1
0

server.cpp 152 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (update with ./deps.sh)
  15. #include "index.html.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <condition_variable>
  19. #include <cstddef>
  20. #include <cinttypes>
  21. #include <deque>
  22. #include <memory>
  23. #include <mutex>
  24. #include <signal.h>
  25. #include <thread>
  26. #include <unordered_map>
  27. #include <unordered_set>
  28. using json = nlohmann::ordered_json;
  29. enum stop_type {
  30. STOP_TYPE_NONE,
  31. STOP_TYPE_EOS,
  32. STOP_TYPE_WORD,
  33. STOP_TYPE_LIMIT,
  34. };
  35. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  36. enum slot_state {
  37. SLOT_STATE_IDLE,
  38. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  39. SLOT_STATE_PROCESSING_PROMPT,
  40. SLOT_STATE_DONE_PROMPT,
  41. SLOT_STATE_GENERATING,
  42. };
  43. enum server_state {
  44. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  45. SERVER_STATE_READY, // Server is ready and model is loaded
  46. };
  47. enum server_task_type {
  48. SERVER_TASK_TYPE_COMPLETION,
  49. SERVER_TASK_TYPE_EMBEDDING,
  50. SERVER_TASK_TYPE_RERANK,
  51. SERVER_TASK_TYPE_INFILL,
  52. SERVER_TASK_TYPE_CANCEL,
  53. SERVER_TASK_TYPE_NEXT_RESPONSE,
  54. SERVER_TASK_TYPE_METRICS,
  55. SERVER_TASK_TYPE_SLOT_SAVE,
  56. SERVER_TASK_TYPE_SLOT_RESTORE,
  57. SERVER_TASK_TYPE_SLOT_ERASE,
  58. SERVER_TASK_TYPE_SET_LORA,
  59. };
  60. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  61. enum error_type {
  62. ERROR_TYPE_INVALID_REQUEST,
  63. ERROR_TYPE_AUTHENTICATION,
  64. ERROR_TYPE_SERVER,
  65. ERROR_TYPE_NOT_FOUND,
  66. ERROR_TYPE_PERMISSION,
  67. ERROR_TYPE_UNAVAILABLE, // custom error
  68. ERROR_TYPE_NOT_SUPPORTED, // custom error
  69. };
  70. struct slot_params {
  71. bool stream = true;
  72. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  73. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  74. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  75. int32_t n_predict = -1; // new tokens to predict
  76. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  77. int64_t t_max_prompt_ms = -1; // TODO: implement
  78. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  79. std::vector<std::string> antiprompt;
  80. bool timings_per_token = false;
  81. bool ignore_eos = false;
  82. struct common_params_sampling sampling;
  83. struct common_params_speculative speculative;
  84. // OAI-compat fields
  85. bool verbose = false;
  86. bool oaicompat = false;
  87. bool oaicompat_chat = true;
  88. std::string oaicompat_model;
  89. std::string oaicompat_cmpl_id;
  90. json to_json() const {
  91. std::vector<std::string> samplers;
  92. samplers.reserve(sampling.samplers.size());
  93. for (const auto & sampler : sampling.samplers) {
  94. samplers.emplace_back(common_sampler_type_to_str(sampler));
  95. }
  96. return json {
  97. {"n_predict", n_predict}, // Server configured n_predict
  98. {"seed", sampling.seed},
  99. {"temperature", sampling.temp},
  100. {"dynatemp_range", sampling.dynatemp_range},
  101. {"dynatemp_exponent", sampling.dynatemp_exponent},
  102. {"top_k", sampling.top_k},
  103. {"top_p", sampling.top_p},
  104. {"min_p", sampling.min_p},
  105. {"xtc_probability", sampling.xtc_probability},
  106. {"xtc_threshold", sampling.xtc_threshold},
  107. {"typical_p", sampling.typ_p},
  108. {"repeat_last_n", sampling.penalty_last_n},
  109. {"repeat_penalty", sampling.penalty_repeat},
  110. {"presence_penalty", sampling.penalty_present},
  111. {"frequency_penalty", sampling.penalty_freq},
  112. {"dry_multiplier", sampling.dry_multiplier},
  113. {"dry_base", sampling.dry_base},
  114. {"dry_allowed_length", sampling.dry_allowed_length},
  115. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  116. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  117. {"mirostat", sampling.mirostat},
  118. {"mirostat_tau", sampling.mirostat_tau},
  119. {"mirostat_eta", sampling.mirostat_eta},
  120. {"penalize_nl", sampling.penalize_nl},
  121. {"stop", antiprompt},
  122. {"max_tokens", n_predict}, // User configured n_predict
  123. {"n_keep", n_keep},
  124. {"n_discard", n_discard},
  125. {"ignore_eos", sampling.ignore_eos},
  126. {"stream", stream},
  127. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  128. {"n_probs", sampling.n_probs},
  129. {"min_keep", sampling.min_keep},
  130. {"grammar", sampling.grammar},
  131. {"samplers", samplers},
  132. {"speculative.n_max", speculative.n_max},
  133. {"speculative.n_min", speculative.n_min},
  134. {"speculative.p_min", speculative.p_min},
  135. {"timings_per_token", timings_per_token},
  136. };
  137. }
  138. };
  139. struct server_task {
  140. int id = -1; // to be filled by server_queue
  141. int index = -1; // used when there are multiple prompts (batch request)
  142. server_task_type type;
  143. // used by SERVER_TASK_TYPE_CANCEL
  144. int id_target = -1;
  145. // used by SERVER_TASK_TYPE_INFERENCE
  146. slot_params params;
  147. llama_tokens prompt_tokens;
  148. int id_selected_slot = -1;
  149. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  150. struct slot_action {
  151. int slot_id;
  152. std::string filename;
  153. std::string filepath;
  154. };
  155. slot_action slot_action;
  156. // used by SERVER_TASK_TYPE_METRICS
  157. bool metrics_reset_bucket = false;
  158. server_task(server_task_type type) : type(type) {}
  159. static slot_params params_from_json_cmpl(
  160. const llama_model * model,
  161. const common_params & params_base,
  162. const json & data) {
  163. slot_params params;
  164. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  165. slot_params defaults;
  166. defaults.sampling = params_base.sampling;
  167. defaults.speculative = params_base.speculative;
  168. // enabling this will output extra debug information in the HTTP responses from the server
  169. params.verbose = params_base.verbosity > 9;
  170. params.timings_per_token = json_value(data, "timings_per_token", false);
  171. params.stream = json_value(data, "stream", false);
  172. params.cache_prompt = json_value(data, "cache_prompt", true);
  173. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  174. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  175. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  176. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  177. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  178. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  179. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  180. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  181. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  182. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  183. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  184. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  185. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  186. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  187. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  188. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  189. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  190. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  191. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  192. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  193. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  194. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  195. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  196. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  197. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  198. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  199. params.sampling.penalize_nl = json_value(data, "penalize_nl", defaults.sampling.penalize_nl);
  200. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  201. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  202. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  203. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  204. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  205. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  206. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  207. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  208. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  209. if (params.sampling.dry_base < 1.0f) {
  210. params.sampling.dry_base = defaults.sampling.dry_base;
  211. }
  212. // sequence breakers for DRY
  213. {
  214. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  215. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  216. if (data.contains("dry_sequence_breakers")) {
  217. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  218. if (params.sampling.dry_sequence_breakers.empty()) {
  219. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  220. }
  221. }
  222. }
  223. // process "json_schema" and "grammar"
  224. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  225. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  226. }
  227. if (data.contains("json_schema") && !data.contains("grammar")) {
  228. try {
  229. auto schema = json_value(data, "json_schema", json::object());
  230. params.sampling.grammar = json_schema_to_grammar(schema);
  231. } catch (const std::exception & e) {
  232. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  233. }
  234. } else {
  235. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  236. }
  237. {
  238. params.sampling.logit_bias.clear();
  239. params.ignore_eos = json_value(data, "ignore_eos", false);
  240. const auto & logit_bias = data.find("logit_bias");
  241. if (logit_bias != data.end() && logit_bias->is_array()) {
  242. const int n_vocab = llama_n_vocab(model);
  243. for (const auto & el : *logit_bias) {
  244. // TODO: we may want to throw errors here, in case "el" is incorrect
  245. if (el.is_array() && el.size() == 2) {
  246. float bias;
  247. if (el[1].is_number()) {
  248. bias = el[1].get<float>();
  249. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  250. bias = -INFINITY;
  251. } else {
  252. continue;
  253. }
  254. if (el[0].is_number_integer()) {
  255. llama_token tok = el[0].get<llama_token>();
  256. if (tok >= 0 && tok < n_vocab) {
  257. params.sampling.logit_bias.push_back({tok, bias});
  258. }
  259. } else if (el[0].is_string()) {
  260. auto toks = common_tokenize(model, el[0].get<std::string>(), false);
  261. for (auto tok : toks) {
  262. params.sampling.logit_bias.push_back({tok, bias});
  263. }
  264. }
  265. }
  266. }
  267. }
  268. }
  269. {
  270. params.antiprompt.clear();
  271. const auto & stop = data.find("stop");
  272. if (stop != data.end() && stop->is_array()) {
  273. for (const auto & word : *stop) {
  274. if (!word.empty()) {
  275. params.antiprompt.push_back(word);
  276. }
  277. }
  278. }
  279. }
  280. {
  281. const auto & samplers = data.find("samplers");
  282. if (samplers != data.end()) {
  283. if (samplers->is_array()) {
  284. std::vector<std::string> sampler_names;
  285. for (const auto & name : *samplers) {
  286. if (name.is_string()) {
  287. sampler_names.emplace_back(name);
  288. }
  289. }
  290. params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
  291. } else if (samplers->is_string()){
  292. std::string sampler_string;
  293. for (const auto & name : *samplers) {
  294. sampler_string += name;
  295. }
  296. params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
  297. }
  298. } else {
  299. params.sampling.samplers = defaults.sampling.samplers;
  300. }
  301. }
  302. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  303. params.oaicompat_model = json_value(data, "model", model_name);
  304. return params;
  305. }
  306. // utility function
  307. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  308. std::unordered_set<int> ids(tasks.size());
  309. for (size_t i = 0; i < tasks.size(); i++) {
  310. ids.insert(tasks[i].id);
  311. }
  312. return ids;
  313. }
  314. };
  315. struct result_timings {
  316. int32_t prompt_n = -1;
  317. double prompt_ms;
  318. double prompt_per_token_ms;
  319. double prompt_per_second;
  320. int32_t predicted_n = -1;
  321. double predicted_ms;
  322. double predicted_per_token_ms;
  323. double predicted_per_second;
  324. json to_json() const {
  325. return {
  326. {"prompt_n", prompt_n},
  327. {"prompt_ms", prompt_ms},
  328. {"prompt_per_token_ms", prompt_per_token_ms},
  329. {"prompt_per_second", prompt_per_second},
  330. {"predicted_n", predicted_n},
  331. {"predicted_ms", predicted_ms},
  332. {"predicted_per_token_ms", predicted_per_token_ms},
  333. {"predicted_per_second", predicted_per_second},
  334. };
  335. }
  336. };
  337. struct server_task_result {
  338. int id = -1;
  339. int id_slot = -1;
  340. virtual bool is_error() {
  341. // only used by server_task_result_error
  342. return false;
  343. }
  344. virtual bool is_stop() {
  345. // only used by server_task_result_cmpl_partial
  346. return false;
  347. }
  348. virtual int get_index() {
  349. return -1;
  350. }
  351. virtual json to_json() = 0;
  352. virtual ~server_task_result() = default;
  353. };
  354. // using shared_ptr for polymorphism of server_task_result
  355. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  356. inline std::string stop_type_to_str(stop_type type) {
  357. switch (type) {
  358. case STOP_TYPE_EOS: return "eos";
  359. case STOP_TYPE_WORD: return "word";
  360. case STOP_TYPE_LIMIT: return "limit";
  361. default: return "none";
  362. }
  363. }
  364. struct completion_token_output {
  365. llama_token tok;
  366. std::string text_to_send;
  367. struct token_prob {
  368. llama_token tok;
  369. std::string tok_str;
  370. float prob;
  371. };
  372. std::vector<token_prob> probs;
  373. json to_json() const {
  374. json probs_for_token = json::array();
  375. for (const auto & p : probs) {
  376. probs_for_token.push_back(json {
  377. {"tok_str", p.tok_str},
  378. {"prob", p.prob},
  379. });
  380. }
  381. return probs_for_token;
  382. }
  383. static json probs_vector_to_json(const std::vector<completion_token_output> & probs) {
  384. json out = json::array();
  385. for (const auto & prob : probs) {
  386. const std::string tok_str = prob.text_to_send;
  387. out.push_back(json {
  388. {"content", tok_str},
  389. {"probs", prob.to_json()},
  390. });
  391. }
  392. return out;
  393. }
  394. };
  395. struct server_task_result_cmpl_final : server_task_result {
  396. int index = 0;
  397. std::string content;
  398. bool stream;
  399. result_timings timings;
  400. std::string prompt;
  401. bool truncated;
  402. int32_t n_decoded;
  403. int32_t n_prompt_tokens;
  404. int32_t n_tokens_cached;
  405. int32_t has_new_line;
  406. std::string stopping_word;
  407. stop_type stop = STOP_TYPE_NONE;
  408. std::vector<completion_token_output> probs_output;
  409. slot_params generation_params;
  410. // OAI-compat fields
  411. bool verbose = false;
  412. bool oaicompat = false;
  413. bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
  414. std::string oaicompat_model;
  415. std::string oaicompat_cmpl_id;
  416. virtual int get_index() override {
  417. return index;
  418. }
  419. virtual json to_json() override {
  420. return oaicompat ? to_json_oaicompat_chat() : to_json_non_oaicompat();
  421. }
  422. json to_json_non_oaicompat() {
  423. json res = json {
  424. {"index", index},
  425. {"content", content},
  426. {"id_slot", id_slot},
  427. {"stop", true},
  428. {"model", oaicompat_model},
  429. {"tokens_predicted", n_decoded},
  430. {"tokens_evaluated", n_prompt_tokens},
  431. {"generation_settings", generation_params.to_json()},
  432. {"prompt", prompt},
  433. {"has_new_line", has_new_line},
  434. {"truncated", truncated},
  435. {"stop_type", stop_type_to_str(stop)},
  436. {"stopping_word", stopping_word},
  437. {"tokens_cached", n_tokens_cached},
  438. {"timings", timings.to_json()},
  439. };
  440. if (!probs_output.empty()) {
  441. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output);
  442. }
  443. return res;
  444. }
  445. json to_json_oaicompat_chat() {
  446. std::string finish_reason = "length";
  447. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  448. finish_reason = "stop";
  449. }
  450. json choices = json::array({json{
  451. {"finish_reason", finish_reason},
  452. {"index", 0},
  453. {"message", json{
  454. {"content", content},
  455. {"role", "assistant"}
  456. }
  457. }}});
  458. std::time_t t = std::time(0);
  459. json res = json {
  460. {"choices", choices},
  461. {"created", t},
  462. {"model", oaicompat_model},
  463. {"object", "chat.completion"},
  464. {"usage", json {
  465. {"completion_tokens", n_decoded},
  466. {"prompt_tokens", n_prompt_tokens},
  467. {"total_tokens", n_decoded + n_prompt_tokens}
  468. }},
  469. {"id", oaicompat_cmpl_id}
  470. };
  471. // extra fields for debugging purposes
  472. if (verbose) {
  473. res["__verbose"] = to_json_non_oaicompat();
  474. }
  475. if (timings.prompt_n >= 0) {
  476. res.push_back({"timings", timings.to_json()});
  477. }
  478. return res;
  479. }
  480. };
  481. struct server_task_result_cmpl_partial : server_task_result {
  482. int index = 0;
  483. std::string content;
  484. bool truncated;
  485. int32_t n_decoded;
  486. int32_t n_prompt_tokens;
  487. stop_type stop = STOP_TYPE_NONE;
  488. std::vector<completion_token_output> probs_output;
  489. result_timings timings;
  490. // OAI-compat fields
  491. bool verbose = false;
  492. bool oaicompat = false;
  493. bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
  494. std::string oaicompat_model;
  495. std::string oaicompat_cmpl_id;
  496. virtual int get_index() override {
  497. return index;
  498. }
  499. virtual bool is_stop() override {
  500. return stop != STOP_TYPE_NONE;
  501. }
  502. virtual json to_json() override {
  503. if (oaicompat) {
  504. return to_json_oaicompat();
  505. }
  506. bool is_stop = stop != STOP_TYPE_NONE;
  507. // non-OAI-compat JSON
  508. json res = json {
  509. {"index", index},
  510. {"content", content},
  511. {"stop_type", stop_type_to_str(stop)},
  512. {"stop", is_stop},
  513. {"id_slot", id_slot},
  514. {"tokens_predicted", n_decoded},
  515. {"tokens_evaluated", n_prompt_tokens},
  516. };
  517. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  518. if (timings.prompt_n > 0) {
  519. res.push_back({"timings", timings.to_json()});
  520. }
  521. if (!probs_output.empty()) {
  522. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output);
  523. }
  524. if (is_stop) {
  525. res.push_back({"truncated", truncated});
  526. }
  527. return res;
  528. }
  529. json to_json_oaicompat() {
  530. bool first = n_decoded == 0;
  531. std::string finish_reason;
  532. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  533. finish_reason = "stop";
  534. } else if (stop == STOP_TYPE_LIMIT) {
  535. finish_reason = "length";
  536. }
  537. std::time_t t = std::time(0);
  538. json choices;
  539. if (!finish_reason.empty()) {
  540. choices = json::array({json{{"finish_reason", finish_reason},
  541. {"index", 0},
  542. {"delta", json::object()}}});
  543. } else {
  544. if (first) {
  545. if (content.empty()) {
  546. choices = json::array({json{{"finish_reason", nullptr},
  547. {"index", 0},
  548. {"delta", json{{"role", "assistant"}}}}});
  549. } else {
  550. // We have to send this as two updates to conform to openai behavior
  551. json initial_ret = json{{"choices", json::array({json{
  552. {"finish_reason", nullptr},
  553. {"index", 0},
  554. {"delta", json{
  555. {"role", "assistant"}
  556. }}}})},
  557. {"created", t},
  558. {"id", oaicompat_cmpl_id},
  559. {"model", oaicompat_model},
  560. {"object", "chat.completion.chunk"}};
  561. json second_ret = json{
  562. {"choices", json::array({json{{"finish_reason", nullptr},
  563. {"index", 0},
  564. {"delta", json{
  565. {"content", content}}}
  566. }})},
  567. {"created", t},
  568. {"id", oaicompat_cmpl_id},
  569. {"model", oaicompat_model},
  570. {"object", "chat.completion.chunk"}};
  571. return std::vector<json>({initial_ret, second_ret});
  572. }
  573. } else {
  574. choices = json::array({json{
  575. {"finish_reason", nullptr},
  576. {"index", 0},
  577. {"delta",
  578. json{
  579. {"content", content},
  580. }},
  581. }});
  582. }
  583. }
  584. json ret = json {
  585. {"choices", choices},
  586. {"created", t},
  587. {"id", oaicompat_cmpl_id},
  588. {"model", oaicompat_model},
  589. {"object", "chat.completion.chunk"}
  590. };
  591. if (timings.prompt_n >= 0) {
  592. ret.push_back({"timings", timings.to_json()});
  593. }
  594. if (!finish_reason.empty()) {
  595. ret.push_back({"usage", json {
  596. {"completion_tokens", n_decoded},
  597. {"prompt_tokens", n_prompt_tokens},
  598. {"total_tokens", n_decoded + n_prompt_tokens},
  599. }});
  600. }
  601. return std::vector<json>({ret});
  602. }
  603. };
  604. struct server_task_result_embd : server_task_result {
  605. int index = 0;
  606. std::vector<float> embedding;
  607. virtual int get_index() override {
  608. return index;
  609. }
  610. virtual json to_json() override {
  611. return json {
  612. {"index", index},
  613. {"embedding", embedding},
  614. };
  615. }
  616. };
  617. struct server_task_result_rerank : server_task_result {
  618. int index = 0;
  619. float score = -1e6;
  620. virtual int get_index() override {
  621. return index;
  622. }
  623. virtual json to_json() override {
  624. return json {
  625. {"index", index},
  626. {"score", score},
  627. };
  628. }
  629. };
  630. // this function maybe used outside of server_task_result_error
  631. static json format_error_response(const std::string & message, const enum error_type type) {
  632. std::string type_str;
  633. int code = 500;
  634. switch (type) {
  635. case ERROR_TYPE_INVALID_REQUEST:
  636. type_str = "invalid_request_error";
  637. code = 400;
  638. break;
  639. case ERROR_TYPE_AUTHENTICATION:
  640. type_str = "authentication_error";
  641. code = 401;
  642. break;
  643. case ERROR_TYPE_NOT_FOUND:
  644. type_str = "not_found_error";
  645. code = 404;
  646. break;
  647. case ERROR_TYPE_SERVER:
  648. type_str = "server_error";
  649. code = 500;
  650. break;
  651. case ERROR_TYPE_PERMISSION:
  652. type_str = "permission_error";
  653. code = 403;
  654. break;
  655. case ERROR_TYPE_NOT_SUPPORTED:
  656. type_str = "not_supported_error";
  657. code = 501;
  658. break;
  659. case ERROR_TYPE_UNAVAILABLE:
  660. type_str = "unavailable_error";
  661. code = 503;
  662. break;
  663. }
  664. return json {
  665. {"code", code},
  666. {"message", message},
  667. {"type", type_str},
  668. };
  669. }
  670. struct server_task_result_error : server_task_result {
  671. int index = 0;
  672. error_type err_type = ERROR_TYPE_SERVER;
  673. std::string err_msg;
  674. virtual bool is_error() override {
  675. return true;
  676. }
  677. virtual json to_json() override {
  678. return format_error_response(err_msg, err_type);
  679. }
  680. };
  681. struct server_task_result_metrics : server_task_result {
  682. int n_idle_slots;
  683. int n_processing_slots;
  684. int n_tasks_deferred;
  685. int64_t t_start;
  686. int32_t kv_cache_tokens_count;
  687. int32_t kv_cache_used_cells;
  688. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  689. uint64_t n_prompt_tokens_processed_total = 0;
  690. uint64_t t_prompt_processing_total = 0;
  691. uint64_t n_tokens_predicted_total = 0;
  692. uint64_t t_tokens_generation_total = 0;
  693. uint64_t n_prompt_tokens_processed = 0;
  694. uint64_t t_prompt_processing = 0;
  695. uint64_t n_tokens_predicted = 0;
  696. uint64_t t_tokens_generation = 0;
  697. uint64_t n_decode_total = 0;
  698. uint64_t n_busy_slots_total = 0;
  699. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  700. // therefore, we use json to temporarily store the slot.to_json() result
  701. json slots_data = json::array();
  702. virtual json to_json() override {
  703. return json {
  704. { "idle", n_idle_slots },
  705. { "processing", n_processing_slots },
  706. { "deferred", n_tasks_deferred },
  707. { "t_start", t_start },
  708. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  709. { "t_tokens_generation_total", t_tokens_generation_total },
  710. { "n_tokens_predicted_total", n_tokens_predicted_total },
  711. { "t_prompt_processing_total", t_prompt_processing_total },
  712. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  713. { "t_prompt_processing", t_prompt_processing },
  714. { "n_tokens_predicted", n_tokens_predicted },
  715. { "t_tokens_generation", t_tokens_generation },
  716. { "n_decode_total", n_decode_total },
  717. { "n_busy_slots_total", n_busy_slots_total },
  718. { "kv_cache_tokens_count", kv_cache_tokens_count },
  719. { "kv_cache_used_cells", kv_cache_used_cells },
  720. { "slots", slots_data },
  721. };
  722. }
  723. };
  724. struct server_task_result_slot_save_load : server_task_result {
  725. std::string filename;
  726. bool is_save; // true = save, false = load
  727. size_t n_tokens;
  728. size_t n_bytes;
  729. double t_ms;
  730. virtual json to_json() override {
  731. if (is_save) {
  732. return json {
  733. { "id_slot", id_slot },
  734. { "filename", filename },
  735. { "n_saved", n_tokens },
  736. { "n_written", n_bytes },
  737. { "timings", {
  738. { "save_ms", t_ms }
  739. }},
  740. };
  741. } else {
  742. return json {
  743. { "id_slot", id_slot },
  744. { "filename", filename },
  745. { "n_restored", n_tokens },
  746. { "n_read", n_bytes },
  747. { "timings", {
  748. { "restore_ms", t_ms }
  749. }},
  750. };
  751. }
  752. }
  753. };
  754. struct server_task_result_slot_erase : server_task_result {
  755. size_t n_erased;
  756. virtual json to_json() override {
  757. return json {
  758. { "id_slot", id_slot },
  759. { "n_erased", n_erased },
  760. };
  761. }
  762. };
  763. struct server_task_result_apply_lora : server_task_result {
  764. virtual json to_json() override {
  765. return json {{ "success", true }};
  766. }
  767. };
  768. struct server_slot {
  769. int id;
  770. int id_task = -1;
  771. // only used for completion/embedding/infill/rerank
  772. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  773. llama_batch batch_spec = {};
  774. llama_context * ctx = nullptr;
  775. llama_context * ctx_dft = nullptr;
  776. common_speculative * spec = nullptr;
  777. // the index relative to completion multi-task request
  778. size_t index = 0;
  779. struct slot_params params;
  780. slot_state state = SLOT_STATE_IDLE;
  781. // used to determine the slot that has been used the longest
  782. int64_t t_last_used = -1;
  783. // generation props
  784. int32_t n_ctx = 0; // context size per slot
  785. int32_t n_past = 0;
  786. int32_t n_decoded = 0;
  787. int32_t n_remaining = -1;
  788. int32_t i_batch = -1;
  789. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  790. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  791. int32_t n_prompt_tokens = 0;
  792. int32_t n_prompt_tokens_processed = 0;
  793. // input prompt tokens
  794. llama_tokens prompt_tokens;
  795. size_t last_nl_pos = 0;
  796. std::string generated_text;
  797. llama_tokens cache_tokens;
  798. std::vector<completion_token_output> generated_token_probs;
  799. bool has_next_token = true;
  800. bool has_new_line = false;
  801. bool truncated = false;
  802. stop_type stop;
  803. std::string stopping_word;
  804. // sampling
  805. json json_schema;
  806. struct common_sampler * smpl = nullptr;
  807. llama_token sampled;
  808. // stats
  809. size_t n_sent_text = 0; // number of sent text character
  810. size_t n_sent_token_probs = 0;
  811. int64_t t_start_process_prompt;
  812. int64_t t_start_generation;
  813. double t_prompt_processing; // ms
  814. double t_token_generation; // ms
  815. std::function<void(int)> callback_on_release;
  816. void reset() {
  817. SLT_DBG(*this, "%s", "\n");
  818. n_prompt_tokens = 0;
  819. last_nl_pos = 0;
  820. generated_text = "";
  821. has_new_line = false;
  822. truncated = false;
  823. stop = STOP_TYPE_NONE;
  824. stopping_word = "";
  825. n_past = 0;
  826. n_sent_text = 0;
  827. n_sent_token_probs = 0;
  828. task_type = SERVER_TASK_TYPE_COMPLETION;
  829. generated_token_probs.clear();
  830. }
  831. bool is_non_causal() const {
  832. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  833. }
  834. bool has_budget(const common_params & global_params) {
  835. if (params.n_predict == -1 && global_params.n_predict == -1) {
  836. return true; // limitless
  837. }
  838. n_remaining = -1;
  839. if (params.n_predict != -1) {
  840. n_remaining = params.n_predict - n_decoded;
  841. } else if (global_params.n_predict != -1) {
  842. n_remaining = global_params.n_predict - n_decoded;
  843. }
  844. return n_remaining > 0; // no budget
  845. }
  846. bool is_processing() const {
  847. return state != SLOT_STATE_IDLE;
  848. }
  849. bool can_speculate() const {
  850. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  851. }
  852. void add_token(const completion_token_output & token) {
  853. if (!is_processing()) {
  854. SLT_WRN(*this, "%s", "slot is not processing\n");
  855. return;
  856. }
  857. generated_token_probs.push_back(token);
  858. }
  859. void release() {
  860. if (is_processing()) {
  861. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  862. t_last_used = ggml_time_us();
  863. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  864. state = SLOT_STATE_IDLE;
  865. callback_on_release(id);
  866. }
  867. }
  868. result_timings get_timings() const {
  869. result_timings timings;
  870. timings.prompt_n = n_prompt_tokens_processed;
  871. timings.prompt_ms = t_prompt_processing;
  872. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  873. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  874. timings.predicted_n = n_decoded;
  875. timings.predicted_ms = t_token_generation;
  876. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  877. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  878. return timings;
  879. }
  880. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  881. size_t stop_pos = std::string::npos;
  882. for (const std::string & word : params.antiprompt) {
  883. size_t pos;
  884. if (is_full_stop) {
  885. const size_t tmp = word.size() + last_token_size;
  886. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  887. pos = text.find(word, from_pos);
  888. } else {
  889. // otherwise, partial stop
  890. pos = find_partial_stop_string(word, text);
  891. }
  892. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  893. if (is_full_stop) {
  894. stop = STOP_TYPE_WORD;
  895. stopping_word = word;
  896. has_next_token = false;
  897. }
  898. stop_pos = pos;
  899. }
  900. }
  901. return stop_pos;
  902. }
  903. void print_timings() const {
  904. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  905. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  906. const double t_gen = t_token_generation / n_decoded;
  907. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  908. SLT_INF(*this,
  909. "\n"
  910. "\rprompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  911. "\r eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  912. "\r total time = %10.2f ms / %5d tokens\n",
  913. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  914. t_token_generation, n_decoded, t_gen, n_gen_second,
  915. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  916. }
  917. json to_json() const {
  918. return json {
  919. {"id", id},
  920. {"id_task", id_task},
  921. {"n_ctx", n_ctx},
  922. {"speculative", can_speculate()},
  923. {"is_processing", is_processing()},
  924. {"non_causal", is_non_causal()},
  925. {"params", params.to_json()},
  926. {"prompt", common_detokenize(ctx, prompt_tokens)},
  927. {"next_token",
  928. {
  929. {"has_next_token", has_next_token},
  930. {"has_new_line", has_new_line},
  931. {"n_remain", n_remaining},
  932. {"n_decoded", n_decoded},
  933. {"stopping_word", stopping_word},
  934. }
  935. },
  936. };
  937. }
  938. };
  939. struct server_metrics {
  940. int64_t t_start = 0;
  941. uint64_t n_prompt_tokens_processed_total = 0;
  942. uint64_t t_prompt_processing_total = 0;
  943. uint64_t n_tokens_predicted_total = 0;
  944. uint64_t t_tokens_generation_total = 0;
  945. uint64_t n_prompt_tokens_processed = 0;
  946. uint64_t t_prompt_processing = 0;
  947. uint64_t n_tokens_predicted = 0;
  948. uint64_t t_tokens_generation = 0;
  949. uint64_t n_decode_total = 0;
  950. uint64_t n_busy_slots_total = 0;
  951. void init() {
  952. t_start = ggml_time_us();
  953. }
  954. void on_prompt_eval(const server_slot & slot) {
  955. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  956. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  957. t_prompt_processing += slot.t_prompt_processing;
  958. t_prompt_processing_total += slot.t_prompt_processing;
  959. }
  960. void on_prediction(const server_slot & slot) {
  961. n_tokens_predicted_total += slot.n_decoded;
  962. n_tokens_predicted += slot.n_decoded;
  963. t_tokens_generation += slot.t_token_generation;
  964. t_tokens_generation_total += slot.t_token_generation;
  965. }
  966. void on_decoded(const std::vector<server_slot> & slots) {
  967. n_decode_total++;
  968. for (const auto & slot : slots) {
  969. if (slot.is_processing()) {
  970. n_busy_slots_total++;
  971. }
  972. }
  973. }
  974. void reset_bucket() {
  975. n_prompt_tokens_processed = 0;
  976. t_prompt_processing = 0;
  977. n_tokens_predicted = 0;
  978. t_tokens_generation = 0;
  979. }
  980. };
  981. struct server_queue {
  982. int id = 0;
  983. bool running;
  984. // queues
  985. std::deque<server_task> queue_tasks;
  986. std::deque<server_task> queue_tasks_deferred;
  987. std::mutex mutex_tasks;
  988. std::condition_variable condition_tasks;
  989. // callback functions
  990. std::function<void(server_task)> callback_new_task;
  991. std::function<void(void)> callback_update_slots;
  992. // Add a new task to the end of the queue
  993. int post(server_task task, bool front = false) {
  994. std::unique_lock<std::mutex> lock(mutex_tasks);
  995. GGML_ASSERT(task.id != -1);
  996. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  997. if (front) {
  998. queue_tasks.push_front(std::move(task));
  999. } else {
  1000. queue_tasks.push_back(std::move(task));
  1001. }
  1002. condition_tasks.notify_one();
  1003. return task.id;
  1004. }
  1005. // multi-task version of post()
  1006. int post(std::vector<server_task> & tasks, bool front = false) {
  1007. std::unique_lock<std::mutex> lock(mutex_tasks);
  1008. for (auto & task : tasks) {
  1009. if (task.id == -1) {
  1010. task.id = id++;
  1011. }
  1012. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1013. if (front) {
  1014. queue_tasks.push_front(std::move(task));
  1015. } else {
  1016. queue_tasks.push_back(std::move(task));
  1017. }
  1018. }
  1019. condition_tasks.notify_one();
  1020. return 0;
  1021. }
  1022. // Add a new task, but defer until one slot is available
  1023. void defer(server_task task) {
  1024. std::unique_lock<std::mutex> lock(mutex_tasks);
  1025. QUE_DBG("defer task, id = %d\n", task.id);
  1026. queue_tasks_deferred.push_back(std::move(task));
  1027. condition_tasks.notify_one();
  1028. }
  1029. // Get the next id for creating a new task
  1030. int get_new_id() {
  1031. std::unique_lock<std::mutex> lock(mutex_tasks);
  1032. int new_id = id++;
  1033. return new_id;
  1034. }
  1035. // Register function to process a new task
  1036. void on_new_task(std::function<void(server_task)> callback) {
  1037. callback_new_task = std::move(callback);
  1038. }
  1039. // Register the function to be called when all slots data is ready to be processed
  1040. void on_update_slots(std::function<void(void)> callback) {
  1041. callback_update_slots = std::move(callback);
  1042. }
  1043. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1044. void pop_deferred_task() {
  1045. std::unique_lock<std::mutex> lock(mutex_tasks);
  1046. if (!queue_tasks_deferred.empty()) {
  1047. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1048. queue_tasks_deferred.pop_front();
  1049. }
  1050. condition_tasks.notify_one();
  1051. }
  1052. // end the start_loop routine
  1053. void terminate() {
  1054. std::unique_lock<std::mutex> lock(mutex_tasks);
  1055. running = false;
  1056. condition_tasks.notify_all();
  1057. }
  1058. /**
  1059. * Main loop consists of these steps:
  1060. * - Wait until a new task arrives
  1061. * - Process the task (i.e. maybe copy data into slot)
  1062. * - Check if multitask is finished
  1063. * - Update all slots
  1064. */
  1065. void start_loop() {
  1066. running = true;
  1067. while (true) {
  1068. QUE_DBG("%s", "processing new tasks\n");
  1069. while (true) {
  1070. std::unique_lock<std::mutex> lock(mutex_tasks);
  1071. if (queue_tasks.empty()) {
  1072. lock.unlock();
  1073. break;
  1074. }
  1075. server_task task = queue_tasks.front();
  1076. queue_tasks.pop_front();
  1077. lock.unlock();
  1078. QUE_DBG("processing task, id = %d\n", task.id);
  1079. callback_new_task(std::move(task));
  1080. }
  1081. // all tasks in the current loop is processed, slots data is now ready
  1082. QUE_DBG("%s", "update slots\n");
  1083. callback_update_slots();
  1084. QUE_DBG("%s", "waiting for new tasks\n");
  1085. {
  1086. std::unique_lock<std::mutex> lock(mutex_tasks);
  1087. if (queue_tasks.empty()) {
  1088. if (!running) {
  1089. QUE_DBG("%s", "terminate\n");
  1090. return;
  1091. }
  1092. condition_tasks.wait(lock, [&]{
  1093. return (!queue_tasks.empty() || !running);
  1094. });
  1095. }
  1096. }
  1097. }
  1098. }
  1099. };
  1100. struct server_response {
  1101. // for keeping track of all tasks waiting for the result
  1102. std::unordered_set<int> waiting_task_ids;
  1103. // the main result queue (using ptr for polymorphism)
  1104. std::vector<server_task_result_ptr> queue_results;
  1105. std::mutex mutex_results;
  1106. std::condition_variable condition_results;
  1107. // add the id_task to the list of tasks waiting for response
  1108. void add_waiting_task_id(int id_task) {
  1109. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1110. std::unique_lock<std::mutex> lock(mutex_results);
  1111. waiting_task_ids.insert(id_task);
  1112. }
  1113. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1114. std::unique_lock<std::mutex> lock(mutex_results);
  1115. for (const auto & task : tasks) {
  1116. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1117. waiting_task_ids.insert(task.id);
  1118. }
  1119. }
  1120. // when the request is finished, we can remove task associated with it
  1121. void remove_waiting_task_id(int id_task) {
  1122. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1123. std::unique_lock<std::mutex> lock(mutex_results);
  1124. waiting_task_ids.erase(id_task);
  1125. }
  1126. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1127. std::unique_lock<std::mutex> lock(mutex_results);
  1128. for (const auto & id_task : id_tasks) {
  1129. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1130. waiting_task_ids.erase(id_task);
  1131. }
  1132. }
  1133. // This function blocks the thread until there is a response for one of the id_tasks
  1134. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1135. while (true) {
  1136. std::unique_lock<std::mutex> lock(mutex_results);
  1137. condition_results.wait(lock, [&]{
  1138. return !queue_results.empty();
  1139. });
  1140. for (int i = 0; i < (int) queue_results.size(); i++) {
  1141. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1142. server_task_result_ptr res = std::move(queue_results[i]);
  1143. queue_results.erase(queue_results.begin() + i);
  1144. return res;
  1145. }
  1146. }
  1147. }
  1148. // should never reach here
  1149. }
  1150. // single-task version of recv()
  1151. server_task_result_ptr recv(int id_task) {
  1152. std::unordered_set<int> id_tasks = {id_task};
  1153. return recv(id_tasks);
  1154. }
  1155. // Send a new result to a waiting id_task
  1156. void send(server_task_result_ptr && result) {
  1157. SRV_DBG("sending result for task id = %d\n", result->id);
  1158. std::unique_lock<std::mutex> lock(mutex_results);
  1159. for (const auto & id_task : waiting_task_ids) {
  1160. if (result->id == id_task) {
  1161. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1162. queue_results.emplace_back(std::move(result));
  1163. condition_results.notify_all();
  1164. return;
  1165. }
  1166. }
  1167. }
  1168. };
  1169. struct server_context {
  1170. common_params params_base;
  1171. llama_model * model = nullptr;
  1172. llama_context * ctx = nullptr;
  1173. std::vector<common_lora_adapter_container> loras;
  1174. llama_model * model_dft = nullptr;
  1175. llama_context_params cparams_dft;
  1176. llama_batch batch = {};
  1177. bool clean_kv_cache = true;
  1178. bool add_bos_token = true;
  1179. bool has_eos_token = false;
  1180. int32_t n_ctx; // total context for all clients / slots
  1181. // slots / clients
  1182. std::vector<server_slot> slots;
  1183. json default_generation_settings_for_props;
  1184. server_queue queue_tasks;
  1185. server_response queue_results;
  1186. server_metrics metrics;
  1187. // Necessary similarity of prompt for slot selection
  1188. float slot_prompt_similarity = 0.0f;
  1189. ~server_context() {
  1190. if (ctx) {
  1191. llama_free(ctx);
  1192. ctx = nullptr;
  1193. }
  1194. if (model) {
  1195. llama_free_model(model);
  1196. model = nullptr;
  1197. }
  1198. if (model_dft) {
  1199. llama_free_model(model_dft);
  1200. model_dft = nullptr;
  1201. }
  1202. // Clear any sampling context
  1203. for (server_slot & slot : slots) {
  1204. common_sampler_free(slot.smpl);
  1205. slot.smpl = nullptr;
  1206. llama_free(slot.ctx_dft);
  1207. slot.ctx_dft = nullptr;
  1208. common_speculative_free(slot.spec);
  1209. slot.spec = nullptr;
  1210. llama_batch_free(slot.batch_spec);
  1211. }
  1212. llama_batch_free(batch);
  1213. }
  1214. bool load_model(const common_params & params) {
  1215. SRV_INF("loading model '%s'\n", params.model.c_str());
  1216. params_base = params;
  1217. common_init_result llama_init = common_init_from_params(params_base);
  1218. model = llama_init.model;
  1219. ctx = llama_init.context;
  1220. loras = llama_init.lora_adapters;
  1221. if (model == nullptr) {
  1222. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1223. return false;
  1224. }
  1225. n_ctx = llama_n_ctx(ctx);
  1226. add_bos_token = llama_add_bos_token(model);
  1227. has_eos_token = !llama_add_eos_token(model);
  1228. if (!params_base.speculative.model.empty()) {
  1229. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1230. auto params_dft = params_base;
  1231. params_dft.devices = params_base.speculative.devices;
  1232. params_dft.model = params_base.speculative.model;
  1233. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1234. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1235. params_dft.n_parallel = 1;
  1236. common_init_result llama_init_dft = common_init_from_params(params_dft);
  1237. model_dft = llama_init_dft.model;
  1238. if (model_dft == nullptr) {
  1239. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1240. return false;
  1241. }
  1242. if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
  1243. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1244. llama_free (llama_init_dft.context);
  1245. llama_free_model(llama_init_dft.model);
  1246. return false;
  1247. }
  1248. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
  1249. cparams_dft = common_context_params_to_llama(params_dft);
  1250. cparams_dft.n_batch = n_ctx_dft;
  1251. // force F16 KV cache for the draft model for extra performance
  1252. cparams_dft.type_k = GGML_TYPE_F16;
  1253. cparams_dft.type_v = GGML_TYPE_F16;
  1254. // the context is not needed - we will create one for each slot
  1255. llama_free(llama_init_dft.context);
  1256. }
  1257. return true;
  1258. }
  1259. bool validate_model_chat_template() const {
  1260. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  1261. std::string template_key = "tokenizer.chat_template";
  1262. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  1263. if (res >= 0) {
  1264. llama_chat_message chat[] = {{"user", "test"}};
  1265. std::string tmpl = std::string(model_template.data(), model_template.size());
  1266. int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
  1267. return chat_res > 0;
  1268. }
  1269. return false;
  1270. }
  1271. void init() {
  1272. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1273. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1274. for (int i = 0; i < params_base.n_parallel; i++) {
  1275. server_slot slot;
  1276. slot.id = i;
  1277. slot.ctx = ctx;
  1278. slot.n_ctx = n_ctx_slot;
  1279. slot.n_predict = params_base.n_predict;
  1280. if (model_dft) {
  1281. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1282. slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
  1283. if (slot.ctx_dft == nullptr) {
  1284. SRV_ERR("%s", "failed to create draft context\n");
  1285. return;
  1286. }
  1287. slot.spec = common_speculative_init(slot.ctx_dft);
  1288. if (slot.spec == nullptr) {
  1289. SRV_ERR("%s", "failed to create speculator\n");
  1290. return;
  1291. }
  1292. }
  1293. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1294. slot.params.sampling = params_base.sampling;
  1295. slot.callback_on_release = [this](int) {
  1296. queue_tasks.pop_deferred_task();
  1297. };
  1298. slot.reset();
  1299. slots.push_back(slot);
  1300. }
  1301. default_generation_settings_for_props = slots[0].to_json();
  1302. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1303. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1304. {
  1305. const int32_t n_batch = llama_n_batch(ctx);
  1306. // only a single seq_id per token is needed
  1307. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1308. }
  1309. metrics.init();
  1310. }
  1311. server_slot * get_slot_by_id(int id) {
  1312. for (server_slot & slot : slots) {
  1313. if (slot.id == id) {
  1314. return &slot;
  1315. }
  1316. }
  1317. return nullptr;
  1318. }
  1319. server_slot * get_available_slot(const server_task & task) {
  1320. server_slot * ret = nullptr;
  1321. // find the slot that has at least n% prompt similarity
  1322. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1323. int lcs_len = 0;
  1324. float similarity = 0;
  1325. for (server_slot & slot : slots) {
  1326. // skip the slot if it is not available
  1327. if (slot.is_processing()) {
  1328. continue;
  1329. }
  1330. // skip the slot if it does not contains cached tokens
  1331. if (slot.cache_tokens.empty()) {
  1332. continue;
  1333. }
  1334. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1335. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1336. // fraction of the common subsequence length compared to the current slot's prompt length
  1337. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1338. // select the current slot if the criteria match
  1339. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1340. lcs_len = cur_lcs_len;
  1341. similarity = cur_similarity;
  1342. ret = &slot;
  1343. }
  1344. }
  1345. if (ret != nullptr) {
  1346. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1347. }
  1348. }
  1349. // find the slot that has been least recently used
  1350. if (ret == nullptr) {
  1351. int64_t t_last = ggml_time_us();
  1352. for (server_slot & slot : slots) {
  1353. // skip the slot if it is not available
  1354. if (slot.is_processing()) {
  1355. continue;
  1356. }
  1357. // select the current slot if the criteria match
  1358. if (slot.t_last_used < t_last) {
  1359. t_last = slot.t_last_used;
  1360. ret = &slot;
  1361. }
  1362. }
  1363. if (ret != nullptr) {
  1364. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1365. }
  1366. }
  1367. return ret;
  1368. }
  1369. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1370. slot.reset();
  1371. slot.id_task = task.id;
  1372. slot.index = task.index;
  1373. slot.task_type = task.type;
  1374. slot.params = std::move(task.params);
  1375. slot.prompt_tokens = std::move(task.prompt_tokens);
  1376. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1377. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1378. // Might be better to reject the request with a 400 ?
  1379. slot.params.n_predict = slot.n_predict;
  1380. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1381. }
  1382. if (slot.params.ignore_eos && has_eos_token) {
  1383. slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
  1384. }
  1385. {
  1386. if (slot.smpl != nullptr) {
  1387. common_sampler_free(slot.smpl);
  1388. }
  1389. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1390. if (slot.smpl == nullptr) {
  1391. // for now, the only error that may happen here is invalid grammar
  1392. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1393. return false;
  1394. }
  1395. }
  1396. if (slot.ctx_dft) {
  1397. llama_batch_free(slot.batch_spec);
  1398. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1399. }
  1400. slot.state = SLOT_STATE_STARTED;
  1401. SLT_INF(slot, "%s", "processing task\n");
  1402. return true;
  1403. }
  1404. void kv_cache_clear() {
  1405. SRV_DBG("%s", "clearing KV cache\n");
  1406. // clear the entire KV cache
  1407. llama_kv_cache_clear(ctx);
  1408. clean_kv_cache = false;
  1409. }
  1410. bool process_token(completion_token_output & result, server_slot & slot) {
  1411. // remember which tokens were sampled - used for repetition penalties during sampling
  1412. const std::string token_str = common_token_to_piece(ctx, result.tok, params_base.special);
  1413. slot.sampled = result.tok;
  1414. // search stop word and delete it
  1415. slot.generated_text += token_str;
  1416. slot.has_next_token = true;
  1417. // check if there is incomplete UTF-8 character at the end
  1418. bool incomplete = false;
  1419. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
  1420. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  1421. if ((c & 0xC0) == 0x80) {
  1422. // continuation byte: 10xxxxxx
  1423. continue;
  1424. }
  1425. if ((c & 0xE0) == 0xC0) {
  1426. // 2-byte character: 110xxxxx ...
  1427. incomplete = i < 2;
  1428. } else if ((c & 0xF0) == 0xE0) {
  1429. // 3-byte character: 1110xxxx ...
  1430. incomplete = i < 3;
  1431. } else if ((c & 0xF8) == 0xF0) {
  1432. // 4-byte character: 11110xxx ...
  1433. incomplete = i < 4;
  1434. }
  1435. // else 1-byte character or invalid byte
  1436. break;
  1437. }
  1438. if (!incomplete) {
  1439. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1440. const std::string str_test = slot.generated_text.substr(pos);
  1441. bool send_text = true;
  1442. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1443. if (stop_pos != std::string::npos) {
  1444. slot.generated_text.erase(
  1445. slot.generated_text.begin() + pos + stop_pos,
  1446. slot.generated_text.end());
  1447. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1448. } else if (slot.has_next_token) {
  1449. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1450. send_text = stop_pos == std::string::npos;
  1451. }
  1452. // check if there is any token to predict
  1453. if (send_text) {
  1454. // no send the stop word in the response
  1455. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1456. slot.n_sent_text += result.text_to_send.size();
  1457. // add the token to slot queue and cache
  1458. }
  1459. slot.add_token(result);
  1460. if (slot.params.stream) {
  1461. send_partial_response(slot, result);
  1462. }
  1463. }
  1464. if (incomplete) {
  1465. slot.has_next_token = true;
  1466. }
  1467. // check the limits
  1468. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1469. slot.stop = STOP_TYPE_LIMIT;
  1470. slot.has_next_token = false;
  1471. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1472. }
  1473. if (slot.has_new_line) {
  1474. // if we have already seen a new line, we stop after a certain time limit
  1475. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1476. slot.stop = STOP_TYPE_LIMIT;
  1477. slot.has_next_token = false;
  1478. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1479. }
  1480. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1481. if (slot.params.n_indent > 0) {
  1482. // check the current indentation
  1483. // TODO: improve by not doing it more than once for each new line
  1484. if (slot.last_nl_pos > 0) {
  1485. size_t pos = slot.last_nl_pos;
  1486. int n_indent = 0;
  1487. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1488. n_indent++;
  1489. pos++;
  1490. }
  1491. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1492. slot.stop = STOP_TYPE_LIMIT;
  1493. slot.has_next_token = false;
  1494. // cut the last line
  1495. slot.generated_text.erase(pos, std::string::npos);
  1496. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1497. }
  1498. }
  1499. // find the next new line
  1500. {
  1501. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1502. if (pos != std::string::npos) {
  1503. slot.last_nl_pos = pos + 1;
  1504. }
  1505. }
  1506. }
  1507. }
  1508. // check if there is a new line in the generated text
  1509. if (result.text_to_send.find('\n') != std::string::npos) {
  1510. slot.has_new_line = true;
  1511. }
  1512. // if context shift is disabled, we stop when it reaches the context limit
  1513. if (slot.n_past >= slot.n_ctx) {
  1514. slot.truncated = true;
  1515. slot.stop = STOP_TYPE_LIMIT;
  1516. slot.has_next_token = false;
  1517. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1518. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1519. }
  1520. if (llama_token_is_eog(model, result.tok)) {
  1521. slot.stop = STOP_TYPE_EOS;
  1522. slot.has_next_token = false;
  1523. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1524. }
  1525. const auto n_ctx_train = llama_n_ctx_train(model);
  1526. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1527. slot.truncated = true;
  1528. slot.stop = STOP_TYPE_LIMIT;
  1529. slot.has_next_token = false; // stop prediction
  1530. SLT_WRN(slot,
  1531. "n_predict (%d) is set for infinite generation. "
  1532. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1533. slot.params.n_predict, n_ctx_train);
  1534. }
  1535. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1536. return slot.has_next_token; // continue
  1537. }
  1538. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1539. send_error(task.id, error, type);
  1540. }
  1541. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1542. send_error(slot.id_task, error, type);
  1543. }
  1544. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1545. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1546. auto res = std::make_unique<server_task_result_error>();
  1547. res->id = id_task;
  1548. res->err_type = type;
  1549. res->err_msg = error;
  1550. queue_results.send(std::move(res));
  1551. }
  1552. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1553. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1554. res->id = slot.id_task;
  1555. res->index = slot.index;
  1556. res->content = tkn.text_to_send;
  1557. res->truncated = slot.truncated;
  1558. res->n_decoded = slot.n_decoded;
  1559. res->n_prompt_tokens = slot.n_prompt_tokens;
  1560. res->stop = slot.stop;
  1561. res->verbose = slot.params.verbose;
  1562. res->oaicompat = slot.params.oaicompat;
  1563. res->oaicompat_chat = slot.params.oaicompat_chat;
  1564. res->oaicompat_model = slot.params.oaicompat_model;
  1565. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1566. // populate res.probs_output
  1567. if (slot.params.sampling.n_probs > 0) {
  1568. const llama_tokens to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
  1569. const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
  1570. const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
  1571. std::vector<completion_token_output> probs_output;
  1572. if (probs_pos < probs_stop_pos) {
  1573. res->probs_output = std::vector<completion_token_output>(
  1574. slot.generated_token_probs.begin() + probs_pos,
  1575. slot.generated_token_probs.begin() + probs_stop_pos);
  1576. }
  1577. }
  1578. // populate timings if this is final response or timings_per_token is enabled
  1579. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1580. res->timings = slot.get_timings();
  1581. }
  1582. queue_results.send(std::move(res));
  1583. }
  1584. void send_final_response(server_slot & slot) {
  1585. if (slot.params.stream) {
  1586. // if in stream mode, send the last partial response
  1587. send_partial_response(slot, {0, "", {}});
  1588. return;
  1589. }
  1590. auto res = std::make_unique<server_task_result_cmpl_final>();
  1591. res->id = slot.id_task;
  1592. res->id_slot = slot.id;
  1593. res->index = slot.index;
  1594. res->content = slot.generated_text;
  1595. res->timings = slot.get_timings();
  1596. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1597. res->truncated = slot.truncated;
  1598. res->n_decoded = slot.n_decoded;
  1599. res->n_prompt_tokens = slot.n_prompt_tokens;
  1600. res->n_tokens_cached = slot.n_past;
  1601. res->has_new_line = slot.has_new_line;
  1602. res->stopping_word = slot.stopping_word;
  1603. res->stop = slot.stop;
  1604. res->verbose = slot.params.verbose;
  1605. res->oaicompat = slot.params.oaicompat;
  1606. res->oaicompat_chat = slot.params.oaicompat_chat;
  1607. res->oaicompat_model = slot.params.oaicompat_model;
  1608. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1609. // populate res.probs_output
  1610. if (slot.params.sampling.n_probs > 0) {
  1611. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1612. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1613. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1614. res->probs_output = std::vector<completion_token_output>(
  1615. slot.generated_token_probs.begin(),
  1616. slot.generated_token_probs.end() - safe_offset);
  1617. } else {
  1618. res->probs_output = std::vector<completion_token_output>(
  1619. slot.generated_token_probs.begin(),
  1620. slot.generated_token_probs.end());
  1621. }
  1622. }
  1623. res->generation_params = slot.params; // copy the parameters
  1624. queue_results.send(std::move(res));
  1625. }
  1626. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1627. auto res = std::make_unique<server_task_result_embd>();
  1628. res->id = slot.id_task;
  1629. res->index = slot.index;
  1630. const int n_embd = llama_n_embd(model);
  1631. std::vector<float> embd_res(n_embd, 0.0f);
  1632. for (int i = 0; i < batch.n_tokens; ++i) {
  1633. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1634. continue;
  1635. }
  1636. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1637. if (embd == NULL) {
  1638. embd = llama_get_embeddings_ith(ctx, i);
  1639. }
  1640. if (embd == NULL) {
  1641. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1642. res->embedding = std::vector<float>(n_embd, 0.0f);
  1643. continue;
  1644. }
  1645. common_embd_normalize(embd, embd_res.data(), n_embd);
  1646. res->embedding = embd_res;
  1647. }
  1648. SLT_DBG(slot, "%s", "sending embeddings\n");
  1649. queue_results.send(std::move(res));
  1650. }
  1651. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1652. auto res = std::make_unique<server_task_result_rerank>();
  1653. res->id = slot.id_task;
  1654. res->index = slot.index;
  1655. for (int i = 0; i < batch.n_tokens; ++i) {
  1656. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1657. continue;
  1658. }
  1659. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1660. if (embd == NULL) {
  1661. embd = llama_get_embeddings_ith(ctx, i);
  1662. }
  1663. if (embd == NULL) {
  1664. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1665. res->score = -1e6;
  1666. continue;
  1667. }
  1668. res->score = embd[0];
  1669. }
  1670. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  1671. queue_results.send(std::move(res));
  1672. }
  1673. //
  1674. // Functions to create new task(s) and receive result(s)
  1675. //
  1676. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1677. std::vector<server_task> cancel_tasks;
  1678. cancel_tasks.reserve(id_tasks.size());
  1679. for (const auto & id_task : id_tasks) {
  1680. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1681. server_task task(SERVER_TASK_TYPE_CANCEL);
  1682. task.id_target = id_task;
  1683. cancel_tasks.push_back(task);
  1684. queue_results.remove_waiting_task_id(id_task);
  1685. }
  1686. // push to beginning of the queue, so it has highest priority
  1687. queue_tasks.post(cancel_tasks, true);
  1688. }
  1689. // receive the results from task(s)
  1690. void receive_multi_results(
  1691. const std::unordered_set<int> & id_tasks,
  1692. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  1693. const std::function<void(json)> & error_handler) {
  1694. std::vector<server_task_result_ptr> results(id_tasks.size());
  1695. for (size_t i = 0; i < id_tasks.size(); i++) {
  1696. server_task_result_ptr result = queue_results.recv(id_tasks);
  1697. if (result->is_error()) {
  1698. error_handler(result->to_json());
  1699. cancel_tasks(id_tasks);
  1700. return;
  1701. }
  1702. GGML_ASSERT(
  1703. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1704. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  1705. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  1706. );
  1707. const size_t idx = result->get_index();
  1708. GGML_ASSERT(idx < results.size() && "index out of range");
  1709. results[idx] = std::move(result);
  1710. }
  1711. result_handler(results);
  1712. }
  1713. // receive the results from task(s), in stream mode
  1714. void receive_cmpl_results_stream(
  1715. const std::unordered_set<int> & id_tasks,
  1716. const std::function<bool(server_task_result_ptr&)> & result_handler,
  1717. const std::function<void(json)> & error_handler) {
  1718. size_t n_finished = 0;
  1719. while (true) {
  1720. server_task_result_ptr result = queue_results.recv(id_tasks);
  1721. if (result->is_error()) {
  1722. error_handler(result->to_json());
  1723. cancel_tasks(id_tasks);
  1724. return;
  1725. }
  1726. GGML_ASSERT(dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr);
  1727. if (!result_handler(result)) {
  1728. cancel_tasks(id_tasks);
  1729. break;
  1730. }
  1731. if (result->is_stop()) {
  1732. if (++n_finished == id_tasks.size()) {
  1733. break;
  1734. }
  1735. }
  1736. }
  1737. }
  1738. //
  1739. // Functions to process the task
  1740. //
  1741. void process_single_task(server_task task) {
  1742. switch (task.type) {
  1743. case SERVER_TASK_TYPE_COMPLETION:
  1744. case SERVER_TASK_TYPE_INFILL:
  1745. case SERVER_TASK_TYPE_EMBEDDING:
  1746. case SERVER_TASK_TYPE_RERANK:
  1747. {
  1748. const int id_slot = task.id_selected_slot;
  1749. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  1750. if (slot == nullptr) {
  1751. // if no slot is available, we defer this task for processing later
  1752. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1753. queue_tasks.defer(task);
  1754. break;
  1755. }
  1756. if (slot->is_processing()) {
  1757. // if requested slot is unavailable, we defer this task for processing later
  1758. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1759. queue_tasks.defer(task);
  1760. break;
  1761. }
  1762. if (!launch_slot_with_task(*slot, task)) {
  1763. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1764. break;
  1765. }
  1766. } break;
  1767. case SERVER_TASK_TYPE_CANCEL:
  1768. {
  1769. // release slot linked with the task id
  1770. for (auto & slot : slots) {
  1771. if (slot.id_task == task.id_target) {
  1772. slot.release();
  1773. break;
  1774. }
  1775. }
  1776. } break;
  1777. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1778. {
  1779. // do nothing
  1780. } break;
  1781. case SERVER_TASK_TYPE_METRICS:
  1782. {
  1783. json slots_data = json::array();
  1784. int n_idle_slots = 0;
  1785. int n_processing_slots = 0;
  1786. for (server_slot & slot : slots) {
  1787. json slot_data = slot.to_json();
  1788. if (slot.is_processing()) {
  1789. n_processing_slots++;
  1790. } else {
  1791. n_idle_slots++;
  1792. }
  1793. slots_data.push_back(slot_data);
  1794. }
  1795. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  1796. auto res = std::make_unique<server_task_result_metrics>();
  1797. res->id = task.id;
  1798. res->slots_data = std::move(slots_data);
  1799. res->n_idle_slots = n_idle_slots;
  1800. res->n_processing_slots = n_processing_slots;
  1801. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  1802. res->t_start = metrics.t_start;
  1803. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  1804. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  1805. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  1806. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  1807. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  1808. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  1809. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  1810. res->t_prompt_processing = metrics.t_prompt_processing;
  1811. res->n_tokens_predicted = metrics.n_tokens_predicted;
  1812. res->t_tokens_generation = metrics.t_tokens_generation;
  1813. res->n_decode_total = metrics.n_decode_total;
  1814. res->n_busy_slots_total = metrics.n_busy_slots_total;
  1815. if (task.metrics_reset_bucket) {
  1816. metrics.reset_bucket();
  1817. }
  1818. queue_results.send(std::move(res));
  1819. } break;
  1820. case SERVER_TASK_TYPE_SLOT_SAVE:
  1821. {
  1822. int id_slot = task.slot_action.slot_id;
  1823. server_slot * slot = get_slot_by_id(id_slot);
  1824. if (slot == nullptr) {
  1825. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1826. break;
  1827. }
  1828. if (slot->is_processing()) {
  1829. // if requested slot is unavailable, we defer this task for processing later
  1830. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1831. queue_tasks.defer(task);
  1832. break;
  1833. }
  1834. const size_t token_count = slot->cache_tokens.size();
  1835. const int64_t t_start = ggml_time_us();
  1836. std::string filename = task.slot_action.filename;
  1837. std::string filepath = task.slot_action.filepath;
  1838. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  1839. const int64_t t_end = ggml_time_us();
  1840. const double t_save_ms = (t_end - t_start) / 1000.0;
  1841. auto res = std::make_unique<server_task_result_slot_save_load>();
  1842. res->id = task.id;
  1843. res->id_slot = id_slot;
  1844. res->filename = filename;
  1845. res->is_save = true;
  1846. res->n_tokens = token_count;
  1847. res->n_bytes = nwrite;
  1848. res->t_ms = t_save_ms;
  1849. queue_results.send(std::move(res));
  1850. } break;
  1851. case SERVER_TASK_TYPE_SLOT_RESTORE:
  1852. {
  1853. int id_slot = task.slot_action.slot_id;
  1854. server_slot * slot = get_slot_by_id(id_slot);
  1855. if (slot == nullptr) {
  1856. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1857. break;
  1858. }
  1859. if (slot->is_processing()) {
  1860. // if requested slot is unavailable, we defer this task for processing later
  1861. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1862. queue_tasks.defer(task);
  1863. break;
  1864. }
  1865. const int64_t t_start = ggml_time_us();
  1866. std::string filename = task.slot_action.filename;
  1867. std::string filepath = task.slot_action.filepath;
  1868. slot->cache_tokens.resize(slot->n_ctx);
  1869. size_t token_count = 0;
  1870. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  1871. if (nread == 0) {
  1872. slot->cache_tokens.resize(0);
  1873. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  1874. break;
  1875. }
  1876. slot->cache_tokens.resize(token_count);
  1877. const int64_t t_end = ggml_time_us();
  1878. const double t_restore_ms = (t_end - t_start) / 1000.0;
  1879. auto res = std::make_unique<server_task_result_slot_save_load>();
  1880. res->id = task.id;
  1881. res->id_slot = id_slot;
  1882. res->filename = filename;
  1883. res->is_save = false;
  1884. res->n_tokens = token_count;
  1885. res->n_bytes = nread;
  1886. res->t_ms = t_restore_ms;
  1887. queue_results.send(std::move(res));
  1888. } break;
  1889. case SERVER_TASK_TYPE_SLOT_ERASE:
  1890. {
  1891. int id_slot = task.slot_action.slot_id;
  1892. server_slot * slot = get_slot_by_id(id_slot);
  1893. if (slot == nullptr) {
  1894. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1895. break;
  1896. }
  1897. if (slot->is_processing()) {
  1898. // if requested slot is unavailable, we defer this task for processing later
  1899. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1900. queue_tasks.defer(task);
  1901. break;
  1902. }
  1903. // Erase token cache
  1904. const size_t n_erased = slot->cache_tokens.size();
  1905. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  1906. slot->cache_tokens.clear();
  1907. auto res = std::make_unique<server_task_result_slot_erase>();
  1908. res->id = task.id;
  1909. res->id_slot = id_slot;
  1910. res->n_erased = n_erased;
  1911. queue_results.send(std::move(res));
  1912. } break;
  1913. case SERVER_TASK_TYPE_SET_LORA:
  1914. {
  1915. common_lora_adapters_apply(ctx, loras);
  1916. auto res = std::make_unique<server_task_result_apply_lora>();
  1917. res->id = task.id;
  1918. queue_results.send(std::move(res));
  1919. } break;
  1920. }
  1921. }
  1922. void update_slots() {
  1923. // check if all slots are idle
  1924. {
  1925. bool all_idle = true;
  1926. for (auto & slot : slots) {
  1927. if (slot.is_processing()) {
  1928. all_idle = false;
  1929. break;
  1930. }
  1931. }
  1932. if (all_idle) {
  1933. SRV_INF("%s", "all slots are idle\n");
  1934. if (clean_kv_cache) {
  1935. kv_cache_clear();
  1936. }
  1937. return;
  1938. }
  1939. }
  1940. {
  1941. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  1942. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  1943. task.id = queue_tasks.get_new_id();
  1944. queue_tasks.post(task);
  1945. }
  1946. // apply context-shift if needed
  1947. // TODO: simplify and improve
  1948. for (server_slot & slot : slots) {
  1949. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  1950. if (!params_base.ctx_shift) {
  1951. // this check is redundant (for good)
  1952. // we should never get here, because generation should already stopped in process_token()
  1953. slot.release();
  1954. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  1955. continue;
  1956. }
  1957. // Shift context
  1958. const int n_keep = slot.params.n_keep + add_bos_token;
  1959. const int n_left = slot.n_past - n_keep;
  1960. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  1961. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  1962. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  1963. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  1964. if (slot.params.cache_prompt) {
  1965. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  1966. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1967. }
  1968. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1969. }
  1970. slot.n_past -= n_discard;
  1971. slot.truncated = true;
  1972. }
  1973. }
  1974. // start populating the batch for this iteration
  1975. common_batch_clear(batch);
  1976. // frist, add sampled tokens from any ongoing sequences
  1977. for (auto & slot : slots) {
  1978. if (slot.state != SLOT_STATE_GENERATING) {
  1979. continue;
  1980. }
  1981. slot.i_batch = batch.n_tokens;
  1982. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  1983. slot.n_past += 1;
  1984. if (slot.params.cache_prompt) {
  1985. slot.cache_tokens.push_back(slot.sampled);
  1986. }
  1987. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  1988. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  1989. }
  1990. // process in chunks of params.n_batch
  1991. int32_t n_batch = llama_n_batch(ctx);
  1992. int32_t n_ubatch = llama_n_ubatch(ctx);
  1993. // track if this is an embedding or non-embedding batch
  1994. // if we've added sampled tokens above, we are in non-embedding mode
  1995. // -1: none, 0: non-embedding, 1: embedding
  1996. // TODO: make enum
  1997. int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
  1998. // next, batch any pending prompts without exceeding n_batch
  1999. if (params_base.cont_batching || batch.n_tokens == 0) {
  2000. for (auto & slot : slots) {
  2001. // this slot still has a prompt to be processed
  2002. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2003. auto & prompt_tokens = slot.prompt_tokens;
  2004. // TODO: maybe move branch to outside of this loop in the future
  2005. if (slot.state == SLOT_STATE_STARTED) {
  2006. slot.t_start_process_prompt = ggml_time_us();
  2007. slot.t_start_generation = 0;
  2008. slot.n_past = 0;
  2009. slot.n_prompt_tokens = prompt_tokens.size();
  2010. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2011. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2012. // print prompt tokens (for debugging)
  2013. if (1) {
  2014. // first 16 tokens (avoid flooding logs)
  2015. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2016. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2017. }
  2018. } else {
  2019. // all
  2020. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2021. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2022. }
  2023. }
  2024. // empty prompt passed -> release the slot and send empty response
  2025. if (prompt_tokens.empty()) {
  2026. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2027. slot.release();
  2028. slot.print_timings();
  2029. send_final_response(slot);
  2030. continue;
  2031. }
  2032. if (slot.is_non_causal()) {
  2033. if (slot.n_prompt_tokens > n_ubatch) {
  2034. slot.release();
  2035. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2036. continue;
  2037. }
  2038. if (slot.n_prompt_tokens > slot.n_ctx) {
  2039. slot.release();
  2040. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2041. continue;
  2042. }
  2043. } else {
  2044. if (!params_base.ctx_shift) {
  2045. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2046. // TODO: there should be a separate parameter that control prompt truncation
  2047. // context shift should be applied only during the generation phase
  2048. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2049. slot.release();
  2050. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2051. continue;
  2052. }
  2053. }
  2054. if (slot.params.n_keep < 0) {
  2055. slot.params.n_keep = slot.n_prompt_tokens;
  2056. }
  2057. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2058. // if input prompt is too big, truncate it
  2059. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2060. const int n_left = slot.n_ctx - slot.params.n_keep;
  2061. const int n_block_size = n_left / 2;
  2062. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2063. llama_tokens new_tokens(
  2064. prompt_tokens.begin(),
  2065. prompt_tokens.begin() + slot.params.n_keep);
  2066. new_tokens.insert(
  2067. new_tokens.end(),
  2068. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2069. prompt_tokens.end());
  2070. prompt_tokens = std::move(new_tokens);
  2071. slot.truncated = true;
  2072. slot.n_prompt_tokens = prompt_tokens.size();
  2073. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2074. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2075. }
  2076. if (slot.params.cache_prompt) {
  2077. // reuse any previously computed tokens that are common with the new prompt
  2078. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2079. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2080. if (params_base.n_cache_reuse > 0) {
  2081. size_t head_c = slot.n_past; // cache
  2082. size_t head_p = slot.n_past; // current prompt
  2083. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2084. while (head_c < slot.cache_tokens.size() &&
  2085. head_p < prompt_tokens.size()) {
  2086. size_t n_match = 0;
  2087. while (head_c + n_match < slot.cache_tokens.size() &&
  2088. head_p + n_match < prompt_tokens.size() &&
  2089. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2090. n_match++;
  2091. }
  2092. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2093. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2094. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2095. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2096. //}
  2097. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2098. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2099. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2100. for (size_t i = 0; i < n_match; i++) {
  2101. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2102. slot.n_past++;
  2103. }
  2104. head_c += n_match;
  2105. head_p += n_match;
  2106. } else {
  2107. head_c += 1;
  2108. }
  2109. }
  2110. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2111. }
  2112. }
  2113. }
  2114. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2115. // we have to evaluate at least 1 token to generate logits.
  2116. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2117. slot.n_past--;
  2118. }
  2119. slot.n_prompt_tokens_processed = 0;
  2120. }
  2121. // non-causal tasks require to fit the entire prompt in the physical batch
  2122. if (slot.is_non_causal()) {
  2123. // cannot fit the prompt in the current batch - will try next iter
  2124. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2125. continue;
  2126. }
  2127. }
  2128. // check that we are in the right batch_type, if not defer the slot
  2129. int slot_type = slot.is_non_causal();
  2130. if (batch_type == -1) {
  2131. batch_type = slot_type;
  2132. } else if (batch_type != slot_type) {
  2133. continue;
  2134. }
  2135. // keep only the common part
  2136. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2137. // could not partially delete (likely using a non-Transformer model)
  2138. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2139. // there is no common part left
  2140. slot.n_past = 0;
  2141. }
  2142. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2143. // remove the non-common part from the cache
  2144. slot.cache_tokens.resize(slot.n_past);
  2145. // add prompt tokens for processing in the current batch
  2146. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2147. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, false);
  2148. if (slot.params.cache_prompt) {
  2149. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2150. }
  2151. slot.n_prompt_tokens_processed++;
  2152. slot.n_past++;
  2153. }
  2154. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2155. // entire prompt has been processed
  2156. if (slot.n_past == slot.n_prompt_tokens) {
  2157. slot.state = SLOT_STATE_DONE_PROMPT;
  2158. GGML_ASSERT(batch.n_tokens > 0);
  2159. common_sampler_reset(slot.smpl);
  2160. // Process all prompt tokens through sampler system
  2161. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2162. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2163. }
  2164. // extract the logits only for the last token
  2165. batch.logits[batch.n_tokens - 1] = true;
  2166. slot.n_decoded = 0;
  2167. slot.i_batch = batch.n_tokens - 1;
  2168. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2169. }
  2170. }
  2171. if (batch.n_tokens >= n_batch) {
  2172. break;
  2173. }
  2174. }
  2175. }
  2176. if (batch.n_tokens == 0) {
  2177. SRV_WRN("%s", "no tokens to decode\n");
  2178. return;
  2179. }
  2180. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2181. // make sure we're in the right embedding mode
  2182. llama_set_embeddings(ctx, batch_type == 1);
  2183. // process the created batch of tokens
  2184. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2185. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2186. llama_batch batch_view = {
  2187. n_tokens,
  2188. batch.token + i,
  2189. nullptr,
  2190. batch.pos + i,
  2191. batch.n_seq_id + i,
  2192. batch.seq_id + i,
  2193. batch.logits + i,
  2194. };
  2195. const int ret = llama_decode(ctx, batch_view);
  2196. metrics.on_decoded(slots);
  2197. if (ret != 0) {
  2198. if (n_batch == 1 || ret < 0) {
  2199. // if you get here, it means the KV cache is full - try increasing it via the context size
  2200. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2201. for (auto & slot : slots) {
  2202. slot.release();
  2203. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2204. }
  2205. break; // break loop of n_batch
  2206. }
  2207. // retry with half the batch size to try to find a free slot in the KV cache
  2208. n_batch /= 2;
  2209. i -= n_batch;
  2210. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2211. continue; // continue loop of n_batch
  2212. }
  2213. for (auto & slot : slots) {
  2214. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2215. continue; // continue loop of slots
  2216. }
  2217. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2218. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2219. // prompt evaluated for embedding
  2220. send_embedding(slot, batch_view);
  2221. slot.release();
  2222. slot.i_batch = -1;
  2223. continue; // continue loop of slots
  2224. }
  2225. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2226. send_rerank(slot, batch_view);
  2227. slot.release();
  2228. slot.i_batch = -1;
  2229. continue; // continue loop of slots
  2230. }
  2231. // prompt evaluated for next-token prediction
  2232. slot.state = SLOT_STATE_GENERATING;
  2233. } else if (slot.state != SLOT_STATE_GENERATING) {
  2234. continue; // continue loop of slots
  2235. }
  2236. llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
  2237. slot.i_batch = -1;
  2238. common_sampler_accept(slot.smpl, id, true);
  2239. slot.n_decoded += 1;
  2240. const int64_t t_current = ggml_time_us();
  2241. if (slot.n_decoded == 1) {
  2242. slot.t_start_generation = t_current;
  2243. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2244. metrics.on_prompt_eval(slot);
  2245. }
  2246. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2247. completion_token_output result;
  2248. result.tok = id;
  2249. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  2250. for (size_t i = 0; i < (size_t) slot.params.sampling.n_probs; ++i) {
  2251. auto tok_id = cur_p->data[i].id;
  2252. result.probs.push_back({
  2253. tok_id,
  2254. tokens_to_output_formatted_string(ctx, tok_id),
  2255. i >= cur_p->size ? 0.0f : cur_p->data[i].p,
  2256. });
  2257. }
  2258. if (!process_token(result, slot)) {
  2259. // release slot because of stop condition
  2260. slot.release();
  2261. slot.print_timings();
  2262. send_final_response(slot);
  2263. metrics.on_prediction(slot);
  2264. continue;
  2265. }
  2266. }
  2267. // do speculative decoding
  2268. for (auto & slot : slots) {
  2269. if (!slot.is_processing() || !slot.can_speculate()) {
  2270. continue;
  2271. }
  2272. if (slot.state != SLOT_STATE_GENERATING) {
  2273. continue;
  2274. }
  2275. // determine the max draft that fits the current slot state
  2276. int n_draft_max = slot.params.speculative.n_max;
  2277. // note: n_past is not yet increased for the `id` token sampled above
  2278. // also, need to leave space for 1 extra token to allow context shifts
  2279. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2280. if (slot.n_remaining > 0) {
  2281. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2282. }
  2283. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2284. if (n_draft_max < slot.params.speculative.n_min) {
  2285. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2286. continue;
  2287. }
  2288. llama_token id = slot.sampled;
  2289. struct common_speculative_params params_spec;
  2290. params_spec.n_draft = n_draft_max;
  2291. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2292. params_spec.p_min = slot.params.speculative.p_min;
  2293. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2294. // ignore small drafts
  2295. if (slot.params.speculative.n_min > (int) draft.size()) {
  2296. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2297. continue;
  2298. }
  2299. // construct the speculation batch
  2300. common_batch_clear(slot.batch_spec);
  2301. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2302. for (size_t i = 0; i < draft.size(); ++i) {
  2303. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2304. }
  2305. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2306. llama_decode(ctx, slot.batch_spec);
  2307. // the accepted tokens from the speculation
  2308. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2309. slot.n_past += ids.size();
  2310. slot.n_decoded += ids.size();
  2311. slot.cache_tokens.push_back(id);
  2312. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2313. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2314. for (size_t i = 0; i < ids.size(); ++i) {
  2315. completion_token_output result;
  2316. result.tok = ids[i];
  2317. if (!process_token(result, slot)) {
  2318. // release slot because of stop condition
  2319. slot.release();
  2320. slot.print_timings();
  2321. send_final_response(slot);
  2322. metrics.on_prediction(slot);
  2323. break;
  2324. }
  2325. }
  2326. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2327. }
  2328. }
  2329. SRV_DBG("%s", "run slots completed\n");
  2330. }
  2331. json model_meta() const {
  2332. return json {
  2333. {"vocab_type", llama_vocab_type (model)},
  2334. {"n_vocab", llama_n_vocab (model)},
  2335. {"n_ctx_train", llama_n_ctx_train (model)},
  2336. {"n_embd", llama_n_embd (model)},
  2337. {"n_params", llama_model_n_params(model)},
  2338. {"size", llama_model_size (model)},
  2339. };
  2340. }
  2341. };
  2342. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2343. // skip GH copilot requests when using default port
  2344. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2345. return;
  2346. }
  2347. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2348. LOG_DBG("request: %s\n", req.body.c_str());
  2349. LOG_DBG("response: %s\n", res.body.c_str());
  2350. }
  2351. std::function<void(int)> shutdown_handler;
  2352. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2353. inline void signal_handler(int signal) {
  2354. if (is_terminating.test_and_set()) {
  2355. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2356. // this is for better developer experience, we can remove when the server is stable enough
  2357. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2358. exit(1);
  2359. }
  2360. shutdown_handler(signal);
  2361. }
  2362. int main(int argc, char ** argv) {
  2363. // own arguments required by this example
  2364. common_params params;
  2365. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2366. return 1;
  2367. }
  2368. common_init();
  2369. // struct that contains llama context and inference
  2370. server_context ctx_server;
  2371. llama_backend_init();
  2372. llama_numa_init(params.numa);
  2373. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2374. LOG_INF("\n");
  2375. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2376. LOG_INF("\n");
  2377. std::unique_ptr<httplib::Server> svr;
  2378. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2379. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2380. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2381. svr.reset(
  2382. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2383. );
  2384. } else {
  2385. LOG_INF("Running without SSL\n");
  2386. svr.reset(new httplib::Server());
  2387. }
  2388. #else
  2389. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2390. LOG_ERR("Server is built without SSL support\n");
  2391. return 1;
  2392. }
  2393. svr.reset(new httplib::Server());
  2394. #endif
  2395. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2396. svr->set_default_headers({{"Server", "llama.cpp"}});
  2397. svr->set_logger(log_server_request);
  2398. auto res_error = [](httplib::Response & res, const json & error_data) {
  2399. json final_response {{"error", error_data}};
  2400. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2401. res.status = json_value(error_data, "code", 500);
  2402. };
  2403. auto res_ok = [](httplib::Response & res, const json & data) {
  2404. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2405. res.status = 200;
  2406. };
  2407. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2408. std::string message;
  2409. try {
  2410. std::rethrow_exception(ep);
  2411. } catch (const std::exception & e) {
  2412. message = e.what();
  2413. } catch (...) {
  2414. message = "Unknown Exception";
  2415. }
  2416. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2417. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2418. res_error(res, formatted_error);
  2419. });
  2420. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2421. if (res.status == 404) {
  2422. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2423. }
  2424. // for other error codes, we skip processing here because it's already done by res_error()
  2425. });
  2426. // set timeouts and change hostname and port
  2427. svr->set_read_timeout (params.timeout_read);
  2428. svr->set_write_timeout(params.timeout_write);
  2429. std::unordered_map<std::string, std::string> log_data;
  2430. log_data["hostname"] = params.hostname;
  2431. log_data["port"] = std::to_string(params.port);
  2432. if (params.api_keys.size() == 1) {
  2433. auto key = params.api_keys[0];
  2434. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2435. } else if (params.api_keys.size() > 1) {
  2436. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2437. }
  2438. // Necessary similarity of prompt for slot selection
  2439. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2440. //
  2441. // Middlewares
  2442. //
  2443. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2444. static const std::unordered_set<std::string> public_endpoints = {
  2445. "/health",
  2446. "/models",
  2447. "/v1/models",
  2448. };
  2449. // If API key is not set, skip validation
  2450. if (params.api_keys.empty()) {
  2451. return true;
  2452. }
  2453. // If path is public or is static file, skip validation
  2454. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2455. return true;
  2456. }
  2457. // Check for API key in the header
  2458. auto auth_header = req.get_header_value("Authorization");
  2459. std::string prefix = "Bearer ";
  2460. if (auth_header.substr(0, prefix.size()) == prefix) {
  2461. std::string received_api_key = auth_header.substr(prefix.size());
  2462. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2463. return true; // API key is valid
  2464. }
  2465. }
  2466. // API key is invalid or not provided
  2467. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2468. LOG_WRN("Unauthorized: Invalid API Key\n");
  2469. return false;
  2470. };
  2471. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2472. server_state current_state = state.load();
  2473. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2474. auto tmp = string_split<std::string>(req.path, '.');
  2475. if (req.path == "/" || tmp.back() == "html") {
  2476. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2477. res.status = 503;
  2478. } else {
  2479. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2480. }
  2481. return false;
  2482. }
  2483. return true;
  2484. };
  2485. // register server middlewares
  2486. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2487. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2488. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2489. if (req.method == "OPTIONS") {
  2490. res.set_header("Access-Control-Allow-Credentials", "true");
  2491. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2492. res.set_header("Access-Control-Allow-Headers", "*");
  2493. res.set_content("", "text/html"); // blank response, no data
  2494. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2495. }
  2496. if (!middleware_server_state(req, res)) {
  2497. return httplib::Server::HandlerResponse::Handled;
  2498. }
  2499. if (!middleware_validate_api_key(req, res)) {
  2500. return httplib::Server::HandlerResponse::Handled;
  2501. }
  2502. return httplib::Server::HandlerResponse::Unhandled;
  2503. });
  2504. //
  2505. // Route handlers (or controllers)
  2506. //
  2507. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2508. // error and loading states are handled by middleware
  2509. json health = {{"status", "ok"}};
  2510. res_ok(res, health);
  2511. };
  2512. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2513. if (!params.endpoint_slots) {
  2514. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2515. return;
  2516. }
  2517. // request slots data using task queue
  2518. server_task task(SERVER_TASK_TYPE_METRICS);
  2519. task.id = ctx_server.queue_tasks.get_new_id();
  2520. ctx_server.queue_results.add_waiting_task_id(task.id);
  2521. ctx_server.queue_tasks.post(task, true); // high-priority task
  2522. // get the result
  2523. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2524. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2525. if (result->is_error()) {
  2526. res_error(res, result->to_json());
  2527. return;
  2528. }
  2529. // TODO: get rid of this dynamic_cast
  2530. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2531. GGML_ASSERT(res_metrics != nullptr);
  2532. // optionally return "fail_on_no_slot" error
  2533. if (req.has_param("fail_on_no_slot")) {
  2534. if (res_metrics->n_idle_slots == 0) {
  2535. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2536. return;
  2537. }
  2538. }
  2539. res_ok(res, res_metrics->slots_data);
  2540. };
  2541. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2542. if (!params.endpoint_metrics) {
  2543. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2544. return;
  2545. }
  2546. // request slots data using task queue
  2547. server_task task(SERVER_TASK_TYPE_METRICS);
  2548. task.id = ctx_server.queue_tasks.get_new_id();
  2549. task.metrics_reset_bucket = true;
  2550. ctx_server.queue_results.add_waiting_task_id(task.id);
  2551. ctx_server.queue_tasks.post(task, true); // high-priority task
  2552. // get the result
  2553. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2554. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2555. if (result->is_error()) {
  2556. res_error(res, result->to_json());
  2557. return;
  2558. }
  2559. // TODO: get rid of this dynamic_cast
  2560. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2561. GGML_ASSERT(res_metrics != nullptr);
  2562. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2563. json all_metrics_def = json {
  2564. {"counter", {{
  2565. {"name", "prompt_tokens_total"},
  2566. {"help", "Number of prompt tokens processed."},
  2567. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2568. }, {
  2569. {"name", "prompt_seconds_total"},
  2570. {"help", "Prompt process time"},
  2571. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2572. }, {
  2573. {"name", "tokens_predicted_total"},
  2574. {"help", "Number of generation tokens processed."},
  2575. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2576. }, {
  2577. {"name", "tokens_predicted_seconds_total"},
  2578. {"help", "Predict process time"},
  2579. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2580. }, {
  2581. {"name", "n_decode_total"},
  2582. {"help", "Total number of llama_decode() calls"},
  2583. {"value", res_metrics->n_decode_total}
  2584. }, {
  2585. {"name", "n_busy_slots_per_decode"},
  2586. {"help", "Average number of busy slots per llama_decode() call"},
  2587. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2588. }}},
  2589. {"gauge", {{
  2590. {"name", "prompt_tokens_seconds"},
  2591. {"help", "Average prompt throughput in tokens/s."},
  2592. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2593. },{
  2594. {"name", "predicted_tokens_seconds"},
  2595. {"help", "Average generation throughput in tokens/s."},
  2596. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2597. },{
  2598. {"name", "kv_cache_usage_ratio"},
  2599. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2600. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2601. },{
  2602. {"name", "kv_cache_tokens"},
  2603. {"help", "KV-cache tokens."},
  2604. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2605. },{
  2606. {"name", "requests_processing"},
  2607. {"help", "Number of request processing."},
  2608. {"value", (uint64_t) res_metrics->n_processing_slots}
  2609. },{
  2610. {"name", "requests_deferred"},
  2611. {"help", "Number of request deferred."},
  2612. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  2613. }}}
  2614. };
  2615. std::stringstream prometheus;
  2616. for (const auto & el : all_metrics_def.items()) {
  2617. const auto & type = el.key();
  2618. const auto & metrics_def = el.value();
  2619. for (const auto & metric_def : metrics_def) {
  2620. const std::string name = metric_def.at("name");
  2621. const std::string help = metric_def.at("help");
  2622. auto value = json_value(metric_def, "value", 0.);
  2623. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2624. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2625. << "llamacpp:" << name << " " << value << "\n";
  2626. }
  2627. }
  2628. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  2629. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2630. res.status = 200; // HTTP OK
  2631. };
  2632. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2633. json request_data = json::parse(req.body);
  2634. std::string filename = request_data.at("filename");
  2635. if (!fs_validate_filename(filename)) {
  2636. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2637. return;
  2638. }
  2639. std::string filepath = params.slot_save_path + filename;
  2640. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  2641. task.id = ctx_server.queue_tasks.get_new_id();
  2642. task.slot_action.slot_id = id_slot;
  2643. task.slot_action.filename = filename;
  2644. task.slot_action.filepath = filepath;
  2645. ctx_server.queue_results.add_waiting_task_id(task.id);
  2646. ctx_server.queue_tasks.post(task);
  2647. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2648. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2649. if (result->is_error()) {
  2650. res_error(res, result->to_json());
  2651. return;
  2652. }
  2653. res_ok(res, result->to_json());
  2654. };
  2655. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2656. json request_data = json::parse(req.body);
  2657. std::string filename = request_data.at("filename");
  2658. if (!fs_validate_filename(filename)) {
  2659. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2660. return;
  2661. }
  2662. std::string filepath = params.slot_save_path + filename;
  2663. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  2664. task.id = ctx_server.queue_tasks.get_new_id();
  2665. task.slot_action.slot_id = id_slot;
  2666. task.slot_action.filename = filename;
  2667. task.slot_action.filepath = filepath;
  2668. ctx_server.queue_results.add_waiting_task_id(task.id);
  2669. ctx_server.queue_tasks.post(task);
  2670. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2671. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2672. if (result->is_error()) {
  2673. res_error(res, result->to_json());
  2674. return;
  2675. }
  2676. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  2677. res_ok(res, result->to_json());
  2678. };
  2679. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2680. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  2681. task.id = ctx_server.queue_tasks.get_new_id();
  2682. task.slot_action.slot_id = id_slot;
  2683. ctx_server.queue_results.add_waiting_task_id(task.id);
  2684. ctx_server.queue_tasks.post(task);
  2685. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2686. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2687. if (result->is_error()) {
  2688. res_error(res, result->to_json());
  2689. return;
  2690. }
  2691. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  2692. res_ok(res, result->to_json());
  2693. };
  2694. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2695. if (params.slot_save_path.empty()) {
  2696. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2697. return;
  2698. }
  2699. std::string id_slot_str = req.path_params.at("id_slot");
  2700. int id_slot;
  2701. try {
  2702. id_slot = std::stoi(id_slot_str);
  2703. } catch (const std::exception &) {
  2704. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2705. return;
  2706. }
  2707. std::string action = req.get_param_value("action");
  2708. if (action == "save") {
  2709. handle_slots_save(req, res, id_slot);
  2710. } else if (action == "restore") {
  2711. handle_slots_restore(req, res, id_slot);
  2712. } else if (action == "erase") {
  2713. handle_slots_erase(req, res, id_slot);
  2714. } else {
  2715. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2716. }
  2717. };
  2718. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2719. // this endpoint is publicly available, please only return what is safe to be exposed
  2720. json data = {
  2721. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2722. { "total_slots", ctx_server.params_base.n_parallel },
  2723. { "model_path", ctx_server.params_base.model },
  2724. { "chat_template", llama_get_chat_template(ctx_server.model) },
  2725. };
  2726. res_ok(res, data);
  2727. };
  2728. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2729. if (!ctx_server.params_base.endpoint_props) {
  2730. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2731. return;
  2732. }
  2733. json data = json::parse(req.body);
  2734. // update any props here
  2735. res_ok(res, {{ "success", true }});
  2736. };
  2737. // handle completion-like requests (completion, chat, infill)
  2738. // we can optionally provide a custom format for partial results and final results
  2739. const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](
  2740. server_task_type type,
  2741. json & data,
  2742. httplib::Response & res,
  2743. bool oaicompat = false,
  2744. bool oaicompat_chat = false) {
  2745. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  2746. if (ctx_server.params_base.embedding) {
  2747. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2748. return;
  2749. }
  2750. auto completion_id = gen_chatcmplid();
  2751. std::vector<server_task> tasks;
  2752. try {
  2753. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
  2754. tasks.reserve(tokenized_prompts.size());
  2755. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  2756. server_task task = server_task(type);
  2757. task.id = ctx_server.queue_tasks.get_new_id();
  2758. task.index = i;
  2759. task.prompt_tokens = std::move(tokenized_prompts[i]);
  2760. task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.params_base, data);
  2761. task.id_selected_slot = json_value(data, "id_slot", -1);
  2762. // OAI-compat
  2763. task.params.oaicompat = oaicompat;
  2764. task.params.oaicompat_chat = oaicompat_chat;
  2765. task.params.oaicompat_cmpl_id = completion_id;
  2766. // oaicompat_model is already populated by params_from_json_cmpl
  2767. tasks.push_back(task);
  2768. }
  2769. } catch (const std::exception & e) {
  2770. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  2771. return;
  2772. }
  2773. ctx_server.queue_results.add_waiting_tasks(tasks);
  2774. ctx_server.queue_tasks.post(tasks);
  2775. bool stream = json_value(data, "stream", false);
  2776. const auto task_ids = server_task::get_list_id(tasks);
  2777. if (!stream) {
  2778. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  2779. if (results.size() == 1) {
  2780. // single result
  2781. res_ok(res, results[0]->to_json());
  2782. } else {
  2783. // multiple results (multitask)
  2784. json arr = json::array();
  2785. for (auto & res : results) {
  2786. arr.push_back(res->to_json());
  2787. }
  2788. res_ok(res, arr);
  2789. }
  2790. }, [&](const json & error_data) {
  2791. res_error(res, error_data);
  2792. });
  2793. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2794. } else {
  2795. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  2796. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  2797. json res_json = result->to_json();
  2798. if (res_json.is_array()) {
  2799. for (const auto & res : res_json) {
  2800. if (!server_sent_event(sink, "data", res)) {
  2801. return false;
  2802. }
  2803. }
  2804. return true;
  2805. } else {
  2806. return server_sent_event(sink, "data", res_json);
  2807. }
  2808. }, [&](const json & error_data) {
  2809. server_sent_event(sink, "error", error_data);
  2810. });
  2811. if (oaicompat) {
  2812. static const std::string ev_done = "data: [DONE]\n\n";
  2813. sink.write(ev_done.data(), ev_done.size());
  2814. }
  2815. sink.done();
  2816. return false;
  2817. };
  2818. auto on_complete = [task_ids, &ctx_server] (bool) {
  2819. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2820. };
  2821. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2822. }
  2823. };
  2824. const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2825. json data = json::parse(req.body);
  2826. return handle_completions_generic(
  2827. SERVER_TASK_TYPE_COMPLETION,
  2828. data,
  2829. res,
  2830. /* oaicompat */ false,
  2831. /* oaicompat_chat */ false);
  2832. };
  2833. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2834. // check model compatibility
  2835. std::string err;
  2836. if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2837. err += "prefix token is missing. ";
  2838. }
  2839. if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2840. err += "suffix token is missing. ";
  2841. }
  2842. if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
  2843. err += "middle token is missing. ";
  2844. }
  2845. if (!err.empty()) {
  2846. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  2847. return;
  2848. }
  2849. json data = json::parse(req.body);
  2850. // validate input
  2851. if (!data.contains("input_prefix")) {
  2852. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2853. }
  2854. if (!data.contains("input_suffix")) {
  2855. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2856. }
  2857. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  2858. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  2859. return;
  2860. }
  2861. json input_extra = json_value(data, "input_extra", json::array());
  2862. for (const auto & chunk : input_extra) {
  2863. // { "text": string, "filename": string }
  2864. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  2865. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  2866. return;
  2867. }
  2868. // filename is optional
  2869. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  2870. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  2871. return;
  2872. }
  2873. }
  2874. data["input_extra"] = input_extra; // default to empty array if it's not exist
  2875. return handle_completions_generic(SERVER_TASK_TYPE_INFILL, data, res);
  2876. };
  2877. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2878. if (ctx_server.params_base.embedding) {
  2879. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2880. return;
  2881. }
  2882. json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  2883. return handle_completions_generic(
  2884. SERVER_TASK_TYPE_COMPLETION,
  2885. data,
  2886. res,
  2887. /* oaicompat */ true,
  2888. /* oaicompat_chat */ true);
  2889. };
  2890. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2891. json models = {
  2892. {"object", "list"},
  2893. {"data", {
  2894. {
  2895. {"id", params.model_alias},
  2896. {"object", "model"},
  2897. {"created", std::time(0)},
  2898. {"owned_by", "llamacpp"},
  2899. {"meta", ctx_server.model_meta()}
  2900. },
  2901. }}
  2902. };
  2903. res_ok(res, models);
  2904. };
  2905. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2906. const json body = json::parse(req.body);
  2907. json tokens_response = json::array();
  2908. if (body.count("content") != 0) {
  2909. const bool add_special = json_value(body, "add_special", false);
  2910. const bool with_pieces = json_value(body, "with_pieces", false);
  2911. llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
  2912. if (with_pieces) {
  2913. for (const auto& token : tokens) {
  2914. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  2915. json piece_json;
  2916. // Check if the piece is valid UTF-8
  2917. if (is_valid_utf8(piece)) {
  2918. piece_json = piece;
  2919. } else {
  2920. // If not valid UTF-8, store as array of byte values
  2921. piece_json = json::array();
  2922. for (unsigned char c : piece) {
  2923. piece_json.push_back(static_cast<int>(c));
  2924. }
  2925. }
  2926. tokens_response.push_back({
  2927. {"id", token},
  2928. {"piece", piece_json}
  2929. });
  2930. }
  2931. } else {
  2932. tokens_response = tokens;
  2933. }
  2934. }
  2935. const json data = format_tokenizer_response(tokens_response);
  2936. res_ok(res, data);
  2937. };
  2938. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2939. const json body = json::parse(req.body);
  2940. std::string content;
  2941. if (body.count("tokens") != 0) {
  2942. const llama_tokens tokens = body.at("tokens");
  2943. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  2944. }
  2945. const json data = format_detokenized_response(content);
  2946. res_ok(res, data);
  2947. };
  2948. const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2949. const json body = json::parse(req.body);
  2950. bool oaicompat = false;
  2951. // an input prompt can be a string or a list of tokens (integer)
  2952. json prompt;
  2953. if (body.count("input") != 0) {
  2954. oaicompat = true;
  2955. prompt = body.at("input");
  2956. } else if (body.count("content") != 0) {
  2957. // with "content", we only support single prompt
  2958. prompt = std::vector<std::string>{body.at("content")};
  2959. } else {
  2960. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2961. return;
  2962. }
  2963. // create and queue the task
  2964. json responses = json::array();
  2965. bool error = false;
  2966. {
  2967. std::vector<server_task> tasks;
  2968. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, /* add_special */ false, true);
  2969. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  2970. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  2971. task.id = ctx_server.queue_tasks.get_new_id();
  2972. task.index = i;
  2973. task.prompt_tokens = std::move(tokenized_prompts[i]);
  2974. tasks.push_back(task);
  2975. }
  2976. ctx_server.queue_results.add_waiting_tasks(tasks);
  2977. ctx_server.queue_tasks.post(tasks);
  2978. // get the result
  2979. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  2980. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  2981. for (auto & res : results) {
  2982. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  2983. responses.push_back(res->to_json());
  2984. }
  2985. }, [&](const json & error_data) {
  2986. res_error(res, error_data);
  2987. error = true;
  2988. });
  2989. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2990. }
  2991. if (error) {
  2992. return;
  2993. }
  2994. // write JSON response
  2995. json root = oaicompat
  2996. ? format_embeddings_response_oaicompat(body, responses)
  2997. : responses.size() == 1 ? responses[0] : json(responses);
  2998. res_ok(res, root);
  2999. };
  3000. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3001. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3002. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3003. return;
  3004. }
  3005. const json body = json::parse(req.body);
  3006. // TODO: implement
  3007. //int top_n = 1;
  3008. //if (body.count("top_n") != 1) {
  3009. // top_n = body.at("top_n");
  3010. //} else {
  3011. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3012. // return;
  3013. //}
  3014. json query;
  3015. if (body.count("query") == 1) {
  3016. query = body.at("query");
  3017. if (!query.is_string()) {
  3018. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3019. return;
  3020. }
  3021. } else {
  3022. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3023. return;
  3024. }
  3025. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3026. if (documents.empty()) {
  3027. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3028. return;
  3029. }
  3030. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0];
  3031. // create and queue the task
  3032. json responses = json::array();
  3033. bool error = false;
  3034. {
  3035. std::vector<server_task> tasks;
  3036. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
  3037. tasks.reserve(tokenized_docs.size());
  3038. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3039. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3040. task.id = ctx_server.queue_tasks.get_new_id();
  3041. task.index = i;
  3042. task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);
  3043. tasks.push_back(task);
  3044. }
  3045. ctx_server.queue_results.add_waiting_tasks(tasks);
  3046. ctx_server.queue_tasks.post(tasks);
  3047. // get the result
  3048. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3049. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3050. for (auto & res : results) {
  3051. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3052. responses.push_back(res->to_json());
  3053. }
  3054. }, [&](const json & error_data) {
  3055. res_error(res, error_data);
  3056. error = true;
  3057. });
  3058. }
  3059. if (error) {
  3060. return;
  3061. }
  3062. // write JSON response
  3063. json root = format_response_rerank(body, responses);
  3064. res_ok(res, root);
  3065. };
  3066. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3067. json result = json::array();
  3068. for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
  3069. auto & lora = ctx_server.loras[i];
  3070. result.push_back({
  3071. {"id", i},
  3072. {"path", lora.path},
  3073. {"scale", lora.scale},
  3074. });
  3075. }
  3076. res_ok(res, result);
  3077. res.status = 200; // HTTP OK
  3078. };
  3079. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3080. const std::vector<json> body = json::parse(req.body);
  3081. int max_idx = ctx_server.loras.size();
  3082. // clear existing value
  3083. for (auto & lora : ctx_server.loras) {
  3084. lora.scale = 0.0f;
  3085. }
  3086. // set value
  3087. for (auto entry : body) {
  3088. int id = entry.at("id");
  3089. float scale = entry.at("scale");
  3090. if (0 <= id && id < max_idx) {
  3091. ctx_server.loras[id].scale = scale;
  3092. } else {
  3093. throw std::runtime_error("invalid adapter id");
  3094. }
  3095. }
  3096. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3097. task.id = ctx_server.queue_tasks.get_new_id();
  3098. ctx_server.queue_results.add_waiting_task_id(task.id);
  3099. ctx_server.queue_tasks.post(task);
  3100. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3101. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3102. if (result->is_error()) {
  3103. res_error(res, result->to_json());
  3104. return;
  3105. }
  3106. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3107. res_ok(res, result->to_json());
  3108. };
  3109. //
  3110. // Router
  3111. //
  3112. // register static assets routes
  3113. if (!params.public_path.empty()) {
  3114. // Set the base directory for serving static files
  3115. bool is_found = svr->set_mount_point("/", params.public_path);
  3116. if (!is_found) {
  3117. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3118. return 1;
  3119. }
  3120. } else {
  3121. // using embedded static index.html
  3122. svr->Get("/", [](const httplib::Request &, httplib::Response & res) {
  3123. res.set_content(reinterpret_cast<const char*>(index_html), index_html_len, "text/html; charset=utf-8");
  3124. return false;
  3125. });
  3126. }
  3127. // register API routes
  3128. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3129. svr->Get ("/metrics", handle_metrics);
  3130. svr->Get ("/props", handle_props);
  3131. svr->Post("/props", handle_props_change);
  3132. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3133. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3134. svr->Post("/completion", handle_completions); // legacy
  3135. svr->Post("/completions", handle_completions);
  3136. svr->Post("/v1/completions", handle_completions);
  3137. svr->Post("/chat/completions", handle_chat_completions);
  3138. svr->Post("/v1/chat/completions", handle_chat_completions);
  3139. svr->Post("/infill", handle_infill);
  3140. svr->Post("/embedding", handle_embeddings); // legacy
  3141. svr->Post("/embeddings", handle_embeddings);
  3142. svr->Post("/v1/embeddings", handle_embeddings);
  3143. svr->Post("/rerank", handle_rerank);
  3144. svr->Post("/reranking", handle_rerank);
  3145. svr->Post("/v1/rerank", handle_rerank);
  3146. svr->Post("/v1/reranking", handle_rerank);
  3147. svr->Post("/tokenize", handle_tokenize);
  3148. svr->Post("/detokenize", handle_detokenize);
  3149. // LoRA adapters hotswap
  3150. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3151. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3152. // Save & load slots
  3153. svr->Get ("/slots", handle_slots);
  3154. svr->Post("/slots/:id_slot", handle_slots_action);
  3155. //
  3156. // Start the server
  3157. //
  3158. if (params.n_threads_http < 1) {
  3159. // +2 threads for monitoring endpoints
  3160. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3161. }
  3162. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3163. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3164. // clean up function, to be called before exit
  3165. auto clean_up = [&svr]() {
  3166. svr->stop();
  3167. llama_backend_free();
  3168. };
  3169. // bind HTTP listen port
  3170. bool was_bound = false;
  3171. if (params.port == 0) {
  3172. int bound_port = svr->bind_to_any_port(params.hostname);
  3173. if ((was_bound = (bound_port >= 0))) {
  3174. params.port = bound_port;
  3175. }
  3176. } else {
  3177. was_bound = svr->bind_to_port(params.hostname, params.port);
  3178. }
  3179. if (!was_bound) {
  3180. //LOG_ERROR("couldn't bind HTTP server socket", {
  3181. // {"hostname", params.hostname},
  3182. // {"port", params.port},
  3183. //});
  3184. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3185. clean_up();
  3186. return 1;
  3187. }
  3188. // run the HTTP server in a thread
  3189. std::thread t([&]() { svr->listen_after_bind(); });
  3190. svr->wait_until_ready();
  3191. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3192. // load the model
  3193. LOG_INF("%s: loading model\n", __func__);
  3194. if (!ctx_server.load_model(params)) {
  3195. clean_up();
  3196. t.join();
  3197. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3198. return 1;
  3199. }
  3200. ctx_server.init();
  3201. state.store(SERVER_STATE_READY);
  3202. LOG_INF("%s: model loaded\n", __func__);
  3203. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  3204. if (params.chat_template.empty()) {
  3205. if (!ctx_server.validate_model_chat_template()) {
  3206. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  3207. params.chat_template = "chatml";
  3208. }
  3209. }
  3210. // print sample chat example to make it clear which template is used
  3211. LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
  3212. ctx_server.queue_tasks.on_new_task(std::bind(
  3213. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  3214. ctx_server.queue_tasks.on_update_slots(std::bind(
  3215. &server_context::update_slots, &ctx_server));
  3216. shutdown_handler = [&](int) {
  3217. ctx_server.queue_tasks.terminate();
  3218. };
  3219. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3220. ctx_server.queue_tasks.start_loop();
  3221. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3222. struct sigaction sigint_action;
  3223. sigint_action.sa_handler = signal_handler;
  3224. sigemptyset (&sigint_action.sa_mask);
  3225. sigint_action.sa_flags = 0;
  3226. sigaction(SIGINT, &sigint_action, NULL);
  3227. sigaction(SIGTERM, &sigint_action, NULL);
  3228. #elif defined (_WIN32)
  3229. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3230. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3231. };
  3232. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3233. #endif
  3234. clean_up();
  3235. t.join();
  3236. return 0;
  3237. }