. @staticmethod
  4661. def _get_dense_prefix(module_path) -> str:
  4662. """Get the tensor name prefix for the Dense layer from module path."""
  4663. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4664. return tensor_name
  4665. def set_gguf_parameters(self):
  4666. super().set_gguf_parameters()
  4667. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4668. # constructor. We want to use the value from the original model's config.json.
  4669. # ref: https://github.com/huggingface/transformers/pull/40700
  4670. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4671. config = json.load(f)
  4672. orig_sliding_window = config.get("sliding_window")
  4673. if orig_sliding_window is None:
  4674. raise ValueError("sliding_window not found in model config - this is required for the model")
  4675. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4676. f"instead of {self.hparams['sliding_window']}")
  4677. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4678. if self.sentence_transformers_dense_modules:
  4679. for dense, dims in self.dense_features_dims.items():
  4680. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4681. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4682. self._try_set_pooling_type()
  4683. @ModelBase.register("Gemma3ForConditionalGeneration")
  4684. class Gemma3VisionModel(MmprojModel):
  4685. def set_gguf_parameters(self):
  4686. super().set_gguf_parameters()
  4687. hparams = self.hparams
  4688. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4689. # default values below are taken from HF tranformers code
  4690. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4691. self.gguf_writer.add_vision_use_gelu(True)
  4692. # calculate proj_scale_factor (used by tinygemma3 test model)
  4693. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4694. n_per_side = int(image_seq_length ** 0.5)
  4695. image_size = self.hparams["image_size"]
  4696. patch_size = self.hparams["patch_size"]
  4697. proj_scale_factor = (image_size // patch_size) // n_per_side
  4698. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4699. # we only need to write this if it's not the default value
  4700. # in this case, we are converting a test model
  4701. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4702. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4703. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4704. if "input_projection" in name:
  4705. return gguf.GGMLQuantizationType.F16
  4706. if ".embeddings." in name:
  4707. return gguf.GGMLQuantizationType.F32
  4708. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4709. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4710. del bid # unused
  4711. if "vision_model.head." in name:
  4712. return [] # skip redundant tensors for tinygemma3
  4713. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4714. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4715. # process vision tensors
  4716. name = name.replace("_weight", ".weight")
  4717. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4718. # the other norm values are part of SigLIP model, and they are already correct
  4719. # ref code: Gemma3RMSNorm
  4720. if "soft_emb_norm.weight" in name:
  4721. logger.info(f"Correcting norm value for '{name}'")
  4722. data_torch = data_torch + 1
  4723. return [(self.map_tensor_name(name), data_torch)]
  4724. return [] # skip other tensors
  4725. @ModelBase.register("Gemma3nForConditionalGeneration")
  4726. class Gemma3NModel(Gemma3Model):
  4727. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4728. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4729. _altup_proj: list[Tensor] = []
  4730. _altup_unembd: list[Tensor] = []
  4731. def __init__(self, *args, **kwargs):
  4732. super().__init__(*args, **kwargs)
  4733. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4734. self._altup_proj = [
  4735. torch.Tensor(), # to be replaced
  4736. torch.Tensor(), # to be replaced
  4737. torch.Tensor(), # to be replaced
  4738. ]
  4739. self._altup_unembd = [
  4740. torch.Tensor(), # to be replaced
  4741. torch.Tensor(), # to be replaced
  4742. torch.Tensor(), # to be replaced
  4743. ]
  4744. def set_vocab(self):
  4745. super().set_vocab()
  4746. def set_gguf_parameters(self):
  4747. super().set_gguf_parameters()
  4748. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4749. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4750. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4751. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4752. activation_sparsity_scale = []
  4753. for s in self.hparams["activation_sparsity_pattern"]:
  4754. normal_dist = torch.distributions.normal.Normal(0, 1)
  4755. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4756. activation_sparsity_scale.append(std_multiplier.item())
  4757. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4758. sliding_window_pattern = []
  4759. for t in self.hparams["layer_types"]:
  4760. sliding_window_pattern.append(t == "sliding_attention")
  4761. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4762. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4763. has_all = all(m.numel() > 0 for m in matrices)
  4764. if not has_all:
  4765. return None
  4766. else:
  4767. return torch.stack(matrices, dim=0)
  4768. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4769. if name.endswith("_scale"):
  4770. name = name + ".weight"
  4771. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4772. if "language_model." not in name:
  4773. return [] # skip non-language model tensors
  4774. if "altup_unembed_projections" in name:
  4775. data_torch = data_torch.to(device="cpu")
  4776. if ".0." in name:
  4777. self._altup_unembd[0] = data_torch
  4778. elif ".1." in name:
  4779. self._altup_unembd[1] = data_torch
  4780. elif ".2." in name:
  4781. self._altup_unembd[2] = data_torch
  4782. else:
  4783. raise ValueError(f"Unknown name: {name}")
  4784. out = self._stack_matrices(self._altup_unembd)
  4785. if out is not None:
  4786. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4787. else:
  4788. return []
  4789. if "altup_projections" in name:
  4790. data_torch = data_torch.to(device="cpu")
  4791. if ".0." in name:
  4792. self._altup_proj[0] = data_torch
  4793. elif ".1." in name:
  4794. self._altup_proj[1] = data_torch
  4795. elif ".2." in name:
  4796. self._altup_proj[2] = data_torch
  4797. else:
  4798. raise ValueError(f"Unknown name: {name}")
  4799. out = self._stack_matrices(self._altup_proj)
  4800. if out is not None:
  4801. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4802. else:
  4803. return []
  4804. return super().modify_tensors(data_torch, name, bid)
  4805. @ModelBase.register("Starcoder2ForCausalLM")
  4806. class StarCoder2Model(TextModel):
  4807. model_arch = gguf.MODEL_ARCH.STARCODER2
  4808. @ModelBase.register("Rwkv6ForCausalLM")
  4809. class Rwkv6Model(TextModel):
  4810. model_arch = gguf.MODEL_ARCH.RWKV6
  4811. def set_vocab(self):
  4812. self._set_vocab_rwkv_world()
  4813. def set_gguf_parameters(self):
  4814. block_count = self.hparams["num_hidden_layers"]
  4815. head_size = self.hparams["head_size"]
  4816. hidden_size = self.hparams["hidden_size"]
  4817. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4818. rescale_every_n_layers = self.hparams["rescale_every"]
  4819. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4820. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4821. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4822. # RWKV isn't context limited
  4823. self.gguf_writer.add_context_length(1048576)
  4824. self.gguf_writer.add_embedding_length(hidden_size)
  4825. self.gguf_writer.add_block_count(block_count)
  4826. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4827. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4828. self.gguf_writer.add_wkv_head_size(head_size)
  4829. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4830. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4831. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4832. self.gguf_writer.add_file_type(self.ftype)
  4833. # required by llama.cpp, unused
  4834. self.gguf_writer.add_head_count(0)
  4835. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4836. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4837. new_name = self.map_tensor_name(name)
  4838. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4839. new_name += ".weight"
  4840. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4841. data_torch = data_torch.transpose(0, 1)
  4842. if new_name.endswith("time_mix_w2.weight"):
  4843. data_torch = data_torch.permute(0, 2, 1)
  4844. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4845. data_torch = data_torch.squeeze()
  4846. try:
  4847. rescale_every_n_layers = self.hparams["rescale_every"]
  4848. if rescale_every_n_layers > 0:
  4849. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4850. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4851. except KeyError:
  4852. pass
  4853. # concat time_mix_lerp weights to reduce some cpu overhead
  4854. # also reduces the number of tensors in the model
  4855. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4856. try:
  4857. self.lerp_weights[bid][new_name] = data_torch
  4858. except KeyError:
  4859. self.lerp_weights[bid] = {new_name: data_torch}
  4860. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4861. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4862. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4863. yield (new_name, data)
  4864. return
  4865. yield (new_name, data_torch)
  4866. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4867. class RWKV6Qwen2Model(Rwkv6Model):
  4868. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4869. def set_vocab(self):
  4870. try:
  4871. self._set_vocab_sentencepiece()
  4872. except FileNotFoundError:
  4873. self._set_vocab_gpt2()
  4874. def set_gguf_parameters(self):
  4875. block_count = self.hparams["num_hidden_layers"]
  4876. num_attention_heads = self.hparams["num_attention_heads"]
  4877. num_key_value_heads = self.hparams["num_key_value_heads"]
  4878. hidden_size = self.hparams["hidden_size"]
  4879. head_size = hidden_size // num_attention_heads
  4880. rms_norm_eps = self.hparams["rms_norm_eps"]
  4881. intermediate_size = self.hparams["intermediate_size"]
  4882. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4883. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4884. # RWKV isn't context limited
  4885. self.gguf_writer.add_context_length(1048576)
  4886. self.gguf_writer.add_embedding_length(hidden_size)
  4887. self.gguf_writer.add_block_count(block_count)
  4888. self.gguf_writer.add_wkv_head_size(head_size)
  4889. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4890. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4891. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4892. self.gguf_writer.add_file_type(self.ftype)
  4893. # special parameters for time_mixing in RWKV6QWEN2
  4894. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4895. self.gguf_writer.add_token_shift_count(1)
  4896. # RWKV6QWEN2 use grouped key/value like GQA
  4897. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4898. # required by llama.cpp, unused
  4899. self.gguf_writer.add_head_count(0)
  4900. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4901. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4902. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4903. data = data.view(5, -1, data.shape[-1])
  4904. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4905. # permute them here to avoid code changes
  4906. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4907. if "w2" in new_name:
  4908. data = data.view(5, -1, data.shape[-1])
  4909. yield (new_name, data)
  4910. continue
  4911. yield (new_name, data)
  4912. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4913. class Rwkv7Model(TextModel):
  4914. model_arch = gguf.MODEL_ARCH.RWKV7
  4915. def set_vocab(self):
  4916. self._set_vocab_rwkv_world()
  4917. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4918. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4919. def set_gguf_parameters(self):
  4920. block_count = self.hparams["num_hidden_layers"]
  4921. try:
  4922. head_size = self.hparams["head_size"]
  4923. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4924. except KeyError:
  4925. head_size = self.hparams["head_dim"]
  4926. layer_norm_eps = self.hparams["norm_eps"]
  4927. hidden_size = self.hparams["hidden_size"]
  4928. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4929. # ICLR: In-Context-Learning-Rate
  4930. try:
  4931. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4932. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4933. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4934. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4935. except KeyError:
  4936. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4937. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4938. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4939. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4940. # RWKV isn't context limited
  4941. self.gguf_writer.add_context_length(1048576)
  4942. self.gguf_writer.add_embedding_length(hidden_size)
  4943. self.gguf_writer.add_block_count(block_count)
  4944. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4945. self.gguf_writer.add_wkv_head_size(head_size)
  4946. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4947. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4948. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4949. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4950. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4951. self.gguf_writer.add_file_type(self.ftype)
  4952. # required by llama.cpp, unused
  4953. self.gguf_writer.add_head_count(0)
  4954. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4955. lora_needs_transpose: bool = True
  4956. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4957. # unify tensor names here to make life easier
  4958. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4959. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4960. name = name.replace("time_mixer.", "")
  4961. # lora layer names in fla-hub's impl
  4962. if "_lora.lora" in name:
  4963. self.lora_needs_transpose = False
  4964. name = name.replace("_lora.lora.0.weight", "1.weight")
  4965. name = name.replace("_lora.lora.2.weight", "2.weight")
  4966. name = name.replace("_lora.lora.2.bias", "0.weight")
  4967. name = name.replace("feed_forward_norm", "ln2")
  4968. name = name.replace("g_norm", "ln_x")
  4969. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4970. # some models have dummy v0/v1/v2 on first layer while others don't
  4971. # ignore them all since they are not used
  4972. return
  4973. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4974. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4975. if bid is not None and "attention.x_" in name:
  4976. if "attention.x_x" in name:
  4977. # already concatenated
  4978. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4979. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4980. yield (new_name, data)
  4981. else:
  4982. try:
  4983. self.lerp_weights[bid][name] = data_torch
  4984. except KeyError:
  4985. self.lerp_weights[bid] = {name: data_torch}
  4986. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4987. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4988. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4989. yield (new_name, data)
  4990. return
  4991. else:
  4992. data_torch = data_torch.squeeze()
  4993. new_name = self.map_tensor_name(name)
  4994. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4995. new_name += ".weight"
  4996. if self.lora_needs_transpose and any(
  4997. new_name.endswith(t) for t in [
  4998. "time_mix_w1.weight", "time_mix_w2.weight",
  4999. "time_mix_a1.weight", "time_mix_a2.weight",
  5000. "time_mix_v1.weight", "time_mix_v2.weight",
  5001. "time_mix_g1.weight", "time_mix_g2.weight",
  5002. ]
  5003. ):
  5004. data_torch = data_torch.transpose(0, 1)
  5005. if 'r_k' in new_name:
  5006. data_torch = data_torch.flatten()
  5007. if bid == 0 and "time_mix_a" in new_name:
  5008. # dummy v0/v1/v2 on first layer
  5009. # easist way to make llama happy
  5010. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5011. yield (new_name, data_torch)
  5012. @ModelBase.register("RwkvHybridForCausalLM")
  5013. class ARwkv7Model(Rwkv7Model):
  5014. model_arch = gguf.MODEL_ARCH.ARWKV7
  5015. def set_vocab(self):
  5016. try:
  5017. self._set_vocab_sentencepiece()
  5018. except FileNotFoundError:
  5019. self._set_vocab_gpt2()
  5020. def set_gguf_parameters(self):
  5021. block_count = self.hparams["num_hidden_layers"]
  5022. hidden_size = self.hparams["hidden_size"]
  5023. head_size = self.hparams["head_size"]
  5024. rms_norm_eps = self.hparams["rms_norm_eps"]
  5025. intermediate_size = self.hparams["intermediate_size"]
  5026. wkv_has_gate = self.hparams["wkv_has_gate"]
  5027. assert self.hparams["wkv_version"] == 7
  5028. # ICLR: In-Context-Learning-Rate
  5029. lora_rank_decay = 64
  5030. lora_rank_iclr = 64
  5031. lora_rank_value_residual_mix = 32
  5032. lora_rank_gate = 128 if wkv_has_gate else 0
  5033. # RWKV isn't context limited
  5034. self.gguf_writer.add_context_length(1048576)
  5035. self.gguf_writer.add_embedding_length(hidden_size)
  5036. self.gguf_writer.add_block_count(block_count)
  5037. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5038. self.gguf_writer.add_wkv_head_size(head_size)
  5039. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5040. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5041. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5042. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5043. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5044. self.gguf_writer.add_file_type(self.ftype)
  5045. self.gguf_writer.add_token_shift_count(1)
  5046. # required by llama.cpp, unused
  5047. self.gguf_writer.add_head_count(0)
  5048. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5049. class MambaModel(TextModel):
  5050. model_arch = gguf.MODEL_ARCH.MAMBA
  5051. def __init__(self, dir_model: Path, *args, **kwargs):
  5052. # Avoid using AutoConfig for hparams
  5053. hparams = kwargs.pop("hparams", None)
  5054. if hparams is None:
  5055. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5056. hparams = json.load(f)
  5057. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5058. def set_vocab(self):
  5059. vocab_size = self.hparams["vocab_size"]
  5060. # Round vocab size to next multiple of 8
  5061. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5062. # pad using ceiling division
  5063. # ref: https://stackoverflow.com/a/17511341/22827863
  5064. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5065. self.hparams["vocab_size"] = vocab_size
  5066. if (self.dir_model / "tokenizer.json").is_file():
  5067. self._set_vocab_gpt2()
  5068. elif (self.dir_model / "tokenizer.model").is_file():
  5069. self._set_vocab_sentencepiece()
  5070. else:
  5071. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5072. self._set_vocab_builtin("gpt-neox", vocab_size)
  5073. def set_gguf_parameters(self):
  5074. d_model = self.find_hparam(["hidden_size", "d_model"])
  5075. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5076. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5077. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5078. # ceiling division
  5079. # ref: https://stackoverflow.com/a/17511341/22827863
  5080. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5081. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5082. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5083. use_dt_b_c_norm = False
  5084. # For falconmamba we do apply RMS norm on B / DT and C layers
  5085. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5086. use_dt_b_c_norm = True
  5087. # Fail early for models which don't have a block expansion factor of 2
  5088. assert d_inner == 2 * d_model
  5089. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5090. self.gguf_writer.add_embedding_length(d_model)
  5091. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5092. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5093. self.gguf_writer.add_block_count(self.block_count)
  5094. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5095. self.gguf_writer.add_ssm_inner_size(d_inner)
  5096. self.gguf_writer.add_ssm_state_size(d_state)
  5097. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5098. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5099. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5100. self.gguf_writer.add_file_type(self.ftype)
  5101. _tok_embd = None
  5102. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5103. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5104. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5105. new_name = self.map_tensor_name(name)
  5106. if name.endswith(".A_log"):
  5107. logger.debug("A_log --> A ==> " + new_name)
  5108. data_torch = -torch.exp(data_torch)
  5109. # [4 1 8192 1] -> [4 8192 1 1]
  5110. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5111. data_torch = data_torch.squeeze()
  5112. # assuming token_embd.weight is seen before output.weight
  5113. if self._tok_embd is not None and new_name == output_name:
  5114. if torch.equal(self._tok_embd, data_torch):
  5115. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5116. return []
  5117. elif new_name == tok_embd_name:
  5118. self._tok_embd = data_torch
  5119. return [(new_name, data_torch)]
  5120. @ModelBase.register("Mamba2ForCausalLM")
  5121. class Mamba2Model(TextModel):
  5122. model_arch = gguf.MODEL_ARCH.MAMBA2
  5123. def __init__(self, dir_model: Path, *args, **kwargs):
  5124. # Avoid using AutoConfig for hparams
  5125. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5126. hparams = kwargs.pop("hparams", None)
  5127. if hparams is None:
  5128. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5129. hparams = json.load(f)
  5130. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5131. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5132. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5133. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5134. def set_vocab(self):
  5135. vocab_size = self.hparams["vocab_size"]
  5136. # Round vocab size to next multiple of 16
  5137. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5138. # pad using ceiling division
  5139. # ref: https://stackoverflow.com/a/17511341/22827863
  5140. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5141. self.hparams["vocab_size"] = vocab_size
  5142. if (self.dir_model / "tokenizer.model").is_file():
  5143. self._set_vocab_sentencepiece()
  5144. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5145. # mamba-codestral
  5146. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5147. elif (self.dir_model / "tokenizer.json").is_file():
  5148. self._set_vocab_gpt2()
  5149. else:
  5150. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5151. self._set_vocab_builtin("gpt-neox", vocab_size)
  5152. def set_gguf_parameters(self):
  5153. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5154. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5155. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5156. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5157. # Fail early for models which don't have a block expansion factor of 2
  5158. # TODO: does this really matter?
  5159. # skip the assertion for FalconH1 Model
  5160. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5161. assert self.d_inner == 2 * self.d_model
  5162. assert self.d_inner % head_dim == 0
  5163. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5164. self.gguf_writer.add_embedding_length(self.d_model)
  5165. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5166. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5167. self.gguf_writer.add_block_count(self.block_count)
  5168. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5169. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5170. self.gguf_writer.add_ssm_state_size(d_state)
  5171. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5172. self.gguf_writer.add_ssm_group_count(self.n_group)
  5173. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5174. self.gguf_writer.add_file_type(self.ftype)
  5175. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5176. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5177. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5178. name = name.removeprefix("model.")
  5179. if name.endswith(".dt_bias"):
  5180. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5181. new_name = self.map_tensor_name(name)
  5182. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5183. data_torch = data_torch.squeeze()
  5184. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5185. gguf.MODEL_TENSOR.SSM_A,
  5186. gguf.MODEL_TENSOR.SSM_D,
  5187. ]):
  5188. # unsqueeze A to use similar shape semantics as Mamba-1
  5189. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5190. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5191. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5192. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5193. if name.endswith(".A_log"):
  5194. logger.debug("A_log --> A ==> " + new_name)
  5195. data_torch = -torch.exp(data_torch)
  5196. yield (new_name, data_torch)
  5197. @ModelBase.register("JambaForCausalLM")
  5198. class JambaModel(TextModel):
  5199. model_arch = gguf.MODEL_ARCH.JAMBA
  5200. def set_vocab(self):
  5201. if (self.dir_model / "tokenizer.model").is_file():
  5202. self._set_vocab_sentencepiece()
  5203. else:
  5204. self._set_vocab_llama_hf()
  5205. self.gguf_writer.add_add_space_prefix(False)
  5206. def set_gguf_parameters(self):
  5207. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5208. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5209. d_inner = self.hparams["mamba_expand"] * d_model
  5210. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5211. # ceiling division
  5212. # ref: https://stackoverflow.com/a/17511341/22827863
  5213. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5214. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5215. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5216. n_kv_head = self.hparams["num_key_value_heads"]
  5217. attn_offset = self.hparams["attn_layer_offset"]
  5218. attn_period = self.hparams["attn_layer_period"]
  5219. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5220. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5221. ]
  5222. self.gguf_writer.add_block_count(self.block_count)
  5223. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5224. self.gguf_writer.add_embedding_length(d_model)
  5225. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5226. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5227. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5228. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5229. self.gguf_writer.add_ssm_inner_size(d_inner)
  5230. self.gguf_writer.add_ssm_state_size(d_state)
  5231. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5232. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5233. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5234. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5235. self.gguf_writer.add_file_type(self.ftype)
  5236. _experts: list[dict[str, Tensor]] | None = None
  5237. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5238. # Mini-Jamba
  5239. name = name.replace(".moe.", ".feed_forward.")
  5240. if bid is not None:
  5241. moe_offset = self.hparams["expert_layer_offset"]
  5242. moe_period = self.hparams["expert_layer_period"]
  5243. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5244. name = name.replace(".experts.0.", ".")
  5245. # process the experts separately
  5246. if ".feed_forward.experts." in name:
  5247. n_experts = self.hparams["num_experts"]
  5248. assert bid is not None
  5249. if self._experts is None:
  5250. self._experts = [{} for _ in range(self.block_count)]
  5251. self._experts[bid][name] = data_torch
  5252. if len(self._experts[bid]) >= n_experts * 3:
  5253. # merge the experts into a single 3d tensor
  5254. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5255. datas: list[Tensor] = []
  5256. for xid in range(n_experts):
  5257. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5258. datas.append(self._experts[bid][ename])
  5259. del self._experts[bid][ename]
  5260. data_torch = torch.stack(datas, dim=0)
  5261. # using the same merged name as qwen2moe
  5262. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5263. new_name = self.map_tensor_name(merged_name)
  5264. yield new_name, data_torch
  5265. return
  5266. new_name = self.map_tensor_name(name)
  5267. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5268. data_torch = data_torch.squeeze()
  5269. if name.endswith(".A_log"):
  5270. logger.debug("A_log --> A ==> " + new_name)
  5271. data_torch = -torch.exp(data_torch)
  5272. yield (new_name, data_torch)
  5273. def prepare_tensors(self):
  5274. super().prepare_tensors()
  5275. if self._experts is not None:
  5276. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5277. experts = [k for d in self._experts for k in d.keys()]
  5278. if len(experts) > 0:
  5279. raise ValueError(f"Unprocessed experts: {experts}")
  5280. @ModelBase.register("CohereForCausalLM")
  5281. class CommandR2Model(TextModel):
  5282. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5283. def __init__(self, *args, **kwargs):
  5284. super().__init__(*args, **kwargs)
  5285. # max_position_embeddings = 8192 in config.json but model was actually
  5286. # trained on 128k context length
  5287. # aya-23 models don't have model_max_length specified
  5288. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5289. def set_gguf_parameters(self):
  5290. super().set_gguf_parameters()
  5291. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5292. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5293. @ModelBase.register("Cohere2ForCausalLM")
  5294. class Cohere2Model(TextModel):
  5295. model_arch = gguf.MODEL_ARCH.COHERE2
  5296. def set_gguf_parameters(self):
  5297. super().set_gguf_parameters()
  5298. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5299. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5300. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5301. rotary_pct = self.hparams["rotary_pct"]
  5302. hidden_size = self.hparams["hidden_size"]
  5303. num_attention_heads = self.hparams["num_attention_heads"]
  5304. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5305. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5306. @ModelBase.register("OlmoForCausalLM")
  5307. @ModelBase.register("OLMoForCausalLM")
  5308. class OlmoModel(TextModel):
  5309. model_arch = gguf.MODEL_ARCH.OLMO
  5310. def set_gguf_parameters(self):
  5311. super().set_gguf_parameters()
  5312. self.gguf_writer.add_layer_norm_eps(1e-5)
  5313. clip_qkv = self.hparams.get("clip_qkv")
  5314. if clip_qkv is not None:
  5315. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5316. # Same as super class, but permuting q_proj, k_proj
  5317. # Copied from: LlamaModel
  5318. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5319. del bid # unused
  5320. n_head = self.hparams["num_attention_heads"]
  5321. n_kv_head = self.hparams.get("num_key_value_heads")
  5322. if name.endswith("q_proj.weight"):
  5323. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5324. if name.endswith("k_proj.weight"):
  5325. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5326. return [(self.map_tensor_name(name), data_torch)]
  5327. @ModelBase.register("SeedOssForCausalLM")
  5328. class SeedOssModel(TextModel):
  5329. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5330. @ModelBase.register("Olmo2ForCausalLM")
  5331. @ModelBase.register("Olmo3ForCausalLM")
  5332. class Olmo2Model(TextModel):
  5333. model_arch = gguf.MODEL_ARCH.OLMO2
  5334. def set_gguf_parameters(self):
  5335. super().set_gguf_parameters()
  5336. rope_scaling = self.hparams.get("rope_scaling") or {}
  5337. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5338. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5339. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5340. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  5341. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5342. if "sliding_window" in self.hparams:
  5343. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5344. sliding_window_pattern = []
  5345. if "layer_types" in self.hparams:
  5346. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5347. else:
  5348. # Olmo2 does not use sliding window attention.
  5349. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5350. for i in range(self.hparams["num_hidden_layers"]):
  5351. sliding_window_pattern.append((i + 1) % 4 != 0)
  5352. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5353. @ModelBase.register("OlmoeForCausalLM")
  5354. class OlmoeModel(TextModel):
  5355. model_arch = gguf.MODEL_ARCH.OLMOE
  5356. def set_gguf_parameters(self):
  5357. super().set_gguf_parameters()
  5358. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5359. if (n_experts := self.hparams.get("num_experts")) is not None:
  5360. self.gguf_writer.add_expert_count(n_experts)
  5361. _experts: list[dict[str, Tensor]] | None = None
  5362. # Copied from: Qwen2MoeModel
  5363. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5364. # process the experts separately
  5365. if name.find("experts") != -1:
  5366. n_experts = self.hparams["num_experts"]
  5367. assert bid is not None
  5368. if self._experts is None:
  5369. self._experts = [{} for _ in range(self.block_count)]
  5370. self._experts[bid][name] = data_torch
  5371. if len(self._experts[bid]) >= n_experts * 3:
  5372. tensors: list[tuple[str, Tensor]] = []
  5373. # merge the experts into a single 3d tensor
  5374. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5375. datas: list[Tensor] = []
  5376. for xid in range(n_experts):
  5377. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5378. datas.append(self._experts[bid][ename])
  5379. del self._experts[bid][ename]
  5380. data_torch = torch.stack(datas, dim=0)
  5381. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5382. new_name = self.map_tensor_name(merged_name)
  5383. tensors.append((new_name, data_torch))
  5384. return tensors
  5385. else:
  5386. return []
  5387. return [(self.map_tensor_name(name), data_torch)]
  5388. # Copied from: Qwen2MoeModel
  5389. def prepare_tensors(self):
  5390. super().prepare_tensors()
  5391. if self._experts is not None:
  5392. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5393. experts = [k for d in self._experts for k in d.keys()]
  5394. if len(experts) > 0:
  5395. raise ValueError(f"Unprocessed experts: {experts}")
  5396. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5397. class JinaBertV2Model(BertModel):
  5398. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5399. def set_vocab(self):
  5400. tokenizer_class = 'BertTokenizer'
  5401. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5402. tokenizer_class = json.load(f)['tokenizer_class']
  5403. if tokenizer_class == 'BertTokenizer':
  5404. super().set_vocab()
  5405. elif tokenizer_class == 'RobertaTokenizer':
  5406. self._set_vocab_gpt2()
  5407. self.gguf_writer.add_token_type_count(2)
  5408. else:
  5409. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5410. @ModelBase.register("OpenELMForCausalLM")
  5411. class OpenELMModel(TextModel):
  5412. model_arch = gguf.MODEL_ARCH.OPENELM
  5413. @staticmethod
  5414. def _make_divisible(v: float | int, divisor: int) -> int:
  5415. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5416. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5417. # Make sure that round down does not go down by more than 10%.
  5418. if new_v < 0.9 * v:
  5419. new_v += divisor
  5420. return new_v
  5421. def __init__(self, *args, **kwargs):
  5422. super().__init__(*args, **kwargs)
  5423. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5424. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5425. self._n_embd: int = self.hparams["model_dim"]
  5426. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5427. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5428. self._ffn_dims: list[int] = [
  5429. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5430. for multiplier in ffn_multipliers
  5431. ]
  5432. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5433. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5434. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5435. def set_vocab(self):
  5436. try:
  5437. self._set_vocab_sentencepiece()
  5438. except FileNotFoundError:
  5439. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5440. def set_gguf_parameters(self):
  5441. n_embd = self._n_embd
  5442. head_dim = self.hparams["head_dim"]
  5443. rot_pct = 1.0
  5444. assert self.block_count == len(self._num_kv_heads)
  5445. assert self.block_count == len(self._num_query_heads)
  5446. assert self.block_count == len(self._ffn_dims)
  5447. self.gguf_writer.add_block_count(self.block_count)
  5448. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5449. self.gguf_writer.add_embedding_length(n_embd)
  5450. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5451. self.gguf_writer.add_head_count(self._num_query_heads)
  5452. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5453. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5454. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5455. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5456. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5457. self.gguf_writer.add_key_length(head_dim)
  5458. self.gguf_writer.add_value_length(head_dim)
  5459. self.gguf_writer.add_file_type(self.ftype)
  5460. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5461. if "n_layers" in keys:
  5462. return self.hparams["num_transformer_layers"]
  5463. return super().find_hparam(keys, optional)
  5464. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5465. # split ff
  5466. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5467. ff_dim = self._ffn_dims[bid]
  5468. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5469. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5470. return
  5471. yield (self.map_tensor_name(name), data_torch)
  5472. @ModelBase.register("ArcticForCausalLM")
  5473. class ArcticModel(TextModel):
  5474. model_arch = gguf.MODEL_ARCH.ARCTIC
  5475. def set_vocab(self):
  5476. # The reason for using a custom implementation here is that the
  5477. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5478. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5479. from sentencepiece import SentencePieceProcessor
  5480. tokenizer_path = self.dir_model / 'tokenizer.model'
  5481. if not tokenizer_path.is_file():
  5482. logger.error(f'Error: Missing {tokenizer_path}')
  5483. sys.exit(1)
  5484. # Read the whole vocabulary from the tokenizer.model file
  5485. tokenizer = SentencePieceProcessor()
  5486. tokenizer.LoadFromFile(str(tokenizer_path))
  5487. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5488. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5489. scores: list[float] = [-10000.0] * vocab_size
  5490. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5491. for token_id in range(tokenizer.vocab_size()):
  5492. piece = tokenizer.IdToPiece(token_id)
  5493. text = piece.encode("utf-8")
  5494. score = tokenizer.GetScore(token_id)
  5495. toktype = SentencePieceTokenTypes.NORMAL
  5496. if tokenizer.IsUnknown(token_id):
  5497. toktype = SentencePieceTokenTypes.UNKNOWN
  5498. elif tokenizer.IsControl(token_id):
  5499. toktype = SentencePieceTokenTypes.CONTROL
  5500. elif tokenizer.IsUnused(token_id):
  5501. toktype = SentencePieceTokenTypes.UNUSED
  5502. elif tokenizer.IsByte(token_id):
  5503. toktype = SentencePieceTokenTypes.BYTE
  5504. tokens[token_id] = text
  5505. scores[token_id] = score
  5506. toktypes[token_id] = toktype
  5507. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5508. # of information about added/redefined tokens and modify them accordingly.
  5509. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5510. if tokenizer_config_file.is_file():
  5511. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5512. tokenizer_config_json = json.load(f)
  5513. if "added_tokens_decoder" in tokenizer_config_json:
  5514. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5515. for token_id, token_json in added_tokens_decoder.items():
  5516. token_id = int(token_id)
  5517. if token_id >= vocab_size:
  5518. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5519. continue
  5520. token_content = token_json["content"]
  5521. token_type = SentencePieceTokenTypes.USER_DEFINED
  5522. token_score = -10000.0
  5523. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5524. # Set the score to 0.0 as in the original tokenizer.model
  5525. if ("special" in token_json) and token_json["special"]:
  5526. if token_content == tokenizer_config_json["unk_token"]:
  5527. token_type = SentencePieceTokenTypes.UNKNOWN
  5528. else:
  5529. token_type = SentencePieceTokenTypes.CONTROL
  5530. token_score = 0.0
  5531. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5532. tokens[token_id] = token_content.encode("utf-8")
  5533. toktypes[token_id] = token_type
  5534. scores[token_id] = token_score
  5535. self.gguf_writer.add_tokenizer_model("llama")
  5536. self.gguf_writer.add_tokenizer_pre("default")
  5537. self.gguf_writer.add_token_list(tokens)
  5538. self.gguf_writer.add_token_scores(scores)
  5539. self.gguf_writer.add_token_types(toktypes)
  5540. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5541. special_vocab.add_to_gguf(self.gguf_writer)
  5542. def set_gguf_parameters(self):
  5543. super().set_gguf_parameters()
  5544. hparams = self.hparams
  5545. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5546. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5547. _experts: list[dict[str, Tensor]] | None = None
  5548. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5549. n_head = self.hparams["num_attention_heads"]
  5550. n_kv_head = self.hparams.get("num_key_value_heads")
  5551. if name.endswith("q_proj.weight"):
  5552. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5553. if name.endswith("k_proj.weight"):
  5554. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5555. # process the experts separately
  5556. if name.find("block_sparse_moe.experts") != -1:
  5557. n_experts = self.hparams["num_local_experts"]
  5558. assert bid is not None
  5559. if self._experts is None:
  5560. self._experts = [{} for _ in range(self.block_count)]
  5561. self._experts[bid][name] = data_torch
  5562. if len(self._experts[bid]) >= n_experts * 3:
  5563. tensors: list[tuple[str, Tensor]] = []
  5564. # merge the experts into a single 3d tensor
  5565. for wid in ["w1", "w2", "w3"]:
  5566. datas: list[Tensor] = []
  5567. for xid in range(n_experts):
  5568. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5569. datas.append(self._experts[bid][ename])
  5570. del self._experts[bid][ename]
  5571. data_torch = torch.stack(datas, dim=0)
  5572. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5573. new_name = self.map_tensor_name(merged_name)
  5574. tensors.append((new_name, data_torch))
  5575. return tensors
  5576. else:
  5577. return []
  5578. return [(self.map_tensor_name(name), data_torch)]
  5579. def prepare_tensors(self):
  5580. super().prepare_tensors()
  5581. if self._experts is not None:
  5582. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5583. experts = [k for d in self._experts for k in d.keys()]
  5584. if len(experts) > 0:
  5585. raise ValueError(f"Unprocessed experts: {experts}")
  5586. @ModelBase.register("DeepseekForCausalLM")
  5587. class DeepseekModel(TextModel):
  5588. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5589. def set_vocab(self):
  5590. try:
  5591. self._set_vocab_sentencepiece()
  5592. except FileNotFoundError:
  5593. self._set_vocab_gpt2()
  5594. def set_gguf_parameters(self):
  5595. super().set_gguf_parameters()
  5596. hparams = self.hparams
  5597. if (rope_dim := hparams.get("head_dim")) is None:
  5598. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5599. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5600. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5601. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5602. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5603. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5604. self.gguf_writer.add_expert_weights_scale(1.0)
  5605. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5606. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5607. _experts: list[dict[str, Tensor]] | None = None
  5608. @staticmethod
  5609. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5610. if n_head_kv is not None and n_head != n_head_kv:
  5611. n_head = n_head_kv
  5612. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5613. .swapaxes(1, 2)
  5614. .reshape(weights.shape))
  5615. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5616. n_head = self.hparams["num_attention_heads"]
  5617. n_kv_head = self.hparams.get("num_key_value_heads")
  5618. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5619. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5620. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5621. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5622. # process the experts separately
  5623. if name.find("mlp.experts") != -1:
  5624. n_experts = self.hparams["n_routed_experts"]
  5625. assert bid is not None
  5626. if self._experts is None:
  5627. self._experts = [{} for _ in range(self.block_count)]
  5628. self._experts[bid][name] = data_torch
  5629. if len(self._experts[bid]) >= n_experts * 3:
  5630. tensors: list[tuple[str, Tensor]] = []
  5631. # merge the experts into a single 3d tensor
  5632. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5633. datas: list[Tensor] = []
  5634. for xid in range(n_experts):
  5635. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5636. datas.append(self._experts[bid][ename])
  5637. del self._experts[bid][ename]
  5638. data_torch = torch.stack(datas, dim=0)
  5639. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5640. new_name = self.map_tensor_name(merged_name)
  5641. tensors.append((new_name, data_torch))
  5642. return tensors
  5643. else:
  5644. return []
  5645. return [(self.map_tensor_name(name), data_torch)]
  5646. def prepare_tensors(self):
  5647. super().prepare_tensors()
  5648. if self._experts is not None:
  5649. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5650. experts = [k for d in self._experts for k in d.keys()]
  5651. if len(experts) > 0:
  5652. raise ValueError(f"Unprocessed experts: {experts}")
  5653. @ModelBase.register(
  5654. "DeepseekV2ForCausalLM",
  5655. "DeepseekV3ForCausalLM",
  5656. "KimiVLForConditionalGeneration",
  5657. )
  5658. class DeepseekV2Model(TextModel):
  5659. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5660. def set_vocab(self):
  5661. try:
  5662. self._set_vocab_gpt2()
  5663. return
  5664. except Exception:
  5665. pass
  5666. from transformers import AutoTokenizer
  5667. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5668. tokpre = self.get_vocab_base_pre(tokenizer)
  5669. if tokpre == "kimi-k2":
  5670. # Build merges list using the approach similar to HunYuanMoE
  5671. merges = []
  5672. vocab = {}
  5673. mergeable_ranks = tokenizer.model._mergeable_ranks
  5674. for token, rank in mergeable_ranks.items():
  5675. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5676. if len(token) == 1:
  5677. continue
  5678. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5679. if len(merged) == 2:
  5680. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5681. # Build token list
  5682. vocab_size = self.hparams["vocab_size"]
  5683. special_tokens = tokenizer.special_tokens
  5684. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5685. tokens: list[str] = []
  5686. toktypes: list[int] = []
  5687. for i in range(vocab_size):
  5688. if i not in reverse_vocab:
  5689. tokens.append(f"[PAD{i}]")
  5690. toktypes.append(gguf.TokenType.UNUSED)
  5691. else:
  5692. token = reverse_vocab[i]
  5693. tokens.append(token)
  5694. if i in special_tokens.values():
  5695. toktypes.append(gguf.TokenType.CONTROL)
  5696. else:
  5697. toktypes.append(gguf.TokenType.NORMAL)
  5698. self.gguf_writer.add_tokenizer_model("gpt2")
  5699. self.gguf_writer.add_tokenizer_pre(tokpre)
  5700. self.gguf_writer.add_token_list(tokens)
  5701. self.gguf_writer.add_token_types(toktypes)
  5702. self.gguf_writer.add_token_merges(merges)
  5703. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5704. special_vocab.add_to_gguf(self.gguf_writer)
  5705. else:
  5706. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5707. def set_gguf_parameters(self):
  5708. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5709. self.hparams["num_key_value_heads"] = 1
  5710. super().set_gguf_parameters()
  5711. hparams = self.hparams
  5712. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5713. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5714. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5715. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5716. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5717. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5718. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5719. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5720. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5721. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5722. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5723. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5724. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5725. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5726. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5727. if hparams["scoring_func"] == "sigmoid":
  5728. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5729. elif hparams["scoring_func"] == "softmax":
  5730. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5731. else:
  5732. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5733. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5734. rope_scaling = self.hparams.get("rope_scaling") or {}
  5735. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5736. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5737. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5738. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5739. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5740. _experts: list[dict[str, Tensor]] | None = None
  5741. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5742. # skip vision tensors and remove "language_model." for Kimi-VL
  5743. if "vision_tower" in name or "multi_modal_projector" in name:
  5744. return []
  5745. if name.startswith("language_model."):
  5746. name = name.replace("language_model.", "")
  5747. # rename e_score_correction_bias tensors
  5748. if name.endswith("e_score_correction_bias"):
  5749. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5750. # skip Multi-Token Prediction (MTP) layers
  5751. block_count = self.hparams["num_hidden_layers"]
  5752. match = re.match(r"model.layers.(\d+)", name)
  5753. if match and int(match.group(1)) >= block_count:
  5754. return []
  5755. # process the experts separately
  5756. if name.find("mlp.experts") != -1:
  5757. n_experts = self.hparams["n_routed_experts"]
  5758. assert bid is not None
  5759. if self._experts is None:
  5760. self._experts = [{} for _ in range(self.block_count)]
  5761. self._experts[bid][name] = data_torch
  5762. if len(self._experts[bid]) >= n_experts * 3:
  5763. tensors: list[tuple[str, Tensor]] = []
  5764. # merge the experts into a single 3d tensor
  5765. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5766. datas: list[Tensor] = []
  5767. for xid in range(n_experts):
  5768. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5769. datas.append(self._experts[bid][ename])
  5770. del self._experts[bid][ename]
  5771. data_torch = torch.stack(datas, dim=0)
  5772. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5773. new_name = self.map_tensor_name(merged_name)
  5774. tensors.append((new_name, data_torch))
  5775. return tensors
  5776. else:
  5777. return []
  5778. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5779. if name.endswith("kv_b_proj.weight"):
  5780. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5781. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5782. n_head_kv = self.hparams["num_key_value_heads"]
  5783. v_head_dim = self.hparams["v_head_dim"]
  5784. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5785. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5786. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5787. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5788. k_b = k_b.transpose(1, 2)
  5789. return [
  5790. (self.map_tensor_name(name_kb), k_b),
  5791. (self.map_tensor_name(name_vb), v_b)
  5792. ]
  5793. return [(self.map_tensor_name(name), data_torch)]
  5794. def prepare_tensors(self):
  5795. super().prepare_tensors()
  5796. if self._experts is not None:
  5797. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5798. experts = [k for d in self._experts for k in d.keys()]
  5799. if len(experts) > 0:
  5800. raise ValueError(f"Unprocessed experts: {experts}")
  5801. @ModelBase.register("MiniMaxM2ForCausalLM")
  5802. class MiniMaxM2Model(TextModel):
  5803. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5804. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5805. def __init__(self, *args, **kwargs):
  5806. super().__init__(*args, **kwargs)
  5807. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5808. def set_gguf_parameters(self):
  5809. super().set_gguf_parameters()
  5810. if self.hparams["scoring_func"] == "sigmoid":
  5811. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5812. elif self.hparams["scoring_func"] == "softmax":
  5813. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5814. else:
  5815. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5816. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5817. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5818. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5819. if name.endswith("e_score_correction_bias"):
  5820. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5821. # merge expert weights
  5822. if 'experts' in name:
  5823. n_experts = self.hparams["num_experts"]
  5824. assert bid is not None
  5825. expert_cache = self._experts_cache.setdefault(bid, {})
  5826. expert_cache[name] = data_torch
  5827. expert_weights = ["w1", "w2", "w3"]
  5828. # not enough expert weights to merge
  5829. if len(expert_cache) < n_experts * len(expert_weights):
  5830. return []
  5831. tensors: list[tuple[str, Tensor]] = []
  5832. for w_name in expert_weights:
  5833. datas: list[Tensor] = []
  5834. for xid in range(n_experts):
  5835. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  5836. datas.append(expert_cache[ename])
  5837. del expert_cache[ename]
  5838. data_torch = torch.stack(datas, dim=0)
  5839. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  5840. new_name = self.map_tensor_name(merged_name)
  5841. tensors.append((new_name, data_torch))
  5842. del self._experts_cache[bid]
  5843. return tensors
  5844. return super().modify_tensors(data_torch, name, bid)
  5845. @ModelBase.register("Dots1ForCausalLM")
  5846. class Dots1Model(Qwen2MoeModel):
  5847. model_arch = gguf.MODEL_ARCH.DOTS1
  5848. def __init__(self, *args, **kwargs):
  5849. super().__init__(*args, **kwargs)
  5850. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5851. def set_gguf_parameters(self):
  5852. super().set_gguf_parameters()
  5853. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5854. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5855. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5856. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5857. if self.hparams["scoring_func"] == "noaux_tc":
  5858. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5859. else:
  5860. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5862. if name.endswith("e_score_correction_bias"):
  5863. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5864. if "shared_experts" in name:
  5865. return [(self.map_tensor_name(name), data_torch)]
  5866. return super().modify_tensors(data_torch, name, bid)
  5867. @ModelBase.register("PLMForCausalLM")
  5868. class PLMModel(TextModel):
  5869. model_arch = gguf.MODEL_ARCH.PLM
  5870. def set_vocab(self):
  5871. self._set_vocab_gpt2()
  5872. def set_gguf_parameters(self):
  5873. super().set_gguf_parameters()
  5874. hparams = self.hparams
  5875. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5876. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5877. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5878. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5879. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5880. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5881. return [(self.map_tensor_name(name), data_torch)]
  5882. def prepare_tensors(self):
  5883. super().prepare_tensors()
  5884. @ModelBase.register("T5WithLMHeadModel")
  5885. @ModelBase.register("T5ForConditionalGeneration")
  5886. @ModelBase.register("MT5ForConditionalGeneration")
  5887. @ModelBase.register("UMT5ForConditionalGeneration")
  5888. class T5Model(TextModel):
  5889. model_arch = gguf.MODEL_ARCH.T5
  5890. def __init__(self, *args, **kwargs):
  5891. super().__init__(*args, **kwargs)
  5892. self.shared_token_embeddings_found = False
  5893. def set_vocab(self):
  5894. # to avoid TypeError: Descriptors cannot be created directly
  5895. # exception when importing sentencepiece_model_pb2
  5896. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5897. from sentencepiece import SentencePieceProcessor
  5898. from sentencepiece import sentencepiece_model_pb2 as model
  5899. tokenizer_path = self.dir_model / 'tokenizer.model'
  5900. # many older models use spiece.model tokenizer model filename
  5901. if not tokenizer_path.is_file():
  5902. tokenizer_path = self.dir_model / 'spiece.model'
  5903. if not tokenizer_path.is_file():
  5904. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5905. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5906. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5907. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5908. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5909. # assure the tokenizer model file name is correct
  5910. assert tokenizer_path.name == 'tokenizer.model'
  5911. return self._set_vocab_sentencepiece()
  5912. else:
  5913. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5914. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5915. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5916. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5917. tokenizer = SentencePieceProcessor()
  5918. tokenizer.LoadFromFile(str(tokenizer_path))
  5919. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5920. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5921. scores: list[float] = [-10000.0] * vocab_size
  5922. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5923. for token_id in range(tokenizer.vocab_size()):
  5924. piece = tokenizer.IdToPiece(token_id)
  5925. text = piece.encode("utf-8")
  5926. score = tokenizer.GetScore(token_id)
  5927. toktype = SentencePieceTokenTypes.NORMAL
  5928. if tokenizer.IsUnknown(token_id):
  5929. toktype = SentencePieceTokenTypes.UNKNOWN
  5930. elif tokenizer.IsControl(token_id):
  5931. toktype = SentencePieceTokenTypes.CONTROL
  5932. elif tokenizer.IsUnused(token_id):
  5933. toktype = SentencePieceTokenTypes.UNUSED
  5934. elif tokenizer.IsByte(token_id):
  5935. toktype = SentencePieceTokenTypes.BYTE
  5936. tokens[token_id] = text
  5937. scores[token_id] = score
  5938. toktypes[token_id] = toktype
  5939. added_tokens_file = self.dir_model / 'added_tokens.json'
  5940. if added_tokens_file.is_file():
  5941. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5942. added_tokens_json = json.load(f)
  5943. for key in added_tokens_json:
  5944. token_id = added_tokens_json[key]
  5945. if token_id >= vocab_size:
  5946. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5947. continue
  5948. tokens[token_id] = key.encode("utf-8")
  5949. scores[token_id] = -1000.0
  5950. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5951. if vocab_size > len(tokens):
  5952. pad_count = vocab_size - len(tokens)
  5953. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5954. for i in range(1, pad_count + 1):
  5955. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5956. scores.append(-1000.0)
  5957. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5958. self.gguf_writer.add_tokenizer_model("t5")
  5959. self.gguf_writer.add_tokenizer_pre("default")
  5960. self.gguf_writer.add_token_list(tokens)
  5961. self.gguf_writer.add_token_scores(scores)
  5962. self.gguf_writer.add_token_types(toktypes)
  5963. self.gguf_writer.add_add_space_prefix(add_prefix)
  5964. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5965. if precompiled_charsmap:
  5966. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5967. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5968. special_vocab.add_to_gguf(self.gguf_writer)
  5969. def set_gguf_parameters(self):
  5970. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5971. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5972. n_ctx = 512
  5973. self.gguf_writer.add_context_length(n_ctx)
  5974. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5975. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5976. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5977. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  5978. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  5979. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5980. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5981. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5982. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5983. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5984. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5985. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5986. self.gguf_writer.add_file_type(self.ftype)
  5987. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5988. del bid # unused
  5989. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5990. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5991. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5992. # and decoder and ignore the remaining ones.
  5993. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5994. if not self.shared_token_embeddings_found:
  5995. name = "shared.weight"
  5996. self.shared_token_embeddings_found = True
  5997. else:
  5998. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5999. return []
  6000. return [(self.map_tensor_name(name), data_torch)]
  6001. @ModelBase.register("T5EncoderModel")
  6002. class T5EncoderModel(TextModel):
  6003. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6004. def __init__(self, *args, **kwargs):
  6005. super().__init__(*args, **kwargs)
  6006. self.shared_token_embeddings_found = False
  6007. def set_vocab(self):
  6008. # to avoid TypeError: Descriptors cannot be created directly
  6009. # exception when importing sentencepiece_model_pb2
  6010. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6011. from sentencepiece import SentencePieceProcessor
  6012. from sentencepiece import sentencepiece_model_pb2 as model
  6013. tokenizer_path = self.dir_model / 'tokenizer.model'
  6014. # many older models use spiece.model tokenizer model filename
  6015. if not tokenizer_path.is_file():
  6016. tokenizer_path = self.dir_model / 'spiece.model'
  6017. if not tokenizer_path.is_file():
  6018. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6019. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6020. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6021. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6022. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6023. # assure the tokenizer model file name is correct
  6024. assert tokenizer_path.name == 'tokenizer.model'
  6025. return self._set_vocab_sentencepiece()
  6026. else:
  6027. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6028. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6029. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6030. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6031. tokenizer = SentencePieceProcessor()
  6032. tokenizer.LoadFromFile(str(tokenizer_path))
  6033. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6034. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6035. scores: list[float] = [-10000.0] * vocab_size
  6036. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6037. for token_id in range(tokenizer.vocab_size()):
  6038. piece = tokenizer.IdToPiece(token_id)
  6039. text = piece.encode("utf-8")
  6040. score = tokenizer.GetScore(token_id)
  6041. toktype = SentencePieceTokenTypes.NORMAL
  6042. if tokenizer.IsUnknown(token_id):
  6043. toktype = SentencePieceTokenTypes.UNKNOWN
  6044. elif tokenizer.IsControl(token_id):
  6045. toktype = SentencePieceTokenTypes.CONTROL
  6046. elif tokenizer.IsUnused(token_id):
  6047. toktype = SentencePieceTokenTypes.UNUSED
  6048. elif tokenizer.IsByte(token_id):
  6049. toktype = SentencePieceTokenTypes.BYTE
  6050. tokens[token_id] = text
  6051. scores[token_id] = score
  6052. toktypes[token_id] = toktype
  6053. added_tokens_file = self.dir_model / 'added_tokens.json'
  6054. if added_tokens_file.is_file():
  6055. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6056. added_tokens_json = json.load(f)
  6057. for key in added_tokens_json:
  6058. token_id = added_tokens_json[key]
  6059. if token_id >= vocab_size:
  6060. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6061. continue
  6062. tokens[token_id] = key.encode("utf-8")
  6063. scores[token_id] = -1000.0
  6064. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6065. if vocab_size > len(tokens):
  6066. pad_count = vocab_size - len(tokens)
  6067. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6068. for i in range(1, pad_count + 1):
  6069. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6070. scores.append(-1000.0)
  6071. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6072. self.gguf_writer.add_tokenizer_model("t5")
  6073. self.gguf_writer.add_tokenizer_pre("default")
  6074. self.gguf_writer.add_token_list(tokens)
  6075. self.gguf_writer.add_token_scores(scores)
  6076. self.gguf_writer.add_token_types(toktypes)
  6077. self.gguf_writer.add_add_space_prefix(add_prefix)
  6078. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6079. if precompiled_charsmap:
  6080. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6081. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6082. special_vocab.add_to_gguf(self.gguf_writer)
  6083. def set_gguf_parameters(self):
  6084. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6085. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6086. n_ctx = 512
  6087. self.gguf_writer.add_context_length(n_ctx)
  6088. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6089. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6090. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  6091. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6092. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6093. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6094. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6095. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6096. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6097. self.gguf_writer.add_file_type(self.ftype)
  6098. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6099. del bid # unused
  6100. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6101. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6102. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6103. # and decoder and ignore the remaining ones.
  6104. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6105. if not self.shared_token_embeddings_found:
  6106. name = "shared.weight"
  6107. self.shared_token_embeddings_found = True
  6108. else:
  6109. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6110. return []
  6111. return [(self.map_tensor_name(name), data_torch)]
  6112. @ModelBase.register("JAISLMHeadModel")
  6113. class JaisModel(TextModel):
  6114. model_arch = gguf.MODEL_ARCH.JAIS
  6115. def __init__(self, *args, **kwargs):
  6116. super().__init__(*args, **kwargs)
  6117. # SwigLU activation
  6118. assert self.hparams["activation_function"] == "swiglu"
  6119. # ALiBi position embedding
  6120. assert self.hparams["position_embedding_type"] == "alibi"
  6121. # Embeddings scale
  6122. self.embeddings_scale = 1.0
  6123. if 'mup_embeddings_scale' in self.hparams:
  6124. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6125. elif 'embeddings_scale' in self.hparams:
  6126. self.embeddings_scale = self.hparams['embeddings_scale']
  6127. else:
  6128. assert False
  6129. self.width_scale = 1.0
  6130. if 'mup_output_alpha' in self.hparams:
  6131. assert 'mup_width_scale' in self.hparams
  6132. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6133. elif 'width_scale' in self.hparams:
  6134. self.width_scale = self.hparams['width_scale']
  6135. else:
  6136. assert False
  6137. self.max_alibi_bias = 8.0
  6138. def set_vocab(self):
  6139. self._set_vocab_gpt2()
  6140. def set_gguf_parameters(self):
  6141. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  6142. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6143. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6144. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6145. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6146. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6147. self.gguf_writer.add_file_type(self.ftype)
  6148. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6149. del bid # unused
  6150. tensors: list[tuple[str, Tensor]] = []
  6151. # we don't need these
  6152. if name.endswith((".attn.bias")):
  6153. return tensors
  6154. if name.endswith(("relative_pe.slopes")):
  6155. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6156. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6157. # but Jais's PyTorch model simply precalculates the slope values and places them
  6158. # in relative_pes.slopes
  6159. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6160. first_val = float(data_torch[0].item())
  6161. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6162. return tensors
  6163. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6164. data_torch = data_torch.transpose(1, 0)
  6165. new_name = self.map_tensor_name(name)
  6166. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6167. tensors.append((new_name, data_torch * self.embeddings_scale))
  6168. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6169. tensors.append((new_name, data_torch * self.width_scale))
  6170. else:
  6171. tensors.append((new_name, data_torch))
  6172. return tensors
  6173. def prepare_tensors(self):
  6174. super().prepare_tensors()
  6175. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6176. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6177. class Glm4Model(TextModel):
  6178. model_arch = gguf.MODEL_ARCH.GLM4
  6179. def set_vocab(self):
  6180. from transformers import AutoTokenizer
  6181. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6182. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6183. tokens, toktypes, tokpre = self.get_vocab_base()
  6184. self.gguf_writer.add_tokenizer_model("gpt2")
  6185. self.gguf_writer.add_tokenizer_pre(tokpre)
  6186. self.gguf_writer.add_token_list(tokens)
  6187. self.gguf_writer.add_token_types(toktypes)
  6188. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6189. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6190. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6191. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6192. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6193. special_vocab.add_to_gguf(self.gguf_writer)
  6194. def set_gguf_parameters(self):
  6195. super().set_gguf_parameters()
  6196. if (rope_dim := self.hparams.get("head_dim")) is None:
  6197. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6198. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6199. rope_scaling = self.hparams.get("rope_scaling") or {}
  6200. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6201. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6202. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6203. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6205. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6206. return []
  6207. elif name.startswith("model.language_model."):
  6208. name = name.replace("language_model.", "") # for Glm4v
  6209. return super().modify_tensors(data_torch, name, bid)
  6210. @ModelBase.register("Glm4MoeForCausalLM")
  6211. class Glm4MoeModel(TextModel):
  6212. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6213. def __init__(self, *args, **kwargs):
  6214. super().__init__(*args, **kwargs)
  6215. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6216. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6217. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6218. def set_vocab(self):
  6219. from transformers import AutoTokenizer
  6220. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6221. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6222. tokens, toktypes, tokpre = self.get_vocab_base()
  6223. self.gguf_writer.add_tokenizer_model("gpt2")
  6224. self.gguf_writer.add_tokenizer_pre(tokpre)
  6225. self.gguf_writer.add_token_list(tokens)
  6226. self.gguf_writer.add_token_types(toktypes)
  6227. # Special tokens
  6228. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6229. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6230. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6231. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6232. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6233. # Patch broken chat template
  6234. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  6235. special_vocab.chat_template = special_vocab.chat_template.replace(
  6236. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  6237. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  6238. special_vocab.add_to_gguf(self.gguf_writer)
  6239. def set_gguf_parameters(self):
  6240. super().set_gguf_parameters()
  6241. if (rope_dim := self.hparams.get("head_dim")) is None:
  6242. rope_dim = (
  6243. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6244. )
  6245. self.gguf_writer.add_rope_dimension_count(
  6246. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6247. )
  6248. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6249. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6250. self.gguf_writer.add_expert_count(n_routed_experts)
  6251. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6252. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6253. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6254. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6255. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6256. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6257. # Expert gating function (sigmoid for GLM4_MOE)
  6258. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6259. # Routed scaling factor
  6260. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6261. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6262. # Normalise topk probabilities
  6263. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6264. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6265. # NextN/MTP prediction layers
  6266. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6267. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6268. _experts: list[dict[str, Tensor]] | None = None
  6269. def modify_tensors(
  6270. self, data_torch: Tensor, name: str, bid: int | None
  6271. ) -> Iterable[tuple[str, Tensor]]:
  6272. if name.startswith("model.visual."): # ignore visual part
  6273. return []
  6274. elif name.startswith("model.language_model."):
  6275. name = name.replace("language_model.", "") # for multimodal variants
  6276. # Handle main token embedding (but not layer-specific NextN embeddings)
  6277. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6278. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6279. # Handle routed experts
  6280. if name.find("mlp.experts") != -1:
  6281. n_experts = self.hparams["n_routed_experts"]
  6282. assert bid is not None
  6283. if self._experts is None:
  6284. self._experts = [{} for _ in range(self.block_count)]
  6285. self._experts[bid][name] = data_torch
  6286. if len(self._experts[bid]) >= n_experts * 3:
  6287. tensors: list[tuple[str, Tensor]] = []
  6288. # merge the experts into a single 3d tensor
  6289. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6290. datas: list[Tensor] = []
  6291. for xid in range(n_experts):
  6292. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6293. datas.append(self._experts[bid][ename])
  6294. del self._experts[bid][ename]
  6295. data_torch = torch.stack(datas, dim=0)
  6296. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6297. new_name = self.map_tensor_name(merged_name)
  6298. tensors.append((new_name, data_torch))
  6299. return tensors
  6300. else:
  6301. return []
  6302. if name.endswith("e_score_correction_bias"):
  6303. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6304. new_name = self.map_tensor_name(name)
  6305. return [(new_name, data_torch)]
  6306. def prepare_tensors(self):
  6307. super().prepare_tensors()
  6308. if self._experts is not None:
  6309. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6310. experts = [k for d in self._experts for k in d.keys()]
  6311. if len(experts) > 0:
  6312. raise ValueError(f"Unprocessed experts: {experts}")
  6313. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6314. class ChatGLMModel(TextModel):
  6315. model_arch = gguf.MODEL_ARCH.CHATGLM
  6316. def set_vocab_chatglm3(self):
  6317. dir_model = self.dir_model
  6318. hparams = self.hparams
  6319. tokens: list[bytes] = []
  6320. toktypes: list[int] = []
  6321. scores: list[float] = []
  6322. from transformers import AutoTokenizer
  6323. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6324. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6325. assert max(tokenizer.get_vocab().values()) < vocab_size
  6326. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6327. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6328. for token_id in range(vocab_size):
  6329. piece = tokenizer._convert_id_to_token(token_id)
  6330. if token_id == 0:
  6331. piece = "<unk>"
  6332. elif token_id == 1:
  6333. piece = "<bos>"
  6334. elif token_id == 2:
  6335. piece = "<eos>"
  6336. text = piece.encode("utf-8")
  6337. score = 0.0
  6338. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6339. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6340. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6341. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6342. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6343. if piece in special_tokens:
  6344. toktype = SentencePieceTokenTypes.CONTROL
  6345. elif len(piece) == 0:
  6346. text = f"[PAD{token_id}]".encode("utf-8")
  6347. toktype = SentencePieceTokenTypes.UNUSED
  6348. else:
  6349. toktype = SentencePieceTokenTypes.USER_DEFINED
  6350. tokens.append(text)
  6351. scores.append(score)
  6352. toktypes.append(toktype)
  6353. continue
  6354. toktype = SentencePieceTokenTypes.NORMAL
  6355. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6356. toktype = SentencePieceTokenTypes.UNKNOWN
  6357. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6358. toktype = SentencePieceTokenTypes.CONTROL
  6359. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6360. toktype = SentencePieceTokenTypes.UNUSED
  6361. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6362. toktype = SentencePieceTokenTypes.BYTE
  6363. tokens.append(text)
  6364. scores.append(score)
  6365. toktypes.append(toktype)
  6366. self.gguf_writer.add_tokenizer_model("llama")
  6367. # glm3 needs prefix and suffix formatted as:
  6368. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6369. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6370. self.gguf_writer.add_token_list(tokens)
  6371. self.gguf_writer.add_token_scores(scores)
  6372. self.gguf_writer.add_token_types(toktypes)
  6373. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6374. special_vocab.add_to_gguf(self.gguf_writer)
  6375. @staticmethod
  6376. def token_bytes_to_string(b):
  6377. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6378. byte_encoder = bytes_to_unicode()
  6379. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6380. @staticmethod
  6381. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6382. parts = [bytes([b]) for b in token]
  6383. while True:
  6384. min_idx = None
  6385. min_rank = None
  6386. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6387. rank = mergeable_ranks.get(pair[0] + pair[1])
  6388. if rank is not None and (min_rank is None or rank < min_rank):
  6389. min_idx = i
  6390. min_rank = rank
  6391. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6392. break
  6393. assert min_idx is not None
  6394. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6395. return parts
  6396. def set_vocab(self):
  6397. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6398. self.set_vocab_chatglm3()
  6399. return
  6400. dir_model = self.dir_model
  6401. hparams = self.hparams
  6402. tokens: list[str] = []
  6403. toktypes: list[int] = []
  6404. from transformers import AutoTokenizer
  6405. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6406. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6407. assert max(tokenizer.get_vocab().values()) < vocab_size
  6408. tokens, toktypes, tokpre = self.get_vocab_base()
  6409. self.gguf_writer.add_tokenizer_model("gpt2")
  6410. self.gguf_writer.add_tokenizer_pre(tokpre)
  6411. self.gguf_writer.add_token_list(tokens)
  6412. self.gguf_writer.add_token_types(toktypes)
  6413. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6414. # only add special tokens when they were not already loaded from config.json
  6415. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6416. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6417. # this one is usually not in config.json anyway
  6418. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6419. special_vocab.add_to_gguf(self.gguf_writer)
  6420. def set_gguf_parameters(self):
  6421. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6422. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6423. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6424. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6425. self.gguf_writer.add_embedding_length(n_embed)
  6426. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6427. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  6428. self.gguf_writer.add_head_count(n_head)
  6429. self.gguf_writer.add_head_count_kv(n_head_kv)
  6430. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6431. self.gguf_writer.add_file_type(self.ftype)
  6432. if "attention_dim" in self.hparams:
  6433. rope_dim = self.hparams["attention_dim"]
  6434. else:
  6435. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6436. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6437. self.gguf_writer.add_add_bos_token(False)
  6438. rope_freq = 10000
  6439. if "rope_ratio" in self.hparams:
  6440. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6441. self.gguf_writer.add_rope_freq_base(rope_freq)
  6442. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6443. del bid # unused
  6444. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6445. return []
  6446. name = name.removeprefix("transformer.")
  6447. return [(self.map_tensor_name(name), data_torch)]
  6448. @ModelBase.register("NemotronForCausalLM")
  6449. class NemotronModel(TextModel):
  6450. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6451. def set_vocab(self):
  6452. self._set_vocab_sentencepiece()
  6453. self.gguf_writer.add_pad_token_id(0)
  6454. self.gguf_writer.add_unk_token_id(1)
  6455. def set_gguf_parameters(self):
  6456. super().set_gguf_parameters()
  6457. hparams = self.hparams
  6458. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6459. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6460. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6461. # * Partial RoPE
  6462. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6463. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6464. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6465. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6466. # * RopeScaling for Nemotron
  6467. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6468. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6469. else:
  6470. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6471. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6472. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6473. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6474. # model.layers.{l}.input_layernorm.weight
  6475. # model.layers.{l}.post_attention_layernorm.weight
  6476. # model.norm.weight
  6477. if name.endswith("norm.weight"):
  6478. data_torch = data_torch + 1
  6479. return [(self.map_tensor_name(name), data_torch)]
  6480. @ModelBase.register("ExaoneForCausalLM")
  6481. class ExaoneModel(TextModel):
  6482. model_arch = gguf.MODEL_ARCH.EXAONE
  6483. def set_gguf_parameters(self):
  6484. hparams = self.hparams
  6485. assert (hparams["activation_function"] == "silu")
  6486. max_position_embeddings = hparams["max_position_embeddings"]
  6487. embed_dim = hparams["hidden_size"]
  6488. num_heads = hparams["num_attention_heads"]
  6489. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6490. layer_norm_eps = hparams["layer_norm_epsilon"]
  6491. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6492. num_layers = hparams["num_layers"]
  6493. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6494. # attention_dropout_rate = hparams["attention_dropout"]
  6495. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6496. # embed_dropout_rate = hparams["embed_dropout"]
  6497. self.gguf_writer.add_embedding_length(embed_dim)
  6498. self.gguf_writer.add_head_count(num_heads)
  6499. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6500. self.gguf_writer.add_context_length(max_position_embeddings)
  6501. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6502. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6503. self.gguf_writer.add_block_count(num_layers)
  6504. self.gguf_writer.add_file_type(self.ftype)
  6505. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6506. self.gguf_writer.add_rope_freq_base(rope_theta)
  6507. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6508. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6509. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6510. rope_scaling = self.hparams.get("rope_scaling") or {}
  6511. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6512. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6513. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6514. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6515. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6516. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6517. base = self.hparams.get("rope_theta", 10000.0)
  6518. if (dim := self.hparams.get("head_dim")) is None:
  6519. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6520. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6521. factor = rope_scaling.get("factor", 8.0)
  6522. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6523. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6524. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6525. low_freq_wavelen = old_context_len / low_freq_factor
  6526. high_freq_wavelen = old_context_len / high_freq_factor
  6527. assert low_freq_wavelen != high_freq_wavelen
  6528. rope_factors = []
  6529. for freq in freqs:
  6530. wavelen = 2 * math.pi / freq
  6531. if wavelen < high_freq_wavelen:
  6532. rope_factors.append(1)
  6533. elif wavelen > low_freq_wavelen:
  6534. rope_factors.append(factor)
  6535. else:
  6536. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6537. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6538. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6539. @ModelBase.register("Exaone4ForCausalLM")
  6540. class Exaone4Model(TextModel):
  6541. model_arch = gguf.MODEL_ARCH.EXAONE4
  6542. def set_vocab(self):
  6543. tokens, toktypes, tokpre = self.get_vocab_base()
  6544. self.gguf_writer.add_tokenizer_model("gpt2")
  6545. self.gguf_writer.add_tokenizer_pre(tokpre)
  6546. self.gguf_writer.add_token_list(tokens)
  6547. self.gguf_writer.add_token_types(toktypes)
  6548. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6549. special_vocab.add_to_gguf(self.gguf_writer)
  6550. def set_gguf_parameters(self):
  6551. super().set_gguf_parameters()
  6552. hparams = self.hparams
  6553. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6554. if hparams.get("sliding_window") is not None:
  6555. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6556. if "layer_types" in hparams:
  6557. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6558. elif "sliding_window_pattern" in hparams:
  6559. sliding_window_pattern = []
  6560. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6561. for i in range(hparams["num_hidden_layers"]):
  6562. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6563. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6564. for i in range(hparams["num_hidden_layers"]):
  6565. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6566. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6567. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6568. rope_scaling = self.hparams.get("rope_scaling") or {}
  6569. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6570. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6571. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6572. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6573. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6574. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6575. base = self.hparams.get("rope_theta", 10_000.0)
  6576. if (dim := self.hparams.get("head_dim")) is None:
  6577. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6578. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6579. factor = rope_scaling.get("factor", 16.0)
  6580. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6581. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6582. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6583. low_freq_wavelen = old_context_len / low_freq_factor
  6584. high_freq_wavelen = old_context_len / high_freq_factor
  6585. rope_factors = []
  6586. for freq in freqs:
  6587. wavelen = 2 * math.pi / freq
  6588. if wavelen < high_freq_wavelen:
  6589. rope_factors.append(1)
  6590. elif wavelen > low_freq_wavelen:
  6591. rope_factors.append(factor)
  6592. else:
  6593. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6594. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6595. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6596. @ModelBase.register("GraniteForCausalLM")
  6597. class GraniteModel(LlamaModel):
  6598. """Conversion for IBM's GraniteForCausalLM"""
  6599. model_arch = gguf.MODEL_ARCH.GRANITE
  6600. def set_gguf_parameters(self):
  6601. """Granite uses standard llama parameters with the following differences:
  6602. - No head_dim support
  6603. - New multiplier params:
  6604. - attention_scale
  6605. - embedding_scale
  6606. - residual_scale
  6607. - logits_scaling
  6608. """
  6609. if head_dim := self.hparams.pop("head_dim", None):
  6610. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6611. super().set_gguf_parameters()
  6612. # NOTE: Convert _multiplier params to _scale params for naming
  6613. # consistency
  6614. if attention_scale := self.hparams.get("attention_multiplier"):
  6615. self.gguf_writer.add_attention_scale(attention_scale)
  6616. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6617. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6618. self.gguf_writer.add_embedding_scale(embedding_scale)
  6619. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6620. if residual_scale := self.hparams.get("residual_multiplier"):
  6621. self.gguf_writer.add_residual_scale(residual_scale)
  6622. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6623. if logits_scale := self.hparams.get("logits_scaling"):
  6624. self.gguf_writer.add_logit_scale(logits_scale)
  6625. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6626. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6627. class GraniteMoeModel(GraniteModel):
  6628. """Conversion for IBM's GraniteMoeForCausalLM"""
  6629. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6630. def set_gguf_parameters(self):
  6631. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6632. - shared_intermediate_size
  6633. """
  6634. super().set_gguf_parameters()
  6635. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6636. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6637. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6638. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6639. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6640. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6641. the hidden size that is then split during forward. To keep compatibility
  6642. with existing mixtral support, we pull them apart here.
  6643. """
  6644. if name.endswith("block_sparse_moe.input_linear.weight"):
  6645. ffn_dim = self.hparams["intermediate_size"]
  6646. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6647. gate, up = data_torch.split(ffn_dim, dim=-2)
  6648. return [
  6649. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6650. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6651. ]
  6652. has_experts = bool(self.hparams.get('num_local_experts'))
  6653. if name.endswith("shared_mlp.input_linear.weight"):
  6654. ffn_dim = self.hparams["shared_intermediate_size"]
  6655. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6656. gate, up = data_torch.split(ffn_dim, dim=-2)
  6657. if has_experts:
  6658. return [
  6659. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6660. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6661. ]
  6662. return [
  6663. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6664. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6665. ]
  6666. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6667. return [
  6668. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6669. ]
  6670. return super().modify_tensors(data_torch, name, bid)
  6671. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6672. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6673. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6674. layers and optionally uses MoE w/ a shared expert"""
  6675. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6676. undo_permute = True
  6677. def __init__(self, *args, **kwargs):
  6678. # Hybrid mamba models use a prefix for the mamba-specific params.
  6679. # TODO: Extend this if the prefix(es) need to be configurable
  6680. self.hparam_prefixes = ["mamba"]
  6681. super().__init__(*args, **kwargs)
  6682. # Lists of which layers use ssm vs attention
  6683. self._attn_layers = self.get_attn_layers()
  6684. self._ssm_layers = [
  6685. i for i in range(self.block_count)
  6686. if i not in self._attn_layers
  6687. ]
  6688. # There are some models in this family that are non-hybrid, but keep the
  6689. # same parent class by setting all layers to "attention." If this is the
  6690. # case, the model architecture needs to be updated to a standard
  6691. # "granite" or "granitemoe" model
  6692. if not self._ssm_layers:
  6693. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6694. new_arch = (
  6695. gguf.MODEL_ARCH.GRANITE_MOE
  6696. if has_experts else
  6697. gguf.MODEL_ARCH.GRANITE
  6698. )
  6699. self.model_arch = new_arch
  6700. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6701. self.gguf_writer.add_architecture()
  6702. # n_group and d_inner are used during reshape_tensors for mamba2
  6703. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6704. # disambiguate with top-level head_dim
  6705. # NOTE 2: If needed for future models, this can be isolated in a method
  6706. # to separate the prefix setting and teh keys used
  6707. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6708. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6709. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6710. def get_attn_layers(self):
  6711. # Explicit list of layer type names
  6712. if layer_types := self.hparams.get("layer_types"):
  6713. return [
  6714. i for i, typ in enumerate(layer_types)
  6715. if typ == "attention"
  6716. ]
  6717. # Layer types indicated by index or period
  6718. attn_layers = self.hparams.get("attn_layer_indices", [])
  6719. if not attn_layers:
  6720. attn_period = self.hparams.get("attn_layer_period")
  6721. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6722. attn_offset = self.hparams.get("attn_layer_offset")
  6723. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6724. attn_layers = [
  6725. i for i in range(self.block_count)
  6726. if i % attn_period == attn_offset
  6727. ]
  6728. return attn_layers
  6729. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6730. prefixed = []
  6731. for pfx in self.hparam_prefixes:
  6732. prefixed.extend(
  6733. "_".join([pfx, k])
  6734. for k in keys
  6735. )
  6736. keys = list(keys) + prefixed
  6737. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6738. def modify_tensors(
  6739. self, data_torch: Tensor, name: str, bid: int | None
  6740. ) -> Iterable[tuple[str, Tensor]]:
  6741. if (
  6742. name.endswith("block_sparse_moe.input_linear.weight")
  6743. or "shared_mlp" in name
  6744. ):
  6745. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6746. # Determine whether this is a mamba layer or an attention layer
  6747. if bid in self._ssm_layers:
  6748. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6749. elif bid in self._attn_layers:
  6750. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6751. return [(self.map_tensor_name(name), data_torch)]
  6752. def set_gguf_parameters(self):
  6753. """This method merges params from both parents and some that are
  6754. specific to this model. The result is some duplication of how the params
  6755. get set. The following warnings are expected during conversion:
  6756. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6757. WARNING:Duplicated key name 'granitehybrid.context_length'
  6758. """
  6759. GraniteMoeModel.set_gguf_parameters(self)
  6760. ## Mamba mixer params ##
  6761. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6762. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6763. self.gguf_writer.add_ssm_group_count(self.n_group)
  6764. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6765. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6766. # in llama.cpp
  6767. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6768. ## Attention params ##
  6769. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6770. head_count_kv_vec = [
  6771. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6772. ]
  6773. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6774. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6775. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6776. ## If Bamba or non-hybrid, use rope, otherwise don't
  6777. use_rope = (
  6778. "BambaForCausalLM" in self.hparams["architectures"]
  6779. or not self._ssm_layers
  6780. )
  6781. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6782. if not use_rope:
  6783. self.gguf_writer.add_context_length(2**20)
  6784. ## Validation ##
  6785. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6786. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6787. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6788. def set_vocab(self):
  6789. self.hparams["pad_vocab_size_multiple"] = 8
  6790. Mamba2Model.set_vocab(self)
  6791. @ModelBase.register("NemotronHForCausalLM")
  6792. class NemotronHModel(GraniteHybridModel):
  6793. """Hybrid mamba2/attention model from NVIDIA"""
  6794. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6795. def __init__(self, *args, **kwargs):
  6796. super().__init__(*args, **kwargs)
  6797. # Save the top-level head_dim for later
  6798. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6799. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6800. # Don't use expand to calculate d_inner
  6801. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6802. # Update the ssm / attn / mlp layers
  6803. # M: Mamba2, *: Attention, -: MLP
  6804. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6805. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6806. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6807. def get_attn_layers(self):
  6808. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6809. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6810. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6811. def set_gguf_parameters(self):
  6812. super().set_gguf_parameters()
  6813. self.gguf_writer.add_key_length(self.head_dim)
  6814. self.gguf_writer.add_value_length(self.head_dim)
  6815. # Set feed_forward_length
  6816. # NOTE: This will trigger an override warning. This is preferrable to
  6817. # duplicating all the parent logic
  6818. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6819. self.gguf_writer.add_feed_forward_length([
  6820. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6821. ])
  6822. def set_vocab(self):
  6823. super().set_vocab()
  6824. # The tokenizer _does_ add a BOS token (via post_processor type
  6825. # TemplateProcessing) but does not set add_bos_token to true in the
  6826. # config, so we need to explicitly override it here.
  6827. self.gguf_writer.add_add_bos_token(True)
  6828. @ModelBase.register("BailingMoeForCausalLM")
  6829. class BailingMoeModel(TextModel):
  6830. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6831. def set_vocab(self):
  6832. self._set_vocab_gpt2()
  6833. def set_gguf_parameters(self):
  6834. super().set_gguf_parameters()
  6835. hparams = self.hparams
  6836. if (rope_dim := hparams.get("head_dim")) is None:
  6837. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6838. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6839. rope_scaling = self.hparams.get("rope_scaling") or {}
  6840. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6841. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6842. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6843. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6844. else:
  6845. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6846. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6847. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6848. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6849. self.gguf_writer.add_expert_weights_scale(1.0)
  6850. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6851. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6852. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6853. _experts: list[dict[str, Tensor]] | None = None
  6854. @staticmethod
  6855. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6856. if n_head_kv is not None and n_head != n_head_kv:
  6857. n_head = n_head_kv
  6858. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6859. .swapaxes(1, 2)
  6860. .reshape(weights.shape))
  6861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6862. n_head = self.hparams["num_attention_heads"]
  6863. n_kv_head = self.hparams.get("num_key_value_heads")
  6864. n_embd = self.hparams["hidden_size"]
  6865. if (head_dim := self.hparams.get("head_dim")) is None:
  6866. head_dim = n_embd // n_head
  6867. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6868. if name.endswith("attention.dense.weight"):
  6869. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6870. elif name.endswith("query_key_value.weight"):
  6871. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6872. return [
  6873. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6874. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6875. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6876. ]
  6877. elif name.find("mlp.experts") != -1:
  6878. n_experts = self.hparams["num_experts"]
  6879. assert bid is not None
  6880. tensors: list[tuple[str, Tensor]] = []
  6881. if self._experts is None:
  6882. self._experts = [{} for _ in range(self.block_count)]
  6883. self._experts[bid][name] = data_torch
  6884. if len(self._experts[bid]) >= n_experts * 3:
  6885. # merge the experts into a single 3d tensor
  6886. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6887. datas: list[Tensor] = []
  6888. for xid in range(n_experts):
  6889. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6890. datas.append(self._experts[bid][ename])
  6891. del self._experts[bid][ename]
  6892. data_torch = torch.stack(datas, dim=0)
  6893. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6894. new_name = self.map_tensor_name(merged_name)
  6895. tensors.append((new_name, data_torch))
  6896. return tensors
  6897. new_name = self.map_tensor_name(name)
  6898. if new_name == output_name and self.hparams.get("norm_head"):
  6899. data_torch = data_torch.float()
  6900. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6901. return [(new_name, data_torch)]
  6902. def prepare_tensors(self):
  6903. super().prepare_tensors()
  6904. if self._experts is not None:
  6905. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6906. experts = [k for d in self._experts for k in d.keys()]
  6907. if len(experts) > 0:
  6908. raise ValueError(f"Unprocessed experts: {experts}")
  6909. @ModelBase.register("BailingMoeV2ForCausalLM")
  6910. class BailingMoeV2Model(TextModel):
  6911. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  6912. def __init__(self, *args, **kwargs):
  6913. super().__init__(*args, **kwargs)
  6914. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  6915. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  6916. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6917. def set_vocab(self):
  6918. self._set_vocab_gpt2()
  6919. def set_gguf_parameters(self):
  6920. super().set_gguf_parameters()
  6921. hparams = self.hparams
  6922. if (rope_dim := hparams.get("head_dim")) is None:
  6923. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6924. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6925. rope_scaling = self.hparams.get("rope_scaling") or {}
  6926. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6927. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6928. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6929. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6930. else:
  6931. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6932. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6933. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6934. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6935. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  6936. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  6937. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6938. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6939. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6940. if hparams["score_function"] == "sigmoid":
  6941. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6942. elif hparams["score_function"] == "softmax":
  6943. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6944. else:
  6945. raise ValueError(f"Unsupported score_function value: {hparams['score_function']}")
  6946. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6947. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  6948. _experts: list[dict[str, Tensor]] | None = None
  6949. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6950. if "mlp.experts" in name:
  6951. n_experts = self.hparams["num_experts"]
  6952. assert bid is not None
  6953. tensors: list[tuple[str, Tensor]] = []
  6954. if self._experts is None:
  6955. self._experts = [{} for _ in range(self.block_count)]
  6956. self._experts[bid][name] = data_torch
  6957. if len(self._experts[bid]) >= n_experts * 3:
  6958. # merge the experts into a single 3d tensor
  6959. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6960. datas: list[Tensor] = []
  6961. for xid in range(n_experts):
  6962. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6963. datas.append(self._experts[bid][ename])
  6964. del self._experts[bid][ename]
  6965. data_torch = torch.stack(datas, dim=0)
  6966. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6967. new_name = self.map_tensor_name(merged_name)
  6968. tensors.append((new_name, data_torch))
  6969. return tensors
  6970. if name.endswith(".expert_bias"):
  6971. name = name.replace(".expert_bias", ".expert_bias.bias")
  6972. return [(self.map_tensor_name(name), data_torch)]
  6973. def prepare_tensors(self):
  6974. super().prepare_tensors()
  6975. if self._experts is not None:
  6976. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6977. experts = [k for d in self._experts for k in d.keys()]
  6978. if len(experts) > 0:
  6979. raise ValueError(f"Unprocessed experts: {experts}")
  6980. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  6981. class GroveMoeModel(TextModel):
  6982. model_arch = gguf.MODEL_ARCH.GROVEMOE
  6983. def set_gguf_parameters(self):
  6984. super().set_gguf_parameters()
  6985. if (n_experts := self.hparams.get("num_experts")) is not None:
  6986. self.gguf_writer.add_expert_count(n_experts)
  6987. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6988. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6989. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6990. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  6991. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  6992. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  6993. self.gguf_writer.add_experts_per_group(2)
  6994. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  6995. self.gguf_writer.add_expert_group_scale(0.05)
  6996. # YaRN is not enabled by default
  6997. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6998. rope_scaling = self.hparams.get("rope_scaling") or {}
  6999. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7000. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7001. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7002. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7003. _experts: list[dict[str, Tensor]] | None = None
  7004. _chunk_experts: list[dict[str, Tensor]] | None = None
  7005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7006. if name.endswith(".expert_bias"):
  7007. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7008. return []
  7009. # process the experts separately
  7010. if name.find("chunk_experts") != -1:
  7011. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7012. assert bid is not None
  7013. if self._chunk_experts is None:
  7014. self._chunk_experts = [{} for _ in range(self.block_count)]
  7015. self._chunk_experts[bid][name] = data_torch
  7016. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7017. tensors: list[tuple[str, Tensor]] = []
  7018. # merge the experts into a single 3d tensor
  7019. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7020. datas: list[Tensor] = []
  7021. for xid in range(n_experts):
  7022. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7023. datas.append(self._chunk_experts[bid][ename])
  7024. del self._chunk_experts[bid][ename]
  7025. data_torch = torch.stack(datas, dim=0)
  7026. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7027. new_name = self.map_tensor_name(merged_name)
  7028. tensors.append((new_name, data_torch))
  7029. return tensors
  7030. else:
  7031. return []
  7032. elif name.find("experts") != -1:
  7033. n_experts = self.hparams["num_experts"]
  7034. assert bid is not None
  7035. if self._experts is None:
  7036. self._experts = [{} for _ in range(self.block_count)]
  7037. self._experts[bid][name] = data_torch
  7038. if len(self._experts[bid]) >= n_experts * 3:
  7039. tensors: list[tuple[str, Tensor]] = []
  7040. # merge the experts into a single 3d tensor
  7041. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7042. datas: list[Tensor] = []
  7043. for xid in range(n_experts):
  7044. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7045. datas.append(self._experts[bid][ename])
  7046. del self._experts[bid][ename]
  7047. data_torch = torch.stack(datas, dim=0)
  7048. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7049. new_name = self.map_tensor_name(merged_name)
  7050. tensors.append((new_name, data_torch))
  7051. return tensors
  7052. else:
  7053. return []
  7054. return [(self.map_tensor_name(name), data_torch)]
  7055. def prepare_tensors(self):
  7056. super().prepare_tensors()
  7057. if self._chunk_experts is not None:
  7058. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7059. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7060. if len(chunk_experts) > 0:
  7061. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7062. if self._experts is not None:
  7063. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7064. experts = [k for d in self._experts for k in d.keys()]
  7065. if len(experts) > 0:
  7066. raise ValueError(f"Unprocessed experts: {experts}")
  7067. @ModelBase.register("ChameleonForConditionalGeneration")
  7068. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7069. class ChameleonModel(TextModel):
  7070. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7071. def set_gguf_parameters(self):
  7072. super().set_gguf_parameters()
  7073. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7074. def set_vocab(self):
  7075. self._set_vocab_gpt2()
  7076. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7077. # ignore image tokenizer for now
  7078. # TODO: remove this once image support is implemented for Chameleon
  7079. if name.startswith("model.vqmodel"):
  7080. return []
  7081. n_head = self.hparams["num_attention_heads"]
  7082. n_kv_head = self.hparams.get("num_key_value_heads")
  7083. hidden_dim = self.hparams.get("hidden_size")
  7084. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7085. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7086. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7087. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7088. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7089. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7090. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7091. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7092. return [(self.map_tensor_name(name), data_torch)]
  7093. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7094. @staticmethod
  7095. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7096. head_dim = hidden_dim // n_heads
  7097. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7098. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7099. return data_torch
  7100. @ModelBase.register("UltravoxModel")
  7101. class UltravoxModel(TextModel):
  7102. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7103. def __init__(self, *args, **kwargs):
  7104. super().__init__(*args, **kwargs)
  7105. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7106. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7107. class WhisperEncoderModel(MmprojModel):
  7108. has_vision_encoder = False # no vision encoder
  7109. has_audio_encoder = True
  7110. def __init__(self, *args, **kwargs):
  7111. super().__init__(*args, **kwargs)
  7112. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7113. self.hparams["hidden_size"] = self.hparams["d_model"]
  7114. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7115. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7116. def set_gguf_parameters(self):
  7117. super().set_gguf_parameters()
  7118. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7119. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7120. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7121. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7122. if ".conv" in name and ".weight" in name:
  7123. return gguf.GGMLQuantizationType.F16
  7124. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7125. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7126. del bid # unused
  7127. if name.startswith("language_model."):
  7128. # skip language model tensors
  7129. return []
  7130. # prevent clash naming with vision tensors
  7131. if name.startswith("multi_modal_projector"):
  7132. name = "audio." + name
  7133. if "conv1.bias" in name or "conv2.bias" in name:
  7134. # transpose conv1 and conv2 bias
  7135. data_torch = data_torch.unsqueeze(-1)
  7136. return [(self.map_tensor_name(name), data_torch)]
  7137. @ModelBase.register("UltravoxModel")
  7138. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7139. has_vision_encoder = False # no vision encoder
  7140. has_audio_encoder = True
  7141. def set_gguf_parameters(self):
  7142. super().set_gguf_parameters()
  7143. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7144. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7145. @ModelBase.register("VoxtralForConditionalGeneration")
  7146. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7147. has_vision_encoder = False # no vision encoder
  7148. has_audio_encoder = True
  7149. def set_gguf_parameters(self):
  7150. super().set_gguf_parameters()
  7151. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7152. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7153. @ModelBase.register("FalconH1ForCausalLM")
  7154. class FalconH1Model(Mamba2Model):
  7155. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7156. def __init__(self, *args, **kwargs):
  7157. # Set the hparam prefixes for Falcon Mamba2
  7158. self.hparam_prefixes = ["mamba"]
  7159. # Initialize the base Mamba2Model
  7160. super().__init__(*args, **kwargs)
  7161. # Use Llama conversion for attention
  7162. self._transformer_model_class = LlamaModel
  7163. # n_group and d_inner are used during reshape_tensors for mamba2
  7164. self.n_group = self.find_hparam(["n_groups"])
  7165. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7166. self.d_head = self.find_hparam(["d_head"])
  7167. # Initialize any Falcon Mamba2 specific attributes
  7168. self.has_attention = True # Falcon Mamba2 has attention components
  7169. # Load Falcon-H1 multipliers from hyperparameters
  7170. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7171. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7172. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7173. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7174. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7175. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7176. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7177. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7178. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7179. prefixed = []
  7180. for pfx in self.hparam_prefixes:
  7181. prefixed.extend(
  7182. "_".join([pfx, k])
  7183. for k in keys
  7184. )
  7185. keys = list(keys) + prefixed
  7186. return super().find_hparam(keys, *args, **kwargs)
  7187. def set_vocab(self):
  7188. self._set_vocab_gpt2()
  7189. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7190. tensors = list(super().modify_tensors(data_torch, name, bid))
  7191. tensor = tensors[0][1]
  7192. if "down_proj" in name:
  7193. tensor = tensor * self.mlp_multipliers[1]
  7194. elif "gate_proj" in name:
  7195. tensor = tensor * self.mlp_multipliers[0]
  7196. elif "k_proj" in name:
  7197. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7198. elif "q_proj" in name:
  7199. tensor = tensor * self.attention_in_multiplier
  7200. elif "v_proj" in name:
  7201. tensor = tensor * self.attention_in_multiplier
  7202. elif "o_proj" in name:
  7203. tensor = tensor * self.attention_out_multiplier
  7204. elif "out_proj" in name:
  7205. tensor = tensor * self.ssm_out_multiplier
  7206. elif "in_proj" in name:
  7207. tensor = tensor * self.ssm_in_multiplier
  7208. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7209. intermediate_size = self.hparams["mamba_d_ssm"]
  7210. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7211. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7212. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7213. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7214. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7215. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7216. elif "lm_head" in name:
  7217. tensor = tensor * self.hparams["lm_head_multiplier"]
  7218. elif "embed_tokens" in name:
  7219. tensor = tensor * self.hparams["embedding_multiplier"]
  7220. elif "mamba.norm" in name:
  7221. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7222. tensors = [(tensors[0][0], tensor)]
  7223. return tensors
  7224. def set_gguf_parameters(self):
  7225. super().set_gguf_parameters()
  7226. ## General Params ##
  7227. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7228. # Override some Mamba2 defaults
  7229. self.gguf_writer.add_block_count(self.block_count)
  7230. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7231. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7232. ## Attention params ##
  7233. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7234. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7235. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7236. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7237. ## Validation ##
  7238. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7239. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7240. # Add any other Falcon Mamba2 specific configuration
  7241. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  7242. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7243. class HunYuanMoEModel(TextModel):
  7244. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7245. def set_vocab(self):
  7246. from transformers import AutoTokenizer
  7247. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7248. # 1. Get the pre-tokenizer identifier hash
  7249. tokpre = self.get_vocab_base_pre(tokenizer)
  7250. # 2. Reverse-engineer the merges list from mergeable_ranks
  7251. merges = []
  7252. vocab = {}
  7253. mergeable_ranks = tokenizer.mergeable_ranks
  7254. for token, rank in mergeable_ranks.items():
  7255. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7256. if len(token) == 1:
  7257. continue
  7258. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7259. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7260. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7261. # 3. Generate the tokens and toktypes lists
  7262. vocab_size = self.hparams["vocab_size"]
  7263. assert tokenizer.vocab_size == vocab_size
  7264. special_tokens = tokenizer.special_tokens
  7265. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7266. tokens: list[str] = []
  7267. toktypes: list[int] = []
  7268. for i in range(vocab_size):
  7269. if i not in reverse_vocab:
  7270. tokens.append(f"[PAD{i}]")
  7271. toktypes.append(gguf.TokenType.UNUSED)
  7272. else:
  7273. token = reverse_vocab[i]
  7274. tokens.append(token)
  7275. if i in special_tokens.values():
  7276. toktypes.append(gguf.TokenType.CONTROL)
  7277. else:
  7278. toktypes.append(gguf.TokenType.NORMAL)
  7279. # 4. Write all vocab-related fields to the GGUF writer
  7280. self.gguf_writer.add_tokenizer_model("gpt2")
  7281. self.gguf_writer.add_tokenizer_pre(tokpre)
  7282. self.gguf_writer.add_token_list(tokens)
  7283. self.gguf_writer.add_token_types(toktypes)
  7284. self.gguf_writer.add_token_merges(merges)
  7285. # 5. Add special tokens and chat templates
  7286. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7287. special_vocab.add_to_gguf(self.gguf_writer)
  7288. # FIX for BOS token: Overwrite incorrect id read from config.json
  7289. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7290. def set_gguf_parameters(self):
  7291. super().set_gguf_parameters()
  7292. hparams = self.hparams
  7293. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7294. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7295. moe_intermediate_size = hparams["moe_intermediate_size"]
  7296. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7297. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7298. moe_topk = hparams["moe_topk"]
  7299. assert all(topk == moe_topk[0] for topk in moe_topk)
  7300. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7301. moe_shared_expert = hparams["num_shared_expert"]
  7302. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7303. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7304. # Rope
  7305. rope_scaling = hparams.get("rope_scaling", {})
  7306. if rope_scaling.get("type") == "dynamic":
  7307. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7308. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7309. alpha = rope_scaling.get("alpha", 1000)
  7310. base = hparams.get("rope_theta", 10000.0)
  7311. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7312. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7313. self.gguf_writer.add_rope_freq_base(scaled_base)
  7314. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7315. self.gguf_writer.add_rope_scaling_factor(1)
  7316. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7317. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7318. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7319. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7320. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7321. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7322. _experts: list[dict[str, Tensor]] | None = None
  7323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7324. if name == "lm_head.weight":
  7325. if self.hparams.get("tie_word_embeddings", False):
  7326. logger.info("Skipping tied output layer 'lm_head.weight'")
  7327. return []
  7328. if name.find("mlp.experts") != -1:
  7329. n_experts = self.hparams["num_experts"]
  7330. assert bid is not None
  7331. if self._experts is None:
  7332. self._experts = [{} for _ in range(self.block_count)]
  7333. self._experts[bid][name] = data_torch
  7334. if len(self._experts[bid]) >= n_experts * 3:
  7335. # merge the experts into a single 3d tensor
  7336. tensors: list[tuple[str, Tensor]] = []
  7337. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7338. datas: list[Tensor] = []
  7339. for xid in range(n_experts):
  7340. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7341. datas.append(self._experts[bid][ename])
  7342. del self._experts[bid][ename]
  7343. data_torch = torch.stack(datas, dim=0)
  7344. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7345. new_name = self.map_tensor_name(merged_name)
  7346. tensors.append((new_name, data_torch))
  7347. return tensors
  7348. else:
  7349. return []
  7350. return [(self.map_tensor_name(name), data_torch)]
  7351. def prepare_tensors(self):
  7352. super().prepare_tensors()
  7353. if self._experts is not None:
  7354. experts = [k for d in self._experts for k in d.keys()]
  7355. if len(experts) > 0:
  7356. raise ValueError(f"Unprocessed experts: {experts}")
  7357. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7358. class LLaDAMoEModel(TextModel):
  7359. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7360. def set_gguf_parameters(self):
  7361. super().set_gguf_parameters()
  7362. if (n_experts := self.hparams.get("num_experts")) is not None:
  7363. self.gguf_writer.add_expert_count(n_experts)
  7364. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7365. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7366. # number of experts used per token (top-k)
  7367. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7368. self.gguf_writer.add_expert_used_count(n_experts_used)
  7369. self.gguf_writer.add_mask_token_id(156895)
  7370. self.gguf_writer.add_causal_attention(False)
  7371. self.gguf_writer.add_diffusion_shift_logits(False)
  7372. _experts: list[dict[str, Tensor]] | None = None
  7373. # Copied from: Qwen2MoeModel
  7374. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7375. # process the experts separately
  7376. if name.find("experts") != -1:
  7377. n_experts = self.hparams["num_experts"]
  7378. assert bid is not None
  7379. if self._experts is None:
  7380. self._experts = [{} for _ in range(self.block_count)]
  7381. self._experts[bid][name] = data_torch
  7382. if len(self._experts[bid]) >= n_experts * 3:
  7383. tensors: list[tuple[str, Tensor]] = []
  7384. # merge the experts into a single 3d tensor
  7385. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7386. datas: list[Tensor] = []
  7387. for xid in range(n_experts):
  7388. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7389. datas.append(self._experts[bid][ename])
  7390. del self._experts[bid][ename]
  7391. data_torch = torch.stack(datas, dim=0)
  7392. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7393. new_name = self.map_tensor_name(merged_name)
  7394. tensors.append((new_name, data_torch))
  7395. return tensors
  7396. else:
  7397. return []
  7398. return [(self.map_tensor_name(name), data_torch)]
  7399. # Copied from: Qwen2MoeModel
  7400. def prepare_tensors(self):
  7401. super().prepare_tensors()
  7402. if self._experts is not None:
  7403. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7404. experts = [k for d in self._experts for k in d.keys()]
  7405. if len(experts) > 0:
  7406. raise ValueError(f"Unprocessed experts: {experts}")
  7407. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7408. class HunYuanModel(TextModel):
  7409. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7410. def set_vocab(self):
  7411. if (self.dir_model / "tokenizer.json").is_file():
  7412. self._set_vocab_gpt2()
  7413. else:
  7414. from transformers import AutoTokenizer
  7415. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7416. # 1. Get the pre-tokenizer identifier hash
  7417. tokpre = self.get_vocab_base_pre(tokenizer)
  7418. # 2. Reverse-engineer the merges list from mergeable_ranks
  7419. merges = []
  7420. vocab = {}
  7421. mergeable_ranks = tokenizer.mergeable_ranks
  7422. for token, rank in mergeable_ranks.items():
  7423. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7424. if len(token) == 1:
  7425. continue
  7426. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7427. if len(merged) == 2:
  7428. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7429. # 3. Generate the tokens and toktypes lists
  7430. vocab_size = self.hparams["vocab_size"]
  7431. assert tokenizer.vocab_size == vocab_size
  7432. special_tokens = tokenizer.special_tokens
  7433. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7434. tokens: list[str] = []
  7435. toktypes: list[int] = []
  7436. for i in range(vocab_size):
  7437. if i not in reverse_vocab:
  7438. tokens.append(f"[PAD{i}]")
  7439. toktypes.append(gguf.TokenType.UNUSED)
  7440. else:
  7441. token = reverse_vocab[i]
  7442. tokens.append(token)
  7443. if i in special_tokens.values():
  7444. toktypes.append(gguf.TokenType.CONTROL)
  7445. else:
  7446. toktypes.append(gguf.TokenType.NORMAL)
  7447. # 4. Write all vocab-related fields to the GGUF writer
  7448. self.gguf_writer.add_tokenizer_model("gpt2")
  7449. self.gguf_writer.add_tokenizer_pre(tokpre)
  7450. self.gguf_writer.add_token_list(tokens)
  7451. self.gguf_writer.add_token_types(toktypes)
  7452. self.gguf_writer.add_token_merges(merges)
  7453. # 5. Add special tokens and chat templates
  7454. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7455. special_vocab.add_to_gguf(self.gguf_writer)
  7456. # FIX for BOS token: Overwrite incorrect id read from config.json
  7457. if self.hparams['hidden_size'] == 4096:
  7458. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7459. def set_gguf_parameters(self):
  7460. super().set_gguf_parameters()
  7461. hparams = self.hparams
  7462. # Rope
  7463. rope_scaling = hparams.get("rope_scaling", {})
  7464. if rope_scaling.get("type") == "dynamic":
  7465. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7466. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7467. alpha = rope_scaling.get("alpha", 50)
  7468. base = hparams.get("rope_theta", 10000.0)
  7469. dim = hparams["head_dim"]
  7470. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7471. self.gguf_writer.add_rope_freq_base(scaled_base)
  7472. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7473. self.gguf_writer.add_rope_scaling_factor(1)
  7474. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7475. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7476. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7477. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7478. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7479. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7480. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7481. if name == "lm_head.weight":
  7482. if self.hparams.get("tie_word_embeddings", False):
  7483. logger.info("Skipping tied output layer 'lm_head.weight'")
  7484. return []
  7485. return [(self.map_tensor_name(name), data_torch)]
  7486. @ModelBase.register("SmolLM3ForCausalLM")
  7487. class SmolLM3Model(LlamaModel):
  7488. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7489. def set_vocab(self):
  7490. super().set_vocab()
  7491. # remove unsupported array slicing in chat template
  7492. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  7493. from transformers import AutoTokenizer
  7494. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  7495. if tokenizer.chat_template is not None:
  7496. chat_template = tokenizer.chat_template.replace("[:]", "")
  7497. self.gguf_writer.add_chat_template(chat_template)
  7498. @ModelBase.register("GptOssForCausalLM")
  7499. class GptOssModel(TextModel):
  7500. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7501. # TODO: remove once MXFP4 is supported more generally
  7502. def dequant_model(self):
  7503. quant_config = self.hparams.get("quantization_config")
  7504. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7505. return
  7506. return super().dequant_model()
  7507. def transform_nibble_layout(self, tensor):
  7508. assert tensor.dtype == torch.uint8
  7509. assert tensor.shape[-1] == 16
  7510. # swap nibbles
  7511. t_lo = tensor & 0x0F
  7512. t_hi = tensor & 0xF0
  7513. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7514. tensor = t_swapped
  7515. # transform aaaa...bbbb... to abababab...
  7516. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7517. # get a_
  7518. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7519. blk_a1 = (blk_a << 4).view(-1, 1)
  7520. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7521. # get _b
  7522. blk_b0 = (blk_b >> 4).view(-1, 1)
  7523. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7524. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7525. # swap once more
  7526. out = blk_a | blk_b
  7527. out_h = out & 0xF0
  7528. out_l = out & 0x0F
  7529. out = (out_h >> 4) | (out_l << 4)
  7530. return out
  7531. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7532. assert blocks.dtype == torch.uint8
  7533. assert scales.dtype == torch.uint8
  7534. scales = scales.unsqueeze(-1)
  7535. assert len(blocks.shape) == 4
  7536. assert len(scales.shape) == 4
  7537. blocks = self.transform_nibble_layout(blocks)
  7538. new_data = torch.concat((scales, blocks), dim=-1)
  7539. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7540. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7541. # flatten last dim
  7542. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7543. new_data = new_data.numpy()
  7544. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7545. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7546. blocks0: Tensor = torch.zeros(1)
  7547. blocks1: Tensor = torch.zeros(1)
  7548. # we assume that tensors are loaded in the correct order
  7549. for name, data_torch in self.get_tensors():
  7550. if "mlp.experts.down_proj_blocks" in name:
  7551. blocks0 = data_torch
  7552. elif "mlp.experts.down_proj_scales" in name:
  7553. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7554. self.repack_mxfp4(new_name, blocks0, data_torch)
  7555. elif "mlp.experts.gate_up_proj_blocks" in name:
  7556. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7557. elif "mlp.experts.gate_up_proj_scales" in name:
  7558. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7559. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7560. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7561. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7562. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7563. return []
  7564. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7565. del bid # unused
  7566. if "sinks" in name:
  7567. name += ".weight"
  7568. # correct naming for down_proj
  7569. if "down_proj" in name:
  7570. if name.endswith("_bias"):
  7571. name = name.replace("down_proj_bias", "down_proj.bias")
  7572. elif "_blocks" not in name and "_scales" not in name:
  7573. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7574. name = name.replace("down_proj", "down_proj.weight")
  7575. data_torch = data_torch.transpose(-1, -2)
  7576. else:
  7577. # otherwise, it should already be repacked to ggml MXFP4 format
  7578. return []
  7579. # split the gate_up into gate and up
  7580. if "gate_up_proj" in name:
  7581. if name.endswith("_bias"):
  7582. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7583. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7584. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7585. return [
  7586. (self.map_tensor_name(name_gate), gate_proj_bias),
  7587. (self.map_tensor_name(name_up), up_proj_bias)
  7588. ]
  7589. elif "_blocks" not in name and "_scales" not in name:
  7590. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7591. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7592. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7593. data_torch = data_torch.transpose(-1, -2)
  7594. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7595. return [
  7596. (self.map_tensor_name(name_gate), gate_proj_weight),
  7597. (self.map_tensor_name(name_up), up_proj_weight)
  7598. ]
  7599. else:
  7600. # otherwise, it should already be repacked to ggml MXFP4 format
  7601. return []
  7602. return [(self.map_tensor_name(name), data_torch)]
  7603. def set_vocab(self):
  7604. self._set_vocab_gpt2()
  7605. def set_gguf_parameters(self):
  7606. super().set_gguf_parameters()
  7607. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7608. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7609. rope_scaling = self.hparams.get("rope_scaling") or {}
  7610. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7611. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7612. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7613. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7614. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7615. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7616. class LFM2Model(TextModel):
  7617. model_arch = gguf.MODEL_ARCH.LFM2
  7618. def _add_feed_forward_length(self):
  7619. ff_dim = self.hparams["block_ff_dim"]
  7620. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7621. ff_dim = self.hparams["block_ff_dim"]
  7622. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7623. multiple_of = self.hparams["block_multiple_of"]
  7624. if auto_adjust_ff_dim:
  7625. ff_dim = int(2 * ff_dim / 3)
  7626. # custom dim factor multiplier
  7627. if ffn_dim_multiplier is not None:
  7628. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7629. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7630. self.gguf_writer.add_feed_forward_length(ff_dim)
  7631. def set_gguf_parameters(self):
  7632. # set num_key_value_heads only for attention layers
  7633. self.hparams["num_key_value_heads"] = [
  7634. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7635. for layer_type in self.hparams["layer_types"]
  7636. ]
  7637. super().set_gguf_parameters()
  7638. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7639. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7640. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7641. self._add_feed_forward_length()
  7642. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7643. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7644. if is_vision_tensor:
  7645. # skip vision tensors
  7646. return []
  7647. name = name.replace("language_model.", "")
  7648. # conv op requires 2d tensor
  7649. if 'conv.conv' in name:
  7650. data_torch = data_torch.squeeze(1)
  7651. return [(self.map_tensor_name(name), data_torch)]
  7652. @ModelBase.register("Lfm2MoeForCausalLM")
  7653. class LFM2MoeModel(TextModel):
  7654. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7655. def set_gguf_parameters(self):
  7656. # set num_key_value_heads only for attention layers
  7657. self.hparams["num_key_value_heads"] = [
  7658. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7659. for layer_type in self.hparams["layer_types"]
  7660. ]
  7661. super().set_gguf_parameters()
  7662. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7663. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7664. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7665. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7666. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7667. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7668. # cache for experts weights for merging
  7669. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7670. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7671. # conv op requires 2d tensor
  7672. if 'conv.conv' in name:
  7673. data_torch = data_torch.squeeze(1)
  7674. if name.endswith(".expert_bias"):
  7675. name = name.replace(".expert_bias", ".expert_bias.bias")
  7676. # merge expert weights
  7677. if 'experts' in name:
  7678. n_experts = self.hparams["num_experts"]
  7679. assert bid is not None
  7680. expert_cache = self._experts_cache.setdefault(bid, {})
  7681. expert_cache[name] = data_torch
  7682. expert_weights = ["w1", "w2", "w3"]
  7683. # not enough expert weights to merge
  7684. if len(expert_cache) < n_experts * len(expert_weights):
  7685. return []
  7686. tensors: list[tuple[str, Tensor]] = []
  7687. for w_name in expert_weights:
  7688. datas: list[Tensor] = []
  7689. for xid in range(n_experts):
  7690. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7691. datas.append(expert_cache[ename])
  7692. del expert_cache[ename]
  7693. data_torch = torch.stack(datas, dim=0)
  7694. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7695. new_name = self.map_tensor_name(merged_name)
  7696. tensors.append((new_name, data_torch))
  7697. del self._experts_cache[bid]
  7698. return tensors
  7699. return [(self.map_tensor_name(name), data_torch)]
  7700. def prepare_tensors(self):
  7701. super().prepare_tensors()
  7702. assert not self._experts_cache
  7703. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7704. class LFM2VLModel(MmprojModel):
  7705. def __init__(self, *args, **kwargs):
  7706. super().__init__(*args, **kwargs)
  7707. assert self.hparams_vision is not None
  7708. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7709. self.hparams_vision["image_size"] = 256
  7710. def set_gguf_parameters(self):
  7711. super().set_gguf_parameters()
  7712. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7713. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7714. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7715. self.gguf_writer.add_vision_use_gelu(True)
  7716. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7717. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7718. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7720. del bid # unused
  7721. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7722. if is_vision_tensor:
  7723. # remove "model." prefix
  7724. name = name.replace("model.vision_tower.", "vision_tower.")
  7725. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7726. if "patch_embedding.weight" in name:
  7727. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7728. return [(self.map_tensor_name(name), data_torch)]
  7729. return [] # skip other tensors
  7730. @ModelBase.register("SmallThinkerForCausalLM")
  7731. class SmallThinkerModel(TextModel):
  7732. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7733. def set_gguf_parameters(self):
  7734. super().set_gguf_parameters()
  7735. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7736. self.gguf_writer.add_expert_count(n_experts)
  7737. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7738. self.gguf_writer.add_expert_used_count(n_experts_used)
  7739. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7740. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7741. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7742. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7743. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7744. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7745. else:
  7746. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7747. # YaRN is not enabled by default
  7748. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7749. rope_scaling = self.hparams.get("rope_scaling") or {}
  7750. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7751. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7752. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7753. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7754. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7755. if sliding_window_layout:
  7756. for i in sliding_window_layout:
  7757. if i != 0:
  7758. sliding_window = self.hparams.get("sliding_window_size")
  7759. if sliding_window:
  7760. self.gguf_writer.add_sliding_window(sliding_window)
  7761. break
  7762. _experts: list[dict[str, Tensor]] | None = None
  7763. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7764. # process the experts separately
  7765. if name.find("experts") != -1:
  7766. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7767. assert bid is not None
  7768. if self._experts is None:
  7769. self._experts = [{} for _ in range(self.block_count)]
  7770. self._experts[bid][name] = data_torch
  7771. if len(self._experts[bid]) >= n_experts * 3:
  7772. tensors: list[tuple[str, Tensor]] = []
  7773. # merge the experts into a single 3d tensor
  7774. for w_name in ["down", "gate", "up"]:
  7775. datas: list[Tensor] = []
  7776. for xid in range(n_experts):
  7777. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7778. datas.append(self._experts[bid][ename])
  7779. del self._experts[bid][ename]
  7780. data_torch = torch.stack(datas, dim=0)
  7781. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7782. new_name = self.map_tensor_name(merged_name)
  7783. tensors.append((new_name, data_torch))
  7784. return tensors
  7785. else:
  7786. return []
  7787. return [(self.map_tensor_name(name), data_torch)]
  7788. def prepare_tensors(self):
  7789. super().prepare_tensors()
  7790. if self._experts is not None:
  7791. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7792. experts = [k for d in self._experts for k in d.keys()]
  7793. if len(experts) > 0:
  7794. raise ValueError(f"Unprocessed experts: {experts}")
  7795. @ModelBase.register("ApertusForCausalLM")
  7796. class ApertusModel(LlamaModel):
  7797. model_arch = gguf.MODEL_ARCH.APERTUS
  7798. undo_permute = False
  7799. _alpha_n = {}
  7800. _alpha_p = {}
  7801. _beta = {}
  7802. _eps = {}
  7803. def modify_tensors(self, data_torch, name, bid):
  7804. # Handle xIELU activation parameters
  7805. n_layers = self.hparams["num_hidden_layers"]
  7806. if name.endswith(".act_fn.alpha_n"):
  7807. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7808. if (len(self._alpha_n) == n_layers):
  7809. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7810. return []
  7811. if name.endswith(".act_fn.alpha_p"):
  7812. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7813. if (len(self._alpha_p) == n_layers):
  7814. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7815. return []
  7816. if name.endswith(".act_fn.beta"):
  7817. self._beta[bid] = data_torch.to("cpu").float().item()
  7818. if (len(self._beta) == n_layers):
  7819. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7820. return []
  7821. if name.endswith(".act_fn.eps"):
  7822. self._eps[bid] = data_torch.to("cpu").float().item()
  7823. if (len(self._eps) == n_layers):
  7824. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  7825. return []
  7826. return super().modify_tensors(data_torch, name, bid)
  7827. class MistralModel(LlamaModel):
  7828. model_arch = gguf.MODEL_ARCH.LLAMA
  7829. model_name = "Mistral"
  7830. hf_arch = ""
  7831. is_mistral_format = True
  7832. undo_permute = False
  7833. @staticmethod
  7834. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7835. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  7836. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7837. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7838. )
  7839. if vocab.tokenizer.version == TokenizerVersion.v1:
  7840. return "mistral-v1"
  7841. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7842. return "mistral-v3"
  7843. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7844. return "mistral-v3-tekken"
  7845. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7846. return "mistral-v7"
  7847. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7848. return "mistral-v7-tekken"
  7849. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7850. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7851. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7852. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7853. else:
  7854. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7855. if is_mistral_format:
  7856. err_message += (
  7857. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7858. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7859. )
  7860. raise ValueError(err_message)
  7861. template_path = templates_dir / template_file
  7862. if not template_path.exists():
  7863. raise FileNotFoundError(f"Template file not found: {template_path}")
  7864. with open(template_path, "r", encoding="utf-8") as f:
  7865. template = f.read()
  7866. return template
  7867. class PixtralModel(LlavaVisionModel):
  7868. model_name = "Pixtral"
  7869. hf_arch = ""
  7870. is_mistral_format = True
  7871. def set_gguf_parameters(self):
  7872. super().set_gguf_parameters()
  7873. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  7874. self.gguf_writer.add_vision_attention_layernorm_eps(
  7875. self.find_hparam(["norm_eps"])
  7876. )
  7877. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  7878. self.gguf_writer.add_vision_use_silu(True)
  7879. # spatial_merge_size
  7880. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  7881. self.gguf_writer.add_vision_spatial_merge_size(
  7882. self.find_vparam(["spatial_merge_size"])
  7883. )
  7884. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  7885. if name == "vision_language_adapter.w_in.weight":
  7886. return "mm.1.weight"
  7887. elif name == "vision_language_adapter.w_out.weight":
  7888. return "mm.2.weight"
  7889. return super().map_tensor_name(name, try_suffixes)
  7890. @ModelBase.register("LightOnOCRForConditionalGeneration")
  7891. class LightOnOCRVisionModel(LlavaVisionModel):
  7892. is_mistral_format = False
  7893. use_break_tok = False
  7894. def set_gguf_parameters(self):
  7895. super().set_gguf_parameters()
  7896. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  7897. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  7898. name = name.replace("model.vision_encoder.", "vision_tower.")
  7899. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  7900. return super().modify_tensors(data_torch, name, bid)
  7901. @ModelBase.register("KimiVLForConditionalGeneration")
  7902. class KimiVLModel(MmprojModel):
  7903. def __init__(self, *args, **kwargs):
  7904. super().__init__(*args, **kwargs)
  7905. assert self.hparams_vision is not None
  7906. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  7907. def set_gguf_parameters(self):
  7908. super().set_gguf_parameters()
  7909. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  7910. self.gguf_writer.add_vision_use_gelu(True)
  7911. self.gguf_writer.add_vision_projector_scale_factor(2)
  7912. # eps is the same as pytorch's default value
  7913. assert self.hparams_vision is not None
  7914. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  7915. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7916. del bid # unused
  7917. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7918. if is_vision_tensor:
  7919. if "pos_emb.weight" in name:
  7920. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  7921. elif "wqkv" in name:
  7922. split_dim = 0 if "weight" in name else -1
  7923. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  7924. return [
  7925. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  7926. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  7927. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  7928. ]
  7929. return [(self.map_tensor_name(name), data_torch)]
  7930. return [] # skip other tensors
  7931. @ModelBase.register("CogVLMForCausalLM")
  7932. class CogVLMVisionModel(MmprojModel):
  7933. def set_gguf_parameters(self):
  7934. super().set_gguf_parameters()
  7935. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  7936. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  7937. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7938. del bid # unused
  7939. if not name.startswith("model.vision."):
  7940. return []
  7941. return [(self.map_tensor_name(name), data_torch)]
  7942. @ModelBase.register("CogVLMForCausalLM")
  7943. class CogVLMModel(LlamaModel):
  7944. model_arch = gguf.MODEL_ARCH.COGVLM
  7945. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7946. del bid # unused
  7947. # block vision tensors
  7948. if name.startswith("model.vision."):
  7949. return []
  7950. return [(self.map_tensor_name(name), data_torch)]
  7951. @ModelBase.register("JanusForConditionalGeneration")
  7952. class JanusProModel(LlamaModel):
  7953. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  7954. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7955. # Skip vision, aligner, and generation tensors
  7956. skip_prefixes = (
  7957. 'model.vision_model.',
  7958. 'model.aligner.',
  7959. 'model.vqmodel.',
  7960. 'model.generation_embeddings.',
  7961. 'model.generation_aligner.',
  7962. 'model.generation_head.',
  7963. )
  7964. if name.startswith(skip_prefixes):
  7965. return []
  7966. if name.startswith('model.language_model.'):
  7967. name = name.replace('model.language_model.', 'model.')
  7968. elif name.startswith('language_model.'):
  7969. name = name.replace('language_model.', '')
  7970. return super().modify_tensors(data_torch, name, bid)
  7971. @ModelBase.register("JanusForConditionalGeneration")
  7972. class JanusProVisionModel(MmprojModel):
  7973. def __init__(self, *args, **kwargs):
  7974. super().__init__(*args, **kwargs)
  7975. assert self.hparams_vision is not None
  7976. if "intermediate_size" not in self.hparams_vision:
  7977. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  7978. hidden_size = self.hparams_vision.get("hidden_size")
  7979. if mlp_ratio is not None and hidden_size is not None:
  7980. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  7981. def set_gguf_parameters(self):
  7982. super().set_gguf_parameters()
  7983. assert self.hparams_vision is not None
  7984. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  7985. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  7986. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  7987. if hidden_act == "gelu":
  7988. self.gguf_writer.add_vision_use_gelu(True)
  7989. elif hidden_act == "silu":
  7990. self.gguf_writer.add_vision_use_silu(True)
  7991. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  7992. """Map aligner tensors to projector format"""
  7993. suffix = ".bias" if name.endswith(".bias") else ".weight"
  7994. if name.startswith("model.aligner."):
  7995. local_name = name[len("model.aligner."):]
  7996. elif name.startswith("aligner."):
  7997. local_name = name[len("aligner."):]
  7998. else:
  7999. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8000. if local_name.startswith("fc1."):
  8001. mm_index = 0
  8002. elif local_name.startswith("hidden_layers."):
  8003. parts = local_name.split(".", 2)
  8004. if len(parts) < 3:
  8005. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8006. mm_index = int(parts[1]) + 1
  8007. else:
  8008. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8009. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8010. return [(tensor_name, data_torch)]
  8011. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8012. del bid # unused
  8013. # Skip language model tensors as they will be handled by `JanusProModel`
  8014. if name.startswith(('model.language_model.', 'language_model.')):
  8015. return []
  8016. # Skip generation-related components
  8017. skip_generation_prefixes = (
  8018. 'model.vqmodel.',
  8019. 'vqmodel.',
  8020. 'model.generation_embeddings.',
  8021. 'generation_embeddings.',
  8022. 'model.generation_aligner.',
  8023. 'generation_aligner.',
  8024. 'model.generation_head.',
  8025. 'generation_head.',
  8026. )
  8027. if name.startswith(skip_generation_prefixes):
  8028. return []
  8029. # Handle aligner tensors
  8030. if name.startswith(('model.aligner.', 'aligner.')):
  8031. return list(self._map_aligner_tensor(data_torch, name))
  8032. # Handle vision tensors
  8033. if name.startswith(('model.vision_model.', 'vision_model.')):
  8034. return [(self.map_tensor_name(name), data_torch)]
  8035. return []
  8036. ###### CONVERSION LOGIC ######
  8037. # tree of lazy tensors
  8038. class LazyTorchTensor(gguf.LazyBase):
  8039. _tensor_type = torch.Tensor
  8040. # to keep the type-checker happy
  8041. dtype: torch.dtype
  8042. shape: torch.Size
  8043. # only used when converting a torch.Tensor to a np.ndarray
  8044. _dtype_map: dict[torch.dtype, type] = {
  8045. torch.float16: np.float16,
  8046. torch.float32: np.float32,
  8047. torch.uint8: np.uint8,
  8048. }
  8049. # used for safetensors slices
  8050. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8051. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8052. _dtype_str_map: dict[str, torch.dtype] = {
  8053. "F64": torch.float64,
  8054. "F32": torch.float32,
  8055. "BF16": torch.bfloat16,
  8056. "F16": torch.float16,
  8057. # "U64": torch.uint64,
  8058. "I64": torch.int64,
  8059. # "U32": torch.uint32,
  8060. "I32": torch.int32,
  8061. # "U16": torch.uint16,
  8062. "I16": torch.int16,
  8063. "U8": torch.uint8,
  8064. "I8": torch.int8,
  8065. "BOOL": torch.bool,
  8066. "F8_E4M3": torch.float8_e4m3fn,
  8067. "F8_E5M2": torch.float8_e5m2,
  8068. }
  8069. def numpy(self) -> gguf.LazyNumpyTensor:
  8070. dtype = self._dtype_map[self.dtype]
  8071. return gguf.LazyNumpyTensor(
  8072. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8073. args=(self,),
  8074. func=(lambda s: s.numpy())
  8075. )
  8076. @classmethod
  8077. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8078. return torch.empty(size=shape, dtype=dtype, device="meta")
  8079. @classmethod
  8080. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8081. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8082. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8083. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8084. return cast(torch.Tensor, lazy)
  8085. @classmethod
  8086. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8087. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8088. shape = remote_tensor.shape
  8089. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8090. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  8091. return cast(torch.Tensor, lazy)
  8092. @classmethod
  8093. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8094. del types # unused
  8095. if kwargs is None:
  8096. kwargs = {}
  8097. if func is torch.Tensor.numpy:
  8098. return args[0].numpy()
  8099. return cls._wrap_fn(func)(*args, **kwargs)
  8100. def parse_args() -> argparse.Namespace:
  8101. parser = argparse.ArgumentParser(
  8102. description="Convert a huggingface model to a GGML compatible file")
  8103. parser.add_argument(
  8104. "--vocab-only", action="store_true",
  8105. help="extract only the vocab",
  8106. )
  8107. parser.add_argument(
  8108. "--outfile", type=Path,
  8109. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8110. )
  8111. parser.add_argument(
  8112. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8113. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8114. )
  8115. parser.add_argument(
  8116. "--bigendian", action="store_true",
  8117. help="model is executed on big endian machine",
  8118. )
  8119. parser.add_argument(
  8120. "model", type=str,
  8121. help="directory containing model file or huggingface repository ID (if --remote)",
  8122. nargs="?",
  8123. )
  8124. parser.add_argument(
  8125. "--use-temp-file", action="store_true",
  8126. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8127. )
  8128. parser.add_argument(
  8129. "--no-lazy", action="store_true",
  8130. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8131. )
  8132. parser.add_argument(
  8133. "--model-name", type=str, default=None,
  8134. help="name of the model",
  8135. )
  8136. parser.add_argument(
  8137. "--verbose", action="store_true",
  8138. help="increase output verbosity",
  8139. )
  8140. parser.add_argument(
  8141. "--split-max-tensors", type=int, default=0,
  8142. help="max tensors in each split",
  8143. )
  8144. parser.add_argument(
  8145. "--split-max-size", type=str, default="0",
  8146. help="max size per split N(M|G)",
  8147. )
  8148. parser.add_argument(
  8149. "--dry-run", action="store_true",
  8150. help="only print out a split plan and exit, without writing any new files",
  8151. )
  8152. parser.add_argument(
  8153. "--no-tensor-first-split", action="store_true",
  8154. help="do not add tensors to the first split (disabled by default)"
  8155. )
  8156. parser.add_argument(
  8157. "--metadata", type=Path,
  8158. help="Specify the path for an authorship metadata override file"
  8159. )
  8160. parser.add_argument(
  8161. "--print-supported-models", action="store_true",
  8162. help="Print the supported models"
  8163. )
  8164. parser.add_argument(
  8165. "--remote", action="store_true",
  8166. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8167. )
  8168. parser.add_argument(
  8169. "--mmproj", action="store_true",
  8170. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8171. )
  8172. parser.add_argument(
  8173. "--mistral-format", action="store_true",
  8174. help="Whether the model is stored following the Mistral format.",
  8175. )
  8176. parser.add_argument(
  8177. "--disable-mistral-community-chat-template", action="store_true",
  8178. help=(
  8179. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8180. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8181. )
  8182. )
  8183. parser.add_argument(
  8184. "--sentence-transformers-dense-modules", action="store_true",
  8185. help=("Whether to include sentence-transformers dense modules."
  8186. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8187. "Default these modules are not included.")
  8188. )
  8189. args = parser.parse_args()
  8190. if not args.print_supported_models and args.model is None:
  8191. parser.error("the following arguments are required: model")
  8192. return args
  8193. def split_str_to_n_bytes(split_str: str) -> int:
  8194. if split_str.endswith("K"):
  8195. n = int(split_str[:-1]) * 1000
  8196. elif split_str.endswith("M"):
  8197. n = int(split_str[:-1]) * 1000 * 1000
  8198. elif split_str.endswith("G"):
  8199. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8200. elif split_str.isnumeric():
  8201. n = int(split_str)
  8202. else:
  8203. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8204. if n < 0:
  8205. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8206. return n
  8207. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8208. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8209. # maybe we should fallback to text model's arch in that case, since not many models have both
  8210. text_config = hparams.get("text_config", {})
  8211. vision_config = hparams.get("vision_config", {})
  8212. arch = None
  8213. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8214. arch = arches[0]
  8215. elif "ssm_cfg" in hparams:
  8216. # For non-hf Mamba and Mamba2 models
  8217. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8218. # if "architectures" is found in the sub-config, use that instead
  8219. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8220. arch = text_config["architectures"][0]
  8221. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8222. arch = vision_config["architectures"][0]
  8223. if arch is None:
  8224. raise ValueError("Failed to detect model architecture")
  8225. return arch
  8226. def main() -> None:
  8227. args = parse_args()
  8228. if args.print_supported_models:
  8229. logger.error("Supported models:")
  8230. ModelBase.print_registered_models()
  8231. sys.exit(0)
  8232. if args.verbose:
  8233. logging.basicConfig(level=logging.DEBUG)
  8234. else:
  8235. logging.basicConfig(level=logging.INFO)
  8236. if args.remote:
  8237. hf_repo_id = args.model
  8238. from huggingface_hub import snapshot_download
  8239. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8240. if args.sentence_transformers_dense_modules:
  8241. # include sentence-transformers dense modules safetensors files
  8242. allowed_patterns.append("*.safetensors")
  8243. local_dir = snapshot_download(
  8244. repo_id=hf_repo_id,
  8245. allow_patterns=allowed_patterns)
  8246. dir_model = Path(local_dir)
  8247. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8248. else:
  8249. hf_repo_id = None
  8250. dir_model = Path(args.model)
  8251. if not dir_model.is_dir():
  8252. logger.error(f'Error: {dir_model} is not a directory')
  8253. sys.exit(1)
  8254. ftype_map: dict[str, gguf.LlamaFileType] = {
  8255. "f32": gguf.LlamaFileType.ALL_F32,
  8256. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8257. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8258. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8259. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8260. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8261. "auto": gguf.LlamaFileType.GUESSED,
  8262. }
  8263. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8264. if args.use_temp_file and is_split:
  8265. logger.error("Error: Cannot use temp file when splitting")
  8266. sys.exit(1)
  8267. if args.outfile is not None:
  8268. fname_out = args.outfile
  8269. elif hf_repo_id:
  8270. # if remote, use the model ID as the output file name
  8271. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8272. else:
  8273. fname_out = dir_model
  8274. logger.info(f"Loading model: {dir_model.name}")
  8275. is_mistral_format = args.mistral_format
  8276. if is_mistral_format and not _mistral_common_installed:
  8277. raise ImportError(_mistral_import_error_msg)
  8278. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8279. with torch.inference_mode():
  8280. output_type = ftype_map[args.outtype]
  8281. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8282. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8283. if not is_mistral_format:
  8284. model_architecture = get_model_architecture(hparams, model_type)
  8285. logger.info(f"Model architecture: {model_architecture}")
  8286. try:
  8287. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8288. except NotImplementedError:
  8289. logger.error(f"Model {model_architecture} is not supported")
  8290. sys.exit(1)
  8291. elif args.mmproj:
  8292. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8293. model_class = PixtralModel
  8294. else:
  8295. model_class = MistralModel
  8296. model_instance = model_class(dir_model, output_type, fname_out,
  8297. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8298. eager=args.no_lazy,
  8299. metadata_override=args.metadata, model_name=args.model_name,
  8300. split_max_tensors=args.split_max_tensors,
  8301. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8302. small_first_shard=args.no_tensor_first_split,
  8303. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8304. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8305. )
  8306. if args.vocab_only:
  8307. logger.info("Exporting model vocab...")
  8308. model_instance.write_vocab()
  8309. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8310. else:
  8311. logger.info("Exporting model...")
  8312. model_instance.write()
  8313. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8314. logger.info(f"Model successfully exported to {out_path}")
  8315. if __name__ == '__main__':
  8316. main()