ggml.c 334 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. #define GGML_ALIGNED_MALLOC(size) aligned_alloc(GGML_MEM_ALIGN, size)
  101. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  102. #endif
  103. #define UNUSED(x) (void)(x)
  104. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  105. #define GGML_ASSERT(x) \
  106. do { \
  107. if (!(x)) { \
  108. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  109. abort(); \
  110. } \
  111. } while (0)
  112. #ifdef GGML_USE_ACCELERATE
  113. #include <Accelerate/Accelerate.h>
  114. #elif GGML_USE_OPENBLAS
  115. #include <cblas.h>
  116. #endif
  117. #undef MIN
  118. #undef MAX
  119. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  120. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  121. // floating point type used to accumulate sums
  122. typedef double ggml_float;
  123. // 16-bit float
  124. // on Arm, we use __fp16
  125. // on x86, we use uint16_t
  126. #ifdef __ARM_NEON
  127. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  128. //
  129. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  130. //
  131. #include <arm_neon.h>
  132. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  133. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  134. #define GGML_FP16_TO_FP32(x) ((float) (x))
  135. #define GGML_FP32_TO_FP16(x) (x)
  136. #else
  137. #ifdef __wasm_simd128__
  138. #include <wasm_simd128.h>
  139. #else
  140. #ifdef __POWER9_VECTOR__
  141. #include <altivec.h>
  142. #undef bool
  143. #define bool _Bool
  144. #else
  145. #include <immintrin.h>
  146. #endif
  147. #endif
  148. #ifdef __F16C__
  149. #ifdef _MSC_VER
  150. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  151. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  152. #else
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  155. #endif
  156. #elif defined(__POWER9_VECTOR__)
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  159. /* the inline asm below is about 12% faster than the lookup method */
  160. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  161. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  162. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  163. register float f;
  164. register double d;
  165. __asm__(
  166. "mtfprd %0,%2\n"
  167. "xscvhpdp %0,%0\n"
  168. "frsp %1,%0\n" :
  169. /* temp */ "=d"(d),
  170. /* out */ "=f"(f):
  171. /* in */ "r"(h));
  172. return f;
  173. }
  174. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  175. register double d;
  176. register ggml_fp16_t r;
  177. __asm__( /* xscvdphp can work on double or single precision */
  178. "xscvdphp %0,%2\n"
  179. "mffprd %1,%0\n" :
  180. /* temp */ "=d"(d),
  181. /* out */ "=r"(r):
  182. /* in */ "f"(f));
  183. return r;
  184. }
  185. #else
  186. // FP16 <-> FP32
  187. // ref: https://github.com/Maratyszcza/FP16
  188. static inline float fp32_from_bits(uint32_t w) {
  189. union {
  190. uint32_t as_bits;
  191. float as_value;
  192. } fp32;
  193. fp32.as_bits = w;
  194. return fp32.as_value;
  195. }
  196. static inline uint32_t fp32_to_bits(float f) {
  197. union {
  198. float as_value;
  199. uint32_t as_bits;
  200. } fp32;
  201. fp32.as_value = f;
  202. return fp32.as_bits;
  203. }
  204. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  205. const uint32_t w = (uint32_t) h << 16;
  206. const uint32_t sign = w & UINT32_C(0x80000000);
  207. const uint32_t two_w = w + w;
  208. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  209. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  210. const float exp_scale = 0x1.0p-112f;
  211. #else
  212. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  213. #endif
  214. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  215. const uint32_t magic_mask = UINT32_C(126) << 23;
  216. const float magic_bias = 0.5f;
  217. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  218. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  219. const uint32_t result = sign |
  220. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  221. return fp32_from_bits(result);
  222. }
  223. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  224. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  225. const float scale_to_inf = 0x1.0p+112f;
  226. const float scale_to_zero = 0x1.0p-110f;
  227. #else
  228. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  229. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  230. #endif
  231. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  232. const uint32_t w = fp32_to_bits(f);
  233. const uint32_t shl1_w = w + w;
  234. const uint32_t sign = w & UINT32_C(0x80000000);
  235. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  236. if (bias < UINT32_C(0x71000000)) {
  237. bias = UINT32_C(0x71000000);
  238. }
  239. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  240. const uint32_t bits = fp32_to_bits(base);
  241. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  242. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  243. const uint32_t nonsign = exp_bits + mantissa_bits;
  244. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  245. }
  246. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  247. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  248. #endif // __F16C__
  249. #endif // __ARM_NEON
  250. //
  251. // global data
  252. //
  253. // precomputed gelu table for f16 (128 KB)
  254. static ggml_fp16_t table_gelu_f16[1 << 16];
  255. // precomputed silu table for f16 (128 KB)
  256. static ggml_fp16_t table_silu_f16[1 << 16];
  257. // precomputed exp table for f16 (128 KB)
  258. static ggml_fp16_t table_exp_f16[1 << 16];
  259. // precomputed f32 table for f16 (256 KB)
  260. static float table_f32_f16[1 << 16];
  261. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  262. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  263. // This is also true for POWER9.
  264. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  265. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  266. uint16_t s;
  267. memcpy(&s, &f, sizeof(uint16_t));
  268. return table_f32_f16[s];
  269. }
  270. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  271. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  272. #endif
  273. // note: do not use these inside ggml.c
  274. // these are meant to be used via the ggml.h API
  275. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  276. return (float) GGML_FP16_TO_FP32(x);
  277. }
  278. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  279. return GGML_FP32_TO_FP16(x);
  280. }
  281. //
  282. // timing
  283. //
  284. #if defined(_MSC_VER) || defined(__MINGW32__)
  285. static int64_t timer_freq;
  286. void ggml_time_init(void) {
  287. LARGE_INTEGER frequency;
  288. QueryPerformanceFrequency(&frequency);
  289. timer_freq = frequency.QuadPart;
  290. }
  291. int64_t ggml_time_ms(void) {
  292. LARGE_INTEGER t;
  293. QueryPerformanceCounter(&t);
  294. return (t.QuadPart * 1000) / timer_freq;
  295. }
  296. int64_t ggml_time_us(void) {
  297. LARGE_INTEGER t;
  298. QueryPerformanceCounter(&t);
  299. return (t.QuadPart * 1000000) / timer_freq;
  300. }
  301. #else
  302. void ggml_time_init(void) {}
  303. int64_t ggml_time_ms(void) {
  304. struct timespec ts;
  305. clock_gettime(CLOCK_MONOTONIC, &ts);
  306. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  307. }
  308. int64_t ggml_time_us(void) {
  309. struct timespec ts;
  310. clock_gettime(CLOCK_MONOTONIC, &ts);
  311. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  312. }
  313. #endif
  314. int64_t ggml_cycles(void) {
  315. return clock();
  316. }
  317. int64_t ggml_cycles_per_ms(void) {
  318. return CLOCKS_PER_SEC/1000;
  319. }
  320. #ifdef GGML_PERF
  321. #define ggml_perf_time_ms() ggml_time_ms()
  322. #define ggml_perf_time_us() ggml_time_us()
  323. #define ggml_perf_cycles() ggml_cycles()
  324. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  325. #else
  326. #define ggml_perf_time_ms() 0
  327. #define ggml_perf_time_us() 0
  328. #define ggml_perf_cycles() 0
  329. #define ggml_perf_cycles_per_ms() 0
  330. #endif
  331. //
  332. // cache line
  333. //
  334. #if defined(__cpp_lib_hardware_interference_size)
  335. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  336. #else
  337. #if defined(__POWER9_VECTOR__)
  338. #define CACHE_LINE_SIZE 128
  339. #else
  340. #define CACHE_LINE_SIZE 64
  341. #endif
  342. #endif
  343. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  344. //
  345. // quantization
  346. //
  347. #define QK 32
  348. // AVX routines provided by GH user Const-me
  349. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  350. #if __AVX2__ || __AVX512F__
  351. // Unpack 32 4-bit fields into 32 bytes
  352. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  353. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  354. {
  355. // Load 16 bytes from memory
  356. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  357. // Expand bytes into uint16_t values
  358. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  359. // Unpack values into individual bytes
  360. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  361. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  362. __m256i low = _mm256_and_si256( lowMask, bytes );
  363. high = _mm256_slli_epi16( high, 4 );
  364. bytes = _mm256_or_si256( low, high );
  365. return bytes;
  366. }
  367. static inline __m128i packNibbles( __m256i bytes )
  368. {
  369. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  370. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  371. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  372. __m256i low = _mm256_and_si256( lowByte, bytes );
  373. high = _mm256_srli_epi16( high, 4 );
  374. bytes = _mm256_or_si256( low, high );
  375. // Compress uint16_t lanes into bytes
  376. __m128i r0 = _mm256_castsi256_si128( bytes );
  377. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  378. return _mm_packus_epi16( r0, r1 );
  379. }
  380. #elif __AVX__
  381. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  382. {
  383. // Load 8 bytes from memory
  384. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  385. // Expand bytes into uint16_t values
  386. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  387. // Unpack values into individual bytes
  388. const __m128i lowMask = _mm_set1_epi8( 0xF );
  389. __m128i high = _mm_andnot_si128( lowMask, bytes );
  390. __m128i low = _mm_and_si128( lowMask, bytes );
  391. high = _mm_slli_epi16( high, 4 );
  392. bytes = _mm_or_si128( low, high );
  393. return bytes;
  394. }
  395. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  396. {
  397. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  398. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  399. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  400. __m128i low = _mm_and_si128( lowByte, bytes1 );
  401. high = _mm_srli_epi16( high, 4 );
  402. bytes1 = _mm_or_si128( low, high );
  403. high = _mm_andnot_si128( lowByte, bytes2 );
  404. low = _mm_and_si128( lowByte, bytes2 );
  405. high = _mm_srli_epi16( high, 4 );
  406. bytes2 = _mm_or_si128( low, high );
  407. return _mm_packus_epi16( bytes1, bytes2);
  408. }
  409. #endif
  410. // method 5
  411. // blocks of QK elements
  412. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  413. typedef struct {
  414. float d; // delta
  415. uint8_t qs[QK / 2]; // nibbles / quants
  416. } block_q4_0;
  417. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  418. // method 4
  419. // blocks of QK elements
  420. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  421. typedef struct {
  422. float d;
  423. float m;
  424. uint8_t qs[QK / 2]; // nibbles / quants
  425. } block_q4_1;
  426. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  427. // reference implementation for deterministic creation of model files
  428. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  429. assert(k % QK == 0);
  430. const int nb = k / QK;
  431. uint8_t pp[QK/2];
  432. for (int i = 0; i < nb; i++) {
  433. float amax = 0.0f; // absolute max
  434. for (int l = 0; l < QK; l++) {
  435. const float v = x[i*QK + l];
  436. amax = MAX(amax, fabsf(v));
  437. }
  438. const float d = amax / ((1 << 3) - 1);
  439. const float id = d ? 1.0f/d : 0.0f;
  440. y[i].d = d;
  441. for (int l = 0; l < QK; l += 2) {
  442. const float v0 = x[i*QK + l + 0]*id;
  443. const float v1 = x[i*QK + l + 1]*id;
  444. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  445. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  446. assert(vi0 < 16);
  447. assert(vi1 < 16);
  448. pp[l/2] = vi0 | (vi1 << 4);
  449. }
  450. memcpy(y[i].qs, pp, sizeof(pp));
  451. }
  452. }
  453. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  454. assert(k % QK == 0);
  455. const int nb = k / QK;
  456. block_q4_0 * restrict y = vy;
  457. #if defined(__POWER9_VECTOR__)
  458. const vector float v85 = vec_splats(8.5f);
  459. for (int i = 0; i < nb; i++) {
  460. float amax = 0.0f; // absolute max
  461. vector float srcv [8];
  462. vector float asrcv[8];
  463. vector float amaxv[8];
  464. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  465. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  466. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  467. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  468. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  469. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  470. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  471. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  472. amax = MAX(
  473. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  474. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  475. const float d = amax / ((1 << 3) - 1);
  476. const float id = d ? 1.0/d : 0.0;
  477. y[i].d = d;
  478. const vector float vid = vec_splats(id);
  479. uint8_t * restrict pb = y[i].qs;
  480. for (int l = 0; l < 8; l++) {
  481. const vector float vf = vec_madd(srcv[l], vid, v85);
  482. const vector signed int vi = vec_signed(vf);
  483. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  484. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  485. }
  486. }
  487. #elif __ARM_NEON
  488. for (int i = 0; i < nb; i++) {
  489. float32x4_t srcv [8];
  490. float32x4_t asrcv[8];
  491. float32x4_t amaxv[8];
  492. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  493. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  494. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  495. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  496. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  497. const float amax = vmaxvq_f32(amaxv[0]);
  498. const float d = amax / ((1 << 3) - 1);
  499. const float id = d ? 1.0f/d : 0.0f;
  500. y[i].d = d;
  501. for (int l = 0; l < 8; l++) {
  502. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  503. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  504. const int32x4_t vi = vcvtq_s32_f32(vf);
  505. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  506. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  507. }
  508. }
  509. #elif defined(__AVX2__)
  510. for (int i = 0; i < nb; i++) {
  511. // Load elements into 4 AVX vectors
  512. __m256 v0 = _mm256_loadu_ps( x );
  513. __m256 v1 = _mm256_loadu_ps( x + 8 );
  514. __m256 v2 = _mm256_loadu_ps( x + 16 );
  515. __m256 v3 = _mm256_loadu_ps( x + 24 );
  516. x += 32;
  517. // Compute max(abs(e)) for the block
  518. const __m256 signBit = _mm256_set1_ps( -0.0f );
  519. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  520. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  521. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  522. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  523. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  524. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  525. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  526. const float maxScalar = _mm_cvtss_f32( max4 );
  527. // Quantize these floats
  528. const float d = maxScalar / 7.0f;
  529. y[i].d = d;
  530. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  531. const __m256 mul = _mm256_set1_ps( id );
  532. // Apply the multiplier
  533. v0 = _mm256_mul_ps( v0, mul );
  534. v1 = _mm256_mul_ps( v1, mul );
  535. v2 = _mm256_mul_ps( v2, mul );
  536. v3 = _mm256_mul_ps( v3, mul );
  537. // Round to nearest integer
  538. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  539. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  540. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  541. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  542. // Convert floats to integers
  543. __m256i i0 = _mm256_cvtps_epi32( v0 );
  544. __m256i i1 = _mm256_cvtps_epi32( v1 );
  545. __m256i i2 = _mm256_cvtps_epi32( v2 );
  546. __m256i i3 = _mm256_cvtps_epi32( v3 );
  547. // Convert int32 to int16
  548. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  549. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  550. // Convert int16 to int8
  551. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  552. // We got our precious signed bytes, but the order is now wrong
  553. // These AVX2 pack instructions process 16-byte pieces independently
  554. // The following instruction is fixing the order
  555. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  556. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  557. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  558. const __m256i off = _mm256_set1_epi8( 8 );
  559. i0 = _mm256_add_epi8( i0, off );
  560. // Compress the vector into 4 bit/value, and store
  561. __m128i res = packNibbles( i0 );
  562. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  563. }
  564. #elif defined(__AVX__)
  565. for (int i = 0; i < nb; i++) {
  566. // Load elements into 4 AVX vectors
  567. __m256 v0 = _mm256_loadu_ps( x );
  568. __m256 v1 = _mm256_loadu_ps( x + 8 );
  569. __m256 v2 = _mm256_loadu_ps( x + 16 );
  570. __m256 v3 = _mm256_loadu_ps( x + 24 );
  571. x += 32;
  572. // Compute max(abs(e)) for the block
  573. const __m256 signBit = _mm256_set1_ps( -0.0f );
  574. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  575. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  576. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  577. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  578. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  579. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  580. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  581. const float maxScalar = _mm_cvtss_f32( max4 );
  582. // Quantize these floats
  583. const float d = maxScalar / 7.0f;
  584. y[i].d = d;
  585. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  586. const __m256 mul = _mm256_set1_ps( id );
  587. // Apply the multiplier
  588. v0 = _mm256_mul_ps( v0, mul );
  589. v1 = _mm256_mul_ps( v1, mul );
  590. v2 = _mm256_mul_ps( v2, mul );
  591. v3 = _mm256_mul_ps( v3, mul );
  592. // Round to nearest integer
  593. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  594. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  595. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  596. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  597. // Convert floats to integers
  598. __m256i i0 = _mm256_cvtps_epi32( v0 );
  599. __m256i i1 = _mm256_cvtps_epi32( v1 );
  600. __m256i i2 = _mm256_cvtps_epi32( v2 );
  601. __m256i i3 = _mm256_cvtps_epi32( v3 );
  602. // Since we don't have in AVX some necessary functions,
  603. // we split the registers in half and call AVX2 analogs from SSE
  604. __m128i ni0 = _mm256_castsi256_si128( i0 );
  605. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  606. __m128i ni2 = _mm256_castsi256_si128( i1 );
  607. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  608. __m128i ni4 = _mm256_castsi256_si128( i2 );
  609. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  610. __m128i ni6 = _mm256_castsi256_si128( i3 );
  611. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  612. // Convert int32 to int16
  613. ni0 = _mm_packs_epi32( ni0, ni1 );
  614. ni2 = _mm_packs_epi32( ni2, ni3 );
  615. ni4 = _mm_packs_epi32( ni4, ni5 );
  616. ni6 = _mm_packs_epi32( ni6, ni7 );
  617. // Convert int16 to int8
  618. ni0 = _mm_packs_epi16( ni0, ni2 );
  619. ni4 = _mm_packs_epi16( ni4, ni6 );
  620. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  621. const __m128i off = _mm_set1_epi8( 8);
  622. ni0 = _mm_add_epi8( ni0, off );
  623. ni4 = _mm_add_epi8( ni4, off );
  624. // Compress the vector into 4 bit/value, and store
  625. __m128i res = packNibbles( ni0, ni4 );
  626. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  627. }
  628. #elif defined(__wasm_simd128__)
  629. for (int i = 0; i < nb; i++) {
  630. float amax = 0.0f; // absolute max
  631. v128_t srcv [8];
  632. v128_t asrcv[8];
  633. v128_t amaxv[8];
  634. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  635. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  636. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  637. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  638. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  639. amax = MAX(
  640. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  641. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  642. const float d = amax / ((1 << 3) - 1);
  643. const float id = d ? 1.0/d : 0.0;
  644. y[i].d = d;
  645. for (int l = 0; l < 8; l++) {
  646. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  647. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  648. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  649. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  650. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  651. }
  652. }
  653. #else
  654. // scalar
  655. quantize_row_q4_0_reference(x, y, k);
  656. #endif
  657. }
  658. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  659. assert(k % QK == 0);
  660. const int nb = k / QK;
  661. block_q4_1 * restrict y = vy;
  662. uint8_t pp[QK/2];
  663. for (int i = 0; i < nb; i++) {
  664. float min = FLT_MAX;
  665. float max = -FLT_MAX;
  666. for (int l = 0; l < QK; l++) {
  667. const float v = x[i*QK + l];
  668. if (v < min) min = v;
  669. if (v > max) max = v;
  670. }
  671. const float d = (max - min) / ((1 << 4) - 1);
  672. const float id = d ? 1.0f/d : 0.0f;
  673. y[i].d = d;
  674. y[i].m = min;
  675. for (int l = 0; l < QK; l += 2) {
  676. const float v0 = (x[i*QK + l + 0] - min)*id;
  677. const float v1 = (x[i*QK + l + 1] - min)*id;
  678. const uint8_t vi0 = roundf(v0);
  679. const uint8_t vi1 = roundf(v1);
  680. assert(vi0 < 16);
  681. assert(vi1 < 16);
  682. pp[l/2] = vi0 | (vi1 << 4);
  683. }
  684. memcpy(y[i].qs, pp, sizeof(pp));
  685. }
  686. }
  687. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  688. assert(k % QK == 0);
  689. const int nb = k / QK;
  690. block_q4_1 * restrict y = vy;
  691. #if defined(__AVX2__)
  692. for (int i = 0; i < nb; i++) {
  693. // Load elements into 4 AVX vectors
  694. __m256 v0 = _mm256_loadu_ps( x );
  695. __m256 v1 = _mm256_loadu_ps( x + 8 );
  696. __m256 v2 = _mm256_loadu_ps( x + 16 );
  697. __m256 v3 = _mm256_loadu_ps( x + 24 );
  698. x += 32;
  699. // Compute max for the block
  700. __m256 vmax;
  701. vmax = _mm256_max_ps( v0, v1 );
  702. vmax = _mm256_max_ps( vmax, v2 );
  703. vmax = _mm256_max_ps( vmax, v3 );
  704. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  705. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  706. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  707. const float maxScalar = _mm_cvtss_f32( max4 );
  708. // Compute min for the block
  709. __m256 vmin;
  710. vmin = _mm256_min_ps( v0, v1 );
  711. vmin = _mm256_min_ps( vmin, v2 );
  712. vmin = _mm256_min_ps( vmin, v3 );
  713. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  714. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  715. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  716. const float minScalar = _mm_cvtss_f32( min4 );
  717. // Quantize these floats
  718. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  719. const float id = d ? 1.0f/d : 0.0f;
  720. y[i].m = minScalar;
  721. y[i].d = d;
  722. // x = (x-min)*id
  723. const __m256 mul = _mm256_set1_ps( id );
  724. const __m256 off = _mm256_set1_ps( minScalar );
  725. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  726. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  727. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  728. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  729. // Round to nearest integer
  730. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  731. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  732. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  733. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  734. // Convert floats to integers
  735. __m256i i0 = _mm256_cvtps_epi32( v0 );
  736. __m256i i1 = _mm256_cvtps_epi32( v1 );
  737. __m256i i2 = _mm256_cvtps_epi32( v2 );
  738. __m256i i3 = _mm256_cvtps_epi32( v3 );
  739. // Convert int32 to int16
  740. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  741. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  742. // Convert int16 to int8
  743. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  744. // We got our precious signed bytes, but the order is now wrong
  745. // These AVX2 pack instructions process 16-byte pieces independently
  746. // The following instruction is fixing the order
  747. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  748. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  749. // Compress the vector into 4 bit/value, and store
  750. __m128i res = packNibbles( i0 );
  751. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  752. }
  753. #elif __ARM_NEON
  754. for (int i = 0; i < nb; i++) {
  755. float32x4_t srcv[8];
  756. float32x4_t minv[8];
  757. float32x4_t maxv[8];
  758. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l);
  759. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  760. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  761. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  762. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  763. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  764. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  765. const float min = vminvq_f32(minv[0]);
  766. const float max = vmaxvq_f32(maxv[0]);
  767. const float d = (max - min) / ((1 << 4) - 1);
  768. const float id = d ? 1.0f/d : 0.0f;
  769. y[i].d = d;
  770. y[i].m = min;
  771. const float32x4_t minv0 = vdupq_n_f32(min);
  772. for (int l = 0; l < 8; l++) {
  773. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  774. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  775. const int32x4_t vi = vcvtq_s32_f32(vf);
  776. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  777. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  778. }
  779. }
  780. #else
  781. // scalar
  782. quantize_row_q4_1_reference(x, vy, k);
  783. #endif
  784. }
  785. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  786. assert(k % QK == 0);
  787. const int nb = k / QK;
  788. const block_q4_0 * restrict x = vx;
  789. #if defined(__AVX2__)
  790. for (int i = 0; i < nb; i++) {
  791. // scale factor
  792. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  793. const uint8_t * restrict pp = x[i].qs;
  794. for (int l = 0; l < QK; l += 32) {
  795. // Load 32x4-bit integers into 32x8-bit integers
  796. __m256i vx8 = bytesFromNibbles(pp+l/2);
  797. // Subtract 8 from the integers
  798. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  799. // Convert to 16-bit int
  800. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  801. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  802. // Convert to 32-bit int -> float 32
  803. const __m256 vf[4] = {
  804. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  805. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  806. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  807. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  808. };
  809. // Scale and store
  810. for (int j = 0; j < 4; j++) {
  811. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  812. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  813. }
  814. }
  815. }
  816. #elif defined(__ARM_NEON)
  817. for (int i = 0; i < nb; i++) {
  818. const float32x4_t vd = vdupq_n_f32(x[i].d);
  819. const uint8_t * restrict pp = x[i].qs;
  820. for (int l = 0; l < QK; l += 16) {
  821. // Load 16x4-bit integers into 8x8-bit integers
  822. const uint8x8_t v8 = vld1_u8(pp + l/2);
  823. // Expand 4-bit qs to 8-bit bytes
  824. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  825. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  826. // Convert to signed 8-bit integers
  827. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  828. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  829. // Subtract 8 from each byte
  830. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  831. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  832. // Interleave and combine
  833. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  834. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  835. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  836. // convert to 2x int16x8_t
  837. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  838. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  839. // convert to 4x float32x4_t
  840. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  841. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  842. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  843. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  844. // Multiply by d
  845. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  846. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  847. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  848. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  849. // Store
  850. vst1q_f32(y + i*QK + l + 0, r0);
  851. vst1q_f32(y + i*QK + l + 4, r1);
  852. vst1q_f32(y + i*QK + l + 8, r2);
  853. vst1q_f32(y + i*QK + l + 12, r3);
  854. }
  855. }
  856. #else
  857. // scalar
  858. for (int i = 0; i < nb; i++) {
  859. const float d = x[i].d;
  860. const uint8_t * restrict pp = x[i].qs;
  861. for (int l = 0; l < QK; l += 2) {
  862. const uint8_t vi = pp[l/2];
  863. const int8_t vi0 = vi & 0xf;
  864. const int8_t vi1 = vi >> 4;
  865. const float v0 = (vi0 - 8)*d;
  866. const float v1 = (vi1 - 8)*d;
  867. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  868. y[i*QK + l + 0] = v0;
  869. y[i*QK + l + 1] = v1;
  870. assert(!isnan(y[i*QK + l + 0]));
  871. assert(!isnan(y[i*QK + l + 1]));
  872. }
  873. }
  874. #endif
  875. }
  876. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  877. assert(k % QK == 0);
  878. const int nb = k / QK;
  879. const block_q4_1 * restrict x = vx;
  880. #if defined(__AVX2__)
  881. for (int i = 0; i < nb; i++) {
  882. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  883. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  884. const uint8_t * restrict pp = x[i].qs;
  885. for (int l = 0; l < QK; l += 32) {
  886. // Load 32x4-bit integers into 32x8-bit integers
  887. __m256i vx8 = bytesFromNibbles(pp+l/2);
  888. // Convert to 16-bit int
  889. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  890. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  891. // Convert to 32-bit int -> float 32
  892. const __m256 vf[4] = {
  893. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  894. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  895. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  896. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  897. };
  898. // Scale, add m and store
  899. for (int j = 0; j < 4; j++) {
  900. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  901. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  902. }
  903. }
  904. }
  905. #elif defined(__ARM_NEON)
  906. for (int i = 0; i < nb; i++) {
  907. const float32x4_t vd = vdupq_n_f32(x[i].d);
  908. const float32x4_t vm = vdupq_n_f32(x[i].m);
  909. const uint8_t * restrict pp = x[i].qs;
  910. for (int l = 0; l < QK; l += 16) {
  911. // Load 16x4-bit integers into 8x8-bit integers
  912. const uint8x8_t v8 = vld1_u8(pp + l/2);
  913. // Expand 4-bit qs to 8-bit bytes
  914. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  915. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  916. // Interleave and combine
  917. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  918. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  919. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  920. // convert to 2x uint16x8_t
  921. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  922. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  923. // convert to 4x float32x4_t
  924. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  925. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  926. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  927. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  928. // multiply by d and add m
  929. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  930. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  931. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  932. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  933. // Store
  934. vst1q_f32(y + i*QK + l + 0, r0);
  935. vst1q_f32(y + i*QK + l + 4, r1);
  936. vst1q_f32(y + i*QK + l + 8, r2);
  937. vst1q_f32(y + i*QK + l + 12, r3);
  938. }
  939. }
  940. #else
  941. for (int i = 0; i < nb; i++) {
  942. const float d = x[i].d;
  943. const float m = x[i].m;
  944. const uint8_t * restrict pp = x[i].qs;
  945. for (int l = 0; l < QK; l += 2) {
  946. const uint8_t vi = pp[l/2];
  947. const int8_t vi0 = vi & 0xf;
  948. const int8_t vi1 = vi >> 4;
  949. const float v0 = vi0*d + m;
  950. const float v1 = vi1*d + m;
  951. y[i*QK + l + 0] = v0;
  952. y[i*QK + l + 1] = v1;
  953. assert(!isnan(y[i*QK + l + 0]));
  954. assert(!isnan(y[i*QK + l + 1]));
  955. }
  956. }
  957. #endif
  958. }
  959. //
  960. // simd mappings
  961. //
  962. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  963. // we then implement the fundamental computation operations below using only these macros
  964. // adding support for new architectures requires to define the corresponding SIMD macros
  965. //
  966. // GGML_F32_STEP / GGML_F16_STEP
  967. // number of elements to process in a single step
  968. //
  969. // GGML_F32_EPR / GGML_F16_EPR
  970. // number of elements to fit in a single register
  971. //
  972. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  973. #define GGML_SIMD
  974. // F32 NEON
  975. #define GGML_F32_STEP 16
  976. #define GGML_F32_EPR 4
  977. #define GGML_F32x4 float32x4_t
  978. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  979. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  980. #define GGML_F32x4_LOAD vld1q_f32
  981. #define GGML_F32x4_STORE vst1q_f32
  982. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  983. #define GGML_F32x4_ADD vaddq_f32
  984. #define GGML_F32x4_MUL vmulq_f32
  985. #if defined(__ARM_FEATURE_QRDMX)
  986. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  987. #else
  988. #define GGML_F32x4_REDUCE_ONE(x) \
  989. (vgetq_lane_f32(x, 0) + \
  990. vgetq_lane_f32(x, 1) + \
  991. vgetq_lane_f32(x, 2) + \
  992. vgetq_lane_f32(x, 3))
  993. #endif
  994. #define GGML_F32x4_REDUCE(res, x) \
  995. { \
  996. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  997. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  998. } \
  999. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1000. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1001. } \
  1002. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1003. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1004. } \
  1005. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1006. }
  1007. #define GGML_F32_VEC GGML_F32x4
  1008. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1009. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1010. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1011. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1012. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1013. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1014. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1015. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1016. // F16 NEON
  1017. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1018. #define GGML_F16_STEP 32
  1019. #define GGML_F16_EPR 8
  1020. #define GGML_F16x8 float16x8_t
  1021. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1022. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1023. #define GGML_F16x8_LOAD vld1q_f16
  1024. #define GGML_F16x8_STORE vst1q_f16
  1025. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1026. #define GGML_F16x8_ADD vaddq_f16
  1027. #define GGML_F16x8_MUL vmulq_f16
  1028. #define GGML_F16x8_REDUCE(res, x) \
  1029. { \
  1030. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1031. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1032. } \
  1033. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1034. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1035. } \
  1036. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1037. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1038. } \
  1039. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1040. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1041. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1042. }
  1043. #define GGML_F16_VEC GGML_F16x8
  1044. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1045. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1046. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1047. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1048. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1049. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1050. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1051. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1052. #else
  1053. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1054. // and take advantage of the vcvt_ functions to convert to/from FP16
  1055. #define GGML_F16_STEP 16
  1056. #define GGML_F16_EPR 4
  1057. #define GGML_F32Cx4 float32x4_t
  1058. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1059. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1060. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1061. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1062. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1063. #define GGML_F32Cx4_ADD vaddq_f32
  1064. #define GGML_F32Cx4_MUL vmulq_f32
  1065. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1066. #define GGML_F16_VEC GGML_F32Cx4
  1067. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1068. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1069. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1070. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1071. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1072. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1073. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1074. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1075. #endif
  1076. #elif defined(__AVX__)
  1077. #define GGML_SIMD
  1078. // F32 AVX
  1079. #define GGML_F32_STEP 32
  1080. #define GGML_F32_EPR 8
  1081. #define GGML_F32x8 __m256
  1082. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1083. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1084. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1085. #define GGML_F32x8_STORE _mm256_storeu_ps
  1086. #if defined(__FMA__)
  1087. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1088. #else
  1089. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1090. #endif
  1091. #define GGML_F32x8_ADD _mm256_add_ps
  1092. #define GGML_F32x8_MUL _mm256_mul_ps
  1093. #define GGML_F32x8_REDUCE(res, x) \
  1094. { \
  1095. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1096. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1097. } \
  1098. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1099. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1100. } \
  1101. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1102. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1103. } \
  1104. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1105. _mm256_extractf128_ps(x[0], 1)); \
  1106. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1107. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1108. }
  1109. // TODO: is this optimal ?
  1110. #define GGML_F32_VEC GGML_F32x8
  1111. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1112. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1113. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1114. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1115. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1116. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1117. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1118. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1119. // F16 AVX
  1120. #define GGML_F16_STEP 32
  1121. #define GGML_F16_EPR 8
  1122. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1123. #define GGML_F32Cx8 __m256
  1124. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1125. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1126. #if defined(__F16C__)
  1127. // the _mm256_cvt intrinsics require F16C
  1128. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1129. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1130. #else
  1131. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1132. float tmp[8];
  1133. for (int i = 0; i < 8; i++)
  1134. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1135. return _mm256_loadu_ps(tmp);
  1136. }
  1137. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1138. float arr[8];
  1139. _mm256_storeu_ps(arr, y);
  1140. for (int i = 0; i < 8; i++)
  1141. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1142. }
  1143. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1144. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1145. #endif
  1146. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1147. #define GGML_F32Cx8_ADD _mm256_add_ps
  1148. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1149. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1150. #define GGML_F16_VEC GGML_F32Cx8
  1151. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1152. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1153. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1154. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1155. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1156. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1157. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1158. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1159. #elif defined(__POWER9_VECTOR__)
  1160. #define GGML_SIMD
  1161. // F32 POWER9
  1162. #define GGML_F32_STEP 32
  1163. #define GGML_F32_EPR 4
  1164. #define GGML_F32x4 vector float
  1165. #define GGML_F32x4_ZERO 0.0f
  1166. #define GGML_F32x4_SET1 vec_splats
  1167. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1168. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1169. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1170. #define GGML_F32x4_ADD vec_add
  1171. #define GGML_F32x4_MUL vec_mul
  1172. #define GGML_F32x4_REDUCE(res, x) \
  1173. { \
  1174. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1175. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1176. } \
  1177. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1178. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1179. } \
  1180. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1181. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1182. } \
  1183. res = vec_extract(x[0], 0) + \
  1184. vec_extract(x[0], 1) + \
  1185. vec_extract(x[0], 2) + \
  1186. vec_extract(x[0], 3); \
  1187. }
  1188. #define GGML_F32_VEC GGML_F32x4
  1189. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1190. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1191. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1192. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1193. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1194. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1195. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1196. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1197. // F16 POWER9
  1198. #define GGML_F16_STEP GGML_F32_STEP
  1199. #define GGML_F16_EPR GGML_F32_EPR
  1200. #define GGML_F16_VEC GGML_F32x4
  1201. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1202. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1203. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1204. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1205. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1206. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1207. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1208. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1209. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1210. #define GGML_F16_VEC_STORE(p, r, i) \
  1211. if (i & 0x1) \
  1212. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1213. r[i - GGML_ENDIAN_BYTE(0)]), \
  1214. 0, p - GGML_F16_EPR)
  1215. #elif defined(__wasm_simd128__)
  1216. #define GGML_SIMD
  1217. // F32 WASM
  1218. #define GGML_F32_STEP 16
  1219. #define GGML_F32_EPR 4
  1220. #define GGML_F32x4 v128_t
  1221. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1222. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1223. #define GGML_F32x4_LOAD wasm_v128_load
  1224. #define GGML_F32x4_STORE wasm_v128_store
  1225. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1226. #define GGML_F32x4_ADD wasm_f32x4_add
  1227. #define GGML_F32x4_MUL wasm_f32x4_mul
  1228. #define GGML_F32x4_REDUCE(res, x) \
  1229. { \
  1230. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1231. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1232. } \
  1233. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1234. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1235. } \
  1236. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1237. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1238. } \
  1239. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1240. wasm_f32x4_extract_lane(x[0], 1) + \
  1241. wasm_f32x4_extract_lane(x[0], 2) + \
  1242. wasm_f32x4_extract_lane(x[0], 3); \
  1243. }
  1244. #define GGML_F32_VEC GGML_F32x4
  1245. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1246. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1247. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1248. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1249. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1250. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1251. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1252. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1253. // F16 WASM
  1254. #define GGML_F16_STEP 16
  1255. #define GGML_F16_EPR 4
  1256. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1257. float tmp[4];
  1258. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1259. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1260. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1261. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1262. return wasm_v128_load(tmp);
  1263. }
  1264. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1265. float tmp[4];
  1266. wasm_v128_store(tmp, x);
  1267. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1268. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1269. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1270. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1271. }
  1272. #define GGML_F16x4 v128_t
  1273. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1274. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1275. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1276. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1277. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1278. #define GGML_F16x4_ADD wasm_f32x4_add
  1279. #define GGML_F16x4_MUL wasm_f32x4_mul
  1280. #define GGML_F16x4_REDUCE(res, x) \
  1281. { \
  1282. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1283. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1284. } \
  1285. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1286. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1287. } \
  1288. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1289. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1290. } \
  1291. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1292. wasm_f32x4_extract_lane(x[0], 1) + \
  1293. wasm_f32x4_extract_lane(x[0], 2) + \
  1294. wasm_f32x4_extract_lane(x[0], 3); \
  1295. }
  1296. #define GGML_F16_VEC GGML_F16x4
  1297. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1298. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1299. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1300. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1301. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1302. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1303. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1304. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1305. #elif defined(__SSE3__)
  1306. #define GGML_SIMD
  1307. // F32 SSE
  1308. #define GGML_F32_STEP 32
  1309. #define GGML_F32_EPR 4
  1310. #define GGML_F32x4 __m128
  1311. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1312. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1313. #define GGML_F32x4_LOAD _mm_loadu_ps
  1314. #define GGML_F32x4_STORE _mm_storeu_ps
  1315. #if defined(__FMA__)
  1316. // TODO: Does this work?
  1317. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1318. #else
  1319. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1320. #endif
  1321. #define GGML_F32x4_ADD _mm_add_ps
  1322. #define GGML_F32x4_MUL _mm_mul_ps
  1323. #define GGML_F32x4_REDUCE(res, x) \
  1324. { \
  1325. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1326. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1327. } \
  1328. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1329. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1330. } \
  1331. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1332. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1333. } \
  1334. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1335. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1336. }
  1337. // TODO: is this optimal ?
  1338. #define GGML_F32_VEC GGML_F32x4
  1339. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1340. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1341. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1342. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1343. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1344. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1345. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1346. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1347. // F16 SSE
  1348. #define GGML_F16_STEP 32
  1349. #define GGML_F16_EPR 4
  1350. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1351. float tmp[4];
  1352. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1353. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1354. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1355. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1356. return _mm_loadu_ps(tmp);
  1357. }
  1358. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1359. float arr[4];
  1360. _mm_storeu_ps(arr, y);
  1361. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1362. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1363. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1364. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1365. }
  1366. #define GGML_F32Cx4 __m128
  1367. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1368. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1369. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1370. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1371. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1372. #define GGML_F32Cx4_ADD _mm_add_ps
  1373. #define GGML_F32Cx4_MUL _mm_mul_ps
  1374. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1375. #define GGML_F16_VEC GGML_F32Cx4
  1376. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1377. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1378. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1379. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1380. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1381. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1382. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1383. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1384. #endif
  1385. // GGML_F32_ARR / GGML_F16_ARR
  1386. // number of registers to use per step
  1387. #ifdef GGML_SIMD
  1388. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1389. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1390. #endif
  1391. //
  1392. // fundamental operations
  1393. //
  1394. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1395. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1396. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1397. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1398. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1399. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1400. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1401. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1402. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1403. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1404. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1405. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1406. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1407. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1408. #ifdef GGML_SIMD
  1409. float sumf = 0.0f;
  1410. const int np = (n & ~(GGML_F32_STEP - 1));
  1411. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1412. GGML_F32_VEC ax[GGML_F32_ARR];
  1413. GGML_F32_VEC ay[GGML_F32_ARR];
  1414. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1415. for (int j = 0; j < GGML_F32_ARR; j++) {
  1416. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1417. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1418. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1419. }
  1420. }
  1421. // reduce sum0..sum3 to sum0
  1422. GGML_F32_VEC_REDUCE(sumf, sum);
  1423. // leftovers
  1424. for (int i = np; i < n; ++i) {
  1425. sumf += x[i]*y[i];
  1426. }
  1427. #else
  1428. // scalar
  1429. ggml_float sumf = 0.0;
  1430. for (int i = 0; i < n; ++i) {
  1431. sumf += (ggml_float)(x[i]*y[i]);
  1432. }
  1433. #endif
  1434. *s = sumf;
  1435. }
  1436. #if __AVX512F__ && QK == 32
  1437. static inline __m512 dot_q4_0_oneblock_avx512(
  1438. __m512 acc,
  1439. const block_q4_0 * restrict x,
  1440. const block_q4_0 * restrict y,
  1441. int i
  1442. ) {
  1443. // Compute combined scale for the block
  1444. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1445. __m256i bx = bytesFromNibbles( x[i].qs );
  1446. __m256i by = bytesFromNibbles( y[i].qs );
  1447. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1448. const __m256i off = _mm256_set1_epi8( 8 );
  1449. bx = _mm256_sub_epi8( bx, off );
  1450. by = _mm256_sub_epi8( by, off );
  1451. // Sign-extend 16 signed bytes into int16_t
  1452. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1453. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1454. // Compute products of int16_t integers, add pairwise
  1455. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1456. // Convert int32_t to float
  1457. __m512 p = _mm512_cvtepi32_ps( i64 );
  1458. // Apply the scale, and accumulate
  1459. return _mm512_fmadd_ps( d, p, acc );
  1460. }
  1461. #endif
  1462. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1463. ggml_float sumf = 0.0;
  1464. #if defined(GGML_SIMD)
  1465. const int np = (n & ~(GGML_F16_STEP - 1));
  1466. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1467. GGML_F16_VEC ax[GGML_F16_ARR];
  1468. GGML_F16_VEC ay[GGML_F16_ARR];
  1469. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1470. for (int j = 0; j < GGML_F16_ARR; j++) {
  1471. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1472. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1473. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1474. }
  1475. }
  1476. // reduce sum0..sum3 to sum0
  1477. GGML_F16_VEC_REDUCE(sumf, sum);
  1478. // leftovers
  1479. for (int i = np; i < n; ++i) {
  1480. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1481. }
  1482. #else
  1483. for (int i = 0; i < n; ++i) {
  1484. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1485. }
  1486. #endif
  1487. *s = sumf;
  1488. }
  1489. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1490. const int nb = n / QK;
  1491. assert(n % QK == 0);
  1492. assert(nb % 2 == 0);
  1493. const block_q4_0 * restrict x = vx;
  1494. const block_q4_0 * restrict y = vy;
  1495. float sumf = 0.0;
  1496. #if defined(__ARM_NEON)
  1497. float sum0 = 0.0f;
  1498. float sum1 = 0.0f;
  1499. for (int i = 0; i < nb; i += 2) {
  1500. const block_q4_0 * restrict x0 = &x[i + 0];
  1501. const block_q4_0 * restrict y0 = &y[i + 0];
  1502. const block_q4_0 * restrict x1 = &x[i + 1];
  1503. const block_q4_0 * restrict y1 = &y[i + 1];
  1504. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1505. const int8x16_t s8b = vdupq_n_s8(0x8);
  1506. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1507. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1508. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1509. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1510. // 4-bit -> 8-bit
  1511. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1512. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1513. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1514. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1515. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1516. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1517. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1518. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1519. // sub 8
  1520. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1521. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1522. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1523. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1524. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1525. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1526. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1527. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1528. #if defined(__ARM_FEATURE_DOTPROD)
  1529. // dot product into int16x8_t
  1530. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1531. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1532. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1533. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1534. // scalar
  1535. #if defined(__ARM_FEATURE_QRDMX)
  1536. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1537. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1538. #else
  1539. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1540. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1541. #endif
  1542. #else
  1543. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1544. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1545. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1546. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1547. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1548. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1549. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1550. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1551. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1552. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1553. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1554. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1555. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1556. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1557. // scalar
  1558. #if defined(__ARM_FEATURE_QRDMX)
  1559. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1560. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1561. #else
  1562. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1563. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1564. #endif
  1565. #endif
  1566. }
  1567. sumf = sum0 + sum1;
  1568. #elif defined(__AVX512F__)
  1569. // Initialize accumulator with zeros
  1570. __m512 acc0 = _mm512_setzero_ps();
  1571. __m512 acc1 = _mm512_setzero_ps();
  1572. const int superblock_size = 8;
  1573. const int superblock_count = nb / superblock_size;
  1574. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1575. int i = superblock_ix * superblock_size;
  1576. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1577. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1578. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1579. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1580. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1581. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1582. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1583. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1584. }
  1585. // Remainders
  1586. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1587. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1588. }
  1589. // Horizontal sum of all lanes of the accumulator
  1590. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1591. #elif defined(__AVX2__)
  1592. // Initialize accumulator with zeros
  1593. __m256 acc = _mm256_setzero_ps();
  1594. /* Prepare the constants we will need during execution */
  1595. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1596. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1597. #define UNROLL_COUNT 8
  1598. // make sure we only unroll multiples of the block count
  1599. assert(nb % UNROLL_COUNT == 0);
  1600. // Main loop
  1601. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1602. // This loop will be unrolled by the compiler
  1603. for (int u=0;u<UNROLL_COUNT;u++) {
  1604. /* Compute combined scale for the block */
  1605. const __m256 scale = _mm256_mul_ps(
  1606. _mm256_broadcast_ss( &x[i+u].d ),
  1607. _mm256_broadcast_ss( &y[i+u].d ) );
  1608. /* get input from x
  1609. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1610. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1611. /* Load 16 bytes from memory */
  1612. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1613. /* Expand bytes into uint16_t values */
  1614. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1615. /* Unpack values into individual bytes */
  1616. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1617. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1618. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1619. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1620. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1621. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1622. /* get input from y
  1623. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1624. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1625. /* Load 16 bytes from memory */
  1626. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1627. /* Expand bytes into uint16_t values */
  1628. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1629. /* Unpack values into individual bytes */
  1630. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1631. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1632. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1633. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1634. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1635. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1636. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1637. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1638. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1639. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1640. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1641. /* Convert to vectore of 8 int32_t to 8 floats */
  1642. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1643. /* Multiply q with scale and accumulate */
  1644. acc = _mm256_fmadd_ps( scale, q, acc );
  1645. }
  1646. }
  1647. // Return horizontal sum of the acc vector
  1648. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1649. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1650. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1651. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1652. sumf = _mm_cvtss_f32( res );
  1653. #elif defined(__AVX__)
  1654. // Initialize accumulator with zeros
  1655. __m256 acc = _mm256_setzero_ps();
  1656. // Main loop
  1657. for (int i = 0; i < nb; ++i) {
  1658. // Compute combined scale for the block
  1659. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1660. __m128i i32[2];
  1661. for (int j = 0; j < 2; ++j) {
  1662. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1663. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1664. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1665. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1666. const __m128i off = _mm_set1_epi8( 8 );
  1667. bx = _mm_sub_epi8( bx, off );
  1668. by = _mm_sub_epi8( by, off );
  1669. // Get absolute values of x vectors
  1670. const __m128i ax = _mm_sign_epi8(bx, bx);
  1671. // Sign the values of the y vectors
  1672. const __m128i sy = _mm_sign_epi8(by, bx);
  1673. // Perform multiplication and create 16-bit values
  1674. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1675. const __m128i ones = _mm_set1_epi16(1);
  1676. i32[j] = _mm_madd_epi16(ones, dot);
  1677. }
  1678. // Convert int32_t to float
  1679. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1680. // Apply the scale, and accumulate
  1681. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1682. }
  1683. // Return horizontal sum of the acc vector
  1684. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1685. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1686. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1687. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1688. sumf = _mm_cvtss_f32( res );
  1689. #elif defined(__wasm_simd128__)
  1690. // wasm simd
  1691. float sum0 = 0.0f;
  1692. float sum1 = 0.0f;
  1693. for (int i = 0; i < nb; i += 2) {
  1694. const block_q4_0 * restrict x0 = &x[i + 0];
  1695. const block_q4_0 * restrict y0 = &y[i + 0];
  1696. const block_q4_0 * restrict x1 = &x[i + 1];
  1697. const block_q4_0 * restrict y1 = &y[i + 1];
  1698. const v128_t m4b = wasm_u8x16_splat(0xf);
  1699. const v128_t s8b = wasm_i8x16_splat(0x8);
  1700. const v128_t v0_0 = wasm_v128_load(x0->qs);
  1701. const v128_t v0_1 = wasm_v128_load(y0->qs);
  1702. const v128_t v1_0 = wasm_v128_load(x1->qs);
  1703. const v128_t v1_1 = wasm_v128_load(y1->qs);
  1704. // 4-bit -> 8-bit
  1705. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1706. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1707. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1708. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1709. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1710. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1711. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1712. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1713. // sub 8
  1714. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1715. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1716. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1717. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1718. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1719. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1720. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1721. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1722. // dot product into int16x8_t
  1723. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1724. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1725. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1726. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1727. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1728. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1729. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1730. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1731. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1732. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1733. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1734. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1735. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1736. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1737. sum0 += x0->d * y0->d * (
  1738. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1739. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1740. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1741. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1742. sum1 += x1->d * y1->d * (
  1743. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1744. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1745. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1746. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1747. }
  1748. sumf = sum0 + sum1;
  1749. #else
  1750. // scalar
  1751. for (int i = 0; i < nb; i++) {
  1752. const float d0 = x[i].d;
  1753. const float d1 = y[i].d;
  1754. const uint8_t * restrict p0 = x[i].qs;
  1755. const uint8_t * restrict p1 = y[i].qs;
  1756. int sumi = 0;
  1757. for (int j = 0; j < QK/2; j++) {
  1758. const uint8_t v0 = p0[j];
  1759. const uint8_t v1 = p1[j];
  1760. const int8_t i0 = (int8_t) (v0 & 0xf) - 8;
  1761. const int8_t i1 = (int8_t) (v0 >> 4) - 8;
  1762. const int8_t i2 = (int8_t) (v1 & 0xf) - 8;
  1763. const int8_t i3 = (int8_t) (v1 >> 4) - 8;
  1764. sumi += i0*i2 + i1*i3;
  1765. }
  1766. sumf += d0 * d1 * sumi;
  1767. }
  1768. #endif
  1769. *s = sumf;
  1770. }
  1771. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1772. const int nb = n / QK;
  1773. const block_q4_1 * restrict x = vx;
  1774. const block_q4_1 * restrict y = vy;
  1775. float sumf = 0.0;
  1776. #if defined(__AVX2__)
  1777. // Initialize accumulator with zeros
  1778. __m256 acc = _mm256_setzero_ps();
  1779. // Accumulator for constant offsets
  1780. float acc_offset = 0.0f;
  1781. // Main loop
  1782. for (int i = 0; i < nb; ++i) {
  1783. const float * d0 = &x[i].d;
  1784. const float * d1 = &y[i].d;
  1785. const float * m0 = &x[i].m;
  1786. const float * m1 = &y[i].m;
  1787. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1788. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1789. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1790. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1791. // Compute combined scale for the block
  1792. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1793. // Compute cross scales for the block
  1794. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1795. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1796. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1797. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1798. __m256i bx = bytesFromNibbles( x[i].qs );
  1799. __m256i by = bytesFromNibbles( y[i].qs );
  1800. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1801. // Sign-extend first 16 signed bytes into int16_t
  1802. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1803. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1804. // Compute products of int16_t integers, add pairwise
  1805. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1806. // Sign-extend last 16 signed bytes into int16_t vectors
  1807. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1808. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1809. // Accumulate products of int16_t integers
  1810. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1811. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1812. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1813. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1814. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1815. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1816. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1817. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1818. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1819. // Convert int32_t to float
  1820. __m256 p = _mm256_cvtepi32_ps( i32 );
  1821. // Apply the scale, and accumulate
  1822. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1823. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1824. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1825. // acc_offset += m0*m1 (for each entry in the block)
  1826. acc_offset += (*m0)*(*m1);
  1827. }
  1828. // Return horizontal sum of the acc vector
  1829. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1830. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1831. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1832. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1833. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1834. #elif defined(__ARM_NEON)
  1835. float sum00 = 0.0f;
  1836. float sum01 = 0.0f;
  1837. float sum10 = 0.0f;
  1838. float sum11 = 0.0f;
  1839. for (int i = 0; i < nb; ++i) {
  1840. const block_q4_1 * restrict x0 = &x[i + 0];
  1841. const block_q4_1 * restrict y0 = &y[i + 0];
  1842. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1843. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1844. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1845. // and with 0xf
  1846. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1847. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1848. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1849. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1850. // dot product into uint16x8_t
  1851. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1852. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1853. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1854. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1855. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1856. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1857. sum00 += x0->m*y0->m;
  1858. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1859. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1860. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1861. }
  1862. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1863. #else
  1864. // scalar
  1865. for (int i = 0; i < nb; i++) {
  1866. const float d0 = x[i].d;
  1867. const float d1 = y[i].d;
  1868. const float m0 = x[i].m;
  1869. const float m1 = y[i].m;
  1870. const uint8_t * restrict p0 = x[i].qs;
  1871. const uint8_t * restrict p1 = y[i].qs;
  1872. for (int j = 0; j < QK/2; j++) {
  1873. const uint8_t v0 = p0[j];
  1874. const uint8_t v1 = p1[j];
  1875. const float f0 = d0*(v0 & 0xf) + m0;
  1876. const float f1 = d0*(v0 >> 4) + m0;
  1877. const float f2 = d1*(v1 & 0xf) + m1;
  1878. const float f3 = d1*(v1 >> 4) + m1;
  1879. sumf += f0*f2 + f1*f3;
  1880. }
  1881. }
  1882. #endif
  1883. *s = sumf;
  1884. }
  1885. // compute GGML_VEC_DOT_UNROLL dot products at once
  1886. // xs - x row stride in bytes
  1887. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1888. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1889. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1890. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1891. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1892. }
  1893. #if defined(GGML_SIMD)
  1894. const int np = (n & ~(GGML_F16_STEP - 1));
  1895. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1896. GGML_F16_VEC ax[GGML_F16_ARR];
  1897. GGML_F16_VEC ay[GGML_F16_ARR];
  1898. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1899. for (int j = 0; j < GGML_F16_ARR; j++) {
  1900. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1901. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1902. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1903. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1904. }
  1905. }
  1906. }
  1907. // reduce sum0..sum3 to sum0
  1908. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1909. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1910. }
  1911. // leftovers
  1912. for (int i = np; i < n; ++i) {
  1913. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1914. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1915. }
  1916. }
  1917. #else
  1918. for (int i = 0; i < n; ++i) {
  1919. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1920. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1921. }
  1922. }
  1923. #endif
  1924. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1925. s[i] = sumf[i];
  1926. }
  1927. }
  1928. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1929. #if defined(GGML_SIMD)
  1930. const int np = (n & ~(GGML_F32_STEP - 1));
  1931. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1932. GGML_F32_VEC ax[GGML_F32_ARR];
  1933. GGML_F32_VEC ay[GGML_F32_ARR];
  1934. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1935. for (int j = 0; j < GGML_F32_ARR; j++) {
  1936. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1937. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1938. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1939. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1940. }
  1941. }
  1942. // leftovers
  1943. for (int i = np; i < n; ++i) {
  1944. y[i] += x[i]*v;
  1945. }
  1946. #else
  1947. // scalar
  1948. for (int i = 0; i < n; ++i) {
  1949. y[i] += x[i]*v;
  1950. }
  1951. #endif
  1952. }
  1953. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1954. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1955. #if defined(GGML_SIMD)
  1956. const int np = (n & ~(GGML_F32_STEP - 1));
  1957. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1958. GGML_F32_VEC ay[GGML_F32_ARR];
  1959. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1960. for (int j = 0; j < GGML_F32_ARR; j++) {
  1961. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1962. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1963. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1964. }
  1965. }
  1966. // leftovers
  1967. for (int i = np; i < n; ++i) {
  1968. y[i] *= v;
  1969. }
  1970. #else
  1971. // scalar
  1972. for (int i = 0; i < n; ++i) {
  1973. y[i] *= v;
  1974. }
  1975. #endif
  1976. }
  1977. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1978. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1979. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1980. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1981. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1982. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1983. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1984. static const float GELU_COEF_A = 0.044715f;
  1985. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1986. inline static float ggml_gelu_f32(float x) {
  1987. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1988. }
  1989. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1990. const uint16_t * i16 = (const uint16_t *) x;
  1991. for (int i = 0; i < n; ++i) {
  1992. y[i] = table_gelu_f16[i16[i]];
  1993. }
  1994. }
  1995. #ifdef GGML_GELU_FP16
  1996. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1997. uint16_t t;
  1998. for (int i = 0; i < n; ++i) {
  1999. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2000. memcpy(&t, &fp16, sizeof(uint16_t));
  2001. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2002. }
  2003. }
  2004. #else
  2005. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2006. for (int i = 0; i < n; ++i) {
  2007. y[i] = ggml_gelu_f32(x[i]);
  2008. }
  2009. }
  2010. #endif
  2011. // Sigmoid Linear Unit (SiLU) function
  2012. inline static float ggml_silu_f32(float x) {
  2013. return x/(1.0f + expf(-x));
  2014. }
  2015. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2016. const uint16_t * i16 = (const uint16_t *) x;
  2017. for (int i = 0; i < n; ++i) {
  2018. y[i] = table_silu_f16[i16[i]];
  2019. }
  2020. }
  2021. #ifdef GGML_SILU_FP16
  2022. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2023. uint16_t t;
  2024. for (int i = 0; i < n; ++i) {
  2025. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2026. memcpy(&t, &fp16, sizeof(uint16_t));
  2027. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2028. }
  2029. }
  2030. #else
  2031. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2032. for (int i = 0; i < n; ++i) {
  2033. y[i] = ggml_silu_f32(x[i]);
  2034. }
  2035. }
  2036. #endif
  2037. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2038. #ifndef GGML_USE_ACCELERATE
  2039. ggml_float sum = 0.0;
  2040. for (int i = 0; i < n; ++i) {
  2041. sum += (ggml_float)x[i];
  2042. }
  2043. *s = sum;
  2044. #else
  2045. vDSP_sve(x, 1, s, n);
  2046. #endif
  2047. }
  2048. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2049. #ifndef GGML_USE_ACCELERATE
  2050. float max = -INFINITY;
  2051. for (int i = 0; i < n; ++i) {
  2052. max = MAX(max, x[i]);
  2053. }
  2054. *s = max;
  2055. #else
  2056. vDSP_maxv(x, 1, s, n);
  2057. #endif
  2058. }
  2059. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2060. ggml_vec_norm_f32(n, s, x);
  2061. *s = 1.f/(*s);
  2062. }
  2063. //
  2064. // logging
  2065. //
  2066. #if (GGML_DEBUG >= 1)
  2067. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2068. #else
  2069. #define GGML_PRINT_DEBUG(...)
  2070. #endif
  2071. #if (GGML_DEBUG >= 5)
  2072. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2073. #else
  2074. #define GGML_PRINT_DEBUG_5(...)
  2075. #endif
  2076. #if (GGML_DEBUG >= 10)
  2077. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2078. #else
  2079. #define GGML_PRINT_DEBUG_10(...)
  2080. #endif
  2081. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2082. //
  2083. // data types
  2084. //
  2085. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2086. [GGML_TYPE_F32] = 1,
  2087. [GGML_TYPE_F16] = 1,
  2088. [GGML_TYPE_Q4_0] = QK,
  2089. [GGML_TYPE_Q4_1] = QK,
  2090. [GGML_TYPE_I8] = 1,
  2091. [GGML_TYPE_I16] = 1,
  2092. [GGML_TYPE_I32] = 1,
  2093. };
  2094. static_assert(GGML_TYPE_COUNT == 7, "GGML_BLCK_SIZE is outdated");
  2095. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2096. [GGML_TYPE_F32] = sizeof(float),
  2097. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2098. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2099. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2100. [GGML_TYPE_I8] = sizeof(int8_t),
  2101. [GGML_TYPE_I16] = sizeof(int16_t),
  2102. [GGML_TYPE_I32] = sizeof(int32_t),
  2103. };
  2104. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated");
  2105. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2106. "NONE",
  2107. "DUP",
  2108. "ADD",
  2109. "SUB",
  2110. "MUL",
  2111. "DIV",
  2112. "SQR",
  2113. "SQRT",
  2114. "SUM",
  2115. "MEAN",
  2116. "REPEAT",
  2117. "ABS",
  2118. "SGN",
  2119. "NEG",
  2120. "STEP",
  2121. "RELU",
  2122. "GELU",
  2123. "SILU",
  2124. "NORM",
  2125. "RMS_NORM",
  2126. "MUL_MAT",
  2127. "SCALE",
  2128. "CPY",
  2129. "CONT",
  2130. "RESHAPE",
  2131. "VIEW",
  2132. "PERMUTE",
  2133. "TRANSPOSE",
  2134. "GET_ROWS",
  2135. "DIAG_MASK_INF",
  2136. "SOFT_MAX",
  2137. "ROPE",
  2138. "CONV_1D_1S",
  2139. "CONV_1D_2S",
  2140. "FLASH_ATTN",
  2141. "FLASH_FF",
  2142. };
  2143. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2144. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2145. "none",
  2146. "x",
  2147. "x+y",
  2148. "x-y",
  2149. "x*y",
  2150. "x/y",
  2151. "x^2",
  2152. "√x",
  2153. "Σx",
  2154. "Σx/n",
  2155. "repeat(x)",
  2156. "abs(x)",
  2157. "sgn(x)",
  2158. "-x",
  2159. "step(x)",
  2160. "relu(x)",
  2161. "gelu(x)",
  2162. "silu(x)",
  2163. "norm(x)",
  2164. "rms_norm(x)",
  2165. "X*Y",
  2166. "x*v",
  2167. "x-\\>y",
  2168. "cont(x)",
  2169. "reshape(x)",
  2170. "view(x)",
  2171. "permute(x)",
  2172. "transpose(x)",
  2173. "get_rows(x)",
  2174. "diag_mask_inf(x)",
  2175. "soft_max(x)",
  2176. "rope(x)",
  2177. "conv_1d_1s(x)",
  2178. "conv_1d_2s(x)",
  2179. "flash_attn(x)",
  2180. "flash_ff(x)",
  2181. };
  2182. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2183. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2184. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2185. //
  2186. // ggml context
  2187. //
  2188. struct ggml_context {
  2189. size_t mem_size;
  2190. void * mem_buffer;
  2191. bool mem_buffer_owned;
  2192. bool no_alloc;
  2193. int n_objects;
  2194. struct ggml_object * objects_begin;
  2195. struct ggml_object * objects_end;
  2196. struct ggml_scratch scratch;
  2197. struct ggml_scratch scratch_save;
  2198. };
  2199. struct ggml_context_container {
  2200. bool used;
  2201. struct ggml_context context;
  2202. };
  2203. //
  2204. // compute types
  2205. //
  2206. enum ggml_task_type {
  2207. GGML_TASK_INIT = 0,
  2208. GGML_TASK_COMPUTE,
  2209. GGML_TASK_FINALIZE,
  2210. };
  2211. struct ggml_compute_params {
  2212. enum ggml_task_type type;
  2213. int ith, nth;
  2214. // work buffer for all threads
  2215. size_t wsize;
  2216. void * wdata;
  2217. };
  2218. //
  2219. // ggml state
  2220. //
  2221. struct ggml_state {
  2222. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2223. };
  2224. // global state
  2225. static struct ggml_state g_state;
  2226. static atomic_int g_state_barrier = 0;
  2227. // barrier via spin lock
  2228. inline static void ggml_critical_section_start(void) {
  2229. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2230. while (processing > 0) {
  2231. // wait for other threads to finish
  2232. atomic_fetch_sub(&g_state_barrier, 1);
  2233. sched_yield(); // TODO: reconsider this
  2234. processing = atomic_fetch_add(&g_state_barrier, 1);
  2235. }
  2236. }
  2237. // TODO: make this somehow automatically executed
  2238. // some sort of "sentry" mechanism
  2239. inline static void ggml_critical_section_end(void) {
  2240. atomic_fetch_sub(&g_state_barrier, 1);
  2241. }
  2242. ////////////////////////////////////////////////////////////////////////////////
  2243. void ggml_print_object(const struct ggml_object * obj) {
  2244. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2245. obj->offs, obj->size, (const void *) obj->next);
  2246. }
  2247. void ggml_print_objects(const struct ggml_context * ctx) {
  2248. struct ggml_object * obj = ctx->objects_begin;
  2249. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2250. while (obj != NULL) {
  2251. ggml_print_object(obj);
  2252. obj = obj->next;
  2253. }
  2254. GGML_PRINT("%s: --- end ---\n", __func__);
  2255. }
  2256. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2257. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2258. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2259. }
  2260. int ggml_nrows(const struct ggml_tensor * tensor) {
  2261. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2262. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2263. }
  2264. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2265. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2266. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2267. }
  2268. int ggml_blck_size(enum ggml_type type) {
  2269. return GGML_BLCK_SIZE[type];
  2270. }
  2271. size_t ggml_type_size(enum ggml_type type) {
  2272. return GGML_TYPE_SIZE[type];
  2273. }
  2274. float ggml_type_sizef(enum ggml_type type) {
  2275. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2276. }
  2277. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2278. return GGML_TYPE_SIZE[tensor->type];
  2279. }
  2280. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2281. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2282. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2283. }
  2284. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2285. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2286. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2287. }
  2288. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2289. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2290. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2291. }
  2292. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2293. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2294. return
  2295. (t0->ne[0] == t1->ne[0]) &&
  2296. (t0->ne[2] == t1->ne[2]) &&
  2297. (t0->ne[3] == t1->ne[3]);
  2298. }
  2299. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2300. return tensor->nb[0] > tensor->nb[1];
  2301. }
  2302. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2303. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2304. return
  2305. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2306. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2307. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2308. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2309. }
  2310. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2311. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2312. return
  2313. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2314. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2315. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2316. }
  2317. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2318. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2319. return
  2320. (t0->ne[0] == t1->ne[0] ) &&
  2321. (t0->ne[1] == t1->ne[1] ) &&
  2322. (t0->ne[2] == t1->ne[2] ) &&
  2323. (t0->ne[3] == t1->ne[3] );
  2324. }
  2325. // check if t1 can be represented as a repeatition of t0
  2326. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2327. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2328. return
  2329. (t1->ne[0]%t0->ne[0] == 0) &&
  2330. (t1->ne[1]%t0->ne[1] == 0) &&
  2331. (t1->ne[2]%t0->ne[2] == 0) &&
  2332. (t1->ne[3]%t0->ne[3] == 0);
  2333. }
  2334. static inline int ggml_up32(int n) {
  2335. return (n + 31) & ~31;
  2336. }
  2337. static inline int ggml_up64(int n) {
  2338. return (n + 63) & ~63;
  2339. }
  2340. static inline int ggml_up(int n, int m) {
  2341. // assert m is a power of 2
  2342. GGML_ASSERT((m & (m - 1)) == 0);
  2343. return (n + m - 1) & ~(m - 1);
  2344. }
  2345. // assert that pointer is aligned to GGML_MEM_ALIGN
  2346. #define ggml_assert_aligned(ptr) \
  2347. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2348. ////////////////////////////////////////////////////////////////////////////////
  2349. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2350. // make this function thread safe
  2351. ggml_critical_section_start();
  2352. static bool is_first_call = true;
  2353. if (is_first_call) {
  2354. // initialize time system (required on Windows)
  2355. ggml_time_init();
  2356. // initialize GELU, SILU and EXP F32 tables
  2357. {
  2358. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2359. ggml_fp16_t ii;
  2360. for (int i = 0; i < (1 << 16); ++i) {
  2361. uint16_t ui = i;
  2362. memcpy(&ii, &ui, sizeof(ii));
  2363. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2364. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2365. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2366. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2367. }
  2368. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2369. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2370. }
  2371. // initialize g_state
  2372. {
  2373. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2374. g_state = (struct ggml_state) {
  2375. /*.contexts =*/ { { 0 } },
  2376. };
  2377. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2378. g_state.contexts[i].used = false;
  2379. }
  2380. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2381. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2382. }
  2383. is_first_call = false;
  2384. }
  2385. // find non-used context in g_state
  2386. struct ggml_context * ctx = NULL;
  2387. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2388. if (!g_state.contexts[i].used) {
  2389. g_state.contexts[i].used = true;
  2390. ctx = &g_state.contexts[i].context;
  2391. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2392. break;
  2393. }
  2394. }
  2395. if (ctx == NULL) {
  2396. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2397. ggml_critical_section_end();
  2398. return NULL;
  2399. }
  2400. *ctx = (struct ggml_context) {
  2401. /*.mem_size =*/ params.mem_size,
  2402. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(params.mem_size),
  2403. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2404. /*.no_alloc =*/ params.no_alloc,
  2405. /*.n_objects =*/ 0,
  2406. /*.objects_begin =*/ NULL,
  2407. /*.objects_end =*/ NULL,
  2408. /*.scratch =*/ { 0, 0, NULL, },
  2409. /*.scratch_save =*/ { 0, 0, NULL, },
  2410. };
  2411. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2412. ggml_assert_aligned(ctx->mem_buffer);
  2413. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2414. ggml_critical_section_end();
  2415. return ctx;
  2416. }
  2417. void ggml_free(struct ggml_context * ctx) {
  2418. // make this function thread safe
  2419. ggml_critical_section_start();
  2420. bool found = false;
  2421. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2422. if (&g_state.contexts[i].context == ctx) {
  2423. g_state.contexts[i].used = false;
  2424. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2425. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2426. if (ctx->mem_buffer_owned) {
  2427. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2428. }
  2429. found = true;
  2430. break;
  2431. }
  2432. }
  2433. if (!found) {
  2434. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2435. }
  2436. ggml_critical_section_end();
  2437. }
  2438. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2439. return ctx->objects_end->offs + ctx->objects_end->size;
  2440. }
  2441. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2442. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2443. ctx->scratch = scratch;
  2444. return result;
  2445. }
  2446. ////////////////////////////////////////////////////////////////////////////////
  2447. struct ggml_tensor * ggml_new_tensor_impl(
  2448. struct ggml_context * ctx,
  2449. enum ggml_type type,
  2450. int n_dims,
  2451. const int64_t* ne,
  2452. void* data) {
  2453. // always insert objects at the end of the context's memory pool
  2454. struct ggml_object * obj_cur = ctx->objects_end;
  2455. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2456. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2457. const size_t cur_end = cur_offs + cur_size;
  2458. size_t size_needed = 0;
  2459. if (data == NULL && !ctx->no_alloc) {
  2460. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2461. for (int i = 1; i < n_dims; i++) {
  2462. size_needed *= ne[i];
  2463. }
  2464. // align to GGML_MEM_ALIGN
  2465. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2466. }
  2467. char * const mem_buffer = ctx->mem_buffer;
  2468. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2469. if (ctx->scratch.data == NULL || data != NULL) {
  2470. size_needed += sizeof(struct ggml_tensor);
  2471. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2472. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2473. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2474. assert(false);
  2475. return NULL;
  2476. }
  2477. *obj_new = (struct ggml_object) {
  2478. .offs = cur_end + GGML_OBJECT_SIZE,
  2479. .size = size_needed,
  2480. .next = NULL,
  2481. };
  2482. } else {
  2483. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2484. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2485. assert(false);
  2486. return NULL;
  2487. }
  2488. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2489. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2490. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2491. assert(false);
  2492. return NULL;
  2493. }
  2494. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2495. *obj_new = (struct ggml_object) {
  2496. .offs = cur_end + GGML_OBJECT_SIZE,
  2497. .size = sizeof(struct ggml_tensor),
  2498. .next = NULL,
  2499. };
  2500. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2501. ctx->scratch.offs += size_needed;
  2502. }
  2503. if (obj_cur != NULL) {
  2504. obj_cur->next = obj_new;
  2505. } else {
  2506. // this is the first object in this context
  2507. ctx->objects_begin = obj_new;
  2508. }
  2509. ctx->objects_end = obj_new;
  2510. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2511. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2512. ggml_assert_aligned(result);
  2513. *result = (struct ggml_tensor) {
  2514. /*.type =*/ type,
  2515. /*.n_dims =*/ n_dims,
  2516. /*.ne =*/ { 1, 1, 1, 1 },
  2517. /*.nb =*/ { 0, 0, 0, 0 },
  2518. /*.op =*/ GGML_OP_NONE,
  2519. /*.is_param =*/ false,
  2520. /*.grad =*/ NULL,
  2521. /*.src0 =*/ NULL,
  2522. /*.src1 =*/ NULL,
  2523. /*.opt =*/ { NULL },
  2524. /*.n_tasks =*/ 0,
  2525. /*.perf_runs =*/ 0,
  2526. /*.perf_cycles =*/ 0,
  2527. /*.perf_time_us =*/ 0,
  2528. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2529. /*.pad =*/ { 0 },
  2530. };
  2531. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2532. //ggml_assert_aligned(result->data);
  2533. for (int i = 0; i < n_dims; i++) {
  2534. result->ne[i] = ne[i];
  2535. }
  2536. result->nb[0] = GGML_TYPE_SIZE[type];
  2537. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2538. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2539. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2540. }
  2541. ctx->n_objects++;
  2542. return result;
  2543. }
  2544. struct ggml_tensor * ggml_new_tensor(
  2545. struct ggml_context * ctx,
  2546. enum ggml_type type,
  2547. int n_dims,
  2548. const int64_t * ne) {
  2549. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2550. }
  2551. struct ggml_tensor * ggml_new_tensor_1d(
  2552. struct ggml_context * ctx,
  2553. enum ggml_type type,
  2554. int64_t ne0) {
  2555. return ggml_new_tensor(ctx, type, 1, &ne0);
  2556. }
  2557. struct ggml_tensor * ggml_new_tensor_2d(
  2558. struct ggml_context * ctx,
  2559. enum ggml_type type,
  2560. int64_t ne0,
  2561. int64_t ne1) {
  2562. const int64_t ne[2] = { ne0, ne1 };
  2563. return ggml_new_tensor(ctx, type, 2, ne);
  2564. }
  2565. struct ggml_tensor * ggml_new_tensor_3d(
  2566. struct ggml_context * ctx,
  2567. enum ggml_type type,
  2568. int64_t ne0,
  2569. int64_t ne1,
  2570. int64_t ne2) {
  2571. const int64_t ne[3] = { ne0, ne1, ne2 };
  2572. return ggml_new_tensor(ctx, type, 3, ne);
  2573. }
  2574. struct ggml_tensor * ggml_new_tensor_4d(
  2575. struct ggml_context * ctx,
  2576. enum ggml_type type,
  2577. int64_t ne0,
  2578. int64_t ne1,
  2579. int64_t ne2,
  2580. int64_t ne3) {
  2581. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2582. return ggml_new_tensor(ctx, type, 4, ne);
  2583. }
  2584. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2585. ctx->scratch_save = ctx->scratch;
  2586. ctx->scratch.data = NULL;
  2587. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2588. ctx->scratch = ctx->scratch_save;
  2589. ggml_set_i32(result, value);
  2590. return result;
  2591. }
  2592. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2593. ctx->scratch_save = ctx->scratch;
  2594. ctx->scratch.data = NULL;
  2595. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2596. ctx->scratch = ctx->scratch_save;
  2597. ggml_set_f32(result, value);
  2598. return result;
  2599. }
  2600. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2601. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2602. }
  2603. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2604. memset(tensor->data, 0, ggml_nbytes(tensor));
  2605. return tensor;
  2606. }
  2607. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2608. const int n = ggml_nrows(tensor);
  2609. const int nc = tensor->ne[0];
  2610. const size_t n1 = tensor->nb[1];
  2611. char * const data = tensor->data;
  2612. switch (tensor->type) {
  2613. case GGML_TYPE_Q4_0:
  2614. {
  2615. GGML_ASSERT(false);
  2616. } break;
  2617. case GGML_TYPE_Q4_1:
  2618. {
  2619. GGML_ASSERT(false);
  2620. } break;
  2621. case GGML_TYPE_I8:
  2622. {
  2623. assert(tensor->nb[0] == sizeof(int8_t));
  2624. for (int i = 0; i < n; i++) {
  2625. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2626. }
  2627. } break;
  2628. case GGML_TYPE_I16:
  2629. {
  2630. assert(tensor->nb[0] == sizeof(int16_t));
  2631. for (int i = 0; i < n; i++) {
  2632. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2633. }
  2634. } break;
  2635. case GGML_TYPE_I32:
  2636. {
  2637. assert(tensor->nb[0] == sizeof(int32_t));
  2638. for (int i = 0; i < n; i++) {
  2639. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2640. }
  2641. } break;
  2642. case GGML_TYPE_F16:
  2643. {
  2644. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2645. for (int i = 0; i < n; i++) {
  2646. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2647. }
  2648. } break;
  2649. case GGML_TYPE_F32:
  2650. {
  2651. assert(tensor->nb[0] == sizeof(float));
  2652. for (int i = 0; i < n; i++) {
  2653. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2654. }
  2655. } break;
  2656. case GGML_TYPE_COUNT:
  2657. {
  2658. GGML_ASSERT(false);
  2659. } break;
  2660. }
  2661. return tensor;
  2662. }
  2663. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2664. const int n = ggml_nrows(tensor);
  2665. const int nc = tensor->ne[0];
  2666. const size_t n1 = tensor->nb[1];
  2667. char * const data = tensor->data;
  2668. switch (tensor->type) {
  2669. case GGML_TYPE_Q4_0:
  2670. {
  2671. GGML_ASSERT(false);
  2672. } break;
  2673. case GGML_TYPE_Q4_1:
  2674. {
  2675. GGML_ASSERT(false);
  2676. } break;
  2677. case GGML_TYPE_I8:
  2678. {
  2679. assert(tensor->nb[0] == sizeof(int8_t));
  2680. for (int i = 0; i < n; i++) {
  2681. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2682. }
  2683. } break;
  2684. case GGML_TYPE_I16:
  2685. {
  2686. assert(tensor->nb[0] == sizeof(int16_t));
  2687. for (int i = 0; i < n; i++) {
  2688. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2689. }
  2690. } break;
  2691. case GGML_TYPE_I32:
  2692. {
  2693. assert(tensor->nb[0] == sizeof(int32_t));
  2694. for (int i = 0; i < n; i++) {
  2695. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2696. }
  2697. } break;
  2698. case GGML_TYPE_F16:
  2699. {
  2700. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2701. for (int i = 0; i < n; i++) {
  2702. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2703. }
  2704. } break;
  2705. case GGML_TYPE_F32:
  2706. {
  2707. assert(tensor->nb[0] == sizeof(float));
  2708. for (int i = 0; i < n; i++) {
  2709. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2710. }
  2711. } break;
  2712. case GGML_TYPE_COUNT:
  2713. {
  2714. GGML_ASSERT(false);
  2715. } break;
  2716. }
  2717. return tensor;
  2718. }
  2719. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2720. switch (tensor->type) {
  2721. case GGML_TYPE_Q4_0:
  2722. {
  2723. GGML_ASSERT(false);
  2724. } break;
  2725. case GGML_TYPE_Q4_1:
  2726. {
  2727. GGML_ASSERT(false);
  2728. } break;
  2729. case GGML_TYPE_I8:
  2730. {
  2731. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2732. return ((int8_t *)(tensor->data))[i];
  2733. } break;
  2734. case GGML_TYPE_I16:
  2735. {
  2736. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2737. return ((int16_t *)(tensor->data))[i];
  2738. } break;
  2739. case GGML_TYPE_I32:
  2740. {
  2741. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2742. return ((int32_t *)(tensor->data))[i];
  2743. } break;
  2744. case GGML_TYPE_F16:
  2745. {
  2746. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2747. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2748. } break;
  2749. case GGML_TYPE_F32:
  2750. {
  2751. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2752. return ((float *)(tensor->data))[i];
  2753. } break;
  2754. case GGML_TYPE_COUNT:
  2755. {
  2756. GGML_ASSERT(false);
  2757. } break;
  2758. }
  2759. return 0.0f;
  2760. }
  2761. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2762. switch (tensor->type) {
  2763. case GGML_TYPE_Q4_0:
  2764. {
  2765. GGML_ASSERT(false);
  2766. } break;
  2767. case GGML_TYPE_Q4_1:
  2768. {
  2769. GGML_ASSERT(false);
  2770. } break;
  2771. case GGML_TYPE_I8:
  2772. {
  2773. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2774. ((int8_t *)(tensor->data))[i] = value;
  2775. } break;
  2776. case GGML_TYPE_I16:
  2777. {
  2778. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2779. ((int16_t *)(tensor->data))[i] = value;
  2780. } break;
  2781. case GGML_TYPE_I32:
  2782. {
  2783. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2784. ((int32_t *)(tensor->data))[i] = value;
  2785. } break;
  2786. case GGML_TYPE_F16:
  2787. {
  2788. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2789. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2790. } break;
  2791. case GGML_TYPE_F32:
  2792. {
  2793. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2794. ((float *)(tensor->data))[i] = value;
  2795. } break;
  2796. case GGML_TYPE_COUNT:
  2797. {
  2798. GGML_ASSERT(false);
  2799. } break;
  2800. }
  2801. }
  2802. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2803. switch (tensor->type) {
  2804. case GGML_TYPE_Q4_0:
  2805. {
  2806. GGML_ASSERT(false);
  2807. } break;
  2808. case GGML_TYPE_Q4_1:
  2809. {
  2810. GGML_ASSERT(false);
  2811. } break;
  2812. case GGML_TYPE_I8:
  2813. {
  2814. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2815. return ((int8_t *)(tensor->data))[i];
  2816. } break;
  2817. case GGML_TYPE_I16:
  2818. {
  2819. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2820. return ((int16_t *)(tensor->data))[i];
  2821. } break;
  2822. case GGML_TYPE_I32:
  2823. {
  2824. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2825. return ((int32_t *)(tensor->data))[i];
  2826. } break;
  2827. case GGML_TYPE_F16:
  2828. {
  2829. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2830. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2831. } break;
  2832. case GGML_TYPE_F32:
  2833. {
  2834. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2835. return ((float *)(tensor->data))[i];
  2836. } break;
  2837. case GGML_TYPE_COUNT:
  2838. {
  2839. GGML_ASSERT(false);
  2840. } break;
  2841. }
  2842. return 0.0f;
  2843. }
  2844. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2845. switch (tensor->type) {
  2846. case GGML_TYPE_Q4_0:
  2847. {
  2848. GGML_ASSERT(false);
  2849. } break;
  2850. case GGML_TYPE_Q4_1:
  2851. {
  2852. GGML_ASSERT(false);
  2853. } break;
  2854. case GGML_TYPE_I8:
  2855. {
  2856. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2857. ((int8_t *)(tensor->data))[i] = value;
  2858. } break;
  2859. case GGML_TYPE_I16:
  2860. {
  2861. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2862. ((int16_t *)(tensor->data))[i] = value;
  2863. } break;
  2864. case GGML_TYPE_I32:
  2865. {
  2866. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2867. ((int32_t *)(tensor->data))[i] = value;
  2868. } break;
  2869. case GGML_TYPE_F16:
  2870. {
  2871. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2872. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2873. } break;
  2874. case GGML_TYPE_F32:
  2875. {
  2876. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2877. ((float *)(tensor->data))[i] = value;
  2878. } break;
  2879. case GGML_TYPE_COUNT:
  2880. {
  2881. GGML_ASSERT(false);
  2882. } break;
  2883. }
  2884. }
  2885. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2886. return tensor->data;
  2887. }
  2888. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2889. assert(tensor->type == GGML_TYPE_F32);
  2890. return (float *)(tensor->data);
  2891. }
  2892. struct ggml_tensor * ggml_view_tensor(
  2893. struct ggml_context * ctx,
  2894. const struct ggml_tensor * src) {
  2895. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2896. result->nb[0] = src->nb[0];
  2897. result->nb[1] = src->nb[1];
  2898. result->nb[2] = src->nb[2];
  2899. result->nb[3] = src->nb[3];
  2900. return result;
  2901. }
  2902. ////////////////////////////////////////////////////////////////////////////////
  2903. // ggml_dup
  2904. struct ggml_tensor * ggml_dup_impl(
  2905. struct ggml_context * ctx,
  2906. struct ggml_tensor * a,
  2907. bool inplace) {
  2908. bool is_node = false;
  2909. if (!inplace && (a->grad)) {
  2910. is_node = true;
  2911. }
  2912. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2913. result->op = GGML_OP_DUP;
  2914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2915. result->src0 = a;
  2916. result->src1 = NULL;
  2917. return result;
  2918. }
  2919. struct ggml_tensor * ggml_dup(
  2920. struct ggml_context * ctx,
  2921. struct ggml_tensor * a) {
  2922. return ggml_dup_impl(ctx, a, false);
  2923. }
  2924. struct ggml_tensor * ggml_dup_inplace(
  2925. struct ggml_context * ctx,
  2926. struct ggml_tensor * a) {
  2927. return ggml_dup_impl(ctx, a, true);
  2928. }
  2929. // ggml_add
  2930. struct ggml_tensor * ggml_add_impl(
  2931. struct ggml_context * ctx,
  2932. struct ggml_tensor * a,
  2933. struct ggml_tensor * b,
  2934. bool inplace) {
  2935. GGML_ASSERT(ggml_are_same_shape(a, b));
  2936. bool is_node = false;
  2937. if (!inplace && (a->grad || b->grad)) {
  2938. is_node = true;
  2939. }
  2940. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2941. result->op = GGML_OP_ADD;
  2942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2943. result->src0 = a;
  2944. result->src1 = b;
  2945. return result;
  2946. }
  2947. struct ggml_tensor * ggml_add(
  2948. struct ggml_context * ctx,
  2949. struct ggml_tensor * a,
  2950. struct ggml_tensor * b) {
  2951. return ggml_add_impl(ctx, a, b, false);
  2952. }
  2953. struct ggml_tensor * ggml_add_inplace(
  2954. struct ggml_context * ctx,
  2955. struct ggml_tensor * a,
  2956. struct ggml_tensor * b) {
  2957. return ggml_add_impl(ctx, a, b, true);
  2958. }
  2959. // ggml_sub
  2960. struct ggml_tensor * ggml_sub_impl(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a,
  2963. struct ggml_tensor * b,
  2964. bool inplace) {
  2965. GGML_ASSERT(ggml_are_same_shape(a, b));
  2966. bool is_node = false;
  2967. if (!inplace && (a->grad || b->grad)) {
  2968. is_node = true;
  2969. }
  2970. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2971. result->op = GGML_OP_SUB;
  2972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2973. result->src0 = a;
  2974. result->src1 = b;
  2975. return result;
  2976. }
  2977. struct ggml_tensor * ggml_sub(
  2978. struct ggml_context * ctx,
  2979. struct ggml_tensor * a,
  2980. struct ggml_tensor * b) {
  2981. return ggml_sub_impl(ctx, a, b, false);
  2982. }
  2983. struct ggml_tensor * ggml_sub_inplace(
  2984. struct ggml_context * ctx,
  2985. struct ggml_tensor * a,
  2986. struct ggml_tensor * b) {
  2987. return ggml_sub_impl(ctx, a, b, true);
  2988. }
  2989. // ggml_mul
  2990. struct ggml_tensor * ggml_mul_impl(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a,
  2993. struct ggml_tensor * b,
  2994. bool inplace) {
  2995. GGML_ASSERT(ggml_are_same_shape(a, b));
  2996. bool is_node = false;
  2997. if (!inplace && (a->grad || b->grad)) {
  2998. is_node = true;
  2999. }
  3000. if (inplace) {
  3001. GGML_ASSERT(is_node == false);
  3002. }
  3003. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3004. result->op = GGML_OP_MUL;
  3005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3006. result->src0 = a;
  3007. result->src1 = b;
  3008. return result;
  3009. }
  3010. struct ggml_tensor * ggml_mul(
  3011. struct ggml_context * ctx,
  3012. struct ggml_tensor * a,
  3013. struct ggml_tensor * b) {
  3014. return ggml_mul_impl(ctx, a, b, false);
  3015. }
  3016. struct ggml_tensor * ggml_mul_inplace(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a,
  3019. struct ggml_tensor * b) {
  3020. return ggml_mul_impl(ctx, a, b, true);
  3021. }
  3022. // ggml_div
  3023. struct ggml_tensor * ggml_div_impl(
  3024. struct ggml_context * ctx,
  3025. struct ggml_tensor * a,
  3026. struct ggml_tensor * b,
  3027. bool inplace) {
  3028. GGML_ASSERT(ggml_are_same_shape(a, b));
  3029. bool is_node = false;
  3030. if (!inplace && (a->grad || b->grad)) {
  3031. is_node = true;
  3032. }
  3033. if (inplace) {
  3034. GGML_ASSERT(is_node == false);
  3035. }
  3036. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3037. result->op = GGML_OP_DIV;
  3038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3039. result->src0 = a;
  3040. result->src1 = b;
  3041. return result;
  3042. }
  3043. struct ggml_tensor * ggml_div(
  3044. struct ggml_context * ctx,
  3045. struct ggml_tensor * a,
  3046. struct ggml_tensor * b) {
  3047. return ggml_div_impl(ctx, a, b, false);
  3048. }
  3049. struct ggml_tensor * ggml_div_inplace(
  3050. struct ggml_context * ctx,
  3051. struct ggml_tensor * a,
  3052. struct ggml_tensor * b) {
  3053. return ggml_div_impl(ctx, a, b, true);
  3054. }
  3055. // ggml_sqr
  3056. struct ggml_tensor * ggml_sqr_impl(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a,
  3059. bool inplace) {
  3060. bool is_node = false;
  3061. if (!inplace && (a->grad)) {
  3062. is_node = true;
  3063. }
  3064. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3065. result->op = GGML_OP_SQR;
  3066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3067. result->src0 = a;
  3068. result->src1 = NULL;
  3069. return result;
  3070. }
  3071. struct ggml_tensor * ggml_sqr(
  3072. struct ggml_context * ctx,
  3073. struct ggml_tensor * a) {
  3074. return ggml_sqr_impl(ctx, a, false);
  3075. }
  3076. struct ggml_tensor * ggml_sqr_inplace(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a) {
  3079. return ggml_sqr_impl(ctx, a, true);
  3080. }
  3081. // ggml_sqrt
  3082. struct ggml_tensor * ggml_sqrt_impl(
  3083. struct ggml_context * ctx,
  3084. struct ggml_tensor * a,
  3085. bool inplace) {
  3086. bool is_node = false;
  3087. if (!inplace && (a->grad)) {
  3088. is_node = true;
  3089. }
  3090. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3091. result->op = GGML_OP_SQRT;
  3092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3093. result->src0 = a;
  3094. result->src1 = NULL;
  3095. return result;
  3096. }
  3097. struct ggml_tensor * ggml_sqrt(
  3098. struct ggml_context * ctx,
  3099. struct ggml_tensor * a) {
  3100. return ggml_sqrt_impl(ctx, a, false);
  3101. }
  3102. struct ggml_tensor * ggml_sqrt_inplace(
  3103. struct ggml_context * ctx,
  3104. struct ggml_tensor * a) {
  3105. return ggml_sqrt_impl(ctx, a, true);
  3106. }
  3107. // ggml_sum
  3108. struct ggml_tensor * ggml_sum(
  3109. struct ggml_context * ctx,
  3110. struct ggml_tensor * a) {
  3111. bool is_node = false;
  3112. if (a->grad) {
  3113. is_node = true;
  3114. }
  3115. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3116. result->op = GGML_OP_SUM;
  3117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3118. result->src0 = a;
  3119. result->src1 = NULL;
  3120. return result;
  3121. }
  3122. // ggml_mean
  3123. struct ggml_tensor * ggml_mean(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a) {
  3126. bool is_node = false;
  3127. if (a->grad) {
  3128. GGML_ASSERT(false); // TODO: implement
  3129. is_node = true;
  3130. }
  3131. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3132. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3133. result->op = GGML_OP_MEAN;
  3134. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3135. result->src0 = a;
  3136. result->src1 = NULL;
  3137. return result;
  3138. }
  3139. // ggml_repeat
  3140. struct ggml_tensor * ggml_repeat(
  3141. struct ggml_context * ctx,
  3142. struct ggml_tensor * a,
  3143. struct ggml_tensor * b) {
  3144. GGML_ASSERT(ggml_can_repeat(a, b));
  3145. bool is_node = false;
  3146. if (a->grad) {
  3147. is_node = true;
  3148. }
  3149. if (ggml_are_same_shape(a, b) && !is_node) {
  3150. return a;
  3151. }
  3152. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3153. result->op = GGML_OP_REPEAT;
  3154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3155. result->src0 = a;
  3156. result->src1 = b;
  3157. return result;
  3158. }
  3159. // ggml_abs
  3160. struct ggml_tensor * ggml_abs_impl(
  3161. struct ggml_context * ctx,
  3162. struct ggml_tensor * a,
  3163. bool inplace) {
  3164. bool is_node = false;
  3165. if (!inplace && (a->grad)) {
  3166. is_node = true;
  3167. }
  3168. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3169. result->op = GGML_OP_ABS;
  3170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3171. result->src0 = a;
  3172. result->src1 = NULL;
  3173. return result;
  3174. }
  3175. struct ggml_tensor * ggml_abs(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a) {
  3178. return ggml_abs_impl(ctx, a, false);
  3179. }
  3180. struct ggml_tensor * ggml_abs_inplace(
  3181. struct ggml_context * ctx,
  3182. struct ggml_tensor * a) {
  3183. return ggml_abs_impl(ctx, a, true);
  3184. }
  3185. // ggml_sgn
  3186. struct ggml_tensor * ggml_sgn_impl(
  3187. struct ggml_context * ctx,
  3188. struct ggml_tensor * a,
  3189. bool inplace) {
  3190. bool is_node = false;
  3191. if (!inplace && (a->grad)) {
  3192. is_node = true;
  3193. }
  3194. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3195. result->op = GGML_OP_SGN;
  3196. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3197. result->src0 = a;
  3198. result->src1 = NULL;
  3199. return result;
  3200. }
  3201. struct ggml_tensor * ggml_sgn(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a) {
  3204. return ggml_sgn_impl(ctx, a, false);
  3205. }
  3206. struct ggml_tensor * ggml_sgn_inplace(
  3207. struct ggml_context * ctx,
  3208. struct ggml_tensor * a) {
  3209. return ggml_sgn_impl(ctx, a, true);
  3210. }
  3211. // ggml_neg
  3212. struct ggml_tensor * ggml_neg_impl(
  3213. struct ggml_context * ctx,
  3214. struct ggml_tensor * a,
  3215. bool inplace) {
  3216. bool is_node = false;
  3217. if (!inplace && (a->grad)) {
  3218. is_node = true;
  3219. }
  3220. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3221. result->op = GGML_OP_NEG;
  3222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3223. result->src0 = a;
  3224. result->src1 = NULL;
  3225. return result;
  3226. }
  3227. struct ggml_tensor * ggml_neg(
  3228. struct ggml_context * ctx,
  3229. struct ggml_tensor * a) {
  3230. return ggml_neg_impl(ctx, a, false);
  3231. }
  3232. struct ggml_tensor * ggml_neg_inplace(
  3233. struct ggml_context * ctx,
  3234. struct ggml_tensor * a) {
  3235. return ggml_neg_impl(ctx, a, true);
  3236. }
  3237. // ggml_step
  3238. struct ggml_tensor * ggml_step_impl(
  3239. struct ggml_context * ctx,
  3240. struct ggml_tensor * a,
  3241. bool inplace) {
  3242. bool is_node = false;
  3243. if (!inplace && (a->grad)) {
  3244. is_node = true;
  3245. }
  3246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3247. result->op = GGML_OP_STEP;
  3248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3249. result->src0 = a;
  3250. result->src1 = NULL;
  3251. return result;
  3252. }
  3253. struct ggml_tensor * ggml_step(
  3254. struct ggml_context * ctx,
  3255. struct ggml_tensor * a) {
  3256. return ggml_step_impl(ctx, a, false);
  3257. }
  3258. struct ggml_tensor * ggml_step_inplace(
  3259. struct ggml_context * ctx,
  3260. struct ggml_tensor * a) {
  3261. return ggml_step_impl(ctx, a, true);
  3262. }
  3263. // ggml_relu
  3264. struct ggml_tensor * ggml_relu_impl(
  3265. struct ggml_context * ctx,
  3266. struct ggml_tensor * a,
  3267. bool inplace) {
  3268. bool is_node = false;
  3269. if (!inplace && (a->grad)) {
  3270. is_node = true;
  3271. }
  3272. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3273. result->op = GGML_OP_RELU;
  3274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3275. result->src0 = a;
  3276. result->src1 = NULL;
  3277. return result;
  3278. }
  3279. struct ggml_tensor * ggml_relu(
  3280. struct ggml_context * ctx,
  3281. struct ggml_tensor * a) {
  3282. return ggml_relu_impl(ctx, a, false);
  3283. }
  3284. struct ggml_tensor * ggml_relu_inplace(
  3285. struct ggml_context * ctx,
  3286. struct ggml_tensor * a) {
  3287. return ggml_relu_impl(ctx, a, true);
  3288. }
  3289. // ggml_gelu
  3290. struct ggml_tensor * ggml_gelu_impl(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a,
  3293. bool inplace) {
  3294. bool is_node = false;
  3295. if (!inplace && (a->grad)) {
  3296. is_node = true;
  3297. }
  3298. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3299. result->op = GGML_OP_GELU;
  3300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3301. result->src0 = a;
  3302. result->src1 = NULL;
  3303. return result;
  3304. }
  3305. struct ggml_tensor * ggml_gelu(
  3306. struct ggml_context * ctx,
  3307. struct ggml_tensor * a) {
  3308. return ggml_gelu_impl(ctx, a, false);
  3309. }
  3310. struct ggml_tensor * ggml_gelu_inplace(
  3311. struct ggml_context * ctx,
  3312. struct ggml_tensor * a) {
  3313. return ggml_gelu_impl(ctx, a, true);
  3314. }
  3315. // ggml_silu
  3316. struct ggml_tensor * ggml_silu_impl(
  3317. struct ggml_context * ctx,
  3318. struct ggml_tensor * a,
  3319. bool inplace) {
  3320. bool is_node = false;
  3321. if (!inplace && (a->grad)) {
  3322. is_node = true;
  3323. }
  3324. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3325. result->op = GGML_OP_SILU;
  3326. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3327. result->src0 = a;
  3328. result->src1 = NULL;
  3329. return result;
  3330. }
  3331. struct ggml_tensor * ggml_silu(
  3332. struct ggml_context * ctx,
  3333. struct ggml_tensor * a) {
  3334. return ggml_silu_impl(ctx, a, false);
  3335. }
  3336. struct ggml_tensor * ggml_silu_inplace(
  3337. struct ggml_context * ctx,
  3338. struct ggml_tensor * a) {
  3339. return ggml_silu_impl(ctx, a, true);
  3340. }
  3341. // ggml_norm
  3342. struct ggml_tensor * ggml_norm_impl(
  3343. struct ggml_context * ctx,
  3344. struct ggml_tensor * a,
  3345. bool inplace) {
  3346. bool is_node = false;
  3347. if (!inplace && (a->grad)) {
  3348. GGML_ASSERT(false); // TODO: implement backward
  3349. is_node = true;
  3350. }
  3351. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3352. result->op = GGML_OP_NORM;
  3353. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3354. result->src0 = a;
  3355. result->src1 = NULL; // TODO: maybe store epsilon here?
  3356. return result;
  3357. }
  3358. struct ggml_tensor * ggml_norm(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a) {
  3361. return ggml_norm_impl(ctx, a, false);
  3362. }
  3363. struct ggml_tensor * ggml_norm_inplace(
  3364. struct ggml_context * ctx,
  3365. struct ggml_tensor * a) {
  3366. return ggml_norm_impl(ctx, a, true);
  3367. }
  3368. struct ggml_tensor * ggml_rms_norm_impl(
  3369. struct ggml_context * ctx,
  3370. struct ggml_tensor * a,
  3371. bool inplace) {
  3372. bool is_node = false;
  3373. if (!inplace && (a->grad)) {
  3374. GGML_ASSERT(false); // TODO: implement backward
  3375. is_node = true;
  3376. }
  3377. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3378. result->op = GGML_OP_RMS_NORM;
  3379. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3380. result->src0 = a;
  3381. result->src1 = NULL; // TODO: maybe store epsilon here?
  3382. return result;
  3383. }
  3384. struct ggml_tensor * ggml_rms_norm(
  3385. struct ggml_context * ctx,
  3386. struct ggml_tensor * a) {
  3387. return ggml_rms_norm_impl(ctx, a, false);
  3388. }
  3389. struct ggml_tensor * ggml_rms_norm_inplace(
  3390. struct ggml_context * ctx,
  3391. struct ggml_tensor * a) {
  3392. return ggml_rms_norm_impl(ctx, a, true);
  3393. }
  3394. // ggml_mul_mat
  3395. struct ggml_tensor * ggml_mul_mat(
  3396. struct ggml_context * ctx,
  3397. struct ggml_tensor * a,
  3398. struct ggml_tensor * b) {
  3399. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3400. GGML_ASSERT(!ggml_is_transposed(a));
  3401. bool is_node = false;
  3402. if (a->grad || b->grad) {
  3403. is_node = true;
  3404. }
  3405. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3406. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3407. result->op = GGML_OP_MUL_MAT;
  3408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3409. result->src0 = a;
  3410. result->src1 = b;
  3411. return result;
  3412. }
  3413. // ggml_scale
  3414. struct ggml_tensor * ggml_scale_impl(
  3415. struct ggml_context * ctx,
  3416. struct ggml_tensor * a,
  3417. struct ggml_tensor * b,
  3418. bool inplace) {
  3419. GGML_ASSERT(ggml_is_scalar(b));
  3420. GGML_ASSERT(ggml_is_padded_1d(a));
  3421. bool is_node = false;
  3422. if (!inplace && (a->grad || b->grad)) {
  3423. GGML_ASSERT(false); // TODO: implement backward
  3424. is_node = true;
  3425. }
  3426. // TODO: when implement backward, fix this:
  3427. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3428. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3429. result->op = GGML_OP_SCALE;
  3430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3431. result->src0 = a;
  3432. result->src1 = b;
  3433. return result;
  3434. }
  3435. struct ggml_tensor * ggml_scale(
  3436. struct ggml_context * ctx,
  3437. struct ggml_tensor * a,
  3438. struct ggml_tensor * b) {
  3439. return ggml_scale_impl(ctx, a, b, false);
  3440. }
  3441. struct ggml_tensor * ggml_scale_inplace(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * a,
  3444. struct ggml_tensor * b) {
  3445. return ggml_scale_impl(ctx, a, b, true);
  3446. }
  3447. // ggml_cpy
  3448. struct ggml_tensor * ggml_cpy_impl(
  3449. struct ggml_context * ctx,
  3450. struct ggml_tensor * a,
  3451. struct ggml_tensor * b,
  3452. bool inplace) {
  3453. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3454. bool is_node = false;
  3455. if (!inplace && (a->grad || b->grad)) {
  3456. GGML_ASSERT(false); // TODO: implement backward
  3457. is_node = true;
  3458. }
  3459. // make a view of the destination
  3460. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3461. result->op = GGML_OP_CPY;
  3462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3463. result->src0 = a;
  3464. result->src1 = b;
  3465. return result;
  3466. }
  3467. struct ggml_tensor * ggml_cpy(
  3468. struct ggml_context * ctx,
  3469. struct ggml_tensor * a,
  3470. struct ggml_tensor * b) {
  3471. return ggml_cpy_impl(ctx, a, b, false);
  3472. }
  3473. struct ggml_tensor * ggml_cpy_inplace(
  3474. struct ggml_context * ctx,
  3475. struct ggml_tensor * a,
  3476. struct ggml_tensor * b) {
  3477. return ggml_cpy_impl(ctx, a, b, true);
  3478. }
  3479. // ggml_cont
  3480. struct ggml_tensor * ggml_cont_impl(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a,
  3483. bool inplace) {
  3484. bool is_node = false;
  3485. if (!inplace && a->grad) {
  3486. GGML_ASSERT(false); // TODO: implement backward
  3487. is_node = true;
  3488. }
  3489. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3490. result->op = GGML_OP_CONT;
  3491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3492. result->src0 = a;
  3493. result->src1 = NULL;
  3494. return result;
  3495. }
  3496. struct ggml_tensor * ggml_cont(
  3497. struct ggml_context * ctx,
  3498. struct ggml_tensor * a) {
  3499. return ggml_cont_impl(ctx, a, false);
  3500. }
  3501. struct ggml_tensor * ggml_cont_inplace(
  3502. struct ggml_context * ctx,
  3503. struct ggml_tensor * a) {
  3504. return ggml_cont_impl(ctx, a, true);
  3505. }
  3506. // ggml_reshape
  3507. struct ggml_tensor * ggml_reshape(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. struct ggml_tensor * b) {
  3511. GGML_ASSERT(ggml_is_contiguous(a));
  3512. GGML_ASSERT(ggml_is_contiguous(b));
  3513. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3514. bool is_node = false;
  3515. if (a->grad || b->grad) {
  3516. GGML_ASSERT(false); // TODO: implement backward
  3517. is_node = true;
  3518. }
  3519. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3520. result->op = GGML_OP_RESHAPE;
  3521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3522. result->src0 = a;
  3523. result->src1 = NULL;
  3524. return result;
  3525. }
  3526. struct ggml_tensor * ggml_reshape_2d(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a,
  3529. int64_t ne0,
  3530. int64_t ne1) {
  3531. GGML_ASSERT(ggml_is_contiguous(a));
  3532. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3533. bool is_node = false;
  3534. if (a->grad) {
  3535. GGML_ASSERT(false); // TODO: implement backward
  3536. is_node = true;
  3537. }
  3538. const int64_t ne[2] = { ne0, ne1 };
  3539. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3540. result->op = GGML_OP_RESHAPE;
  3541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3542. result->src0 = a;
  3543. result->src1 = NULL;
  3544. return result;
  3545. }
  3546. struct ggml_tensor * ggml_reshape_3d(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. int64_t ne0,
  3550. int64_t ne1,
  3551. int64_t ne2) {
  3552. GGML_ASSERT(ggml_is_contiguous(a));
  3553. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3554. bool is_node = false;
  3555. if (a->grad) {
  3556. GGML_ASSERT(false); // TODO: implement backward
  3557. is_node = true;
  3558. }
  3559. const int64_t ne[3] = { ne0, ne1, ne2 };
  3560. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3561. result->op = GGML_OP_RESHAPE;
  3562. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3563. result->src0 = a;
  3564. result->src1 = NULL;
  3565. return result;
  3566. }
  3567. // ggml_view_1d
  3568. struct ggml_tensor * ggml_view_1d(
  3569. struct ggml_context * ctx,
  3570. struct ggml_tensor * a,
  3571. int64_t ne0,
  3572. size_t offset) {
  3573. if (a->grad) {
  3574. GGML_ASSERT(false); // gradient propagation is not supported
  3575. }
  3576. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3577. result->op = GGML_OP_VIEW;
  3578. result->grad = NULL;
  3579. result->src0 = a;
  3580. result->src1 = NULL; // TODO: maybe store the offset here?
  3581. return result;
  3582. }
  3583. // ggml_view_2d
  3584. struct ggml_tensor * ggml_view_2d(
  3585. struct ggml_context * ctx,
  3586. struct ggml_tensor * a,
  3587. int64_t ne0,
  3588. int64_t ne1,
  3589. size_t nb1,
  3590. size_t offset) {
  3591. if (a->grad) {
  3592. GGML_ASSERT(false); // gradient propagation is not supported
  3593. }
  3594. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3595. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3596. result->nb[1] = nb1;
  3597. result->nb[2] = result->nb[1]*ne1;
  3598. result->nb[3] = result->nb[2];
  3599. result->op = GGML_OP_VIEW;
  3600. result->grad = NULL;
  3601. result->src0 = a;
  3602. result->src1 = NULL; // TODO: maybe store the offset here?
  3603. return result;
  3604. }
  3605. // ggml_view_3d
  3606. struct ggml_tensor * ggml_view_3d(
  3607. struct ggml_context * ctx,
  3608. struct ggml_tensor * a,
  3609. int64_t ne0,
  3610. int64_t ne1,
  3611. int64_t ne2,
  3612. size_t nb1,
  3613. size_t nb2,
  3614. size_t offset) {
  3615. if (a->grad) {
  3616. GGML_ASSERT(false); // gradient propagation is not supported
  3617. }
  3618. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3619. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3620. result->nb[1] = nb1;
  3621. result->nb[2] = nb2;
  3622. result->nb[3] = result->nb[2]*ne2;
  3623. result->op = GGML_OP_VIEW;
  3624. result->grad = NULL;
  3625. result->src0 = a;
  3626. result->src1 = NULL; // TODO: maybe store the offset here?
  3627. return result;
  3628. }
  3629. // ggml_permute
  3630. struct ggml_tensor * ggml_permute(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a,
  3633. int axis0,
  3634. int axis1,
  3635. int axis2,
  3636. int axis3) {
  3637. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3638. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3639. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3640. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3641. GGML_ASSERT(axis0 != axis1);
  3642. GGML_ASSERT(axis0 != axis2);
  3643. GGML_ASSERT(axis0 != axis3);
  3644. GGML_ASSERT(axis1 != axis2);
  3645. GGML_ASSERT(axis1 != axis3);
  3646. GGML_ASSERT(axis2 != axis3);
  3647. bool is_node = false;
  3648. if (a->grad) {
  3649. GGML_ASSERT(false); // TODO: implement backward
  3650. is_node = true;
  3651. }
  3652. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3653. int ne[GGML_MAX_DIMS];
  3654. int nb[GGML_MAX_DIMS];
  3655. ne[axis0] = a->ne[0];
  3656. ne[axis1] = a->ne[1];
  3657. ne[axis2] = a->ne[2];
  3658. ne[axis3] = a->ne[3];
  3659. nb[axis0] = a->nb[0];
  3660. nb[axis1] = a->nb[1];
  3661. nb[axis2] = a->nb[2];
  3662. nb[axis3] = a->nb[3];
  3663. result->ne[0] = ne[0];
  3664. result->ne[1] = ne[1];
  3665. result->ne[2] = ne[2];
  3666. result->ne[3] = ne[3];
  3667. result->nb[0] = nb[0];
  3668. result->nb[1] = nb[1];
  3669. result->nb[2] = nb[2];
  3670. result->nb[3] = nb[3];
  3671. result->op = GGML_OP_PERMUTE;
  3672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3673. result->src0 = a;
  3674. result->src1 = NULL; // TODO: maybe store the permutation here?
  3675. return result;
  3676. }
  3677. // ggml_transpose
  3678. struct ggml_tensor * ggml_transpose(
  3679. struct ggml_context * ctx,
  3680. struct ggml_tensor * a) {
  3681. bool is_node = false;
  3682. if (a->grad) {
  3683. GGML_ASSERT(false); // TODO: implement backward
  3684. is_node = true;
  3685. }
  3686. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3687. result->ne[0] = a->ne[1];
  3688. result->ne[1] = a->ne[0];
  3689. result->nb[0] = a->nb[1];
  3690. result->nb[1] = a->nb[0];
  3691. result->op = GGML_OP_TRANSPOSE;
  3692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3693. result->src0 = a;
  3694. result->src1 = NULL;
  3695. return result;
  3696. }
  3697. // ggml_get_rows
  3698. struct ggml_tensor * ggml_get_rows(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a,
  3701. struct ggml_tensor * b) {
  3702. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3703. bool is_node = false;
  3704. if (a->grad || b->grad) {
  3705. GGML_ASSERT(false); // TODO: implement backward
  3706. is_node = true;
  3707. }
  3708. // TODO: implement non F32 return
  3709. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3710. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3711. result->op = GGML_OP_GET_ROWS;
  3712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3713. result->src0 = a;
  3714. result->src1 = b;
  3715. return result;
  3716. }
  3717. // ggml_diag_mask_inf
  3718. struct ggml_tensor * ggml_diag_mask_inf(
  3719. struct ggml_context * ctx,
  3720. struct ggml_tensor * a,
  3721. int n_past) {
  3722. bool is_node = false;
  3723. if (a->grad) {
  3724. GGML_ASSERT(false); // TODO: implement backward
  3725. is_node = true;
  3726. }
  3727. // TODO: when implement backward, fix this:
  3728. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3729. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3730. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3731. result->op = GGML_OP_DIAG_MASK_INF;
  3732. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3733. result->src0 = a;
  3734. result->src1 = b;
  3735. return result;
  3736. }
  3737. // ggml_soft_max
  3738. struct ggml_tensor * ggml_soft_max(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a) {
  3741. bool is_node = false;
  3742. if (a->grad) {
  3743. GGML_ASSERT(false); // TODO: implement backward
  3744. is_node = true;
  3745. }
  3746. // TODO: when implement backward, fix this:
  3747. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3748. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3749. result->op = GGML_OP_SOFT_MAX;
  3750. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3751. result->src0 = a;
  3752. result->src1 = NULL;
  3753. return result;
  3754. }
  3755. // ggml_rope
  3756. struct ggml_tensor * ggml_rope(
  3757. struct ggml_context * ctx,
  3758. struct ggml_tensor * a,
  3759. int n_past,
  3760. int n_dims,
  3761. int mode) {
  3762. GGML_ASSERT(n_past >= 0);
  3763. bool is_node = false;
  3764. if (a->grad) {
  3765. GGML_ASSERT(false); // TODO: implement backward
  3766. is_node = true;
  3767. }
  3768. // TODO: when implement backward, fix this:
  3769. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3770. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3771. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3772. ((int32_t *) b->data)[0] = n_past;
  3773. ((int32_t *) b->data)[1] = n_dims;
  3774. ((int32_t *) b->data)[2] = mode;
  3775. result->op = GGML_OP_ROPE;
  3776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3777. result->src0 = a;
  3778. result->src1 = b;
  3779. return result;
  3780. }
  3781. // ggml_conv_1d_1s
  3782. struct ggml_tensor * ggml_conv_1d_1s(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a,
  3785. struct ggml_tensor * b) {
  3786. GGML_ASSERT(ggml_is_matrix(b));
  3787. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3788. GGML_ASSERT(a->ne[3] == 1);
  3789. bool is_node = false;
  3790. if (a->grad || b->grad) {
  3791. GGML_ASSERT(false); // TODO: implement backward
  3792. is_node = true;
  3793. }
  3794. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3795. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3796. result->op = GGML_OP_CONV_1D_1S;
  3797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3798. result->src0 = a;
  3799. result->src1 = b;
  3800. return result;
  3801. }
  3802. // ggml_conv_1d_2s
  3803. struct ggml_tensor * ggml_conv_1d_2s(
  3804. struct ggml_context * ctx,
  3805. struct ggml_tensor * a,
  3806. struct ggml_tensor * b) {
  3807. GGML_ASSERT(ggml_is_matrix(b));
  3808. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3809. GGML_ASSERT(a->ne[3] == 1);
  3810. bool is_node = false;
  3811. if (a->grad || b->grad) {
  3812. GGML_ASSERT(false); // TODO: implement backward
  3813. is_node = true;
  3814. }
  3815. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3816. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3817. result->op = GGML_OP_CONV_1D_2S;
  3818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3819. result->src0 = a;
  3820. result->src1 = b;
  3821. return result;
  3822. }
  3823. // ggml_flash_attn
  3824. struct ggml_tensor * ggml_flash_attn(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * q,
  3827. struct ggml_tensor * k,
  3828. struct ggml_tensor * v,
  3829. bool masked) {
  3830. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3831. // TODO: check if vT can be multiplied by (k*qT)
  3832. bool is_node = false;
  3833. if (q->grad || k->grad || v->grad) {
  3834. GGML_ASSERT(false); // TODO: implement backward
  3835. is_node = true;
  3836. }
  3837. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3838. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3839. result->op = GGML_OP_FLASH_ATTN;
  3840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3841. result->src0 = q;
  3842. result->src1 = k;
  3843. result->opt[0] = v;
  3844. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3845. return result;
  3846. }
  3847. // ggml_flash_ff
  3848. struct ggml_tensor * ggml_flash_ff(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. struct ggml_tensor * b0,
  3852. struct ggml_tensor * b1,
  3853. struct ggml_tensor * c0,
  3854. struct ggml_tensor * c1) {
  3855. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3856. // TODO: more checks
  3857. bool is_node = false;
  3858. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3859. GGML_ASSERT(false); // TODO: implement backward
  3860. is_node = true;
  3861. }
  3862. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3863. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3864. result->op = GGML_OP_FLASH_FF;
  3865. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3866. result->src0 = a;
  3867. result->src1 = b0;
  3868. result->opt[0] = b1;
  3869. result->opt[1] = c0;
  3870. result->opt[2] = c1;
  3871. return result;
  3872. }
  3873. ////////////////////////////////////////////////////////////////////////////////
  3874. void ggml_set_param(
  3875. struct ggml_context * ctx,
  3876. struct ggml_tensor * tensor) {
  3877. tensor->is_param = true;
  3878. GGML_ASSERT(tensor->grad == NULL);
  3879. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3880. }
  3881. // ggml_compute_forward_dup
  3882. static void ggml_compute_forward_dup_f16(
  3883. const struct ggml_compute_params * params,
  3884. const struct ggml_tensor * src0,
  3885. struct ggml_tensor * dst) {
  3886. GGML_ASSERT(params->ith == 0);
  3887. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3888. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3889. return;
  3890. }
  3891. const int64_t ne00 = src0->ne[0];
  3892. const int64_t ne01 = src0->ne[1];
  3893. const int64_t ne02 = src0->ne[2];
  3894. const int64_t ne03 = src0->ne[3];
  3895. const size_t nb00 = src0->nb[0];
  3896. const size_t nb01 = src0->nb[1];
  3897. const size_t nb02 = src0->nb[2];
  3898. const size_t nb03 = src0->nb[3];
  3899. const size_t nb0 = dst->nb[0];
  3900. const size_t nb1 = dst->nb[1];
  3901. const size_t nb2 = dst->nb[2];
  3902. const size_t nb3 = dst->nb[3];
  3903. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3904. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3905. return;
  3906. }
  3907. if (src0->type == dst->type &&
  3908. src0->ne[0] == dst->ne[0] &&
  3909. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  3910. // copy by rows
  3911. const size_t rs = ne00*nb00;
  3912. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3913. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3914. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3915. memcpy(
  3916. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3917. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3918. rs);
  3919. }
  3920. }
  3921. }
  3922. return;
  3923. }
  3924. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  3925. if (ggml_is_contiguous(dst)) {
  3926. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3927. if (dst->type == GGML_TYPE_F16) {
  3928. size_t id = 0;
  3929. const size_t rs = ne00*nb00;
  3930. for (int i03 = 0; i03 < ne03; i03++) {
  3931. for (int i02 = 0; i02 < ne02; i02++) {
  3932. for (int i01 = 0; i01 < ne01; i01++) {
  3933. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3934. char * dst_ptr = (char *) dst->data + id*rs;
  3935. memcpy(dst_ptr, src0_ptr, rs);
  3936. id++;
  3937. }
  3938. }
  3939. }
  3940. } else if (dst->type == GGML_TYPE_F32) {
  3941. size_t id = 0;
  3942. float * dst_ptr = (float *) dst->data;
  3943. for (int i03 = 0; i03 < ne03; i03++) {
  3944. for (int i02 = 0; i02 < ne02; i02++) {
  3945. for (int i01 = 0; i01 < ne01; i01++) {
  3946. for (int i00 = 0; i00 < ne00; i00++) {
  3947. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3948. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3949. id++;
  3950. }
  3951. }
  3952. }
  3953. }
  3954. } else {
  3955. GGML_ASSERT(false); // TODO: implement
  3956. }
  3957. } else {
  3958. //printf("%s: this is not optimal - fix me\n", __func__);
  3959. if (dst->type == GGML_TYPE_F32) {
  3960. size_t id = 0;
  3961. float * dst_ptr = (float *) dst->data;
  3962. for (int i03 = 0; i03 < ne03; i03++) {
  3963. for (int i02 = 0; i02 < ne02; i02++) {
  3964. for (int i01 = 0; i01 < ne01; i01++) {
  3965. for (int i00 = 0; i00 < ne00; i00++) {
  3966. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3967. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3968. id++;
  3969. }
  3970. }
  3971. }
  3972. }
  3973. } else if (dst->type == GGML_TYPE_F16) {
  3974. size_t id = 0;
  3975. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3976. for (int i03 = 0; i03 < ne03; i03++) {
  3977. for (int i02 = 0; i02 < ne02; i02++) {
  3978. for (int i01 = 0; i01 < ne01; i01++) {
  3979. for (int i00 = 0; i00 < ne00; i00++) {
  3980. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3981. dst_ptr[id] = *src0_ptr;
  3982. id++;
  3983. }
  3984. }
  3985. }
  3986. }
  3987. } else {
  3988. GGML_ASSERT(false); // TODO: implement
  3989. }
  3990. }
  3991. return;
  3992. }
  3993. // dst counters
  3994. int64_t i10 = 0;
  3995. int64_t i11 = 0;
  3996. int64_t i12 = 0;
  3997. int64_t i13 = 0;
  3998. if (dst->type == GGML_TYPE_F16) {
  3999. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4000. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4001. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4002. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4003. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4004. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4005. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4006. if (++i10 == ne00) {
  4007. i10 = 0;
  4008. if (++i11 == ne01) {
  4009. i11 = 0;
  4010. if (++i12 == ne02) {
  4011. i12 = 0;
  4012. if (++i13 == ne03) {
  4013. i13 = 0;
  4014. }
  4015. }
  4016. }
  4017. }
  4018. }
  4019. }
  4020. }
  4021. }
  4022. } else if (dst->type == GGML_TYPE_F32) {
  4023. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4024. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4025. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4026. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4027. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4028. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4029. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4030. if (++i10 == ne00) {
  4031. i10 = 0;
  4032. if (++i11 == ne01) {
  4033. i11 = 0;
  4034. if (++i12 == ne02) {
  4035. i12 = 0;
  4036. if (++i13 == ne03) {
  4037. i13 = 0;
  4038. }
  4039. }
  4040. }
  4041. }
  4042. }
  4043. }
  4044. }
  4045. }
  4046. } else {
  4047. GGML_ASSERT(false); // TODO: implement
  4048. }
  4049. }
  4050. static void ggml_compute_forward_dup_f32(
  4051. const struct ggml_compute_params * params,
  4052. const struct ggml_tensor * src0,
  4053. struct ggml_tensor * dst) {
  4054. GGML_ASSERT(params->ith == 0);
  4055. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4057. return;
  4058. }
  4059. const int64_t ne00 = src0->ne[0];
  4060. const int64_t ne01 = src0->ne[1];
  4061. const int64_t ne02 = src0->ne[2];
  4062. const int64_t ne03 = src0->ne[3];
  4063. const size_t nb00 = src0->nb[0];
  4064. const size_t nb01 = src0->nb[1];
  4065. const size_t nb02 = src0->nb[2];
  4066. const size_t nb03 = src0->nb[3];
  4067. const size_t nb0 = dst->nb[0];
  4068. const size_t nb1 = dst->nb[1];
  4069. const size_t nb2 = dst->nb[2];
  4070. const size_t nb3 = dst->nb[3];
  4071. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4072. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4073. return;
  4074. }
  4075. if (src0->type == dst->type &&
  4076. src0->ne[0] == dst->ne[0] &&
  4077. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4078. // copy by rows
  4079. const size_t rs = ne00*nb00;
  4080. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4081. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4082. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4083. memcpy(
  4084. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4085. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4086. rs);
  4087. }
  4088. }
  4089. }
  4090. return;
  4091. }
  4092. if (ggml_is_contiguous(dst)) {
  4093. // TODO: simplify
  4094. if (src0->nb[0] == sizeof(float)) {
  4095. if (dst->type == GGML_TYPE_F32) {
  4096. size_t id = 0;
  4097. const size_t rs = ne00*nb00;
  4098. for (int i03 = 0; i03 < ne03; i03++) {
  4099. for (int i02 = 0; i02 < ne02; i02++) {
  4100. for (int i01 = 0; i01 < ne01; i01++) {
  4101. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4102. char * dst_ptr = (char *) dst->data + id*rs;
  4103. memcpy(dst_ptr, src0_ptr, rs);
  4104. id++;
  4105. }
  4106. }
  4107. }
  4108. } else if (dst->type == GGML_TYPE_F16) {
  4109. size_t id = 0;
  4110. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4111. for (int i03 = 0; i03 < ne03; i03++) {
  4112. for (int i02 = 0; i02 < ne02; i02++) {
  4113. for (int i01 = 0; i01 < ne01; i01++) {
  4114. for (int i00 = 0; i00 < ne00; i00++) {
  4115. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4116. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4117. id++;
  4118. }
  4119. }
  4120. }
  4121. }
  4122. } else {
  4123. GGML_ASSERT(false); // TODO: implement
  4124. }
  4125. } else {
  4126. //printf("%s: this is not optimal - fix me\n", __func__);
  4127. if (dst->type == GGML_TYPE_F32) {
  4128. size_t id = 0;
  4129. float * dst_ptr = (float *) dst->data;
  4130. for (int i03 = 0; i03 < ne03; i03++) {
  4131. for (int i02 = 0; i02 < ne02; i02++) {
  4132. for (int i01 = 0; i01 < ne01; i01++) {
  4133. for (int i00 = 0; i00 < ne00; i00++) {
  4134. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4135. dst_ptr[id] = *src0_ptr;
  4136. id++;
  4137. }
  4138. }
  4139. }
  4140. }
  4141. } else if (dst->type == GGML_TYPE_F16) {
  4142. size_t id = 0;
  4143. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4144. for (int i03 = 0; i03 < ne03; i03++) {
  4145. for (int i02 = 0; i02 < ne02; i02++) {
  4146. for (int i01 = 0; i01 < ne01; i01++) {
  4147. for (int i00 = 0; i00 < ne00; i00++) {
  4148. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4149. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4150. id++;
  4151. }
  4152. }
  4153. }
  4154. }
  4155. } else {
  4156. GGML_ASSERT(false); // TODO: implement
  4157. }
  4158. }
  4159. return;
  4160. }
  4161. // dst counters
  4162. int64_t i10 = 0;
  4163. int64_t i11 = 0;
  4164. int64_t i12 = 0;
  4165. int64_t i13 = 0;
  4166. if (dst->type == GGML_TYPE_F32) {
  4167. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4168. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4169. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4170. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4171. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4172. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4173. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4174. if (++i10 == dst->ne[0]) {
  4175. i10 = 0;
  4176. if (++i11 == dst->ne[1]) {
  4177. i11 = 0;
  4178. if (++i12 == dst->ne[2]) {
  4179. i12 = 0;
  4180. if (++i13 == dst->ne[3]) {
  4181. i13 = 0;
  4182. }
  4183. }
  4184. }
  4185. }
  4186. }
  4187. }
  4188. }
  4189. }
  4190. } else if (dst->type == GGML_TYPE_F16) {
  4191. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4192. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4193. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4194. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4195. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4196. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4197. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4198. if (++i10 == dst->ne[0]) {
  4199. i10 = 0;
  4200. if (++i11 == dst->ne[1]) {
  4201. i11 = 0;
  4202. if (++i12 == dst->ne[2]) {
  4203. i12 = 0;
  4204. if (++i13 == dst->ne[3]) {
  4205. i13 = 0;
  4206. }
  4207. }
  4208. }
  4209. }
  4210. }
  4211. }
  4212. }
  4213. }
  4214. } else {
  4215. GGML_ASSERT(false); // TODO: implement
  4216. }
  4217. }
  4218. static void ggml_compute_forward_dup(
  4219. const struct ggml_compute_params * params,
  4220. const struct ggml_tensor * src0,
  4221. struct ggml_tensor * dst) {
  4222. switch (src0->type) {
  4223. case GGML_TYPE_F16:
  4224. {
  4225. ggml_compute_forward_dup_f16(params, src0, dst);
  4226. } break;
  4227. case GGML_TYPE_F32:
  4228. {
  4229. ggml_compute_forward_dup_f32(params, src0, dst);
  4230. } break;
  4231. case GGML_TYPE_Q4_0:
  4232. case GGML_TYPE_Q4_1:
  4233. case GGML_TYPE_I8:
  4234. case GGML_TYPE_I16:
  4235. case GGML_TYPE_I32:
  4236. case GGML_TYPE_COUNT:
  4237. {
  4238. GGML_ASSERT(false);
  4239. } break;
  4240. }
  4241. }
  4242. // ggml_compute_forward_add
  4243. static void ggml_compute_forward_add_f32(
  4244. const struct ggml_compute_params * params,
  4245. const struct ggml_tensor * src0,
  4246. const struct ggml_tensor * src1,
  4247. struct ggml_tensor * dst) {
  4248. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4249. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4250. return;
  4251. }
  4252. const int ith = params->ith;
  4253. const int nth = params->nth;
  4254. const int n = ggml_nrows(src0);
  4255. const int nc = src0->ne[0];
  4256. const size_t nb00 = src0->nb[0];
  4257. const size_t nb01 = src0->nb[1];
  4258. const size_t nb10 = src1->nb[0];
  4259. const size_t nb11 = src1->nb[1];
  4260. const size_t nb0 = dst->nb[0];
  4261. const size_t nb1 = dst->nb[1];
  4262. GGML_ASSERT( nb0 == sizeof(float));
  4263. GGML_ASSERT(nb00 == sizeof(float));
  4264. if (nb10 == sizeof(float)) {
  4265. for (int j = ith; j < n; j += nth) {
  4266. #ifdef GGML_USE_ACCELERATE
  4267. vDSP_vadd(
  4268. (float *) ((char *) src0->data + j*nb01), 1,
  4269. (float *) ((char *) src1->data + j*nb11), 1,
  4270. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4271. #else
  4272. ggml_vec_add_f32(nc,
  4273. (float *) ((char *) dst->data + j*nb1),
  4274. (float *) ((char *) src0->data + j*nb01),
  4275. (float *) ((char *) src1->data + j*nb11));
  4276. #endif
  4277. }
  4278. } else {
  4279. // src1 is not contiguous
  4280. for (int j = ith; j < n; j += nth) {
  4281. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4282. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4283. for (int i = 0; i < nc; i++) {
  4284. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4285. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4286. }
  4287. }
  4288. }
  4289. }
  4290. static void ggml_compute_forward_add(
  4291. const struct ggml_compute_params * params,
  4292. const struct ggml_tensor * src0,
  4293. const struct ggml_tensor * src1,
  4294. struct ggml_tensor * dst) {
  4295. switch (src0->type) {
  4296. case GGML_TYPE_F32:
  4297. {
  4298. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4299. } break;
  4300. case GGML_TYPE_Q4_0:
  4301. case GGML_TYPE_Q4_1:
  4302. case GGML_TYPE_I8:
  4303. case GGML_TYPE_I16:
  4304. case GGML_TYPE_I32:
  4305. case GGML_TYPE_F16:
  4306. case GGML_TYPE_COUNT:
  4307. {
  4308. GGML_ASSERT(false);
  4309. } break;
  4310. }
  4311. }
  4312. // ggml_compute_forward_sub
  4313. static void ggml_compute_forward_sub_f32(
  4314. const struct ggml_compute_params * params,
  4315. const struct ggml_tensor * src0,
  4316. const struct ggml_tensor * src1,
  4317. struct ggml_tensor * dst) {
  4318. assert(params->ith == 0);
  4319. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4321. return;
  4322. }
  4323. const int n = ggml_nrows(src0);
  4324. const int nc = src0->ne[0];
  4325. assert( dst->nb[0] == sizeof(float));
  4326. assert(src0->nb[0] == sizeof(float));
  4327. assert(src1->nb[0] == sizeof(float));
  4328. for (int i = 0; i < n; i++) {
  4329. ggml_vec_sub_f32(nc,
  4330. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4331. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4332. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4333. }
  4334. }
  4335. static void ggml_compute_forward_sub(
  4336. const struct ggml_compute_params * params,
  4337. const struct ggml_tensor * src0,
  4338. const struct ggml_tensor * src1,
  4339. struct ggml_tensor * dst) {
  4340. switch (src0->type) {
  4341. case GGML_TYPE_F32:
  4342. {
  4343. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4344. } break;
  4345. case GGML_TYPE_Q4_0:
  4346. case GGML_TYPE_Q4_1:
  4347. case GGML_TYPE_I8:
  4348. case GGML_TYPE_I16:
  4349. case GGML_TYPE_I32:
  4350. case GGML_TYPE_F16:
  4351. case GGML_TYPE_COUNT:
  4352. {
  4353. GGML_ASSERT(false);
  4354. } break;
  4355. }
  4356. }
  4357. // ggml_compute_forward_mul
  4358. static void ggml_compute_forward_mul_f32(
  4359. const struct ggml_compute_params * params,
  4360. const struct ggml_tensor * src0,
  4361. const struct ggml_tensor * src1,
  4362. struct ggml_tensor * dst) {
  4363. assert(params->ith == 0);
  4364. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4366. return;
  4367. }
  4368. const int n = ggml_nrows(src0);
  4369. const int nc = src0->ne[0];
  4370. assert( dst->nb[0] == sizeof(float));
  4371. assert(src0->nb[0] == sizeof(float));
  4372. assert(src1->nb[0] == sizeof(float));
  4373. for (int i = 0; i < n; i++) {
  4374. ggml_vec_mul_f32(nc,
  4375. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4376. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4377. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4378. }
  4379. }
  4380. static void ggml_compute_forward_mul(
  4381. const struct ggml_compute_params * params,
  4382. const struct ggml_tensor * src0,
  4383. const struct ggml_tensor * src1,
  4384. struct ggml_tensor * dst) {
  4385. switch (src0->type) {
  4386. case GGML_TYPE_F32:
  4387. {
  4388. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4389. } break;
  4390. case GGML_TYPE_Q4_0:
  4391. case GGML_TYPE_Q4_1:
  4392. case GGML_TYPE_I8:
  4393. case GGML_TYPE_I16:
  4394. case GGML_TYPE_I32:
  4395. case GGML_TYPE_F16:
  4396. case GGML_TYPE_COUNT:
  4397. {
  4398. GGML_ASSERT(false);
  4399. } break;
  4400. }
  4401. }
  4402. // ggml_compute_forward_div
  4403. static void ggml_compute_forward_div_f32(
  4404. const struct ggml_compute_params * params,
  4405. const struct ggml_tensor * src0,
  4406. const struct ggml_tensor * src1,
  4407. struct ggml_tensor * dst) {
  4408. assert(params->ith == 0);
  4409. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4410. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4411. return;
  4412. }
  4413. const int n = ggml_nrows(src0);
  4414. const int nc = src0->ne[0];
  4415. assert( dst->nb[0] == sizeof(float));
  4416. assert(src0->nb[0] == sizeof(float));
  4417. assert(src1->nb[0] == sizeof(float));
  4418. for (int i = 0; i < n; i++) {
  4419. ggml_vec_div_f32(nc,
  4420. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4421. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4422. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4423. }
  4424. }
  4425. static void ggml_compute_forward_div(
  4426. const struct ggml_compute_params * params,
  4427. const struct ggml_tensor * src0,
  4428. const struct ggml_tensor * src1,
  4429. struct ggml_tensor * dst) {
  4430. switch (src0->type) {
  4431. case GGML_TYPE_F32:
  4432. {
  4433. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4434. } break;
  4435. case GGML_TYPE_Q4_0:
  4436. case GGML_TYPE_Q4_1:
  4437. case GGML_TYPE_I8:
  4438. case GGML_TYPE_I16:
  4439. case GGML_TYPE_I32:
  4440. case GGML_TYPE_F16:
  4441. case GGML_TYPE_COUNT:
  4442. {
  4443. GGML_ASSERT(false);
  4444. } break;
  4445. }
  4446. }
  4447. // ggml_compute_forward_sqr
  4448. static void ggml_compute_forward_sqr_f32(
  4449. const struct ggml_compute_params * params,
  4450. const struct ggml_tensor * src0,
  4451. struct ggml_tensor * dst) {
  4452. assert(params->ith == 0);
  4453. assert(ggml_are_same_shape(src0, dst));
  4454. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4455. return;
  4456. }
  4457. const int n = ggml_nrows(src0);
  4458. const int nc = src0->ne[0];
  4459. assert( dst->nb[0] == sizeof(float));
  4460. assert(src0->nb[0] == sizeof(float));
  4461. for (int i = 0; i < n; i++) {
  4462. ggml_vec_sqr_f32(nc,
  4463. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4464. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4465. }
  4466. }
  4467. static void ggml_compute_forward_sqr(
  4468. const struct ggml_compute_params * params,
  4469. const struct ggml_tensor * src0,
  4470. struct ggml_tensor * dst) {
  4471. switch (src0->type) {
  4472. case GGML_TYPE_F32:
  4473. {
  4474. ggml_compute_forward_sqr_f32(params, src0, dst);
  4475. } break;
  4476. case GGML_TYPE_Q4_0:
  4477. case GGML_TYPE_Q4_1:
  4478. case GGML_TYPE_I8:
  4479. case GGML_TYPE_I16:
  4480. case GGML_TYPE_I32:
  4481. case GGML_TYPE_F16:
  4482. case GGML_TYPE_COUNT:
  4483. {
  4484. GGML_ASSERT(false);
  4485. } break;
  4486. }
  4487. }
  4488. // ggml_compute_forward_sqrt
  4489. static void ggml_compute_forward_sqrt_f32(
  4490. const struct ggml_compute_params * params,
  4491. const struct ggml_tensor * src0,
  4492. struct ggml_tensor * dst) {
  4493. assert(params->ith == 0);
  4494. assert(ggml_are_same_shape(src0, dst));
  4495. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4496. return;
  4497. }
  4498. const int n = ggml_nrows(src0);
  4499. const int nc = src0->ne[0];
  4500. assert( dst->nb[0] == sizeof(float));
  4501. assert(src0->nb[0] == sizeof(float));
  4502. for (int i = 0; i < n; i++) {
  4503. ggml_vec_sqrt_f32(nc,
  4504. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4505. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4506. }
  4507. }
  4508. static void ggml_compute_forward_sqrt(
  4509. const struct ggml_compute_params * params,
  4510. const struct ggml_tensor * src0,
  4511. struct ggml_tensor * dst) {
  4512. switch (src0->type) {
  4513. case GGML_TYPE_F32:
  4514. {
  4515. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4516. } break;
  4517. case GGML_TYPE_Q4_0:
  4518. case GGML_TYPE_Q4_1:
  4519. case GGML_TYPE_I8:
  4520. case GGML_TYPE_I16:
  4521. case GGML_TYPE_I32:
  4522. case GGML_TYPE_F16:
  4523. case GGML_TYPE_COUNT:
  4524. {
  4525. GGML_ASSERT(false);
  4526. } break;
  4527. }
  4528. }
  4529. // ggml_compute_forward_sum
  4530. static void ggml_compute_forward_sum_f32(
  4531. const struct ggml_compute_params * params,
  4532. const struct ggml_tensor * src0,
  4533. struct ggml_tensor * dst) {
  4534. assert(params->ith == 0);
  4535. assert(ggml_is_scalar(dst));
  4536. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4537. return;
  4538. }
  4539. assert(ggml_is_scalar(dst));
  4540. assert(src0->nb[0] == sizeof(float));
  4541. const int64_t ne00 = src0->ne[0];
  4542. const int64_t ne01 = src0->ne[1];
  4543. const int64_t ne02 = src0->ne[2];
  4544. const int64_t ne03 = src0->ne[3];
  4545. const size_t nb01 = src0->nb[1];
  4546. const size_t nb02 = src0->nb[2];
  4547. const size_t nb03 = src0->nb[3];
  4548. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4549. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4550. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4551. ggml_vec_sum_f32(ne00,
  4552. (float *) (dst->data),
  4553. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4554. }
  4555. }
  4556. }
  4557. }
  4558. static void ggml_compute_forward_sum(
  4559. const struct ggml_compute_params * params,
  4560. const struct ggml_tensor * src0,
  4561. struct ggml_tensor * dst) {
  4562. switch (src0->type) {
  4563. case GGML_TYPE_F32:
  4564. {
  4565. ggml_compute_forward_sum_f32(params, src0, dst);
  4566. } break;
  4567. case GGML_TYPE_Q4_0:
  4568. case GGML_TYPE_Q4_1:
  4569. case GGML_TYPE_I8:
  4570. case GGML_TYPE_I16:
  4571. case GGML_TYPE_I32:
  4572. case GGML_TYPE_F16:
  4573. case GGML_TYPE_COUNT:
  4574. {
  4575. GGML_ASSERT(false);
  4576. } break;
  4577. }
  4578. }
  4579. // ggml_compute_forward_mean
  4580. static void ggml_compute_forward_mean_f32(
  4581. const struct ggml_compute_params * params,
  4582. const struct ggml_tensor * src0,
  4583. struct ggml_tensor * dst) {
  4584. assert(params->ith == 0);
  4585. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4586. return;
  4587. }
  4588. assert(src0->nb[0] == sizeof(float));
  4589. const int64_t ne00 = src0->ne[0];
  4590. const int64_t ne01 = src0->ne[1];
  4591. const int64_t ne02 = src0->ne[2];
  4592. const int64_t ne03 = src0->ne[3];
  4593. const size_t nb01 = src0->nb[1];
  4594. const size_t nb02 = src0->nb[2];
  4595. const size_t nb03 = src0->nb[3];
  4596. const int64_t ne0 = dst->ne[0];
  4597. const int64_t ne1 = dst->ne[1];
  4598. const int64_t ne2 = dst->ne[2];
  4599. const int64_t ne3 = dst->ne[3];
  4600. assert(ne0 == 1);
  4601. assert(ne1 == ne01);
  4602. assert(ne2 == ne02);
  4603. assert(ne3 == ne03);
  4604. UNUSED(ne0);
  4605. UNUSED(ne1);
  4606. UNUSED(ne2);
  4607. UNUSED(ne3);
  4608. const size_t nb1 = dst->nb[1];
  4609. const size_t nb2 = dst->nb[2];
  4610. const size_t nb3 = dst->nb[3];
  4611. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4612. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4613. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4614. ggml_vec_sum_f32(ne00,
  4615. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4616. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4617. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4618. }
  4619. }
  4620. }
  4621. }
  4622. static void ggml_compute_forward_mean(
  4623. const struct ggml_compute_params * params,
  4624. const struct ggml_tensor * src0,
  4625. struct ggml_tensor * dst) {
  4626. switch (src0->type) {
  4627. case GGML_TYPE_F32:
  4628. {
  4629. ggml_compute_forward_mean_f32(params, src0, dst);
  4630. } break;
  4631. case GGML_TYPE_Q4_0:
  4632. case GGML_TYPE_Q4_1:
  4633. case GGML_TYPE_I8:
  4634. case GGML_TYPE_I16:
  4635. case GGML_TYPE_I32:
  4636. case GGML_TYPE_F16:
  4637. case GGML_TYPE_COUNT:
  4638. {
  4639. GGML_ASSERT(false);
  4640. } break;
  4641. }
  4642. }
  4643. // ggml_compute_forward_repeat
  4644. static void ggml_compute_forward_repeat_f32(
  4645. const struct ggml_compute_params * params,
  4646. const struct ggml_tensor * src0,
  4647. struct ggml_tensor * dst) {
  4648. assert(params->ith == 0);
  4649. assert(ggml_can_repeat(src0, dst));
  4650. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4651. return;
  4652. }
  4653. // TODO: implement support for rank > 2 tensors
  4654. assert(src0->ne[2] == 1);
  4655. assert(src0->ne[3] == 1);
  4656. assert( dst->ne[2] == 1);
  4657. assert( dst->ne[3] == 1);
  4658. const int nc = dst->ne[0];
  4659. const int nr = dst->ne[1];
  4660. const int nc0 = src0->ne[0];
  4661. const int nr0 = src0->ne[1];
  4662. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4663. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4664. // TODO: support for transposed / permuted tensors
  4665. assert( dst->nb[0] == sizeof(float));
  4666. assert(src0->nb[0] == sizeof(float));
  4667. // TODO: maybe this is not optimal?
  4668. for (int i = 0; i < nrr; i++) {
  4669. for (int j = 0; j < ncr; j++) {
  4670. for (int k = 0; k < nr0; k++) {
  4671. ggml_vec_cpy_f32(nc0,
  4672. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4673. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4674. }
  4675. }
  4676. }
  4677. }
  4678. static void ggml_compute_forward_repeat(
  4679. const struct ggml_compute_params * params,
  4680. const struct ggml_tensor * src0,
  4681. struct ggml_tensor * dst) {
  4682. switch (src0->type) {
  4683. case GGML_TYPE_F32:
  4684. {
  4685. ggml_compute_forward_repeat_f32(params, src0, dst);
  4686. } break;
  4687. case GGML_TYPE_Q4_0:
  4688. case GGML_TYPE_Q4_1:
  4689. case GGML_TYPE_I8:
  4690. case GGML_TYPE_I16:
  4691. case GGML_TYPE_I32:
  4692. case GGML_TYPE_F16:
  4693. case GGML_TYPE_COUNT:
  4694. {
  4695. GGML_ASSERT(false);
  4696. } break;
  4697. }
  4698. }
  4699. // ggml_compute_forward_abs
  4700. static void ggml_compute_forward_abs_f32(
  4701. const struct ggml_compute_params * params,
  4702. const struct ggml_tensor * src0,
  4703. struct ggml_tensor * dst) {
  4704. assert(params->ith == 0);
  4705. assert(ggml_are_same_shape(src0, dst));
  4706. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4707. return;
  4708. }
  4709. const int n = ggml_nrows(src0);
  4710. const int nc = src0->ne[0];
  4711. assert(dst->nb[0] == sizeof(float));
  4712. assert(src0->nb[0] == sizeof(float));
  4713. for (int i = 0; i < n; i++) {
  4714. ggml_vec_abs_f32(nc,
  4715. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4716. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4717. }
  4718. }
  4719. static void ggml_compute_forward_abs(
  4720. const struct ggml_compute_params * params,
  4721. const struct ggml_tensor * src0,
  4722. struct ggml_tensor * dst) {
  4723. switch (src0->type) {
  4724. case GGML_TYPE_F32:
  4725. {
  4726. ggml_compute_forward_abs_f32(params, src0, dst);
  4727. } break;
  4728. case GGML_TYPE_Q4_0:
  4729. case GGML_TYPE_Q4_1:
  4730. case GGML_TYPE_I8:
  4731. case GGML_TYPE_I16:
  4732. case GGML_TYPE_I32:
  4733. case GGML_TYPE_F16:
  4734. case GGML_TYPE_COUNT:
  4735. {
  4736. GGML_ASSERT(false);
  4737. } break;
  4738. }
  4739. }
  4740. // ggml_compute_forward_sgn
  4741. static void ggml_compute_forward_sgn_f32(
  4742. const struct ggml_compute_params * params,
  4743. const struct ggml_tensor * src0,
  4744. struct ggml_tensor * dst) {
  4745. assert(params->ith == 0);
  4746. assert(ggml_are_same_shape(src0, dst));
  4747. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4748. return;
  4749. }
  4750. const int n = ggml_nrows(src0);
  4751. const int nc = src0->ne[0];
  4752. assert(dst->nb[0] == sizeof(float));
  4753. assert(src0->nb[0] == sizeof(float));
  4754. for (int i = 0; i < n; i++) {
  4755. ggml_vec_sgn_f32(nc,
  4756. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4757. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4758. }
  4759. }
  4760. static void ggml_compute_forward_sgn(
  4761. const struct ggml_compute_params * params,
  4762. const struct ggml_tensor * src0,
  4763. struct ggml_tensor * dst) {
  4764. switch (src0->type) {
  4765. case GGML_TYPE_F32:
  4766. {
  4767. ggml_compute_forward_sgn_f32(params, src0, dst);
  4768. } break;
  4769. case GGML_TYPE_Q4_0:
  4770. case GGML_TYPE_Q4_1:
  4771. case GGML_TYPE_I8:
  4772. case GGML_TYPE_I16:
  4773. case GGML_TYPE_I32:
  4774. case GGML_TYPE_F16:
  4775. case GGML_TYPE_COUNT:
  4776. {
  4777. GGML_ASSERT(false);
  4778. } break;
  4779. }
  4780. }
  4781. // ggml_compute_forward_neg
  4782. static void ggml_compute_forward_neg_f32(
  4783. const struct ggml_compute_params * params,
  4784. const struct ggml_tensor * src0,
  4785. struct ggml_tensor * dst) {
  4786. assert(params->ith == 0);
  4787. assert(ggml_are_same_shape(src0, dst));
  4788. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4789. return;
  4790. }
  4791. const int n = ggml_nrows(src0);
  4792. const int nc = src0->ne[0];
  4793. assert(dst->nb[0] == sizeof(float));
  4794. assert(src0->nb[0] == sizeof(float));
  4795. for (int i = 0; i < n; i++) {
  4796. ggml_vec_neg_f32(nc,
  4797. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4798. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4799. }
  4800. }
  4801. static void ggml_compute_forward_neg(
  4802. const struct ggml_compute_params * params,
  4803. const struct ggml_tensor * src0,
  4804. struct ggml_tensor * dst) {
  4805. switch (src0->type) {
  4806. case GGML_TYPE_F32:
  4807. {
  4808. ggml_compute_forward_neg_f32(params, src0, dst);
  4809. } break;
  4810. case GGML_TYPE_Q4_0:
  4811. case GGML_TYPE_Q4_1:
  4812. case GGML_TYPE_I8:
  4813. case GGML_TYPE_I16:
  4814. case GGML_TYPE_I32:
  4815. case GGML_TYPE_F16:
  4816. case GGML_TYPE_COUNT:
  4817. {
  4818. GGML_ASSERT(false);
  4819. } break;
  4820. }
  4821. }
  4822. // ggml_compute_forward_step
  4823. static void ggml_compute_forward_step_f32(
  4824. const struct ggml_compute_params * params,
  4825. const struct ggml_tensor * src0,
  4826. struct ggml_tensor * dst) {
  4827. assert(params->ith == 0);
  4828. assert(ggml_are_same_shape(src0, dst));
  4829. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4830. return;
  4831. }
  4832. const int n = ggml_nrows(src0);
  4833. const int nc = src0->ne[0];
  4834. assert(dst->nb[0] == sizeof(float));
  4835. assert(src0->nb[0] == sizeof(float));
  4836. for (int i = 0; i < n; i++) {
  4837. ggml_vec_step_f32(nc,
  4838. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4839. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4840. }
  4841. }
  4842. static void ggml_compute_forward_step(
  4843. const struct ggml_compute_params * params,
  4844. const struct ggml_tensor * src0,
  4845. struct ggml_tensor * dst) {
  4846. switch (src0->type) {
  4847. case GGML_TYPE_F32:
  4848. {
  4849. ggml_compute_forward_step_f32(params, src0, dst);
  4850. } break;
  4851. case GGML_TYPE_Q4_0:
  4852. case GGML_TYPE_Q4_1:
  4853. case GGML_TYPE_I8:
  4854. case GGML_TYPE_I16:
  4855. case GGML_TYPE_I32:
  4856. case GGML_TYPE_F16:
  4857. case GGML_TYPE_COUNT:
  4858. {
  4859. GGML_ASSERT(false);
  4860. } break;
  4861. }
  4862. }
  4863. // ggml_compute_forward_relu
  4864. static void ggml_compute_forward_relu_f32(
  4865. const struct ggml_compute_params * params,
  4866. const struct ggml_tensor * src0,
  4867. struct ggml_tensor * dst) {
  4868. assert(params->ith == 0);
  4869. assert(ggml_are_same_shape(src0, dst));
  4870. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4871. return;
  4872. }
  4873. const int n = ggml_nrows(src0);
  4874. const int nc = src0->ne[0];
  4875. assert(dst->nb[0] == sizeof(float));
  4876. assert(src0->nb[0] == sizeof(float));
  4877. for (int i = 0; i < n; i++) {
  4878. ggml_vec_relu_f32(nc,
  4879. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4880. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4881. }
  4882. }
  4883. static void ggml_compute_forward_relu(
  4884. const struct ggml_compute_params * params,
  4885. const struct ggml_tensor * src0,
  4886. struct ggml_tensor * dst) {
  4887. switch (src0->type) {
  4888. case GGML_TYPE_F32:
  4889. {
  4890. ggml_compute_forward_relu_f32(params, src0, dst);
  4891. } break;
  4892. case GGML_TYPE_Q4_0:
  4893. case GGML_TYPE_Q4_1:
  4894. case GGML_TYPE_I8:
  4895. case GGML_TYPE_I16:
  4896. case GGML_TYPE_I32:
  4897. case GGML_TYPE_F16:
  4898. case GGML_TYPE_COUNT:
  4899. {
  4900. GGML_ASSERT(false);
  4901. } break;
  4902. }
  4903. }
  4904. // ggml_compute_forward_gelu
  4905. static void ggml_compute_forward_gelu_f32(
  4906. const struct ggml_compute_params * params,
  4907. const struct ggml_tensor * src0,
  4908. struct ggml_tensor * dst) {
  4909. GGML_ASSERT(ggml_is_contiguous(src0));
  4910. GGML_ASSERT(ggml_is_contiguous(dst));
  4911. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4912. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4913. return;
  4914. }
  4915. const int ith = params->ith;
  4916. const int nth = params->nth;
  4917. const int nc = src0->ne[0];
  4918. const int nr = ggml_nrows(src0);
  4919. // rows per thread
  4920. const int dr = (nr + nth - 1)/nth;
  4921. // row range for this thread
  4922. const int ir0 = dr*ith;
  4923. const int ir1 = MIN(ir0 + dr, nr);
  4924. for (int i1 = ir0; i1 < ir1; i1++) {
  4925. ggml_vec_gelu_f32(nc,
  4926. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4927. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4928. #ifndef NDEBUG
  4929. for (int k = 0; k < nc; k++) {
  4930. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4931. UNUSED(x);
  4932. assert(!isnan(x));
  4933. assert(!isinf(x));
  4934. }
  4935. #endif
  4936. }
  4937. }
  4938. static void ggml_compute_forward_gelu(
  4939. const struct ggml_compute_params * params,
  4940. const struct ggml_tensor * src0,
  4941. struct ggml_tensor * dst) {
  4942. switch (src0->type) {
  4943. case GGML_TYPE_F32:
  4944. {
  4945. ggml_compute_forward_gelu_f32(params, src0, dst);
  4946. } break;
  4947. case GGML_TYPE_Q4_0:
  4948. case GGML_TYPE_Q4_1:
  4949. case GGML_TYPE_I8:
  4950. case GGML_TYPE_I16:
  4951. case GGML_TYPE_I32:
  4952. case GGML_TYPE_F16:
  4953. case GGML_TYPE_COUNT:
  4954. {
  4955. GGML_ASSERT(false);
  4956. } break;
  4957. }
  4958. //printf("XXXXXXXX gelu\n");
  4959. }
  4960. // ggml_compute_forward_silu
  4961. static void ggml_compute_forward_silu_f32(
  4962. const struct ggml_compute_params * params,
  4963. const struct ggml_tensor * src0,
  4964. struct ggml_tensor * dst) {
  4965. GGML_ASSERT(ggml_is_contiguous(src0));
  4966. GGML_ASSERT(ggml_is_contiguous(dst));
  4967. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4968. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4969. return;
  4970. }
  4971. const int ith = params->ith;
  4972. const int nth = params->nth;
  4973. const int nc = src0->ne[0];
  4974. const int nr = ggml_nrows(src0);
  4975. // rows per thread
  4976. const int dr = (nr + nth - 1)/nth;
  4977. // row range for this thread
  4978. const int ir0 = dr*ith;
  4979. const int ir1 = MIN(ir0 + dr, nr);
  4980. for (int i1 = ir0; i1 < ir1; i1++) {
  4981. ggml_vec_silu_f32(nc,
  4982. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4983. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4984. #ifndef NDEBUG
  4985. for (int k = 0; k < nc; k++) {
  4986. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4987. UNUSED(x);
  4988. assert(!isnan(x));
  4989. assert(!isinf(x));
  4990. }
  4991. #endif
  4992. }
  4993. }
  4994. static void ggml_compute_forward_silu(
  4995. const struct ggml_compute_params * params,
  4996. const struct ggml_tensor * src0,
  4997. struct ggml_tensor * dst) {
  4998. switch (src0->type) {
  4999. case GGML_TYPE_F32:
  5000. {
  5001. ggml_compute_forward_silu_f32(params, src0, dst);
  5002. } break;
  5003. case GGML_TYPE_Q4_0:
  5004. case GGML_TYPE_Q4_1:
  5005. case GGML_TYPE_I8:
  5006. case GGML_TYPE_I16:
  5007. case GGML_TYPE_I32:
  5008. case GGML_TYPE_F16:
  5009. case GGML_TYPE_COUNT:
  5010. {
  5011. GGML_ASSERT(false);
  5012. } break;
  5013. }
  5014. }
  5015. // ggml_compute_forward_norm
  5016. static void ggml_compute_forward_norm_f32(
  5017. const struct ggml_compute_params * params,
  5018. const struct ggml_tensor * src0,
  5019. struct ggml_tensor * dst) {
  5020. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5021. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5022. return;
  5023. }
  5024. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5025. const int ith = params->ith;
  5026. const int nth = params->nth;
  5027. const int64_t ne00 = src0->ne[0];
  5028. const int64_t ne01 = src0->ne[1];
  5029. const int64_t ne02 = src0->ne[2];
  5030. const int64_t ne03 = src0->ne[3];
  5031. const size_t nb01 = src0->nb[1];
  5032. const size_t nb02 = src0->nb[2];
  5033. const size_t nb03 = src0->nb[3];
  5034. const size_t nb1 = dst->nb[1];
  5035. const size_t nb2 = dst->nb[2];
  5036. const size_t nb3 = dst->nb[3];
  5037. const float eps = 1e-5f; // TODO: make this a parameter
  5038. // TODO: optimize
  5039. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5040. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5041. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5042. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5043. ggml_float sum = 0.0;
  5044. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5045. sum += (ggml_float)x[i00];
  5046. }
  5047. float mean = sum/ne00;
  5048. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5049. ggml_float sum2 = 0.0;
  5050. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5051. float v = x[i00] - mean;
  5052. y[i00] = v;
  5053. sum2 += (ggml_float)(v*v);
  5054. }
  5055. float variance = sum2/ne00;
  5056. const float scale = 1.0f/sqrtf(variance + eps);
  5057. ggml_vec_scale_f32(ne00, y, scale);
  5058. }
  5059. }
  5060. }
  5061. }
  5062. static void ggml_compute_forward_norm(
  5063. const struct ggml_compute_params * params,
  5064. const struct ggml_tensor * src0,
  5065. struct ggml_tensor * dst) {
  5066. switch (src0->type) {
  5067. case GGML_TYPE_F32:
  5068. {
  5069. ggml_compute_forward_norm_f32(params, src0, dst);
  5070. } break;
  5071. case GGML_TYPE_Q4_0:
  5072. case GGML_TYPE_Q4_1:
  5073. case GGML_TYPE_I8:
  5074. case GGML_TYPE_I16:
  5075. case GGML_TYPE_I32:
  5076. case GGML_TYPE_F16:
  5077. case GGML_TYPE_COUNT:
  5078. {
  5079. GGML_ASSERT(false);
  5080. } break;
  5081. }
  5082. }
  5083. static void ggml_compute_forward_rms_norm_f32(
  5084. const struct ggml_compute_params * params,
  5085. const struct ggml_tensor * src0,
  5086. struct ggml_tensor * dst) {
  5087. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5088. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5089. return;
  5090. }
  5091. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5092. const int ith = params->ith;
  5093. const int nth = params->nth;
  5094. const int64_t ne00 = src0->ne[0];
  5095. const int64_t ne01 = src0->ne[1];
  5096. const int64_t ne02 = src0->ne[2];
  5097. const int64_t ne03 = src0->ne[3];
  5098. const size_t nb01 = src0->nb[1];
  5099. const size_t nb02 = src0->nb[2];
  5100. const size_t nb03 = src0->nb[3];
  5101. const size_t nb1 = dst->nb[1];
  5102. const size_t nb2 = dst->nb[2];
  5103. const size_t nb3 = dst->nb[3];
  5104. const float eps = 1e-6f; // TODO: make this a parameter
  5105. // TODO: optimize
  5106. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5107. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5108. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5109. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5110. ggml_float sum = 0.0;
  5111. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5112. sum += (ggml_float)(x[i00] * x[i00]);
  5113. }
  5114. float mean = sum/ne00;
  5115. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5116. memcpy(y, x, ne00 * sizeof(float));
  5117. // for (int i00 = 0; i00 < ne00; i00++) {
  5118. // y[i00] = x[i00];
  5119. // }
  5120. const float scale = 1.0f/sqrtf(mean + eps);
  5121. ggml_vec_scale_f32(ne00, y, scale);
  5122. }
  5123. }
  5124. }
  5125. }
  5126. static void ggml_compute_forward_rms_norm(
  5127. const struct ggml_compute_params * params,
  5128. const struct ggml_tensor * src0,
  5129. struct ggml_tensor * dst) {
  5130. switch (src0->type) {
  5131. case GGML_TYPE_F32:
  5132. {
  5133. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5134. } break;
  5135. case GGML_TYPE_Q4_0:
  5136. case GGML_TYPE_Q4_1:
  5137. case GGML_TYPE_I8:
  5138. case GGML_TYPE_I16:
  5139. case GGML_TYPE_I32:
  5140. case GGML_TYPE_F16:
  5141. case GGML_TYPE_COUNT:
  5142. {
  5143. GGML_ASSERT(false);
  5144. } break;
  5145. }
  5146. }
  5147. // ggml_compute_forward_mul_mat
  5148. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5149. // helper function to determine if it is better to use BLAS or not
  5150. // for large matrices, BLAS is faster
  5151. static bool ggml_compute_forward_mul_mat_use_blas(
  5152. const struct ggml_tensor * src0,
  5153. const struct ggml_tensor * src1,
  5154. struct ggml_tensor * dst) {
  5155. //const int64_t ne00 = src0->ne[0];
  5156. //const int64_t ne01 = src0->ne[1];
  5157. const int64_t ne10 = src1->ne[0];
  5158. const int64_t ne0 = dst->ne[0];
  5159. const int64_t ne1 = dst->ne[1];
  5160. // TODO: find the optimal values for these
  5161. if (ggml_is_contiguous(src0) &&
  5162. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5163. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5164. return true;
  5165. }
  5166. return false;
  5167. }
  5168. #endif
  5169. static void ggml_compute_forward_mul_mat_f32(
  5170. const struct ggml_compute_params * params,
  5171. const struct ggml_tensor * src0,
  5172. const struct ggml_tensor * src1,
  5173. struct ggml_tensor * dst) {
  5174. int64_t t0 = ggml_perf_time_us();
  5175. UNUSED(t0);
  5176. const int64_t ne00 = src0->ne[0];
  5177. const int64_t ne01 = src0->ne[1];
  5178. const int64_t ne02 = src0->ne[2];
  5179. const int64_t ne03 = src0->ne[3];
  5180. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5181. const int64_t ne10 = src1->ne[0];
  5182. #endif
  5183. const int64_t ne11 = src1->ne[1];
  5184. #ifndef NDEBUG
  5185. const int64_t ne12 = src1->ne[2];
  5186. const int64_t ne13 = src1->ne[3];
  5187. const int64_t ne0 = dst->ne[0];
  5188. const int64_t ne1 = dst->ne[1];
  5189. const int64_t ne2 = dst->ne[2];
  5190. const int64_t ne3 = dst->ne[3];
  5191. const int nb00 = src0->nb[0];
  5192. #endif
  5193. const int nb01 = src0->nb[1];
  5194. const int nb02 = src0->nb[2];
  5195. const int nb03 = src0->nb[3];
  5196. #ifndef NDEBUG
  5197. const int nb10 = src1->nb[0];
  5198. #endif
  5199. const int nb11 = src1->nb[1];
  5200. const int nb12 = src1->nb[2];
  5201. const int nb13 = src1->nb[3];
  5202. const int nb0 = dst->nb[0];
  5203. const int nb1 = dst->nb[1];
  5204. const int nb2 = dst->nb[2];
  5205. const int nb3 = dst->nb[3];
  5206. const int ith = params->ith;
  5207. const int nth = params->nth;
  5208. assert(ne02 == ne12);
  5209. assert(ne03 == ne13);
  5210. assert(ne2 == ne12);
  5211. assert(ne3 == ne13);
  5212. // we don't support permuted src0 or src1
  5213. assert(nb00 == sizeof(float));
  5214. assert(nb10 == sizeof(float));
  5215. // dst cannot be transposed or permuted
  5216. assert(nb0 == sizeof(float));
  5217. assert(nb0 <= nb1);
  5218. assert(nb1 <= nb2);
  5219. assert(nb2 <= nb3);
  5220. assert(ne0 == ne01);
  5221. assert(ne1 == ne11);
  5222. assert(ne2 == ne02);
  5223. assert(ne3 == ne03);
  5224. // nb01 >= nb00 - src0 is not transposed
  5225. // compute by src0 rows
  5226. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5227. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5228. if (params->ith != 0) {
  5229. return;
  5230. }
  5231. if (params->type == GGML_TASK_INIT) {
  5232. return;
  5233. }
  5234. if (params->type == GGML_TASK_FINALIZE) {
  5235. return;
  5236. }
  5237. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5238. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5239. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5240. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5241. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5242. // zT = y * xT
  5243. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5244. ne11, ne01, ne10,
  5245. 1.0f, y, ne10,
  5246. x, ne00,
  5247. 0.0f, d, ne01);
  5248. }
  5249. }
  5250. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5251. return;
  5252. }
  5253. #endif
  5254. if (params->type == GGML_TASK_INIT) {
  5255. return;
  5256. }
  5257. if (params->type == GGML_TASK_FINALIZE) {
  5258. return;
  5259. }
  5260. // parallelize by src0 rows using ggml_vec_dot_f32
  5261. // total rows in src0
  5262. const int nr = ne01*ne02*ne03;
  5263. // rows per thread
  5264. const int dr = (nr + nth - 1)/nth;
  5265. // row range for this thread
  5266. const int ir0 = dr*ith;
  5267. const int ir1 = MIN(ir0 + dr, nr);
  5268. for (int ir = ir0; ir < ir1; ++ir) {
  5269. // src0 indices
  5270. const int i03 = ir/(ne02*ne01);
  5271. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5272. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5273. for (int64_t ic = 0; ic < ne11; ++ic) {
  5274. // src1 indices
  5275. const int i13 = i03;
  5276. const int i12 = i02;
  5277. const int i11 = ic;
  5278. // dst indices
  5279. const int i0 = i01;
  5280. const int i1 = i11;
  5281. const int i2 = i02;
  5282. const int i3 = i03;
  5283. ggml_vec_dot_f32(ne00,
  5284. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5285. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5286. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5287. }
  5288. }
  5289. //int64_t t1 = ggml_perf_time_us();
  5290. //static int64_t acc = 0;
  5291. //acc += t1 - t0;
  5292. //if (t1 - t0 > 10) {
  5293. // printf("\n");
  5294. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5295. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5296. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5297. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5298. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5299. //}
  5300. }
  5301. static void ggml_compute_forward_mul_mat_f16_f32(
  5302. const struct ggml_compute_params * params,
  5303. const struct ggml_tensor * src0,
  5304. const struct ggml_tensor * src1,
  5305. struct ggml_tensor * dst) {
  5306. int64_t t0 = ggml_perf_time_us();
  5307. UNUSED(t0);
  5308. const int64_t ne00 = src0->ne[0];
  5309. const int64_t ne01 = src0->ne[1];
  5310. const int64_t ne02 = src0->ne[2];
  5311. const int64_t ne03 = src0->ne[3];
  5312. const int64_t ne10 = src1->ne[0];
  5313. const int64_t ne11 = src1->ne[1];
  5314. const int64_t ne12 = src1->ne[2];
  5315. const int64_t ne13 = src1->ne[3];
  5316. const int64_t ne0 = dst->ne[0];
  5317. const int64_t ne1 = dst->ne[1];
  5318. const int64_t ne2 = dst->ne[2];
  5319. const int64_t ne3 = dst->ne[3];
  5320. //const int64_t ne = ne0*ne1*ne2*ne3;
  5321. const int nb00 = src0->nb[0];
  5322. const int nb01 = src0->nb[1];
  5323. const int nb02 = src0->nb[2];
  5324. const int nb03 = src0->nb[3];
  5325. const int nb10 = src1->nb[0];
  5326. const int nb11 = src1->nb[1];
  5327. const int nb12 = src1->nb[2];
  5328. const int nb13 = src1->nb[3];
  5329. const int nb0 = dst->nb[0];
  5330. const int nb1 = dst->nb[1];
  5331. const int nb2 = dst->nb[2];
  5332. const int nb3 = dst->nb[3];
  5333. const int ith = params->ith;
  5334. const int nth = params->nth;
  5335. GGML_ASSERT(ne02 == ne12);
  5336. GGML_ASSERT(ne03 == ne13);
  5337. GGML_ASSERT(ne2 == ne12);
  5338. GGML_ASSERT(ne3 == ne13);
  5339. // TODO: we don't support permuted src0
  5340. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5341. // dst cannot be transposed or permuted
  5342. GGML_ASSERT(nb0 == sizeof(float));
  5343. GGML_ASSERT(nb0 <= nb1);
  5344. GGML_ASSERT(nb1 <= nb2);
  5345. GGML_ASSERT(nb2 <= nb3);
  5346. GGML_ASSERT(ne0 == ne01);
  5347. GGML_ASSERT(ne1 == ne11);
  5348. GGML_ASSERT(ne2 == ne02);
  5349. GGML_ASSERT(ne3 == ne03);
  5350. // nb01 >= nb00 - src0 is not transposed
  5351. // compute by src0 rows
  5352. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5353. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5354. GGML_ASSERT(nb10 == sizeof(float));
  5355. if (params->ith != 0) {
  5356. return;
  5357. }
  5358. if (params->type == GGML_TASK_INIT) {
  5359. return;
  5360. }
  5361. if (params->type == GGML_TASK_FINALIZE) {
  5362. return;
  5363. }
  5364. float * const wdata = params->wdata;
  5365. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5366. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5367. {
  5368. size_t id = 0;
  5369. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5370. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5371. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5372. }
  5373. }
  5374. }
  5375. const float * x = wdata;
  5376. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5377. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5378. // zT = y * xT
  5379. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5380. ne11, ne01, ne10,
  5381. 1.0f, y, ne10,
  5382. x, ne00,
  5383. 0.0f, d, ne01);
  5384. }
  5385. }
  5386. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5387. return;
  5388. }
  5389. #endif
  5390. if (params->type == GGML_TASK_INIT) {
  5391. ggml_fp16_t * const wdata = params->wdata;
  5392. size_t id = 0;
  5393. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5394. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5395. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5396. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5397. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5398. }
  5399. }
  5400. }
  5401. }
  5402. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5403. return;
  5404. }
  5405. if (params->type == GGML_TASK_FINALIZE) {
  5406. return;
  5407. }
  5408. // fp16 -> half the size, so divide by 2
  5409. // TODO: do not support transposed src1
  5410. assert(nb10/2 == sizeof(ggml_fp16_t));
  5411. // parallelize by src0 rows using ggml_vec_dot_f16
  5412. // total rows in src0
  5413. const int nr = ne01*ne02*ne03;
  5414. // rows per thread
  5415. const int dr = (nr + nth - 1)/nth;
  5416. // row range for this thread
  5417. const int ir0 = dr*ith;
  5418. const int ir1 = MIN(ir0 + dr, nr);
  5419. ggml_fp16_t * wdata = params->wdata;
  5420. for (int ir = ir0; ir < ir1; ++ir) {
  5421. // src0 indices
  5422. const int i03 = ir/(ne02*ne01);
  5423. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5424. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5425. const int i13 = i03;
  5426. const int i12 = i02;
  5427. const int i0 = i01;
  5428. const int i2 = i02;
  5429. const int i3 = i03;
  5430. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5431. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5432. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5433. for (int64_t ic = 0; ic < ne11; ++ic) {
  5434. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5435. }
  5436. }
  5437. //int64_t t1 = ggml_time_us();
  5438. //static int64_t acc = 0;
  5439. //acc += t1 - t0;
  5440. //if (t1 - t0 > 10) {
  5441. // printf("\n");
  5442. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5443. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5444. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5445. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5446. //}
  5447. }
  5448. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5449. [GGML_TYPE_Q4_0] = {
  5450. .dequantize_row_q = dequantize_row_q4_0,
  5451. .quantize_row_q = quantize_row_q4_0,
  5452. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5453. .vec_dot_q = ggml_vec_dot_q4_0,
  5454. },
  5455. [GGML_TYPE_Q4_1] = {
  5456. .dequantize_row_q = dequantize_row_q4_1,
  5457. .quantize_row_q = quantize_row_q4_1,
  5458. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5459. .vec_dot_q = ggml_vec_dot_q4_1,
  5460. },
  5461. };
  5462. // For internal test use
  5463. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5464. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5465. return quantize_fns[i];
  5466. }
  5467. static void ggml_compute_forward_mul_mat_q_f32(
  5468. const struct ggml_compute_params * params,
  5469. const struct ggml_tensor * src0,
  5470. const struct ggml_tensor * src1,
  5471. struct ggml_tensor * dst) {
  5472. int64_t t0 = ggml_perf_time_us();
  5473. UNUSED(t0);
  5474. const int64_t ne00 = src0->ne[0];
  5475. const int64_t ne01 = src0->ne[1];
  5476. const int64_t ne02 = src0->ne[2];
  5477. const int64_t ne03 = src0->ne[3];
  5478. const int64_t ne10 = src1->ne[0];
  5479. const int64_t ne11 = src1->ne[1];
  5480. const int64_t ne12 = src1->ne[2];
  5481. const int64_t ne13 = src1->ne[3];
  5482. const int64_t ne0 = dst->ne[0];
  5483. const int64_t ne1 = dst->ne[1];
  5484. const int64_t ne2 = dst->ne[2];
  5485. const int64_t ne3 = dst->ne[3];
  5486. const int nb00 = src0->nb[0];
  5487. const int nb01 = src0->nb[1];
  5488. const int nb02 = src0->nb[2];
  5489. const int nb03 = src0->nb[3];
  5490. const int nb10 = src1->nb[0];
  5491. const int nb11 = src1->nb[1];
  5492. const int nb12 = src1->nb[2];
  5493. const int nb13 = src1->nb[3];
  5494. const int nb0 = dst->nb[0];
  5495. const int nb1 = dst->nb[1];
  5496. const int nb2 = dst->nb[2];
  5497. const int nb3 = dst->nb[3];
  5498. const int ith = params->ith;
  5499. const int nth = params->nth;
  5500. GGML_ASSERT(ne02 == ne12);
  5501. GGML_ASSERT(ne03 == ne13);
  5502. GGML_ASSERT(ne2 == ne12);
  5503. GGML_ASSERT(ne3 == ne13);
  5504. const enum ggml_type type = src0->type;
  5505. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5506. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5507. // we don't support permuted src0 or src1
  5508. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5509. GGML_ASSERT(nb10 == sizeof(float));
  5510. // dst cannot be transposed or permuted
  5511. GGML_ASSERT(nb0 == sizeof(float));
  5512. GGML_ASSERT(nb0 <= nb1);
  5513. GGML_ASSERT(nb1 <= nb2);
  5514. GGML_ASSERT(nb2 <= nb3);
  5515. GGML_ASSERT(ne0 == ne01);
  5516. GGML_ASSERT(ne1 == ne11);
  5517. GGML_ASSERT(ne2 == ne02);
  5518. GGML_ASSERT(ne3 == ne03);
  5519. // nb01 >= nb00 - src0 is not transposed
  5520. // compute by src0 rows
  5521. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5522. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5523. if (params->ith != 0) {
  5524. return;
  5525. }
  5526. if (params->type == GGML_TASK_INIT) {
  5527. return;
  5528. }
  5529. if (params->type == GGML_TASK_FINALIZE) {
  5530. return;
  5531. }
  5532. float * const wdata = params->wdata;
  5533. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5534. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5535. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5536. {
  5537. size_t id = 0;
  5538. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5539. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5540. id += ne00;
  5541. }
  5542. }
  5543. const float * x = wdata;
  5544. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5545. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5546. // zT = y * xT
  5547. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5548. ne11, ne01, ne10,
  5549. 1.0f, y, ne10,
  5550. x, ne00,
  5551. 0.0f, d, ne01);
  5552. }
  5553. }
  5554. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5555. return;
  5556. }
  5557. #endif
  5558. if (params->type == GGML_TASK_INIT) {
  5559. char * wdata = params->wdata;
  5560. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5561. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5562. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5563. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5564. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5565. wdata += row_size;
  5566. }
  5567. }
  5568. }
  5569. return;
  5570. }
  5571. if (params->type == GGML_TASK_FINALIZE) {
  5572. return;
  5573. }
  5574. // parallelize by src0 rows using ggml_vec_dot_q
  5575. // total rows in src0
  5576. const int nr = ne01*ne02*ne03;
  5577. // rows per thread
  5578. const int dr = (nr + nth - 1)/nth;
  5579. // row range for this thread
  5580. const int ir0 = dr*ith;
  5581. const int ir1 = MIN(ir0 + dr, nr);
  5582. void * wdata = params->wdata;
  5583. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5584. for (int ir = ir0; ir < ir1; ++ir) {
  5585. // src0 indices
  5586. const int i03 = ir/(ne02*ne01);
  5587. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5588. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5589. const int i13 = i03;
  5590. const int i12 = i02;
  5591. const int i0 = i01;
  5592. const int i2 = i02;
  5593. const int i3 = i03;
  5594. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5595. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5596. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5597. assert(ne00 % 32 == 0);
  5598. for (int64_t ic = 0; ic < ne11; ++ic) {
  5599. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5600. }
  5601. }
  5602. //int64_t t1 = ggml_time_us();
  5603. //static int64_t acc = 0;
  5604. //acc += t1 - t0;
  5605. //if (t1 - t0 > 10) {
  5606. // printf("\n");
  5607. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5608. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5609. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5610. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5611. //}
  5612. }
  5613. static void ggml_compute_forward_mul_mat(
  5614. const struct ggml_compute_params * params,
  5615. const struct ggml_tensor * src0,
  5616. const struct ggml_tensor * src1,
  5617. struct ggml_tensor * dst) {
  5618. switch (src0->type) {
  5619. case GGML_TYPE_Q4_0:
  5620. case GGML_TYPE_Q4_1:
  5621. {
  5622. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5623. } break;
  5624. case GGML_TYPE_F16:
  5625. {
  5626. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5627. } break;
  5628. case GGML_TYPE_F32:
  5629. {
  5630. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5631. } break;
  5632. case GGML_TYPE_I8:
  5633. case GGML_TYPE_I16:
  5634. case GGML_TYPE_I32:
  5635. case GGML_TYPE_COUNT:
  5636. {
  5637. GGML_ASSERT(false);
  5638. } break;
  5639. }
  5640. #if 0
  5641. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5642. static int first = 8;
  5643. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5644. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5645. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5646. if (first) {
  5647. --first;
  5648. } else {
  5649. for (int k = 0; k < dst->ne[1]; ++k) {
  5650. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5651. for (int i = 0; i < 16; ++i) {
  5652. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5653. }
  5654. printf("\n");
  5655. }
  5656. printf("\n");
  5657. }
  5658. printf("\n");
  5659. exit(0);
  5660. }
  5661. } else {
  5662. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5663. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5664. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5665. }
  5666. #endif
  5667. }
  5668. // ggml_compute_forward_scale
  5669. static void ggml_compute_forward_scale_f32(
  5670. const struct ggml_compute_params * params,
  5671. const struct ggml_tensor * src0,
  5672. const struct ggml_tensor * src1,
  5673. struct ggml_tensor * dst) {
  5674. GGML_ASSERT(ggml_is_contiguous(src0));
  5675. GGML_ASSERT(ggml_is_contiguous(dst));
  5676. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5677. GGML_ASSERT(ggml_is_scalar(src1));
  5678. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5679. return;
  5680. }
  5681. // scale factor
  5682. const float v = *(float *) src1->data;
  5683. const int ith = params->ith;
  5684. const int nth = params->nth;
  5685. const int nc = src0->ne[0];
  5686. const int nr = ggml_nrows(src0);
  5687. // rows per thread
  5688. const int dr = (nr + nth - 1)/nth;
  5689. // row range for this thread
  5690. const int ir0 = dr*ith;
  5691. const int ir1 = MIN(ir0 + dr, nr);
  5692. for (int i1 = ir0; i1 < ir1; i1++) {
  5693. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5694. }
  5695. }
  5696. static void ggml_compute_forward_scale(
  5697. const struct ggml_compute_params * params,
  5698. const struct ggml_tensor * src0,
  5699. const struct ggml_tensor * src1,
  5700. struct ggml_tensor * dst) {
  5701. switch (src0->type) {
  5702. case GGML_TYPE_F32:
  5703. {
  5704. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5705. } break;
  5706. case GGML_TYPE_Q4_0:
  5707. case GGML_TYPE_Q4_1:
  5708. case GGML_TYPE_I8:
  5709. case GGML_TYPE_I16:
  5710. case GGML_TYPE_I32:
  5711. case GGML_TYPE_F16:
  5712. case GGML_TYPE_COUNT:
  5713. {
  5714. GGML_ASSERT(false);
  5715. } break;
  5716. }
  5717. }
  5718. // ggml_compute_forward_cpy
  5719. static void ggml_compute_forward_cpy(
  5720. const struct ggml_compute_params * params,
  5721. const struct ggml_tensor * src0,
  5722. struct ggml_tensor * dst) {
  5723. ggml_compute_forward_dup(params, src0, dst);
  5724. }
  5725. // ggml_compute_forward_cont
  5726. static void ggml_compute_forward_cont(
  5727. const struct ggml_compute_params * params,
  5728. const struct ggml_tensor * src0,
  5729. struct ggml_tensor * dst) {
  5730. ggml_compute_forward_dup(params, src0, dst);
  5731. }
  5732. // ggml_compute_forward_reshape
  5733. static void ggml_compute_forward_reshape(
  5734. const struct ggml_compute_params * params,
  5735. const struct ggml_tensor * src0,
  5736. struct ggml_tensor * dst) {
  5737. // NOP
  5738. UNUSED(params);
  5739. UNUSED(src0);
  5740. UNUSED(dst);
  5741. }
  5742. // ggml_compute_forward_view
  5743. static void ggml_compute_forward_view(
  5744. const struct ggml_compute_params * params,
  5745. const struct ggml_tensor * src0) {
  5746. // NOP
  5747. UNUSED(params);
  5748. UNUSED(src0);
  5749. }
  5750. // ggml_compute_forward_permute
  5751. static void ggml_compute_forward_permute(
  5752. const struct ggml_compute_params * params,
  5753. const struct ggml_tensor * src0) {
  5754. // NOP
  5755. UNUSED(params);
  5756. UNUSED(src0);
  5757. }
  5758. // ggml_compute_forward_transpose
  5759. static void ggml_compute_forward_transpose(
  5760. const struct ggml_compute_params * params,
  5761. const struct ggml_tensor * src0) {
  5762. // NOP
  5763. UNUSED(params);
  5764. UNUSED(src0);
  5765. }
  5766. // ggml_compute_forward_get_rows
  5767. static void ggml_compute_forward_get_rows_q(
  5768. const struct ggml_compute_params * params,
  5769. const struct ggml_tensor * src0,
  5770. const struct ggml_tensor * src1,
  5771. struct ggml_tensor * dst) {
  5772. assert(params->ith == 0);
  5773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5774. return;
  5775. }
  5776. const int nc = src0->ne[0];
  5777. const int nr = ggml_nelements(src1);
  5778. const enum ggml_type type = src0->type;
  5779. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5780. assert( dst->ne[0] == nc);
  5781. assert( dst->ne[1] == nr);
  5782. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5783. for (int i = 0; i < nr; ++i) {
  5784. const int r = ((int32_t *) src1->data)[i];
  5785. dequantize_row_q(
  5786. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5787. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5788. }
  5789. }
  5790. static void ggml_compute_forward_get_rows_f16(
  5791. const struct ggml_compute_params * params,
  5792. const struct ggml_tensor * src0,
  5793. const struct ggml_tensor * src1,
  5794. struct ggml_tensor * dst) {
  5795. assert(params->ith == 0);
  5796. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5797. return;
  5798. }
  5799. const int nc = src0->ne[0];
  5800. const int nr = ggml_nelements(src1);
  5801. assert( dst->ne[0] == nc);
  5802. assert( dst->ne[1] == nr);
  5803. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5804. for (int i = 0; i < nr; ++i) {
  5805. const int r = ((int32_t *) src1->data)[i];
  5806. for (int j = 0; j < nc; ++j) {
  5807. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5808. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5809. }
  5810. }
  5811. }
  5812. static void ggml_compute_forward_get_rows_f32(
  5813. const struct ggml_compute_params * params,
  5814. const struct ggml_tensor * src0,
  5815. const struct ggml_tensor * src1,
  5816. struct ggml_tensor * dst) {
  5817. assert(params->ith == 0);
  5818. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5819. return;
  5820. }
  5821. const int nc = src0->ne[0];
  5822. const int nr = ggml_nelements(src1);
  5823. assert( dst->ne[0] == nc);
  5824. assert( dst->ne[1] == nr);
  5825. assert(src0->nb[0] == sizeof(float));
  5826. for (int i = 0; i < nr; ++i) {
  5827. const int r = ((int32_t *) src1->data)[i];
  5828. ggml_vec_cpy_f32(nc,
  5829. (float *) ((char *) dst->data + i*dst->nb[1]),
  5830. (float *) ((char *) src0->data + r*src0->nb[1]));
  5831. }
  5832. }
  5833. static void ggml_compute_forward_get_rows(
  5834. const struct ggml_compute_params * params,
  5835. const struct ggml_tensor * src0,
  5836. const struct ggml_tensor * src1,
  5837. struct ggml_tensor * dst) {
  5838. switch (src0->type) {
  5839. case GGML_TYPE_Q4_0:
  5840. case GGML_TYPE_Q4_1:
  5841. {
  5842. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5843. } break;
  5844. case GGML_TYPE_F16:
  5845. {
  5846. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5847. } break;
  5848. case GGML_TYPE_F32:
  5849. {
  5850. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5851. } break;
  5852. case GGML_TYPE_I8:
  5853. case GGML_TYPE_I16:
  5854. case GGML_TYPE_I32:
  5855. case GGML_TYPE_COUNT:
  5856. {
  5857. GGML_ASSERT(false);
  5858. } break;
  5859. }
  5860. //static bool first = true;
  5861. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5862. //if (first) {
  5863. // first = false;
  5864. //} else {
  5865. // for (int k = 0; k < dst->ne[1]; ++k) {
  5866. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5867. // for (int i = 0; i < 16; ++i) {
  5868. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5869. // }
  5870. // printf("\n");
  5871. // }
  5872. // printf("\n");
  5873. // }
  5874. // printf("\n");
  5875. // exit(0);
  5876. //}
  5877. }
  5878. // ggml_compute_forward_diag_mask_inf
  5879. static void ggml_compute_forward_diag_mask_inf_f32(
  5880. const struct ggml_compute_params * params,
  5881. const struct ggml_tensor * src0,
  5882. const struct ggml_tensor * src1,
  5883. struct ggml_tensor * dst) {
  5884. assert(params->ith == 0);
  5885. assert(src1->type == GGML_TYPE_I32);
  5886. assert(ggml_nelements(src1) == 1);
  5887. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5888. return;
  5889. }
  5890. const int n_past = ((int32_t *) src1->data)[0];
  5891. // TODO: handle transposed/permuted matrices
  5892. const int n = ggml_nrows(src0);
  5893. const int nc = src0->ne[0];
  5894. const int nr = src0->ne[1];
  5895. const int nz = n/nr;
  5896. assert( dst->nb[0] == sizeof(float));
  5897. assert(src0->nb[0] == sizeof(float));
  5898. for (int k = 0; k < nz; k++) {
  5899. for (int j = 0; j < nr; j++) {
  5900. for (int i = n_past; i < nc; i++) {
  5901. if (i > n_past + j) {
  5902. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5903. }
  5904. }
  5905. }
  5906. }
  5907. }
  5908. static void ggml_compute_forward_diag_mask_inf(
  5909. const struct ggml_compute_params * params,
  5910. const struct ggml_tensor * src0,
  5911. const struct ggml_tensor * src1,
  5912. struct ggml_tensor * dst) {
  5913. switch (src0->type) {
  5914. case GGML_TYPE_F32:
  5915. {
  5916. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5917. } break;
  5918. case GGML_TYPE_Q4_0:
  5919. case GGML_TYPE_Q4_1:
  5920. case GGML_TYPE_I8:
  5921. case GGML_TYPE_I16:
  5922. case GGML_TYPE_I32:
  5923. case GGML_TYPE_F16:
  5924. case GGML_TYPE_COUNT:
  5925. {
  5926. GGML_ASSERT(false);
  5927. } break;
  5928. }
  5929. }
  5930. // ggml_compute_forward_soft_max
  5931. static void ggml_compute_forward_soft_max_f32(
  5932. const struct ggml_compute_params * params,
  5933. const struct ggml_tensor * src0,
  5934. struct ggml_tensor * dst) {
  5935. GGML_ASSERT(ggml_is_contiguous(src0));
  5936. GGML_ASSERT(ggml_is_contiguous(dst));
  5937. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5939. return;
  5940. }
  5941. // TODO: handle transposed/permuted matrices
  5942. const int ith = params->ith;
  5943. const int nth = params->nth;
  5944. const int nc = src0->ne[0];
  5945. const int nr = ggml_nrows(src0);
  5946. // rows per thread
  5947. const int dr = (nr + nth - 1)/nth;
  5948. // row range for this thread
  5949. const int ir0 = dr*ith;
  5950. const int ir1 = MIN(ir0 + dr, nr);
  5951. for (int i1 = ir0; i1 < ir1; i1++) {
  5952. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5953. #ifndef NDEBUG
  5954. for (int i = 0; i < nc; ++i) {
  5955. //printf("p[%d] = %f\n", i, p[i]);
  5956. assert(!isnan(p[i]));
  5957. }
  5958. #endif
  5959. float max = -INFINITY;
  5960. ggml_vec_max_f32(nc, &max, p);
  5961. ggml_float sum = 0.0;
  5962. uint16_t scvt;
  5963. for (int i = 0; i < nc; i++) {
  5964. if (p[i] == -INFINITY) {
  5965. p[i] = 0.0f;
  5966. } else {
  5967. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5968. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5969. memcpy(&scvt, &s, sizeof(scvt));
  5970. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5971. sum += (ggml_float)val;
  5972. p[i] = val;
  5973. }
  5974. }
  5975. assert(sum > 0.0);
  5976. sum = 1.0/sum;
  5977. ggml_vec_scale_f32(nc, p, sum);
  5978. #ifndef NDEBUG
  5979. for (int i = 0; i < nc; ++i) {
  5980. assert(!isnan(p[i]));
  5981. assert(!isinf(p[i]));
  5982. }
  5983. #endif
  5984. }
  5985. }
  5986. static void ggml_compute_forward_soft_max(
  5987. const struct ggml_compute_params * params,
  5988. const struct ggml_tensor * src0,
  5989. struct ggml_tensor * dst) {
  5990. switch (src0->type) {
  5991. case GGML_TYPE_F32:
  5992. {
  5993. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5994. } break;
  5995. case GGML_TYPE_Q4_0:
  5996. case GGML_TYPE_Q4_1:
  5997. case GGML_TYPE_I8:
  5998. case GGML_TYPE_I16:
  5999. case GGML_TYPE_I32:
  6000. case GGML_TYPE_F16:
  6001. case GGML_TYPE_COUNT:
  6002. {
  6003. GGML_ASSERT(false);
  6004. } break;
  6005. }
  6006. }
  6007. // ggml_compute_forward_rope
  6008. static void ggml_compute_forward_rope_f32(
  6009. const struct ggml_compute_params * params,
  6010. const struct ggml_tensor * src0,
  6011. const struct ggml_tensor * src1,
  6012. struct ggml_tensor * dst) {
  6013. assert(src1->type == GGML_TYPE_I32);
  6014. assert(ggml_nelements(src1) == 3);
  6015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6016. return;
  6017. }
  6018. const int n_past = ((int32_t *) src1->data)[0];
  6019. const int n_dims = ((int32_t *) src1->data)[1];
  6020. const int mode = ((int32_t *) src1->data)[2];
  6021. //const int64_t ne0 = src0->ne[0];
  6022. const int64_t ne1 = src0->ne[1];
  6023. const int64_t ne2 = src0->ne[2];
  6024. const int64_t ne3 = src0->ne[3];
  6025. const int nb0 = src0->nb[0];
  6026. const int nb1 = src0->nb[1];
  6027. const int nb2 = src0->nb[2];
  6028. const int nb3 = src0->nb[3];
  6029. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6030. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6031. assert(nb0 == sizeof(float));
  6032. const int ith = params->ith;
  6033. const int nth = params->nth;
  6034. const int nr = ggml_nrows(src0);
  6035. // rows per thread
  6036. const int dr = (nr + nth - 1)/nth;
  6037. // row range for this thread
  6038. const int ir0 = dr*ith;
  6039. const int ir1 = MIN(ir0 + dr, nr);
  6040. // row index used to determine which thread to use
  6041. int ir = 0;
  6042. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6043. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6044. const int p = (mode == 0 ? n_past + i2 : i2);
  6045. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6046. if (ir++ < ir0) continue;
  6047. if (ir > ir1) break;
  6048. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6049. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  6050. const float cos_theta = cosf(p*theta);
  6051. const float sin_theta = sinf(p*theta);
  6052. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6053. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6054. const float x0 = src[0];
  6055. const float x1 = src[1];
  6056. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6057. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6058. }
  6059. }
  6060. }
  6061. }
  6062. }
  6063. static void ggml_compute_forward_rope_f16(
  6064. const struct ggml_compute_params * params,
  6065. const struct ggml_tensor * src0,
  6066. const struct ggml_tensor * src1,
  6067. struct ggml_tensor * dst) {
  6068. assert(src1->type == GGML_TYPE_I32);
  6069. assert(ggml_nelements(src1) == 3);
  6070. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6071. return;
  6072. }
  6073. const int n_past = ((int32_t *) src1->data)[0];
  6074. const int n_dims = ((int32_t *) src1->data)[1];
  6075. const int mode = ((int32_t *) src1->data)[2];
  6076. //const int64_t ne0 = src0->ne[0];
  6077. const int64_t ne1 = src0->ne[1];
  6078. const int64_t ne2 = src0->ne[2];
  6079. const int64_t ne3 = src0->ne[3];
  6080. const int nb0 = src0->nb[0];
  6081. const int nb1 = src0->nb[1];
  6082. const int nb2 = src0->nb[2];
  6083. const int nb3 = src0->nb[3];
  6084. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6085. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6086. assert(nb0 == sizeof(ggml_fp16_t));
  6087. const int ith = params->ith;
  6088. const int nth = params->nth;
  6089. const int nr = ggml_nrows(src0);
  6090. // rows per thread
  6091. const int dr = (nr + nth - 1)/nth;
  6092. // row range for this thread
  6093. const int ir0 = dr*ith;
  6094. const int ir1 = MIN(ir0 + dr, nr);
  6095. // row index used to determine which thread to use
  6096. int ir = 0;
  6097. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6098. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6099. const int p = (mode == 0 ? n_past + i2 : i2);
  6100. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6101. if (ir++ < ir0) continue;
  6102. if (ir > ir1) break;
  6103. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6104. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  6105. const float cos_theta = cosf(p*theta);
  6106. const float sin_theta = sinf(p*theta);
  6107. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6108. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6109. const float x0 = ggml_fp16_to_fp32(src[0]);
  6110. const float x1 = ggml_fp16_to_fp32(src[1]);
  6111. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6112. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6113. }
  6114. }
  6115. }
  6116. }
  6117. }
  6118. static void ggml_compute_forward_rope(
  6119. const struct ggml_compute_params * params,
  6120. const struct ggml_tensor * src0,
  6121. const struct ggml_tensor * src1,
  6122. struct ggml_tensor * dst) {
  6123. switch (src0->type) {
  6124. case GGML_TYPE_F16:
  6125. {
  6126. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6127. } break;
  6128. case GGML_TYPE_F32:
  6129. {
  6130. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6131. } break;
  6132. case GGML_TYPE_Q4_0:
  6133. case GGML_TYPE_Q4_1:
  6134. case GGML_TYPE_I8:
  6135. case GGML_TYPE_I16:
  6136. case GGML_TYPE_I32:
  6137. case GGML_TYPE_COUNT:
  6138. {
  6139. GGML_ASSERT(false);
  6140. } break;
  6141. }
  6142. }
  6143. // ggml_compute_forward_conv_1d_1s
  6144. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6145. const struct ggml_compute_params * params,
  6146. const struct ggml_tensor * src0,
  6147. const struct ggml_tensor * src1,
  6148. struct ggml_tensor * dst) {
  6149. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6150. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6151. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6152. int64_t t0 = ggml_perf_time_us();
  6153. UNUSED(t0);
  6154. const int64_t ne00 = src0->ne[0];
  6155. const int64_t ne01 = src0->ne[1];
  6156. const int64_t ne02 = src0->ne[2];
  6157. //const int64_t ne03 = src0->ne[3];
  6158. const int64_t ne10 = src1->ne[0];
  6159. const int64_t ne11 = src1->ne[1];
  6160. //const int64_t ne12 = src1->ne[2];
  6161. //const int64_t ne13 = src1->ne[3];
  6162. //const int64_t ne0 = dst->ne[0];
  6163. //const int64_t ne1 = dst->ne[1];
  6164. //const int64_t ne2 = dst->ne[2];
  6165. //const int64_t ne3 = dst->ne[3];
  6166. //const int64_t ne = ne0*ne1*ne2*ne3;
  6167. const int nb00 = src0->nb[0];
  6168. const int nb01 = src0->nb[1];
  6169. const int nb02 = src0->nb[2];
  6170. //const int nb03 = src0->nb[3];
  6171. const int nb10 = src1->nb[0];
  6172. const int nb11 = src1->nb[1];
  6173. //const int nb12 = src1->nb[2];
  6174. //const int nb13 = src1->nb[3];
  6175. //const int nb0 = dst->nb[0];
  6176. const int nb1 = dst->nb[1];
  6177. //const int nb2 = dst->nb[2];
  6178. //const int nb3 = dst->nb[3];
  6179. const int ith = params->ith;
  6180. const int nth = params->nth;
  6181. const int nk = ne00;
  6182. const int nh = nk/2;
  6183. const int ew0 = ggml_up32(ne01);
  6184. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6185. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6186. GGML_ASSERT(nb10 == sizeof(float));
  6187. if (params->type == GGML_TASK_INIT) {
  6188. // TODO: fix this memset (wsize is overestimated)
  6189. memset(params->wdata, 0, params->wsize);
  6190. // prepare kernel data (src0)
  6191. {
  6192. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6193. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6194. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6195. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6196. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6197. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6198. dst_data[i00*ew0 + i01] = src[i00];
  6199. }
  6200. }
  6201. }
  6202. }
  6203. // prepare source data (src1)
  6204. {
  6205. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6206. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6207. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6208. ggml_fp16_t * dst_data = wdata;
  6209. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6210. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6211. }
  6212. }
  6213. }
  6214. return;
  6215. }
  6216. if (params->type == GGML_TASK_FINALIZE) {
  6217. return;
  6218. }
  6219. // total rows in dst
  6220. const int nr = ne02;
  6221. // rows per thread
  6222. const int dr = (nr + nth - 1)/nth;
  6223. // row range for this thread
  6224. const int ir0 = dr*ith;
  6225. const int ir1 = MIN(ir0 + dr, nr);
  6226. for (int i1 = ir0; i1 < ir1; i1++) {
  6227. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6228. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6229. dst_data[i0] = 0;
  6230. for (int k = -nh; k <= nh; k++) {
  6231. float v = 0.0f;
  6232. ggml_vec_dot_f16(ew0, &v,
  6233. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6234. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6235. dst_data[i0] += v;
  6236. }
  6237. }
  6238. }
  6239. }
  6240. static void ggml_compute_forward_conv_1d_1s_f32(
  6241. const struct ggml_compute_params * params,
  6242. const struct ggml_tensor * src0,
  6243. const struct ggml_tensor * src1,
  6244. struct ggml_tensor * dst) {
  6245. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6246. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6247. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6248. int64_t t0 = ggml_perf_time_us();
  6249. UNUSED(t0);
  6250. const int64_t ne00 = src0->ne[0];
  6251. const int64_t ne01 = src0->ne[1];
  6252. const int64_t ne02 = src0->ne[2];
  6253. //const int64_t ne03 = src0->ne[3];
  6254. const int64_t ne10 = src1->ne[0];
  6255. const int64_t ne11 = src1->ne[1];
  6256. //const int64_t ne12 = src1->ne[2];
  6257. //const int64_t ne13 = src1->ne[3];
  6258. //const int64_t ne0 = dst->ne[0];
  6259. //const int64_t ne1 = dst->ne[1];
  6260. //const int64_t ne2 = dst->ne[2];
  6261. //const int64_t ne3 = dst->ne[3];
  6262. //const int64_t ne = ne0*ne1*ne2*ne3;
  6263. const int nb00 = src0->nb[0];
  6264. const int nb01 = src0->nb[1];
  6265. const int nb02 = src0->nb[2];
  6266. //const int nb03 = src0->nb[3];
  6267. const int nb10 = src1->nb[0];
  6268. const int nb11 = src1->nb[1];
  6269. //const int nb12 = src1->nb[2];
  6270. //const int nb13 = src1->nb[3];
  6271. //const int nb0 = dst->nb[0];
  6272. const int nb1 = dst->nb[1];
  6273. //const int nb2 = dst->nb[2];
  6274. //const int nb3 = dst->nb[3];
  6275. const int ith = params->ith;
  6276. const int nth = params->nth;
  6277. const int nk = ne00;
  6278. const int nh = nk/2;
  6279. const int ew0 = ggml_up32(ne01);
  6280. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6281. GGML_ASSERT(nb00 == sizeof(float));
  6282. GGML_ASSERT(nb10 == sizeof(float));
  6283. if (params->type == GGML_TASK_INIT) {
  6284. // TODO: fix this memset (wsize is overestimated)
  6285. memset(params->wdata, 0, params->wsize);
  6286. // prepare kernel data (src0)
  6287. {
  6288. float * const wdata = (float *) params->wdata + 0;
  6289. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6290. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6291. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6292. float * dst_data = wdata + i02*ew0*ne00;
  6293. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6294. dst_data[i00*ew0 + i01] = src[i00];
  6295. }
  6296. }
  6297. }
  6298. }
  6299. // prepare source data (src1)
  6300. {
  6301. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6302. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6303. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6304. float * dst_data = wdata;
  6305. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6306. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6307. }
  6308. }
  6309. }
  6310. return;
  6311. }
  6312. if (params->type == GGML_TASK_FINALIZE) {
  6313. return;
  6314. }
  6315. // total rows in dst
  6316. const int nr = ne02;
  6317. // rows per thread
  6318. const int dr = (nr + nth - 1)/nth;
  6319. // row range for this thread
  6320. const int ir0 = dr*ith;
  6321. const int ir1 = MIN(ir0 + dr, nr);
  6322. for (int i1 = ir0; i1 < ir1; i1++) {
  6323. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6324. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6325. dst_data[i0] = 0;
  6326. for (int k = -nh; k <= nh; k++) {
  6327. float v = 0.0f;
  6328. ggml_vec_dot_f32(ew0, &v,
  6329. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6330. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6331. dst_data[i0] += v;
  6332. }
  6333. }
  6334. }
  6335. }
  6336. static void ggml_compute_forward_conv_1d_1s(
  6337. const struct ggml_compute_params * params,
  6338. const struct ggml_tensor * src0,
  6339. const struct ggml_tensor * src1,
  6340. struct ggml_tensor * dst) {
  6341. switch (src0->type) {
  6342. case GGML_TYPE_F16:
  6343. {
  6344. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6345. } break;
  6346. case GGML_TYPE_F32:
  6347. {
  6348. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6349. } break;
  6350. case GGML_TYPE_Q4_0:
  6351. case GGML_TYPE_Q4_1:
  6352. case GGML_TYPE_I8:
  6353. case GGML_TYPE_I16:
  6354. case GGML_TYPE_I32:
  6355. case GGML_TYPE_COUNT:
  6356. {
  6357. GGML_ASSERT(false);
  6358. } break;
  6359. }
  6360. }
  6361. // ggml_compute_forward_conv_1d_2s
  6362. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6363. const struct ggml_compute_params * params,
  6364. const struct ggml_tensor * src0,
  6365. const struct ggml_tensor * src1,
  6366. struct ggml_tensor * dst) {
  6367. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6368. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6369. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6370. int64_t t0 = ggml_perf_time_us();
  6371. UNUSED(t0);
  6372. const int64_t ne00 = src0->ne[0];
  6373. const int64_t ne01 = src0->ne[1];
  6374. const int64_t ne02 = src0->ne[2];
  6375. //const int64_t ne03 = src0->ne[3];
  6376. const int64_t ne10 = src1->ne[0];
  6377. const int64_t ne11 = src1->ne[1];
  6378. //const int64_t ne12 = src1->ne[2];
  6379. //const int64_t ne13 = src1->ne[3];
  6380. //const int64_t ne0 = dst->ne[0];
  6381. //const int64_t ne1 = dst->ne[1];
  6382. //const int64_t ne2 = dst->ne[2];
  6383. //const int64_t ne3 = dst->ne[3];
  6384. //const int64_t ne = ne0*ne1*ne2*ne3;
  6385. const int nb00 = src0->nb[0];
  6386. const int nb01 = src0->nb[1];
  6387. const int nb02 = src0->nb[2];
  6388. //const int nb03 = src0->nb[3];
  6389. const int nb10 = src1->nb[0];
  6390. const int nb11 = src1->nb[1];
  6391. //const int nb12 = src1->nb[2];
  6392. //const int nb13 = src1->nb[3];
  6393. //const int nb0 = dst->nb[0];
  6394. const int nb1 = dst->nb[1];
  6395. //const int nb2 = dst->nb[2];
  6396. //const int nb3 = dst->nb[3];
  6397. const int ith = params->ith;
  6398. const int nth = params->nth;
  6399. const int nk = ne00;
  6400. const int nh = nk/2;
  6401. const int ew0 = ggml_up32(ne01);
  6402. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6403. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6404. GGML_ASSERT(nb10 == sizeof(float));
  6405. if (params->type == GGML_TASK_INIT) {
  6406. // TODO: fix this memset (wsize is overestimated)
  6407. memset(params->wdata, 0, params->wsize);
  6408. // prepare kernel data (src0)
  6409. {
  6410. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6411. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6412. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6413. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6414. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6415. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6416. dst_data[i00*ew0 + i01] = src[i00];
  6417. }
  6418. }
  6419. }
  6420. }
  6421. // prepare source data (src1)
  6422. {
  6423. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6424. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6425. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6426. ggml_fp16_t * dst_data = wdata;
  6427. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6428. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6429. }
  6430. }
  6431. }
  6432. return;
  6433. }
  6434. if (params->type == GGML_TASK_FINALIZE) {
  6435. return;
  6436. }
  6437. // total rows in dst
  6438. const int nr = ne02;
  6439. // rows per thread
  6440. const int dr = (nr + nth - 1)/nth;
  6441. // row range for this thread
  6442. const int ir0 = dr*ith;
  6443. const int ir1 = MIN(ir0 + dr, nr);
  6444. for (int i1 = ir0; i1 < ir1; i1++) {
  6445. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6446. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6447. dst_data[i0/2] = 0;
  6448. for (int k = -nh; k <= nh; k++) {
  6449. float v = 0.0f;
  6450. ggml_vec_dot_f16(ew0, &v,
  6451. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6452. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6453. dst_data[i0/2] += v;
  6454. }
  6455. }
  6456. }
  6457. }
  6458. static void ggml_compute_forward_conv_1d_2s_f32(
  6459. const struct ggml_compute_params * params,
  6460. const struct ggml_tensor * src0,
  6461. const struct ggml_tensor * src1,
  6462. struct ggml_tensor * dst) {
  6463. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6464. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6465. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6466. int64_t t0 = ggml_perf_time_us();
  6467. UNUSED(t0);
  6468. const int64_t ne00 = src0->ne[0];
  6469. const int64_t ne01 = src0->ne[1];
  6470. const int64_t ne02 = src0->ne[2];
  6471. //const int64_t ne03 = src0->ne[3];
  6472. const int64_t ne10 = src1->ne[0];
  6473. const int64_t ne11 = src1->ne[1];
  6474. //const int64_t ne12 = src1->ne[2];
  6475. //const int64_t ne13 = src1->ne[3];
  6476. //const int64_t ne0 = dst->ne[0];
  6477. //const int64_t ne1 = dst->ne[1];
  6478. //const int64_t ne2 = dst->ne[2];
  6479. //const int64_t ne3 = dst->ne[3];
  6480. //const int64_t ne = ne0*ne1*ne2*ne3;
  6481. const int nb00 = src0->nb[0];
  6482. const int nb01 = src0->nb[1];
  6483. const int nb02 = src0->nb[2];
  6484. //const int nb03 = src0->nb[3];
  6485. const int nb10 = src1->nb[0];
  6486. const int nb11 = src1->nb[1];
  6487. //const int nb12 = src1->nb[2];
  6488. //const int nb13 = src1->nb[3];
  6489. //const int nb0 = dst->nb[0];
  6490. const int nb1 = dst->nb[1];
  6491. //const int nb2 = dst->nb[2];
  6492. //const int nb3 = dst->nb[3];
  6493. const int ith = params->ith;
  6494. const int nth = params->nth;
  6495. const int nk = ne00;
  6496. const int nh = nk/2;
  6497. const int ew0 = ggml_up32(ne01);
  6498. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6499. GGML_ASSERT(nb00 == sizeof(float));
  6500. GGML_ASSERT(nb10 == sizeof(float));
  6501. if (params->type == GGML_TASK_INIT) {
  6502. // TODO: fix this memset (wsize is overestimated)
  6503. memset(params->wdata, 0, params->wsize);
  6504. // prepare kernel data (src0)
  6505. {
  6506. float * const wdata = (float *) params->wdata + 0;
  6507. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6508. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6509. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6510. float * dst_data = wdata + i02*ew0*ne00;
  6511. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6512. dst_data[i00*ew0 + i01] = src[i00];
  6513. }
  6514. }
  6515. }
  6516. }
  6517. // prepare source data (src1)
  6518. {
  6519. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6520. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6521. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6522. float * dst_data = wdata;
  6523. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6524. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6525. }
  6526. }
  6527. }
  6528. return;
  6529. }
  6530. if (params->type == GGML_TASK_FINALIZE) {
  6531. return;
  6532. }
  6533. // total rows in dst
  6534. const int nr = ne02;
  6535. // rows per thread
  6536. const int dr = (nr + nth - 1)/nth;
  6537. // row range for this thread
  6538. const int ir0 = dr*ith;
  6539. const int ir1 = MIN(ir0 + dr, nr);
  6540. for (int i1 = ir0; i1 < ir1; i1++) {
  6541. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6542. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6543. dst_data[i0/2] = 0;
  6544. for (int k = -nh; k <= nh; k++) {
  6545. float v = 0.0f;
  6546. ggml_vec_dot_f32(ew0, &v,
  6547. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6548. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6549. dst_data[i0/2] += v;
  6550. }
  6551. }
  6552. }
  6553. }
  6554. static void ggml_compute_forward_conv_1d_2s(
  6555. const struct ggml_compute_params * params,
  6556. const struct ggml_tensor * src0,
  6557. const struct ggml_tensor * src1,
  6558. struct ggml_tensor * dst) {
  6559. switch (src0->type) {
  6560. case GGML_TYPE_F16:
  6561. {
  6562. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6563. } break;
  6564. case GGML_TYPE_F32:
  6565. {
  6566. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6567. } break;
  6568. case GGML_TYPE_Q4_0:
  6569. case GGML_TYPE_Q4_1:
  6570. case GGML_TYPE_I8:
  6571. case GGML_TYPE_I16:
  6572. case GGML_TYPE_I32:
  6573. case GGML_TYPE_COUNT:
  6574. {
  6575. GGML_ASSERT(false);
  6576. } break;
  6577. }
  6578. }
  6579. // ggml_compute_forward_flash_attn
  6580. static void ggml_compute_forward_flash_attn_f32(
  6581. const struct ggml_compute_params * params,
  6582. const struct ggml_tensor * q,
  6583. const struct ggml_tensor * k,
  6584. const struct ggml_tensor * v,
  6585. const bool masked,
  6586. struct ggml_tensor * dst) {
  6587. int64_t t0 = ggml_perf_time_us();
  6588. UNUSED(t0);
  6589. const int64_t neq0 = q->ne[0];
  6590. const int64_t neq1 = q->ne[1];
  6591. const int64_t neq2 = q->ne[2];
  6592. const int64_t neq3 = q->ne[3];
  6593. const int64_t nek0 = k->ne[0];
  6594. const int64_t nek1 = k->ne[1];
  6595. //const int64_t nek2 = k->ne[2];
  6596. //const int64_t nek3 = k->ne[3];
  6597. //const int64_t nev0 = v->ne[0];
  6598. const int64_t nev1 = v->ne[1];
  6599. //const int64_t nev2 = v->ne[2];
  6600. //const int64_t nev3 = v->ne[3];
  6601. const int64_t ne0 = dst->ne[0];
  6602. const int64_t ne1 = dst->ne[1];
  6603. //const int64_t ne2 = dst->ne[2];
  6604. //const int64_t ne3 = dst->ne[3];
  6605. const int nbk0 = k->nb[0];
  6606. const int nbk1 = k->nb[1];
  6607. const int nbk2 = k->nb[2];
  6608. const int nbk3 = k->nb[3];
  6609. const int nbq0 = q->nb[0];
  6610. const int nbq1 = q->nb[1];
  6611. const int nbq2 = q->nb[2];
  6612. const int nbq3 = q->nb[3];
  6613. const int nbv0 = v->nb[0];
  6614. const int nbv1 = v->nb[1];
  6615. const int nbv2 = v->nb[2];
  6616. const int nbv3 = v->nb[3];
  6617. const int nb0 = dst->nb[0];
  6618. const int nb1 = dst->nb[1];
  6619. const int nb2 = dst->nb[2];
  6620. const int nb3 = dst->nb[3];
  6621. const int ith = params->ith;
  6622. const int nth = params->nth;
  6623. const int64_t D = neq0;
  6624. const int64_t N = neq1;
  6625. const int64_t P = nek1 - N;
  6626. const int64_t M = P + N;
  6627. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6628. GGML_ASSERT(ne0 == D);
  6629. GGML_ASSERT(ne1 == N);
  6630. GGML_ASSERT(P >= 0);
  6631. GGML_ASSERT(nbq0 == sizeof(float));
  6632. GGML_ASSERT(nbk0 == sizeof(float));
  6633. GGML_ASSERT(nbv0 == sizeof(float));
  6634. GGML_ASSERT(neq0 == D);
  6635. GGML_ASSERT(nek0 == D);
  6636. GGML_ASSERT(nev1 == D);
  6637. GGML_ASSERT(neq1 == N);
  6638. GGML_ASSERT(nek1 == N + P);
  6639. GGML_ASSERT(nev1 == D);
  6640. // dst cannot be transposed or permuted
  6641. GGML_ASSERT(nb0 == sizeof(float));
  6642. GGML_ASSERT(nb0 <= nb1);
  6643. GGML_ASSERT(nb1 <= nb2);
  6644. GGML_ASSERT(nb2 <= nb3);
  6645. if (params->type == GGML_TASK_INIT) {
  6646. return;
  6647. }
  6648. if (params->type == GGML_TASK_FINALIZE) {
  6649. return;
  6650. }
  6651. // parallelize by q rows using ggml_vec_dot_f32
  6652. // total rows in q
  6653. const int nr = neq1*neq2*neq3;
  6654. // rows per thread
  6655. const int dr = (nr + nth - 1)/nth;
  6656. // row range for this thread
  6657. const int ir0 = dr*ith;
  6658. const int ir1 = MIN(ir0 + dr, nr);
  6659. const float scale = 1.0f/sqrtf(D);
  6660. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6661. for (int ir = ir0; ir < ir1; ++ir) {
  6662. // q indices
  6663. const int iq3 = ir/(neq2*neq1);
  6664. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6665. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6666. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6667. for (int i = M; i < Mup; ++i) {
  6668. S[i] = -INFINITY;
  6669. }
  6670. for (int64_t ic = 0; ic < nek1; ++ic) {
  6671. // k indices
  6672. const int ik3 = iq3;
  6673. const int ik2 = iq2;
  6674. const int ik1 = ic;
  6675. // S indices
  6676. const int i1 = ik1;
  6677. ggml_vec_dot_f32(neq0,
  6678. S + i1,
  6679. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6680. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6681. }
  6682. // scale
  6683. ggml_vec_scale_f32(nek1, S, scale);
  6684. if (masked) {
  6685. for (int64_t i = P; i < M; i++) {
  6686. if (i > P + iq1) {
  6687. S[i] = -INFINITY;
  6688. }
  6689. }
  6690. }
  6691. // softmax
  6692. {
  6693. float max = -INFINITY;
  6694. ggml_vec_max_f32(M, &max, S);
  6695. ggml_float sum = 0.0;
  6696. {
  6697. #ifdef GGML_SOFT_MAX_ACCELERATE
  6698. max = -max;
  6699. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6700. vvexpf(S, S, &Mup);
  6701. ggml_vec_sum_f32(Mup, &sum, S);
  6702. #else
  6703. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6704. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6705. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6706. float * SS = S + i;
  6707. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6708. if (SS[j] == -INFINITY) {
  6709. SS[j] = 0.0f;
  6710. } else {
  6711. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6712. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6713. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6714. sump[j] += (ggml_float)val;
  6715. SS[j] = val;
  6716. }
  6717. }
  6718. }
  6719. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6720. sum += sump[i];
  6721. }
  6722. #endif
  6723. }
  6724. assert(sum > 0.0);
  6725. sum = 1.0/sum;
  6726. ggml_vec_scale_f32(M, S, sum);
  6727. #ifndef NDEBUG
  6728. for (int i = 0; i < M; ++i) {
  6729. assert(!isnan(S[i]));
  6730. assert(!isinf(S[i]));
  6731. }
  6732. #endif
  6733. }
  6734. for (int64_t ic = 0; ic < nev1; ++ic) {
  6735. // dst indices
  6736. const int i1 = iq1;
  6737. const int i2 = iq2;
  6738. const int i3 = iq3;
  6739. ggml_vec_dot_f32(nek1,
  6740. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6741. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6742. S);
  6743. }
  6744. }
  6745. }
  6746. static void ggml_compute_forward_flash_attn_f16(
  6747. const struct ggml_compute_params * params,
  6748. const struct ggml_tensor * q,
  6749. const struct ggml_tensor * k,
  6750. const struct ggml_tensor * v,
  6751. const bool masked,
  6752. struct ggml_tensor * dst) {
  6753. int64_t t0 = ggml_perf_time_us();
  6754. UNUSED(t0);
  6755. const int64_t neq0 = q->ne[0];
  6756. const int64_t neq1 = q->ne[1];
  6757. const int64_t neq2 = q->ne[2];
  6758. const int64_t neq3 = q->ne[3];
  6759. const int64_t nek0 = k->ne[0];
  6760. const int64_t nek1 = k->ne[1];
  6761. //const int64_t nek2 = k->ne[2];
  6762. //const int64_t nek3 = k->ne[3];
  6763. //const int64_t nev0 = v->ne[0];
  6764. const int64_t nev1 = v->ne[1];
  6765. //const int64_t nev2 = v->ne[2];
  6766. //const int64_t nev3 = v->ne[3];
  6767. const int64_t ne0 = dst->ne[0];
  6768. const int64_t ne1 = dst->ne[1];
  6769. //const int64_t ne2 = dst->ne[2];
  6770. //const int64_t ne3 = dst->ne[3];
  6771. const int nbk0 = k->nb[0];
  6772. const int nbk1 = k->nb[1];
  6773. const int nbk2 = k->nb[2];
  6774. const int nbk3 = k->nb[3];
  6775. const int nbq0 = q->nb[0];
  6776. const int nbq1 = q->nb[1];
  6777. const int nbq2 = q->nb[2];
  6778. const int nbq3 = q->nb[3];
  6779. const int nbv0 = v->nb[0];
  6780. const int nbv1 = v->nb[1];
  6781. const int nbv2 = v->nb[2];
  6782. const int nbv3 = v->nb[3];
  6783. const int nb0 = dst->nb[0];
  6784. const int nb1 = dst->nb[1];
  6785. const int nb2 = dst->nb[2];
  6786. const int nb3 = dst->nb[3];
  6787. const int ith = params->ith;
  6788. const int nth = params->nth;
  6789. const int64_t D = neq0;
  6790. const int64_t N = neq1;
  6791. const int64_t P = nek1 - N;
  6792. const int64_t M = P + N;
  6793. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6794. GGML_ASSERT(ne0 == D);
  6795. GGML_ASSERT(ne1 == N);
  6796. GGML_ASSERT(P >= 0);
  6797. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6798. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6799. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6800. GGML_ASSERT(neq0 == D);
  6801. GGML_ASSERT(nek0 == D);
  6802. GGML_ASSERT(nev1 == D);
  6803. GGML_ASSERT(neq1 == N);
  6804. GGML_ASSERT(nek1 == N + P);
  6805. GGML_ASSERT(nev1 == D);
  6806. // dst cannot be transposed or permuted
  6807. GGML_ASSERT(nb0 == sizeof(float));
  6808. GGML_ASSERT(nb0 <= nb1);
  6809. GGML_ASSERT(nb1 <= nb2);
  6810. GGML_ASSERT(nb2 <= nb3);
  6811. if (params->type == GGML_TASK_INIT) {
  6812. return;
  6813. }
  6814. if (params->type == GGML_TASK_FINALIZE) {
  6815. return;
  6816. }
  6817. // parallelize by q rows using ggml_vec_dot_f32
  6818. // total rows in q
  6819. const int nr = neq1*neq2*neq3;
  6820. // rows per thread
  6821. const int dr = (nr + nth - 1)/nth;
  6822. // row range for this thread
  6823. const int ir0 = dr*ith;
  6824. const int ir1 = MIN(ir0 + dr, nr);
  6825. const float scale = 1.0f/sqrtf(D);
  6826. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6827. for (int ir = ir0; ir < ir1; ++ir) {
  6828. // q indices
  6829. const int iq3 = ir/(neq2*neq1);
  6830. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6831. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6832. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6833. for (int i = M; i < Mup; ++i) {
  6834. S[i] = -INFINITY;
  6835. }
  6836. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6837. for (int64_t ic = 0; ic < nek1; ++ic) {
  6838. // k indices
  6839. const int ik3 = iq3;
  6840. const int ik2 = iq2;
  6841. const int ik1 = ic;
  6842. // S indices
  6843. const int i1 = ik1;
  6844. ggml_vec_dot_f16(neq0,
  6845. S + i1,
  6846. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6847. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6848. }
  6849. } else {
  6850. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6851. // k indices
  6852. const int ik3 = iq3;
  6853. const int ik2 = iq2;
  6854. const int ik1 = ic;
  6855. // S indices
  6856. const int i1 = ik1;
  6857. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6858. S + i1,
  6859. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6860. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6861. }
  6862. }
  6863. // scale
  6864. ggml_vec_scale_f32(nek1, S, scale);
  6865. if (masked) {
  6866. for (int64_t i = P; i < M; i++) {
  6867. if (i > P + iq1) {
  6868. S[i] = -INFINITY;
  6869. }
  6870. }
  6871. }
  6872. // softmax
  6873. {
  6874. float max = -INFINITY;
  6875. ggml_vec_max_f32(M, &max, S);
  6876. ggml_float sum = 0.0;
  6877. {
  6878. #ifdef GGML_SOFT_MAX_ACCELERATE
  6879. max = -max;
  6880. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6881. vvexpf(S, S, &Mup);
  6882. ggml_vec_sum_f32(Mup, &sum, S);
  6883. #else
  6884. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6885. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6886. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6887. float * SS = S + i;
  6888. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6889. if (SS[j] == -INFINITY) {
  6890. SS[j] = 0.0f;
  6891. } else {
  6892. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6893. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6894. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6895. sump[j] += (ggml_float)val;
  6896. SS[j] = val;
  6897. }
  6898. }
  6899. }
  6900. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6901. sum += sump[i];
  6902. }
  6903. #endif
  6904. }
  6905. assert(sum > 0.0);
  6906. sum = 1.0/sum;
  6907. ggml_vec_scale_f32(M, S, sum);
  6908. #ifndef NDEBUG
  6909. for (int i = 0; i < M; ++i) {
  6910. assert(!isnan(S[i]));
  6911. assert(!isinf(S[i]));
  6912. }
  6913. #endif
  6914. }
  6915. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6916. for (int64_t i = 0; i < M; i++) {
  6917. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6918. }
  6919. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6920. for (int64_t ic = 0; ic < nev1; ++ic) {
  6921. // dst indices
  6922. const int i1 = iq1;
  6923. const int i2 = iq2;
  6924. const int i3 = iq3;
  6925. ggml_vec_dot_f16(nek1,
  6926. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6927. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6928. S16);
  6929. }
  6930. } else {
  6931. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6932. // dst indices
  6933. const int i1 = iq1;
  6934. const int i2 = iq2;
  6935. const int i3 = iq3;
  6936. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6937. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6938. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6939. S16);
  6940. }
  6941. }
  6942. }
  6943. }
  6944. static void ggml_compute_forward_flash_attn(
  6945. const struct ggml_compute_params * params,
  6946. const struct ggml_tensor * q,
  6947. const struct ggml_tensor * k,
  6948. const struct ggml_tensor * v,
  6949. const bool masked,
  6950. struct ggml_tensor * dst) {
  6951. switch (q->type) {
  6952. case GGML_TYPE_F16:
  6953. {
  6954. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6955. } break;
  6956. case GGML_TYPE_F32:
  6957. {
  6958. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6959. } break;
  6960. case GGML_TYPE_Q4_0:
  6961. case GGML_TYPE_Q4_1:
  6962. case GGML_TYPE_I8:
  6963. case GGML_TYPE_I16:
  6964. case GGML_TYPE_I32:
  6965. case GGML_TYPE_COUNT:
  6966. {
  6967. GGML_ASSERT(false);
  6968. } break;
  6969. }
  6970. }
  6971. // ggml_compute_forward_flash_ff
  6972. static void ggml_compute_forward_flash_ff_f16(
  6973. const struct ggml_compute_params * params,
  6974. const struct ggml_tensor * a, // F16
  6975. const struct ggml_tensor * b0, // F16 fc_w
  6976. const struct ggml_tensor * b1, // F32 fc_b
  6977. const struct ggml_tensor * c0, // F16 proj_w
  6978. const struct ggml_tensor * c1, // F32 proj_b
  6979. struct ggml_tensor * dst) {
  6980. int64_t t0 = ggml_perf_time_us();
  6981. UNUSED(t0);
  6982. const int64_t nea0 = a->ne[0];
  6983. const int64_t nea1 = a->ne[1];
  6984. const int64_t nea2 = a->ne[2];
  6985. const int64_t nea3 = a->ne[3];
  6986. const int64_t neb00 = b0->ne[0];
  6987. const int64_t neb01 = b0->ne[1];
  6988. //const int64_t neb02 = b0->ne[2];
  6989. //const int64_t neb03 = b0->ne[3];
  6990. const int64_t neb10 = b1->ne[0];
  6991. const int64_t neb11 = b1->ne[1];
  6992. //const int64_t neb12 = b1->ne[2];
  6993. //const int64_t neb13 = b1->ne[3];
  6994. const int64_t nec00 = c0->ne[0];
  6995. const int64_t nec01 = c0->ne[1];
  6996. //const int64_t nec02 = c0->ne[2];
  6997. //const int64_t nec03 = c0->ne[3];
  6998. const int64_t nec10 = c1->ne[0];
  6999. const int64_t nec11 = c1->ne[1];
  7000. //const int64_t nec12 = c1->ne[2];
  7001. //const int64_t nec13 = c1->ne[3];
  7002. const int64_t ne0 = dst->ne[0];
  7003. const int64_t ne1 = dst->ne[1];
  7004. const int64_t ne2 = dst->ne[2];
  7005. //const int64_t ne3 = dst->ne[3];
  7006. const int nba0 = a->nb[0];
  7007. const int nba1 = a->nb[1];
  7008. const int nba2 = a->nb[2];
  7009. const int nba3 = a->nb[3];
  7010. const int nbb00 = b0->nb[0];
  7011. const int nbb01 = b0->nb[1];
  7012. const int nbb02 = b0->nb[2];
  7013. const int nbb03 = b0->nb[3];
  7014. const int nbb10 = b1->nb[0];
  7015. //const int nbb11 = b1->nb[1];
  7016. //const int nbb12 = b1->nb[2];
  7017. //const int nbb13 = b1->nb[3];
  7018. const int nbc00 = c0->nb[0];
  7019. const int nbc01 = c0->nb[1];
  7020. const int nbc02 = c0->nb[2];
  7021. const int nbc03 = c0->nb[3];
  7022. const int nbc10 = c1->nb[0];
  7023. //const int nbc11 = c1->nb[1];
  7024. //const int nbc12 = c1->nb[2];
  7025. //const int nbc13 = c1->nb[3];
  7026. const int nb0 = dst->nb[0];
  7027. const int nb1 = dst->nb[1];
  7028. const int nb2 = dst->nb[2];
  7029. const int nb3 = dst->nb[3];
  7030. const int ith = params->ith;
  7031. const int nth = params->nth;
  7032. const int64_t D = nea0;
  7033. //const int64_t N = nea1;
  7034. const int64_t M = neb01;
  7035. GGML_ASSERT(ne0 == nea0);
  7036. GGML_ASSERT(ne1 == nea1);
  7037. GGML_ASSERT(ne2 == nea2);
  7038. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7039. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7040. GGML_ASSERT(nbb10 == sizeof(float));
  7041. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7042. GGML_ASSERT(nbc10 == sizeof(float));
  7043. GGML_ASSERT(neb00 == D);
  7044. GGML_ASSERT(neb01 == M);
  7045. GGML_ASSERT(neb10 == M);
  7046. GGML_ASSERT(neb11 == 1);
  7047. GGML_ASSERT(nec00 == M);
  7048. GGML_ASSERT(nec01 == D);
  7049. GGML_ASSERT(nec10 == D);
  7050. GGML_ASSERT(nec11 == 1);
  7051. // dst cannot be transposed or permuted
  7052. GGML_ASSERT(nb0 == sizeof(float));
  7053. GGML_ASSERT(nb0 <= nb1);
  7054. GGML_ASSERT(nb1 <= nb2);
  7055. GGML_ASSERT(nb2 <= nb3);
  7056. if (params->type == GGML_TASK_INIT) {
  7057. return;
  7058. }
  7059. if (params->type == GGML_TASK_FINALIZE) {
  7060. return;
  7061. }
  7062. // parallelize by a rows using ggml_vec_dot_f32
  7063. // total rows in a
  7064. const int nr = nea1*nea2*nea3;
  7065. // rows per thread
  7066. const int dr = (nr + nth - 1)/nth;
  7067. // row range for this thread
  7068. const int ir0 = dr*ith;
  7069. const int ir1 = MIN(ir0 + dr, nr);
  7070. for (int ir = ir0; ir < ir1; ++ir) {
  7071. // a indices
  7072. const int ia3 = ir/(nea2*nea1);
  7073. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7074. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7075. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7076. for (int64_t ic = 0; ic < neb01; ++ic) {
  7077. // b0 indices
  7078. const int ib03 = ia3;
  7079. const int ib02 = ia2;
  7080. const int ib01 = ic;
  7081. // S indices
  7082. const int i1 = ib01;
  7083. ggml_vec_dot_f16(nea0,
  7084. S + i1,
  7085. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7086. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7087. }
  7088. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7089. //ggml_vec_gelu_f32(neb01, S, S);
  7090. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7091. for (int64_t i = 0; i < M; i++) {
  7092. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7093. }
  7094. ggml_vec_gelu_f16(neb01, S16, S16);
  7095. {
  7096. // dst indices
  7097. const int i1 = ia1;
  7098. const int i2 = ia2;
  7099. const int i3 = ia3;
  7100. for (int64_t ic = 0; ic < nec01; ++ic) {
  7101. ggml_vec_dot_f16(neb01,
  7102. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7103. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7104. S16);
  7105. }
  7106. ggml_vec_add_f32(nec01,
  7107. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7108. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7109. (float *) c1->data);
  7110. }
  7111. }
  7112. }
  7113. static void ggml_compute_forward_flash_ff(
  7114. const struct ggml_compute_params * params,
  7115. const struct ggml_tensor * a,
  7116. const struct ggml_tensor * b0,
  7117. const struct ggml_tensor * b1,
  7118. const struct ggml_tensor * c0,
  7119. const struct ggml_tensor * c1,
  7120. struct ggml_tensor * dst) {
  7121. switch (b0->type) {
  7122. case GGML_TYPE_F16:
  7123. {
  7124. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7125. } break;
  7126. case GGML_TYPE_F32:
  7127. {
  7128. GGML_ASSERT(false); // TODO
  7129. } break;
  7130. case GGML_TYPE_Q4_0:
  7131. case GGML_TYPE_Q4_1:
  7132. case GGML_TYPE_I8:
  7133. case GGML_TYPE_I16:
  7134. case GGML_TYPE_I32:
  7135. case GGML_TYPE_COUNT:
  7136. {
  7137. GGML_ASSERT(false);
  7138. } break;
  7139. }
  7140. }
  7141. /////////////////////////////////
  7142. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7143. GGML_ASSERT(params);
  7144. switch (tensor->op) {
  7145. case GGML_OP_DUP:
  7146. {
  7147. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7148. } break;
  7149. case GGML_OP_ADD:
  7150. {
  7151. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7152. } break;
  7153. case GGML_OP_SUB:
  7154. {
  7155. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7156. } break;
  7157. case GGML_OP_MUL:
  7158. {
  7159. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7160. } break;
  7161. case GGML_OP_DIV:
  7162. {
  7163. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7164. } break;
  7165. case GGML_OP_SQR:
  7166. {
  7167. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7168. } break;
  7169. case GGML_OP_SQRT:
  7170. {
  7171. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7172. } break;
  7173. case GGML_OP_SUM:
  7174. {
  7175. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7176. } break;
  7177. case GGML_OP_MEAN:
  7178. {
  7179. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7180. } break;
  7181. case GGML_OP_REPEAT:
  7182. {
  7183. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7184. } break;
  7185. case GGML_OP_ABS:
  7186. {
  7187. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7188. } break;
  7189. case GGML_OP_SGN:
  7190. {
  7191. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7192. } break;
  7193. case GGML_OP_NEG:
  7194. {
  7195. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7196. } break;
  7197. case GGML_OP_STEP:
  7198. {
  7199. ggml_compute_forward_step(params, tensor->src0, tensor);
  7200. } break;
  7201. case GGML_OP_RELU:
  7202. {
  7203. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7204. } break;
  7205. case GGML_OP_GELU:
  7206. {
  7207. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7208. } break;
  7209. case GGML_OP_SILU:
  7210. {
  7211. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7212. } break;
  7213. case GGML_OP_NORM:
  7214. {
  7215. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7216. } break;
  7217. case GGML_OP_RMS_NORM:
  7218. {
  7219. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7220. } break;
  7221. case GGML_OP_MUL_MAT:
  7222. {
  7223. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7224. } break;
  7225. case GGML_OP_SCALE:
  7226. {
  7227. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7228. } break;
  7229. case GGML_OP_CPY:
  7230. {
  7231. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7232. } break;
  7233. case GGML_OP_CONT:
  7234. {
  7235. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7236. } break;
  7237. case GGML_OP_RESHAPE:
  7238. {
  7239. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7240. } break;
  7241. case GGML_OP_VIEW:
  7242. {
  7243. ggml_compute_forward_view(params, tensor->src0);
  7244. } break;
  7245. case GGML_OP_PERMUTE:
  7246. {
  7247. ggml_compute_forward_permute(params, tensor->src0);
  7248. } break;
  7249. case GGML_OP_TRANSPOSE:
  7250. {
  7251. ggml_compute_forward_transpose(params, tensor->src0);
  7252. } break;
  7253. case GGML_OP_GET_ROWS:
  7254. {
  7255. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7256. } break;
  7257. case GGML_OP_DIAG_MASK_INF:
  7258. {
  7259. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7260. } break;
  7261. case GGML_OP_SOFT_MAX:
  7262. {
  7263. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7264. } break;
  7265. case GGML_OP_ROPE:
  7266. {
  7267. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7268. } break;
  7269. case GGML_OP_CONV_1D_1S:
  7270. {
  7271. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7272. } break;
  7273. case GGML_OP_CONV_1D_2S:
  7274. {
  7275. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7276. } break;
  7277. case GGML_OP_FLASH_ATTN:
  7278. {
  7279. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7280. GGML_ASSERT(t == 0 || t == 1);
  7281. bool masked = t != 0;
  7282. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7283. } break;
  7284. case GGML_OP_FLASH_FF:
  7285. {
  7286. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7287. } break;
  7288. case GGML_OP_NONE:
  7289. {
  7290. // nop
  7291. } break;
  7292. case GGML_OP_COUNT:
  7293. {
  7294. GGML_ASSERT(false);
  7295. } break;
  7296. }
  7297. }
  7298. ////////////////////////////////////////////////////////////////////////////////
  7299. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7300. struct ggml_tensor * src0 = tensor->src0;
  7301. struct ggml_tensor * src1 = tensor->src1;
  7302. switch (tensor->op) {
  7303. case GGML_OP_DUP:
  7304. {
  7305. if (src0->grad) {
  7306. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7307. }
  7308. } break;
  7309. case GGML_OP_ADD:
  7310. {
  7311. if (src0->grad) {
  7312. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7313. }
  7314. if (src1->grad) {
  7315. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7316. }
  7317. } break;
  7318. case GGML_OP_SUB:
  7319. {
  7320. if (src0->grad) {
  7321. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7322. }
  7323. if (src1->grad) {
  7324. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7325. }
  7326. } break;
  7327. case GGML_OP_MUL:
  7328. {
  7329. if (src0->grad) {
  7330. src0->grad =
  7331. ggml_add_impl(ctx,
  7332. src0->grad,
  7333. ggml_mul(ctx, src1, tensor->grad),
  7334. inplace);
  7335. }
  7336. if (src1->grad) {
  7337. src1->grad =
  7338. ggml_add_impl(ctx,
  7339. src1->grad,
  7340. ggml_mul(ctx, src0, tensor->grad),
  7341. inplace);
  7342. }
  7343. } break;
  7344. case GGML_OP_DIV:
  7345. {
  7346. if (src0->grad) {
  7347. src0->grad =
  7348. ggml_add_impl(ctx,
  7349. src0->grad,
  7350. ggml_div(ctx, tensor->grad, src1),
  7351. inplace);
  7352. }
  7353. if (src1->grad) {
  7354. src1->grad =
  7355. ggml_sub_impl(ctx,
  7356. src1->grad,
  7357. ggml_mul(ctx,
  7358. tensor->grad,
  7359. ggml_div(ctx, tensor, src1)),
  7360. inplace);
  7361. }
  7362. } break;
  7363. case GGML_OP_SQR:
  7364. {
  7365. if (src0->grad) {
  7366. src0->grad =
  7367. ggml_add_impl(ctx,
  7368. src0->grad,
  7369. ggml_mul(ctx,
  7370. ggml_mul(ctx, src0, tensor->grad),
  7371. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7372. inplace);
  7373. }
  7374. } break;
  7375. case GGML_OP_SQRT:
  7376. {
  7377. if (src0->grad) {
  7378. src0->grad =
  7379. ggml_add_impl(ctx,
  7380. src0->grad,
  7381. ggml_div(ctx,
  7382. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7383. tensor),
  7384. inplace);
  7385. }
  7386. } break;
  7387. case GGML_OP_SUM:
  7388. {
  7389. if (src0->grad) {
  7390. src0->grad =
  7391. ggml_add_impl(ctx,
  7392. src0->grad,
  7393. ggml_repeat(ctx, tensor->grad, src0->grad),
  7394. inplace);
  7395. }
  7396. } break;
  7397. case GGML_OP_MEAN:
  7398. {
  7399. GGML_ASSERT(false); // TODO: implement
  7400. } break;
  7401. case GGML_OP_REPEAT:
  7402. {
  7403. if (src0->grad) {
  7404. src0->grad =
  7405. ggml_add_impl(ctx,
  7406. src0->grad,
  7407. ggml_sum(ctx, tensor->grad),
  7408. inplace);
  7409. }
  7410. } break;
  7411. case GGML_OP_ABS:
  7412. {
  7413. if (src0->grad) {
  7414. src0->grad =
  7415. ggml_add_impl(ctx,
  7416. src0->grad,
  7417. ggml_mul(ctx,
  7418. ggml_sgn(ctx, src0),
  7419. tensor->grad),
  7420. inplace);
  7421. }
  7422. } break;
  7423. case GGML_OP_SGN:
  7424. {
  7425. if (src0->grad) {
  7426. // noop
  7427. }
  7428. } break;
  7429. case GGML_OP_NEG:
  7430. {
  7431. if (src0->grad) {
  7432. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7433. }
  7434. } break;
  7435. case GGML_OP_STEP:
  7436. {
  7437. if (src0->grad) {
  7438. // noop
  7439. }
  7440. } break;
  7441. case GGML_OP_RELU:
  7442. {
  7443. if (src0->grad) {
  7444. src0->grad = ggml_sub_impl(ctx,
  7445. src0->grad,
  7446. ggml_mul(ctx,
  7447. ggml_step(ctx, src0),
  7448. tensor->grad),
  7449. inplace);
  7450. }
  7451. } break;
  7452. case GGML_OP_GELU:
  7453. {
  7454. GGML_ASSERT(false); // TODO: not implemented
  7455. } break;
  7456. case GGML_OP_SILU:
  7457. {
  7458. GGML_ASSERT(false); // TODO: not implemented
  7459. } break;
  7460. case GGML_OP_NORM:
  7461. {
  7462. GGML_ASSERT(false); // TODO: not implemented
  7463. } break;
  7464. case GGML_OP_RMS_NORM:
  7465. {
  7466. GGML_ASSERT(false); // TODO: not implemented
  7467. } break;
  7468. case GGML_OP_MUL_MAT:
  7469. {
  7470. if (src0->grad) {
  7471. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7472. GGML_ASSERT(false);
  7473. }
  7474. if (src1->grad) {
  7475. src1->grad =
  7476. ggml_add_impl(ctx,
  7477. src1->grad,
  7478. ggml_mul_mat(ctx,
  7479. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  7480. tensor->grad),
  7481. inplace);
  7482. }
  7483. } break;
  7484. case GGML_OP_SCALE:
  7485. {
  7486. GGML_ASSERT(false); // TODO: not implemented
  7487. } break;
  7488. case GGML_OP_CPY:
  7489. {
  7490. GGML_ASSERT(false); // TODO: not implemented
  7491. } break;
  7492. case GGML_OP_CONT:
  7493. {
  7494. GGML_ASSERT(false); // TODO: not implemented
  7495. } break;
  7496. case GGML_OP_RESHAPE:
  7497. {
  7498. GGML_ASSERT(false); // TODO: not implemented
  7499. } break;
  7500. case GGML_OP_VIEW:
  7501. {
  7502. GGML_ASSERT(false); // not supported
  7503. } break;
  7504. case GGML_OP_PERMUTE:
  7505. {
  7506. GGML_ASSERT(false); // TODO: not implemented
  7507. } break;
  7508. case GGML_OP_TRANSPOSE:
  7509. {
  7510. GGML_ASSERT(false); // TODO: not implemented
  7511. } break;
  7512. case GGML_OP_GET_ROWS:
  7513. {
  7514. GGML_ASSERT(false); // TODO: not implemented
  7515. } break;
  7516. case GGML_OP_DIAG_MASK_INF:
  7517. {
  7518. GGML_ASSERT(false); // TODO: not implemented
  7519. } break;
  7520. case GGML_OP_SOFT_MAX:
  7521. {
  7522. GGML_ASSERT(false); // TODO: not implemented
  7523. } break;
  7524. case GGML_OP_ROPE:
  7525. {
  7526. GGML_ASSERT(false); // TODO: not implemented
  7527. } break;
  7528. case GGML_OP_CONV_1D_1S:
  7529. {
  7530. GGML_ASSERT(false); // TODO: not implemented
  7531. } break;
  7532. case GGML_OP_CONV_1D_2S:
  7533. {
  7534. GGML_ASSERT(false); // TODO: not implemented
  7535. } break;
  7536. case GGML_OP_FLASH_ATTN:
  7537. {
  7538. GGML_ASSERT(false); // not supported
  7539. } break;
  7540. case GGML_OP_FLASH_FF:
  7541. {
  7542. GGML_ASSERT(false); // not supported
  7543. } break;
  7544. case GGML_OP_NONE:
  7545. {
  7546. // nop
  7547. } break;
  7548. case GGML_OP_COUNT:
  7549. {
  7550. GGML_ASSERT(false);
  7551. } break;
  7552. }
  7553. }
  7554. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7555. if (node->grad == NULL) {
  7556. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7557. // it can also happen during forward pass, if the user performs computations with constants
  7558. if (node->op != GGML_OP_NONE) {
  7559. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7560. }
  7561. }
  7562. // check if already visited
  7563. for (int i = 0; i < cgraph->n_nodes; i++) {
  7564. if (cgraph->nodes[i] == node) {
  7565. return;
  7566. }
  7567. }
  7568. for (int i = 0; i < cgraph->n_leafs; i++) {
  7569. if (cgraph->leafs[i] == node) {
  7570. return;
  7571. }
  7572. }
  7573. if (node->src0) {
  7574. ggml_visit_parents(cgraph, node->src0);
  7575. }
  7576. if (node->src1) {
  7577. ggml_visit_parents(cgraph, node->src1);
  7578. }
  7579. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7580. if (node->opt[i]) {
  7581. ggml_visit_parents(cgraph, node->opt[i]);
  7582. }
  7583. }
  7584. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7585. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7586. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7587. cgraph->leafs[cgraph->n_leafs] = node;
  7588. cgraph->n_leafs++;
  7589. } else {
  7590. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7591. cgraph->nodes[cgraph->n_nodes] = node;
  7592. cgraph->grads[cgraph->n_nodes] = node->grad;
  7593. cgraph->n_nodes++;
  7594. }
  7595. }
  7596. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7597. if (!expand) {
  7598. cgraph->n_nodes = 0;
  7599. cgraph->n_leafs = 0;
  7600. }
  7601. const int n0 = cgraph->n_nodes;
  7602. UNUSED(n0);
  7603. ggml_visit_parents(cgraph, tensor);
  7604. const int n_new = cgraph->n_nodes - n0;
  7605. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7606. if (n_new > 0) {
  7607. // the last added node should always be starting point
  7608. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7609. }
  7610. }
  7611. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7612. ggml_build_forward_impl(cgraph, tensor, true);
  7613. }
  7614. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7615. struct ggml_cgraph result = {
  7616. /*.n_nodes =*/ 0,
  7617. /*.n_leafs =*/ 0,
  7618. /*.n_threads =*/ 0,
  7619. /*.work_size =*/ 0,
  7620. /*.work =*/ NULL,
  7621. /*.nodes =*/ { NULL },
  7622. /*.grads =*/ { NULL },
  7623. /*.leafs =*/ { NULL },
  7624. /*.perf_runs =*/ 0,
  7625. /*.perf_cycles =*/ 0,
  7626. /*.perf_time_us =*/ 0,
  7627. };
  7628. ggml_build_forward_impl(&result, tensor, false);
  7629. return result;
  7630. }
  7631. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7632. struct ggml_cgraph result = *gf;
  7633. GGML_ASSERT(gf->n_nodes > 0);
  7634. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7635. if (keep) {
  7636. for (int i = 0; i < gf->n_nodes; i++) {
  7637. struct ggml_tensor * node = gf->nodes[i];
  7638. if (node->grad) {
  7639. node->grad = ggml_dup_tensor(ctx, node);
  7640. gf->grads[i] = node->grad;
  7641. }
  7642. }
  7643. }
  7644. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7645. struct ggml_tensor * node = gf->nodes[i];
  7646. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7647. if (node->grad) {
  7648. ggml_compute_backward(ctx, node, keep);
  7649. }
  7650. }
  7651. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7652. struct ggml_tensor * node = gf->nodes[i];
  7653. if (node->is_param) {
  7654. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7655. ggml_build_forward_impl(&result, node->grad, true);
  7656. }
  7657. }
  7658. return result;
  7659. }
  7660. //
  7661. // thread data
  7662. //
  7663. // synchronization is done via busy loops
  7664. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7665. //
  7666. #ifdef __APPLE__
  7667. //#include <os/lock.h>
  7668. //
  7669. //typedef os_unfair_lock ggml_lock_t;
  7670. //
  7671. //#define ggml_lock_init(x) UNUSED(x)
  7672. //#define ggml_lock_destroy(x) UNUSED(x)
  7673. //#define ggml_lock_lock os_unfair_lock_lock
  7674. //#define ggml_lock_unlock os_unfair_lock_unlock
  7675. //
  7676. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7677. typedef int ggml_lock_t;
  7678. #define ggml_lock_init(x) UNUSED(x)
  7679. #define ggml_lock_destroy(x) UNUSED(x)
  7680. #define ggml_lock_lock(x) UNUSED(x)
  7681. #define ggml_lock_unlock(x) UNUSED(x)
  7682. #define GGML_LOCK_INITIALIZER 0
  7683. typedef pthread_t ggml_thread_t;
  7684. #define ggml_thread_create pthread_create
  7685. #define ggml_thread_join pthread_join
  7686. #else
  7687. //typedef pthread_spinlock_t ggml_lock_t;
  7688. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7689. //#define ggml_lock_destroy pthread_spin_destroy
  7690. //#define ggml_lock_lock pthread_spin_lock
  7691. //#define ggml_lock_unlock pthread_spin_unlock
  7692. typedef int ggml_lock_t;
  7693. #define ggml_lock_init(x) UNUSED(x)
  7694. #define ggml_lock_destroy(x) UNUSED(x)
  7695. #define ggml_lock_lock(x) UNUSED(x)
  7696. #define ggml_lock_unlock(x) UNUSED(x)
  7697. #define GGML_LOCK_INITIALIZER 0
  7698. typedef pthread_t ggml_thread_t;
  7699. #define ggml_thread_create pthread_create
  7700. #define ggml_thread_join pthread_join
  7701. #endif
  7702. struct ggml_compute_state_shared {
  7703. ggml_lock_t spin;
  7704. int n_threads;
  7705. // synchronization primitives
  7706. atomic_int n_ready;
  7707. atomic_bool has_work;
  7708. atomic_bool stop; // stop all threads
  7709. };
  7710. struct ggml_compute_state {
  7711. ggml_thread_t thrd;
  7712. struct ggml_compute_params params;
  7713. struct ggml_tensor * node;
  7714. struct ggml_compute_state_shared * shared;
  7715. };
  7716. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7717. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7718. const int n_threads = state->shared->n_threads;
  7719. while (true) {
  7720. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7721. atomic_store(&state->shared->has_work, false);
  7722. } else {
  7723. while (atomic_load(&state->shared->has_work)) {
  7724. if (atomic_load(&state->shared->stop)) {
  7725. return 0;
  7726. }
  7727. ggml_lock_lock (&state->shared->spin);
  7728. ggml_lock_unlock(&state->shared->spin);
  7729. }
  7730. }
  7731. atomic_fetch_sub(&state->shared->n_ready, 1);
  7732. // wait for work
  7733. while (!atomic_load(&state->shared->has_work)) {
  7734. if (atomic_load(&state->shared->stop)) {
  7735. return 0;
  7736. }
  7737. ggml_lock_lock (&state->shared->spin);
  7738. ggml_lock_unlock(&state->shared->spin);
  7739. }
  7740. // check if we should stop
  7741. if (atomic_load(&state->shared->stop)) {
  7742. break;
  7743. }
  7744. if (state->node) {
  7745. if (state->params.ith < state->params.nth) {
  7746. ggml_compute_forward(&state->params, state->node);
  7747. }
  7748. state->node = NULL;
  7749. } else {
  7750. break;
  7751. }
  7752. }
  7753. return 0;
  7754. }
  7755. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7756. const int n_threads = cgraph->n_threads;
  7757. struct ggml_compute_state_shared state_shared = {
  7758. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7759. /*.n_threads =*/ n_threads,
  7760. /*.n_ready =*/ 0,
  7761. /*.has_work =*/ false,
  7762. /*.stop =*/ false,
  7763. };
  7764. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7765. // create thread pool
  7766. if (n_threads > 1) {
  7767. ggml_lock_init(&state_shared.spin);
  7768. atomic_store(&state_shared.has_work, true);
  7769. for (int j = 0; j < n_threads - 1; j++) {
  7770. workers[j] = (struct ggml_compute_state) {
  7771. .thrd = 0,
  7772. .params = {
  7773. .type = GGML_TASK_COMPUTE,
  7774. .ith = j + 1,
  7775. .nth = n_threads,
  7776. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7777. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7778. },
  7779. .node = NULL,
  7780. .shared = &state_shared,
  7781. };
  7782. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7783. GGML_ASSERT(rc == 0);
  7784. UNUSED(rc);
  7785. }
  7786. }
  7787. // initialize tasks + work buffer
  7788. {
  7789. size_t work_size = 0;
  7790. // thread scheduling for the different operations
  7791. for (int i = 0; i < cgraph->n_nodes; i++) {
  7792. struct ggml_tensor * node = cgraph->nodes[i];
  7793. switch (node->op) {
  7794. case GGML_OP_DUP:
  7795. {
  7796. node->n_tasks = 1;
  7797. } break;
  7798. case GGML_OP_ADD:
  7799. {
  7800. node->n_tasks = n_threads;
  7801. } break;
  7802. case GGML_OP_SUB:
  7803. case GGML_OP_MUL:
  7804. case GGML_OP_DIV:
  7805. case GGML_OP_SQR:
  7806. case GGML_OP_SQRT:
  7807. case GGML_OP_SUM:
  7808. case GGML_OP_MEAN:
  7809. case GGML_OP_REPEAT:
  7810. case GGML_OP_ABS:
  7811. case GGML_OP_SGN:
  7812. case GGML_OP_NEG:
  7813. case GGML_OP_STEP:
  7814. case GGML_OP_RELU:
  7815. {
  7816. node->n_tasks = 1;
  7817. } break;
  7818. case GGML_OP_GELU:
  7819. {
  7820. node->n_tasks = n_threads;
  7821. } break;
  7822. case GGML_OP_SILU:
  7823. {
  7824. node->n_tasks = n_threads;
  7825. } break;
  7826. case GGML_OP_NORM:
  7827. case GGML_OP_RMS_NORM:
  7828. {
  7829. node->n_tasks = n_threads;
  7830. } break;
  7831. case GGML_OP_MUL_MAT:
  7832. {
  7833. node->n_tasks = n_threads;
  7834. // TODO: use different scheduling for different matrix sizes
  7835. //const int nr0 = ggml_nrows(node->src0);
  7836. //const int nr1 = ggml_nrows(node->src1);
  7837. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7838. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7839. size_t cur = 0;
  7840. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7841. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7842. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7843. node->n_tasks = 1; // TODO: this actually is doing nothing
  7844. // the threads are still spinning
  7845. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7846. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7847. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7848. //printf("cur = %zu\n", cur);
  7849. } else {
  7850. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7851. }
  7852. #else
  7853. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7854. #endif
  7855. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7856. cur = 0;
  7857. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7858. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7859. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7860. node->n_tasks = 1;
  7861. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7862. } else
  7863. #endif
  7864. {
  7865. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7866. }
  7867. } else {
  7868. GGML_ASSERT(false);
  7869. }
  7870. work_size = MAX(work_size, cur);
  7871. } break;
  7872. case GGML_OP_SCALE:
  7873. {
  7874. node->n_tasks = n_threads;
  7875. } break;
  7876. case GGML_OP_CPY:
  7877. case GGML_OP_CONT:
  7878. case GGML_OP_RESHAPE:
  7879. case GGML_OP_VIEW:
  7880. case GGML_OP_PERMUTE:
  7881. case GGML_OP_TRANSPOSE:
  7882. case GGML_OP_GET_ROWS:
  7883. case GGML_OP_DIAG_MASK_INF:
  7884. {
  7885. node->n_tasks = 1;
  7886. } break;
  7887. case GGML_OP_SOFT_MAX:
  7888. {
  7889. node->n_tasks = n_threads;
  7890. } break;
  7891. case GGML_OP_ROPE:
  7892. {
  7893. node->n_tasks = n_threads;
  7894. } break;
  7895. case GGML_OP_CONV_1D_1S:
  7896. case GGML_OP_CONV_1D_2S:
  7897. {
  7898. node->n_tasks = n_threads;
  7899. GGML_ASSERT(node->src0->ne[3] == 1);
  7900. GGML_ASSERT(node->src1->ne[2] == 1);
  7901. GGML_ASSERT(node->src1->ne[3] == 1);
  7902. size_t cur = 0;
  7903. const int nk = node->src0->ne[0];
  7904. if (node->src0->type == GGML_TYPE_F16 &&
  7905. node->src1->type == GGML_TYPE_F32) {
  7906. cur = sizeof(ggml_fp16_t)*(
  7907. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7908. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7909. );
  7910. } else if (node->src0->type == GGML_TYPE_F32 &&
  7911. node->src1->type == GGML_TYPE_F32) {
  7912. cur = sizeof(float)*(
  7913. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7914. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7915. );
  7916. } else {
  7917. GGML_ASSERT(false);
  7918. }
  7919. work_size = MAX(work_size, cur);
  7920. } break;
  7921. case GGML_OP_FLASH_ATTN:
  7922. {
  7923. node->n_tasks = n_threads;
  7924. size_t cur = 0;
  7925. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7926. if (node->src1->type == GGML_TYPE_F32) {
  7927. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7928. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7929. }
  7930. if (node->src1->type == GGML_TYPE_F16) {
  7931. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7932. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7933. }
  7934. work_size = MAX(work_size, cur);
  7935. } break;
  7936. case GGML_OP_FLASH_FF:
  7937. {
  7938. node->n_tasks = n_threads;
  7939. size_t cur = 0;
  7940. if (node->src1->type == GGML_TYPE_F32) {
  7941. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7942. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7943. }
  7944. if (node->src1->type == GGML_TYPE_F16) {
  7945. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7946. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7947. }
  7948. work_size = MAX(work_size, cur);
  7949. } break;
  7950. case GGML_OP_NONE:
  7951. {
  7952. node->n_tasks = 1;
  7953. } break;
  7954. case GGML_OP_COUNT:
  7955. {
  7956. GGML_ASSERT(false);
  7957. } break;
  7958. }
  7959. }
  7960. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7961. GGML_ASSERT(false); // TODO: better handling
  7962. }
  7963. if (work_size > 0 && cgraph->work == NULL) {
  7964. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7965. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7966. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7967. }
  7968. }
  7969. const int64_t perf_start_cycles = ggml_perf_cycles();
  7970. const int64_t perf_start_time_us = ggml_perf_time_us();
  7971. for (int i = 0; i < cgraph->n_nodes; i++) {
  7972. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7973. struct ggml_tensor * node = cgraph->nodes[i];
  7974. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7975. //if (node->grad == NULL && node->perf_runs > 0) {
  7976. // continue;
  7977. //}
  7978. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7979. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7980. // INIT
  7981. struct ggml_compute_params params = {
  7982. /*.type =*/ GGML_TASK_INIT,
  7983. /*.ith =*/ 0,
  7984. /*.nth =*/ node->n_tasks,
  7985. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7986. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7987. };
  7988. ggml_compute_forward(&params, node);
  7989. // COMPUTE
  7990. if (node->n_tasks > 1) {
  7991. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7992. atomic_store(&state_shared.has_work, false);
  7993. }
  7994. while (atomic_load(&state_shared.has_work)) {
  7995. ggml_lock_lock (&state_shared.spin);
  7996. ggml_lock_unlock(&state_shared.spin);
  7997. }
  7998. // launch thread pool
  7999. for (int j = 0; j < n_threads - 1; j++) {
  8000. workers[j].params = (struct ggml_compute_params) {
  8001. .type = GGML_TASK_COMPUTE,
  8002. .ith = j + 1,
  8003. .nth = node->n_tasks,
  8004. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8005. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8006. };
  8007. workers[j].node = node;
  8008. }
  8009. atomic_fetch_sub(&state_shared.n_ready, 1);
  8010. while (atomic_load(&state_shared.n_ready) > 0) {
  8011. ggml_lock_lock (&state_shared.spin);
  8012. ggml_lock_unlock(&state_shared.spin);
  8013. }
  8014. atomic_store(&state_shared.has_work, true);
  8015. }
  8016. params.type = GGML_TASK_COMPUTE;
  8017. ggml_compute_forward(&params, node);
  8018. // wait for thread pool
  8019. if (node->n_tasks > 1) {
  8020. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8021. atomic_store(&state_shared.has_work, false);
  8022. }
  8023. while (atomic_load(&state_shared.has_work)) {
  8024. ggml_lock_lock (&state_shared.spin);
  8025. ggml_lock_unlock(&state_shared.spin);
  8026. }
  8027. atomic_fetch_sub(&state_shared.n_ready, 1);
  8028. while (atomic_load(&state_shared.n_ready) != 0) {
  8029. ggml_lock_lock (&state_shared.spin);
  8030. ggml_lock_unlock(&state_shared.spin);
  8031. }
  8032. }
  8033. // FINALIZE
  8034. if (node->n_tasks > 1) {
  8035. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8036. atomic_store(&state_shared.has_work, false);
  8037. }
  8038. while (atomic_load(&state_shared.has_work)) {
  8039. ggml_lock_lock (&state_shared.spin);
  8040. ggml_lock_unlock(&state_shared.spin);
  8041. }
  8042. // launch thread pool
  8043. for (int j = 0; j < n_threads - 1; j++) {
  8044. workers[j].params = (struct ggml_compute_params) {
  8045. .type = GGML_TASK_FINALIZE,
  8046. .ith = j + 1,
  8047. .nth = node->n_tasks,
  8048. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8049. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8050. };
  8051. workers[j].node = node;
  8052. }
  8053. atomic_fetch_sub(&state_shared.n_ready, 1);
  8054. while (atomic_load(&state_shared.n_ready) > 0) {
  8055. ggml_lock_lock (&state_shared.spin);
  8056. ggml_lock_unlock(&state_shared.spin);
  8057. }
  8058. atomic_store(&state_shared.has_work, true);
  8059. }
  8060. params.type = GGML_TASK_FINALIZE;
  8061. ggml_compute_forward(&params, node);
  8062. // wait for thread pool
  8063. if (node->n_tasks > 1) {
  8064. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8065. atomic_store(&state_shared.has_work, false);
  8066. }
  8067. while (atomic_load(&state_shared.has_work)) {
  8068. ggml_lock_lock (&state_shared.spin);
  8069. ggml_lock_unlock(&state_shared.spin);
  8070. }
  8071. atomic_fetch_sub(&state_shared.n_ready, 1);
  8072. while (atomic_load(&state_shared.n_ready) != 0) {
  8073. ggml_lock_lock (&state_shared.spin);
  8074. ggml_lock_unlock(&state_shared.spin);
  8075. }
  8076. }
  8077. // performance stats (node)
  8078. {
  8079. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8080. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8081. node->perf_runs++;
  8082. node->perf_cycles += perf_cycles_cur;
  8083. node->perf_time_us += perf_time_us_cur;
  8084. }
  8085. }
  8086. // join thread pool
  8087. if (n_threads > 1) {
  8088. atomic_store(&state_shared.stop, true);
  8089. atomic_store(&state_shared.has_work, true);
  8090. for (int j = 0; j < n_threads - 1; j++) {
  8091. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8092. GGML_ASSERT(rc == 0);
  8093. UNUSED(rc);
  8094. }
  8095. ggml_lock_destroy(&state_shared.spin);
  8096. }
  8097. // performance stats (graph)
  8098. {
  8099. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8100. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8101. cgraph->perf_runs++;
  8102. cgraph->perf_cycles += perf_cycles_cur;
  8103. cgraph->perf_time_us += perf_time_us_cur;
  8104. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8105. __func__, cgraph->perf_runs,
  8106. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8107. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8108. (double) perf_time_us_cur / 1000.0,
  8109. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8110. }
  8111. }
  8112. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8113. for (int i = 0; i < cgraph->n_nodes; i++) {
  8114. struct ggml_tensor * grad = cgraph->grads[i];
  8115. if (grad) {
  8116. ggml_set_zero(grad);
  8117. }
  8118. }
  8119. }
  8120. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8121. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8122. GGML_PRINT("=== GRAPH ===\n");
  8123. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8124. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  8125. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8126. for (int i = 0; i < cgraph->n_nodes; i++) {
  8127. struct ggml_tensor * node = cgraph->nodes[i];
  8128. perf_total_per_op_us[node->op] += node->perf_time_us;
  8129. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8130. i,
  8131. node->ne[0], node->ne[1], node->ne[2],
  8132. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8133. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8134. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8135. (double) node->perf_time_us / 1000.0,
  8136. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8137. }
  8138. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8139. for (int i = 0; i < cgraph->n_leafs; i++) {
  8140. struct ggml_tensor * node = cgraph->leafs[i];
  8141. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8142. i,
  8143. node->ne[0], node->ne[1],
  8144. GGML_OP_LABEL[node->op]);
  8145. }
  8146. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8147. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8148. }
  8149. GGML_PRINT("========================================\n");
  8150. }
  8151. // check if node is part of the graph
  8152. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8153. if (cgraph == NULL) {
  8154. return true;
  8155. }
  8156. for (int i = 0; i < cgraph->n_nodes; i++) {
  8157. if (cgraph->nodes[i] == node) {
  8158. return true;
  8159. }
  8160. }
  8161. return false;
  8162. }
  8163. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8164. for (int i = 0; i < cgraph->n_nodes; i++) {
  8165. struct ggml_tensor * parent = cgraph->nodes[i];
  8166. if (parent->grad == node) {
  8167. return parent;
  8168. }
  8169. }
  8170. return NULL;
  8171. }
  8172. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8173. char color[16];
  8174. FILE * fp = fopen(filename, "w");
  8175. GGML_ASSERT(fp);
  8176. fprintf(fp, "digraph G {\n");
  8177. fprintf(fp, " newrank = true;\n");
  8178. fprintf(fp, " rankdir = LR;\n");
  8179. for (int i = 0; i < gb->n_nodes; i++) {
  8180. struct ggml_tensor * node = gb->nodes[i];
  8181. if (ggml_graph_get_parent(gb, node) != NULL) {
  8182. continue;
  8183. }
  8184. if (node->is_param) {
  8185. snprintf(color, sizeof(color), "yellow");
  8186. } else if (node->grad) {
  8187. if (ggml_graph_find(gf, node)) {
  8188. snprintf(color, sizeof(color), "green");
  8189. } else {
  8190. snprintf(color, sizeof(color), "lightblue");
  8191. }
  8192. } else {
  8193. snprintf(color, sizeof(color), "white");
  8194. }
  8195. fprintf(fp, " \"%p\" [ \
  8196. style = filled; fillcolor = %s; shape = record; \
  8197. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8198. (void *) node, color,
  8199. i, node->ne[0], node->ne[1],
  8200. GGML_OP_SYMBOL[node->op]);
  8201. if (node->grad) {
  8202. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8203. } else {
  8204. fprintf(fp, "\"; ]\n");
  8205. }
  8206. }
  8207. for (int i = 0; i < gb->n_leafs; i++) {
  8208. struct ggml_tensor * node = gb->leafs[i];
  8209. snprintf(color, sizeof(color), "pink");
  8210. if (ggml_nelements(node) == 1) {
  8211. fprintf(fp, " \"%p\" [ \
  8212. style = filled; fillcolor = %s; shape = record; \
  8213. label=\"<x>%.1e\"; ]\n",
  8214. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8215. } else {
  8216. fprintf(fp, " \"%p\" [ \
  8217. style = filled; fillcolor = %s; shape = record; \
  8218. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8219. (void *) node, color,
  8220. i, node->ne[0], node->ne[1]);
  8221. }
  8222. }
  8223. for (int i = 0; i < gb->n_nodes; i++) {
  8224. struct ggml_tensor * node = gb->nodes[i];
  8225. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8226. if (node->src0) {
  8227. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8228. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8229. parent0 ? (void *) parent0 : (void *) node->src0,
  8230. parent0 ? "g" : "x",
  8231. parent ? (void *) parent : (void *) node,
  8232. parent ? "g" : "x",
  8233. parent ? "empty" : "vee",
  8234. parent ? "dashed" : "solid");
  8235. }
  8236. if (node->src1) {
  8237. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8238. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8239. parent1 ? (void *) parent1 : (void *) node->src1,
  8240. parent1 ? "g" : "x",
  8241. parent ? (void *) parent : (void *) node,
  8242. parent ? "g" : "x",
  8243. parent ? "empty" : "vee",
  8244. parent ? "dashed" : "solid");
  8245. }
  8246. }
  8247. for (int i = 0; i < gb->n_leafs; i++) {
  8248. struct ggml_tensor * node = gb->leafs[i];
  8249. if (node->src0) {
  8250. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8251. (void *) node->src0, "x",
  8252. (void *) node, "x");
  8253. }
  8254. if (node->src1) {
  8255. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8256. (void *) node->src1, "x",
  8257. (void *) node, "x");
  8258. }
  8259. }
  8260. fprintf(fp, "}\n");
  8261. fclose(fp);
  8262. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8263. }
  8264. ////////////////////////////////////////////////////////////////////////////////
  8265. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8266. int i = 0;
  8267. for (int p = 0; p < np; ++p) {
  8268. const int64_t ne = ggml_nelements(ps[p]) ;
  8269. // TODO: add function to set tensor from array
  8270. for (int64_t j = 0; j < ne; ++j) {
  8271. ggml_set_f32_1d(ps[p], j, x[i++]);
  8272. }
  8273. }
  8274. }
  8275. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8276. int i = 0;
  8277. for (int p = 0; p < np; ++p) {
  8278. const int64_t ne = ggml_nelements(ps[p]) ;
  8279. // TODO: add function to get all elements at once
  8280. for (int64_t j = 0; j < ne; ++j) {
  8281. x[i++] = ggml_get_f32_1d(ps[p], j);
  8282. }
  8283. }
  8284. }
  8285. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8286. int i = 0;
  8287. for (int p = 0; p < np; ++p) {
  8288. const int64_t ne = ggml_nelements(ps[p]) ;
  8289. // TODO: add function to get all elements at once
  8290. for (int64_t j = 0; j < ne; ++j) {
  8291. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8292. }
  8293. }
  8294. }
  8295. //
  8296. // ADAM
  8297. //
  8298. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8299. //
  8300. static enum ggml_opt_result ggml_opt_adam(
  8301. struct ggml_context * ctx,
  8302. struct ggml_opt_params params,
  8303. struct ggml_tensor * f,
  8304. struct ggml_cgraph * gf,
  8305. struct ggml_cgraph * gb) {
  8306. GGML_ASSERT(ggml_is_scalar(f));
  8307. gf->n_threads = params.n_threads;
  8308. gb->n_threads = params.n_threads;
  8309. // these will store the parameters we want to optimize
  8310. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8311. int np = 0;
  8312. int nx = 0;
  8313. for (int i = 0; i < gf->n_nodes; ++i) {
  8314. if (gf->nodes[i]->is_param) {
  8315. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8316. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8317. ps[np++] = gf->nodes[i];
  8318. nx += ggml_nelements(gf->nodes[i]);
  8319. }
  8320. }
  8321. // constants
  8322. const float alpha = params.adam.alpha;
  8323. const float beta1 = params.adam.beta1;
  8324. const float beta2 = params.adam.beta2;
  8325. const float eps = params.adam.eps;
  8326. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8327. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8328. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8329. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8330. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8331. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8332. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8333. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8334. // initialize
  8335. ggml_vec_set_f32(nx, m, 0.0f);
  8336. ggml_vec_set_f32(nx, v, 0.0f);
  8337. // update view
  8338. ggml_opt_get_params(np, ps, x);
  8339. // compute the function value
  8340. ggml_graph_reset (gf);
  8341. ggml_set_f32 (f->grad, 1.0f);
  8342. ggml_graph_compute(ctx, gb);
  8343. float fx_prev = ggml_get_f32_1d(f, 0);
  8344. if (pf) {
  8345. pf[0] = fx_prev;
  8346. }
  8347. int n_no_improvement = 0;
  8348. float fx_best = fx_prev;
  8349. // run the optimizer
  8350. for (int t = 0; t < params.adam.n_iter; ++t) {
  8351. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8352. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8353. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8354. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8355. for (int i = 0; i < np; ++i) {
  8356. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8357. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8358. }
  8359. const int64_t t_start_wall = ggml_time_us();
  8360. const int64_t t_start_cpu = ggml_cycles();
  8361. UNUSED(t_start_wall);
  8362. UNUSED(t_start_cpu);
  8363. {
  8364. // update the gradient
  8365. ggml_opt_get_grad(np, ps, g1);
  8366. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8367. ggml_vec_scale_f32(nx, m, beta1);
  8368. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8369. // g2 = g1^2
  8370. ggml_vec_sqr_f32 (nx, g2, g1);
  8371. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8372. ggml_vec_scale_f32(nx, v, beta2);
  8373. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8374. // m^hat = m_t / (1 - beta1^t)
  8375. // v^hat = v_t / (1 - beta2^t)
  8376. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8377. ggml_vec_cpy_f32 (nx, mh, m);
  8378. ggml_vec_cpy_f32 (nx, vh, v);
  8379. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8380. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8381. ggml_vec_sqrt_f32 (nx, vh, vh);
  8382. ggml_vec_acc1_f32 (nx, vh, eps);
  8383. ggml_vec_div_f32 (nx, mh, mh, vh);
  8384. ggml_vec_sub_f32 (nx, x, x, mh);
  8385. // update the parameters
  8386. ggml_opt_set_params(np, ps, x);
  8387. }
  8388. ggml_graph_reset (gf);
  8389. ggml_set_f32 (f->grad, 1.0f);
  8390. ggml_graph_compute(ctx, gb);
  8391. const float fx = ggml_get_f32_1d(f, 0);
  8392. // check convergence
  8393. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8394. GGML_PRINT_DEBUG("converged\n");
  8395. return GGML_OPT_OK;
  8396. }
  8397. // delta-based convergence test
  8398. if (pf != NULL) {
  8399. // need at least params.past iterations to start checking for convergence
  8400. if (params.past <= t) {
  8401. const float rate = (pf[t%params.past] - fx)/fx;
  8402. if (fabsf(rate) < params.delta) {
  8403. return GGML_OPT_OK;
  8404. }
  8405. }
  8406. pf[t%params.past] = fx;
  8407. }
  8408. // check for improvement
  8409. if (params.max_no_improvement > 0) {
  8410. if (fx_best > fx) {
  8411. fx_best = fx;
  8412. n_no_improvement = 0;
  8413. } else {
  8414. ++n_no_improvement;
  8415. if (n_no_improvement >= params.max_no_improvement) {
  8416. return GGML_OPT_OK;
  8417. }
  8418. }
  8419. }
  8420. fx_prev = fx;
  8421. {
  8422. const int64_t t_end_cpu = ggml_cycles();
  8423. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8424. UNUSED(t_end_cpu);
  8425. const int64_t t_end_wall = ggml_time_us();
  8426. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8427. UNUSED(t_end_wall);
  8428. }
  8429. }
  8430. return GGML_OPT_DID_NOT_CONVERGE;
  8431. }
  8432. //
  8433. // L-BFGS
  8434. //
  8435. // the L-BFGS implementation below is based on the following implementation:
  8436. //
  8437. // https://github.com/chokkan/liblbfgs
  8438. //
  8439. struct ggml_lbfgs_iteration_data {
  8440. float alpha;
  8441. float ys;
  8442. float * s;
  8443. float * y;
  8444. };
  8445. static enum ggml_opt_result linesearch_backtracking(
  8446. struct ggml_context * ctx,
  8447. const struct ggml_opt_params * params,
  8448. int nx,
  8449. float * x,
  8450. float * fx,
  8451. float * g,
  8452. float * d,
  8453. float * step,
  8454. const float * xp,
  8455. struct ggml_tensor * f,
  8456. struct ggml_cgraph * gf,
  8457. struct ggml_cgraph * gb,
  8458. const int np,
  8459. struct ggml_tensor * ps[]) {
  8460. int count = 0;
  8461. float width = 0.0f;
  8462. float dg = 0.0f;
  8463. float finit = 0.0f;
  8464. float dginit = 0.0f;
  8465. float dgtest = 0.0f;
  8466. const float dec = 0.5f;
  8467. const float inc = 2.1f;
  8468. if (*step <= 0.f) {
  8469. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8470. }
  8471. // compute the initial gradient in the search direction
  8472. ggml_vec_dot_f32(nx, &dginit, g, d);
  8473. // make sure that d points to a descent direction
  8474. if (0 < dginit) {
  8475. return GGML_LINESEARCH_FAIL;
  8476. }
  8477. // initialize local variables
  8478. finit = *fx;
  8479. dgtest = params->lbfgs.ftol*dginit;
  8480. while (true) {
  8481. ggml_vec_cpy_f32(nx, x, xp);
  8482. ggml_vec_mad_f32(nx, x, d, *step);
  8483. // evaluate the function and gradient values
  8484. {
  8485. ggml_opt_set_params(np, ps, x);
  8486. ggml_graph_reset (gf);
  8487. ggml_set_f32 (f->grad, 1.0f);
  8488. ggml_graph_compute(ctx, gb);
  8489. ggml_opt_get_grad(np, ps, g);
  8490. *fx = ggml_get_f32_1d(f, 0);
  8491. }
  8492. ++count;
  8493. if (*fx > finit + (*step)*dgtest) {
  8494. width = dec;
  8495. } else {
  8496. // Armijo condition is satisfied
  8497. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8498. return count;
  8499. }
  8500. ggml_vec_dot_f32(nx, &dg, g, d);
  8501. // check the Wolfe condition
  8502. if (dg < params->lbfgs.wolfe * dginit) {
  8503. width = inc;
  8504. } else {
  8505. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8506. // regular Wolfe conditions
  8507. return count;
  8508. }
  8509. if(dg > -params->lbfgs.wolfe*dginit) {
  8510. width = dec;
  8511. } else {
  8512. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8513. return count;
  8514. }
  8515. return count;
  8516. }
  8517. }
  8518. if (*step < params->lbfgs.min_step) {
  8519. return GGML_LINESEARCH_MINIMUM_STEP;
  8520. }
  8521. if (*step > params->lbfgs.max_step) {
  8522. return GGML_LINESEARCH_MAXIMUM_STEP;
  8523. }
  8524. if (params->lbfgs.max_linesearch <= count) {
  8525. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8526. }
  8527. (*step) *= width;
  8528. }
  8529. return GGML_LINESEARCH_FAIL;
  8530. }
  8531. static enum ggml_opt_result ggml_opt_lbfgs(
  8532. struct ggml_context * ctx,
  8533. struct ggml_opt_params params,
  8534. struct ggml_tensor * f,
  8535. struct ggml_cgraph * gf,
  8536. struct ggml_cgraph * gb) {
  8537. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8538. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8539. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8540. return GGML_OPT_INVALID_WOLFE;
  8541. }
  8542. }
  8543. gf->n_threads = params.n_threads;
  8544. gb->n_threads = params.n_threads;
  8545. const int m = params.lbfgs.m;
  8546. // these will store the parameters we want to optimize
  8547. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8548. int np = 0;
  8549. int nx = 0;
  8550. for (int i = 0; i < gf->n_nodes; ++i) {
  8551. if (gf->nodes[i]->is_param) {
  8552. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8553. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8554. ps[np++] = gf->nodes[i];
  8555. nx += ggml_nelements(gf->nodes[i]);
  8556. }
  8557. }
  8558. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8559. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8560. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8561. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8562. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8563. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8564. float fx = 0.0f; // cost function value
  8565. float xnorm = 0.0f; // ||x||
  8566. float gnorm = 0.0f; // ||g||
  8567. float step = 0.0f;
  8568. // initialize x from the graph nodes
  8569. ggml_opt_get_params(np, ps, x);
  8570. // the L-BFGS memory
  8571. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8572. for (int i = 0; i < m; ++i) {
  8573. lm[i].alpha = 0.0f;
  8574. lm[i].ys = 0.0f;
  8575. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8576. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8577. }
  8578. // evaluate the function value and its gradient
  8579. {
  8580. ggml_opt_set_params(np, ps, x);
  8581. ggml_graph_reset (gf);
  8582. ggml_set_f32 (f->grad, 1.0f);
  8583. ggml_graph_compute(ctx, gb);
  8584. ggml_opt_get_grad(np, ps, g);
  8585. fx = ggml_get_f32_1d(f, 0);
  8586. }
  8587. if (pf) {
  8588. pf[0] = fx;
  8589. }
  8590. float fx_best = fx;
  8591. // search direction = -gradient
  8592. ggml_vec_neg_f32(nx, d, g);
  8593. // ||x||, ||g||
  8594. ggml_vec_norm_f32(nx, &xnorm, x);
  8595. ggml_vec_norm_f32(nx, &gnorm, g);
  8596. if (xnorm < 1.0f) {
  8597. xnorm = 1.0f;
  8598. }
  8599. // already optimized
  8600. if (gnorm/xnorm <= params.lbfgs.eps) {
  8601. return GGML_OPT_OK;
  8602. }
  8603. // initial step
  8604. ggml_vec_norm_inv_f32(nx, &step, d);
  8605. int j = 0;
  8606. int k = 1;
  8607. int ls = 0;
  8608. int end = 0;
  8609. int bound = 0;
  8610. int n_no_improvement = 0;
  8611. float ys = 0.0f;
  8612. float yy = 0.0f;
  8613. float beta = 0.0f;
  8614. while (true) {
  8615. // store the current position and gradient vectors
  8616. ggml_vec_cpy_f32(nx, xp, x);
  8617. ggml_vec_cpy_f32(nx, gp, g);
  8618. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8619. if (ls < 0) {
  8620. // linesearch failed - go back to the previous point and return
  8621. ggml_vec_cpy_f32(nx, x, xp);
  8622. ggml_vec_cpy_f32(nx, g, gp);
  8623. return ls;
  8624. }
  8625. ggml_vec_norm_f32(nx, &xnorm, x);
  8626. ggml_vec_norm_f32(nx, &gnorm, g);
  8627. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8628. if (xnorm < 1.0f) {
  8629. xnorm = 1.0f;
  8630. }
  8631. if (gnorm/xnorm <= params.lbfgs.eps) {
  8632. // converged
  8633. return GGML_OPT_OK;
  8634. }
  8635. // delta-based convergence test
  8636. if (pf != NULL) {
  8637. // need at least params.past iterations to start checking for convergence
  8638. if (params.past <= k) {
  8639. const float rate = (pf[k%params.past] - fx)/fx;
  8640. if (fabsf(rate) < params.delta) {
  8641. return GGML_OPT_OK;
  8642. }
  8643. }
  8644. pf[k%params.past] = fx;
  8645. }
  8646. // check for improvement
  8647. if (params.max_no_improvement > 0) {
  8648. if (fx < fx_best) {
  8649. fx_best = fx;
  8650. n_no_improvement = 0;
  8651. } else {
  8652. n_no_improvement++;
  8653. if (n_no_improvement >= params.max_no_improvement) {
  8654. return GGML_OPT_OK;
  8655. }
  8656. }
  8657. }
  8658. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8659. // reached the maximum number of iterations
  8660. return GGML_OPT_DID_NOT_CONVERGE;
  8661. }
  8662. // update vectors s and y:
  8663. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8664. // y_{k+1} = g_{k+1} - g_{k}.
  8665. //
  8666. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8667. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8668. // compute scalars ys and yy:
  8669. // ys = y^t \cdot s -> 1 / \rho.
  8670. // yy = y^t \cdot y.
  8671. //
  8672. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8673. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8674. lm[end].ys = ys;
  8675. // find new search direction
  8676. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8677. bound = (m <= k) ? m : k;
  8678. k++;
  8679. end = (end + 1)%m;
  8680. // initialize search direction with -g
  8681. ggml_vec_neg_f32(nx, d, g);
  8682. j = end;
  8683. for (int i = 0; i < bound; ++i) {
  8684. j = (j + m - 1) % m;
  8685. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8686. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8687. lm[j].alpha /= lm[j].ys;
  8688. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8689. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8690. }
  8691. ggml_vec_scale_f32(nx, d, ys/yy);
  8692. for (int i = 0; i < bound; ++i) {
  8693. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8694. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8695. beta /= lm[j].ys;
  8696. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8697. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8698. j = (j + 1)%m;
  8699. }
  8700. step = 1.0;
  8701. }
  8702. return GGML_OPT_DID_NOT_CONVERGE;
  8703. }
  8704. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8705. struct ggml_opt_params result;
  8706. switch (type) {
  8707. case GGML_OPT_ADAM:
  8708. {
  8709. result = (struct ggml_opt_params) {
  8710. .type = GGML_OPT_ADAM,
  8711. .n_threads = 1,
  8712. .past = 0,
  8713. .delta = 1e-5f,
  8714. .max_no_improvement = 100,
  8715. .print_forward_graph = true,
  8716. .print_backward_graph = true,
  8717. .adam = {
  8718. .n_iter = 10000,
  8719. .alpha = 0.001f,
  8720. .beta1 = 0.9f,
  8721. .beta2 = 0.999f,
  8722. .eps = 1e-8f,
  8723. .eps_f = 1e-5f,
  8724. .eps_g = 1e-3f,
  8725. },
  8726. };
  8727. } break;
  8728. case GGML_OPT_LBFGS:
  8729. {
  8730. result = (struct ggml_opt_params) {
  8731. .type = GGML_OPT_LBFGS,
  8732. .n_threads = 1,
  8733. .past = 0,
  8734. .delta = 1e-5f,
  8735. .max_no_improvement = 0,
  8736. .print_forward_graph = true,
  8737. .print_backward_graph = true,
  8738. .lbfgs = {
  8739. .m = 6,
  8740. .n_iter = 100,
  8741. .max_linesearch = 20,
  8742. .eps = 1e-5f,
  8743. .ftol = 1e-4f,
  8744. .wolfe = 0.9f,
  8745. .min_step = 1e-20f,
  8746. .max_step = 1e+20f,
  8747. .linesearch = GGML_LINESEARCH_DEFAULT,
  8748. },
  8749. };
  8750. } break;
  8751. }
  8752. return result;
  8753. }
  8754. enum ggml_opt_result ggml_opt(
  8755. struct ggml_context * ctx,
  8756. struct ggml_opt_params params,
  8757. struct ggml_tensor * f) {
  8758. bool free_ctx = false;
  8759. if (ctx == NULL) {
  8760. struct ggml_init_params params_ctx = {
  8761. .mem_size = 16*1024*1024,
  8762. .mem_buffer = NULL,
  8763. .no_alloc = false,
  8764. };
  8765. ctx = ggml_init(params_ctx);
  8766. if (ctx == NULL) {
  8767. return GGML_OPT_NO_CONTEXT;
  8768. }
  8769. free_ctx = true;
  8770. }
  8771. enum ggml_opt_result result = GGML_OPT_OK;
  8772. // build forward + backward compute graphs
  8773. struct ggml_cgraph gf = ggml_build_forward (f);
  8774. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8775. switch (params.type) {
  8776. case GGML_OPT_ADAM:
  8777. {
  8778. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8779. } break;
  8780. case GGML_OPT_LBFGS:
  8781. {
  8782. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8783. } break;
  8784. }
  8785. if (params.print_forward_graph) {
  8786. ggml_graph_print (&gf);
  8787. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8788. }
  8789. if (params.print_backward_graph) {
  8790. ggml_graph_print (&gb);
  8791. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8792. }
  8793. if (free_ctx) {
  8794. ggml_free(ctx);
  8795. }
  8796. return result;
  8797. }
  8798. ////////////////////////////////////////////////////////////////////////////////
  8799. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8800. assert(k % QK == 0);
  8801. const int nb = k / QK;
  8802. for (int j = 0; j < n; j += k) {
  8803. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8804. quantize_row_q4_0_reference(src + j, y, k);
  8805. for (int i = 0; i < nb; i++) {
  8806. for (int l = 0; l < QK; l += 2) {
  8807. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8808. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8809. hist[vi0]++;
  8810. hist[vi1]++;
  8811. }
  8812. }
  8813. }
  8814. return (n/QK*sizeof(block_q4_0));
  8815. }
  8816. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8817. assert(k % QK == 0);
  8818. const int nb = k / QK;
  8819. for (int j = 0; j < n; j += k) {
  8820. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8821. quantize_row_q4_1_reference(src + j, y, k);
  8822. for (int i = 0; i < nb; i++) {
  8823. for (int l = 0; l < QK; l += 2) {
  8824. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8825. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8826. hist[vi0]++;
  8827. hist[vi1]++;
  8828. }
  8829. }
  8830. }
  8831. return (n/QK*sizeof(block_q4_1));
  8832. }
  8833. ////////////////////////////////////////////////////////////////////////////////
  8834. int ggml_cpu_has_avx(void) {
  8835. #if defined(__AVX__)
  8836. return 1;
  8837. #else
  8838. return 0;
  8839. #endif
  8840. }
  8841. int ggml_cpu_has_avx2(void) {
  8842. #if defined(__AVX2__)
  8843. return 1;
  8844. #else
  8845. return 0;
  8846. #endif
  8847. }
  8848. int ggml_cpu_has_avx512(void) {
  8849. #if defined(__AVX512F__)
  8850. return 1;
  8851. #else
  8852. return 0;
  8853. #endif
  8854. }
  8855. int ggml_cpu_has_fma(void) {
  8856. #if defined(__FMA__)
  8857. return 1;
  8858. #else
  8859. return 0;
  8860. #endif
  8861. }
  8862. int ggml_cpu_has_neon(void) {
  8863. #if defined(__ARM_NEON)
  8864. return 1;
  8865. #else
  8866. return 0;
  8867. #endif
  8868. }
  8869. int ggml_cpu_has_arm_fma(void) {
  8870. #if defined(__ARM_FEATURE_FMA)
  8871. return 1;
  8872. #else
  8873. return 0;
  8874. #endif
  8875. }
  8876. int ggml_cpu_has_f16c(void) {
  8877. #if defined(__F16C__)
  8878. return 1;
  8879. #else
  8880. return 0;
  8881. #endif
  8882. }
  8883. int ggml_cpu_has_fp16_va(void) {
  8884. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8885. return 1;
  8886. #else
  8887. return 0;
  8888. #endif
  8889. }
  8890. int ggml_cpu_has_wasm_simd(void) {
  8891. #if defined(__wasm_simd128__)
  8892. return 1;
  8893. #else
  8894. return 0;
  8895. #endif
  8896. }
  8897. int ggml_cpu_has_blas(void) {
  8898. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8899. return 1;
  8900. #else
  8901. return 0;
  8902. #endif
  8903. }
  8904. int ggml_cpu_has_sse3(void) {
  8905. #if defined(__SSE3__)
  8906. return 1;
  8907. #else
  8908. return 0;
  8909. #endif
  8910. }
  8911. int ggml_cpu_has_vsx(void) {
  8912. #if defined(__POWER9_VECTOR__)
  8913. return 1;
  8914. #else
  8915. return 0;
  8916. #endif
  8917. }
  8918. ////////////////////////////////////////////////////////////////////////////////