ggml.c 764 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-backend.h"
  4. #include "ggml-impl.h"
  5. #include "ggml-cpu-impl.h"
  6. #include "ggml-quants.h"
  7. #include "ggml.h"
  8. #include "ggml-aarch64.h"
  9. #if defined(_MSC_VER) || defined(__MINGW32__)
  10. #include <malloc.h> // using malloc.h with MSC/MINGW
  11. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  12. #include <alloca.h>
  13. #endif
  14. #include <assert.h>
  15. #include <errno.h>
  16. #include <time.h>
  17. #include <math.h>
  18. #include <stdlib.h>
  19. #include <string.h>
  20. #include <stdint.h>
  21. #include <inttypes.h>
  22. #include <stdio.h>
  23. #include <float.h>
  24. #include <limits.h>
  25. #include <stdarg.h>
  26. #include <signal.h>
  27. #if defined(__gnu_linux__)
  28. #include <syscall.h>
  29. #endif
  30. #ifdef GGML_USE_OPENMP
  31. #include <omp.h>
  32. #endif
  33. #ifdef GGML_USE_METAL
  34. #include <unistd.h>
  35. #endif
  36. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  37. #undef GGML_USE_LLAMAFILE
  38. #endif
  39. #ifdef GGML_USE_LLAMAFILE
  40. #include <llamafile/sgemm.h>
  41. #endif
  42. #if defined(_MSC_VER)
  43. // disable "possible loss of data" to avoid hundreds of casts
  44. // we should just be careful :)
  45. #pragma warning(disable: 4244 4267)
  46. // disable POSIX deprecation warnings
  47. // these functions are never going away, anyway
  48. #pragma warning(disable: 4996)
  49. // unreachable code because of multiple instances of code after GGML_ABORT
  50. #pragma warning(disable: 4702)
  51. #endif
  52. // Note: once we move threading into a separate C++ file
  53. // will use std::hardware_destructive_interference_size instead of hardcoding it here
  54. // and we'll use C++ attribute syntax.
  55. #define GGML_CACHE_LINE 64
  56. #if defined(__clang__) || defined(__GNUC__)
  57. #define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE)))
  58. #endif
  59. #if defined(__has_feature)
  60. #if __has_feature(thread_sanitizer)
  61. #define GGML_TSAN_ENABLED 1
  62. #endif
  63. #else // __has_feature
  64. #if defined(__SANITIZE_THREAD__)
  65. #define GGML_TSAN_ENABLED 1
  66. #endif
  67. #endif // __has_feature
  68. #if defined(_WIN32)
  69. #define WIN32_LEAN_AND_MEAN
  70. #ifndef NOMINMAX
  71. #define NOMINMAX
  72. #endif
  73. #include <windows.h>
  74. #if !defined(__clang__)
  75. #define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE))
  76. typedef volatile LONG atomic_int;
  77. typedef atomic_int atomic_bool;
  78. typedef atomic_int atomic_flag;
  79. #define ATOMIC_FLAG_INIT 0
  80. typedef enum {
  81. memory_order_relaxed,
  82. memory_order_consume,
  83. memory_order_acquire,
  84. memory_order_release,
  85. memory_order_acq_rel,
  86. memory_order_seq_cst
  87. } memory_order;
  88. static void atomic_store(atomic_int * ptr, LONG val) {
  89. InterlockedExchange(ptr, val);
  90. }
  91. static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) {
  92. // TODO: add support for explicit memory order
  93. InterlockedExchange(ptr, val);
  94. }
  95. static LONG atomic_load(atomic_int * ptr) {
  96. return InterlockedCompareExchange(ptr, 0, 0);
  97. }
  98. static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) {
  99. // TODO: add support for explicit memory order
  100. return InterlockedCompareExchange(ptr, 0, 0);
  101. }
  102. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  103. return InterlockedExchangeAdd(ptr, inc);
  104. }
  105. static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) {
  106. // TODO: add support for explicit memory order
  107. return InterlockedExchangeAdd(ptr, inc);
  108. }
  109. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  110. return InterlockedExchange(ptr, 1);
  111. }
  112. static void atomic_flag_clear(atomic_flag * ptr) {
  113. InterlockedExchange(ptr, 0);
  114. }
  115. static void atomic_thread_fence(memory_order mo) {
  116. MemoryBarrier();
  117. }
  118. #else // clang
  119. #include <stdatomic.h>
  120. #endif
  121. typedef HANDLE pthread_t;
  122. typedef DWORD thread_ret_t;
  123. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  124. (void) unused;
  125. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  126. if (handle == NULL)
  127. {
  128. return EAGAIN;
  129. }
  130. *out = handle;
  131. return 0;
  132. }
  133. static int pthread_join(pthread_t thread, void * unused) {
  134. (void) unused;
  135. int ret = (int) WaitForSingleObject(thread, INFINITE);
  136. CloseHandle(thread);
  137. return ret;
  138. }
  139. static int sched_yield (void) {
  140. Sleep (0);
  141. return 0;
  142. }
  143. #else
  144. #include <pthread.h>
  145. #include <stdatomic.h>
  146. #include <sched.h>
  147. #if defined(__FreeBSD__)
  148. #include <pthread_np.h>
  149. #endif
  150. typedef void * thread_ret_t;
  151. #include <sys/types.h>
  152. #include <sys/stat.h>
  153. #include <unistd.h>
  154. #endif
  155. typedef pthread_t ggml_thread_t;
  156. #ifdef GGML_USE_CPU_HBM
  157. #include <hbwmalloc.h>
  158. #endif
  159. #if defined(__APPLE__)
  160. #include <TargetConditionals.h>
  161. #endif
  162. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  163. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  164. #include <sys/wait.h>
  165. #if defined(__ANDROID__)
  166. #include <unwind.h>
  167. #include <dlfcn.h>
  168. #include <stdio.h>
  169. struct backtrace_state {
  170. void ** current;
  171. void ** end;
  172. };
  173. static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
  174. struct backtrace_state * state = (struct backtrace_state *)arg;
  175. uintptr_t pc = _Unwind_GetIP(context);
  176. if (pc) {
  177. if (state->current == state->end) {
  178. return _URC_END_OF_STACK;
  179. } else {
  180. *state->current++ = (void*)pc;
  181. }
  182. }
  183. return _URC_NO_REASON;
  184. }
  185. static void ggml_print_backtrace_symbols(void) {
  186. const int max = 100;
  187. void* buffer[max];
  188. struct backtrace_state state = {buffer, buffer + max};
  189. _Unwind_Backtrace(unwind_callback, &state);
  190. int count = state.current - buffer;
  191. for (int idx = 0; idx < count; ++idx) {
  192. const void * addr = buffer[idx];
  193. const char * symbol = "";
  194. Dl_info info;
  195. if (dladdr(addr, &info) && info.dli_sname) {
  196. symbol = info.dli_sname;
  197. }
  198. fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
  199. }
  200. }
  201. #elif defined(__linux__) && defined(__GLIBC__)
  202. #include <execinfo.h>
  203. static void ggml_print_backtrace_symbols(void) {
  204. void * trace[100];
  205. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  206. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  207. }
  208. #else
  209. static void ggml_print_backtrace_symbols(void) {
  210. // platform not supported
  211. }
  212. #endif
  213. static void ggml_print_backtrace(void) {
  214. char attach[32];
  215. snprintf(attach, sizeof(attach), "attach %d", getpid());
  216. int pid = fork();
  217. if (pid == 0) {
  218. // try gdb
  219. execlp("gdb", "gdb", "--batch",
  220. "-ex", "set style enabled on",
  221. "-ex", attach,
  222. "-ex", "bt -frame-info source-and-location",
  223. "-ex", "detach",
  224. "-ex", "quit",
  225. (char *) NULL);
  226. // try lldb
  227. execlp("lldb", "lldb", "--batch",
  228. "-o", "bt",
  229. "-o", "quit",
  230. "-p", attach,
  231. (char *) NULL);
  232. exit(EXIT_FAILURE);
  233. } else {
  234. int wstatus;
  235. waitpid(pid, &wstatus, 0);
  236. if (WIFEXITED(wstatus)) {
  237. if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
  238. // gdb failed, fallback to backtrace_symbols
  239. ggml_print_backtrace_symbols();
  240. }
  241. }
  242. }
  243. }
  244. #else
  245. static void ggml_print_backtrace(void) {
  246. // platform not supported
  247. }
  248. #endif
  249. void ggml_abort(const char * file, int line, const char * fmt, ...) {
  250. fflush(stdout);
  251. fprintf(stderr, "%s:%d: ", file, line);
  252. va_list args;
  253. va_start(args, fmt);
  254. vfprintf(stderr, fmt, args);
  255. va_end(args);
  256. fprintf(stderr, "\n");
  257. ggml_print_backtrace();
  258. abort();
  259. }
  260. #define GGML_DEBUG 0
  261. #define GGML_GELU_FP16
  262. #define GGML_GELU_QUICK_FP16
  263. #define GGML_SOFT_MAX_UNROLL 4
  264. #define GGML_VEC_DOT_UNROLL 2
  265. #define GGML_VEC_MAD_UNROLL 32
  266. //
  267. // logging
  268. //
  269. struct ggml_logger_state {
  270. ggml_log_callback log_callback;
  271. void * log_callback_user_data;
  272. };
  273. static struct ggml_logger_state g_logger_state = {ggml_log_callback_default, NULL};
  274. static void ggml_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
  275. if (format == NULL)
  276. return;
  277. va_list args_copy;
  278. va_copy(args_copy, args);
  279. char buffer[128];
  280. int len = vsnprintf(buffer, 128, format, args);
  281. if (len < 128) {
  282. g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
  283. } else {
  284. char * buffer2 = (char *) calloc(len + 1, sizeof(char));
  285. vsnprintf(buffer2, len + 1, format, args_copy);
  286. buffer2[len] = 0;
  287. g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
  288. free(buffer2);
  289. }
  290. va_end(args_copy);
  291. }
  292. void ggml_log_internal(enum ggml_log_level level, const char * format, ...) {
  293. va_list args;
  294. va_start(args, format);
  295. ggml_log_internal_v(level, format, args);
  296. va_end(args);
  297. }
  298. void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
  299. (void) level;
  300. (void) user_data;
  301. fputs(text, stderr);
  302. fflush(stderr);
  303. }
  304. #if (GGML_DEBUG >= 1)
  305. #define GGML_PRINT_DEBUG(...) GGML_LOG_DEBUG(__VA_ARGS__)
  306. #else
  307. #define GGML_PRINT_DEBUG(...)
  308. #endif
  309. #if (GGML_DEBUG >= 5)
  310. #define GGML_PRINT_DEBUG_5(...) GGML_LOG_DEBUG(__VA_ARGS__)
  311. #else
  312. #define GGML_PRINT_DEBUG_5(...)
  313. #endif
  314. #if (GGML_DEBUG >= 10)
  315. #define GGML_PRINT_DEBUG_10(...) GGML_LOG_DEBUG(__VA_ARGS__)
  316. #else
  317. #define GGML_PRINT_DEBUG_10(...)
  318. #endif
  319. //
  320. // end of logging block
  321. //
  322. #ifdef GGML_USE_ACCELERATE
  323. // uncomment to use vDSP for soft max computation
  324. // note: not sure if it is actually faster
  325. //#define GGML_SOFT_MAX_ACCELERATE
  326. #endif
  327. #if defined(_MSC_VER) || defined(__MINGW32__)
  328. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  329. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  330. #else
  331. inline static void * ggml_aligned_malloc(size_t size) {
  332. if (size == 0) {
  333. GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  334. return NULL;
  335. }
  336. void * aligned_memory = NULL;
  337. #ifdef GGML_USE_CPU_HBM
  338. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  339. #elif GGML_USE_METAL
  340. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  341. #else
  342. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  343. #endif
  344. if (result != 0) {
  345. // Handle allocation failure
  346. const char *error_desc = "unknown allocation error";
  347. switch (result) {
  348. case EINVAL:
  349. error_desc = "invalid alignment value";
  350. break;
  351. case ENOMEM:
  352. error_desc = "insufficient memory";
  353. break;
  354. }
  355. GGML_LOG_ERROR("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  356. GGML_ABORT("fatal error");
  357. return NULL;
  358. }
  359. return aligned_memory;
  360. }
  361. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  362. #ifdef GGML_USE_CPU_HBM
  363. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  364. #else
  365. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  366. #endif
  367. #endif
  368. inline static void * ggml_malloc(size_t size) {
  369. if (size == 0) {
  370. GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  371. return NULL;
  372. }
  373. void * result = malloc(size);
  374. if (result == NULL) {
  375. GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  376. GGML_ABORT("fatal error");
  377. }
  378. return result;
  379. }
  380. // calloc
  381. inline static void * ggml_calloc(size_t num, size_t size) {
  382. if (num == 0 || size == 0) {
  383. GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  384. return NULL;
  385. }
  386. void * result = calloc(num, size);
  387. if (result == NULL) {
  388. GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  389. GGML_ABORT("fatal error");
  390. }
  391. return result;
  392. }
  393. #define GGML_MALLOC(size) ggml_malloc(size)
  394. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  395. #define GGML_FREE(ptr) free(ptr)
  396. #define UNUSED GGML_UNUSED
  397. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  398. #if defined(GGML_USE_ACCELERATE)
  399. #include <Accelerate/Accelerate.h>
  400. #endif
  401. // floating point type used to accumulate sums
  402. typedef double ggml_float;
  403. #undef MIN
  404. #undef MAX
  405. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  406. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  407. //
  408. // global data
  409. //
  410. // precomputed gelu table for f16 (128 KB)
  411. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  412. // precomputed quick gelu table for f16 (128 KB)
  413. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  414. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  415. float ggml_table_f32_f16[1 << 16];
  416. #if defined(__ARM_ARCH)
  417. struct ggml_arm_arch_features_type {
  418. int has_neon;
  419. int has_i8mm;
  420. int has_sve;
  421. int sve_cnt;
  422. } ggml_arm_arch_features = {-1, -1, -1, 0};
  423. #endif
  424. const char * ggml_status_to_string(enum ggml_status status) {
  425. switch (status) {
  426. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  427. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  428. case GGML_STATUS_SUCCESS: return "GGML status: success";
  429. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  430. }
  431. return "GGML status: unknown";
  432. }
  433. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  434. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  435. return GGML_FP16_TO_FP32(x);
  436. }
  437. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  438. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  439. return GGML_FP32_TO_FP16(x);
  440. }
  441. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  442. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  443. return GGML_BF16_TO_FP32(x); // it just left shifts
  444. }
  445. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  446. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  447. return GGML_FP32_TO_BF16(x);
  448. }
  449. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  450. for (int64_t i = 0; i < n; i++) {
  451. y[i] = GGML_FP16_TO_FP32(x[i]);
  452. }
  453. }
  454. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  455. int64_t i = 0;
  456. #if defined(__F16C__)
  457. for (; i + 7 < n; i += 8) {
  458. __m256 x_vec = _mm256_loadu_ps(x + i);
  459. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  460. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  461. }
  462. for(; i + 3 < n; i += 4) {
  463. __m128 x_vec = _mm_loadu_ps(x + i);
  464. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  465. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  466. }
  467. #endif
  468. for (; i < n; i++) {
  469. y[i] = GGML_FP32_TO_FP16(x[i]);
  470. }
  471. }
  472. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  473. int64_t i = 0;
  474. #if defined(__AVX512F__)
  475. for (; i + 16 <= n; i += 16) {
  476. _mm512_storeu_ps(y + i,
  477. _mm512_castsi512_ps(
  478. _mm512_slli_epi32(
  479. _mm512_cvtepu16_epi32(
  480. _mm256_loadu_si256(
  481. (const __m256i *)(x + i))),
  482. 16)));
  483. }
  484. #elif defined(__AVX2__)
  485. for (; i + 8 <= n; i += 8) {
  486. _mm256_storeu_ps(y + i,
  487. _mm256_castsi256_ps(
  488. _mm256_slli_epi32(
  489. _mm256_cvtepu16_epi32(
  490. _mm_loadu_si128(
  491. (const __m128i *)(x + i))),
  492. 16)));
  493. }
  494. #endif
  495. for (; i < n; i++) {
  496. y[i] = GGML_BF16_TO_FP32(x[i]);
  497. }
  498. }
  499. void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
  500. for (int i = 0; i < n; i++) {
  501. y[i] = ggml_compute_fp32_to_bf16(x[i]);
  502. }
  503. }
  504. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  505. int i = 0;
  506. #if defined(__AVX512BF16__)
  507. // subnormals are flushed to zero on this platform
  508. for (; i + 32 <= n; i += 32) {
  509. _mm512_storeu_si512(
  510. (__m512i *)(y + i),
  511. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  512. _mm512_loadu_ps(x + i))));
  513. }
  514. #endif
  515. for (; i < n; i++) {
  516. y[i] = GGML_FP32_TO_BF16(x[i]);
  517. }
  518. }
  519. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  520. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  521. }
  522. //
  523. // timing
  524. //
  525. #if defined(_MSC_VER) || defined(__MINGW32__)
  526. static int64_t timer_freq, timer_start;
  527. void ggml_time_init(void) {
  528. LARGE_INTEGER t;
  529. QueryPerformanceFrequency(&t);
  530. timer_freq = t.QuadPart;
  531. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  532. // and the uptime is high enough.
  533. // We subtract the program start time to reduce the likelihood of that happening.
  534. QueryPerformanceCounter(&t);
  535. timer_start = t.QuadPart;
  536. }
  537. int64_t ggml_time_ms(void) {
  538. LARGE_INTEGER t;
  539. QueryPerformanceCounter(&t);
  540. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  541. }
  542. int64_t ggml_time_us(void) {
  543. LARGE_INTEGER t;
  544. QueryPerformanceCounter(&t);
  545. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  546. }
  547. #else
  548. void ggml_time_init(void) {}
  549. int64_t ggml_time_ms(void) {
  550. struct timespec ts;
  551. clock_gettime(CLOCK_MONOTONIC, &ts);
  552. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  553. }
  554. int64_t ggml_time_us(void) {
  555. struct timespec ts;
  556. clock_gettime(CLOCK_MONOTONIC, &ts);
  557. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  558. }
  559. #endif
  560. int64_t ggml_cycles(void) {
  561. return clock();
  562. }
  563. int64_t ggml_cycles_per_ms(void) {
  564. return CLOCKS_PER_SEC/1000;
  565. }
  566. //
  567. // cross-platform UTF-8 file paths
  568. //
  569. #ifdef _WIN32
  570. static wchar_t * ggml_mbstowcs(const char * mbs) {
  571. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  572. if (!wlen) {
  573. errno = EINVAL;
  574. return NULL;
  575. }
  576. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  577. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  578. if (!wlen) {
  579. GGML_FREE(wbuf);
  580. errno = EINVAL;
  581. return NULL;
  582. }
  583. return wbuf;
  584. }
  585. #endif
  586. FILE * ggml_fopen(const char * fname, const char * mode) {
  587. #ifdef _WIN32
  588. FILE * file = NULL;
  589. // convert fname (UTF-8)
  590. wchar_t * wfname = ggml_mbstowcs(fname);
  591. if (wfname) {
  592. // convert mode (ANSI)
  593. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  594. wchar_t * wmode_p = wmode;
  595. do {
  596. *wmode_p++ = (wchar_t)*mode;
  597. } while (*mode++);
  598. // open file
  599. file = _wfopen(wfname, wmode);
  600. GGML_FREE(wfname);
  601. GGML_FREE(wmode);
  602. }
  603. return file;
  604. #else
  605. return fopen(fname, mode);
  606. #endif
  607. }
  608. //
  609. // cache line
  610. //
  611. #if defined(__cpp_lib_hardware_interference_size)
  612. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  613. #else
  614. #if defined(__POWER9_VECTOR__)
  615. #define CACHE_LINE_SIZE 128
  616. #else
  617. #define CACHE_LINE_SIZE 64
  618. #endif
  619. #endif
  620. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  621. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  622. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  623. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  624. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  625. [GGML_TYPE_I8] = {
  626. .type_name = "i8",
  627. .blck_size = 1,
  628. .type_size = sizeof(int8_t),
  629. .is_quantized = false,
  630. },
  631. [GGML_TYPE_I16] = {
  632. .type_name = "i16",
  633. .blck_size = 1,
  634. .type_size = sizeof(int16_t),
  635. .is_quantized = false,
  636. },
  637. [GGML_TYPE_I32] = {
  638. .type_name = "i32",
  639. .blck_size = 1,
  640. .type_size = sizeof(int32_t),
  641. .is_quantized = false,
  642. },
  643. [GGML_TYPE_I64] = {
  644. .type_name = "i64",
  645. .blck_size = 1,
  646. .type_size = sizeof(int64_t),
  647. .is_quantized = false,
  648. },
  649. [GGML_TYPE_F64] = {
  650. .type_name = "f64",
  651. .blck_size = 1,
  652. .type_size = sizeof(double),
  653. .is_quantized = false,
  654. .nrows = 1,
  655. },
  656. [GGML_TYPE_F32] = {
  657. .type_name = "f32",
  658. .blck_size = 1,
  659. .type_size = sizeof(float),
  660. .is_quantized = false,
  661. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  662. .vec_dot_type = GGML_TYPE_F32,
  663. .nrows = 1,
  664. },
  665. [GGML_TYPE_F16] = {
  666. .type_name = "f16",
  667. .blck_size = 1,
  668. .type_size = sizeof(ggml_fp16_t),
  669. .is_quantized = false,
  670. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  671. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  672. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  673. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  674. .vec_dot_type = GGML_TYPE_F16,
  675. .nrows = 1,
  676. },
  677. [GGML_TYPE_Q4_0] = {
  678. .type_name = "q4_0",
  679. .blck_size = QK4_0,
  680. .type_size = sizeof(block_q4_0),
  681. .is_quantized = true,
  682. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  683. .from_float = quantize_row_q4_0,
  684. .from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
  685. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  686. .vec_dot_type = GGML_TYPE_Q8_0,
  687. #if defined (__ARM_FEATURE_MATMUL_INT8)
  688. .nrows = 2,
  689. #else
  690. .nrows = 1,
  691. #endif
  692. },
  693. [GGML_TYPE_Q4_1] = {
  694. .type_name = "q4_1",
  695. .blck_size = QK4_1,
  696. .type_size = sizeof(block_q4_1),
  697. .is_quantized = true,
  698. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  699. .from_float = quantize_row_q4_1,
  700. .from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
  701. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  702. .vec_dot_type = GGML_TYPE_Q8_1,
  703. #if defined (__ARM_FEATURE_MATMUL_INT8)
  704. .nrows = 2,
  705. #else
  706. .nrows = 1,
  707. #endif
  708. },
  709. [4] = { // GGML_TYPE_Q4_2
  710. .type_name = "DEPRECATED",
  711. .blck_size = 0,
  712. .type_size = 0,
  713. .is_quantized = false,
  714. .to_float = NULL,
  715. .from_float = NULL,
  716. .from_float_ref = NULL,
  717. .vec_dot = NULL,
  718. .vec_dot_type = GGML_TYPE_COUNT,
  719. .nrows = 1,
  720. },
  721. [5] = { // GGML_TYPE_Q4_3
  722. .type_name = "DEPRECATED",
  723. .blck_size = 0,
  724. .type_size = 0,
  725. .is_quantized = false,
  726. .to_float = NULL,
  727. .from_float = NULL,
  728. .from_float_ref = NULL,
  729. .vec_dot = NULL,
  730. .vec_dot_type = GGML_TYPE_COUNT,
  731. .nrows = 1,
  732. },
  733. [GGML_TYPE_Q5_0] = {
  734. .type_name = "q5_0",
  735. .blck_size = QK5_0,
  736. .type_size = sizeof(block_q5_0),
  737. .is_quantized = true,
  738. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  739. .from_float = quantize_row_q5_0,
  740. .from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
  741. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  742. .vec_dot_type = GGML_TYPE_Q8_0,
  743. .nrows = 1,
  744. },
  745. [GGML_TYPE_Q5_1] = {
  746. .type_name = "q5_1",
  747. .blck_size = QK5_1,
  748. .type_size = sizeof(block_q5_1),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  751. .from_float = quantize_row_q5_1,
  752. .from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
  753. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  754. .vec_dot_type = GGML_TYPE_Q8_1,
  755. .nrows = 1,
  756. },
  757. [GGML_TYPE_Q8_0] = {
  758. .type_name = "q8_0",
  759. .blck_size = QK8_0,
  760. .type_size = sizeof(block_q8_0),
  761. .is_quantized = true,
  762. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  763. .from_float = quantize_row_q8_0,
  764. .from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
  765. .from_float_to_mat = quantize_mat_q8_0,
  766. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  767. .vec_dot_type = GGML_TYPE_Q8_0,
  768. #if defined (__ARM_FEATURE_MATMUL_INT8)
  769. .nrows = 2,
  770. #else
  771. .nrows = 1,
  772. #endif
  773. },
  774. [GGML_TYPE_Q8_1] = {
  775. .type_name = "q8_1",
  776. .blck_size = QK8_1,
  777. .type_size = sizeof(block_q8_1),
  778. .is_quantized = true,
  779. .from_float = quantize_row_q8_1,
  780. .from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
  781. .vec_dot_type = GGML_TYPE_Q8_1,
  782. .nrows = 1,
  783. },
  784. [GGML_TYPE_Q2_K] = {
  785. .type_name = "q2_K",
  786. .blck_size = QK_K,
  787. .type_size = sizeof(block_q2_K),
  788. .is_quantized = true,
  789. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  790. .from_float = quantize_row_q2_K,
  791. .from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
  792. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  793. .vec_dot_type = GGML_TYPE_Q8_K,
  794. .nrows = 1,
  795. },
  796. [GGML_TYPE_Q3_K] = {
  797. .type_name = "q3_K",
  798. .blck_size = QK_K,
  799. .type_size = sizeof(block_q3_K),
  800. .is_quantized = true,
  801. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  802. .from_float = quantize_row_q3_K,
  803. .from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
  804. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  805. .vec_dot_type = GGML_TYPE_Q8_K,
  806. .nrows = 1,
  807. },
  808. [GGML_TYPE_Q4_K] = {
  809. .type_name = "q4_K",
  810. .blck_size = QK_K,
  811. .type_size = sizeof(block_q4_K),
  812. .is_quantized = true,
  813. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  814. .from_float = quantize_row_q4_K,
  815. .from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
  816. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  817. .vec_dot_type = GGML_TYPE_Q8_K,
  818. .nrows = 1,
  819. },
  820. [GGML_TYPE_Q5_K] = {
  821. .type_name = "q5_K",
  822. .blck_size = QK_K,
  823. .type_size = sizeof(block_q5_K),
  824. .is_quantized = true,
  825. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  826. .from_float = quantize_row_q5_K,
  827. .from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
  828. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  829. .vec_dot_type = GGML_TYPE_Q8_K,
  830. .nrows = 1,
  831. },
  832. [GGML_TYPE_Q6_K] = {
  833. .type_name = "q6_K",
  834. .blck_size = QK_K,
  835. .type_size = sizeof(block_q6_K),
  836. .is_quantized = true,
  837. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  838. .from_float = quantize_row_q6_K,
  839. .from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
  840. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  841. .vec_dot_type = GGML_TYPE_Q8_K,
  842. .nrows = 1,
  843. },
  844. [GGML_TYPE_IQ2_XXS] = {
  845. .type_name = "iq2_xxs",
  846. .blck_size = QK_K,
  847. .type_size = sizeof(block_iq2_xxs),
  848. .is_quantized = true,
  849. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  850. .from_float = NULL,
  851. .from_float_ref = NULL,
  852. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  853. .vec_dot_type = GGML_TYPE_Q8_K,
  854. .nrows = 1,
  855. },
  856. [GGML_TYPE_IQ2_XS] = {
  857. .type_name = "iq2_xs",
  858. .blck_size = QK_K,
  859. .type_size = sizeof(block_iq2_xs),
  860. .is_quantized = true,
  861. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  862. .from_float = NULL,
  863. .from_float_ref = NULL,
  864. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  865. .vec_dot_type = GGML_TYPE_Q8_K,
  866. .nrows = 1,
  867. },
  868. [GGML_TYPE_IQ3_XXS] = {
  869. .type_name = "iq3_xxs",
  870. .blck_size = QK_K,
  871. .type_size = sizeof(block_iq3_xxs),
  872. .is_quantized = true,
  873. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  874. .from_float = quantize_row_iq3_xxs,
  875. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
  876. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  877. .vec_dot_type = GGML_TYPE_Q8_K,
  878. .nrows = 1,
  879. },
  880. [GGML_TYPE_IQ3_S] = {
  881. .type_name = "iq3_s",
  882. .blck_size = QK_K,
  883. .type_size = sizeof(block_iq3_s),
  884. .is_quantized = true,
  885. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  886. .from_float = quantize_row_iq3_s,
  887. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
  888. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  889. .vec_dot_type = GGML_TYPE_Q8_K,
  890. .nrows = 1,
  891. },
  892. [GGML_TYPE_IQ2_S] = {
  893. .type_name = "iq2_s",
  894. .blck_size = QK_K,
  895. .type_size = sizeof(block_iq2_s),
  896. .is_quantized = true,
  897. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  898. .from_float = quantize_row_iq2_s,
  899. .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
  900. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  901. .vec_dot_type = GGML_TYPE_Q8_K,
  902. .nrows = 1,
  903. },
  904. [GGML_TYPE_IQ1_S] = {
  905. .type_name = "iq1_s",
  906. .blck_size = QK_K,
  907. .type_size = sizeof(block_iq1_s),
  908. .is_quantized = true,
  909. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  910. .from_float = NULL,
  911. .from_float_ref = NULL,
  912. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  913. .vec_dot_type = GGML_TYPE_Q8_K,
  914. .nrows = 1,
  915. },
  916. [GGML_TYPE_IQ1_M] = {
  917. .type_name = "iq1_m",
  918. .blck_size = QK_K,
  919. .type_size = sizeof(block_iq1_m),
  920. .is_quantized = true,
  921. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  922. .from_float = NULL,
  923. .from_float_ref = NULL,
  924. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  925. .vec_dot_type = GGML_TYPE_Q8_K,
  926. .nrows = 1,
  927. },
  928. [GGML_TYPE_IQ4_NL] = {
  929. .type_name = "iq4_nl",
  930. .blck_size = QK4_NL,
  931. .type_size = sizeof(block_iq4_nl),
  932. .is_quantized = true,
  933. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  934. .from_float = quantize_row_iq4_nl,
  935. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
  936. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  937. .vec_dot_type = GGML_TYPE_Q8_0,
  938. .nrows = 1,
  939. },
  940. [GGML_TYPE_IQ4_XS] = {
  941. .type_name = "iq4_xs",
  942. .blck_size = QK_K,
  943. .type_size = sizeof(block_iq4_xs),
  944. .is_quantized = true,
  945. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  946. .from_float = quantize_row_iq4_xs,
  947. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
  948. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  949. .vec_dot_type = GGML_TYPE_Q8_K,
  950. .nrows = 1,
  951. },
  952. [GGML_TYPE_Q8_K] = {
  953. .type_name = "q8_K",
  954. .blck_size = QK_K,
  955. .type_size = sizeof(block_q8_K),
  956. .is_quantized = true,
  957. .from_float = quantize_row_q8_K,
  958. },
  959. [GGML_TYPE_BF16] = {
  960. .type_name = "bf16",
  961. .blck_size = 1,
  962. .type_size = sizeof(ggml_bf16_t),
  963. .is_quantized = false,
  964. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  965. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  966. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
  967. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  968. .vec_dot_type = GGML_TYPE_BF16,
  969. .nrows = 1,
  970. },
  971. [GGML_TYPE_Q4_0_4_4] = {
  972. .type_name = "q4_0_4x4",
  973. .blck_size = QK4_0,
  974. .blck_size_interleave = 4,
  975. .type_size = sizeof(block_q4_0),
  976. .is_quantized = true,
  977. .to_float = NULL,
  978. .from_float = NULL,
  979. .from_float_ref = NULL,
  980. .vec_dot = NULL,
  981. .vec_dot_type = GGML_TYPE_Q8_0,
  982. .nrows = 1,
  983. .ncols = 4,
  984. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  985. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  986. },
  987. [GGML_TYPE_Q4_0_4_8] = {
  988. .type_name = "q4_0_4x8",
  989. .blck_size = QK4_0,
  990. .blck_size_interleave = 8,
  991. .type_size = sizeof(block_q4_0),
  992. .is_quantized = true,
  993. .to_float = NULL,
  994. .from_float = NULL,
  995. .from_float_ref = NULL,
  996. .vec_dot = NULL,
  997. .vec_dot_type = GGML_TYPE_Q8_0,
  998. .nrows = 1,
  999. .ncols = 4,
  1000. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  1001. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  1002. },
  1003. [GGML_TYPE_Q4_0_8_8] = {
  1004. .type_name = "q4_0_8x8",
  1005. .blck_size = QK4_0,
  1006. .blck_size_interleave = 8,
  1007. .type_size = sizeof(block_q4_0),
  1008. .is_quantized = true,
  1009. .to_float = NULL,
  1010. .from_float = NULL,
  1011. .from_float_ref = NULL,
  1012. .vec_dot = NULL,
  1013. .vec_dot_type = GGML_TYPE_Q8_0,
  1014. .nrows = 1,
  1015. .ncols = 8,
  1016. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  1017. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  1018. },
  1019. [GGML_TYPE_TQ1_0] = {
  1020. .type_name = "tq1_0",
  1021. .blck_size = QK_K,
  1022. .type_size = sizeof(block_tq1_0),
  1023. .is_quantized = true,
  1024. .to_float = (ggml_to_float_t) dequantize_row_tq1_0,
  1025. .from_float = quantize_row_tq1_0,
  1026. .from_float_ref = (ggml_from_float_t) quantize_row_tq1_0_ref,
  1027. .vec_dot = ggml_vec_dot_tq1_0_q8_K,
  1028. .vec_dot_type = GGML_TYPE_Q8_K,
  1029. .nrows = 1,
  1030. },
  1031. [GGML_TYPE_TQ2_0] = {
  1032. .type_name = "tq2_0",
  1033. .blck_size = QK_K,
  1034. .type_size = sizeof(block_tq2_0),
  1035. .is_quantized = true,
  1036. .to_float = (ggml_to_float_t) dequantize_row_tq2_0,
  1037. .from_float = quantize_row_tq2_0,
  1038. .from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref,
  1039. .vec_dot = ggml_vec_dot_tq2_0_q8_K,
  1040. .vec_dot_type = GGML_TYPE_Q8_K,
  1041. .nrows = 1,
  1042. },
  1043. };
  1044. // For internal test use
  1045. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1046. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1047. return type_traits[type];
  1048. }
  1049. //
  1050. // simd mappings
  1051. //
  1052. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1053. // we then implement the fundamental computation operations below using only these macros
  1054. // adding support for new architectures requires to define the corresponding SIMD macros
  1055. //
  1056. // GGML_F32_STEP / GGML_F16_STEP
  1057. // number of elements to process in a single step
  1058. //
  1059. // GGML_F32_EPR / GGML_F16_EPR
  1060. // number of elements to fit in a single register
  1061. //
  1062. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1063. #define GGML_SIMD
  1064. // F32 NEON
  1065. #define GGML_F32_STEP 16
  1066. #define GGML_F32_EPR 4
  1067. #define GGML_F32x4 float32x4_t
  1068. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1069. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1070. #define GGML_F32x4_LOAD vld1q_f32
  1071. #define GGML_F32x4_STORE vst1q_f32
  1072. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1073. #define GGML_F32x4_ADD vaddq_f32
  1074. #define GGML_F32x4_MUL vmulq_f32
  1075. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1076. #define GGML_F32x4_REDUCE(res, x) \
  1077. { \
  1078. int offset = GGML_F32_ARR >> 1; \
  1079. for (int i = 0; i < offset; ++i) { \
  1080. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1081. } \
  1082. offset >>= 1; \
  1083. for (int i = 0; i < offset; ++i) { \
  1084. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1085. } \
  1086. offset >>= 1; \
  1087. for (int i = 0; i < offset; ++i) { \
  1088. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1089. } \
  1090. (res) = GGML_F32x4_REDUCE_ONE((x)[0]); \
  1091. }
  1092. #define GGML_F32_VEC GGML_F32x4
  1093. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1094. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1095. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1096. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1097. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1098. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1099. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1100. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1101. // F16 NEON
  1102. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1103. #define GGML_F16_STEP 32
  1104. #define GGML_F16_EPR 8
  1105. #define GGML_F16x8 float16x8_t
  1106. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1107. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1108. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  1109. #define GGML_F16x8_STORE vst1q_f16
  1110. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1111. #define GGML_F16x8_ADD vaddq_f16
  1112. #define GGML_F16x8_MUL vmulq_f16
  1113. #define GGML_F16x8_REDUCE(res, x) \
  1114. do { \
  1115. int offset = GGML_F16_ARR >> 1; \
  1116. for (int i = 0; i < offset; ++i) { \
  1117. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1118. } \
  1119. offset >>= 1; \
  1120. for (int i = 0; i < offset; ++i) { \
  1121. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1122. } \
  1123. offset >>= 1; \
  1124. for (int i = 0; i < offset; ++i) { \
  1125. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1126. } \
  1127. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
  1128. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
  1129. (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1130. } while (0)
  1131. #define GGML_F16_VEC GGML_F16x8
  1132. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1133. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1134. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1135. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
  1136. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1137. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1138. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1139. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1140. #else
  1141. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1142. // and take advantage of the vcvt_ functions to convert to/from FP16
  1143. #define GGML_F16_STEP 16
  1144. #define GGML_F16_EPR 4
  1145. #define GGML_F32Cx4 float32x4_t
  1146. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1147. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1148. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  1149. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1150. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1151. #define GGML_F32Cx4_ADD vaddq_f32
  1152. #define GGML_F32Cx4_MUL vmulq_f32
  1153. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1154. #define GGML_F16_VEC GGML_F32Cx4
  1155. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1156. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1157. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1158. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  1159. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1160. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1161. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1162. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1163. #endif
  1164. #elif defined(__AVX512F__)
  1165. #define GGML_SIMD
  1166. // F32 AVX512
  1167. #define GGML_F32_STEP 64
  1168. #define GGML_F32_EPR 16
  1169. #define GGML_F32x16 __m512
  1170. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  1171. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  1172. #define GGML_F32x16_LOAD _mm512_loadu_ps
  1173. #define GGML_F32x16_STORE _mm512_storeu_ps
  1174. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  1175. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1176. #define GGML_F32x16_ADD _mm512_add_ps
  1177. #define GGML_F32x16_MUL _mm512_mul_ps
  1178. #define GGML_F32x16_REDUCE(res, x) \
  1179. do { \
  1180. int offset = GGML_F32_ARR >> 1; \
  1181. for (int i = 0; i < offset; ++i) { \
  1182. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1183. } \
  1184. offset >>= 1; \
  1185. for (int i = 0; i < offset; ++i) { \
  1186. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1187. } \
  1188. offset >>= 1; \
  1189. for (int i = 0; i < offset; ++i) { \
  1190. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1191. } \
  1192. res = _mm512_reduce_add_ps(x[0]); \
  1193. } while (0)
  1194. // TODO: is this optimal ?
  1195. #define GGML_F32_VEC GGML_F32x16
  1196. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  1197. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  1198. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  1199. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  1200. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  1201. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  1202. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  1203. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  1204. // F16 AVX512
  1205. // F16 AVX
  1206. #define GGML_F16_STEP 64
  1207. #define GGML_F16_EPR 16
  1208. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  1209. #define GGML_F32Cx16 __m512
  1210. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1211. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1212. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1213. // so F16C guard isn't required
  1214. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1215. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1216. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1217. #define GGML_F32Cx16_ADD _mm512_add_ps
  1218. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1219. #define GGML_F32Cx16_REDUCE(res, x) \
  1220. do { \
  1221. int offset = GGML_F32_ARR >> 1; \
  1222. for (int i = 0; i < offset; ++i) { \
  1223. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1224. } \
  1225. offset >>= 1; \
  1226. for (int i = 0; i < offset; ++i) { \
  1227. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1228. } \
  1229. offset >>= 1; \
  1230. for (int i = 0; i < offset; ++i) { \
  1231. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1232. } \
  1233. res = _mm512_reduce_add_ps(x[0]); \
  1234. } while (0)
  1235. #define GGML_F16_VEC GGML_F32Cx16
  1236. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1237. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1238. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1239. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1240. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1241. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1242. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1243. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1244. #elif defined(__AVX__)
  1245. #define GGML_SIMD
  1246. // F32 AVX
  1247. #define GGML_F32_STEP 32
  1248. #define GGML_F32_EPR 8
  1249. #define GGML_F32x8 __m256
  1250. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1251. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1252. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1253. #define GGML_F32x8_STORE _mm256_storeu_ps
  1254. #if defined(__FMA__)
  1255. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1256. #else
  1257. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1258. #endif
  1259. #define GGML_F32x8_ADD _mm256_add_ps
  1260. #define GGML_F32x8_MUL _mm256_mul_ps
  1261. #define GGML_F32x8_REDUCE(res, x) \
  1262. do { \
  1263. int offset = GGML_F32_ARR >> 1; \
  1264. for (int i = 0; i < offset; ++i) { \
  1265. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1266. } \
  1267. offset >>= 1; \
  1268. for (int i = 0; i < offset; ++i) { \
  1269. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1270. } \
  1271. offset >>= 1; \
  1272. for (int i = 0; i < offset; ++i) { \
  1273. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1274. } \
  1275. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1276. _mm256_extractf128_ps(x[0], 1)); \
  1277. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1278. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1279. } while (0)
  1280. // TODO: is this optimal ?
  1281. #define GGML_F32_VEC GGML_F32x8
  1282. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1283. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1284. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1285. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1286. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1287. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1288. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1289. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1290. // F16 AVX
  1291. #define GGML_F16_STEP 32
  1292. #define GGML_F16_EPR 8
  1293. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1294. #define GGML_F32Cx8 __m256
  1295. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1296. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1297. #if defined(__F16C__)
  1298. // the _mm256_cvt intrinsics require F16C
  1299. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1300. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1301. #else
  1302. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1303. float tmp[8];
  1304. for (int i = 0; i < 8; i++) {
  1305. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1306. }
  1307. return _mm256_loadu_ps(tmp);
  1308. }
  1309. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1310. float arr[8];
  1311. _mm256_storeu_ps(arr, y);
  1312. for (int i = 0; i < 8; i++)
  1313. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1314. }
  1315. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1316. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1317. #endif
  1318. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1319. #define GGML_F32Cx8_ADD _mm256_add_ps
  1320. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1321. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1322. #define GGML_F16_VEC GGML_F32Cx8
  1323. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1324. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1325. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1326. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1327. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1328. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1329. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1330. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1331. #elif defined(__POWER9_VECTOR__)
  1332. #define GGML_SIMD
  1333. // F32 POWER9
  1334. #define GGML_F32_STEP 32
  1335. #define GGML_F32_EPR 4
  1336. #define GGML_F32x4 vector float
  1337. #define GGML_F32x4_ZERO 0.0f
  1338. #define GGML_F32x4_SET1 vec_splats
  1339. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1340. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1341. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1342. #define GGML_F32x4_ADD vec_add
  1343. #define GGML_F32x4_MUL vec_mul
  1344. #define GGML_F32x4_REDUCE(res, x) \
  1345. { \
  1346. int offset = GGML_F32_ARR >> 1; \
  1347. for (int i = 0; i < offset; ++i) { \
  1348. x[i] = vec_add(x[i], x[offset+i]); \
  1349. } \
  1350. offset >>= 1; \
  1351. for (int i = 0; i < offset; ++i) { \
  1352. x[i] = vec_add(x[i], x[offset+i]); \
  1353. } \
  1354. offset >>= 1; \
  1355. for (int i = 0; i < offset; ++i) { \
  1356. x[i] = vec_add(x[i], x[offset+i]); \
  1357. } \
  1358. res = vec_extract(x[0], 0) + \
  1359. vec_extract(x[0], 1) + \
  1360. vec_extract(x[0], 2) + \
  1361. vec_extract(x[0], 3); \
  1362. }
  1363. #define GGML_F32_VEC GGML_F32x4
  1364. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1365. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1366. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1367. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1368. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1369. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1370. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1371. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1372. // F16 POWER9
  1373. #define GGML_F16_STEP GGML_F32_STEP
  1374. #define GGML_F16_EPR GGML_F32_EPR
  1375. #define GGML_F16_VEC GGML_F32x4
  1376. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1377. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1378. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1379. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1380. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1381. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1382. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1383. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1384. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1385. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1386. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1387. #define GGML_F16_VEC_STORE(p, r, i) \
  1388. if (i & 0x1) \
  1389. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1390. r[i - GGML_ENDIAN_BYTE(0)]), \
  1391. 0, p - GGML_F16_EPR)
  1392. #elif defined(__wasm_simd128__)
  1393. #define GGML_SIMD
  1394. // F32 WASM
  1395. #define GGML_F32_STEP 16
  1396. #define GGML_F32_EPR 4
  1397. #define GGML_F32x4 v128_t
  1398. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1399. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1400. #define GGML_F32x4_LOAD wasm_v128_load
  1401. #define GGML_F32x4_STORE wasm_v128_store
  1402. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1403. #define GGML_F32x4_ADD wasm_f32x4_add
  1404. #define GGML_F32x4_MUL wasm_f32x4_mul
  1405. #define GGML_F32x4_REDUCE(res, x) \
  1406. { \
  1407. int offset = GGML_F32_ARR >> 1; \
  1408. for (int i = 0; i < offset; ++i) { \
  1409. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1410. } \
  1411. offset >>= 1; \
  1412. for (int i = 0; i < offset; ++i) { \
  1413. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1414. } \
  1415. offset >>= 1; \
  1416. for (int i = 0; i < offset; ++i) { \
  1417. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1418. } \
  1419. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1420. wasm_f32x4_extract_lane(x[0], 1) + \
  1421. wasm_f32x4_extract_lane(x[0], 2) + \
  1422. wasm_f32x4_extract_lane(x[0], 3); \
  1423. }
  1424. #define GGML_F32_VEC GGML_F32x4
  1425. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1426. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1427. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1428. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1429. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1430. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1431. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1432. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1433. // F16 WASM
  1434. #define GGML_F16_STEP 16
  1435. #define GGML_F16_EPR 4
  1436. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1437. float tmp[4];
  1438. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1439. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1440. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1441. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1442. return wasm_v128_load(tmp);
  1443. }
  1444. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1445. float tmp[4];
  1446. wasm_v128_store(tmp, x);
  1447. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1448. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1449. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1450. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1451. }
  1452. #define GGML_F16x4 v128_t
  1453. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1454. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1455. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1456. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1457. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1458. #define GGML_F16x4_ADD wasm_f32x4_add
  1459. #define GGML_F16x4_MUL wasm_f32x4_mul
  1460. #define GGML_F16x4_REDUCE(res, x) \
  1461. { \
  1462. int offset = GGML_F16_ARR >> 1; \
  1463. for (int i = 0; i < offset; ++i) { \
  1464. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1465. } \
  1466. offset >>= 1; \
  1467. for (int i = 0; i < offset; ++i) { \
  1468. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1469. } \
  1470. offset >>= 1; \
  1471. for (int i = 0; i < offset; ++i) { \
  1472. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1473. } \
  1474. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1475. wasm_f32x4_extract_lane(x[0], 1) + \
  1476. wasm_f32x4_extract_lane(x[0], 2) + \
  1477. wasm_f32x4_extract_lane(x[0], 3); \
  1478. }
  1479. #define GGML_F16_VEC GGML_F16x4
  1480. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1481. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1482. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1483. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1484. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1485. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1486. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1487. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1488. #elif defined(__SSE3__)
  1489. #define GGML_SIMD
  1490. // F32 SSE
  1491. #define GGML_F32_STEP 32
  1492. #define GGML_F32_EPR 4
  1493. #define GGML_F32x4 __m128
  1494. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1495. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1496. #define GGML_F32x4_LOAD _mm_loadu_ps
  1497. #define GGML_F32x4_STORE _mm_storeu_ps
  1498. #if defined(__FMA__)
  1499. // TODO: Does this work?
  1500. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1501. #else
  1502. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1503. #endif
  1504. #define GGML_F32x4_ADD _mm_add_ps
  1505. #define GGML_F32x4_MUL _mm_mul_ps
  1506. #define GGML_F32x4_REDUCE(res, x) \
  1507. { \
  1508. int offset = GGML_F32_ARR >> 1; \
  1509. for (int i = 0; i < offset; ++i) { \
  1510. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1511. } \
  1512. offset >>= 1; \
  1513. for (int i = 0; i < offset; ++i) { \
  1514. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1515. } \
  1516. offset >>= 1; \
  1517. for (int i = 0; i < offset; ++i) { \
  1518. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1519. } \
  1520. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1521. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1522. }
  1523. // TODO: is this optimal ?
  1524. #define GGML_F32_VEC GGML_F32x4
  1525. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1526. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1527. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1528. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1529. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1530. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1531. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1532. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1533. // F16 SSE
  1534. #define GGML_F16_STEP 32
  1535. #define GGML_F16_EPR 4
  1536. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1537. float tmp[4];
  1538. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1539. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1540. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1541. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1542. return _mm_loadu_ps(tmp);
  1543. }
  1544. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1545. float arr[4];
  1546. _mm_storeu_ps(arr, y);
  1547. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1548. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1549. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1550. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1551. }
  1552. #define GGML_F32Cx4 __m128
  1553. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1554. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1555. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1556. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1557. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1558. #define GGML_F32Cx4_ADD _mm_add_ps
  1559. #define GGML_F32Cx4_MUL _mm_mul_ps
  1560. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1561. #define GGML_F16_VEC GGML_F32Cx4
  1562. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1563. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1564. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1565. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1566. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1567. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1568. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1569. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1570. #elif defined(__loongarch_asx)
  1571. #define GGML_SIMD
  1572. // F32 LASX
  1573. #define GGML_F32_STEP 32
  1574. #define GGML_F32_EPR 8
  1575. #define GGML_F32x8 __m256
  1576. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1577. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1578. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1579. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1580. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1581. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1582. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1583. #define GGML_F32x8_REDUCE(res, x) \
  1584. do { \
  1585. int offset = GGML_F32_ARR >> 1; \
  1586. for (int i = 0; i < offset; ++i) { \
  1587. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1588. } \
  1589. offset >>= 1; \
  1590. for (int i = 0; i < offset; ++i) { \
  1591. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1592. } \
  1593. offset >>= 1; \
  1594. for (int i = 0; i < offset; ++i) { \
  1595. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1596. } \
  1597. float *tmp_p = (float *)&x[0]; \
  1598. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1599. } while (0)
  1600. // TODO: is this optimal ?
  1601. #define GGML_F32_VEC GGML_F32x8
  1602. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1603. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1604. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1605. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1606. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1607. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1608. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1609. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1610. // F16 LASX
  1611. #define GGML_F16_STEP 32
  1612. #define GGML_F16_EPR 8
  1613. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1614. #define GGML_F32Cx8 __m256
  1615. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1616. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1617. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1618. float tmp[8];
  1619. for (int i = 0; i < 8; i++) {
  1620. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1621. }
  1622. return (__m256)__lasx_xvld(tmp, 0);
  1623. }
  1624. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1625. float arr[8];
  1626. __lasx_xvst(y, arr, 0);
  1627. for (int i = 0; i < 8; i++) {
  1628. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1629. }
  1630. }
  1631. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1632. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1633. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1634. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1635. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1636. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1637. #define GGML_F16_VEC GGML_F32Cx8
  1638. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1639. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1640. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1641. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1642. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1643. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1644. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1645. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1646. #elif defined(__loongarch_sx)
  1647. #define GGML_SIMD
  1648. // F32 LSX
  1649. #define GGML_F32_STEP 32
  1650. #define GGML_F32_EPR 4
  1651. #define GGML_F32x4 __m128
  1652. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1653. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1654. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1655. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1656. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1657. #define GGML_F32x4_ADD __lsx_vfadd_s
  1658. #define GGML_F32x4_MUL __lsx_vfmul_s
  1659. #define GGML_F32x4_REDUCE(res, x) \
  1660. { \
  1661. int offset = GGML_F32_ARR >> 1; \
  1662. for (int i = 0; i < offset; ++i) { \
  1663. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1664. } \
  1665. offset >>= 1; \
  1666. for (int i = 0; i < offset; ++i) { \
  1667. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1668. } \
  1669. offset >>= 1; \
  1670. for (int i = 0; i < offset; ++i) { \
  1671. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1672. } \
  1673. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1674. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1675. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1676. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1677. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1678. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1679. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1680. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1681. }
  1682. #define GGML_F32_VEC GGML_F32x4
  1683. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1684. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1685. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1686. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1687. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1688. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1689. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1690. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1691. // F16 LSX
  1692. #define GGML_F16_STEP 32
  1693. #define GGML_F16_EPR 4
  1694. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1695. float tmp[4];
  1696. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1697. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1698. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1699. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1700. return __lsx_vld(tmp, 0);
  1701. }
  1702. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1703. float arr[4];
  1704. __lsx_vst(y, arr, 0);
  1705. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1706. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1707. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1708. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1709. }
  1710. #define GGML_F32Cx4 __m128
  1711. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1712. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1713. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1714. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1715. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1716. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1717. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1718. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1719. #define GGML_F16_VEC GGML_F32Cx4
  1720. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1721. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1722. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1723. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1724. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1725. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1726. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1727. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1728. #endif
  1729. // GGML_F32_ARR / GGML_F16_ARR
  1730. // number of registers to use per step
  1731. #ifdef GGML_SIMD
  1732. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1733. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1734. #endif
  1735. //
  1736. // ggml object
  1737. //
  1738. struct ggml_object {
  1739. size_t offs;
  1740. size_t size;
  1741. struct ggml_object * next;
  1742. enum ggml_object_type type;
  1743. char padding[4];
  1744. };
  1745. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1746. //
  1747. // ggml context
  1748. //
  1749. struct ggml_context {
  1750. size_t mem_size;
  1751. void* mem_buffer;
  1752. bool mem_buffer_owned;
  1753. bool no_alloc;
  1754. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1755. int n_objects;
  1756. struct ggml_object * objects_begin;
  1757. struct ggml_object * objects_end;
  1758. struct ggml_scratch scratch;
  1759. struct ggml_scratch scratch_save;
  1760. };
  1761. struct ggml_context_container {
  1762. bool used;
  1763. struct ggml_context context;
  1764. };
  1765. //
  1766. // Threading defs
  1767. //
  1768. typedef pthread_t ggml_thread_t;
  1769. #if defined(_WIN32)
  1770. typedef CONDITION_VARIABLE ggml_cond_t;
  1771. typedef SRWLOCK ggml_mutex_t;
  1772. #define ggml_mutex_init(m) InitializeSRWLock(m)
  1773. #define ggml_mutex_destroy(m)
  1774. #define ggml_mutex_lock(m) AcquireSRWLockExclusive(m)
  1775. #define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m)
  1776. #define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m)
  1777. #define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m)
  1778. #define ggml_cond_init(c) InitializeConditionVariable(c)
  1779. #define ggml_cond_destroy(c)
  1780. #define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED)
  1781. #define ggml_cond_broadcast(c) WakeAllConditionVariable(c)
  1782. #define ggml_thread_create pthread_create
  1783. #define ggml_thread_join pthread_join
  1784. #else
  1785. typedef pthread_cond_t ggml_cond_t;
  1786. typedef pthread_mutex_t ggml_mutex_t;
  1787. #define ggml_mutex_init(m) pthread_mutex_init(m, NULL)
  1788. #define ggml_mutex_destroy(m) pthread_mutex_destroy(m)
  1789. #define ggml_mutex_lock(m) pthread_mutex_lock(m)
  1790. #define ggml_mutex_unlock(m) pthread_mutex_unlock(m)
  1791. #define ggml_mutex_lock_shared(m) pthread_mutex_lock(m)
  1792. #define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m)
  1793. #define ggml_lock_init(x) UNUSED(x)
  1794. #define ggml_lock_destroy(x) UNUSED(x)
  1795. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  1796. #define ggml_lock_lock(x) _mm_pause()
  1797. #else
  1798. #define ggml_lock_lock(x) UNUSED(x)
  1799. #endif
  1800. #define ggml_lock_unlock(x) UNUSED(x)
  1801. #define GGML_LOCK_INITIALIZER 0
  1802. #define ggml_cond_init(c) pthread_cond_init(c, NULL)
  1803. #define ggml_cond_destroy(c) pthread_cond_destroy(c)
  1804. #define ggml_cond_wait(c, m) pthread_cond_wait(c, m)
  1805. #define ggml_cond_broadcast(c) pthread_cond_broadcast(c)
  1806. #define ggml_thread_create pthread_create
  1807. #define ggml_thread_join pthread_join
  1808. #endif
  1809. // Threadpool def
  1810. struct ggml_threadpool {
  1811. ggml_mutex_t mutex; // mutex for cond.var
  1812. ggml_cond_t cond; // cond.var for waiting for new work
  1813. struct ggml_cgraph * cgraph;
  1814. struct ggml_cplan * cplan;
  1815. // synchronization primitives
  1816. atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
  1817. atomic_int GGML_CACHE_ALIGN n_barrier;
  1818. atomic_int GGML_CACHE_ALIGN n_barrier_passed;
  1819. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1820. // these are atomic as an annotation for thread-sanitizer
  1821. atomic_bool stop; // Used for stopping the threadpool altogether
  1822. atomic_bool pause; // Used for pausing the threadpool or individual threads
  1823. atomic_bool abort; // Used for aborting processing of a graph
  1824. struct ggml_compute_state * workers; // per thread state
  1825. int n_threads_max; // number of threads in the pool
  1826. atomic_int n_threads_cur; // number of threads used in the current graph
  1827. int32_t prio; // Scheduling priority
  1828. uint32_t poll; // Polling level (0 - no polling)
  1829. enum ggml_status ec;
  1830. };
  1831. // Per-thread state
  1832. struct ggml_compute_state {
  1833. #ifndef GGML_USE_OPENMP
  1834. ggml_thread_t thrd;
  1835. bool cpumask[GGML_MAX_N_THREADS];
  1836. int last_graph;
  1837. bool pending;
  1838. #endif
  1839. struct ggml_threadpool * threadpool;
  1840. int ith;
  1841. };
  1842. struct ggml_compute_params {
  1843. // ith = thread index, nth = number of threads
  1844. int ith, nth;
  1845. // work buffer for all threads
  1846. size_t wsize;
  1847. void * wdata;
  1848. struct ggml_threadpool * threadpool;
  1849. };
  1850. //
  1851. // fundamental operations
  1852. //
  1853. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1854. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1855. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1856. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1857. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1858. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1859. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1860. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1861. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1862. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1863. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1864. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1865. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1866. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1867. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1868. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1869. assert(nrc == 1);
  1870. UNUSED(nrc);
  1871. UNUSED(bx);
  1872. UNUSED(by);
  1873. UNUSED(bs);
  1874. #if defined(GGML_SIMD)
  1875. float sumf = 0.0f;
  1876. const int np = (n & ~(GGML_F32_STEP - 1));
  1877. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1878. GGML_F32_VEC ax[GGML_F32_ARR];
  1879. GGML_F32_VEC ay[GGML_F32_ARR];
  1880. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1881. for (int j = 0; j < GGML_F32_ARR; j++) {
  1882. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1883. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1884. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1885. }
  1886. }
  1887. // reduce sum0..sum3 to sum0
  1888. GGML_F32_VEC_REDUCE(sumf, sum);
  1889. // leftovers
  1890. for (int i = np; i < n; ++i) {
  1891. sumf += x[i]*y[i];
  1892. }
  1893. #else
  1894. // scalar
  1895. ggml_float sumf = 0.0;
  1896. for (int i = 0; i < n; ++i) {
  1897. sumf += (ggml_float)(x[i]*y[i]);
  1898. }
  1899. #endif
  1900. *s = sumf;
  1901. }
  1902. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1903. assert(nrc == 1);
  1904. UNUSED(nrc);
  1905. UNUSED(bx);
  1906. UNUSED(by);
  1907. UNUSED(bs);
  1908. int i = 0;
  1909. ggml_float sumf = 0;
  1910. #if defined(__AVX512BF16__)
  1911. __m512 c1 = _mm512_setzero_ps();
  1912. __m512 c2 = _mm512_setzero_ps();
  1913. for (; i + 64 <= n; i += 64) {
  1914. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1915. m512bh(_mm512_loadu_si512((y + i))));
  1916. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1917. m512bh(_mm512_loadu_si512((y + i + 32))));
  1918. }
  1919. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1920. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1921. #elif defined(__AVX512F__)
  1922. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1923. __m512 c1 = _mm512_setzero_ps();
  1924. __m512 c2 = _mm512_setzero_ps();
  1925. for (; i + 32 <= n; i += 32) {
  1926. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1927. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1928. }
  1929. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1930. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1931. #undef LOAD
  1932. #elif defined(__AVX2__)
  1933. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1934. __m256 c1 = _mm256_setzero_ps();
  1935. __m256 c2 = _mm256_setzero_ps();
  1936. __m256 c3 = _mm256_setzero_ps();
  1937. __m256 c4 = _mm256_setzero_ps();
  1938. for (; i + 32 <= n; i += 32) {
  1939. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1940. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1941. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1942. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1943. }
  1944. __m128 g;
  1945. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1946. _mm256_add_ps(c2, c4));
  1947. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1948. _mm256_castps256_ps128(c1));
  1949. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1950. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1951. sumf += (ggml_float)_mm_cvtss_f32(g);
  1952. #undef LOAD
  1953. #endif
  1954. for (; i < n; ++i) {
  1955. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1956. GGML_BF16_TO_FP32(y[i]));
  1957. }
  1958. *s = sumf;
  1959. }
  1960. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1961. assert(nrc == 1);
  1962. UNUSED(nrc);
  1963. UNUSED(bx);
  1964. UNUSED(by);
  1965. UNUSED(bs);
  1966. ggml_float sumf = 0.0;
  1967. #if defined(GGML_SIMD)
  1968. const int np = (n & ~(GGML_F16_STEP - 1));
  1969. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1970. GGML_F16_VEC ax[GGML_F16_ARR];
  1971. GGML_F16_VEC ay[GGML_F16_ARR];
  1972. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1973. for (int j = 0; j < GGML_F16_ARR; j++) {
  1974. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1975. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1976. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1977. }
  1978. }
  1979. // reduce sum0..sum3 to sum0
  1980. GGML_F16_VEC_REDUCE(sumf, sum);
  1981. // leftovers
  1982. for (int i = np; i < n; ++i) {
  1983. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1984. }
  1985. #else
  1986. for (int i = 0; i < n; ++i) {
  1987. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1988. }
  1989. #endif
  1990. *s = sumf;
  1991. }
  1992. // compute GGML_VEC_DOT_UNROLL dot products at once
  1993. // xs - x row stride in bytes
  1994. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1995. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1996. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1997. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1998. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1999. }
  2000. #if defined(GGML_SIMD)
  2001. const int np = (n & ~(GGML_F16_STEP - 1));
  2002. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2003. GGML_F16_VEC ax[GGML_F16_ARR];
  2004. GGML_F16_VEC ay[GGML_F16_ARR];
  2005. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2006. for (int j = 0; j < GGML_F16_ARR; j++) {
  2007. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2008. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2009. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2010. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2011. }
  2012. }
  2013. }
  2014. // reduce sum0..sum3 to sum0
  2015. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2016. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2017. }
  2018. // leftovers
  2019. for (int i = np; i < n; ++i) {
  2020. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2021. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2022. }
  2023. }
  2024. #else
  2025. for (int i = 0; i < n; ++i) {
  2026. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2027. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2028. }
  2029. }
  2030. #endif
  2031. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2032. s[i] = sumf[i];
  2033. }
  2034. }
  2035. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2036. #if defined(GGML_SIMD)
  2037. const int np = (n & ~(GGML_F32_STEP - 1));
  2038. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2039. GGML_F32_VEC ax[GGML_F32_ARR];
  2040. GGML_F32_VEC ay[GGML_F32_ARR];
  2041. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2042. for (int j = 0; j < GGML_F32_ARR; j++) {
  2043. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2044. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2045. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2046. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2047. }
  2048. }
  2049. // leftovers
  2050. for (int i = np; i < n; ++i) {
  2051. y[i] += x[i]*v;
  2052. }
  2053. #else
  2054. // scalar
  2055. for (int i = 0; i < n; ++i) {
  2056. y[i] += x[i]*v;
  2057. }
  2058. #endif
  2059. }
  2060. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  2061. #if defined(GGML_SIMD)
  2062. const int np = (n & ~(GGML_F16_STEP - 1));
  2063. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  2064. GGML_F16_VEC ax[GGML_F16_ARR];
  2065. GGML_F16_VEC ay[GGML_F16_ARR];
  2066. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2067. for (int j = 0; j < GGML_F16_ARR; j++) {
  2068. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2069. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2070. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  2071. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  2072. }
  2073. }
  2074. // leftovers
  2075. for (int i = np; i < n; ++i) {
  2076. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  2077. }
  2078. #else
  2079. // scalar
  2080. for (int i = 0; i < n; ++i) {
  2081. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  2082. }
  2083. #endif
  2084. }
  2085. // xs and vs are byte strides of x and v
  2086. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  2087. const float * restrict x[GGML_VEC_MAD_UNROLL];
  2088. const float * restrict v[GGML_VEC_MAD_UNROLL];
  2089. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  2090. x[i] = (const float *) ((const char *) xv + i*xs);
  2091. v[i] = (const float *) ((const char *) vv + i*vs);
  2092. }
  2093. #if defined(GGML_SIMD)
  2094. const int np = (n & ~(GGML_F32_STEP - 1));
  2095. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  2096. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2097. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  2098. }
  2099. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  2100. GGML_F32_VEC ay[GGML_F32_ARR];
  2101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2102. for (int j = 0; j < GGML_F32_ARR; j++) {
  2103. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2104. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2105. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  2106. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  2107. }
  2108. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2109. }
  2110. }
  2111. // leftovers
  2112. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2113. for (int i = np; i < n; ++i) {
  2114. y[i] += x[k][i]*v[k][0];
  2115. }
  2116. }
  2117. #else
  2118. // scalar
  2119. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2120. for (int i = 0; i < n; ++i) {
  2121. y[i] += x[k][i]*v[k][0];
  2122. }
  2123. }
  2124. #endif
  2125. }
  2126. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2127. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2128. #if defined(GGML_USE_ACCELERATE)
  2129. vDSP_vsmul(y, 1, &v, y, 1, n);
  2130. #elif defined(GGML_SIMD)
  2131. const int np = (n & ~(GGML_F32_STEP - 1));
  2132. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2133. GGML_F32_VEC ay[GGML_F32_ARR];
  2134. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2135. for (int j = 0; j < GGML_F32_ARR; j++) {
  2136. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2137. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2138. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2139. }
  2140. }
  2141. // leftovers
  2142. for (int i = np; i < n; ++i) {
  2143. y[i] *= v;
  2144. }
  2145. #else
  2146. // scalar
  2147. for (int i = 0; i < n; ++i) {
  2148. y[i] *= v;
  2149. }
  2150. #endif
  2151. }
  2152. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  2153. #if defined(GGML_SIMD)
  2154. const int np = (n & ~(GGML_F16_STEP - 1));
  2155. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  2156. GGML_F16_VEC ay[GGML_F16_ARR];
  2157. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2158. for (int j = 0; j < GGML_F16_ARR; j++) {
  2159. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2160. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  2161. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  2162. }
  2163. }
  2164. // leftovers
  2165. for (int i = np; i < n; ++i) {
  2166. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  2167. }
  2168. #else
  2169. // scalar
  2170. for (int i = 0; i < n; ++i) {
  2171. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  2172. }
  2173. #endif
  2174. }
  2175. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  2176. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2177. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2178. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2179. inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
  2180. inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
  2181. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2182. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2183. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2184. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2185. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
  2186. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2187. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  2188. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  2189. // TODO: optimize performance
  2190. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2191. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2192. inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
  2193. static const float GELU_COEF_A = 0.044715f;
  2194. static const float GELU_QUICK_COEF = -1.702f;
  2195. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2196. inline static float ggml_gelu_f32(float x) {
  2197. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2198. }
  2199. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2200. const uint16_t * i16 = (const uint16_t *) x;
  2201. for (int i = 0; i < n; ++i) {
  2202. y[i] = ggml_table_gelu_f16[i16[i]];
  2203. }
  2204. }
  2205. #ifdef GGML_GELU_FP16
  2206. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2207. uint16_t t;
  2208. for (int i = 0; i < n; ++i) {
  2209. if (x[i] <= -10.0f) {
  2210. y[i] = 0.0f;
  2211. } else if (x[i] >= 10.0f) {
  2212. y[i] = x[i];
  2213. } else {
  2214. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2215. memcpy(&t, &fp16, sizeof(uint16_t));
  2216. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  2217. }
  2218. }
  2219. }
  2220. #else
  2221. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2222. for (int i = 0; i < n; ++i) {
  2223. y[i] = ggml_gelu_f32(x[i]);
  2224. }
  2225. }
  2226. #endif
  2227. inline static float ggml_gelu_quick_f32(float x) {
  2228. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2229. }
  2230. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2231. // const uint16_t * i16 = (const uint16_t *) x;
  2232. // for (int i = 0; i < n; ++i) {
  2233. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  2234. // }
  2235. //}
  2236. #ifdef GGML_GELU_QUICK_FP16
  2237. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2238. uint16_t t;
  2239. for (int i = 0; i < n; ++i) {
  2240. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2241. memcpy(&t, &fp16, sizeof(uint16_t));
  2242. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  2243. }
  2244. }
  2245. #else
  2246. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2247. for (int i = 0; i < n; ++i) {
  2248. y[i] = ggml_gelu_quick_f32(x[i]);
  2249. }
  2250. }
  2251. #endif
  2252. // Sigmoid Linear Unit (SiLU) function
  2253. inline static float ggml_silu_f32(float x) {
  2254. return x/(1.0f + expf(-x));
  2255. }
  2256. #if __FINITE_MATH_ONLY__
  2257. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  2258. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  2259. #endif
  2260. #if defined(__ARM_NEON) && defined(__aarch64__)
  2261. // adapted from arm limited optimized routine
  2262. // the maximum error is 1.45358 plus 0.5 ulps
  2263. // numbers above 88.38 will flush to infinity
  2264. // numbers beneath -103.97 will flush to zero
  2265. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  2266. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  2267. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  2268. const float32x4_t n = vsubq_f32(z, r);
  2269. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  2270. vdupq_n_f32(0x1.7f7d1cp-20f));
  2271. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  2272. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  2273. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  2274. const float32x4_t u = vmulq_f32(b, b);
  2275. const float32x4_t j = vfmaq_f32(
  2276. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  2277. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  2278. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  2279. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  2280. return vfmaq_f32(k, j, k);
  2281. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  2282. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  2283. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  2284. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  2285. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  2286. }
  2287. // computes silu x/(1+exp(-x)) in single precision vector
  2288. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  2289. const float32x4_t one = vdupq_n_f32(1.0f);
  2290. const float32x4_t zero = vdupq_n_f32(0.0f);
  2291. const float32x4_t neg_x = vsubq_f32(zero, x);
  2292. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  2293. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  2294. return vdivq_f32(x, one_plus_exp_neg_x);
  2295. }
  2296. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  2297. // adapted from arm limited optimized routine
  2298. // the maximum error is 1.45358 plus 0.5 ulps
  2299. // numbers above 88.38 will flush to infinity
  2300. // numbers beneath -103.97 will flush to zero
  2301. inline static __m512 ggml_v_expf(__m512 x) {
  2302. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2303. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2304. const __m512 n = _mm512_sub_ps(z, r);
  2305. const __m512 b =
  2306. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2307. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2308. const __mmask16 d =
  2309. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2310. const __m512 u = _mm512_mul_ps(b, b);
  2311. const __m512 j = _mm512_fmadd_ps(
  2312. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2313. _mm512_set1_ps(0x1.573e2ep-5f)),
  2314. u,
  2315. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2316. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2317. u,
  2318. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2319. const __m512 res = _mm512_scalef_ps(j, n);
  2320. if (_mm512_kortestz(d, d))
  2321. return res;
  2322. const __m512 zero = _mm512_setzero_ps();
  2323. const __m512 alt = _mm512_mask_blend_ps(
  2324. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2325. return _mm512_mask_blend_ps(d, res, alt);
  2326. }
  2327. // computes silu x/(1+exp(-x)) in single precision vector
  2328. inline static __m512 ggml_v_silu(__m512 x) {
  2329. const __m512 one = _mm512_set1_ps(1);
  2330. const __m512 zero = _mm512_setzero_ps();
  2331. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2332. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2333. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2334. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2335. }
  2336. #elif defined(__AVX2__) && defined(__FMA__)
  2337. // adapted from arm limited optimized routine
  2338. // the maximum error is 1.45358 plus 0.5 ulps
  2339. // numbers above 88.38 will flush to infinity
  2340. // numbers beneath -103.97 will flush to zero
  2341. inline static __m256 ggml_v_expf(__m256 x) {
  2342. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2343. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2344. const __m256 n = _mm256_sub_ps(z, r);
  2345. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2346. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2347. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2348. const __m256 k = _mm256_castsi256_ps(
  2349. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2350. const __m256i c = _mm256_castps_si256(
  2351. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2352. _mm256_set1_ps(126), _CMP_GT_OQ));
  2353. const __m256 u = _mm256_mul_ps(b, b);
  2354. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2355. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2356. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2357. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2358. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2359. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2360. return _mm256_fmadd_ps(j, k, k);
  2361. const __m256i g = _mm256_and_si256(
  2362. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2363. _mm256_set1_epi32(0x82000000u));
  2364. const __m256 s1 =
  2365. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2366. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2367. const __m256i d = _mm256_castps_si256(
  2368. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2369. _mm256_set1_ps(192), _CMP_GT_OQ));
  2370. return _mm256_or_ps(
  2371. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2372. _mm256_andnot_ps(
  2373. _mm256_castsi256_ps(d),
  2374. _mm256_or_ps(
  2375. _mm256_and_ps(_mm256_castsi256_ps(c),
  2376. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2377. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2378. }
  2379. // computes silu x/(1+exp(-x)) in single precision vector
  2380. inline static __m256 ggml_v_silu(__m256 x) {
  2381. const __m256 one = _mm256_set1_ps(1);
  2382. const __m256 zero = _mm256_setzero_ps();
  2383. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2384. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2385. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2386. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2387. }
  2388. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2389. #if defined(__FMA__)
  2390. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2391. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2392. #else
  2393. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2394. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2395. #endif
  2396. // adapted from arm limited optimized routine
  2397. // the maximum error is 1.45358 plus 0.5 ulps
  2398. // numbers above 88.38 will flush to infinity
  2399. // numbers beneath -103.97 will flush to zero
  2400. inline static __m128 ggml_v_expf(__m128 x) {
  2401. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2402. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2403. const __m128 n = _mm_sub_ps(z, r);
  2404. const __m128 b =
  2405. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2406. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2407. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2408. const __m128i c =
  2409. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2410. const __m128 u = _mm_mul_ps(b, b);
  2411. const __m128 j =
  2412. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2413. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2414. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2415. if (!_mm_movemask_epi8(c))
  2416. return MADD128(j, k, k);
  2417. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2418. _mm_set1_epi32(0x82000000u));
  2419. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2420. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2421. const __m128i d =
  2422. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2423. return _mm_or_ps(
  2424. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2425. _mm_andnot_ps(_mm_castsi128_ps(d),
  2426. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2427. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2428. }
  2429. // computes silu x/(1+exp(-x)) in single precision vector
  2430. inline static __m128 ggml_v_silu(__m128 x) {
  2431. const __m128 one = _mm_set1_ps(1);
  2432. const __m128 zero = _mm_setzero_ps();
  2433. const __m128 neg_x = _mm_sub_ps(zero, x);
  2434. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2435. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2436. return _mm_div_ps(x, one_plus_exp_neg_x);
  2437. }
  2438. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2439. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2440. int i = 0;
  2441. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2442. for (; i + 15 < n; i += 16) {
  2443. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2444. }
  2445. #elif defined(__AVX2__) && defined(__FMA__)
  2446. for (; i + 7 < n; i += 8) {
  2447. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2448. }
  2449. #elif defined(__SSE2__)
  2450. for (; i + 3 < n; i += 4) {
  2451. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2452. }
  2453. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2454. for (; i + 3 < n; i += 4) {
  2455. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2456. }
  2457. #endif
  2458. for (; i < n; ++i) {
  2459. y[i] = ggml_silu_f32(x[i]);
  2460. }
  2461. }
  2462. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2463. int i = 0;
  2464. ggml_float sum = 0;
  2465. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2466. for (; i + 15 < n; i += 16) {
  2467. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2468. _mm512_set1_ps(max)));
  2469. _mm512_storeu_ps(y + i, val);
  2470. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2471. }
  2472. #elif defined(__AVX2__) && defined(__FMA__)
  2473. for (; i + 7 < n; i += 8) {
  2474. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2475. _mm256_set1_ps(max)));
  2476. _mm256_storeu_ps(y + i, val);
  2477. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2478. _mm256_castps256_ps128(val));
  2479. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2480. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2481. sum += (ggml_float)_mm_cvtss_f32(val2);
  2482. }
  2483. #elif defined(__SSE2__)
  2484. for (; i + 3 < n; i += 4) {
  2485. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2486. _mm_set1_ps(max)));
  2487. _mm_storeu_ps(y + i, val);
  2488. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2489. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2490. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2491. #else
  2492. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2493. val = _mm_add_ps(val, tmp);
  2494. tmp = _mm_movehl_ps(tmp, val);
  2495. val = _mm_add_ss(val, tmp);
  2496. #endif
  2497. sum += (ggml_float)_mm_cvtss_f32(val);
  2498. }
  2499. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2500. for (; i + 3 < n; i += 4) {
  2501. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2502. vdupq_n_f32(max)));
  2503. vst1q_f32(y + i, val);
  2504. sum += (ggml_float)vaddvq_f32(val);
  2505. }
  2506. #endif
  2507. for (; i < n; ++i) {
  2508. float val = expf(x[i] - max);
  2509. sum += (ggml_float)val;
  2510. y[i] = val;
  2511. }
  2512. return sum;
  2513. }
  2514. static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
  2515. // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
  2516. int i = 0;
  2517. ggml_float sum = 0;
  2518. for (; i < n; ++i) {
  2519. float val = x[i] - max;
  2520. y[i] = val;
  2521. sum += (ggml_float)expf(val);
  2522. }
  2523. return sum = (ggml_float)logf(sum);
  2524. }
  2525. inline static float ggml_silu_backward_f32(float x, float dy) {
  2526. const float s = 1.0f/(1.0f + expf(-x));
  2527. return dy*s*(1.0f + x*(1.0f - s));
  2528. }
  2529. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2530. for (int i = 0; i < n; ++i) {
  2531. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2532. }
  2533. }
  2534. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2535. #ifndef GGML_USE_ACCELERATE
  2536. ggml_float sum = 0.0;
  2537. for (int i = 0; i < n; ++i) {
  2538. sum += (ggml_float)x[i];
  2539. }
  2540. *s = sum;
  2541. #else
  2542. vDSP_sve(x, 1, s, n);
  2543. #endif
  2544. }
  2545. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2546. ggml_float sum = 0.0;
  2547. for (int i = 0; i < n; ++i) {
  2548. sum += (ggml_float)x[i];
  2549. }
  2550. *s = sum;
  2551. }
  2552. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2553. float sum = 0.0f;
  2554. for (int i = 0; i < n; ++i) {
  2555. sum += GGML_FP16_TO_FP32(x[i]);
  2556. }
  2557. *s = sum;
  2558. }
  2559. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2560. float sum = 0.0f;
  2561. for (int i = 0; i < n; ++i) {
  2562. sum += GGML_BF16_TO_FP32(x[i]);
  2563. }
  2564. *s = sum;
  2565. }
  2566. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2567. #ifndef GGML_USE_ACCELERATE
  2568. float max = -INFINITY;
  2569. for (int i = 0; i < n; ++i) {
  2570. max = MAX(max, x[i]);
  2571. }
  2572. *s = max;
  2573. #else
  2574. vDSP_maxv(x, 1, s, n);
  2575. #endif
  2576. }
  2577. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2578. ggml_vec_norm_f32(n, s, x);
  2579. *s = 1.f/(*s);
  2580. }
  2581. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2582. float max = -INFINITY;
  2583. int idx = 0;
  2584. for (int i = 0; i < n; ++i) {
  2585. max = MAX(max, x[i]);
  2586. if (max == x[i]) { idx = i; }
  2587. }
  2588. *s = idx;
  2589. }
  2590. //
  2591. // data types
  2592. //
  2593. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2594. "NONE",
  2595. "DUP",
  2596. "ADD",
  2597. "ADD1",
  2598. "ACC",
  2599. "SUB",
  2600. "MUL",
  2601. "DIV",
  2602. "SQR",
  2603. "SQRT",
  2604. "LOG",
  2605. "SIN",
  2606. "COS",
  2607. "SUM",
  2608. "SUM_ROWS",
  2609. "MEAN",
  2610. "ARGMAX",
  2611. "COUNT_EQUAL",
  2612. "REPEAT",
  2613. "REPEAT_BACK",
  2614. "CONCAT",
  2615. "SILU_BACK",
  2616. "NORM",
  2617. "RMS_NORM",
  2618. "RMS_NORM_BACK",
  2619. "GROUP_NORM",
  2620. "MUL_MAT",
  2621. "MUL_MAT_ID",
  2622. "OUT_PROD",
  2623. "SCALE",
  2624. "SET",
  2625. "CPY",
  2626. "CONT",
  2627. "RESHAPE",
  2628. "VIEW",
  2629. "PERMUTE",
  2630. "TRANSPOSE",
  2631. "GET_ROWS",
  2632. "GET_ROWS_BACK",
  2633. "DIAG",
  2634. "DIAG_MASK_INF",
  2635. "DIAG_MASK_ZERO",
  2636. "SOFT_MAX",
  2637. "SOFT_MAX_BACK",
  2638. "ROPE",
  2639. "ROPE_BACK",
  2640. "CLAMP",
  2641. "CONV_TRANSPOSE_1D",
  2642. "IM2COL",
  2643. "IM2COL_BACK",
  2644. "CONV_TRANSPOSE_2D",
  2645. "POOL_1D",
  2646. "POOL_2D",
  2647. "POOL_2D_BACK",
  2648. "UPSCALE",
  2649. "PAD",
  2650. "ARANGE",
  2651. "TIMESTEP_EMBEDDING",
  2652. "ARGSORT",
  2653. "LEAKY_RELU",
  2654. "FLASH_ATTN_EXT",
  2655. "FLASH_ATTN_BACK",
  2656. "SSM_CONV",
  2657. "SSM_SCAN",
  2658. "WIN_PART",
  2659. "WIN_UNPART",
  2660. "GET_REL_POS",
  2661. "ADD_REL_POS",
  2662. "RWKV_WKV",
  2663. "UNARY",
  2664. "MAP_UNARY",
  2665. "MAP_BINARY",
  2666. "MAP_CUSTOM1_F32",
  2667. "MAP_CUSTOM2_F32",
  2668. "MAP_CUSTOM3_F32",
  2669. "MAP_CUSTOM1",
  2670. "MAP_CUSTOM2",
  2671. "MAP_CUSTOM3",
  2672. "CROSS_ENTROPY_LOSS",
  2673. "CROSS_ENTROPY_LOSS_BACK",
  2674. "OPT_STEP_ADAMW",
  2675. };
  2676. static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
  2677. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2678. "none",
  2679. "x",
  2680. "x+y",
  2681. "x+y",
  2682. "view(x,nb,offset)+=y->x",
  2683. "x-y",
  2684. "x*y",
  2685. "x/y",
  2686. "x^2",
  2687. "√x",
  2688. "log(x)",
  2689. "sin(x)",
  2690. "cos(x)",
  2691. "Σx",
  2692. "Σx_k",
  2693. "Σx/n",
  2694. "argmax(x)",
  2695. "count_equal(x)",
  2696. "repeat(x)",
  2697. "repeat_back(x)",
  2698. "concat(x, y)",
  2699. "silu_back(x)",
  2700. "norm(x)",
  2701. "rms_norm(x)",
  2702. "rms_norm_back(x)",
  2703. "group_norm(x)",
  2704. "X*Y",
  2705. "X[i]*Y",
  2706. "X*Y",
  2707. "x*v",
  2708. "y-\\>view(x)",
  2709. "x-\\>y",
  2710. "cont(x)",
  2711. "reshape(x)",
  2712. "view(x)",
  2713. "permute(x)",
  2714. "transpose(x)",
  2715. "get_rows(x)",
  2716. "get_rows_back(x)",
  2717. "diag(x)",
  2718. "diag_mask_inf(x)",
  2719. "diag_mask_zero(x)",
  2720. "soft_max(x)",
  2721. "soft_max_back(x)",
  2722. "rope(x)",
  2723. "rope_back(x)",
  2724. "clamp(x)",
  2725. "conv_transpose_1d(x)",
  2726. "im2col(x)",
  2727. "im2col_back(x)",
  2728. "conv_transpose_2d(x)",
  2729. "pool_1d(x)",
  2730. "pool_2d(x)",
  2731. "pool_2d_back(x)",
  2732. "upscale(x)",
  2733. "pad(x)",
  2734. "arange(start, stop, step)",
  2735. "timestep_embedding(timesteps, dim, max_period)",
  2736. "argsort(x)",
  2737. "leaky_relu(x)",
  2738. "flash_attn_ext(x)",
  2739. "flash_attn_back(x)",
  2740. "ssm_conv(x)",
  2741. "ssm_scan(x)",
  2742. "win_part(x)",
  2743. "win_unpart(x)",
  2744. "get_rel_pos(x)",
  2745. "add_rel_pos(x)",
  2746. "rwkv_wkv(k, v, r, tf, td, s)",
  2747. "unary(x)",
  2748. "f(x)",
  2749. "f(x,y)",
  2750. "custom_f32(x)",
  2751. "custom_f32(x,y)",
  2752. "custom_f32(x,y,z)",
  2753. "custom(x)",
  2754. "custom(x,y)",
  2755. "custom(x,y,z)",
  2756. "cross_entropy_loss(x,y)",
  2757. "cross_entropy_loss_back(x,y)",
  2758. "adamw(x)",
  2759. };
  2760. static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
  2761. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2762. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2763. "ABS",
  2764. "SGN",
  2765. "NEG",
  2766. "STEP",
  2767. "TANH",
  2768. "ELU",
  2769. "RELU",
  2770. "SIGMOID",
  2771. "GELU",
  2772. "GELU_QUICK",
  2773. "SILU",
  2774. "HARDSWISH",
  2775. "HARDSIGMOID",
  2776. "EXP",
  2777. };
  2778. static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14");
  2779. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2780. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2781. // Helpers for polling loops
  2782. #if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
  2783. static inline void ggml_thread_cpu_relax(void) {
  2784. __asm__ volatile("yield" ::: "memory");
  2785. }
  2786. #elif defined(__x86_64__)
  2787. static inline void ggml_thread_cpu_relax(void) {
  2788. _mm_pause();
  2789. }
  2790. #else
  2791. static inline void ggml_thread_cpu_relax(void) {;}
  2792. #endif
  2793. //
  2794. // NUMA support
  2795. //
  2796. #define GGML_NUMA_MAX_NODES 8
  2797. #define GGML_NUMA_MAX_CPUS 512
  2798. struct ggml_numa_node {
  2799. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2800. uint32_t n_cpus;
  2801. };
  2802. struct ggml_numa_nodes {
  2803. enum ggml_numa_strategy numa_strategy;
  2804. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2805. uint32_t n_nodes;
  2806. uint32_t total_cpus; // hardware threads on system
  2807. uint32_t current_node; // node on which main process is execting
  2808. #if defined(__gnu_linux__)
  2809. cpu_set_t cpuset; // cpuset from numactl
  2810. #else
  2811. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2812. #endif
  2813. };
  2814. //
  2815. // ggml state
  2816. //
  2817. struct ggml_state {
  2818. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2819. struct ggml_numa_nodes numa;
  2820. };
  2821. // global state
  2822. static struct ggml_state g_state;
  2823. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2824. // critical section via spin lock
  2825. inline static void ggml_critical_section_start(void) {
  2826. while (atomic_flag_test_and_set(&g_state_critical)) {
  2827. // spin
  2828. sched_yield();
  2829. }
  2830. }
  2831. static void ggml_barrier(struct ggml_threadpool * tp) {
  2832. int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
  2833. if (n_threads == 1) {
  2834. return;
  2835. }
  2836. #ifdef GGML_USE_OPENMP
  2837. #pragma omp barrier
  2838. #else
  2839. int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
  2840. // enter barrier (full seq-cst fence)
  2841. int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
  2842. if (n_barrier == (n_threads - 1)) {
  2843. // last thread
  2844. atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
  2845. // exit barrier (fill seq-cst fence)
  2846. atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
  2847. return;
  2848. }
  2849. // wait for other threads
  2850. while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
  2851. ggml_thread_cpu_relax();
  2852. }
  2853. // exit barrier (full seq-cst fence)
  2854. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  2855. #ifdef GGML_TSAN_ENABLED
  2856. atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
  2857. #else
  2858. atomic_thread_fence(memory_order_seq_cst);
  2859. #endif
  2860. #endif
  2861. }
  2862. // TODO: make this somehow automatically executed
  2863. // some sort of "sentry" mechanism
  2864. inline static void ggml_critical_section_end(void) {
  2865. atomic_flag_clear(&g_state_critical);
  2866. }
  2867. #if defined(__gnu_linux__)
  2868. static cpu_set_t ggml_get_numa_affinity(void) {
  2869. cpu_set_t cpuset;
  2870. pthread_t thread;
  2871. thread = pthread_self();
  2872. CPU_ZERO(&cpuset);
  2873. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2874. return cpuset;
  2875. }
  2876. #else
  2877. static uint32_t ggml_get_numa_affinity(void) {
  2878. return 0; // no NUMA support
  2879. }
  2880. #endif
  2881. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2882. if (g_state.numa.n_nodes > 0) {
  2883. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2884. return;
  2885. }
  2886. #if defined(__gnu_linux__)
  2887. struct stat st;
  2888. char path[256];
  2889. int rv;
  2890. // set numa scheme
  2891. g_state.numa.numa_strategy = numa_flag;
  2892. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2893. g_state.numa.cpuset = ggml_get_numa_affinity();
  2894. // enumerate nodes
  2895. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2896. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2897. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2898. if (stat(path, &st) != 0) { break; }
  2899. ++g_state.numa.n_nodes;
  2900. }
  2901. // enumerate CPUs
  2902. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2903. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2904. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2905. if (stat(path, &st) != 0) { break; }
  2906. ++g_state.numa.total_cpus;
  2907. }
  2908. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2909. // figure out which node we're on
  2910. uint current_cpu;
  2911. int getcpu_ret = 0;
  2912. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2913. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2914. #else
  2915. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2916. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2917. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2918. # endif
  2919. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2920. #endif
  2921. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2922. g_state.numa.n_nodes = 0;
  2923. return;
  2924. }
  2925. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2926. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2927. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2928. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2929. node->n_cpus = 0;
  2930. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2931. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2932. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2933. if (stat(path, &st) == 0) {
  2934. node->cpus[node->n_cpus++] = c;
  2935. GGML_PRINT_DEBUG(" %u", c);
  2936. }
  2937. }
  2938. GGML_PRINT_DEBUG("\n");
  2939. }
  2940. if (ggml_is_numa()) {
  2941. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2942. if (fptr != NULL) {
  2943. char buf[42];
  2944. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2945. GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2946. }
  2947. fclose(fptr);
  2948. }
  2949. }
  2950. #else
  2951. UNUSED(numa_flag);
  2952. // TODO
  2953. #endif
  2954. }
  2955. bool ggml_is_numa(void) {
  2956. return g_state.numa.n_nodes > 1;
  2957. }
  2958. ////////////////////////////////////////////////////////////////////////////////
  2959. void ggml_print_object(const struct ggml_object * obj) {
  2960. GGML_LOG_INFO(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2961. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2962. }
  2963. void ggml_print_objects(const struct ggml_context * ctx) {
  2964. struct ggml_object * obj = ctx->objects_begin;
  2965. GGML_LOG_INFO("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2966. while (obj != NULL) {
  2967. ggml_print_object(obj);
  2968. obj = obj->next;
  2969. }
  2970. GGML_LOG_INFO("%s: --- end ---\n", __func__);
  2971. }
  2972. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2973. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2974. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2975. }
  2976. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2977. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2978. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2979. }
  2980. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2981. size_t nbytes;
  2982. size_t blck_size = ggml_blck_size(tensor->type);
  2983. if (blck_size == 1) {
  2984. nbytes = ggml_type_size(tensor->type);
  2985. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2986. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2987. }
  2988. }
  2989. else {
  2990. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2991. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2992. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2993. }
  2994. }
  2995. return nbytes;
  2996. }
  2997. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2998. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2999. }
  3000. int64_t ggml_blck_size(enum ggml_type type) {
  3001. return type_traits[type].blck_size;
  3002. }
  3003. size_t ggml_type_size(enum ggml_type type) {
  3004. return type_traits[type].type_size;
  3005. }
  3006. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  3007. assert(ne % ggml_blck_size(type) == 0);
  3008. return ggml_type_size(type)*ne/ggml_blck_size(type);
  3009. }
  3010. double ggml_type_sizef(enum ggml_type type) {
  3011. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  3012. }
  3013. const char * ggml_type_name(enum ggml_type type) {
  3014. return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
  3015. }
  3016. bool ggml_is_quantized(enum ggml_type type) {
  3017. return type_traits[type].is_quantized;
  3018. }
  3019. const char * ggml_op_name(enum ggml_op op) {
  3020. return GGML_OP_NAME[op];
  3021. }
  3022. const char * ggml_op_symbol(enum ggml_op op) {
  3023. return GGML_OP_SYMBOL[op];
  3024. }
  3025. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  3026. return GGML_UNARY_OP_NAME[op];
  3027. }
  3028. const char * ggml_op_desc(const struct ggml_tensor * t) {
  3029. if (t->op == GGML_OP_UNARY) {
  3030. enum ggml_unary_op uop = ggml_get_unary_op(t);
  3031. return ggml_unary_op_name(uop);
  3032. }
  3033. return ggml_op_name(t->op);
  3034. }
  3035. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3036. return ggml_type_size(tensor->type);
  3037. }
  3038. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3039. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3040. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3041. }
  3042. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3043. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3044. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3045. }
  3046. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3047. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3048. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3049. }
  3050. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  3051. return tensor->ne[3] == 1;
  3052. }
  3053. int ggml_n_dims(const struct ggml_tensor * tensor) {
  3054. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  3055. if (tensor->ne[i] > 1) {
  3056. return i + 1;
  3057. }
  3058. }
  3059. return 1;
  3060. }
  3061. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3062. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3063. return (t0->ne[0] == t1->ne[0]) &&
  3064. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3065. (t1->ne[3]%t0->ne[3] == 0);
  3066. }
  3067. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3068. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3069. return (t0->ne[1] == t1->ne[1]) &&
  3070. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3071. (t1->ne[3]%t0->ne[3] == 0);
  3072. }
  3073. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3074. enum ggml_type wtype = GGML_TYPE_COUNT;
  3075. switch (ftype) {
  3076. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3077. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3078. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  3079. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3080. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3081. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3082. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3083. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3084. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3085. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3086. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3087. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3088. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3089. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  3090. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  3091. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  3092. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  3093. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  3094. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  3095. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  3096. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  3097. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  3098. case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
  3099. case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
  3100. case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
  3101. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3102. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3103. }
  3104. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3105. return wtype;
  3106. }
  3107. size_t ggml_tensor_overhead(void) {
  3108. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3109. }
  3110. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3111. return tensor->nb[0] > tensor->nb[1];
  3112. }
  3113. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  3114. size_t next_nb = ggml_type_size(tensor->type);
  3115. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  3116. return false;
  3117. }
  3118. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  3119. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  3120. if (tensor->ne[i] != 1) {
  3121. if (i > n) {
  3122. if (tensor->nb[i] != next_nb) {
  3123. return false;
  3124. }
  3125. next_nb *= tensor->ne[i];
  3126. } else {
  3127. // this dimension does not need to be contiguous
  3128. next_nb = tensor->ne[i]*tensor->nb[i];
  3129. }
  3130. }
  3131. }
  3132. return true;
  3133. }
  3134. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3135. return ggml_is_contiguous_0(tensor);
  3136. }
  3137. bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  3138. return ggml_is_contiguous_n(tensor, 0);
  3139. }
  3140. bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  3141. return ggml_is_contiguous_n(tensor, 1);
  3142. }
  3143. bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  3144. return ggml_is_contiguous_n(tensor, 2);
  3145. }
  3146. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3147. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3148. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3149. }
  3150. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3151. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3152. return
  3153. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3154. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3155. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3156. }
  3157. bool ggml_is_empty(const struct ggml_tensor * tensor) {
  3158. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3159. if (tensor->ne[i] == 0) {
  3160. // empty if any dimension has no elements
  3161. return true;
  3162. }
  3163. }
  3164. return false;
  3165. }
  3166. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3167. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3168. return
  3169. (t0->ne[0] == t1->ne[0]) &&
  3170. (t0->ne[1] == t1->ne[1]) &&
  3171. (t0->ne[2] == t1->ne[2]) &&
  3172. (t0->ne[3] == t1->ne[3]);
  3173. }
  3174. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3175. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3176. return
  3177. (t0->nb[0] == t1->nb[0]) &&
  3178. (t0->nb[1] == t1->nb[1]) &&
  3179. (t0->nb[2] == t1->nb[2]) &&
  3180. (t0->nb[3] == t1->nb[3]);
  3181. }
  3182. // check if t1 can be represented as a repeatition of t0
  3183. bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3184. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3185. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  3186. (t1->ne[0]%t0->ne[0] == 0) &&
  3187. (t1->ne[1]%t0->ne[1] == 0) &&
  3188. (t1->ne[2]%t0->ne[2] == 0) &&
  3189. (t1->ne[3]%t0->ne[3] == 0);
  3190. }
  3191. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3192. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3193. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3194. }
  3195. static inline int ggml_up32(int n) {
  3196. return (n + 31) & ~31;
  3197. }
  3198. //static inline int ggml_up64(int n) {
  3199. // return (n + 63) & ~63;
  3200. //}
  3201. static inline int ggml_up(int n, int m) {
  3202. // assert m is a power of 2
  3203. GGML_ASSERT((m & (m - 1)) == 0);
  3204. return (n + m - 1) & ~(m - 1);
  3205. }
  3206. // assert that pointer is aligned to GGML_MEM_ALIGN
  3207. #define GGML_ASSERT_ALIGNED(ptr) \
  3208. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3209. ////////////////////////////////////////////////////////////////////////////////
  3210. #if defined(__ARM_ARCH)
  3211. #if defined(__linux__) && defined(__aarch64__)
  3212. #include <sys/auxv.h>
  3213. #elif defined(__APPLE__)
  3214. #include <sys/sysctl.h>
  3215. #endif
  3216. #if !defined(HWCAP2_I8MM)
  3217. #define HWCAP2_I8MM 0
  3218. #endif
  3219. static void ggml_init_arm_arch_features(void) {
  3220. #if defined(__linux__) && defined(__aarch64__)
  3221. uint32_t hwcap = getauxval(AT_HWCAP);
  3222. uint32_t hwcap2 = getauxval(AT_HWCAP2);
  3223. ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
  3224. ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
  3225. ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
  3226. #if defined(__ARM_FEATURE_SVE)
  3227. ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
  3228. #endif
  3229. #elif defined(__APPLE__)
  3230. int oldp = 0;
  3231. size_t size = sizeof(oldp);
  3232. if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
  3233. oldp = 0;
  3234. }
  3235. ggml_arm_arch_features.has_neon = oldp;
  3236. if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
  3237. oldp = 0;
  3238. }
  3239. ggml_arm_arch_features.has_i8mm = oldp;
  3240. ggml_arm_arch_features.has_sve = 0;
  3241. ggml_arm_arch_features.sve_cnt = 0;
  3242. #else
  3243. // Run-time CPU feature detection not implemented for this platform, fallback to compile time
  3244. #if defined(__ARM_NEON)
  3245. ggml_arm_arch_features.has_neon = 1;
  3246. #else
  3247. ggml_arm_arch_features.has_neon = 0;
  3248. #endif
  3249. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3250. ggml_arm_arch_features.has_i8mm = 1;
  3251. #else
  3252. ggml_arm_arch_features.has_i8mm = 0;
  3253. #endif
  3254. #if defined(__ARM_FEATURE_SVE)
  3255. ggml_arm_arch_features.has_sve = 1;
  3256. ggml_arm_arch_features.sve_cnt = 16;
  3257. #else
  3258. ggml_arm_arch_features.has_sve = 0;
  3259. ggml_arm_arch_features.sve_cnt = 0;
  3260. #endif
  3261. #endif
  3262. }
  3263. #endif
  3264. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3265. // make this function thread safe
  3266. ggml_critical_section_start();
  3267. static bool is_first_call = true;
  3268. if (is_first_call) {
  3269. // initialize time system (required on Windows)
  3270. ggml_time_init();
  3271. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3272. {
  3273. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3274. for (int i = 0; i < (1 << 16); ++i) {
  3275. union {
  3276. uint16_t u16;
  3277. ggml_fp16_t fp16;
  3278. } u = {i};
  3279. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  3280. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3281. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3282. }
  3283. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3284. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3285. }
  3286. // initialize g_state
  3287. {
  3288. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3289. g_state = (struct ggml_state) {
  3290. /*.contexts =*/ { { 0 } },
  3291. /*.numa =*/ {
  3292. .n_nodes = 0,
  3293. .total_cpus = 0,
  3294. },
  3295. };
  3296. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3297. g_state.contexts[i].used = false;
  3298. }
  3299. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3300. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3301. }
  3302. #if defined(__ARM_ARCH)
  3303. ggml_init_arm_arch_features();
  3304. #endif
  3305. is_first_call = false;
  3306. }
  3307. // find non-used context in g_state
  3308. struct ggml_context * ctx = NULL;
  3309. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3310. if (!g_state.contexts[i].used) {
  3311. g_state.contexts[i].used = true;
  3312. ctx = &g_state.contexts[i].context;
  3313. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3314. break;
  3315. }
  3316. }
  3317. if (ctx == NULL) {
  3318. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3319. ggml_critical_section_end();
  3320. return NULL;
  3321. }
  3322. // allow to call ggml_init with 0 size
  3323. if (params.mem_size == 0) {
  3324. params.mem_size = GGML_MEM_ALIGN;
  3325. }
  3326. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3327. *ctx = (struct ggml_context) {
  3328. /*.mem_size =*/ mem_size,
  3329. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3330. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3331. /*.no_alloc =*/ params.no_alloc,
  3332. /*.no_alloc_save =*/ params.no_alloc,
  3333. /*.n_objects =*/ 0,
  3334. /*.objects_begin =*/ NULL,
  3335. /*.objects_end =*/ NULL,
  3336. /*.scratch =*/ { 0, 0, NULL, },
  3337. /*.scratch_save =*/ { 0, 0, NULL, },
  3338. };
  3339. GGML_ASSERT(ctx->mem_buffer != NULL);
  3340. GGML_ASSERT_ALIGNED(ctx->mem_buffer);
  3341. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3342. ggml_critical_section_end();
  3343. return ctx;
  3344. }
  3345. void ggml_free(struct ggml_context * ctx) {
  3346. if (ctx == NULL) {
  3347. return;
  3348. }
  3349. // make this function thread safe
  3350. ggml_critical_section_start();
  3351. bool found = false;
  3352. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3353. if (&g_state.contexts[i].context == ctx) {
  3354. g_state.contexts[i].used = false;
  3355. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3356. __func__, i, ggml_used_mem(ctx));
  3357. if (ctx->mem_buffer_owned) {
  3358. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3359. }
  3360. found = true;
  3361. break;
  3362. }
  3363. }
  3364. if (!found) {
  3365. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3366. }
  3367. ggml_critical_section_end();
  3368. }
  3369. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3370. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3371. }
  3372. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3373. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3374. ctx->scratch = scratch;
  3375. return result;
  3376. }
  3377. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3378. return ctx->no_alloc;
  3379. }
  3380. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3381. ctx->no_alloc = no_alloc;
  3382. }
  3383. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3384. return ctx->mem_buffer;
  3385. }
  3386. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3387. return ctx->mem_size;
  3388. }
  3389. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3390. size_t max_size = 0;
  3391. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3392. size_t bytes = ggml_nbytes(tensor);
  3393. max_size = MAX(max_size, bytes);
  3394. }
  3395. return max_size;
  3396. }
  3397. // IMPORTANT:
  3398. // when creating "opt" tensors, always save and load the scratch buffer
  3399. // this is an error prone process, but it is necessary to support inplace
  3400. // operators when using scratch buffers
  3401. // TODO: implement a better way
  3402. static void ggml_scratch_save(struct ggml_context * ctx) {
  3403. // this is needed to allow opt tensors to store their data
  3404. // TODO: again, need to find a better way
  3405. ctx->no_alloc_save = ctx->no_alloc;
  3406. ctx->no_alloc = false;
  3407. ctx->scratch_save = ctx->scratch;
  3408. ctx->scratch.data = NULL;
  3409. }
  3410. static void ggml_scratch_load(struct ggml_context * ctx) {
  3411. ctx->no_alloc = ctx->no_alloc_save;
  3412. ctx->scratch = ctx->scratch_save;
  3413. }
  3414. ////////////////////////////////////////////////////////////////////////////////
  3415. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3416. // always insert objects at the end of the context's memory pool
  3417. struct ggml_object * obj_cur = ctx->objects_end;
  3418. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3419. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3420. const size_t cur_end = cur_offs + cur_size;
  3421. // align to GGML_MEM_ALIGN
  3422. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3423. char * const mem_buffer = ctx->mem_buffer;
  3424. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3425. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3426. GGML_LOG_WARN("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3427. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3428. assert(false);
  3429. return NULL;
  3430. }
  3431. *obj_new = (struct ggml_object) {
  3432. .offs = cur_end + GGML_OBJECT_SIZE,
  3433. .size = size_needed,
  3434. .next = NULL,
  3435. .type = type,
  3436. };
  3437. GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
  3438. if (obj_cur != NULL) {
  3439. obj_cur->next = obj_new;
  3440. } else {
  3441. // this is the first object in this context
  3442. ctx->objects_begin = obj_new;
  3443. }
  3444. ctx->objects_end = obj_new;
  3445. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3446. return obj_new;
  3447. }
  3448. static struct ggml_tensor * ggml_new_tensor_impl(
  3449. struct ggml_context * ctx,
  3450. enum ggml_type type,
  3451. int n_dims,
  3452. const int64_t * ne,
  3453. struct ggml_tensor * view_src,
  3454. size_t view_offs) {
  3455. GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT);
  3456. GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3457. // find the base tensor and absolute offset
  3458. if (view_src != NULL && view_src->view_src != NULL) {
  3459. view_offs += view_src->view_offs;
  3460. view_src = view_src->view_src;
  3461. }
  3462. size_t data_size = ggml_row_size(type, ne[0]);
  3463. for (int i = 1; i < n_dims; i++) {
  3464. data_size *= ne[i];
  3465. }
  3466. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3467. void * data = view_src != NULL ? view_src->data : NULL;
  3468. if (data != NULL) {
  3469. data = (char *) data + view_offs;
  3470. }
  3471. size_t obj_alloc_size = 0;
  3472. if (view_src == NULL && !ctx->no_alloc) {
  3473. if (ctx->scratch.data != NULL) {
  3474. // allocate tensor data in the scratch buffer
  3475. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3476. GGML_LOG_WARN("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3477. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3478. assert(false);
  3479. return NULL;
  3480. }
  3481. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3482. ctx->scratch.offs += data_size;
  3483. } else {
  3484. // allocate tensor data in the context's memory pool
  3485. obj_alloc_size = data_size;
  3486. }
  3487. }
  3488. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3489. GGML_ASSERT(obj_new);
  3490. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3491. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3492. #ifdef __clang__
  3493. // temporary until ggml_tensor::backend is removed
  3494. #pragma clang diagnostic push
  3495. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3496. #endif
  3497. *result = (struct ggml_tensor) {
  3498. /*.type =*/ type,
  3499. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3500. /*.buffer =*/ NULL,
  3501. /*.ne =*/ { 1, 1, 1, 1 },
  3502. /*.nb =*/ { 0, 0, 0, 0 },
  3503. /*.op =*/ GGML_OP_NONE,
  3504. /*.op_params =*/ { 0 },
  3505. /*.flags =*/ 0,
  3506. /*.grad =*/ NULL,
  3507. /*.src =*/ { NULL },
  3508. /*.view_src =*/ view_src,
  3509. /*.view_offs =*/ view_offs,
  3510. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3511. /*.name =*/ { 0 },
  3512. /*.extra =*/ NULL,
  3513. ///*.padding =*/ { 0 },
  3514. };
  3515. #ifdef __clang__
  3516. #pragma clang diagnostic pop
  3517. #endif
  3518. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3519. //GGML_ASSERT_ALIGNED(result->data);
  3520. for (int i = 0; i < n_dims; i++) {
  3521. result->ne[i] = ne[i];
  3522. }
  3523. result->nb[0] = ggml_type_size(type);
  3524. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3525. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3526. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3527. }
  3528. ctx->n_objects++;
  3529. return result;
  3530. }
  3531. struct ggml_tensor * ggml_new_tensor(
  3532. struct ggml_context * ctx,
  3533. enum ggml_type type,
  3534. int n_dims,
  3535. const int64_t * ne) {
  3536. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3537. }
  3538. struct ggml_tensor * ggml_new_tensor_1d(
  3539. struct ggml_context * ctx,
  3540. enum ggml_type type,
  3541. int64_t ne0) {
  3542. return ggml_new_tensor(ctx, type, 1, &ne0);
  3543. }
  3544. struct ggml_tensor * ggml_new_tensor_2d(
  3545. struct ggml_context * ctx,
  3546. enum ggml_type type,
  3547. int64_t ne0,
  3548. int64_t ne1) {
  3549. const int64_t ne[2] = { ne0, ne1 };
  3550. return ggml_new_tensor(ctx, type, 2, ne);
  3551. }
  3552. struct ggml_tensor * ggml_new_tensor_3d(
  3553. struct ggml_context * ctx,
  3554. enum ggml_type type,
  3555. int64_t ne0,
  3556. int64_t ne1,
  3557. int64_t ne2) {
  3558. const int64_t ne[3] = { ne0, ne1, ne2 };
  3559. return ggml_new_tensor(ctx, type, 3, ne);
  3560. }
  3561. struct ggml_tensor * ggml_new_tensor_4d(
  3562. struct ggml_context * ctx,
  3563. enum ggml_type type,
  3564. int64_t ne0,
  3565. int64_t ne1,
  3566. int64_t ne2,
  3567. int64_t ne3) {
  3568. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3569. return ggml_new_tensor(ctx, type, 4, ne);
  3570. }
  3571. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3572. ggml_scratch_save(ctx);
  3573. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3574. ggml_scratch_load(ctx);
  3575. ggml_set_i32(result, value);
  3576. return result;
  3577. }
  3578. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3579. ggml_scratch_save(ctx);
  3580. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3581. ggml_scratch_load(ctx);
  3582. ggml_set_f32(result, value);
  3583. return result;
  3584. }
  3585. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3586. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3587. }
  3588. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3589. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3590. assert(params_size <= GGML_MAX_OP_PARAMS);
  3591. memcpy(tensor->op_params, params, params_size);
  3592. }
  3593. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3594. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3595. return ((const int32_t *)(tensor->op_params))[i];
  3596. }
  3597. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3598. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3599. return ((const float *)(tensor->op_params))[i];
  3600. }
  3601. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3602. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3603. ((int32_t *)(tensor->op_params))[i] = value;
  3604. }
  3605. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3606. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3607. ((float *)(tensor->op_params))[i] = value;
  3608. }
  3609. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3610. if (ggml_is_empty(tensor)) {
  3611. return tensor;
  3612. }
  3613. if (tensor->buffer) {
  3614. ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor));
  3615. } else {
  3616. GGML_ASSERT(tensor->data);
  3617. memset(tensor->data, 0, ggml_nbytes(tensor));
  3618. }
  3619. return tensor;
  3620. }
  3621. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3622. const int n = ggml_nrows(tensor);
  3623. const int nc = tensor->ne[0];
  3624. const size_t n1 = tensor->nb[1];
  3625. char * const data = tensor->data;
  3626. switch (tensor->type) {
  3627. case GGML_TYPE_I8:
  3628. {
  3629. assert(tensor->nb[0] == sizeof(int8_t));
  3630. for (int i = 0; i < n; i++) {
  3631. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3632. }
  3633. } break;
  3634. case GGML_TYPE_I16:
  3635. {
  3636. assert(tensor->nb[0] == sizeof(int16_t));
  3637. for (int i = 0; i < n; i++) {
  3638. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3639. }
  3640. } break;
  3641. case GGML_TYPE_I32:
  3642. {
  3643. assert(tensor->nb[0] == sizeof(int32_t));
  3644. for (int i = 0; i < n; i++) {
  3645. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3646. }
  3647. } break;
  3648. case GGML_TYPE_F16:
  3649. {
  3650. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3651. for (int i = 0; i < n; i++) {
  3652. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3653. }
  3654. } break;
  3655. case GGML_TYPE_BF16:
  3656. {
  3657. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3658. for (int i = 0; i < n; i++) {
  3659. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3660. }
  3661. } break;
  3662. case GGML_TYPE_F32:
  3663. {
  3664. assert(tensor->nb[0] == sizeof(float));
  3665. for (int i = 0; i < n; i++) {
  3666. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3667. }
  3668. } break;
  3669. default:
  3670. {
  3671. GGML_ABORT("fatal error");
  3672. }
  3673. }
  3674. return tensor;
  3675. }
  3676. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3677. const int n = ggml_nrows(tensor);
  3678. const int nc = tensor->ne[0];
  3679. const size_t n1 = tensor->nb[1];
  3680. char * const data = tensor->data;
  3681. switch (tensor->type) {
  3682. case GGML_TYPE_I8:
  3683. {
  3684. assert(tensor->nb[0] == sizeof(int8_t));
  3685. for (int i = 0; i < n; i++) {
  3686. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3687. }
  3688. } break;
  3689. case GGML_TYPE_I16:
  3690. {
  3691. assert(tensor->nb[0] == sizeof(int16_t));
  3692. for (int i = 0; i < n; i++) {
  3693. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3694. }
  3695. } break;
  3696. case GGML_TYPE_I32:
  3697. {
  3698. assert(tensor->nb[0] == sizeof(int32_t));
  3699. for (int i = 0; i < n; i++) {
  3700. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3701. }
  3702. } break;
  3703. case GGML_TYPE_F16:
  3704. {
  3705. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3706. for (int i = 0; i < n; i++) {
  3707. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3708. }
  3709. } break;
  3710. case GGML_TYPE_BF16:
  3711. {
  3712. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3713. for (int i = 0; i < n; i++) {
  3714. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3715. }
  3716. } break;
  3717. case GGML_TYPE_F32:
  3718. {
  3719. assert(tensor->nb[0] == sizeof(float));
  3720. for (int i = 0; i < n; i++) {
  3721. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3722. }
  3723. } break;
  3724. default:
  3725. {
  3726. GGML_ABORT("fatal error");
  3727. }
  3728. }
  3729. return tensor;
  3730. }
  3731. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3732. const int64_t ne2 = tensor->ne[2];
  3733. const int64_t ne1 = tensor->ne[1];
  3734. const int64_t ne0 = tensor->ne[0];
  3735. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3736. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3737. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3738. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3739. if (i0) {
  3740. * i0 = i0_;
  3741. }
  3742. if (i1) {
  3743. * i1 = i1_;
  3744. }
  3745. if (i2) {
  3746. * i2 = i2_;
  3747. }
  3748. if (i3) {
  3749. * i3 = i3_;
  3750. }
  3751. }
  3752. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3753. if (!ggml_is_contiguous(tensor)) {
  3754. int64_t id[4] = { 0, 0, 0, 0 };
  3755. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3756. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3757. }
  3758. switch (tensor->type) {
  3759. case GGML_TYPE_I8:
  3760. {
  3761. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3762. return ((int8_t *)(tensor->data))[i];
  3763. }
  3764. case GGML_TYPE_I16:
  3765. {
  3766. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3767. return ((int16_t *)(tensor->data))[i];
  3768. }
  3769. case GGML_TYPE_I32:
  3770. {
  3771. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3772. return ((int32_t *)(tensor->data))[i];
  3773. }
  3774. case GGML_TYPE_F16:
  3775. {
  3776. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3777. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3778. }
  3779. case GGML_TYPE_BF16:
  3780. {
  3781. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3782. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3783. }
  3784. case GGML_TYPE_F32:
  3785. {
  3786. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3787. return ((float *)(tensor->data))[i];
  3788. }
  3789. default:
  3790. {
  3791. GGML_ABORT("fatal error");
  3792. }
  3793. }
  3794. }
  3795. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3796. if (!ggml_is_contiguous(tensor)) {
  3797. int64_t id[4] = { 0, 0, 0, 0 };
  3798. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3799. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3800. return;
  3801. }
  3802. switch (tensor->type) {
  3803. case GGML_TYPE_I8:
  3804. {
  3805. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3806. ((int8_t *)(tensor->data))[i] = value;
  3807. } break;
  3808. case GGML_TYPE_I16:
  3809. {
  3810. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3811. ((int16_t *)(tensor->data))[i] = value;
  3812. } break;
  3813. case GGML_TYPE_I32:
  3814. {
  3815. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3816. ((int32_t *)(tensor->data))[i] = value;
  3817. } break;
  3818. case GGML_TYPE_F16:
  3819. {
  3820. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3821. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3822. } break;
  3823. case GGML_TYPE_BF16:
  3824. {
  3825. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3826. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3827. } break;
  3828. case GGML_TYPE_F32:
  3829. {
  3830. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3831. ((float *)(tensor->data))[i] = value;
  3832. } break;
  3833. default:
  3834. {
  3835. GGML_ABORT("fatal error");
  3836. }
  3837. }
  3838. }
  3839. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3840. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3841. switch (tensor->type) {
  3842. case GGML_TYPE_I8:
  3843. return ((int8_t *) data)[0];
  3844. case GGML_TYPE_I16:
  3845. return ((int16_t *) data)[0];
  3846. case GGML_TYPE_I32:
  3847. return ((int32_t *) data)[0];
  3848. case GGML_TYPE_F16:
  3849. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3850. case GGML_TYPE_BF16:
  3851. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3852. case GGML_TYPE_F32:
  3853. return ((float *) data)[0];
  3854. default:
  3855. GGML_ABORT("fatal error");
  3856. }
  3857. }
  3858. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3859. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3860. switch (tensor->type) {
  3861. case GGML_TYPE_I8:
  3862. {
  3863. ((int8_t *)(data))[0] = value;
  3864. } break;
  3865. case GGML_TYPE_I16:
  3866. {
  3867. ((int16_t *)(data))[0] = value;
  3868. } break;
  3869. case GGML_TYPE_I32:
  3870. {
  3871. ((int32_t *)(data))[0] = value;
  3872. } break;
  3873. case GGML_TYPE_F16:
  3874. {
  3875. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3876. } break;
  3877. case GGML_TYPE_BF16:
  3878. {
  3879. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3880. } break;
  3881. case GGML_TYPE_F32:
  3882. {
  3883. ((float *)(data))[0] = value;
  3884. } break;
  3885. default:
  3886. {
  3887. GGML_ABORT("fatal error");
  3888. }
  3889. }
  3890. }
  3891. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3892. if (!ggml_is_contiguous(tensor)) {
  3893. int64_t id[4] = { 0, 0, 0, 0 };
  3894. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3895. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3896. }
  3897. switch (tensor->type) {
  3898. case GGML_TYPE_I8:
  3899. {
  3900. return ((int8_t *)(tensor->data))[i];
  3901. }
  3902. case GGML_TYPE_I16:
  3903. {
  3904. return ((int16_t *)(tensor->data))[i];
  3905. }
  3906. case GGML_TYPE_I32:
  3907. {
  3908. return ((int32_t *)(tensor->data))[i];
  3909. }
  3910. case GGML_TYPE_F16:
  3911. {
  3912. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3913. }
  3914. case GGML_TYPE_BF16:
  3915. {
  3916. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3917. }
  3918. case GGML_TYPE_F32:
  3919. {
  3920. return ((float *)(tensor->data))[i];
  3921. }
  3922. default:
  3923. {
  3924. GGML_ABORT("fatal error");
  3925. }
  3926. }
  3927. }
  3928. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3929. if (!ggml_is_contiguous(tensor)) {
  3930. int64_t id[4] = { 0, 0, 0, 0 };
  3931. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3932. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3933. return;
  3934. }
  3935. switch (tensor->type) {
  3936. case GGML_TYPE_I8:
  3937. {
  3938. ((int8_t *)(tensor->data))[i] = value;
  3939. } break;
  3940. case GGML_TYPE_I16:
  3941. {
  3942. ((int16_t *)(tensor->data))[i] = value;
  3943. } break;
  3944. case GGML_TYPE_I32:
  3945. {
  3946. ((int32_t *)(tensor->data))[i] = value;
  3947. } break;
  3948. case GGML_TYPE_F16:
  3949. {
  3950. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3951. } break;
  3952. case GGML_TYPE_BF16:
  3953. {
  3954. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3955. } break;
  3956. case GGML_TYPE_F32:
  3957. {
  3958. ((float *)(tensor->data))[i] = value;
  3959. } break;
  3960. default:
  3961. {
  3962. GGML_ABORT("fatal error");
  3963. }
  3964. }
  3965. }
  3966. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3967. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3968. switch (tensor->type) {
  3969. case GGML_TYPE_I8:
  3970. return ((int8_t *) data)[0];
  3971. case GGML_TYPE_I16:
  3972. return ((int16_t *) data)[0];
  3973. case GGML_TYPE_I32:
  3974. return ((int32_t *) data)[0];
  3975. case GGML_TYPE_F16:
  3976. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3977. case GGML_TYPE_BF16:
  3978. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3979. case GGML_TYPE_F32:
  3980. return ((float *) data)[0];
  3981. default:
  3982. GGML_ABORT("fatal error");
  3983. }
  3984. }
  3985. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3986. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3987. switch (tensor->type) {
  3988. case GGML_TYPE_I8:
  3989. {
  3990. ((int8_t *)(data))[0] = value;
  3991. } break;
  3992. case GGML_TYPE_I16:
  3993. {
  3994. ((int16_t *)(data))[0] = value;
  3995. } break;
  3996. case GGML_TYPE_I32:
  3997. {
  3998. ((int32_t *)(data))[0] = value;
  3999. } break;
  4000. case GGML_TYPE_F16:
  4001. {
  4002. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  4003. } break;
  4004. case GGML_TYPE_BF16:
  4005. {
  4006. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  4007. } break;
  4008. case GGML_TYPE_F32:
  4009. {
  4010. ((float *)(data))[0] = value;
  4011. } break;
  4012. default:
  4013. {
  4014. GGML_ABORT("fatal error");
  4015. }
  4016. }
  4017. }
  4018. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4019. return tensor->data;
  4020. }
  4021. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4022. assert(tensor->type == GGML_TYPE_F32);
  4023. return (float *)(tensor->data);
  4024. }
  4025. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4026. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4027. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4028. }
  4029. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4030. return tensor->name;
  4031. }
  4032. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4033. size_t i;
  4034. for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
  4035. tensor->name[i] = name[i];
  4036. }
  4037. tensor->name[i] = '\0';
  4038. return tensor;
  4039. }
  4040. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4041. va_list args;
  4042. va_start(args, fmt);
  4043. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4044. va_end(args);
  4045. return tensor;
  4046. }
  4047. struct ggml_tensor * ggml_view_tensor(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * src) {
  4050. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  4051. ggml_format_name(result, "%s (view)", src->name);
  4052. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4053. result->nb[i] = src->nb[i];
  4054. }
  4055. return result;
  4056. }
  4057. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  4058. struct ggml_object * obj = ctx->objects_begin;
  4059. char * const mem_buffer = ctx->mem_buffer;
  4060. while (obj != NULL) {
  4061. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  4062. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  4063. }
  4064. obj = obj->next;
  4065. }
  4066. return NULL;
  4067. }
  4068. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  4069. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  4070. obj = obj->next;
  4071. char * const mem_buffer = ctx->mem_buffer;
  4072. while (obj != NULL) {
  4073. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  4074. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  4075. }
  4076. obj = obj->next;
  4077. }
  4078. return NULL;
  4079. }
  4080. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4081. struct ggml_object * obj = ctx->objects_begin;
  4082. char * const mem_buffer = ctx->mem_buffer;
  4083. while (obj != NULL) {
  4084. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  4085. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4086. if (strcmp(cur->name, name) == 0) {
  4087. return cur;
  4088. }
  4089. }
  4090. obj = obj->next;
  4091. }
  4092. return NULL;
  4093. }
  4094. ////////////////////////////////////////////////////////////////////////////////
  4095. // ggml_dup
  4096. static struct ggml_tensor * ggml_dup_impl(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a,
  4099. bool inplace) {
  4100. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4101. result->op = GGML_OP_DUP;
  4102. result->src[0] = a;
  4103. return result;
  4104. }
  4105. struct ggml_tensor * ggml_dup(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a) {
  4108. return ggml_dup_impl(ctx, a, false);
  4109. }
  4110. struct ggml_tensor * ggml_dup_inplace(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a) {
  4113. return ggml_dup_impl(ctx, a, true);
  4114. }
  4115. // ggml_add
  4116. static struct ggml_tensor * ggml_add_impl(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a,
  4119. struct ggml_tensor * b,
  4120. bool inplace) {
  4121. GGML_ASSERT(ggml_can_repeat(b, a));
  4122. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4123. result->op = GGML_OP_ADD;
  4124. result->src[0] = a;
  4125. result->src[1] = b;
  4126. return result;
  4127. }
  4128. struct ggml_tensor * ggml_add(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a,
  4131. struct ggml_tensor * b) {
  4132. return ggml_add_impl(ctx, a, b, false);
  4133. }
  4134. struct ggml_tensor * ggml_add_inplace(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a,
  4137. struct ggml_tensor * b) {
  4138. return ggml_add_impl(ctx, a, b, true);
  4139. }
  4140. // ggml_add_cast
  4141. static struct ggml_tensor * ggml_add_cast_impl(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. struct ggml_tensor * b,
  4145. enum ggml_type type) {
  4146. // TODO: support less-strict constraint
  4147. // GGML_ASSERT(ggml_can_repeat(b, a));
  4148. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4149. // currently only supported for quantized input and f16
  4150. GGML_ASSERT(ggml_is_quantized(a->type) ||
  4151. a->type == GGML_TYPE_F16 ||
  4152. a->type == GGML_TYPE_BF16);
  4153. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4154. result->op = GGML_OP_ADD;
  4155. result->src[0] = a;
  4156. result->src[1] = b;
  4157. return result;
  4158. }
  4159. struct ggml_tensor * ggml_add_cast(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a,
  4162. struct ggml_tensor * b,
  4163. enum ggml_type type) {
  4164. return ggml_add_cast_impl(ctx, a, b, type);
  4165. }
  4166. // ggml_add1
  4167. static struct ggml_tensor * ggml_add1_impl(
  4168. struct ggml_context * ctx,
  4169. struct ggml_tensor * a,
  4170. struct ggml_tensor * b,
  4171. bool inplace) {
  4172. GGML_ASSERT(ggml_is_scalar(b));
  4173. GGML_ASSERT(ggml_is_padded_1d(a));
  4174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4175. result->op = GGML_OP_ADD1;
  4176. result->src[0] = a;
  4177. result->src[1] = b;
  4178. return result;
  4179. }
  4180. struct ggml_tensor * ggml_add1(
  4181. struct ggml_context * ctx,
  4182. struct ggml_tensor * a,
  4183. struct ggml_tensor * b) {
  4184. return ggml_add1_impl(ctx, a, b, false);
  4185. }
  4186. struct ggml_tensor * ggml_add1_inplace(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. struct ggml_tensor * b) {
  4190. return ggml_add1_impl(ctx, a, b, true);
  4191. }
  4192. // ggml_acc
  4193. static struct ggml_tensor * ggml_acc_impl(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. struct ggml_tensor * b,
  4197. size_t nb1,
  4198. size_t nb2,
  4199. size_t nb3,
  4200. size_t offset,
  4201. bool inplace) {
  4202. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4203. GGML_ASSERT(ggml_is_contiguous(a));
  4204. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4205. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4207. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4208. ggml_set_op_params(result, params, sizeof(params));
  4209. result->op = GGML_OP_ACC;
  4210. result->src[0] = a;
  4211. result->src[1] = b;
  4212. return result;
  4213. }
  4214. struct ggml_tensor * ggml_acc(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. struct ggml_tensor * b,
  4218. size_t nb1,
  4219. size_t nb2,
  4220. size_t nb3,
  4221. size_t offset) {
  4222. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4223. }
  4224. struct ggml_tensor * ggml_acc_inplace(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. struct ggml_tensor * b,
  4228. size_t nb1,
  4229. size_t nb2,
  4230. size_t nb3,
  4231. size_t offset) {
  4232. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4233. }
  4234. // ggml_sub
  4235. static struct ggml_tensor * ggml_sub_impl(
  4236. struct ggml_context * ctx,
  4237. struct ggml_tensor * a,
  4238. struct ggml_tensor * b,
  4239. bool inplace) {
  4240. GGML_ASSERT(ggml_can_repeat(b, a));
  4241. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4242. result->op = GGML_OP_SUB;
  4243. result->src[0] = a;
  4244. result->src[1] = b;
  4245. return result;
  4246. }
  4247. struct ggml_tensor * ggml_sub(
  4248. struct ggml_context * ctx,
  4249. struct ggml_tensor * a,
  4250. struct ggml_tensor * b) {
  4251. return ggml_sub_impl(ctx, a, b, false);
  4252. }
  4253. struct ggml_tensor * ggml_sub_inplace(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b) {
  4257. return ggml_sub_impl(ctx, a, b, true);
  4258. }
  4259. // ggml_mul
  4260. static struct ggml_tensor * ggml_mul_impl(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a,
  4263. struct ggml_tensor * b,
  4264. bool inplace) {
  4265. GGML_ASSERT(ggml_can_repeat(b, a));
  4266. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4267. result->op = GGML_OP_MUL;
  4268. result->src[0] = a;
  4269. result->src[1] = b;
  4270. return result;
  4271. }
  4272. struct ggml_tensor * ggml_mul(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a,
  4275. struct ggml_tensor * b) {
  4276. return ggml_mul_impl(ctx, a, b, false);
  4277. }
  4278. struct ggml_tensor * ggml_mul_inplace(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. struct ggml_tensor * b) {
  4282. return ggml_mul_impl(ctx, a, b, true);
  4283. }
  4284. // ggml_div
  4285. static struct ggml_tensor * ggml_div_impl(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a,
  4288. struct ggml_tensor * b,
  4289. bool inplace) {
  4290. GGML_ASSERT(ggml_can_repeat(b, a));
  4291. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4292. result->op = GGML_OP_DIV;
  4293. result->src[0] = a;
  4294. result->src[1] = b;
  4295. return result;
  4296. }
  4297. struct ggml_tensor * ggml_div(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a,
  4300. struct ggml_tensor * b) {
  4301. return ggml_div_impl(ctx, a, b, false);
  4302. }
  4303. struct ggml_tensor * ggml_div_inplace(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b) {
  4307. return ggml_div_impl(ctx, a, b, true);
  4308. }
  4309. // ggml_sqr
  4310. static struct ggml_tensor * ggml_sqr_impl(
  4311. struct ggml_context * ctx,
  4312. struct ggml_tensor * a,
  4313. bool inplace) {
  4314. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4315. result->op = GGML_OP_SQR;
  4316. result->src[0] = a;
  4317. return result;
  4318. }
  4319. struct ggml_tensor * ggml_sqr(
  4320. struct ggml_context * ctx,
  4321. struct ggml_tensor * a) {
  4322. return ggml_sqr_impl(ctx, a, false);
  4323. }
  4324. struct ggml_tensor * ggml_sqr_inplace(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a) {
  4327. return ggml_sqr_impl(ctx, a, true);
  4328. }
  4329. // ggml_sqrt
  4330. static struct ggml_tensor * ggml_sqrt_impl(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a,
  4333. bool inplace) {
  4334. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4335. result->op = GGML_OP_SQRT;
  4336. result->src[0] = a;
  4337. return result;
  4338. }
  4339. struct ggml_tensor * ggml_sqrt(
  4340. struct ggml_context * ctx,
  4341. struct ggml_tensor * a) {
  4342. return ggml_sqrt_impl(ctx, a, false);
  4343. }
  4344. struct ggml_tensor * ggml_sqrt_inplace(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a) {
  4347. return ggml_sqrt_impl(ctx, a, true);
  4348. }
  4349. // ggml_log
  4350. static struct ggml_tensor * ggml_log_impl(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a,
  4353. bool inplace) {
  4354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4355. result->op = GGML_OP_LOG;
  4356. result->src[0] = a;
  4357. return result;
  4358. }
  4359. struct ggml_tensor * ggml_log(
  4360. struct ggml_context * ctx,
  4361. struct ggml_tensor * a) {
  4362. return ggml_log_impl(ctx, a, false);
  4363. }
  4364. struct ggml_tensor * ggml_log_inplace(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a) {
  4367. return ggml_log_impl(ctx, a, true);
  4368. }
  4369. // ggml_sin
  4370. static struct ggml_tensor * ggml_sin_impl(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. bool inplace) {
  4374. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4375. result->op = GGML_OP_SIN;
  4376. result->src[0] = a;
  4377. return result;
  4378. }
  4379. struct ggml_tensor * ggml_sin(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a) {
  4382. return ggml_sin_impl(ctx, a, false);
  4383. }
  4384. struct ggml_tensor * ggml_sin_inplace(
  4385. struct ggml_context * ctx,
  4386. struct ggml_tensor * a) {
  4387. return ggml_sin_impl(ctx, a, true);
  4388. }
  4389. // ggml_cos
  4390. static struct ggml_tensor * ggml_cos_impl(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a,
  4393. bool inplace) {
  4394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4395. result->op = GGML_OP_COS;
  4396. result->src[0] = a;
  4397. return result;
  4398. }
  4399. struct ggml_tensor * ggml_cos(
  4400. struct ggml_context * ctx,
  4401. struct ggml_tensor * a) {
  4402. return ggml_cos_impl(ctx, a, false);
  4403. }
  4404. struct ggml_tensor * ggml_cos_inplace(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a) {
  4407. return ggml_cos_impl(ctx, a, true);
  4408. }
  4409. // ggml_sum
  4410. struct ggml_tensor * ggml_sum(
  4411. struct ggml_context * ctx,
  4412. struct ggml_tensor * a) {
  4413. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4414. result->op = GGML_OP_SUM;
  4415. result->src[0] = a;
  4416. return result;
  4417. }
  4418. // ggml_sum_rows
  4419. struct ggml_tensor * ggml_sum_rows(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a) {
  4422. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4423. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4424. ne[i] = a->ne[i];
  4425. }
  4426. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4427. result->op = GGML_OP_SUM_ROWS;
  4428. result->src[0] = a;
  4429. return result;
  4430. }
  4431. // ggml_mean
  4432. struct ggml_tensor * ggml_mean(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a) {
  4435. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4436. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4437. result->op = GGML_OP_MEAN;
  4438. result->src[0] = a;
  4439. return result;
  4440. }
  4441. // ggml_argmax
  4442. struct ggml_tensor * ggml_argmax(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a) {
  4445. GGML_ASSERT(ggml_is_matrix(a));
  4446. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4447. result->op = GGML_OP_ARGMAX;
  4448. result->src[0] = a;
  4449. return result;
  4450. }
  4451. // ggml_count_equal
  4452. struct ggml_tensor * ggml_count_equal(
  4453. struct ggml_context * ctx,
  4454. struct ggml_tensor * a,
  4455. struct ggml_tensor * b) {
  4456. GGML_ASSERT(ggml_are_same_shape(a, b));
  4457. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, 1);
  4458. result->op = GGML_OP_COUNT_EQUAL;
  4459. result->src[0] = a;
  4460. result->src[1] = b;
  4461. return result;
  4462. }
  4463. // ggml_repeat
  4464. struct ggml_tensor * ggml_repeat(
  4465. struct ggml_context * ctx,
  4466. struct ggml_tensor * a,
  4467. struct ggml_tensor * b) {
  4468. GGML_ASSERT(ggml_can_repeat(a, b));
  4469. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4470. result->op = GGML_OP_REPEAT;
  4471. result->src[0] = a;
  4472. return result;
  4473. }
  4474. // ggml_repeat_back
  4475. struct ggml_tensor * ggml_repeat_back(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. struct ggml_tensor * b) {
  4479. GGML_ASSERT(ggml_can_repeat(b, a));
  4480. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4481. result->op = GGML_OP_REPEAT_BACK;
  4482. result->src[0] = a;
  4483. return result;
  4484. }
  4485. // ggml_concat
  4486. struct ggml_tensor * ggml_concat(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * a,
  4489. struct ggml_tensor * b,
  4490. int dim) {
  4491. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4492. int64_t ne[GGML_MAX_DIMS];
  4493. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4494. if (d == dim) {
  4495. ne[d] = a->ne[d] + b->ne[d];
  4496. continue;
  4497. }
  4498. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4499. ne[d] = a->ne[d];
  4500. }
  4501. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4502. ggml_set_op_params_i32(result, 0, dim);
  4503. result->op = GGML_OP_CONCAT;
  4504. result->src[0] = a;
  4505. result->src[1] = b;
  4506. return result;
  4507. }
  4508. // ggml_abs
  4509. struct ggml_tensor * ggml_abs(
  4510. struct ggml_context * ctx,
  4511. struct ggml_tensor * a) {
  4512. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4513. }
  4514. struct ggml_tensor * ggml_abs_inplace(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a) {
  4517. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4518. }
  4519. // ggml_sgn
  4520. struct ggml_tensor * ggml_sgn(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a) {
  4523. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4524. }
  4525. struct ggml_tensor * ggml_sgn_inplace(
  4526. struct ggml_context * ctx,
  4527. struct ggml_tensor * a) {
  4528. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4529. }
  4530. // ggml_neg
  4531. struct ggml_tensor * ggml_neg(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a) {
  4534. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4535. }
  4536. struct ggml_tensor * ggml_neg_inplace(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a) {
  4539. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4540. }
  4541. // ggml_step
  4542. struct ggml_tensor * ggml_step(
  4543. struct ggml_context * ctx,
  4544. struct ggml_tensor * a) {
  4545. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4546. }
  4547. struct ggml_tensor * ggml_step_inplace(
  4548. struct ggml_context * ctx,
  4549. struct ggml_tensor * a) {
  4550. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4551. }
  4552. // ggml_tanh
  4553. struct ggml_tensor * ggml_tanh(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a) {
  4556. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4557. }
  4558. struct ggml_tensor * ggml_tanh_inplace(
  4559. struct ggml_context * ctx,
  4560. struct ggml_tensor * a) {
  4561. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4562. }
  4563. // ggml_elu
  4564. struct ggml_tensor * ggml_elu(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a) {
  4567. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4568. }
  4569. struct ggml_tensor * ggml_elu_inplace(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a) {
  4572. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4573. }
  4574. // ggml_relu
  4575. struct ggml_tensor * ggml_relu(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a) {
  4578. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4579. }
  4580. struct ggml_tensor * ggml_relu_inplace(
  4581. struct ggml_context * ctx,
  4582. struct ggml_tensor * a) {
  4583. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4584. }
  4585. // ggml_leaky_relu
  4586. struct ggml_tensor * ggml_leaky_relu(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a,
  4589. float negative_slope,
  4590. bool inplace) {
  4591. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4592. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4593. result->op = GGML_OP_LEAKY_RELU;
  4594. result->src[0] = a;
  4595. return result;
  4596. }
  4597. // ggml_sigmoid
  4598. struct ggml_tensor * ggml_sigmoid(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a) {
  4601. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4602. }
  4603. struct ggml_tensor * ggml_sigmoid_inplace(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a) {
  4606. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4607. }
  4608. // ggml_gelu
  4609. struct ggml_tensor * ggml_gelu(
  4610. struct ggml_context * ctx,
  4611. struct ggml_tensor * a) {
  4612. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4613. }
  4614. struct ggml_tensor * ggml_gelu_inplace(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a) {
  4617. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4618. }
  4619. // ggml_gelu_quick
  4620. struct ggml_tensor * ggml_gelu_quick(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a) {
  4623. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4624. }
  4625. struct ggml_tensor * ggml_gelu_quick_inplace(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a) {
  4628. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4629. }
  4630. // ggml_silu
  4631. struct ggml_tensor * ggml_silu(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * a) {
  4634. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4635. }
  4636. struct ggml_tensor * ggml_silu_inplace(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a) {
  4639. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4640. }
  4641. // ggml_silu_back
  4642. struct ggml_tensor * ggml_silu_back(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. struct ggml_tensor * b) {
  4646. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4647. result->op = GGML_OP_SILU_BACK;
  4648. result->src[0] = a;
  4649. result->src[1] = b;
  4650. return result;
  4651. }
  4652. // ggml hardswish
  4653. struct ggml_tensor * ggml_hardswish(
  4654. struct ggml_context * ctx,
  4655. struct ggml_tensor * a) {
  4656. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4657. }
  4658. // ggml hardsigmoid
  4659. struct ggml_tensor * ggml_hardsigmoid(
  4660. struct ggml_context * ctx,
  4661. struct ggml_tensor * a) {
  4662. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4663. }
  4664. // ggml exp
  4665. struct ggml_tensor * ggml_exp(
  4666. struct ggml_context * ctx,
  4667. struct ggml_tensor * a) {
  4668. return ggml_unary(ctx, a, GGML_UNARY_OP_EXP);
  4669. }
  4670. struct ggml_tensor * ggml_exp_inplace(
  4671. struct ggml_context * ctx,
  4672. struct ggml_tensor * a) {
  4673. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP);
  4674. }
  4675. // ggml_norm
  4676. static struct ggml_tensor * ggml_norm_impl(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a,
  4679. float eps,
  4680. bool inplace) {
  4681. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4682. ggml_set_op_params(result, &eps, sizeof(eps));
  4683. result->op = GGML_OP_NORM;
  4684. result->src[0] = a;
  4685. return result;
  4686. }
  4687. struct ggml_tensor * ggml_norm(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a,
  4690. float eps) {
  4691. return ggml_norm_impl(ctx, a, eps, false);
  4692. }
  4693. struct ggml_tensor * ggml_norm_inplace(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. float eps) {
  4697. return ggml_norm_impl(ctx, a, eps, true);
  4698. }
  4699. // ggml_rms_norm
  4700. static struct ggml_tensor * ggml_rms_norm_impl(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a,
  4703. float eps,
  4704. bool inplace) {
  4705. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4706. ggml_set_op_params(result, &eps, sizeof(eps));
  4707. result->op = GGML_OP_RMS_NORM;
  4708. result->src[0] = a;
  4709. return result;
  4710. }
  4711. struct ggml_tensor * ggml_rms_norm(
  4712. struct ggml_context * ctx,
  4713. struct ggml_tensor * a,
  4714. float eps) {
  4715. return ggml_rms_norm_impl(ctx, a, eps, false);
  4716. }
  4717. struct ggml_tensor * ggml_rms_norm_inplace(
  4718. struct ggml_context * ctx,
  4719. struct ggml_tensor * a,
  4720. float eps) {
  4721. return ggml_rms_norm_impl(ctx, a, eps, true);
  4722. }
  4723. // ggml_rms_norm_back
  4724. struct ggml_tensor * ggml_rms_norm_back(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a,
  4727. struct ggml_tensor * b,
  4728. float eps) {
  4729. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4730. ggml_set_op_params(result, &eps, sizeof(eps));
  4731. result->op = GGML_OP_RMS_NORM_BACK;
  4732. result->src[0] = a;
  4733. result->src[1] = b;
  4734. return result;
  4735. }
  4736. // ggml_group_norm
  4737. static struct ggml_tensor * ggml_group_norm_impl(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. int n_groups,
  4741. float eps,
  4742. bool inplace) {
  4743. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4744. ggml_set_op_params_i32(result, 0, n_groups);
  4745. ggml_set_op_params_f32(result, 1, eps);
  4746. result->op = GGML_OP_GROUP_NORM;
  4747. result->src[0] = a;
  4748. return result;
  4749. }
  4750. struct ggml_tensor * ggml_group_norm(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. int n_groups,
  4754. float eps) {
  4755. return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
  4756. }
  4757. struct ggml_tensor * ggml_group_norm_inplace(
  4758. struct ggml_context * ctx,
  4759. struct ggml_tensor * a,
  4760. int n_groups,
  4761. float eps) {
  4762. return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
  4763. }
  4764. // ggml_mul_mat
  4765. struct ggml_tensor * ggml_mul_mat(
  4766. struct ggml_context * ctx,
  4767. struct ggml_tensor * a,
  4768. struct ggml_tensor * b) {
  4769. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4770. GGML_ASSERT(!ggml_is_transposed(a));
  4771. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4772. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4773. result->op = GGML_OP_MUL_MAT;
  4774. result->src[0] = a;
  4775. result->src[1] = b;
  4776. return result;
  4777. }
  4778. void ggml_mul_mat_set_prec(
  4779. struct ggml_tensor * a,
  4780. enum ggml_prec prec) {
  4781. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4782. const int32_t prec_i32 = (int32_t) prec;
  4783. ggml_set_op_params_i32(a, 0, prec_i32);
  4784. }
  4785. // ggml_mul_mat_id
  4786. /*
  4787. c = ggml_mul_mat_id(ctx, as, b, ids);
  4788. as -> [cols, rows, n_expert]
  4789. ids -> [n_experts_used, n_tokens] (i32)
  4790. b -> [cols, n_expert_used, n_tokens]
  4791. c -> [rows, n_expert_used, n_tokens]
  4792. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4793. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4794. */
  4795. struct ggml_tensor * ggml_mul_mat_id(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * as,
  4798. struct ggml_tensor * b,
  4799. struct ggml_tensor * ids) {
  4800. GGML_ASSERT(!ggml_is_transposed(as));
  4801. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4802. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4803. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4804. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4805. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4806. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4807. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4808. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4809. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4810. result->op = GGML_OP_MUL_MAT_ID;
  4811. result->src[0] = as;
  4812. result->src[1] = b;
  4813. result->src[2] = ids;
  4814. return result;
  4815. }
  4816. // ggml_out_prod
  4817. struct ggml_tensor * ggml_out_prod(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. struct ggml_tensor * b) {
  4821. GGML_ASSERT(ggml_can_out_prod(a, b));
  4822. GGML_ASSERT(!ggml_is_transposed(a));
  4823. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4824. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4825. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4826. result->op = GGML_OP_OUT_PROD;
  4827. result->src[0] = a;
  4828. result->src[1] = b;
  4829. return result;
  4830. }
  4831. // ggml_scale
  4832. static struct ggml_tensor * ggml_scale_impl(
  4833. struct ggml_context * ctx,
  4834. struct ggml_tensor * a,
  4835. float s,
  4836. bool inplace) {
  4837. GGML_ASSERT(ggml_is_padded_1d(a));
  4838. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4839. ggml_set_op_params(result, &s, sizeof(s));
  4840. result->op = GGML_OP_SCALE;
  4841. result->src[0] = a;
  4842. return result;
  4843. }
  4844. struct ggml_tensor * ggml_scale(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. float s) {
  4848. return ggml_scale_impl(ctx, a, s, false);
  4849. }
  4850. struct ggml_tensor * ggml_scale_inplace(
  4851. struct ggml_context * ctx,
  4852. struct ggml_tensor * a,
  4853. float s) {
  4854. return ggml_scale_impl(ctx, a, s, true);
  4855. }
  4856. // ggml_set
  4857. static struct ggml_tensor * ggml_set_impl(
  4858. struct ggml_context * ctx,
  4859. struct ggml_tensor * a,
  4860. struct ggml_tensor * b,
  4861. size_t nb1,
  4862. size_t nb2,
  4863. size_t nb3,
  4864. size_t offset,
  4865. bool inplace) {
  4866. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4867. // make a view of the destination
  4868. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4869. GGML_ASSERT(offset < (size_t)(1 << 30));
  4870. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4871. ggml_set_op_params(result, params, sizeof(params));
  4872. result->op = GGML_OP_SET;
  4873. result->src[0] = a;
  4874. result->src[1] = b;
  4875. return result;
  4876. }
  4877. struct ggml_tensor * ggml_set(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. struct ggml_tensor * b,
  4881. size_t nb1,
  4882. size_t nb2,
  4883. size_t nb3,
  4884. size_t offset) {
  4885. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4886. }
  4887. struct ggml_tensor * ggml_set_inplace(
  4888. struct ggml_context * ctx,
  4889. struct ggml_tensor * a,
  4890. struct ggml_tensor * b,
  4891. size_t nb1,
  4892. size_t nb2,
  4893. size_t nb3,
  4894. size_t offset) {
  4895. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4896. }
  4897. struct ggml_tensor * ggml_set_1d(
  4898. struct ggml_context * ctx,
  4899. struct ggml_tensor * a,
  4900. struct ggml_tensor * b,
  4901. size_t offset) {
  4902. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4903. }
  4904. struct ggml_tensor * ggml_set_1d_inplace(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. struct ggml_tensor * b,
  4908. size_t offset) {
  4909. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4910. }
  4911. struct ggml_tensor * ggml_set_2d(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. struct ggml_tensor * b,
  4915. size_t nb1,
  4916. size_t offset) {
  4917. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4918. }
  4919. struct ggml_tensor * ggml_set_2d_inplace(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. struct ggml_tensor * b,
  4923. size_t nb1,
  4924. size_t offset) {
  4925. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4926. }
  4927. // ggml_cpy
  4928. static struct ggml_tensor * ggml_cpy_impl(
  4929. struct ggml_context * ctx,
  4930. struct ggml_tensor * a,
  4931. struct ggml_tensor * b) {
  4932. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4933. // make a view of the destination
  4934. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4935. if (strlen(b->name) > 0) {
  4936. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4937. } else {
  4938. ggml_format_name(result, "%s (copy)", a->name);
  4939. }
  4940. result->op = GGML_OP_CPY;
  4941. result->src[0] = a;
  4942. result->src[1] = b;
  4943. return result;
  4944. }
  4945. struct ggml_tensor * ggml_cpy(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a,
  4948. struct ggml_tensor * b) {
  4949. return ggml_cpy_impl(ctx, a, b);
  4950. }
  4951. struct ggml_tensor * ggml_cast(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a,
  4954. enum ggml_type type) {
  4955. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4956. ggml_format_name(result, "%s (copy)", a->name);
  4957. result->op = GGML_OP_CPY;
  4958. result->src[0] = a;
  4959. result->src[1] = result;
  4960. return result;
  4961. }
  4962. // ggml_cont
  4963. static struct ggml_tensor * ggml_cont_impl(
  4964. struct ggml_context * ctx,
  4965. struct ggml_tensor * a) {
  4966. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4967. ggml_format_name(result, "%s (cont)", a->name);
  4968. result->op = GGML_OP_CONT;
  4969. result->src[0] = a;
  4970. return result;
  4971. }
  4972. struct ggml_tensor * ggml_cont(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a) {
  4975. return ggml_cont_impl(ctx, a);
  4976. }
  4977. // make contiguous, with new shape
  4978. GGML_API struct ggml_tensor * ggml_cont_1d(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. int64_t ne0) {
  4982. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4983. }
  4984. GGML_API struct ggml_tensor * ggml_cont_2d(
  4985. struct ggml_context * ctx,
  4986. struct ggml_tensor * a,
  4987. int64_t ne0,
  4988. int64_t ne1) {
  4989. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4990. }
  4991. GGML_API struct ggml_tensor * ggml_cont_3d(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a,
  4994. int64_t ne0,
  4995. int64_t ne1,
  4996. int64_t ne2) {
  4997. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4998. }
  4999. struct ggml_tensor * ggml_cont_4d(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a,
  5002. int64_t ne0,
  5003. int64_t ne1,
  5004. int64_t ne2,
  5005. int64_t ne3) {
  5006. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  5007. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5008. ggml_format_name(result, "%s (cont)", a->name);
  5009. result->op = GGML_OP_CONT;
  5010. result->src[0] = a;
  5011. return result;
  5012. }
  5013. // ggml_reshape
  5014. struct ggml_tensor * ggml_reshape(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. struct ggml_tensor * b) {
  5018. GGML_ASSERT(ggml_is_contiguous(a));
  5019. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  5020. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5021. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  5022. ggml_format_name(result, "%s (reshaped)", a->name);
  5023. result->op = GGML_OP_RESHAPE;
  5024. result->src[0] = a;
  5025. return result;
  5026. }
  5027. struct ggml_tensor * ggml_reshape_1d(
  5028. struct ggml_context * ctx,
  5029. struct ggml_tensor * a,
  5030. int64_t ne0) {
  5031. GGML_ASSERT(ggml_is_contiguous(a));
  5032. GGML_ASSERT(ggml_nelements(a) == ne0);
  5033. const int64_t ne[1] = { ne0 };
  5034. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5035. ggml_format_name(result, "%s (reshaped)", a->name);
  5036. result->op = GGML_OP_RESHAPE;
  5037. result->src[0] = a;
  5038. return result;
  5039. }
  5040. struct ggml_tensor * ggml_reshape_2d(
  5041. struct ggml_context * ctx,
  5042. struct ggml_tensor * a,
  5043. int64_t ne0,
  5044. int64_t ne1) {
  5045. GGML_ASSERT(ggml_is_contiguous(a));
  5046. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5047. const int64_t ne[2] = { ne0, ne1 };
  5048. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5049. ggml_format_name(result, "%s (reshaped)", a->name);
  5050. result->op = GGML_OP_RESHAPE;
  5051. result->src[0] = a;
  5052. return result;
  5053. }
  5054. struct ggml_tensor * ggml_reshape_3d(
  5055. struct ggml_context * ctx,
  5056. struct ggml_tensor * a,
  5057. int64_t ne0,
  5058. int64_t ne1,
  5059. int64_t ne2) {
  5060. GGML_ASSERT(ggml_is_contiguous(a));
  5061. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5062. const int64_t ne[3] = { ne0, ne1, ne2 };
  5063. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5064. ggml_format_name(result, "%s (reshaped)", a->name);
  5065. result->op = GGML_OP_RESHAPE;
  5066. result->src[0] = a;
  5067. return result;
  5068. }
  5069. struct ggml_tensor * ggml_reshape_4d(
  5070. struct ggml_context * ctx,
  5071. struct ggml_tensor * a,
  5072. int64_t ne0,
  5073. int64_t ne1,
  5074. int64_t ne2,
  5075. int64_t ne3) {
  5076. GGML_ASSERT(ggml_is_contiguous(a));
  5077. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5078. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5079. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5080. ggml_format_name(result, "%s (reshaped)", a->name);
  5081. result->op = GGML_OP_RESHAPE;
  5082. result->src[0] = a;
  5083. return result;
  5084. }
  5085. static struct ggml_tensor * ggml_view_impl(
  5086. struct ggml_context * ctx,
  5087. struct ggml_tensor * a,
  5088. int n_dims,
  5089. const int64_t * ne,
  5090. size_t offset) {
  5091. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5092. ggml_format_name(result, "%s (view)", a->name);
  5093. ggml_set_op_params(result, &offset, sizeof(offset));
  5094. result->op = GGML_OP_VIEW;
  5095. result->src[0] = a;
  5096. return result;
  5097. }
  5098. // ggml_view_1d
  5099. struct ggml_tensor * ggml_view_1d(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * a,
  5102. int64_t ne0,
  5103. size_t offset) {
  5104. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5105. return result;
  5106. }
  5107. // ggml_view_2d
  5108. struct ggml_tensor * ggml_view_2d(
  5109. struct ggml_context * ctx,
  5110. struct ggml_tensor * a,
  5111. int64_t ne0,
  5112. int64_t ne1,
  5113. size_t nb1,
  5114. size_t offset) {
  5115. const int64_t ne[2] = { ne0, ne1 };
  5116. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5117. result->nb[1] = nb1;
  5118. result->nb[2] = result->nb[1]*ne1;
  5119. result->nb[3] = result->nb[2];
  5120. return result;
  5121. }
  5122. // ggml_view_3d
  5123. struct ggml_tensor * ggml_view_3d(
  5124. struct ggml_context * ctx,
  5125. struct ggml_tensor * a,
  5126. int64_t ne0,
  5127. int64_t ne1,
  5128. int64_t ne2,
  5129. size_t nb1,
  5130. size_t nb2,
  5131. size_t offset) {
  5132. const int64_t ne[3] = { ne0, ne1, ne2 };
  5133. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5134. result->nb[1] = nb1;
  5135. result->nb[2] = nb2;
  5136. result->nb[3] = result->nb[2]*ne2;
  5137. return result;
  5138. }
  5139. // ggml_view_4d
  5140. struct ggml_tensor * ggml_view_4d(
  5141. struct ggml_context * ctx,
  5142. struct ggml_tensor * a,
  5143. int64_t ne0,
  5144. int64_t ne1,
  5145. int64_t ne2,
  5146. int64_t ne3,
  5147. size_t nb1,
  5148. size_t nb2,
  5149. size_t nb3,
  5150. size_t offset) {
  5151. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5152. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5153. result->nb[1] = nb1;
  5154. result->nb[2] = nb2;
  5155. result->nb[3] = nb3;
  5156. return result;
  5157. }
  5158. // ggml_permute
  5159. struct ggml_tensor * ggml_permute(
  5160. struct ggml_context * ctx,
  5161. struct ggml_tensor * a,
  5162. int axis0,
  5163. int axis1,
  5164. int axis2,
  5165. int axis3) {
  5166. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5167. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5168. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5169. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5170. GGML_ASSERT(axis0 != axis1);
  5171. GGML_ASSERT(axis0 != axis2);
  5172. GGML_ASSERT(axis0 != axis3);
  5173. GGML_ASSERT(axis1 != axis2);
  5174. GGML_ASSERT(axis1 != axis3);
  5175. GGML_ASSERT(axis2 != axis3);
  5176. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5177. ggml_format_name(result, "%s (permuted)", a->name);
  5178. int ne[GGML_MAX_DIMS];
  5179. int nb[GGML_MAX_DIMS];
  5180. ne[axis0] = a->ne[0];
  5181. ne[axis1] = a->ne[1];
  5182. ne[axis2] = a->ne[2];
  5183. ne[axis3] = a->ne[3];
  5184. nb[axis0] = a->nb[0];
  5185. nb[axis1] = a->nb[1];
  5186. nb[axis2] = a->nb[2];
  5187. nb[axis3] = a->nb[3];
  5188. result->ne[0] = ne[0];
  5189. result->ne[1] = ne[1];
  5190. result->ne[2] = ne[2];
  5191. result->ne[3] = ne[3];
  5192. result->nb[0] = nb[0];
  5193. result->nb[1] = nb[1];
  5194. result->nb[2] = nb[2];
  5195. result->nb[3] = nb[3];
  5196. result->op = GGML_OP_PERMUTE;
  5197. result->src[0] = a;
  5198. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5199. ggml_set_op_params(result, params, sizeof(params));
  5200. return result;
  5201. }
  5202. // ggml_transpose
  5203. struct ggml_tensor * ggml_transpose(
  5204. struct ggml_context * ctx,
  5205. struct ggml_tensor * a) {
  5206. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5207. ggml_format_name(result, "%s (transposed)", a->name);
  5208. result->ne[0] = a->ne[1];
  5209. result->ne[1] = a->ne[0];
  5210. result->nb[0] = a->nb[1];
  5211. result->nb[1] = a->nb[0];
  5212. result->op = GGML_OP_TRANSPOSE;
  5213. result->src[0] = a;
  5214. return result;
  5215. }
  5216. // ggml_get_rows
  5217. struct ggml_tensor * ggml_get_rows(
  5218. struct ggml_context * ctx,
  5219. struct ggml_tensor * a,
  5220. struct ggml_tensor * b) {
  5221. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5222. GGML_ASSERT(b->ne[3] == 1);
  5223. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5224. // TODO: implement non F32 return
  5225. enum ggml_type type = GGML_TYPE_F32;
  5226. if (a->type == GGML_TYPE_I32) {
  5227. type = a->type;
  5228. }
  5229. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  5230. result->op = GGML_OP_GET_ROWS;
  5231. result->src[0] = a;
  5232. result->src[1] = b;
  5233. return result;
  5234. }
  5235. // ggml_get_rows_back
  5236. struct ggml_tensor * ggml_get_rows_back(
  5237. struct ggml_context * ctx,
  5238. struct ggml_tensor * a,
  5239. struct ggml_tensor * b,
  5240. struct ggml_tensor * c) {
  5241. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5242. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5243. // TODO: implement non F32 return
  5244. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5245. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5246. result->op = GGML_OP_GET_ROWS_BACK;
  5247. result->src[0] = a;
  5248. result->src[1] = b;
  5249. return result;
  5250. }
  5251. // ggml_diag
  5252. struct ggml_tensor * ggml_diag(
  5253. struct ggml_context * ctx,
  5254. struct ggml_tensor * a) {
  5255. GGML_ASSERT(a->ne[1] == 1);
  5256. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5257. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5258. result->op = GGML_OP_DIAG;
  5259. result->src[0] = a;
  5260. return result;
  5261. }
  5262. // ggml_diag_mask_inf
  5263. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5264. struct ggml_context * ctx,
  5265. struct ggml_tensor * a,
  5266. int n_past,
  5267. bool inplace) {
  5268. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5269. int32_t params[] = { n_past };
  5270. ggml_set_op_params(result, params, sizeof(params));
  5271. result->op = GGML_OP_DIAG_MASK_INF;
  5272. result->src[0] = a;
  5273. return result;
  5274. }
  5275. struct ggml_tensor * ggml_diag_mask_inf(
  5276. struct ggml_context * ctx,
  5277. struct ggml_tensor * a,
  5278. int n_past) {
  5279. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5280. }
  5281. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5282. struct ggml_context * ctx,
  5283. struct ggml_tensor * a,
  5284. int n_past) {
  5285. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5286. }
  5287. // ggml_diag_mask_zero
  5288. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5289. struct ggml_context * ctx,
  5290. struct ggml_tensor * a,
  5291. int n_past,
  5292. bool inplace) {
  5293. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5294. int32_t params[] = { n_past };
  5295. ggml_set_op_params(result, params, sizeof(params));
  5296. result->op = GGML_OP_DIAG_MASK_ZERO;
  5297. result->src[0] = a;
  5298. return result;
  5299. }
  5300. struct ggml_tensor * ggml_diag_mask_zero(
  5301. struct ggml_context * ctx,
  5302. struct ggml_tensor * a,
  5303. int n_past) {
  5304. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5305. }
  5306. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5307. struct ggml_context * ctx,
  5308. struct ggml_tensor * a,
  5309. int n_past) {
  5310. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5311. }
  5312. // ggml_soft_max
  5313. static struct ggml_tensor * ggml_soft_max_impl(
  5314. struct ggml_context * ctx,
  5315. struct ggml_tensor * a,
  5316. struct ggml_tensor * mask,
  5317. float scale,
  5318. float max_bias,
  5319. bool inplace) {
  5320. GGML_ASSERT(ggml_is_contiguous(a));
  5321. if (mask) {
  5322. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5323. GGML_ASSERT(ggml_is_contiguous(mask));
  5324. GGML_ASSERT(ggml_is_matrix(mask));
  5325. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5326. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5327. }
  5328. if (max_bias > 0.0f) {
  5329. GGML_ASSERT(mask);
  5330. }
  5331. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5332. float params[] = { scale, max_bias };
  5333. ggml_set_op_params(result, params, sizeof(params));
  5334. result->op = GGML_OP_SOFT_MAX;
  5335. result->src[0] = a;
  5336. result->src[1] = mask;
  5337. return result;
  5338. }
  5339. struct ggml_tensor * ggml_soft_max(
  5340. struct ggml_context * ctx,
  5341. struct ggml_tensor * a) {
  5342. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5343. }
  5344. struct ggml_tensor * ggml_soft_max_inplace(
  5345. struct ggml_context * ctx,
  5346. struct ggml_tensor * a) {
  5347. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5348. }
  5349. struct ggml_tensor * ggml_soft_max_ext(
  5350. struct ggml_context * ctx,
  5351. struct ggml_tensor * a,
  5352. struct ggml_tensor * mask,
  5353. float scale,
  5354. float max_bias) {
  5355. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5356. }
  5357. // ggml_soft_max_back
  5358. static struct ggml_tensor * ggml_soft_max_back_impl(
  5359. struct ggml_context * ctx,
  5360. struct ggml_tensor * a,
  5361. struct ggml_tensor * b,
  5362. bool inplace) {
  5363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5364. result->op = GGML_OP_SOFT_MAX_BACK;
  5365. result->src[0] = a;
  5366. result->src[1] = b;
  5367. return result;
  5368. }
  5369. struct ggml_tensor * ggml_soft_max_back(
  5370. struct ggml_context * ctx,
  5371. struct ggml_tensor * a,
  5372. struct ggml_tensor * b) {
  5373. return ggml_soft_max_back_impl(ctx, a, b, false);
  5374. }
  5375. struct ggml_tensor * ggml_soft_max_back_inplace(
  5376. struct ggml_context * ctx,
  5377. struct ggml_tensor * a,
  5378. struct ggml_tensor * b) {
  5379. return ggml_soft_max_back_impl(ctx, a, b, true);
  5380. }
  5381. // ggml_rope
  5382. static struct ggml_tensor * ggml_rope_impl(
  5383. struct ggml_context * ctx,
  5384. struct ggml_tensor * a,
  5385. struct ggml_tensor * b,
  5386. struct ggml_tensor * c,
  5387. int n_dims,
  5388. int mode,
  5389. int n_ctx_orig,
  5390. float freq_base,
  5391. float freq_scale,
  5392. float ext_factor,
  5393. float attn_factor,
  5394. float beta_fast,
  5395. float beta_slow,
  5396. bool inplace) {
  5397. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5398. GGML_ASSERT(ggml_is_vector(b));
  5399. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5400. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5401. if (c) {
  5402. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5403. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5404. }
  5405. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5406. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5407. memcpy(params + 5, &freq_base, sizeof(float));
  5408. memcpy(params + 6, &freq_scale, sizeof(float));
  5409. memcpy(params + 7, &ext_factor, sizeof(float));
  5410. memcpy(params + 8, &attn_factor, sizeof(float));
  5411. memcpy(params + 9, &beta_fast, sizeof(float));
  5412. memcpy(params + 10, &beta_slow, sizeof(float));
  5413. ggml_set_op_params(result, params, sizeof(params));
  5414. result->op = GGML_OP_ROPE;
  5415. result->src[0] = a;
  5416. result->src[1] = b;
  5417. result->src[2] = c;
  5418. return result;
  5419. }
  5420. struct ggml_tensor * ggml_rope(
  5421. struct ggml_context * ctx,
  5422. struct ggml_tensor * a,
  5423. struct ggml_tensor * b,
  5424. int n_dims,
  5425. int mode) {
  5426. return ggml_rope_impl(
  5427. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5428. );
  5429. }
  5430. struct ggml_tensor * ggml_rope_inplace(
  5431. struct ggml_context * ctx,
  5432. struct ggml_tensor * a,
  5433. struct ggml_tensor * b,
  5434. int n_dims,
  5435. int mode) {
  5436. return ggml_rope_impl(
  5437. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5438. );
  5439. }
  5440. struct ggml_tensor * ggml_rope_ext(
  5441. struct ggml_context * ctx,
  5442. struct ggml_tensor * a,
  5443. struct ggml_tensor * b,
  5444. struct ggml_tensor * c,
  5445. int n_dims,
  5446. int mode,
  5447. int n_ctx_orig,
  5448. float freq_base,
  5449. float freq_scale,
  5450. float ext_factor,
  5451. float attn_factor,
  5452. float beta_fast,
  5453. float beta_slow) {
  5454. return ggml_rope_impl(
  5455. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5456. ext_factor, attn_factor, beta_fast, beta_slow, false
  5457. );
  5458. }
  5459. struct ggml_tensor * ggml_rope_ext_inplace(
  5460. struct ggml_context * ctx,
  5461. struct ggml_tensor * a,
  5462. struct ggml_tensor * b,
  5463. struct ggml_tensor * c,
  5464. int n_dims,
  5465. int mode,
  5466. int n_ctx_orig,
  5467. float freq_base,
  5468. float freq_scale,
  5469. float ext_factor,
  5470. float attn_factor,
  5471. float beta_fast,
  5472. float beta_slow) {
  5473. return ggml_rope_impl(
  5474. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5475. ext_factor, attn_factor, beta_fast, beta_slow, true
  5476. );
  5477. }
  5478. struct ggml_tensor * ggml_rope_custom(
  5479. struct ggml_context * ctx,
  5480. struct ggml_tensor * a,
  5481. struct ggml_tensor * b,
  5482. int n_dims,
  5483. int mode,
  5484. int n_ctx_orig,
  5485. float freq_base,
  5486. float freq_scale,
  5487. float ext_factor,
  5488. float attn_factor,
  5489. float beta_fast,
  5490. float beta_slow) {
  5491. return ggml_rope_impl(
  5492. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5493. ext_factor, attn_factor, beta_fast, beta_slow, false
  5494. );
  5495. }
  5496. struct ggml_tensor * ggml_rope_custom_inplace(
  5497. struct ggml_context * ctx,
  5498. struct ggml_tensor * a,
  5499. struct ggml_tensor * b,
  5500. int n_dims,
  5501. int mode,
  5502. int n_ctx_orig,
  5503. float freq_base,
  5504. float freq_scale,
  5505. float ext_factor,
  5506. float attn_factor,
  5507. float beta_fast,
  5508. float beta_slow) {
  5509. return ggml_rope_impl(
  5510. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5511. ext_factor, attn_factor, beta_fast, beta_slow, true
  5512. );
  5513. }
  5514. // ggml_rope_back
  5515. struct ggml_tensor * ggml_rope_back(
  5516. struct ggml_context * ctx,
  5517. struct ggml_tensor * a,
  5518. struct ggml_tensor * b,
  5519. struct ggml_tensor * c,
  5520. int n_dims,
  5521. int mode,
  5522. int n_ctx_orig,
  5523. float freq_base,
  5524. float freq_scale,
  5525. float ext_factor,
  5526. float attn_factor,
  5527. float beta_fast,
  5528. float beta_slow) {
  5529. GGML_ASSERT(ggml_is_vector(b));
  5530. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5531. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5532. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5533. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5534. memcpy(params + 5, &freq_base, sizeof(float));
  5535. memcpy(params + 6, &freq_scale, sizeof(float));
  5536. memcpy(params + 7, &ext_factor, sizeof(float));
  5537. memcpy(params + 8, &attn_factor, sizeof(float));
  5538. memcpy(params + 9, &beta_fast, sizeof(float));
  5539. memcpy(params + 10, &beta_slow, sizeof(float));
  5540. ggml_set_op_params(result, params, sizeof(params));
  5541. result->op = GGML_OP_ROPE_BACK;
  5542. result->src[0] = a;
  5543. result->src[1] = b;
  5544. result->src[2] = c;
  5545. return result;
  5546. }
  5547. // ggml_clamp
  5548. struct ggml_tensor * ggml_clamp(
  5549. struct ggml_context * ctx,
  5550. struct ggml_tensor * a,
  5551. float min,
  5552. float max) {
  5553. // TODO: when implement backward, fix this:
  5554. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5555. float params[] = { min, max };
  5556. ggml_set_op_params(result, params, sizeof(params));
  5557. result->op = GGML_OP_CLAMP;
  5558. result->src[0] = a;
  5559. return result;
  5560. }
  5561. // ggml_conv_1d
  5562. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5563. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5564. }
  5565. GGML_API struct ggml_tensor * ggml_conv_1d(
  5566. struct ggml_context * ctx,
  5567. struct ggml_tensor * a,
  5568. struct ggml_tensor * b,
  5569. int s0,
  5570. int p0,
  5571. int d0) {
  5572. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5573. struct ggml_tensor * result =
  5574. ggml_mul_mat(ctx,
  5575. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5576. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5577. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5578. return result;
  5579. }
  5580. // ggml_conv_1d_ph
  5581. struct ggml_tensor* ggml_conv_1d_ph(
  5582. struct ggml_context * ctx,
  5583. struct ggml_tensor * a,
  5584. struct ggml_tensor * b,
  5585. int s,
  5586. int d) {
  5587. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5588. }
  5589. // ggml_conv_transpose_1d
  5590. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5591. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5592. }
  5593. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5594. struct ggml_context * ctx,
  5595. struct ggml_tensor * a,
  5596. struct ggml_tensor * b,
  5597. int s0,
  5598. int p0,
  5599. int d0) {
  5600. GGML_ASSERT(ggml_is_matrix(b));
  5601. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5602. GGML_ASSERT(a->ne[3] == 1);
  5603. GGML_ASSERT(p0 == 0);
  5604. GGML_ASSERT(d0 == 1);
  5605. const int64_t ne[4] = {
  5606. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5607. a->ne[1], b->ne[2], 1,
  5608. };
  5609. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5610. int32_t params[] = { s0, p0, d0 };
  5611. ggml_set_op_params(result, params, sizeof(params));
  5612. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5613. result->src[0] = a;
  5614. result->src[1] = b;
  5615. return result;
  5616. }
  5617. // ggml_conv_depthwise
  5618. struct ggml_tensor * ggml_conv_depthwise_2d(
  5619. struct ggml_context * ctx,
  5620. struct ggml_tensor * a,
  5621. struct ggml_tensor * b,
  5622. int s0,
  5623. int s1,
  5624. int p0,
  5625. int p1,
  5626. int d0,
  5627. int d1) {
  5628. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5629. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5630. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5631. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5632. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5633. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5634. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5635. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5636. return result;
  5637. }
  5638. // ggml_conv_2d
  5639. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5640. // a: [OC,IC, KH, KW]
  5641. // b: [N, IC, IH, IW]
  5642. // result: [N, OH, OW, IC*KH*KW]
  5643. struct ggml_tensor * ggml_im2col(
  5644. struct ggml_context * ctx,
  5645. struct ggml_tensor * a,
  5646. struct ggml_tensor * b,
  5647. int s0,
  5648. int s1,
  5649. int p0,
  5650. int p1,
  5651. int d0,
  5652. int d1,
  5653. bool is_2D,
  5654. enum ggml_type dst_type) {
  5655. if(is_2D) {
  5656. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5657. } else {
  5658. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5659. GGML_ASSERT(b->ne[3] == 1);
  5660. }
  5661. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5662. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5663. GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a");
  5664. GGML_ASSERT((OW > 0) && "b too small compared to a");
  5665. const int64_t ne[4] = {
  5666. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5667. OW,
  5668. is_2D ? OH : b->ne[2],
  5669. is_2D ? b->ne[3] : 1,
  5670. };
  5671. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5672. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5673. ggml_set_op_params(result, params, sizeof(params));
  5674. result->op = GGML_OP_IM2COL;
  5675. result->src[0] = a;
  5676. result->src[1] = b;
  5677. return result;
  5678. }
  5679. struct ggml_tensor * ggml_im2col_back(
  5680. struct ggml_context * ctx,
  5681. struct ggml_tensor * a,
  5682. struct ggml_tensor * b,
  5683. int64_t * ne,
  5684. int s0,
  5685. int s1,
  5686. int p0,
  5687. int p1,
  5688. int d0,
  5689. int d1,
  5690. bool is_2D) {
  5691. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5692. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5693. ggml_set_op_params(result, params, sizeof(params));
  5694. result->op = GGML_OP_IM2COL_BACK;
  5695. result->src[0] = a;
  5696. result->src[1] = b;
  5697. return result;
  5698. }
  5699. // a: [OC,IC, KH, KW]
  5700. // b: [N, IC, IH, IW]
  5701. // result: [N, OC, OH, OW]
  5702. struct ggml_tensor * ggml_conv_2d(
  5703. struct ggml_context * ctx,
  5704. struct ggml_tensor * a,
  5705. struct ggml_tensor * b,
  5706. int s0,
  5707. int s1,
  5708. int p0,
  5709. int p1,
  5710. int d0,
  5711. int d1) {
  5712. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); // [N, OH, OW, IC * KH * KW]
  5713. struct ggml_tensor * result =
  5714. ggml_mul_mat(ctx,
  5715. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5716. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5717. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5718. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5719. return result;
  5720. }
  5721. // ggml_conv_2d_sk_p0
  5722. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5723. struct ggml_context * ctx,
  5724. struct ggml_tensor * a,
  5725. struct ggml_tensor * b) {
  5726. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5727. }
  5728. // ggml_conv_2d_s1_ph
  5729. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5730. struct ggml_context * ctx,
  5731. struct ggml_tensor * a,
  5732. struct ggml_tensor * b) {
  5733. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5734. }
  5735. // ggml_conv_transpose_2d_p0
  5736. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5737. return (ins - 1) * s - 2 * p + ks;
  5738. }
  5739. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5740. struct ggml_context * ctx,
  5741. struct ggml_tensor * a,
  5742. struct ggml_tensor * b,
  5743. int stride) {
  5744. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5745. const int64_t ne[4] = {
  5746. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5747. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5748. a->ne[2], b->ne[3],
  5749. };
  5750. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5751. ggml_set_op_params_i32(result, 0, stride);
  5752. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5753. result->src[0] = a;
  5754. result->src[1] = b;
  5755. return result;
  5756. }
  5757. // ggml_pool_*
  5758. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5759. return (ins + 2 * p - ks) / s + 1;
  5760. }
  5761. // ggml_pool_1d
  5762. struct ggml_tensor * ggml_pool_1d(
  5763. struct ggml_context * ctx,
  5764. struct ggml_tensor * a,
  5765. enum ggml_op_pool op,
  5766. int k0,
  5767. int s0,
  5768. int p0) {
  5769. const int64_t ne[4] = {
  5770. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5771. a->ne[1],
  5772. a->ne[2],
  5773. a->ne[3],
  5774. };
  5775. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5776. int32_t params[] = { op, k0, s0, p0 };
  5777. ggml_set_op_params(result, params, sizeof(params));
  5778. result->op = GGML_OP_POOL_1D;
  5779. result->src[0] = a;
  5780. return result;
  5781. }
  5782. // ggml_pool_2d
  5783. struct ggml_tensor * ggml_pool_2d(
  5784. struct ggml_context * ctx,
  5785. struct ggml_tensor * a,
  5786. enum ggml_op_pool op,
  5787. int k0,
  5788. int k1,
  5789. int s0,
  5790. int s1,
  5791. float p0,
  5792. float p1) {
  5793. struct ggml_tensor * result;
  5794. const int64_t ne[4] = {
  5795. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5796. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5797. a->ne[2],
  5798. a->ne[3],
  5799. };
  5800. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5801. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5802. ggml_set_op_params(result, params, sizeof(params));
  5803. result->op = GGML_OP_POOL_2D;
  5804. result->src[0] = a;
  5805. return result;
  5806. }
  5807. struct ggml_tensor * ggml_pool_2d_back(
  5808. struct ggml_context * ctx,
  5809. struct ggml_tensor * a,
  5810. struct ggml_tensor * af,
  5811. enum ggml_op_pool op,
  5812. int k0,
  5813. int k1,
  5814. int s0,
  5815. int s1,
  5816. float p0,
  5817. float p1) {
  5818. struct ggml_tensor * result;
  5819. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne);
  5820. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5821. ggml_set_op_params(result, params, sizeof(params));
  5822. result->op = GGML_OP_POOL_2D_BACK;
  5823. result->src[0] = a;
  5824. result->src[1] = af;
  5825. return result;
  5826. }
  5827. // ggml_upscale
  5828. static struct ggml_tensor * ggml_upscale_impl(
  5829. struct ggml_context * ctx,
  5830. struct ggml_tensor * a,
  5831. int ne0,
  5832. int ne1,
  5833. int ne2,
  5834. int ne3) {
  5835. GGML_ASSERT(a->ne[0] <= ne0);
  5836. GGML_ASSERT(a->ne[1] <= ne1);
  5837. GGML_ASSERT(a->ne[2] <= ne2);
  5838. GGML_ASSERT(a->ne[3] <= ne3);
  5839. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5840. result->op = GGML_OP_UPSCALE;
  5841. result->src[0] = a;
  5842. return result;
  5843. }
  5844. struct ggml_tensor * ggml_upscale(
  5845. struct ggml_context * ctx,
  5846. struct ggml_tensor * a,
  5847. int scale_factor) {
  5848. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5849. }
  5850. struct ggml_tensor * ggml_upscale_ext(
  5851. struct ggml_context * ctx,
  5852. struct ggml_tensor * a,
  5853. int ne0,
  5854. int ne1,
  5855. int ne2,
  5856. int ne3) {
  5857. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5858. }
  5859. // ggml_pad
  5860. struct ggml_tensor * ggml_pad(
  5861. struct ggml_context * ctx,
  5862. struct ggml_tensor * a,
  5863. int p0,
  5864. int p1,
  5865. int p2,
  5866. int p3) {
  5867. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5868. a->ne[0] + p0,
  5869. a->ne[1] + p1,
  5870. a->ne[2] + p2,
  5871. a->ne[3] + p3);
  5872. result->op = GGML_OP_PAD;
  5873. result->src[0] = a;
  5874. return result;
  5875. }
  5876. // ggml_arange
  5877. struct ggml_tensor * ggml_arange(
  5878. struct ggml_context * ctx,
  5879. float start,
  5880. float stop,
  5881. float step) {
  5882. GGML_ASSERT(stop > start);
  5883. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5884. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5885. ggml_set_op_params_f32(result, 0, start);
  5886. ggml_set_op_params_f32(result, 1, stop);
  5887. ggml_set_op_params_f32(result, 2, step);
  5888. result->op = GGML_OP_ARANGE;
  5889. return result;
  5890. }
  5891. // ggml_timestep_embedding
  5892. struct ggml_tensor * ggml_timestep_embedding(
  5893. struct ggml_context * ctx,
  5894. struct ggml_tensor * timesteps,
  5895. int dim,
  5896. int max_period) {
  5897. int actual_dim = dim;
  5898. if (dim % 2 != 0) {
  5899. actual_dim = dim + 1;
  5900. }
  5901. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5902. ggml_set_op_params_i32(result, 0, dim);
  5903. ggml_set_op_params_i32(result, 1, max_period);
  5904. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5905. result->src[0] = timesteps;
  5906. return result;
  5907. }
  5908. // ggml_argsort
  5909. struct ggml_tensor * ggml_argsort(
  5910. struct ggml_context * ctx,
  5911. struct ggml_tensor * a,
  5912. enum ggml_sort_order order) {
  5913. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5914. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5915. result->op = GGML_OP_ARGSORT;
  5916. result->src[0] = a;
  5917. return result;
  5918. }
  5919. // ggml_top_k
  5920. struct ggml_tensor * ggml_top_k(
  5921. struct ggml_context * ctx,
  5922. struct ggml_tensor * a,
  5923. int k) {
  5924. GGML_ASSERT(a->ne[0] >= k);
  5925. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5926. result = ggml_view_4d(ctx, result,
  5927. k, result->ne[1], result->ne[2], result->ne[3],
  5928. result->nb[1], result->nb[2], result->nb[3],
  5929. 0);
  5930. return result;
  5931. }
  5932. // ggml_flash_attn_ext
  5933. struct ggml_tensor * ggml_flash_attn_ext(
  5934. struct ggml_context * ctx,
  5935. struct ggml_tensor * q,
  5936. struct ggml_tensor * k,
  5937. struct ggml_tensor * v,
  5938. struct ggml_tensor * mask,
  5939. float scale,
  5940. float max_bias,
  5941. float logit_softcap) {
  5942. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5943. // TODO: check if vT can be multiplied by (k*qT)
  5944. if (mask) {
  5945. GGML_ASSERT(ggml_is_contiguous(mask));
  5946. GGML_ASSERT(mask->ne[2] == 1);
  5947. GGML_ASSERT(mask->ne[3] == 1);
  5948. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5949. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5950. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5951. }
  5952. if (max_bias > 0.0f) {
  5953. GGML_ASSERT(mask);
  5954. }
  5955. bool is_node = false;
  5956. // permute(0, 2, 1, 3)
  5957. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5958. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5959. float params[] = { scale, max_bias, logit_softcap };
  5960. ggml_set_op_params(result, params, sizeof(params));
  5961. result->op = GGML_OP_FLASH_ATTN_EXT;
  5962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5963. result->src[0] = q;
  5964. result->src[1] = k;
  5965. result->src[2] = v;
  5966. result->src[3] = mask;
  5967. return result;
  5968. }
  5969. void ggml_flash_attn_ext_set_prec(
  5970. struct ggml_tensor * a,
  5971. enum ggml_prec prec) {
  5972. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5973. const int32_t prec_i32 = (int32_t) prec;
  5974. ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
  5975. }
  5976. // ggml_flash_attn_back
  5977. struct ggml_tensor * ggml_flash_attn_back(
  5978. struct ggml_context * ctx,
  5979. struct ggml_tensor * q,
  5980. struct ggml_tensor * k,
  5981. struct ggml_tensor * v,
  5982. struct ggml_tensor * d,
  5983. bool masked) {
  5984. GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
  5985. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5986. // TODO: check if vT can be multiplied by (k*qT)
  5987. // d shape [D,N,ne2,ne3]
  5988. // q shape [D,N,ne2,ne3]
  5989. // k shape [D,M,kvne2,ne3]
  5990. // v shape [M,D,kvne2,ne3]
  5991. const int64_t D = q->ne[0];
  5992. const int64_t N = q->ne[1];
  5993. const int64_t M = k->ne[1];
  5994. const int64_t ne2 = q->ne[2];
  5995. const int64_t ne3 = q->ne[3];
  5996. const int64_t kvne2 = k->ne[2];
  5997. GGML_ASSERT(k->ne[0] == D);
  5998. GGML_ASSERT(v->ne[0] == M);
  5999. GGML_ASSERT(v->ne[1] == D);
  6000. GGML_ASSERT(d->ne[0] == D);
  6001. GGML_ASSERT(d->ne[1] == N);
  6002. GGML_ASSERT(k->ne[2] == kvne2);
  6003. GGML_ASSERT(k->ne[3] == ne3);
  6004. GGML_ASSERT(v->ne[2] == kvne2);
  6005. GGML_ASSERT(v->ne[3] == ne3);
  6006. GGML_ASSERT(d->ne[2] == ne2);
  6007. GGML_ASSERT(d->ne[3] == ne3);
  6008. GGML_ASSERT(ne2 % kvne2 == 0);
  6009. bool is_node = false;
  6010. if (q->grad || k->grad || v->grad) {
  6011. // when using this operation (in backwards pass) these grads are set.
  6012. // we don't want to create (big) grad of our result, so is_node is false.
  6013. is_node = false;
  6014. }
  6015. // store gradients of q, k and v as continuous tensors concatenated in result.
  6016. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6017. const int64_t elem_q = ggml_nelements(q);
  6018. const int64_t elem_k = ggml_nelements(k);
  6019. const int64_t elem_v = ggml_nelements(v);
  6020. enum ggml_type result_type = GGML_TYPE_F32;
  6021. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  6022. const size_t tsize = ggml_type_size(result_type);
  6023. const size_t offs_q = 0;
  6024. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  6025. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  6026. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  6027. const size_t nelements = (end + tsize - 1)/tsize;
  6028. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  6029. int32_t masked_i = masked ? 1 : 0;
  6030. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6031. result->op = GGML_OP_FLASH_ATTN_BACK;
  6032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6033. result->src[0] = q;
  6034. result->src[1] = k;
  6035. result->src[2] = v;
  6036. result->src[3] = d;
  6037. return result;
  6038. }
  6039. // ggml_ssm_conv
  6040. struct ggml_tensor * ggml_ssm_conv(
  6041. struct ggml_context * ctx,
  6042. struct ggml_tensor * sx,
  6043. struct ggml_tensor * c) {
  6044. GGML_ASSERT(ggml_is_3d(sx));
  6045. GGML_ASSERT(ggml_is_matrix(c));
  6046. const int64_t d_conv = c->ne[0];
  6047. const int64_t d_inner = c->ne[1];
  6048. const int64_t n_t = sx->ne[0] - d_conv + 1; // tokens per sequence
  6049. const int64_t n_s = sx->ne[2];
  6050. // TODO: maybe support other strides than 1?
  6051. GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t);
  6052. GGML_ASSERT(sx->ne[1] == d_inner);
  6053. GGML_ASSERT(n_t >= 0);
  6054. struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s);
  6055. result->op = GGML_OP_SSM_CONV;
  6056. result->src[0] = sx;
  6057. result->src[1] = c;
  6058. return result;
  6059. }
  6060. // ggml_ssm_scan
  6061. struct ggml_tensor * ggml_ssm_scan(
  6062. struct ggml_context * ctx,
  6063. struct ggml_tensor * s,
  6064. struct ggml_tensor * x,
  6065. struct ggml_tensor * dt,
  6066. struct ggml_tensor * A,
  6067. struct ggml_tensor * B,
  6068. struct ggml_tensor * C) {
  6069. GGML_ASSERT(ggml_is_contiguous(s));
  6070. GGML_ASSERT(ggml_is_contiguous(x));
  6071. GGML_ASSERT(ggml_is_contiguous(dt));
  6072. GGML_ASSERT(ggml_is_contiguous(A));
  6073. GGML_ASSERT(ggml_is_matrix(A));
  6074. GGML_ASSERT(ggml_is_3d(B));
  6075. GGML_ASSERT(ggml_is_3d(s));
  6076. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  6077. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  6078. GGML_ASSERT(ggml_are_same_shape(x, dt));
  6079. GGML_ASSERT(ggml_are_same_shape(B, C));
  6080. {
  6081. const int64_t d_state = s->ne[0];
  6082. const int64_t d_inner = s->ne[1];
  6083. const int64_t n_seq_tokens = x->ne[1];
  6084. const int64_t n_seqs = x->ne[2];
  6085. GGML_ASSERT(s->ne[2] == n_seqs);
  6086. GGML_ASSERT(x->ne[0] == d_inner);
  6087. GGML_ASSERT(A->ne[0] == d_state);
  6088. GGML_ASSERT(A->ne[1] == d_inner);
  6089. GGML_ASSERT(B->ne[0] == d_state);
  6090. GGML_ASSERT(B->ne[1] == n_seq_tokens);
  6091. GGML_ASSERT(B->ne[2] == n_seqs);
  6092. }
  6093. // concatenated y + ssm_states
  6094. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  6095. result->op = GGML_OP_SSM_SCAN;
  6096. result->src[0] = s;
  6097. result->src[1] = x;
  6098. result->src[2] = dt;
  6099. result->src[3] = A;
  6100. result->src[4] = B;
  6101. result->src[5] = C;
  6102. return result;
  6103. }
  6104. // ggml_win_part
  6105. struct ggml_tensor * ggml_win_part(
  6106. struct ggml_context * ctx,
  6107. struct ggml_tensor * a,
  6108. int w) {
  6109. GGML_ASSERT(a->ne[3] == 1);
  6110. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6111. // padding
  6112. const int px = (w - a->ne[1]%w)%w;
  6113. const int py = (w - a->ne[2]%w)%w;
  6114. const int npx = (px + a->ne[1])/w;
  6115. const int npy = (py + a->ne[2])/w;
  6116. const int np = npx*npy;
  6117. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6118. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6119. int32_t params[] = { npx, npy, w };
  6120. ggml_set_op_params(result, params, sizeof(params));
  6121. result->op = GGML_OP_WIN_PART;
  6122. result->src[0] = a;
  6123. return result;
  6124. }
  6125. // ggml_win_unpart
  6126. struct ggml_tensor * ggml_win_unpart(
  6127. struct ggml_context * ctx,
  6128. struct ggml_tensor * a,
  6129. int w0,
  6130. int h0,
  6131. int w) {
  6132. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6133. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6134. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6135. int32_t params[] = { w };
  6136. ggml_set_op_params(result, params, sizeof(params));
  6137. result->op = GGML_OP_WIN_UNPART;
  6138. result->src[0] = a;
  6139. return result;
  6140. }
  6141. // ggml_get_rel_pos
  6142. struct ggml_tensor * ggml_get_rel_pos(
  6143. struct ggml_context * ctx,
  6144. struct ggml_tensor * a,
  6145. int qh,
  6146. int kh) {
  6147. GGML_ASSERT(qh == kh);
  6148. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6149. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6150. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6151. result->op = GGML_OP_GET_REL_POS;
  6152. result->src[0] = a;
  6153. return result;
  6154. }
  6155. // ggml_add_rel_pos
  6156. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6157. struct ggml_context * ctx,
  6158. struct ggml_tensor * a,
  6159. struct ggml_tensor * pw,
  6160. struct ggml_tensor * ph,
  6161. bool inplace) {
  6162. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6163. GGML_ASSERT(ggml_is_contiguous(a));
  6164. GGML_ASSERT(ggml_is_contiguous(pw));
  6165. GGML_ASSERT(ggml_is_contiguous(ph));
  6166. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6167. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6168. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6169. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6170. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6172. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6173. result->op = GGML_OP_ADD_REL_POS;
  6174. result->src[0] = a;
  6175. result->src[1] = pw;
  6176. result->src[2] = ph;
  6177. return result;
  6178. }
  6179. struct ggml_tensor * ggml_add_rel_pos(
  6180. struct ggml_context * ctx,
  6181. struct ggml_tensor * a,
  6182. struct ggml_tensor * pw,
  6183. struct ggml_tensor * ph) {
  6184. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6185. }
  6186. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6187. struct ggml_context * ctx,
  6188. struct ggml_tensor * a,
  6189. struct ggml_tensor * pw,
  6190. struct ggml_tensor * ph) {
  6191. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6192. }
  6193. // ggml_rwkv_wkv
  6194. struct ggml_tensor * ggml_rwkv_wkv(
  6195. struct ggml_context * ctx,
  6196. struct ggml_tensor * k,
  6197. struct ggml_tensor * v,
  6198. struct ggml_tensor * r,
  6199. struct ggml_tensor * tf,
  6200. struct ggml_tensor * td,
  6201. struct ggml_tensor * state) {
  6202. GGML_ASSERT(ggml_is_contiguous(k));
  6203. GGML_ASSERT(ggml_is_contiguous(v));
  6204. GGML_ASSERT(ggml_is_contiguous(r));
  6205. GGML_ASSERT(ggml_is_contiguous(tf));
  6206. GGML_ASSERT(ggml_is_contiguous(td));
  6207. GGML_ASSERT(ggml_is_contiguous(state));
  6208. const int64_t S = k->ne[0];
  6209. const int64_t H = k->ne[2];
  6210. const int64_t n_tokens = k->ne[3];
  6211. const int64_t n_seqs = state->ne[1];
  6212. {
  6213. GGML_ASSERT(k->ne[1] == 1);
  6214. GGML_ASSERT(v->ne[0] == 1 && v->ne[1] == S && v->ne[2] == H && v->ne[3] == n_tokens);
  6215. GGML_ASSERT(r->ne[0] == 1 && r->ne[1] == S && r->ne[2] == H && r->ne[3] == n_tokens);
  6216. // TODO: RWKV v4 and v5
  6217. GGML_ASSERT(td->ne[0] == 1 && td->ne[1] == S && td->ne[2] == H && td->ne[3] == n_tokens);
  6218. GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
  6219. }
  6220. // concat output and new_state
  6221. const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
  6222. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6223. result->op = GGML_OP_RWKV_WKV;
  6224. result->src[0] = k;
  6225. result->src[1] = v;
  6226. result->src[2] = r;
  6227. result->src[3] = tf;
  6228. result->src[4] = td;
  6229. result->src[5] = state;
  6230. return result;
  6231. }
  6232. // ggml_unary
  6233. static struct ggml_tensor * ggml_unary_impl(
  6234. struct ggml_context * ctx,
  6235. struct ggml_tensor * a,
  6236. enum ggml_unary_op op,
  6237. bool inplace) {
  6238. GGML_ASSERT(ggml_is_contiguous_1(a));
  6239. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6240. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6241. result->op = GGML_OP_UNARY;
  6242. result->src[0] = a;
  6243. return result;
  6244. }
  6245. struct ggml_tensor * ggml_unary(
  6246. struct ggml_context * ctx,
  6247. struct ggml_tensor * a,
  6248. enum ggml_unary_op op) {
  6249. return ggml_unary_impl(ctx, a, op, false);
  6250. }
  6251. struct ggml_tensor * ggml_unary_inplace(
  6252. struct ggml_context * ctx,
  6253. struct ggml_tensor * a,
  6254. enum ggml_unary_op op) {
  6255. return ggml_unary_impl(ctx, a, op, true);
  6256. }
  6257. // ggml_map_unary
  6258. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6259. struct ggml_context * ctx,
  6260. struct ggml_tensor * a,
  6261. const ggml_unary_op_f32_t fun,
  6262. bool inplace) {
  6263. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6264. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6265. result->op = GGML_OP_MAP_UNARY;
  6266. result->src[0] = a;
  6267. return result;
  6268. }
  6269. struct ggml_tensor * ggml_map_unary_f32(
  6270. struct ggml_context * ctx,
  6271. struct ggml_tensor * a,
  6272. const ggml_unary_op_f32_t fun) {
  6273. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6274. }
  6275. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6276. struct ggml_context * ctx,
  6277. struct ggml_tensor * a,
  6278. const ggml_unary_op_f32_t fun) {
  6279. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6280. }
  6281. // ggml_map_binary
  6282. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6283. struct ggml_context * ctx,
  6284. struct ggml_tensor * a,
  6285. struct ggml_tensor * b,
  6286. const ggml_binary_op_f32_t fun,
  6287. bool inplace) {
  6288. GGML_ASSERT(ggml_are_same_shape(a, b));
  6289. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6290. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6291. result->op = GGML_OP_MAP_BINARY;
  6292. result->src[0] = a;
  6293. result->src[1] = b;
  6294. return result;
  6295. }
  6296. struct ggml_tensor * ggml_map_binary_f32(
  6297. struct ggml_context * ctx,
  6298. struct ggml_tensor * a,
  6299. struct ggml_tensor * b,
  6300. const ggml_binary_op_f32_t fun) {
  6301. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6302. }
  6303. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6304. struct ggml_context * ctx,
  6305. struct ggml_tensor * a,
  6306. struct ggml_tensor * b,
  6307. const ggml_binary_op_f32_t fun) {
  6308. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6309. }
  6310. // ggml_map_custom1_f32
  6311. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6312. struct ggml_context * ctx,
  6313. struct ggml_tensor * a,
  6314. const ggml_custom1_op_f32_t fun,
  6315. bool inplace) {
  6316. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6317. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6318. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6319. result->src[0] = a;
  6320. return result;
  6321. }
  6322. struct ggml_tensor * ggml_map_custom1_f32(
  6323. struct ggml_context * ctx,
  6324. struct ggml_tensor * a,
  6325. const ggml_custom1_op_f32_t fun) {
  6326. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6327. }
  6328. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6329. struct ggml_context * ctx,
  6330. struct ggml_tensor * a,
  6331. const ggml_custom1_op_f32_t fun) {
  6332. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6333. }
  6334. // ggml_map_custom2_f32
  6335. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6336. struct ggml_context * ctx,
  6337. struct ggml_tensor * a,
  6338. struct ggml_tensor * b,
  6339. const ggml_custom2_op_f32_t fun,
  6340. bool inplace) {
  6341. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6342. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6343. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6344. result->src[0] = a;
  6345. result->src[1] = b;
  6346. return result;
  6347. }
  6348. struct ggml_tensor * ggml_map_custom2_f32(
  6349. struct ggml_context * ctx,
  6350. struct ggml_tensor * a,
  6351. struct ggml_tensor * b,
  6352. const ggml_custom2_op_f32_t fun) {
  6353. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6354. }
  6355. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6356. struct ggml_context * ctx,
  6357. struct ggml_tensor * a,
  6358. struct ggml_tensor * b,
  6359. const ggml_custom2_op_f32_t fun) {
  6360. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6361. }
  6362. // ggml_map_custom3_f32
  6363. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6364. struct ggml_context * ctx,
  6365. struct ggml_tensor * a,
  6366. struct ggml_tensor * b,
  6367. struct ggml_tensor * c,
  6368. const ggml_custom3_op_f32_t fun,
  6369. bool inplace) {
  6370. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6371. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6372. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6373. result->src[0] = a;
  6374. result->src[1] = b;
  6375. result->src[2] = c;
  6376. return result;
  6377. }
  6378. struct ggml_tensor * ggml_map_custom3_f32(
  6379. struct ggml_context * ctx,
  6380. struct ggml_tensor * a,
  6381. struct ggml_tensor * b,
  6382. struct ggml_tensor * c,
  6383. const ggml_custom3_op_f32_t fun) {
  6384. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6385. }
  6386. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6387. struct ggml_context * ctx,
  6388. struct ggml_tensor * a,
  6389. struct ggml_tensor * b,
  6390. struct ggml_tensor * c,
  6391. const ggml_custom3_op_f32_t fun) {
  6392. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6393. }
  6394. // ggml_map_custom1
  6395. struct ggml_map_custom1_op_params {
  6396. ggml_custom1_op_t fun;
  6397. int n_tasks;
  6398. void * userdata;
  6399. };
  6400. static struct ggml_tensor * ggml_map_custom1_impl(
  6401. struct ggml_context * ctx,
  6402. struct ggml_tensor * a,
  6403. const ggml_custom1_op_t fun,
  6404. int n_tasks,
  6405. void * userdata,
  6406. bool inplace) {
  6407. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6408. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6409. struct ggml_map_custom1_op_params params = {
  6410. /*.fun =*/ fun,
  6411. /*.n_tasks =*/ n_tasks,
  6412. /*.userdata =*/ userdata
  6413. };
  6414. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6415. result->op = GGML_OP_MAP_CUSTOM1;
  6416. result->src[0] = a;
  6417. return result;
  6418. }
  6419. struct ggml_tensor * ggml_map_custom1(
  6420. struct ggml_context * ctx,
  6421. struct ggml_tensor * a,
  6422. const ggml_custom1_op_t fun,
  6423. int n_tasks,
  6424. void * userdata) {
  6425. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6426. }
  6427. struct ggml_tensor * ggml_map_custom1_inplace(
  6428. struct ggml_context * ctx,
  6429. struct ggml_tensor * a,
  6430. const ggml_custom1_op_t fun,
  6431. int n_tasks,
  6432. void * userdata) {
  6433. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6434. }
  6435. // ggml_map_custom2
  6436. struct ggml_map_custom2_op_params {
  6437. ggml_custom2_op_t fun;
  6438. int n_tasks;
  6439. void * userdata;
  6440. };
  6441. static struct ggml_tensor * ggml_map_custom2_impl(
  6442. struct ggml_context * ctx,
  6443. struct ggml_tensor * a,
  6444. struct ggml_tensor * b,
  6445. const ggml_custom2_op_t fun,
  6446. int n_tasks,
  6447. void * userdata,
  6448. bool inplace) {
  6449. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6450. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6451. struct ggml_map_custom2_op_params params = {
  6452. /*.fun =*/ fun,
  6453. /*.n_tasks =*/ n_tasks,
  6454. /*.userdata =*/ userdata
  6455. };
  6456. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6457. result->op = GGML_OP_MAP_CUSTOM2;
  6458. result->src[0] = a;
  6459. result->src[1] = b;
  6460. return result;
  6461. }
  6462. struct ggml_tensor * ggml_map_custom2(
  6463. struct ggml_context * ctx,
  6464. struct ggml_tensor * a,
  6465. struct ggml_tensor * b,
  6466. const ggml_custom2_op_t fun,
  6467. int n_tasks,
  6468. void * userdata) {
  6469. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6470. }
  6471. struct ggml_tensor * ggml_map_custom2_inplace(
  6472. struct ggml_context * ctx,
  6473. struct ggml_tensor * a,
  6474. struct ggml_tensor * b,
  6475. const ggml_custom2_op_t fun,
  6476. int n_tasks,
  6477. void * userdata) {
  6478. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6479. }
  6480. // ggml_map_custom3
  6481. struct ggml_map_custom3_op_params {
  6482. ggml_custom3_op_t fun;
  6483. int n_tasks;
  6484. void * userdata;
  6485. };
  6486. static struct ggml_tensor * ggml_map_custom3_impl(
  6487. struct ggml_context * ctx,
  6488. struct ggml_tensor * a,
  6489. struct ggml_tensor * b,
  6490. struct ggml_tensor * c,
  6491. const ggml_custom3_op_t fun,
  6492. int n_tasks,
  6493. void * userdata,
  6494. bool inplace) {
  6495. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6496. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6497. struct ggml_map_custom3_op_params params = {
  6498. /*.fun =*/ fun,
  6499. /*.n_tasks =*/ n_tasks,
  6500. /*.userdata =*/ userdata
  6501. };
  6502. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6503. result->op = GGML_OP_MAP_CUSTOM3;
  6504. result->src[0] = a;
  6505. result->src[1] = b;
  6506. result->src[2] = c;
  6507. return result;
  6508. }
  6509. struct ggml_tensor * ggml_map_custom3(
  6510. struct ggml_context * ctx,
  6511. struct ggml_tensor * a,
  6512. struct ggml_tensor * b,
  6513. struct ggml_tensor * c,
  6514. const ggml_custom3_op_t fun,
  6515. int n_tasks,
  6516. void * userdata) {
  6517. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6518. }
  6519. struct ggml_tensor * ggml_map_custom3_inplace(
  6520. struct ggml_context * ctx,
  6521. struct ggml_tensor * a,
  6522. struct ggml_tensor * b,
  6523. struct ggml_tensor * c,
  6524. const ggml_custom3_op_t fun,
  6525. int n_tasks,
  6526. void * userdata) {
  6527. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6528. }
  6529. // ggml_cross_entropy_loss
  6530. struct ggml_tensor * ggml_cross_entropy_loss(
  6531. struct ggml_context * ctx,
  6532. struct ggml_tensor * a,
  6533. struct ggml_tensor * b) {
  6534. GGML_ASSERT(ggml_are_same_shape(a, b));
  6535. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6536. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6537. result->src[0] = a;
  6538. result->src[1] = b;
  6539. return result;
  6540. }
  6541. // ggml_cross_entropy_loss_back
  6542. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6543. struct ggml_context * ctx,
  6544. struct ggml_tensor * a,
  6545. struct ggml_tensor * b,
  6546. struct ggml_tensor * c) {
  6547. GGML_ASSERT(ggml_are_same_shape(a, b));
  6548. GGML_ASSERT(ggml_is_scalar(c));
  6549. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6550. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6551. result->src[0] = a;
  6552. result->src[1] = b;
  6553. result->src[2] = c;
  6554. return result;
  6555. }
  6556. // opt_step_adamw
  6557. struct ggml_tensor * ggml_opt_step_adamw(
  6558. struct ggml_context * ctx,
  6559. struct ggml_tensor * a,
  6560. struct ggml_tensor * grad,
  6561. float alpha,
  6562. float beta1,
  6563. float beta2,
  6564. float eps,
  6565. float wd) {
  6566. GGML_ASSERT(a->flags & GGML_TENSOR_FLAG_PARAM);
  6567. GGML_ASSERT(ggml_are_same_shape(a, grad));
  6568. GGML_ASSERT(alpha > 0.0f);
  6569. GGML_ASSERT(beta1 >= 0.0f && beta1 <= 1.0f);
  6570. GGML_ASSERT(beta2 >= 0.0f && beta2 <= 1.0f);
  6571. GGML_ASSERT(eps >= 0.0f);
  6572. GGML_ASSERT(wd >= 0.0f && wd <= 1.0f);
  6573. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  6574. const int64_t iter = 1;
  6575. memcpy(&result->op_params[0], &iter, sizeof(int64_t));
  6576. ggml_set_op_params_f32(result, 2, alpha);
  6577. ggml_set_op_params_f32(result, 3, beta1);
  6578. ggml_set_op_params_f32(result, 4, beta2);
  6579. ggml_set_op_params_f32(result, 5, eps);
  6580. ggml_set_op_params_f32(result, 6, wd);
  6581. result->op = GGML_OP_OPT_STEP_ADAMW;
  6582. result->src[0] = a;
  6583. result->src[1] = grad;
  6584. result->src[2] = ggml_dup_tensor(ctx, grad);
  6585. result->src[3] = ggml_dup_tensor(ctx, grad);
  6586. return result;
  6587. }
  6588. ////////////////////////////////////////////////////////////////////////////////
  6589. // ggml_compute_forward_dup
  6590. static void ggml_compute_forward_dup_same_cont(
  6591. const struct ggml_compute_params * params,
  6592. struct ggml_tensor * dst) {
  6593. const struct ggml_tensor * src0 = dst->src[0];
  6594. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6595. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6596. GGML_ASSERT(src0->type == dst->type);
  6597. const size_t nb0 = ggml_type_size(src0->type);
  6598. const int ith = params->ith; // thread index
  6599. const int nth = params->nth; // number of threads
  6600. // parallelize by elements
  6601. const int ne = ggml_nelements(dst);
  6602. const int dr = (ne + nth - 1) / nth;
  6603. const int ie0 = dr * ith;
  6604. const int ie1 = MIN(ie0 + dr, ne);
  6605. if (ie0 < ie1) {
  6606. memcpy(
  6607. ((char *) dst->data + ie0*nb0),
  6608. ((char *) src0->data + ie0*nb0),
  6609. (ie1 - ie0) * nb0);
  6610. }
  6611. }
  6612. static void ggml_compute_forward_dup_f16(
  6613. const struct ggml_compute_params * params,
  6614. struct ggml_tensor * dst) {
  6615. const struct ggml_tensor * src0 = dst->src[0];
  6616. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6617. GGML_TENSOR_UNARY_OP_LOCALS
  6618. const int ith = params->ith; // thread index
  6619. const int nth = params->nth; // number of threads
  6620. // parallelize by rows
  6621. const int nr = ne01;
  6622. // number of rows per thread
  6623. const int dr = (nr + nth - 1) / nth;
  6624. // row range for this thread
  6625. const int ir0 = dr * ith;
  6626. const int ir1 = MIN(ir0 + dr, nr);
  6627. if (src0->type == dst->type &&
  6628. ne00 == ne0 &&
  6629. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6630. // copy by rows
  6631. const size_t rs = ne00*nb00;
  6632. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6633. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6634. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6635. memcpy(
  6636. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6637. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6638. rs);
  6639. }
  6640. }
  6641. }
  6642. return;
  6643. }
  6644. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6645. if (ggml_is_contiguous(dst)) {
  6646. if (nb00 == sizeof(ggml_fp16_t)) {
  6647. if (dst->type == GGML_TYPE_F16) {
  6648. size_t id = 0;
  6649. const size_t rs = ne00 * nb00;
  6650. char * dst_ptr = (char *) dst->data;
  6651. for (int i03 = 0; i03 < ne03; i03++) {
  6652. for (int i02 = 0; i02 < ne02; i02++) {
  6653. id += rs * ir0;
  6654. for (int i01 = ir0; i01 < ir1; i01++) {
  6655. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6656. memcpy(dst_ptr + id, src0_ptr, rs);
  6657. id += rs;
  6658. }
  6659. id += rs * (ne01 - ir1);
  6660. }
  6661. }
  6662. } else if (dst->type == GGML_TYPE_F32) {
  6663. size_t id = 0;
  6664. float * dst_ptr = (float *) dst->data;
  6665. for (int i03 = 0; i03 < ne03; i03++) {
  6666. for (int i02 = 0; i02 < ne02; i02++) {
  6667. id += ne00 * ir0;
  6668. for (int i01 = ir0; i01 < ir1; i01++) {
  6669. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6670. for (int i00 = 0; i00 < ne00; i00++) {
  6671. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6672. id++;
  6673. }
  6674. }
  6675. id += ne00 * (ne01 - ir1);
  6676. }
  6677. }
  6678. } else if (type_traits[dst->type].from_float) {
  6679. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6680. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6681. size_t id = 0;
  6682. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6683. char * dst_ptr = (char *) dst->data;
  6684. for (int i03 = 0; i03 < ne03; i03++) {
  6685. for (int i02 = 0; i02 < ne02; i02++) {
  6686. id += rs * ir0;
  6687. for (int i01 = ir0; i01 < ir1; i01++) {
  6688. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6689. for (int i00 = 0; i00 < ne00; i00++) {
  6690. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6691. }
  6692. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6693. id += rs;
  6694. }
  6695. id += rs * (ne01 - ir1);
  6696. }
  6697. }
  6698. } else {
  6699. GGML_ABORT("fatal error"); // TODO: implement
  6700. }
  6701. } else {
  6702. //printf("%s: this is not optimal - fix me\n", __func__);
  6703. if (dst->type == GGML_TYPE_F32) {
  6704. size_t id = 0;
  6705. float * dst_ptr = (float *) dst->data;
  6706. for (int i03 = 0; i03 < ne03; i03++) {
  6707. for (int i02 = 0; i02 < ne02; i02++) {
  6708. id += ne00 * ir0;
  6709. for (int i01 = ir0; i01 < ir1; i01++) {
  6710. for (int i00 = 0; i00 < ne00; i00++) {
  6711. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6712. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6713. id++;
  6714. }
  6715. }
  6716. id += ne00 * (ne01 - ir1);
  6717. }
  6718. }
  6719. } else if (dst->type == GGML_TYPE_F16) {
  6720. size_t id = 0;
  6721. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6722. for (int i03 = 0; i03 < ne03; i03++) {
  6723. for (int i02 = 0; i02 < ne02; i02++) {
  6724. id += ne00 * ir0;
  6725. for (int i01 = ir0; i01 < ir1; i01++) {
  6726. for (int i00 = 0; i00 < ne00; i00++) {
  6727. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6728. dst_ptr[id] = *src0_ptr;
  6729. id++;
  6730. }
  6731. }
  6732. id += ne00 * (ne01 - ir1);
  6733. }
  6734. }
  6735. } else {
  6736. GGML_ABORT("fatal error"); // TODO: implement
  6737. }
  6738. }
  6739. return;
  6740. }
  6741. // dst counters
  6742. int64_t i10 = 0;
  6743. int64_t i11 = 0;
  6744. int64_t i12 = 0;
  6745. int64_t i13 = 0;
  6746. if (dst->type == GGML_TYPE_F16) {
  6747. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6748. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6749. i10 += ne00 * ir0;
  6750. while (i10 >= ne0) {
  6751. i10 -= ne0;
  6752. if (++i11 == ne1) {
  6753. i11 = 0;
  6754. if (++i12 == ne2) {
  6755. i12 = 0;
  6756. if (++i13 == ne3) {
  6757. i13 = 0;
  6758. }
  6759. }
  6760. }
  6761. }
  6762. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6763. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6764. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6765. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6766. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6767. if (++i10 == ne00) {
  6768. i10 = 0;
  6769. if (++i11 == ne01) {
  6770. i11 = 0;
  6771. if (++i12 == ne02) {
  6772. i12 = 0;
  6773. if (++i13 == ne03) {
  6774. i13 = 0;
  6775. }
  6776. }
  6777. }
  6778. }
  6779. }
  6780. }
  6781. i10 += ne00 * (ne01 - ir1);
  6782. while (i10 >= ne0) {
  6783. i10 -= ne0;
  6784. if (++i11 == ne1) {
  6785. i11 = 0;
  6786. if (++i12 == ne2) {
  6787. i12 = 0;
  6788. if (++i13 == ne3) {
  6789. i13 = 0;
  6790. }
  6791. }
  6792. }
  6793. }
  6794. }
  6795. }
  6796. } else if (dst->type == GGML_TYPE_F32) {
  6797. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6798. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6799. i10 += ne00 * ir0;
  6800. while (i10 >= ne0) {
  6801. i10 -= ne0;
  6802. if (++i11 == ne1) {
  6803. i11 = 0;
  6804. if (++i12 == ne2) {
  6805. i12 = 0;
  6806. if (++i13 == ne3) {
  6807. i13 = 0;
  6808. }
  6809. }
  6810. }
  6811. }
  6812. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6813. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6814. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6815. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6816. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6817. if (++i10 == ne0) {
  6818. i10 = 0;
  6819. if (++i11 == ne1) {
  6820. i11 = 0;
  6821. if (++i12 == ne2) {
  6822. i12 = 0;
  6823. if (++i13 == ne3) {
  6824. i13 = 0;
  6825. }
  6826. }
  6827. }
  6828. }
  6829. }
  6830. }
  6831. i10 += ne00 * (ne01 - ir1);
  6832. while (i10 >= ne0) {
  6833. i10 -= ne0;
  6834. if (++i11 == ne1) {
  6835. i11 = 0;
  6836. if (++i12 == ne2) {
  6837. i12 = 0;
  6838. if (++i13 == ne3) {
  6839. i13 = 0;
  6840. }
  6841. }
  6842. }
  6843. }
  6844. }
  6845. }
  6846. } else {
  6847. GGML_ABORT("fatal error"); // TODO: implement
  6848. }
  6849. }
  6850. static void ggml_compute_forward_dup_bf16(
  6851. const struct ggml_compute_params * params,
  6852. struct ggml_tensor * dst) {
  6853. const struct ggml_tensor * src0 = dst->src[0];
  6854. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6855. GGML_TENSOR_UNARY_OP_LOCALS
  6856. const int ith = params->ith; // thread index
  6857. const int nth = params->nth; // number of threads
  6858. // parallelize by rows
  6859. const int nr = ne01;
  6860. // number of rows per thread
  6861. const int dr = (nr + nth - 1) / nth;
  6862. // row range for this thread
  6863. const int ir0 = dr * ith;
  6864. const int ir1 = MIN(ir0 + dr, nr);
  6865. if (src0->type == dst->type &&
  6866. ne00 == ne0 &&
  6867. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6868. // copy by rows
  6869. const size_t rs = ne00*nb00;
  6870. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6871. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6872. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6873. memcpy(
  6874. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6875. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6876. rs);
  6877. }
  6878. }
  6879. }
  6880. return;
  6881. }
  6882. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6883. if (ggml_is_contiguous(dst)) {
  6884. if (nb00 == sizeof(ggml_bf16_t)) {
  6885. if (dst->type == GGML_TYPE_BF16) {
  6886. size_t id = 0;
  6887. const size_t rs = ne00 * nb00;
  6888. char * dst_ptr = (char *) dst->data;
  6889. for (int i03 = 0; i03 < ne03; i03++) {
  6890. for (int i02 = 0; i02 < ne02; i02++) {
  6891. id += rs * ir0;
  6892. for (int i01 = ir0; i01 < ir1; i01++) {
  6893. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6894. memcpy(dst_ptr + id, src0_ptr, rs);
  6895. id += rs;
  6896. }
  6897. id += rs * (ne01 - ir1);
  6898. }
  6899. }
  6900. } else if (dst->type == GGML_TYPE_F16) {
  6901. size_t id = 0;
  6902. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6903. for (int i03 = 0; i03 < ne03; i03++) {
  6904. for (int i02 = 0; i02 < ne02; i02++) {
  6905. id += ne00 * ir0;
  6906. for (int i01 = ir0; i01 < ir1; i01++) {
  6907. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6908. for (int i00 = 0; i00 < ne00; i00++) {
  6909. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6910. id++;
  6911. }
  6912. }
  6913. id += ne00 * (ne01 - ir1);
  6914. }
  6915. }
  6916. } else if (dst->type == GGML_TYPE_F32) {
  6917. size_t id = 0;
  6918. float * dst_ptr = (float *) dst->data;
  6919. for (int i03 = 0; i03 < ne03; i03++) {
  6920. for (int i02 = 0; i02 < ne02; i02++) {
  6921. id += ne00 * ir0;
  6922. for (int i01 = ir0; i01 < ir1; i01++) {
  6923. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6924. for (int i00 = 0; i00 < ne00; i00++) {
  6925. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6926. id++;
  6927. }
  6928. }
  6929. id += ne00 * (ne01 - ir1);
  6930. }
  6931. }
  6932. } else if (type_traits[dst->type].from_float) {
  6933. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6934. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6935. size_t id = 0;
  6936. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6937. char * dst_ptr = (char *) dst->data;
  6938. for (int i03 = 0; i03 < ne03; i03++) {
  6939. for (int i02 = 0; i02 < ne02; i02++) {
  6940. id += rs * ir0;
  6941. for (int i01 = ir0; i01 < ir1; i01++) {
  6942. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6943. for (int i00 = 0; i00 < ne00; i00++) {
  6944. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6945. }
  6946. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6947. id += rs;
  6948. }
  6949. id += rs * (ne01 - ir1);
  6950. }
  6951. }
  6952. } else {
  6953. GGML_ABORT("fatal error"); // TODO: implement
  6954. }
  6955. } else {
  6956. //printf("%s: this is not optimal - fix me\n", __func__);
  6957. if (dst->type == GGML_TYPE_F32) {
  6958. size_t id = 0;
  6959. float * dst_ptr = (float *) dst->data;
  6960. for (int i03 = 0; i03 < ne03; i03++) {
  6961. for (int i02 = 0; i02 < ne02; i02++) {
  6962. id += ne00 * ir0;
  6963. for (int i01 = ir0; i01 < ir1; i01++) {
  6964. for (int i00 = 0; i00 < ne00; i00++) {
  6965. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6966. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6967. id++;
  6968. }
  6969. }
  6970. id += ne00 * (ne01 - ir1);
  6971. }
  6972. }
  6973. } else if (dst->type == GGML_TYPE_BF16) {
  6974. size_t id = 0;
  6975. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6976. for (int i03 = 0; i03 < ne03; i03++) {
  6977. for (int i02 = 0; i02 < ne02; i02++) {
  6978. id += ne00 * ir0;
  6979. for (int i01 = ir0; i01 < ir1; i01++) {
  6980. for (int i00 = 0; i00 < ne00; i00++) {
  6981. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6982. dst_ptr[id] = *src0_ptr;
  6983. id++;
  6984. }
  6985. }
  6986. id += ne00 * (ne01 - ir1);
  6987. }
  6988. }
  6989. } else if (dst->type == GGML_TYPE_F16) {
  6990. size_t id = 0;
  6991. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6992. for (int i03 = 0; i03 < ne03; i03++) {
  6993. for (int i02 = 0; i02 < ne02; i02++) {
  6994. id += ne00 * ir0;
  6995. for (int i01 = ir0; i01 < ir1; i01++) {
  6996. for (int i00 = 0; i00 < ne00; i00++) {
  6997. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6998. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6999. id++;
  7000. }
  7001. }
  7002. id += ne00 * (ne01 - ir1);
  7003. }
  7004. }
  7005. } else {
  7006. GGML_ABORT("fatal error"); // TODO: implement
  7007. }
  7008. }
  7009. return;
  7010. }
  7011. // dst counters
  7012. int64_t i10 = 0;
  7013. int64_t i11 = 0;
  7014. int64_t i12 = 0;
  7015. int64_t i13 = 0;
  7016. if (dst->type == GGML_TYPE_BF16) {
  7017. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7018. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7019. i10 += ne00 * ir0;
  7020. while (i10 >= ne0) {
  7021. i10 -= ne0;
  7022. if (++i11 == ne1) {
  7023. i11 = 0;
  7024. if (++i12 == ne2) {
  7025. i12 = 0;
  7026. if (++i13 == ne3) {
  7027. i13 = 0;
  7028. }
  7029. }
  7030. }
  7031. }
  7032. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7033. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7034. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7035. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7036. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  7037. if (++i10 == ne00) {
  7038. i10 = 0;
  7039. if (++i11 == ne01) {
  7040. i11 = 0;
  7041. if (++i12 == ne02) {
  7042. i12 = 0;
  7043. if (++i13 == ne03) {
  7044. i13 = 0;
  7045. }
  7046. }
  7047. }
  7048. }
  7049. }
  7050. }
  7051. i10 += ne00 * (ne01 - ir1);
  7052. while (i10 >= ne0) {
  7053. i10 -= ne0;
  7054. if (++i11 == ne1) {
  7055. i11 = 0;
  7056. if (++i12 == ne2) {
  7057. i12 = 0;
  7058. if (++i13 == ne3) {
  7059. i13 = 0;
  7060. }
  7061. }
  7062. }
  7063. }
  7064. }
  7065. }
  7066. } else if (dst->type == GGML_TYPE_F16) {
  7067. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7068. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7069. i10 += ne00 * ir0;
  7070. while (i10 >= ne0) {
  7071. i10 -= ne0;
  7072. if (++i11 == ne1) {
  7073. i11 = 0;
  7074. if (++i12 == ne2) {
  7075. i12 = 0;
  7076. if (++i13 == ne3) {
  7077. i13 = 0;
  7078. }
  7079. }
  7080. }
  7081. }
  7082. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7083. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7084. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7085. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7086. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  7087. if (++i10 == ne0) {
  7088. i10 = 0;
  7089. if (++i11 == ne1) {
  7090. i11 = 0;
  7091. if (++i12 == ne2) {
  7092. i12 = 0;
  7093. if (++i13 == ne3) {
  7094. i13 = 0;
  7095. }
  7096. }
  7097. }
  7098. }
  7099. }
  7100. }
  7101. i10 += ne00 * (ne01 - ir1);
  7102. while (i10 >= ne0) {
  7103. i10 -= ne0;
  7104. if (++i11 == ne1) {
  7105. i11 = 0;
  7106. if (++i12 == ne2) {
  7107. i12 = 0;
  7108. if (++i13 == ne3) {
  7109. i13 = 0;
  7110. }
  7111. }
  7112. }
  7113. }
  7114. }
  7115. }
  7116. } else if (dst->type == GGML_TYPE_F32) {
  7117. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7118. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7119. i10 += ne00 * ir0;
  7120. while (i10 >= ne0) {
  7121. i10 -= ne0;
  7122. if (++i11 == ne1) {
  7123. i11 = 0;
  7124. if (++i12 == ne2) {
  7125. i12 = 0;
  7126. if (++i13 == ne3) {
  7127. i13 = 0;
  7128. }
  7129. }
  7130. }
  7131. }
  7132. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7133. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7134. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7135. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7136. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7137. if (++i10 == ne0) {
  7138. i10 = 0;
  7139. if (++i11 == ne1) {
  7140. i11 = 0;
  7141. if (++i12 == ne2) {
  7142. i12 = 0;
  7143. if (++i13 == ne3) {
  7144. i13 = 0;
  7145. }
  7146. }
  7147. }
  7148. }
  7149. }
  7150. }
  7151. i10 += ne00 * (ne01 - ir1);
  7152. while (i10 >= ne0) {
  7153. i10 -= ne0;
  7154. if (++i11 == ne1) {
  7155. i11 = 0;
  7156. if (++i12 == ne2) {
  7157. i12 = 0;
  7158. if (++i13 == ne3) {
  7159. i13 = 0;
  7160. }
  7161. }
  7162. }
  7163. }
  7164. }
  7165. }
  7166. } else {
  7167. GGML_ABORT("fatal error"); // TODO: implement
  7168. }
  7169. }
  7170. static void ggml_compute_forward_dup_f32(
  7171. const struct ggml_compute_params * params,
  7172. struct ggml_tensor * dst) {
  7173. const struct ggml_tensor * src0 = dst->src[0];
  7174. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7175. GGML_TENSOR_UNARY_OP_LOCALS
  7176. const int ith = params->ith; // thread index
  7177. const int nth = params->nth; // number of threads
  7178. // parallelize by rows
  7179. const int nr = ne01;
  7180. // number of rows per thread
  7181. const int dr = (nr + nth - 1) / nth;
  7182. // row range for this thread
  7183. const int ir0 = dr * ith;
  7184. const int ir1 = MIN(ir0 + dr, nr);
  7185. if (src0->type == dst->type &&
  7186. ne00 == ne0 &&
  7187. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7188. // copy by rows
  7189. const size_t rs = ne00*nb00;
  7190. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7191. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7192. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7193. memcpy(
  7194. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7195. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7196. rs);
  7197. }
  7198. }
  7199. }
  7200. return;
  7201. }
  7202. if (ggml_is_contiguous(dst)) {
  7203. // TODO: simplify
  7204. if (nb00 == sizeof(float)) {
  7205. if (dst->type == GGML_TYPE_F32) {
  7206. size_t id = 0;
  7207. const size_t rs = ne00 * nb00;
  7208. char * dst_ptr = (char *) dst->data;
  7209. for (int i03 = 0; i03 < ne03; i03++) {
  7210. for (int i02 = 0; i02 < ne02; i02++) {
  7211. id += rs * ir0;
  7212. for (int i01 = ir0; i01 < ir1; i01++) {
  7213. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7214. memcpy(dst_ptr + id, src0_ptr, rs);
  7215. id += rs;
  7216. }
  7217. id += rs * (ne01 - ir1);
  7218. }
  7219. }
  7220. } else if (type_traits[dst->type].from_float) {
  7221. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7222. size_t id = 0;
  7223. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7224. char * dst_ptr = (char *) dst->data;
  7225. for (int i03 = 0; i03 < ne03; i03++) {
  7226. for (int i02 = 0; i02 < ne02; i02++) {
  7227. id += rs * ir0;
  7228. for (int i01 = ir0; i01 < ir1; i01++) {
  7229. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7230. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7231. id += rs;
  7232. }
  7233. id += rs * (ne01 - ir1);
  7234. }
  7235. }
  7236. } else {
  7237. GGML_ABORT("fatal error"); // TODO: implement
  7238. }
  7239. } else {
  7240. //printf("%s: this is not optimal - fix me\n", __func__);
  7241. if (dst->type == GGML_TYPE_F32) {
  7242. size_t id = 0;
  7243. float * dst_ptr = (float *) dst->data;
  7244. for (int i03 = 0; i03 < ne03; i03++) {
  7245. for (int i02 = 0; i02 < ne02; i02++) {
  7246. id += ne00 * ir0;
  7247. for (int i01 = ir0; i01 < ir1; i01++) {
  7248. for (int i00 = 0; i00 < ne00; i00++) {
  7249. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7250. dst_ptr[id] = *src0_ptr;
  7251. id++;
  7252. }
  7253. }
  7254. id += ne00 * (ne01 - ir1);
  7255. }
  7256. }
  7257. } else if (dst->type == GGML_TYPE_F16) {
  7258. size_t id = 0;
  7259. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7260. for (int i03 = 0; i03 < ne03; i03++) {
  7261. for (int i02 = 0; i02 < ne02; i02++) {
  7262. id += ne00 * ir0;
  7263. for (int i01 = ir0; i01 < ir1; i01++) {
  7264. for (int i00 = 0; i00 < ne00; i00++) {
  7265. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7266. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7267. id++;
  7268. }
  7269. }
  7270. id += ne00 * (ne01 - ir1);
  7271. }
  7272. }
  7273. } else if (dst->type == GGML_TYPE_BF16) {
  7274. size_t id = 0;
  7275. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7276. for (int i03 = 0; i03 < ne03; i03++) {
  7277. for (int i02 = 0; i02 < ne02; i02++) {
  7278. id += ne00 * ir0;
  7279. for (int i01 = ir0; i01 < ir1; i01++) {
  7280. for (int i00 = 0; i00 < ne00; i00++) {
  7281. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7282. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7283. id++;
  7284. }
  7285. }
  7286. id += ne00 * (ne01 - ir1);
  7287. }
  7288. }
  7289. } else {
  7290. GGML_ABORT("fatal error"); // TODO: implement
  7291. }
  7292. }
  7293. return;
  7294. }
  7295. // dst counters
  7296. int64_t i10 = 0;
  7297. int64_t i11 = 0;
  7298. int64_t i12 = 0;
  7299. int64_t i13 = 0;
  7300. if (dst->type == GGML_TYPE_F32) {
  7301. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7302. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7303. i10 += ne00 * ir0;
  7304. while (i10 >= ne0) {
  7305. i10 -= ne0;
  7306. if (++i11 == ne1) {
  7307. i11 = 0;
  7308. if (++i12 == ne2) {
  7309. i12 = 0;
  7310. if (++i13 == ne3) {
  7311. i13 = 0;
  7312. }
  7313. }
  7314. }
  7315. }
  7316. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7317. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7318. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7319. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7320. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7321. if (++i10 == ne0) {
  7322. i10 = 0;
  7323. if (++i11 == ne1) {
  7324. i11 = 0;
  7325. if (++i12 == ne2) {
  7326. i12 = 0;
  7327. if (++i13 == ne3) {
  7328. i13 = 0;
  7329. }
  7330. }
  7331. }
  7332. }
  7333. }
  7334. }
  7335. i10 += ne00 * (ne01 - ir1);
  7336. while (i10 >= ne0) {
  7337. i10 -= ne0;
  7338. if (++i11 == ne1) {
  7339. i11 = 0;
  7340. if (++i12 == ne2) {
  7341. i12 = 0;
  7342. if (++i13 == ne3) {
  7343. i13 = 0;
  7344. }
  7345. }
  7346. }
  7347. }
  7348. }
  7349. }
  7350. } else if (dst->type == GGML_TYPE_F16) {
  7351. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7352. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7353. i10 += ne00 * ir0;
  7354. while (i10 >= ne0) {
  7355. i10 -= ne0;
  7356. if (++i11 == ne1) {
  7357. i11 = 0;
  7358. if (++i12 == ne2) {
  7359. i12 = 0;
  7360. if (++i13 == ne3) {
  7361. i13 = 0;
  7362. }
  7363. }
  7364. }
  7365. }
  7366. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7367. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7368. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7369. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7370. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7371. if (++i10 == ne0) {
  7372. i10 = 0;
  7373. if (++i11 == ne1) {
  7374. i11 = 0;
  7375. if (++i12 == ne2) {
  7376. i12 = 0;
  7377. if (++i13 == ne3) {
  7378. i13 = 0;
  7379. }
  7380. }
  7381. }
  7382. }
  7383. }
  7384. }
  7385. i10 += ne00 * (ne01 - ir1);
  7386. while (i10 >= ne0) {
  7387. i10 -= ne0;
  7388. if (++i11 == ne1) {
  7389. i11 = 0;
  7390. if (++i12 == ne2) {
  7391. i12 = 0;
  7392. if (++i13 == ne3) {
  7393. i13 = 0;
  7394. }
  7395. }
  7396. }
  7397. }
  7398. }
  7399. }
  7400. } else if (dst->type == GGML_TYPE_BF16) {
  7401. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7402. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7403. i10 += ne00 * ir0;
  7404. while (i10 >= ne0) {
  7405. i10 -= ne0;
  7406. if (++i11 == ne1) {
  7407. i11 = 0;
  7408. if (++i12 == ne2) {
  7409. i12 = 0;
  7410. if (++i13 == ne3) {
  7411. i13 = 0;
  7412. }
  7413. }
  7414. }
  7415. }
  7416. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7417. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7418. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7419. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7420. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7421. if (++i10 == ne0) {
  7422. i10 = 0;
  7423. if (++i11 == ne1) {
  7424. i11 = 0;
  7425. if (++i12 == ne2) {
  7426. i12 = 0;
  7427. if (++i13 == ne3) {
  7428. i13 = 0;
  7429. }
  7430. }
  7431. }
  7432. }
  7433. }
  7434. }
  7435. i10 += ne00 * (ne01 - ir1);
  7436. while (i10 >= ne0) {
  7437. i10 -= ne0;
  7438. if (++i11 == ne1) {
  7439. i11 = 0;
  7440. if (++i12 == ne2) {
  7441. i12 = 0;
  7442. if (++i13 == ne3) {
  7443. i13 = 0;
  7444. }
  7445. }
  7446. }
  7447. }
  7448. }
  7449. }
  7450. } else {
  7451. GGML_ABORT("fatal error"); // TODO: implement
  7452. }
  7453. }
  7454. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7455. static void ggml_compute_forward_dup_bytes(
  7456. const struct ggml_compute_params * params,
  7457. struct ggml_tensor * dst) {
  7458. const struct ggml_tensor * src0 = dst->src[0];
  7459. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7460. GGML_ASSERT(src0->type == dst->type);
  7461. GGML_TENSOR_UNARY_OP_LOCALS;
  7462. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7463. ggml_compute_forward_dup_same_cont(params, dst);
  7464. return;
  7465. }
  7466. const size_t type_size = ggml_type_size(src0->type);
  7467. const int ith = params->ith; // thread index
  7468. const int nth = params->nth; // number of threads
  7469. // parallelize by rows
  7470. const int nr = ne01;
  7471. // number of rows per thread
  7472. const int dr = (nr + nth - 1) / nth;
  7473. // row range for this thread
  7474. const int ir0 = dr * ith;
  7475. const int ir1 = MIN(ir0 + dr, nr);
  7476. if (src0->type == dst->type &&
  7477. ne00 == ne0 &&
  7478. nb00 == type_size && nb0 == type_size) {
  7479. // copy by rows
  7480. const size_t rs = ne00 * type_size;
  7481. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7482. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7483. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7484. memcpy(
  7485. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7486. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7487. rs);
  7488. }
  7489. }
  7490. }
  7491. return;
  7492. }
  7493. if (ggml_is_contiguous(dst)) {
  7494. size_t id = 0;
  7495. char * dst_ptr = (char *) dst->data;
  7496. const size_t rs = ne00 * type_size;
  7497. if (nb00 == type_size) {
  7498. // src0 is contigous on first dimension, copy by rows
  7499. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7500. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7501. id += rs * ir0;
  7502. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7503. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7504. memcpy(dst_ptr + id, src0_ptr, rs);
  7505. id += rs;
  7506. }
  7507. id += rs * (ne01 - ir1);
  7508. }
  7509. }
  7510. } else {
  7511. //printf("%s: this is not optimal - fix me\n", __func__);
  7512. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7513. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7514. id += rs * ir0;
  7515. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7516. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7517. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7518. memcpy(dst_ptr + id, src0_ptr, type_size);
  7519. id += type_size;
  7520. }
  7521. }
  7522. id += rs * (ne01 - ir1);
  7523. }
  7524. }
  7525. }
  7526. return;
  7527. }
  7528. // dst counters
  7529. int64_t i10 = 0;
  7530. int64_t i11 = 0;
  7531. int64_t i12 = 0;
  7532. int64_t i13 = 0;
  7533. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7534. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7535. i10 += ne00 * ir0;
  7536. while (i10 >= ne0) {
  7537. i10 -= ne0;
  7538. if (++i11 == ne1) {
  7539. i11 = 0;
  7540. if (++i12 == ne2) {
  7541. i12 = 0;
  7542. if (++i13 == ne3) {
  7543. i13 = 0;
  7544. }
  7545. }
  7546. }
  7547. }
  7548. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7549. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7550. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7551. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7552. memcpy(dst_ptr, src0_ptr, type_size);
  7553. if (++i10 == ne0) {
  7554. i10 = 0;
  7555. if (++i11 == ne1) {
  7556. i11 = 0;
  7557. if (++i12 == ne2) {
  7558. i12 = 0;
  7559. if (++i13 == ne3) {
  7560. i13 = 0;
  7561. }
  7562. }
  7563. }
  7564. }
  7565. }
  7566. }
  7567. i10 += ne00 * (ne01 - ir1);
  7568. while (i10 >= ne0) {
  7569. i10 -= ne0;
  7570. if (++i11 == ne1) {
  7571. i11 = 0;
  7572. if (++i12 == ne2) {
  7573. i12 = 0;
  7574. if (++i13 == ne3) {
  7575. i13 = 0;
  7576. }
  7577. }
  7578. }
  7579. }
  7580. }
  7581. }
  7582. }
  7583. static void ggml_compute_forward_dup(
  7584. const struct ggml_compute_params * params,
  7585. struct ggml_tensor * dst) {
  7586. const struct ggml_tensor * src0 = dst->src[0];
  7587. if (src0->type == dst->type) {
  7588. ggml_compute_forward_dup_bytes(params, dst);
  7589. return;
  7590. }
  7591. switch (src0->type) {
  7592. case GGML_TYPE_F16:
  7593. {
  7594. ggml_compute_forward_dup_f16(params, dst);
  7595. } break;
  7596. case GGML_TYPE_BF16:
  7597. {
  7598. ggml_compute_forward_dup_bf16(params, dst);
  7599. } break;
  7600. case GGML_TYPE_F32:
  7601. {
  7602. ggml_compute_forward_dup_f32(params, dst);
  7603. } break;
  7604. default:
  7605. {
  7606. GGML_ABORT("fatal error");
  7607. }
  7608. }
  7609. }
  7610. // ggml_compute_forward_add
  7611. static void ggml_compute_forward_add_f32(
  7612. const struct ggml_compute_params * params,
  7613. struct ggml_tensor * dst) {
  7614. const struct ggml_tensor * src0 = dst->src[0];
  7615. const struct ggml_tensor * src1 = dst->src[1];
  7616. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7617. const int ith = params->ith;
  7618. const int nth = params->nth;
  7619. const int nr = ggml_nrows(src0);
  7620. GGML_TENSOR_BINARY_OP_LOCALS
  7621. GGML_ASSERT( nb0 == sizeof(float));
  7622. GGML_ASSERT(nb00 == sizeof(float));
  7623. // rows per thread
  7624. const int dr = (nr + nth - 1)/nth;
  7625. // row range for this thread
  7626. const int ir0 = dr*ith;
  7627. const int ir1 = MIN(ir0 + dr, nr);
  7628. if (nb10 == sizeof(float)) {
  7629. for (int ir = ir0; ir < ir1; ++ir) {
  7630. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7631. const int64_t i03 = ir/(ne02*ne01);
  7632. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7633. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7634. const int64_t i13 = i03 % ne13;
  7635. const int64_t i12 = i02 % ne12;
  7636. const int64_t i11 = i01 % ne11;
  7637. const int64_t nr0 = ne00 / ne10;
  7638. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7639. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7640. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7641. for (int64_t r = 0; r < nr0; ++r) {
  7642. #ifdef GGML_USE_ACCELERATE
  7643. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7644. #else
  7645. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7646. #endif
  7647. }
  7648. }
  7649. } else {
  7650. // src1 is not contiguous
  7651. for (int ir = ir0; ir < ir1; ++ir) {
  7652. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7653. const int64_t i03 = ir/(ne02*ne01);
  7654. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7655. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7656. const int64_t i13 = i03 % ne13;
  7657. const int64_t i12 = i02 % ne12;
  7658. const int64_t i11 = i01 % ne11;
  7659. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7660. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7661. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7662. const int64_t i10 = i0 % ne10;
  7663. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7664. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7665. }
  7666. }
  7667. }
  7668. }
  7669. static void ggml_compute_forward_add_f16_f32(
  7670. const struct ggml_compute_params * params,
  7671. struct ggml_tensor * dst) {
  7672. const struct ggml_tensor * src0 = dst->src[0];
  7673. const struct ggml_tensor * src1 = dst->src[1];
  7674. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7675. const int ith = params->ith;
  7676. const int nth = params->nth;
  7677. const int nr = ggml_nrows(src0);
  7678. GGML_TENSOR_BINARY_OP_LOCALS
  7679. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7680. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7681. if (dst->type == GGML_TYPE_F32) {
  7682. GGML_ASSERT( nb0 == sizeof(float));
  7683. }
  7684. else {
  7685. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7686. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7687. }
  7688. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7689. // rows per thread
  7690. const int dr = (nr + nth - 1)/nth;
  7691. // row range for this thread
  7692. const int ir0 = dr*ith;
  7693. const int ir1 = MIN(ir0 + dr, nr);
  7694. if (nb10 == sizeof(float)) {
  7695. if (dst->type == GGML_TYPE_F16) {
  7696. for (int ir = ir0; ir < ir1; ++ir) {
  7697. // src0, src1 and dst are same shape => same indices
  7698. const int i3 = ir/(ne2*ne1);
  7699. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7700. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7701. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7702. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7703. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7704. for (int i = 0; i < ne0; i++) {
  7705. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7706. }
  7707. }
  7708. } else {
  7709. for (int ir = ir0; ir < ir1; ++ir) {
  7710. // src0, src1 and dst are same shape => same indices
  7711. const int i3 = ir/(ne2*ne1);
  7712. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7713. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7714. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7715. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7716. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7717. for (int i = 0; i < ne0; i++) {
  7718. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7719. }
  7720. }
  7721. }
  7722. }
  7723. else {
  7724. // src1 is not contiguous
  7725. GGML_ABORT("fatal error");
  7726. }
  7727. }
  7728. static void ggml_compute_forward_add_bf16_f32(
  7729. const struct ggml_compute_params * params,
  7730. struct ggml_tensor * dst) {
  7731. const struct ggml_tensor * src0 = dst->src[0];
  7732. const struct ggml_tensor * src1 = dst->src[1];
  7733. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7734. const int ith = params->ith;
  7735. const int nth = params->nth;
  7736. const int nr = ggml_nrows(src0);
  7737. GGML_TENSOR_BINARY_OP_LOCALS
  7738. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7739. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7740. if (dst->type == GGML_TYPE_F32) {
  7741. GGML_ASSERT( nb0 == sizeof(float));
  7742. }
  7743. else {
  7744. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7745. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7746. }
  7747. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7748. // rows per thread
  7749. const int dr = (nr + nth - 1)/nth;
  7750. // row range for this thread
  7751. const int ir0 = dr*ith;
  7752. const int ir1 = MIN(ir0 + dr, nr);
  7753. if (nb10 == sizeof(float)) {
  7754. if (dst->type == GGML_TYPE_BF16) {
  7755. for (int ir = ir0; ir < ir1; ++ir) {
  7756. // src0, src1 and dst are same shape => same indices
  7757. const int i3 = ir/(ne2*ne1);
  7758. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7759. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7760. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7761. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7762. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7763. for (int i = 0; i < ne0; i++) {
  7764. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7765. }
  7766. }
  7767. } else {
  7768. for (int ir = ir0; ir < ir1; ++ir) {
  7769. // src0, src1 and dst are same shape => same indices
  7770. const int i3 = ir/(ne2*ne1);
  7771. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7772. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7773. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7774. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7775. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7776. for (int i = 0; i < ne0; i++) {
  7777. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7778. }
  7779. }
  7780. }
  7781. }
  7782. else {
  7783. // src1 is not contiguous
  7784. GGML_ABORT("fatal error");
  7785. }
  7786. }
  7787. static void ggml_compute_forward_add_f16_f16(
  7788. const struct ggml_compute_params * params,
  7789. struct ggml_tensor * dst) {
  7790. const struct ggml_tensor * src0 = dst->src[0];
  7791. const struct ggml_tensor * src1 = dst->src[1];
  7792. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7793. const int ith = params->ith;
  7794. const int nth = params->nth;
  7795. const int nr = ggml_nrows(src0);
  7796. GGML_TENSOR_BINARY_OP_LOCALS
  7797. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7798. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7799. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7800. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7801. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7802. // rows per thread
  7803. const int dr = (nr + nth - 1)/nth;
  7804. // row range for this thread
  7805. const int ir0 = dr*ith;
  7806. const int ir1 = MIN(ir0 + dr, nr);
  7807. if (nb10 == sizeof(ggml_fp16_t)) {
  7808. for (int ir = ir0; ir < ir1; ++ir) {
  7809. // src0, src1 and dst are same shape => same indices
  7810. const int i3 = ir/(ne2*ne1);
  7811. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7812. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7813. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7814. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7815. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7816. for (int i = 0; i < ne0; i++) {
  7817. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7818. }
  7819. }
  7820. }
  7821. else {
  7822. // src1 is not contiguous
  7823. GGML_ABORT("fatal error");
  7824. }
  7825. }
  7826. static void ggml_compute_forward_add_bf16_bf16(
  7827. const struct ggml_compute_params * params,
  7828. struct ggml_tensor * dst) {
  7829. const struct ggml_tensor * src0 = dst->src[0];
  7830. const struct ggml_tensor * src1 = dst->src[1];
  7831. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7832. const int ith = params->ith;
  7833. const int nth = params->nth;
  7834. const int nr = ggml_nrows(src0);
  7835. GGML_TENSOR_BINARY_OP_LOCALS
  7836. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7837. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7838. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7839. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7840. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7841. // rows per thread
  7842. const int dr = (nr + nth - 1)/nth;
  7843. // row range for this thread
  7844. const int ir0 = dr*ith;
  7845. const int ir1 = MIN(ir0 + dr, nr);
  7846. if (nb10 == sizeof(ggml_bf16_t)) {
  7847. for (int ir = ir0; ir < ir1; ++ir) {
  7848. // src0, src1 and dst are same shape => same indices
  7849. const int i3 = ir/(ne2*ne1);
  7850. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7851. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7852. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7853. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7854. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7855. for (int i = 0; i < ne0; i++) {
  7856. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7857. }
  7858. }
  7859. }
  7860. else {
  7861. // src1 is not contiguous
  7862. GGML_ABORT("fatal error");
  7863. }
  7864. }
  7865. static void ggml_compute_forward_add_q_f32(
  7866. const struct ggml_compute_params * params,
  7867. struct ggml_tensor * dst) {
  7868. const struct ggml_tensor * src0 = dst->src[0];
  7869. const struct ggml_tensor * src1 = dst->src[1];
  7870. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7871. const int nr = ggml_nrows(src0);
  7872. GGML_TENSOR_BINARY_OP_LOCALS
  7873. const int ith = params->ith;
  7874. const int nth = params->nth;
  7875. const enum ggml_type type = src0->type;
  7876. const enum ggml_type dtype = dst->type;
  7877. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7878. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7879. // we don't support permuted src0 or src1
  7880. GGML_ASSERT(nb00 == ggml_type_size(type));
  7881. GGML_ASSERT(nb10 == sizeof(float));
  7882. // dst cannot be transposed or permuted
  7883. GGML_ASSERT(nb0 <= nb1);
  7884. GGML_ASSERT(nb1 <= nb2);
  7885. GGML_ASSERT(nb2 <= nb3);
  7886. GGML_ASSERT(ggml_is_quantized(src0->type));
  7887. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7888. // rows per thread
  7889. const int dr = (nr + nth - 1)/nth;
  7890. // row range for this thread
  7891. const int ir0 = dr*ith;
  7892. const int ir1 = MIN(ir0 + dr, nr);
  7893. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7894. for (int ir = ir0; ir < ir1; ++ir) {
  7895. // src0 indices
  7896. const int i03 = ir/(ne02*ne01);
  7897. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7898. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7899. // src1 and dst are same shape as src0 => same indices
  7900. const int i13 = i03;
  7901. const int i12 = i02;
  7902. const int i11 = i01;
  7903. const int i3 = i03;
  7904. const int i2 = i02;
  7905. const int i1 = i01;
  7906. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7907. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7908. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7909. assert(ne00 % 32 == 0);
  7910. // unquantize row from src0 to temp buffer
  7911. dequantize_row_q(src0_row, wdata, ne00);
  7912. // add src1
  7913. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7914. // quantize row to dst
  7915. if (quantize_row_q != NULL) {
  7916. quantize_row_q(wdata, dst_row, ne00);
  7917. } else {
  7918. memcpy(dst_row, wdata, ne0*nb0);
  7919. }
  7920. }
  7921. }
  7922. static void ggml_compute_forward_add(
  7923. const struct ggml_compute_params * params,
  7924. struct ggml_tensor * dst) {
  7925. const struct ggml_tensor * src0 = dst->src[0];
  7926. const struct ggml_tensor * src1 = dst->src[1];
  7927. switch (src0->type) {
  7928. case GGML_TYPE_F32:
  7929. {
  7930. if (src1->type == GGML_TYPE_F32) {
  7931. ggml_compute_forward_add_f32(params, dst);
  7932. }
  7933. else {
  7934. GGML_ABORT("fatal error");
  7935. }
  7936. } break;
  7937. case GGML_TYPE_F16:
  7938. {
  7939. if (src1->type == GGML_TYPE_F16) {
  7940. ggml_compute_forward_add_f16_f16(params, dst);
  7941. }
  7942. else if (src1->type == GGML_TYPE_F32) {
  7943. ggml_compute_forward_add_f16_f32(params, dst);
  7944. }
  7945. else {
  7946. GGML_ABORT("fatal error");
  7947. }
  7948. } break;
  7949. case GGML_TYPE_BF16:
  7950. {
  7951. if (src1->type == GGML_TYPE_BF16) {
  7952. ggml_compute_forward_add_bf16_bf16(params, dst);
  7953. }
  7954. else if (src1->type == GGML_TYPE_F32) {
  7955. ggml_compute_forward_add_bf16_f32(params, dst);
  7956. }
  7957. else {
  7958. GGML_ABORT("fatal error");
  7959. }
  7960. } break;
  7961. case GGML_TYPE_Q4_0:
  7962. case GGML_TYPE_Q4_1:
  7963. case GGML_TYPE_Q5_0:
  7964. case GGML_TYPE_Q5_1:
  7965. case GGML_TYPE_Q8_0:
  7966. case GGML_TYPE_Q2_K:
  7967. case GGML_TYPE_Q3_K:
  7968. case GGML_TYPE_Q4_K:
  7969. case GGML_TYPE_Q5_K:
  7970. case GGML_TYPE_Q6_K:
  7971. case GGML_TYPE_TQ1_0:
  7972. case GGML_TYPE_TQ2_0:
  7973. case GGML_TYPE_IQ2_XXS:
  7974. case GGML_TYPE_IQ2_XS:
  7975. case GGML_TYPE_IQ3_XXS:
  7976. case GGML_TYPE_IQ1_S:
  7977. case GGML_TYPE_IQ1_M:
  7978. case GGML_TYPE_IQ4_NL:
  7979. case GGML_TYPE_IQ4_XS:
  7980. case GGML_TYPE_IQ3_S:
  7981. case GGML_TYPE_IQ2_S:
  7982. case GGML_TYPE_Q4_0_4_4:
  7983. case GGML_TYPE_Q4_0_4_8:
  7984. case GGML_TYPE_Q4_0_8_8:
  7985. {
  7986. ggml_compute_forward_add_q_f32(params, dst);
  7987. } break;
  7988. default:
  7989. {
  7990. GGML_ABORT("fatal error");
  7991. }
  7992. }
  7993. }
  7994. // ggml_compute_forward_add1
  7995. static void ggml_compute_forward_add1_f32(
  7996. const struct ggml_compute_params * params,
  7997. struct ggml_tensor * dst) {
  7998. const struct ggml_tensor * src0 = dst->src[0];
  7999. const struct ggml_tensor * src1 = dst->src[1];
  8000. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8001. GGML_ASSERT(ggml_is_scalar(src1));
  8002. const int ith = params->ith;
  8003. const int nth = params->nth;
  8004. const int nr = ggml_nrows(src0);
  8005. GGML_TENSOR_UNARY_OP_LOCALS
  8006. GGML_ASSERT( nb0 == sizeof(float));
  8007. GGML_ASSERT(nb00 == sizeof(float));
  8008. // rows per thread
  8009. const int dr = (nr + nth - 1)/nth;
  8010. // row range for this thread
  8011. const int ir0 = dr*ith;
  8012. const int ir1 = MIN(ir0 + dr, nr);
  8013. for (int ir = ir0; ir < ir1; ++ir) {
  8014. // src0 and dst are same shape => same indices
  8015. const int i3 = ir/(ne2*ne1);
  8016. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8017. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8018. #ifdef GGML_USE_ACCELERATE
  8019. UNUSED(ggml_vec_add1_f32);
  8020. vDSP_vadd(
  8021. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8022. (float *) ((char *) src1->data), 0,
  8023. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8024. ne0);
  8025. #else
  8026. ggml_vec_add1_f32(ne0,
  8027. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8028. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8029. *(float *) src1->data);
  8030. #endif
  8031. }
  8032. }
  8033. static void ggml_compute_forward_add1_f16_f32(
  8034. const struct ggml_compute_params * params,
  8035. struct ggml_tensor * dst) {
  8036. const struct ggml_tensor * src0 = dst->src[0];
  8037. const struct ggml_tensor * src1 = dst->src[1];
  8038. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8039. GGML_ASSERT(ggml_is_scalar(src1));
  8040. // scalar to add
  8041. const float v = *(float *) src1->data;
  8042. const int ith = params->ith;
  8043. const int nth = params->nth;
  8044. const int nr = ggml_nrows(src0);
  8045. GGML_TENSOR_UNARY_OP_LOCALS
  8046. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8047. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8048. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8049. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8050. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8051. // rows per thread
  8052. const int dr = (nr + nth - 1)/nth;
  8053. // row range for this thread
  8054. const int ir0 = dr*ith;
  8055. const int ir1 = MIN(ir0 + dr, nr);
  8056. for (int ir = ir0; ir < ir1; ++ir) {
  8057. // src0 and dst are same shape => same indices
  8058. const int i3 = ir/(ne2*ne1);
  8059. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8060. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8061. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8062. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8063. for (int i = 0; i < ne0; i++) {
  8064. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8065. }
  8066. }
  8067. }
  8068. static void ggml_compute_forward_add1_f16_f16(
  8069. const struct ggml_compute_params * params,
  8070. struct ggml_tensor * dst) {
  8071. const struct ggml_tensor * src0 = dst->src[0];
  8072. const struct ggml_tensor * src1 = dst->src[1];
  8073. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8074. GGML_ASSERT(ggml_is_scalar(src1));
  8075. // scalar to add
  8076. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8077. const int ith = params->ith;
  8078. const int nth = params->nth;
  8079. const int nr = ggml_nrows(src0);
  8080. GGML_TENSOR_UNARY_OP_LOCALS
  8081. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8082. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8083. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8084. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8085. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8086. // rows per thread
  8087. const int dr = (nr + nth - 1)/nth;
  8088. // row range for this thread
  8089. const int ir0 = dr*ith;
  8090. const int ir1 = MIN(ir0 + dr, nr);
  8091. for (int ir = ir0; ir < ir1; ++ir) {
  8092. // src0 and dst are same shape => same indices
  8093. const int i3 = ir/(ne2*ne1);
  8094. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8095. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8096. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8097. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8098. for (int i = 0; i < ne0; i++) {
  8099. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8100. }
  8101. }
  8102. }
  8103. static void ggml_compute_forward_add1_q_f32(
  8104. const struct ggml_compute_params * params,
  8105. struct ggml_tensor * dst) {
  8106. const struct ggml_tensor * src0 = dst->src[0];
  8107. const struct ggml_tensor * src1 = dst->src[1];
  8108. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8109. GGML_ASSERT(ggml_is_scalar(src1));
  8110. // scalar to add
  8111. const float v = *(float *) src1->data;
  8112. const int ith = params->ith;
  8113. const int nth = params->nth;
  8114. const int nr = ggml_nrows(src0);
  8115. GGML_TENSOR_UNARY_OP_LOCALS
  8116. const enum ggml_type type = src0->type;
  8117. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8118. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8119. // we don't support permuted src0
  8120. GGML_ASSERT(nb00 == ggml_type_size(type));
  8121. // dst cannot be transposed or permuted
  8122. GGML_ASSERT(nb0 <= nb1);
  8123. GGML_ASSERT(nb1 <= nb2);
  8124. GGML_ASSERT(nb2 <= nb3);
  8125. GGML_ASSERT(ggml_is_quantized(src0->type));
  8126. GGML_ASSERT(dst->type == src0->type);
  8127. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8128. // rows per thread
  8129. const int dr = (nr + nth - 1)/nth;
  8130. // row range for this thread
  8131. const int ir0 = dr*ith;
  8132. const int ir1 = MIN(ir0 + dr, nr);
  8133. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8134. for (int ir = ir0; ir < ir1; ++ir) {
  8135. // src0 and dst are same shape => same indices
  8136. const int i3 = ir/(ne2*ne1);
  8137. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8138. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8139. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8140. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8141. assert(ne0 % 32 == 0);
  8142. // unquantize row from src0 to temp buffer
  8143. dequantize_row_q(src0_row, wdata, ne0);
  8144. // add src1
  8145. ggml_vec_acc1_f32(ne0, wdata, v);
  8146. // quantize row to dst
  8147. quantize_row_q(wdata, dst_row, ne0);
  8148. }
  8149. }
  8150. static void ggml_compute_forward_add1_bf16_f32(
  8151. const struct ggml_compute_params * params,
  8152. struct ggml_tensor * dst) {
  8153. const struct ggml_tensor * src0 = dst->src[0];
  8154. const struct ggml_tensor * src1 = dst->src[1];
  8155. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8156. GGML_ASSERT(ggml_is_scalar(src1));
  8157. // scalar to add
  8158. const float v = *(float *) src1->data;
  8159. const int ith = params->ith;
  8160. const int nth = params->nth;
  8161. const int nr = ggml_nrows(src0);
  8162. GGML_TENSOR_UNARY_OP_LOCALS
  8163. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8164. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8165. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8166. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8167. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8168. // rows per thread
  8169. const int dr = (nr + nth - 1)/nth;
  8170. // row range for this thread
  8171. const int ir0 = dr*ith;
  8172. const int ir1 = MIN(ir0 + dr, nr);
  8173. for (int ir = ir0; ir < ir1; ++ir) {
  8174. // src0 and dst are same shape => same indices
  8175. const int i3 = ir/(ne2*ne1);
  8176. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8177. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8178. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8179. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8180. for (int i = 0; i < ne0; i++) {
  8181. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8182. }
  8183. }
  8184. }
  8185. static void ggml_compute_forward_add1_bf16_bf16(
  8186. const struct ggml_compute_params * params,
  8187. struct ggml_tensor * dst) {
  8188. const struct ggml_tensor * src0 = dst->src[0];
  8189. const struct ggml_tensor * src1 = dst->src[1];
  8190. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8191. GGML_ASSERT(ggml_is_scalar(src1));
  8192. // scalar to add
  8193. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8194. const int ith = params->ith;
  8195. const int nth = params->nth;
  8196. const int nr = ggml_nrows(src0);
  8197. GGML_TENSOR_UNARY_OP_LOCALS
  8198. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8199. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8200. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8201. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8202. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8203. // rows per thread
  8204. const int dr = (nr + nth - 1)/nth;
  8205. // row range for this thread
  8206. const int ir0 = dr*ith;
  8207. const int ir1 = MIN(ir0 + dr, nr);
  8208. for (int ir = ir0; ir < ir1; ++ir) {
  8209. // src0 and dst are same shape => same indices
  8210. const int i3 = ir/(ne2*ne1);
  8211. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8212. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8213. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8214. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8215. for (int i = 0; i < ne0; i++) {
  8216. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8217. }
  8218. }
  8219. }
  8220. static void ggml_compute_forward_add1(
  8221. const struct ggml_compute_params * params,
  8222. struct ggml_tensor * dst) {
  8223. const struct ggml_tensor * src0 = dst->src[0];
  8224. const struct ggml_tensor * src1 = dst->src[1];
  8225. switch (src0->type) {
  8226. case GGML_TYPE_F32:
  8227. {
  8228. ggml_compute_forward_add1_f32(params, dst);
  8229. } break;
  8230. case GGML_TYPE_F16:
  8231. {
  8232. if (src1->type == GGML_TYPE_F16) {
  8233. ggml_compute_forward_add1_f16_f16(params, dst);
  8234. }
  8235. else if (src1->type == GGML_TYPE_F32) {
  8236. ggml_compute_forward_add1_f16_f32(params, dst);
  8237. }
  8238. else {
  8239. GGML_ABORT("fatal error");
  8240. }
  8241. } break;
  8242. case GGML_TYPE_BF16:
  8243. {
  8244. if (src1->type == GGML_TYPE_BF16) {
  8245. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8246. }
  8247. else if (src1->type == GGML_TYPE_F32) {
  8248. ggml_compute_forward_add1_bf16_f32(params, dst);
  8249. }
  8250. else {
  8251. GGML_ABORT("fatal error");
  8252. }
  8253. } break;
  8254. case GGML_TYPE_Q4_0:
  8255. case GGML_TYPE_Q4_1:
  8256. case GGML_TYPE_Q5_0:
  8257. case GGML_TYPE_Q5_1:
  8258. case GGML_TYPE_Q8_0:
  8259. case GGML_TYPE_Q8_1:
  8260. case GGML_TYPE_Q2_K:
  8261. case GGML_TYPE_Q3_K:
  8262. case GGML_TYPE_Q4_K:
  8263. case GGML_TYPE_Q5_K:
  8264. case GGML_TYPE_Q6_K:
  8265. case GGML_TYPE_TQ1_0:
  8266. case GGML_TYPE_TQ2_0:
  8267. case GGML_TYPE_IQ2_XXS:
  8268. case GGML_TYPE_IQ2_XS:
  8269. case GGML_TYPE_IQ3_XXS:
  8270. case GGML_TYPE_IQ1_S:
  8271. case GGML_TYPE_IQ1_M:
  8272. case GGML_TYPE_IQ4_NL:
  8273. case GGML_TYPE_IQ4_XS:
  8274. case GGML_TYPE_IQ3_S:
  8275. case GGML_TYPE_IQ2_S:
  8276. case GGML_TYPE_Q4_0_4_4:
  8277. case GGML_TYPE_Q4_0_4_8:
  8278. case GGML_TYPE_Q4_0_8_8:
  8279. {
  8280. ggml_compute_forward_add1_q_f32(params, dst);
  8281. } break;
  8282. default:
  8283. {
  8284. GGML_ABORT("fatal error");
  8285. }
  8286. }
  8287. }
  8288. // ggml_compute_forward_acc
  8289. static void ggml_compute_forward_acc_f32(
  8290. const struct ggml_compute_params * params,
  8291. struct ggml_tensor * dst) {
  8292. const struct ggml_tensor * src0 = dst->src[0];
  8293. const struct ggml_tensor * src1 = dst->src[1];
  8294. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8295. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8296. // view src0 and dst with these strides and data offset inbytes during acc
  8297. // nb0 is implicitly element_size because src0 and dst are contiguous
  8298. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8299. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8300. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8301. size_t offset = ((int32_t *) dst->op_params)[3];
  8302. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8303. if (!inplace) {
  8304. if (params->ith == 0) {
  8305. // memcpy needs to be synchronized across threads to avoid race conditions.
  8306. // => do it in INIT phase
  8307. memcpy(
  8308. ((char *) dst->data),
  8309. ((char *) src0->data),
  8310. ggml_nbytes(dst));
  8311. }
  8312. ggml_barrier(params->threadpool);
  8313. }
  8314. const int ith = params->ith;
  8315. const int nth = params->nth;
  8316. const int nr = ggml_nrows(src1);
  8317. const int nc = src1->ne[0];
  8318. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8319. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8320. // src0 and dst as viewed during acc
  8321. const size_t nb0 = ggml_element_size(src0);
  8322. const size_t nb00 = nb0;
  8323. const size_t nb01 = nb1;
  8324. const size_t nb02 = nb2;
  8325. const size_t nb03 = nb3;
  8326. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8327. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8328. GGML_ASSERT(nb10 == sizeof(float));
  8329. // rows per thread
  8330. const int dr = (nr + nth - 1)/nth;
  8331. // row range for this thread
  8332. const int ir0 = dr*ith;
  8333. const int ir1 = MIN(ir0 + dr, nr);
  8334. for (int ir = ir0; ir < ir1; ++ir) {
  8335. // src0 and dst are viewed with shape of src1 and offset
  8336. // => same indices
  8337. const int i3 = ir/(ne12*ne11);
  8338. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8339. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8340. #ifdef GGML_USE_ACCELERATE
  8341. vDSP_vadd(
  8342. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8343. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8344. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8345. #else
  8346. ggml_vec_add_f32(nc,
  8347. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8348. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8349. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8350. #endif
  8351. }
  8352. }
  8353. static void ggml_compute_forward_acc(
  8354. const struct ggml_compute_params * params,
  8355. struct ggml_tensor * dst) {
  8356. const struct ggml_tensor * src0 = dst->src[0];
  8357. switch (src0->type) {
  8358. case GGML_TYPE_F32:
  8359. {
  8360. ggml_compute_forward_acc_f32(params, dst);
  8361. } break;
  8362. case GGML_TYPE_F16:
  8363. case GGML_TYPE_BF16:
  8364. case GGML_TYPE_Q4_0:
  8365. case GGML_TYPE_Q4_1:
  8366. case GGML_TYPE_Q5_0:
  8367. case GGML_TYPE_Q5_1:
  8368. case GGML_TYPE_Q8_0:
  8369. case GGML_TYPE_Q8_1:
  8370. case GGML_TYPE_Q2_K:
  8371. case GGML_TYPE_Q3_K:
  8372. case GGML_TYPE_Q4_K:
  8373. case GGML_TYPE_Q5_K:
  8374. case GGML_TYPE_Q6_K:
  8375. case GGML_TYPE_TQ1_0:
  8376. case GGML_TYPE_TQ2_0:
  8377. case GGML_TYPE_IQ2_XXS:
  8378. case GGML_TYPE_IQ2_XS:
  8379. case GGML_TYPE_IQ3_XXS:
  8380. case GGML_TYPE_IQ1_S:
  8381. case GGML_TYPE_IQ1_M:
  8382. case GGML_TYPE_IQ4_NL:
  8383. case GGML_TYPE_IQ4_XS:
  8384. case GGML_TYPE_IQ3_S:
  8385. case GGML_TYPE_IQ2_S:
  8386. case GGML_TYPE_Q4_0_4_4:
  8387. case GGML_TYPE_Q4_0_4_8:
  8388. case GGML_TYPE_Q4_0_8_8:
  8389. default:
  8390. {
  8391. GGML_ABORT("fatal error");
  8392. }
  8393. }
  8394. }
  8395. // ggml_compute_forward_sub
  8396. static void ggml_compute_forward_sub_f32(
  8397. const struct ggml_compute_params * params,
  8398. struct ggml_tensor * dst) {
  8399. const struct ggml_tensor * src0 = dst->src[0];
  8400. const struct ggml_tensor * src1 = dst->src[1];
  8401. assert(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8402. const int ith = params->ith;
  8403. const int nth = params->nth;
  8404. const int nr = ggml_nrows(src0);
  8405. GGML_TENSOR_BINARY_OP_LOCALS
  8406. GGML_ASSERT( nb0 == sizeof(float));
  8407. GGML_ASSERT(nb00 == sizeof(float));
  8408. // rows per thread
  8409. const int dr = (nr + nth - 1)/nth;
  8410. // row range for this thread
  8411. const int ir0 = dr*ith;
  8412. const int ir1 = MIN(ir0 + dr, nr);
  8413. if (nb10 == sizeof(float)) {
  8414. for (int ir = ir0; ir < ir1; ++ir) {
  8415. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8416. const int64_t i03 = ir/(ne02*ne01);
  8417. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8418. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8419. const int64_t i13 = i03 % ne13;
  8420. const int64_t i12 = i02 % ne12;
  8421. const int64_t i11 = i01 % ne11;
  8422. const int64_t nr0 = ne00 / ne10;
  8423. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8424. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8425. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8426. for (int64_t r = 0; r < nr0; ++r) {
  8427. #ifdef GGML_USE_ACCELERATE
  8428. vDSP_vsub(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8429. #else
  8430. ggml_vec_sub_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8431. #endif
  8432. }
  8433. }
  8434. } else {
  8435. // src1 is not contiguous
  8436. for (int ir = ir0; ir < ir1; ++ir) {
  8437. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8438. const int64_t i03 = ir/(ne02*ne01);
  8439. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8440. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8441. const int64_t i13 = i03 % ne13;
  8442. const int64_t i12 = i02 % ne12;
  8443. const int64_t i11 = i01 % ne11;
  8444. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8445. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8446. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8447. const int64_t i10 = i0 % ne10;
  8448. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8449. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8450. }
  8451. }
  8452. }
  8453. }
  8454. static void ggml_compute_forward_sub(
  8455. const struct ggml_compute_params * params,
  8456. struct ggml_tensor * dst) {
  8457. const struct ggml_tensor * src0 = dst->src[0];
  8458. switch (src0->type) {
  8459. case GGML_TYPE_F32:
  8460. {
  8461. ggml_compute_forward_sub_f32(params, dst);
  8462. } break;
  8463. default:
  8464. {
  8465. GGML_ABORT("fatal error");
  8466. }
  8467. }
  8468. }
  8469. // ggml_compute_forward_mul
  8470. static void ggml_compute_forward_mul_f32(
  8471. const struct ggml_compute_params * params,
  8472. struct ggml_tensor * dst) {
  8473. const struct ggml_tensor * src0 = dst->src[0];
  8474. const struct ggml_tensor * src1 = dst->src[1];
  8475. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8476. const int ith = params->ith;
  8477. const int nth = params->nth;
  8478. const int64_t nr = ggml_nrows(src0);
  8479. GGML_TENSOR_BINARY_OP_LOCALS
  8480. GGML_ASSERT( nb0 == sizeof(float));
  8481. GGML_ASSERT(nb00 == sizeof(float));
  8482. if (nb10 == sizeof(float)) {
  8483. for (int64_t ir = ith; ir < nr; ir += nth) {
  8484. // src0 and dst are same shape => same indices
  8485. const int64_t i03 = ir/(ne02*ne01);
  8486. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8487. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8488. const int64_t i13 = i03 % ne13;
  8489. const int64_t i12 = i02 % ne12;
  8490. const int64_t i11 = i01 % ne11;
  8491. const int64_t nr0 = ne00 / ne10;
  8492. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8493. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8494. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8495. for (int64_t r = 0 ; r < nr0; ++r) {
  8496. #ifdef GGML_USE_ACCELERATE
  8497. UNUSED(ggml_vec_mul_f32);
  8498. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8499. #else
  8500. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8501. #endif
  8502. }
  8503. }
  8504. } else {
  8505. // src1 is not contiguous
  8506. for (int64_t ir = ith; ir < nr; ir += nth) {
  8507. // src0 and dst are same shape => same indices
  8508. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8509. const int64_t i03 = ir/(ne02*ne01);
  8510. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8511. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8512. const int64_t i13 = i03 % ne13;
  8513. const int64_t i12 = i02 % ne12;
  8514. const int64_t i11 = i01 % ne11;
  8515. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8516. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8517. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8518. const int64_t i10 = i0 % ne10;
  8519. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8520. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8521. }
  8522. }
  8523. }
  8524. }
  8525. static void ggml_compute_forward_mul(
  8526. const struct ggml_compute_params * params,
  8527. struct ggml_tensor * dst) {
  8528. const struct ggml_tensor * src0 = dst->src[0];
  8529. const struct ggml_tensor * src1 = dst->src[1];
  8530. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8531. switch (src0->type) {
  8532. case GGML_TYPE_F32:
  8533. {
  8534. ggml_compute_forward_mul_f32(params, dst);
  8535. } break;
  8536. default:
  8537. {
  8538. GGML_ABORT("fatal error");
  8539. }
  8540. }
  8541. }
  8542. // ggml_compute_forward_div
  8543. static void ggml_compute_forward_div_f32(
  8544. const struct ggml_compute_params * params,
  8545. struct ggml_tensor * dst) {
  8546. const struct ggml_tensor * src0 = dst->src[0];
  8547. const struct ggml_tensor * src1 = dst->src[1];
  8548. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8549. const int ith = params->ith;
  8550. const int nth = params->nth;
  8551. const int64_t nr = ggml_nrows(src0);
  8552. GGML_TENSOR_BINARY_OP_LOCALS
  8553. GGML_ASSERT( nb0 == sizeof(float));
  8554. GGML_ASSERT(nb00 == sizeof(float));
  8555. if (nb10 == sizeof(float)) {
  8556. for (int64_t ir = ith; ir < nr; ir += nth) {
  8557. // src0 and dst are same shape => same indices
  8558. const int64_t i03 = ir/(ne02*ne01);
  8559. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8560. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8561. const int64_t i13 = i03 % ne13;
  8562. const int64_t i12 = i02 % ne12;
  8563. const int64_t i11 = i01 % ne11;
  8564. const int64_t nr0 = ne00 / ne10;
  8565. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8566. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8567. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8568. for (int64_t r = 0; r < nr0; ++r) {
  8569. #ifdef GGML_USE_ACCELERATE
  8570. UNUSED(ggml_vec_div_f32);
  8571. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8572. #else
  8573. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8574. #endif
  8575. }
  8576. }
  8577. } else {
  8578. // src1 is not contiguous
  8579. for (int64_t ir = ith; ir < nr; ir += nth) {
  8580. // src0 and dst are same shape => same indices
  8581. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8582. const int64_t i03 = ir/(ne02*ne01);
  8583. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8584. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8585. const int64_t i13 = i03 % ne13;
  8586. const int64_t i12 = i02 % ne12;
  8587. const int64_t i11 = i01 % ne11;
  8588. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8589. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8590. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8591. const int64_t i10 = i0 % ne10;
  8592. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8593. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8594. }
  8595. }
  8596. }
  8597. }
  8598. static void ggml_compute_forward_div(
  8599. const struct ggml_compute_params * params,
  8600. struct ggml_tensor * dst) {
  8601. const struct ggml_tensor * src0 = dst->src[0];
  8602. switch (src0->type) {
  8603. case GGML_TYPE_F32:
  8604. {
  8605. ggml_compute_forward_div_f32(params, dst);
  8606. } break;
  8607. default:
  8608. {
  8609. GGML_ABORT("fatal error");
  8610. }
  8611. }
  8612. }
  8613. // ggml_compute_forward_sqr
  8614. static void ggml_compute_forward_sqr_f32(
  8615. const struct ggml_compute_params * params,
  8616. struct ggml_tensor * dst) {
  8617. const struct ggml_tensor * src0 = dst->src[0];
  8618. if (params->ith != 0) {
  8619. return;
  8620. }
  8621. assert(ggml_are_same_shape(src0, dst));
  8622. const int n = ggml_nrows(src0);
  8623. const int nc = src0->ne[0];
  8624. assert( dst->nb[0] == sizeof(float));
  8625. assert(src0->nb[0] == sizeof(float));
  8626. for (int i = 0; i < n; i++) {
  8627. ggml_vec_sqr_f32(nc,
  8628. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8629. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8630. }
  8631. }
  8632. static void ggml_compute_forward_sqr(
  8633. const struct ggml_compute_params * params,
  8634. struct ggml_tensor * dst) {
  8635. const struct ggml_tensor * src0 = dst->src[0];
  8636. switch (src0->type) {
  8637. case GGML_TYPE_F32:
  8638. {
  8639. ggml_compute_forward_sqr_f32(params, dst);
  8640. } break;
  8641. default:
  8642. {
  8643. GGML_ABORT("fatal error");
  8644. }
  8645. }
  8646. }
  8647. // ggml_compute_forward_sqrt
  8648. static void ggml_compute_forward_sqrt_f32(
  8649. const struct ggml_compute_params * params,
  8650. struct ggml_tensor * dst) {
  8651. const struct ggml_tensor * src0 = dst->src[0];
  8652. if (params->ith != 0) {
  8653. return;
  8654. }
  8655. assert(ggml_are_same_shape(src0, dst));
  8656. const int n = ggml_nrows(src0);
  8657. const int nc = src0->ne[0];
  8658. assert( dst->nb[0] == sizeof(float));
  8659. assert(src0->nb[0] == sizeof(float));
  8660. for (int i = 0; i < n; i++) {
  8661. ggml_vec_sqrt_f32(nc,
  8662. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8663. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8664. }
  8665. }
  8666. static void ggml_compute_forward_sqrt(
  8667. const struct ggml_compute_params * params,
  8668. struct ggml_tensor * dst) {
  8669. const struct ggml_tensor * src0 = dst->src[0];
  8670. switch (src0->type) {
  8671. case GGML_TYPE_F32:
  8672. {
  8673. ggml_compute_forward_sqrt_f32(params, dst);
  8674. } break;
  8675. default:
  8676. {
  8677. GGML_ABORT("fatal error");
  8678. }
  8679. }
  8680. }
  8681. // ggml_compute_forward_log
  8682. static void ggml_compute_forward_log_f32(
  8683. const struct ggml_compute_params * params,
  8684. struct ggml_tensor * dst) {
  8685. const struct ggml_tensor * src0 = dst->src[0];
  8686. if (params->ith != 0) {
  8687. return;
  8688. }
  8689. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8690. const int n = ggml_nrows(src0);
  8691. const int nc = src0->ne[0];
  8692. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8693. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8694. for (int i = 0; i < n; i++) {
  8695. ggml_vec_log_f32(nc,
  8696. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8697. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8698. }
  8699. }
  8700. static void ggml_compute_forward_log(
  8701. const struct ggml_compute_params * params,
  8702. struct ggml_tensor * dst) {
  8703. const struct ggml_tensor * src0 = dst->src[0];
  8704. switch (src0->type) {
  8705. case GGML_TYPE_F32:
  8706. {
  8707. ggml_compute_forward_log_f32(params, dst);
  8708. } break;
  8709. default:
  8710. {
  8711. GGML_ABORT("fatal error");
  8712. }
  8713. }
  8714. }
  8715. // ggml_compute_forward_sin
  8716. static void ggml_compute_forward_sin_f32(
  8717. const struct ggml_compute_params * params,
  8718. struct ggml_tensor * dst) {
  8719. const struct ggml_tensor * src0 = dst->src[0];
  8720. if (params->ith != 0) {
  8721. return;
  8722. }
  8723. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8724. const int n = ggml_nrows(src0);
  8725. const int nc = src0->ne[0];
  8726. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8727. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8728. for (int i = 0; i < n; i++) {
  8729. ggml_vec_sin_f32(nc,
  8730. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8731. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8732. }
  8733. }
  8734. static void ggml_compute_forward_sin(
  8735. const struct ggml_compute_params * params,
  8736. struct ggml_tensor * dst) {
  8737. const struct ggml_tensor * src0 = dst->src[0];
  8738. switch (src0->type) {
  8739. case GGML_TYPE_F32:
  8740. {
  8741. ggml_compute_forward_sin_f32(params, dst);
  8742. } break;
  8743. default:
  8744. {
  8745. GGML_ABORT("fatal error");
  8746. }
  8747. }
  8748. }
  8749. // ggml_compute_forward_cos
  8750. static void ggml_compute_forward_cos_f32(
  8751. const struct ggml_compute_params * params,
  8752. struct ggml_tensor * dst) {
  8753. const struct ggml_tensor * src0 = dst->src[0];
  8754. if (params->ith != 0) {
  8755. return;
  8756. }
  8757. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8758. const int n = ggml_nrows(src0);
  8759. const int nc = src0->ne[0];
  8760. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8761. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8762. for (int i = 0; i < n; i++) {
  8763. ggml_vec_cos_f32(nc,
  8764. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8765. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8766. }
  8767. }
  8768. static void ggml_compute_forward_cos(
  8769. const struct ggml_compute_params * params,
  8770. struct ggml_tensor * dst) {
  8771. const struct ggml_tensor * src0 = dst->src[0];
  8772. switch (src0->type) {
  8773. case GGML_TYPE_F32:
  8774. {
  8775. ggml_compute_forward_cos_f32(params, dst);
  8776. } break;
  8777. default:
  8778. {
  8779. GGML_ABORT("fatal error");
  8780. }
  8781. }
  8782. }
  8783. // ggml_compute_forward_sum
  8784. static void ggml_compute_forward_sum_f32(
  8785. const struct ggml_compute_params * params,
  8786. struct ggml_tensor * dst) {
  8787. const struct ggml_tensor * src0 = dst->src[0];
  8788. if (params->ith != 0) {
  8789. return;
  8790. }
  8791. assert(ggml_is_scalar(dst));
  8792. assert(src0->nb[0] == sizeof(float));
  8793. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8794. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8795. ggml_float sum = 0;
  8796. ggml_float row_sum = 0;
  8797. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8798. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8799. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8800. ggml_vec_sum_f32_ggf(ne00,
  8801. &row_sum,
  8802. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8803. sum += row_sum;
  8804. }
  8805. }
  8806. }
  8807. ((float *) dst->data)[0] = sum;
  8808. }
  8809. static void ggml_compute_forward_sum_f16(
  8810. const struct ggml_compute_params * params,
  8811. struct ggml_tensor * dst) {
  8812. const struct ggml_tensor * src0 = dst->src[0];
  8813. if (params->ith != 0) {
  8814. return;
  8815. }
  8816. assert(ggml_is_scalar(dst));
  8817. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8818. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8819. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8820. float sum = 0;
  8821. float row_sum = 0;
  8822. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8823. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8824. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8825. ggml_vec_sum_f16_ggf(ne00,
  8826. &row_sum,
  8827. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8828. sum += row_sum;
  8829. }
  8830. }
  8831. }
  8832. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8833. }
  8834. static void ggml_compute_forward_sum_bf16(
  8835. const struct ggml_compute_params * params,
  8836. struct ggml_tensor * dst) {
  8837. const struct ggml_tensor * src0 = dst->src[0];
  8838. if (params->ith != 0) {
  8839. return;
  8840. }
  8841. assert(ggml_is_scalar(dst));
  8842. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8843. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8844. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8845. float sum = 0;
  8846. float row_sum = 0;
  8847. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8848. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8849. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8850. ggml_vec_sum_bf16_ggf(ne00,
  8851. &row_sum,
  8852. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8853. sum += row_sum;
  8854. }
  8855. }
  8856. }
  8857. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8858. }
  8859. static void ggml_compute_forward_sum(
  8860. const struct ggml_compute_params * params,
  8861. struct ggml_tensor * dst) {
  8862. const struct ggml_tensor * src0 = dst->src[0];
  8863. switch (src0->type) {
  8864. case GGML_TYPE_F32:
  8865. {
  8866. ggml_compute_forward_sum_f32(params, dst);
  8867. } break;
  8868. case GGML_TYPE_F16:
  8869. {
  8870. ggml_compute_forward_sum_f16(params, dst);
  8871. } break;
  8872. case GGML_TYPE_BF16:
  8873. {
  8874. ggml_compute_forward_sum_bf16(params, dst);
  8875. } break;
  8876. default:
  8877. {
  8878. GGML_ABORT("fatal error");
  8879. }
  8880. }
  8881. }
  8882. // ggml_compute_forward_sum_rows
  8883. static void ggml_compute_forward_sum_rows_f32(
  8884. const struct ggml_compute_params * params,
  8885. struct ggml_tensor * dst) {
  8886. const struct ggml_tensor * src0 = dst->src[0];
  8887. if (params->ith != 0) {
  8888. return;
  8889. }
  8890. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8891. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8892. GGML_TENSOR_UNARY_OP_LOCALS
  8893. GGML_ASSERT(ne0 == 1);
  8894. GGML_ASSERT(ne1 == ne01);
  8895. GGML_ASSERT(ne2 == ne02);
  8896. GGML_ASSERT(ne3 == ne03);
  8897. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8898. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8899. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8900. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8901. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8902. float row_sum = 0;
  8903. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8904. dst_row[0] = row_sum;
  8905. }
  8906. }
  8907. }
  8908. }
  8909. static void ggml_compute_forward_sum_rows(
  8910. const struct ggml_compute_params * params,
  8911. struct ggml_tensor * dst) {
  8912. const struct ggml_tensor * src0 = dst->src[0];
  8913. switch (src0->type) {
  8914. case GGML_TYPE_F32:
  8915. {
  8916. ggml_compute_forward_sum_rows_f32(params, dst);
  8917. } break;
  8918. default:
  8919. {
  8920. GGML_ABORT("fatal error");
  8921. }
  8922. }
  8923. }
  8924. // ggml_compute_forward_mean
  8925. static void ggml_compute_forward_mean_f32(
  8926. const struct ggml_compute_params * params,
  8927. struct ggml_tensor * dst) {
  8928. const struct ggml_tensor * src0 = dst->src[0];
  8929. if (params->ith != 0) {
  8930. return;
  8931. }
  8932. assert(src0->nb[0] == sizeof(float));
  8933. GGML_TENSOR_UNARY_OP_LOCALS
  8934. assert(ne0 == 1);
  8935. assert(ne1 == ne01);
  8936. assert(ne2 == ne02);
  8937. assert(ne3 == ne03);
  8938. UNUSED(ne0);
  8939. UNUSED(ne1);
  8940. UNUSED(ne2);
  8941. UNUSED(ne3);
  8942. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8943. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8944. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8945. ggml_vec_sum_f32(ne00,
  8946. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8947. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8948. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8949. }
  8950. }
  8951. }
  8952. }
  8953. static void ggml_compute_forward_mean(
  8954. const struct ggml_compute_params * params,
  8955. struct ggml_tensor * dst) {
  8956. const struct ggml_tensor * src0 = dst->src[0];
  8957. switch (src0->type) {
  8958. case GGML_TYPE_F32:
  8959. {
  8960. ggml_compute_forward_mean_f32(params, dst);
  8961. } break;
  8962. default:
  8963. {
  8964. GGML_ABORT("fatal error");
  8965. }
  8966. }
  8967. }
  8968. // ggml_compute_forward_argmax
  8969. static void ggml_compute_forward_argmax_f32(
  8970. const struct ggml_compute_params * params,
  8971. struct ggml_tensor * dst) {
  8972. const struct ggml_tensor * src0 = dst->src[0];
  8973. if (params->ith != 0) {
  8974. return;
  8975. }
  8976. assert(src0->nb[0] == sizeof(float));
  8977. assert(dst->nb[0] == sizeof(float));
  8978. const int64_t ne00 = src0->ne[0];
  8979. const int64_t ne01 = src0->ne[1];
  8980. const size_t nb01 = src0->nb[1];
  8981. const size_t nb0 = dst->nb[0];
  8982. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8983. float * src = (float *) ((char *) src0->data + i1*nb01);
  8984. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8985. int v = 0;
  8986. ggml_vec_argmax_f32(ne00, &v, src);
  8987. dst_[0] = v;
  8988. }
  8989. }
  8990. static void ggml_compute_forward_argmax(
  8991. const struct ggml_compute_params * params,
  8992. struct ggml_tensor * dst) {
  8993. const struct ggml_tensor * src0 = dst->src[0];
  8994. switch (src0->type) {
  8995. case GGML_TYPE_F32:
  8996. {
  8997. ggml_compute_forward_argmax_f32(params, dst);
  8998. } break;
  8999. default:
  9000. {
  9001. GGML_ABORT("fatal error");
  9002. }
  9003. }
  9004. }
  9005. // ggml_compute_forward_count_equal
  9006. static void ggml_compute_forward_count_equal_i32(
  9007. const struct ggml_compute_params * params,
  9008. struct ggml_tensor * dst) {
  9009. const struct ggml_tensor * src0 = dst->src[0];
  9010. const struct ggml_tensor * src1 = dst->src[1];
  9011. GGML_TENSOR_BINARY_OP_LOCALS;
  9012. GGML_ASSERT(src0->type == GGML_TYPE_I32);
  9013. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9014. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  9015. GGML_ASSERT(ggml_is_scalar(dst));
  9016. GGML_ASSERT(dst->type == GGML_TYPE_I64);
  9017. const int64_t nr = ggml_nrows(src0);
  9018. const int ith = params->ith;
  9019. const int nth = params->nth;
  9020. int64_t * sums = (int64_t *) params->wdata;
  9021. int64_t sum_thread = 0;
  9022. // rows per thread
  9023. const int64_t dr = (nr + nth - 1)/nth;
  9024. // row range for this thread
  9025. const int64_t ir0 = dr*ith;
  9026. const int64_t ir1 = MIN(ir0 + dr, nr);
  9027. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9028. const int64_t i03 = ir / (ne02*ne01);
  9029. const int64_t i02 = (ir - i03*ne03) / ne01;
  9030. const int64_t i01 = ir - i03*ne03 - i02*ne02;
  9031. const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
  9032. const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
  9033. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  9034. const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
  9035. const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
  9036. sum_thread += val0 == val1;
  9037. }
  9038. }
  9039. if (ith != 0) {
  9040. sums[ith] = sum_thread;
  9041. }
  9042. ggml_barrier(params->threadpool);
  9043. if (ith != 0) {
  9044. return;
  9045. }
  9046. for (int ith_other = 1; ith_other < nth; ++ith_other) {
  9047. sum_thread += sums[ith_other];
  9048. }
  9049. *((int64_t *) dst->data) = sum_thread;
  9050. }
  9051. static void ggml_compute_forward_count_equal(
  9052. const struct ggml_compute_params * params,
  9053. struct ggml_tensor * dst) {
  9054. const struct ggml_tensor * src0 = dst->src[0];
  9055. switch (src0->type) {
  9056. case GGML_TYPE_I32:
  9057. {
  9058. ggml_compute_forward_count_equal_i32(params, dst);
  9059. } break;
  9060. default:
  9061. {
  9062. GGML_ABORT("fatal error");
  9063. }
  9064. }
  9065. }
  9066. // ggml_compute_forward_repeat
  9067. static void ggml_compute_forward_repeat_f32(
  9068. const struct ggml_compute_params * params,
  9069. struct ggml_tensor * dst) {
  9070. const struct ggml_tensor * src0 = dst->src[0];
  9071. if (params->ith != 0) {
  9072. return;
  9073. }
  9074. GGML_ASSERT(ggml_can_repeat(src0, dst));
  9075. GGML_TENSOR_UNARY_OP_LOCALS
  9076. // guaranteed to be an integer due to the check in ggml_can_repeat
  9077. const int nr0 = (int)(ne0/ne00);
  9078. const int nr1 = (int)(ne1/ne01);
  9079. const int nr2 = (int)(ne2/ne02);
  9080. const int nr3 = (int)(ne3/ne03);
  9081. // TODO: support for transposed / permuted tensors
  9082. GGML_ASSERT(nb0 == sizeof(float));
  9083. GGML_ASSERT(nb00 == sizeof(float));
  9084. // TODO: maybe this is not optimal?
  9085. for (int i3 = 0; i3 < nr3; i3++) {
  9086. for (int k3 = 0; k3 < ne03; k3++) {
  9087. for (int i2 = 0; i2 < nr2; i2++) {
  9088. for (int k2 = 0; k2 < ne02; k2++) {
  9089. for (int i1 = 0; i1 < nr1; i1++) {
  9090. for (int k1 = 0; k1 < ne01; k1++) {
  9091. for (int i0 = 0; i0 < nr0; i0++) {
  9092. ggml_vec_cpy_f32(ne00,
  9093. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  9094. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  9095. }
  9096. }
  9097. }
  9098. }
  9099. }
  9100. }
  9101. }
  9102. }
  9103. static void ggml_compute_forward_repeat_f16(
  9104. const struct ggml_compute_params * params,
  9105. struct ggml_tensor * dst) {
  9106. const struct ggml_tensor * src0 = dst->src[0];
  9107. if (params->ith != 0) {
  9108. return;
  9109. }
  9110. GGML_ASSERT(ggml_can_repeat(src0, dst));
  9111. GGML_TENSOR_UNARY_OP_LOCALS
  9112. // guaranteed to be an integer due to the check in ggml_can_repeat
  9113. const int nr0 = (int)(ne0/ne00);
  9114. const int nr1 = (int)(ne1/ne01);
  9115. const int nr2 = (int)(ne2/ne02);
  9116. const int nr3 = (int)(ne3/ne03);
  9117. // TODO: support for transposed / permuted tensors
  9118. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9119. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9120. // TODO: maybe this is not optimal?
  9121. for (int i3 = 0; i3 < nr3; i3++) {
  9122. for (int k3 = 0; k3 < ne03; k3++) {
  9123. for (int i2 = 0; i2 < nr2; i2++) {
  9124. for (int k2 = 0; k2 < ne02; k2++) {
  9125. for (int i1 = 0; i1 < nr1; i1++) {
  9126. for (int k1 = 0; k1 < ne01; k1++) {
  9127. for (int i0 = 0; i0 < nr0; i0++) {
  9128. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  9129. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  9130. // ggml_vec_cpy_f16(ne00, y, x)
  9131. for (int i = 0; i < ne00; ++i) {
  9132. y[i] = x[i];
  9133. }
  9134. }
  9135. }
  9136. }
  9137. }
  9138. }
  9139. }
  9140. }
  9141. }
  9142. static void ggml_compute_forward_repeat(
  9143. const struct ggml_compute_params * params,
  9144. struct ggml_tensor * dst) {
  9145. const struct ggml_tensor * src0 = dst->src[0];
  9146. switch (src0->type) {
  9147. case GGML_TYPE_F16:
  9148. case GGML_TYPE_BF16:
  9149. case GGML_TYPE_I16:
  9150. {
  9151. ggml_compute_forward_repeat_f16(params, dst);
  9152. } break;
  9153. case GGML_TYPE_F32:
  9154. case GGML_TYPE_I32:
  9155. {
  9156. ggml_compute_forward_repeat_f32(params, dst);
  9157. } break;
  9158. default:
  9159. {
  9160. GGML_ABORT("fatal error");
  9161. }
  9162. }
  9163. }
  9164. // ggml_compute_forward_repeat_back
  9165. static void ggml_compute_forward_repeat_back_f32(
  9166. const struct ggml_compute_params * params,
  9167. struct ggml_tensor * dst) {
  9168. const struct ggml_tensor * src0 = dst->src[0];
  9169. if (params->ith != 0) {
  9170. return;
  9171. }
  9172. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9173. GGML_TENSOR_UNARY_OP_LOCALS
  9174. // guaranteed to be an integer due to the check in ggml_can_repeat
  9175. const int nr0 = (int)(ne00/ne0);
  9176. const int nr1 = (int)(ne01/ne1);
  9177. const int nr2 = (int)(ne02/ne2);
  9178. const int nr3 = (int)(ne03/ne3);
  9179. // TODO: support for transposed / permuted tensors
  9180. GGML_ASSERT(nb0 == sizeof(float));
  9181. GGML_ASSERT(nb00 == sizeof(float));
  9182. if (ggml_is_contiguous(dst)) {
  9183. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9184. } else {
  9185. for (int k3 = 0; k3 < ne3; k3++) {
  9186. for (int k2 = 0; k2 < ne2; k2++) {
  9187. for (int k1 = 0; k1 < ne1; k1++) {
  9188. ggml_vec_set_f32(ne0,
  9189. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9190. 0);
  9191. }
  9192. }
  9193. }
  9194. }
  9195. // TODO: maybe this is not optimal?
  9196. for (int i3 = 0; i3 < nr3; i3++) {
  9197. for (int k3 = 0; k3 < ne3; k3++) {
  9198. for (int i2 = 0; i2 < nr2; i2++) {
  9199. for (int k2 = 0; k2 < ne2; k2++) {
  9200. for (int i1 = 0; i1 < nr1; i1++) {
  9201. for (int k1 = 0; k1 < ne1; k1++) {
  9202. for (int i0 = 0; i0 < nr0; i0++) {
  9203. ggml_vec_acc_f32(ne0,
  9204. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9205. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9206. }
  9207. }
  9208. }
  9209. }
  9210. }
  9211. }
  9212. }
  9213. }
  9214. static void ggml_compute_forward_repeat_back(
  9215. const struct ggml_compute_params * params,
  9216. struct ggml_tensor * dst) {
  9217. const struct ggml_tensor * src0 = dst->src[0];
  9218. switch (src0->type) {
  9219. case GGML_TYPE_F32:
  9220. {
  9221. ggml_compute_forward_repeat_back_f32(params, dst);
  9222. } break;
  9223. default:
  9224. {
  9225. GGML_ABORT("fatal error");
  9226. }
  9227. }
  9228. }
  9229. // ggml_compute_forward_concat
  9230. static void ggml_compute_forward_concat_f32(
  9231. const struct ggml_compute_params * params,
  9232. struct ggml_tensor * dst) {
  9233. const struct ggml_tensor * src0 = dst->src[0];
  9234. const struct ggml_tensor * src1 = dst->src[1];
  9235. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9236. const int ith = params->ith;
  9237. const int nth = params->nth;
  9238. GGML_TENSOR_BINARY_OP_LOCALS
  9239. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9240. GGML_ASSERT(dim >= 0 && dim < 4);
  9241. int64_t o[4] = {0, 0, 0, 0};
  9242. o[dim] = src0->ne[dim];
  9243. const float * x;
  9244. // TODO: smarter multi-theading
  9245. for (int i3 = 0; i3 < ne3; i3++) {
  9246. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9247. for (int i1 = 0; i1 < ne1; i1++) {
  9248. for (int i0 = 0; i0 < ne0; i0++) {
  9249. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9250. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9251. } else {
  9252. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9253. }
  9254. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9255. *y = *x;
  9256. }
  9257. }
  9258. }
  9259. }
  9260. }
  9261. static void ggml_compute_forward_concat(
  9262. const struct ggml_compute_params * params,
  9263. struct ggml_tensor * dst) {
  9264. const struct ggml_tensor * src0 = dst->src[0];
  9265. switch (src0->type) {
  9266. case GGML_TYPE_F32:
  9267. case GGML_TYPE_I32:
  9268. {
  9269. ggml_compute_forward_concat_f32(params, dst);
  9270. } break;
  9271. default:
  9272. {
  9273. GGML_ABORT("fatal error");
  9274. }
  9275. }
  9276. }
  9277. // ggml_compute_forward_abs
  9278. static void ggml_compute_forward_abs_f32(
  9279. const struct ggml_compute_params * params,
  9280. struct ggml_tensor * dst) {
  9281. const struct ggml_tensor * src0 = dst->src[0];
  9282. if (params->ith != 0) {
  9283. return;
  9284. }
  9285. assert(ggml_is_contiguous_1(src0));
  9286. assert(ggml_is_contiguous_1(dst));
  9287. assert(ggml_are_same_shape(src0, dst));
  9288. const int n = ggml_nrows(src0);
  9289. const int nc = src0->ne[0];
  9290. for (int i = 0; i < n; i++) {
  9291. ggml_vec_abs_f32(nc,
  9292. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9293. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9294. }
  9295. }
  9296. static void ggml_compute_forward_abs(
  9297. const struct ggml_compute_params * params,
  9298. struct ggml_tensor * dst) {
  9299. const struct ggml_tensor * src0 = dst->src[0];
  9300. switch (src0->type) {
  9301. case GGML_TYPE_F32:
  9302. {
  9303. ggml_compute_forward_abs_f32(params, dst);
  9304. } break;
  9305. default:
  9306. {
  9307. GGML_ABORT("fatal error");
  9308. }
  9309. }
  9310. }
  9311. // ggml_compute_forward_sgn
  9312. static void ggml_compute_forward_sgn_f32(
  9313. const struct ggml_compute_params * params,
  9314. struct ggml_tensor * dst) {
  9315. const struct ggml_tensor * src0 = dst->src[0];
  9316. if (params->ith != 0) {
  9317. return;
  9318. }
  9319. assert(ggml_is_contiguous_1(src0));
  9320. assert(ggml_is_contiguous_1(dst));
  9321. assert(ggml_are_same_shape(src0, dst));
  9322. const int n = ggml_nrows(src0);
  9323. const int nc = src0->ne[0];
  9324. for (int i = 0; i < n; i++) {
  9325. ggml_vec_sgn_f32(nc,
  9326. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9327. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9328. }
  9329. }
  9330. static void ggml_compute_forward_sgn(
  9331. const struct ggml_compute_params * params,
  9332. struct ggml_tensor * dst) {
  9333. const struct ggml_tensor * src0 = dst->src[0];
  9334. switch (src0->type) {
  9335. case GGML_TYPE_F32:
  9336. {
  9337. ggml_compute_forward_sgn_f32(params, dst);
  9338. } break;
  9339. default:
  9340. {
  9341. GGML_ABORT("fatal error");
  9342. }
  9343. }
  9344. }
  9345. // ggml_compute_forward_neg
  9346. static void ggml_compute_forward_neg_f32(
  9347. const struct ggml_compute_params * params,
  9348. struct ggml_tensor * dst) {
  9349. const struct ggml_tensor * src0 = dst->src[0];
  9350. if (params->ith != 0) {
  9351. return;
  9352. }
  9353. assert(ggml_is_contiguous_1(src0));
  9354. assert(ggml_is_contiguous_1(dst));
  9355. assert(ggml_are_same_shape(src0, dst));
  9356. const int n = ggml_nrows(src0);
  9357. const int nc = src0->ne[0];
  9358. for (int i = 0; i < n; i++) {
  9359. ggml_vec_neg_f32(nc,
  9360. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9361. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9362. }
  9363. }
  9364. static void ggml_compute_forward_neg(
  9365. const struct ggml_compute_params * params,
  9366. struct ggml_tensor * dst) {
  9367. const struct ggml_tensor * src0 = dst->src[0];
  9368. switch (src0->type) {
  9369. case GGML_TYPE_F32:
  9370. {
  9371. ggml_compute_forward_neg_f32(params, dst);
  9372. } break;
  9373. default:
  9374. {
  9375. GGML_ABORT("fatal error");
  9376. }
  9377. }
  9378. }
  9379. // ggml_compute_forward_step
  9380. static void ggml_compute_forward_step_f32(
  9381. const struct ggml_compute_params * params,
  9382. struct ggml_tensor * dst) {
  9383. const struct ggml_tensor * src0 = dst->src[0];
  9384. if (params->ith != 0) {
  9385. return;
  9386. }
  9387. assert(ggml_is_contiguous_1(src0));
  9388. assert(ggml_is_contiguous_1(dst));
  9389. assert(ggml_are_same_shape(src0, dst));
  9390. const int n = ggml_nrows(src0);
  9391. const int nc = src0->ne[0];
  9392. for (int i = 0; i < n; i++) {
  9393. ggml_vec_step_f32(nc,
  9394. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9395. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9396. }
  9397. }
  9398. static void ggml_compute_forward_step(
  9399. const struct ggml_compute_params * params,
  9400. struct ggml_tensor * dst) {
  9401. const struct ggml_tensor * src0 = dst->src[0];
  9402. switch (src0->type) {
  9403. case GGML_TYPE_F32:
  9404. {
  9405. ggml_compute_forward_step_f32(params, dst);
  9406. } break;
  9407. default:
  9408. {
  9409. GGML_ABORT("fatal error");
  9410. }
  9411. }
  9412. }
  9413. // ggml_compute_forward_tanh
  9414. static void ggml_compute_forward_tanh_f32(
  9415. const struct ggml_compute_params * params,
  9416. struct ggml_tensor * dst) {
  9417. const struct ggml_tensor * src0 = dst->src[0];
  9418. if (params->ith != 0) {
  9419. return;
  9420. }
  9421. assert(ggml_is_contiguous_1(src0));
  9422. assert(ggml_is_contiguous_1(dst));
  9423. assert(ggml_are_same_shape(src0, dst));
  9424. const int n = ggml_nrows(src0);
  9425. const int nc = src0->ne[0];
  9426. for (int i = 0; i < n; i++) {
  9427. ggml_vec_tanh_f32(nc,
  9428. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9429. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9430. }
  9431. }
  9432. static void ggml_compute_forward_tanh(
  9433. const struct ggml_compute_params * params,
  9434. struct ggml_tensor * dst) {
  9435. const struct ggml_tensor * src0 = dst->src[0];
  9436. switch (src0->type) {
  9437. case GGML_TYPE_F32:
  9438. {
  9439. ggml_compute_forward_tanh_f32(params, dst);
  9440. } break;
  9441. default:
  9442. {
  9443. GGML_ABORT("fatal error");
  9444. }
  9445. }
  9446. }
  9447. // ggml_compute_forward_elu
  9448. static void ggml_compute_forward_elu_f32(
  9449. const struct ggml_compute_params * params,
  9450. struct ggml_tensor * dst) {
  9451. const struct ggml_tensor * src0 = dst->src[0];
  9452. if (params->ith != 0) {
  9453. return;
  9454. }
  9455. assert(ggml_is_contiguous_1(src0));
  9456. assert(ggml_is_contiguous_1(dst));
  9457. assert(ggml_are_same_shape(src0, dst));
  9458. const int n = ggml_nrows(src0);
  9459. const int nc = src0->ne[0];
  9460. for (int i = 0; i < n; i++) {
  9461. ggml_vec_elu_f32(nc,
  9462. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9463. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9464. }
  9465. }
  9466. static void ggml_compute_forward_elu(
  9467. const struct ggml_compute_params * params,
  9468. struct ggml_tensor * dst) {
  9469. const struct ggml_tensor * src0 = dst->src[0];
  9470. switch (src0->type) {
  9471. case GGML_TYPE_F32:
  9472. {
  9473. ggml_compute_forward_elu_f32(params, dst);
  9474. } break;
  9475. default:
  9476. {
  9477. GGML_ABORT("fatal error");
  9478. }
  9479. }
  9480. }
  9481. // ggml_compute_forward_relu
  9482. static void ggml_compute_forward_relu_f32(
  9483. const struct ggml_compute_params * params,
  9484. struct ggml_tensor * dst) {
  9485. const struct ggml_tensor * src0 = dst->src[0];
  9486. if (params->ith != 0) {
  9487. return;
  9488. }
  9489. assert(ggml_is_contiguous_1(src0));
  9490. assert(ggml_is_contiguous_1(dst));
  9491. assert(ggml_are_same_shape(src0, dst));
  9492. const int n = ggml_nrows(src0);
  9493. const int nc = src0->ne[0];
  9494. for (int i = 0; i < n; i++) {
  9495. ggml_vec_relu_f32(nc,
  9496. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9497. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9498. }
  9499. }
  9500. static void ggml_compute_forward_relu(
  9501. const struct ggml_compute_params * params,
  9502. struct ggml_tensor * dst) {
  9503. const struct ggml_tensor * src0 = dst->src[0];
  9504. switch (src0->type) {
  9505. case GGML_TYPE_F32:
  9506. {
  9507. ggml_compute_forward_relu_f32(params, dst);
  9508. } break;
  9509. default:
  9510. {
  9511. GGML_ABORT("fatal error");
  9512. }
  9513. }
  9514. }
  9515. // ggml_compute_forward_sigmoid
  9516. static void ggml_compute_forward_sigmoid_f32(
  9517. const struct ggml_compute_params * params,
  9518. struct ggml_tensor * dst) {
  9519. const struct ggml_tensor * src0 = dst->src[0];
  9520. if (params->ith != 0) {
  9521. return;
  9522. }
  9523. assert(ggml_is_contiguous_1(src0));
  9524. assert(ggml_is_contiguous_1(dst));
  9525. assert(ggml_are_same_shape(src0, dst));
  9526. const int n = ggml_nrows(src0);
  9527. const int nc = src0->ne[0];
  9528. for (int i = 0; i < n; i++) {
  9529. ggml_vec_sigmoid_f32(nc,
  9530. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9531. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9532. }
  9533. }
  9534. static void ggml_compute_forward_sigmoid(
  9535. const struct ggml_compute_params * params,
  9536. struct ggml_tensor * dst) {
  9537. const struct ggml_tensor * src0 = dst->src[0];
  9538. switch (src0->type) {
  9539. case GGML_TYPE_F32:
  9540. {
  9541. ggml_compute_forward_sigmoid_f32(params, dst);
  9542. } break;
  9543. default:
  9544. {
  9545. GGML_ABORT("fatal error");
  9546. }
  9547. }
  9548. }
  9549. // ggml_compute_forward_gelu
  9550. static void ggml_compute_forward_gelu_f32(
  9551. const struct ggml_compute_params * params,
  9552. struct ggml_tensor * dst) {
  9553. const struct ggml_tensor * src0 = dst->src[0];
  9554. assert(ggml_is_contiguous_1(src0));
  9555. assert(ggml_is_contiguous_1(dst));
  9556. assert(ggml_are_same_shape(src0, dst));
  9557. const int ith = params->ith;
  9558. const int nth = params->nth;
  9559. const int nc = src0->ne[0];
  9560. const int nr = ggml_nrows(src0);
  9561. // rows per thread
  9562. const int dr = (nr + nth - 1)/nth;
  9563. // row range for this thread
  9564. const int ir0 = dr*ith;
  9565. const int ir1 = MIN(ir0 + dr, nr);
  9566. for (int i1 = ir0; i1 < ir1; i1++) {
  9567. ggml_vec_gelu_f32(nc,
  9568. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9569. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9570. #ifndef NDEBUG
  9571. for (int k = 0; k < nc; k++) {
  9572. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9573. UNUSED(x);
  9574. assert(!isnan(x));
  9575. assert(!isinf(x));
  9576. }
  9577. #endif
  9578. }
  9579. }
  9580. static void ggml_compute_forward_gelu(
  9581. const struct ggml_compute_params * params,
  9582. struct ggml_tensor * dst) {
  9583. const struct ggml_tensor * src0 = dst->src[0];
  9584. switch (src0->type) {
  9585. case GGML_TYPE_F32:
  9586. {
  9587. ggml_compute_forward_gelu_f32(params, dst);
  9588. } break;
  9589. default:
  9590. {
  9591. GGML_ABORT("fatal error");
  9592. }
  9593. }
  9594. }
  9595. // ggml_compute_forward_gelu_quick
  9596. static void ggml_compute_forward_gelu_quick_f32(
  9597. const struct ggml_compute_params * params,
  9598. struct ggml_tensor * dst) {
  9599. const struct ggml_tensor * src0 = dst->src[0];
  9600. assert(ggml_is_contiguous_1(src0));
  9601. assert(ggml_is_contiguous_1(dst));
  9602. assert(ggml_are_same_shape(src0, dst));
  9603. const int ith = params->ith;
  9604. const int nth = params->nth;
  9605. const int nc = src0->ne[0];
  9606. const int nr = ggml_nrows(src0);
  9607. // rows per thread
  9608. const int dr = (nr + nth - 1)/nth;
  9609. // row range for this thread
  9610. const int ir0 = dr*ith;
  9611. const int ir1 = MIN(ir0 + dr, nr);
  9612. for (int i1 = ir0; i1 < ir1; i1++) {
  9613. ggml_vec_gelu_quick_f32(nc,
  9614. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9615. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9616. #ifndef NDEBUG
  9617. for (int k = 0; k < nc; k++) {
  9618. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9619. UNUSED(x);
  9620. assert(!isnan(x));
  9621. assert(!isinf(x));
  9622. }
  9623. #endif
  9624. }
  9625. }
  9626. static void ggml_compute_forward_gelu_quick(
  9627. const struct ggml_compute_params * params,
  9628. struct ggml_tensor * dst) {
  9629. const struct ggml_tensor * src0 = dst->src[0];
  9630. switch (src0->type) {
  9631. case GGML_TYPE_F32:
  9632. {
  9633. ggml_compute_forward_gelu_quick_f32(params, dst);
  9634. } break;
  9635. default:
  9636. {
  9637. GGML_ABORT("fatal error");
  9638. }
  9639. }
  9640. }
  9641. // ggml_compute_forward_silu
  9642. static void ggml_compute_forward_silu_f32(
  9643. const struct ggml_compute_params * params,
  9644. struct ggml_tensor * dst) {
  9645. const struct ggml_tensor * src0 = dst->src[0];
  9646. assert(ggml_is_contiguous_1(src0));
  9647. assert(ggml_is_contiguous_1(dst));
  9648. assert(ggml_are_same_shape(src0, dst));
  9649. const int ith = params->ith;
  9650. const int nth = params->nth;
  9651. const int nc = src0->ne[0];
  9652. const int nr = ggml_nrows(src0);
  9653. // rows per thread
  9654. const int dr = (nr + nth - 1)/nth;
  9655. // row range for this thread
  9656. const int ir0 = dr*ith;
  9657. const int ir1 = MIN(ir0 + dr, nr);
  9658. for (int i1 = ir0; i1 < ir1; i1++) {
  9659. ggml_vec_silu_f32(nc,
  9660. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9661. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9662. #ifndef NDEBUG
  9663. for (int k = 0; k < nc; k++) {
  9664. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9665. UNUSED(x);
  9666. assert(!isnan(x));
  9667. assert(!isinf(x));
  9668. }
  9669. #endif
  9670. }
  9671. }
  9672. static void ggml_compute_forward_silu(
  9673. const struct ggml_compute_params * params,
  9674. struct ggml_tensor * dst) {
  9675. const struct ggml_tensor * src0 = dst->src[0];
  9676. switch (src0->type) {
  9677. case GGML_TYPE_F32:
  9678. {
  9679. ggml_compute_forward_silu_f32(params, dst);
  9680. } break;
  9681. default:
  9682. {
  9683. GGML_ABORT("fatal error");
  9684. }
  9685. }
  9686. }
  9687. // ggml_compute_forward_leaky_relu
  9688. static void ggml_compute_forward_leaky_relu_f32(
  9689. const struct ggml_compute_params * params,
  9690. struct ggml_tensor * dst) {
  9691. const struct ggml_tensor * src0 = dst->src[0];
  9692. if (params->ith != 0) {
  9693. return;
  9694. }
  9695. assert(ggml_is_contiguous_1(src0));
  9696. assert(ggml_is_contiguous_1(dst));
  9697. assert(ggml_are_same_shape(src0, dst));
  9698. const int n = ggml_nrows(src0);
  9699. const int nc = src0->ne[0];
  9700. float negative_slope;
  9701. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9702. assert(dst->nb[0] == sizeof(float));
  9703. assert(src0->nb[0] == sizeof(float));
  9704. for (int i = 0; i < n; i++) {
  9705. ggml_vec_leaky_relu_f32(nc,
  9706. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9707. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9708. }
  9709. }
  9710. static void ggml_compute_forward_leaky_relu(
  9711. const struct ggml_compute_params * params,
  9712. struct ggml_tensor * dst) {
  9713. const struct ggml_tensor * src0 = dst->src[0];
  9714. switch (src0->type) {
  9715. case GGML_TYPE_F32:
  9716. {
  9717. ggml_compute_forward_leaky_relu_f32(params, dst);
  9718. } break;
  9719. default:
  9720. {
  9721. GGML_ABORT("fatal error");
  9722. }
  9723. }
  9724. }
  9725. // ggml_compute_forward_silu_back
  9726. static void ggml_compute_forward_silu_back_f32(
  9727. const struct ggml_compute_params * params,
  9728. struct ggml_tensor * dst) {
  9729. const struct ggml_tensor * src0 = dst->src[0];
  9730. const struct ggml_tensor * grad = dst->src[1];
  9731. assert(ggml_is_contiguous_1(grad));
  9732. assert(ggml_is_contiguous_1(src0));
  9733. assert(ggml_is_contiguous_1(dst));
  9734. assert(ggml_are_same_shape(src0, dst));
  9735. assert(ggml_are_same_shape(src0, grad));
  9736. const int ith = params->ith;
  9737. const int nth = params->nth;
  9738. const int nc = src0->ne[0];
  9739. const int nr = ggml_nrows(src0);
  9740. // rows per thread
  9741. const int dr = (nr + nth - 1)/nth;
  9742. // row range for this thread
  9743. const int ir0 = dr*ith;
  9744. const int ir1 = MIN(ir0 + dr, nr);
  9745. for (int i1 = ir0; i1 < ir1; i1++) {
  9746. ggml_vec_silu_backward_f32(nc,
  9747. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9748. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9749. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9750. #ifndef NDEBUG
  9751. for (int k = 0; k < nc; k++) {
  9752. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9753. UNUSED(x);
  9754. assert(!isnan(x));
  9755. assert(!isinf(x));
  9756. }
  9757. #endif
  9758. }
  9759. }
  9760. static void ggml_compute_forward_silu_back(
  9761. const struct ggml_compute_params * params,
  9762. struct ggml_tensor * dst) {
  9763. const struct ggml_tensor * src0 = dst->src[0];
  9764. switch (src0->type) {
  9765. case GGML_TYPE_F32:
  9766. {
  9767. ggml_compute_forward_silu_back_f32(params, dst);
  9768. } break;
  9769. default:
  9770. {
  9771. GGML_ABORT("fatal error");
  9772. }
  9773. }
  9774. }
  9775. static void ggml_compute_forward_hardswish_f32(
  9776. const struct ggml_compute_params * params,
  9777. struct ggml_tensor * dst) {
  9778. const struct ggml_tensor * src0 = dst->src[0];
  9779. if (params->ith != 0) {
  9780. return;
  9781. }
  9782. assert(ggml_is_contiguous_1(src0));
  9783. assert(ggml_is_contiguous_1(dst));
  9784. assert(ggml_are_same_shape(src0, dst));
  9785. const int n = ggml_nrows(src0);
  9786. const int nc = src0->ne[0];
  9787. for (int i = 0; i < n; i++) {
  9788. ggml_vec_hardswish_f32(nc,
  9789. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9790. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9791. }
  9792. }
  9793. static void ggml_compute_forward_hardswish(
  9794. const struct ggml_compute_params * params,
  9795. struct ggml_tensor * dst) {
  9796. const struct ggml_tensor * src0 = dst->src[0];
  9797. switch (src0->type) {
  9798. case GGML_TYPE_F32:
  9799. {
  9800. ggml_compute_forward_hardswish_f32(params, dst);
  9801. } break;
  9802. default:
  9803. {
  9804. GGML_ABORT("fatal error");
  9805. }
  9806. }
  9807. }
  9808. static void ggml_compute_forward_hardsigmoid_f32(
  9809. const struct ggml_compute_params * params,
  9810. struct ggml_tensor * dst) {
  9811. const struct ggml_tensor * src0 = dst->src[0];
  9812. if (params->ith != 0) {
  9813. return;
  9814. }
  9815. assert(ggml_is_contiguous_1(src0));
  9816. assert(ggml_is_contiguous_1(dst));
  9817. assert(ggml_are_same_shape(src0, dst));
  9818. const int n = ggml_nrows(src0);
  9819. const int nc = src0->ne[0];
  9820. for (int i = 0; i < n; i++) {
  9821. ggml_vec_hardsigmoid_f32(nc,
  9822. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9823. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9824. }
  9825. }
  9826. static void ggml_compute_forward_hardsigmoid(
  9827. const struct ggml_compute_params * params,
  9828. struct ggml_tensor * dst) {
  9829. const struct ggml_tensor * src0 = dst->src[0];
  9830. switch (src0->type) {
  9831. case GGML_TYPE_F32:
  9832. {
  9833. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9834. } break;
  9835. default:
  9836. {
  9837. GGML_ABORT("fatal error");
  9838. }
  9839. }
  9840. }
  9841. static void ggml_compute_forward_exp_f32(
  9842. const struct ggml_compute_params * params,
  9843. struct ggml_tensor * dst) {
  9844. const struct ggml_tensor * src0 = dst->src[0];
  9845. if (params->ith != 0) {
  9846. return;
  9847. }
  9848. assert(ggml_is_contiguous_1(src0));
  9849. assert(ggml_is_contiguous_1(dst));
  9850. assert(ggml_are_same_shape(src0, dst));
  9851. const int n = ggml_nrows(src0);
  9852. const int nc = src0->ne[0];
  9853. for (int i = 0; i < n; i++) {
  9854. ggml_vec_exp_f32(nc,
  9855. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9856. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9857. }
  9858. }
  9859. static void ggml_compute_forward_exp(
  9860. const struct ggml_compute_params * params,
  9861. struct ggml_tensor * dst) {
  9862. const struct ggml_tensor * src0 = dst->src[0];
  9863. switch (src0->type) {
  9864. case GGML_TYPE_F32:
  9865. {
  9866. ggml_compute_forward_exp_f32(params, dst);
  9867. } break;
  9868. default:
  9869. {
  9870. GGML_ABORT("fatal error");
  9871. }
  9872. }
  9873. }
  9874. // ggml_compute_forward_norm
  9875. static void ggml_compute_forward_norm_f32(
  9876. const struct ggml_compute_params * params,
  9877. struct ggml_tensor * dst) {
  9878. const struct ggml_tensor * src0 = dst->src[0];
  9879. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9880. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9881. const int ith = params->ith;
  9882. const int nth = params->nth;
  9883. GGML_TENSOR_UNARY_OP_LOCALS
  9884. float eps;
  9885. memcpy(&eps, dst->op_params, sizeof(float));
  9886. GGML_ASSERT(eps > 0.0f);
  9887. // TODO: optimize
  9888. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9889. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9890. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9891. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9892. ggml_float sum = 0.0;
  9893. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9894. sum += (ggml_float)x[i00];
  9895. }
  9896. float mean = sum/ne00;
  9897. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9898. ggml_float sum2 = 0.0;
  9899. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9900. float v = x[i00] - mean;
  9901. y[i00] = v;
  9902. sum2 += (ggml_float)(v*v);
  9903. }
  9904. float variance = sum2/ne00;
  9905. const float scale = 1.0f/sqrtf(variance + eps);
  9906. ggml_vec_scale_f32(ne00, y, scale);
  9907. }
  9908. }
  9909. }
  9910. }
  9911. static void ggml_compute_forward_norm(
  9912. const struct ggml_compute_params * params,
  9913. struct ggml_tensor * dst) {
  9914. const struct ggml_tensor * src0 = dst->src[0];
  9915. switch (src0->type) {
  9916. case GGML_TYPE_F32:
  9917. {
  9918. ggml_compute_forward_norm_f32(params, dst);
  9919. } break;
  9920. default:
  9921. {
  9922. GGML_ABORT("fatal error");
  9923. }
  9924. }
  9925. }
  9926. // ggml_compute_forward_group_rms_norm
  9927. static void ggml_compute_forward_rms_norm_f32(
  9928. const struct ggml_compute_params * params,
  9929. struct ggml_tensor * dst) {
  9930. const struct ggml_tensor * src0 = dst->src[0];
  9931. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9932. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9933. const int ith = params->ith;
  9934. const int nth = params->nth;
  9935. GGML_TENSOR_UNARY_OP_LOCALS
  9936. float eps;
  9937. memcpy(&eps, dst->op_params, sizeof(float));
  9938. GGML_ASSERT(eps > 0.0f);
  9939. // TODO: optimize
  9940. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9941. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9942. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9943. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9944. ggml_float sum = 0.0;
  9945. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9946. sum += (ggml_float)(x[i00] * x[i00]);
  9947. }
  9948. const float mean = sum/ne00;
  9949. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9950. memcpy(y, x, ne00 * sizeof(float));
  9951. // for (int i00 = 0; i00 < ne00; i00++) {
  9952. // y[i00] = x[i00];
  9953. // }
  9954. const float scale = 1.0f/sqrtf(mean + eps);
  9955. ggml_vec_scale_f32(ne00, y, scale);
  9956. }
  9957. }
  9958. }
  9959. }
  9960. static void ggml_compute_forward_rms_norm(
  9961. const struct ggml_compute_params * params,
  9962. struct ggml_tensor * dst) {
  9963. const struct ggml_tensor * src0 = dst->src[0];
  9964. switch (src0->type) {
  9965. case GGML_TYPE_F32:
  9966. {
  9967. ggml_compute_forward_rms_norm_f32(params, dst);
  9968. } break;
  9969. default:
  9970. {
  9971. GGML_ABORT("fatal error");
  9972. }
  9973. }
  9974. }
  9975. static void ggml_compute_forward_rms_norm_back_f32(
  9976. const struct ggml_compute_params * params,
  9977. struct ggml_tensor * dst) {
  9978. const struct ggml_tensor * src0 = dst->src[0];
  9979. const struct ggml_tensor * src1 = dst->src[1];
  9980. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9981. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9982. const int ith = params->ith;
  9983. const int nth = params->nth;
  9984. GGML_TENSOR_BINARY_OP_LOCALS
  9985. float eps;
  9986. memcpy(&eps, dst->op_params, sizeof(float));
  9987. // TODO: optimize
  9988. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9989. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9990. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9991. // src1 is same shape as src0 => same indices
  9992. const int64_t i11 = i01;
  9993. const int64_t i12 = i02;
  9994. const int64_t i13 = i03;
  9995. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9996. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9997. ggml_float sum_xx = 0.0;
  9998. ggml_float sum_xdz = 0.0;
  9999. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10000. sum_xx += (ggml_float)(x[i00] * x[i00]);
  10001. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  10002. }
  10003. //const float mean = (float)(sum_xx)/ne00;
  10004. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  10005. const float sum_eps = (float)(sum_xx) + eps*ne00;
  10006. //const float mean_xdz = (float)(sum_xdz)/ne00;
  10007. // we could cache rms from forward pass to improve performance.
  10008. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  10009. //const float rms = sqrtf(mean_eps);
  10010. const float rrms = 1.0f / sqrtf(mean_eps);
  10011. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  10012. {
  10013. // z = rms_norm(x)
  10014. //
  10015. // rms_norm(src0) =
  10016. // scale(
  10017. // src0,
  10018. // div(
  10019. // 1,
  10020. // sqrt(
  10021. // add(
  10022. // scale(
  10023. // sum(
  10024. // sqr(
  10025. // src0)),
  10026. // (1.0/N)),
  10027. // eps))));
  10028. // postorder:
  10029. // ## op args grad
  10030. // 00 param src0 grad[#00]
  10031. // 01 const 1
  10032. // 02 sqr (#00) grad[#02]
  10033. // 03 sum (#02) grad[#03]
  10034. // 04 const 1/N
  10035. // 05 scale (#03, #04) grad[#05]
  10036. // 06 const eps
  10037. // 07 add (#05, #06) grad[#07]
  10038. // 08 sqrt (#07) grad[#08]
  10039. // 09 div (#01,#08) grad[#09]
  10040. // 10 scale (#00,#09) grad[#10]
  10041. //
  10042. // backward pass, given grad[#10]
  10043. // #10: scale
  10044. // grad[#00] += scale(grad[#10],#09)
  10045. // grad[#09] += sum(mul(grad[#10],#00))
  10046. // #09: div
  10047. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  10048. // #08: sqrt
  10049. // grad[#07] += mul(grad[#08], div(0.5, #08))
  10050. // #07: add
  10051. // grad[#05] += grad[#07]
  10052. // #05: scale
  10053. // grad[#03] += scale(grad[#05],#04)
  10054. // #03: sum
  10055. // grad[#02] += repeat(grad[#03], #02)
  10056. // #02:
  10057. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  10058. //
  10059. // substitute and simplify:
  10060. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  10061. // grad[#02] = repeat(grad[#03], #02)
  10062. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  10063. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  10064. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  10065. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  10066. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  10067. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  10068. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  10069. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  10070. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  10071. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  10072. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  10073. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  10074. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  10075. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  10076. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  10077. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  10078. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  10079. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  10080. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  10081. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  10082. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  10083. // a = b*c + d*e
  10084. // a = b*c*f/f + d*e*f/f
  10085. // a = (b*c*f + d*e*f)*(1/f)
  10086. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  10087. // a = (b + d*e/c)*c
  10088. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  10089. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  10090. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  10091. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  10092. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  10093. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  10094. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  10095. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  10096. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10097. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10098. }
  10099. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10100. // post-order:
  10101. // dx := x
  10102. // dx := scale(dx,-mean_xdz/mean_eps)
  10103. // dx := add(dx, dz)
  10104. // dx := scale(dx, rrms)
  10105. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  10106. ggml_vec_cpy_f32 (ne00, dx, x);
  10107. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  10108. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  10109. ggml_vec_acc_f32 (ne00, dx, dz);
  10110. ggml_vec_scale_f32(ne00, dx, rrms);
  10111. }
  10112. }
  10113. }
  10114. }
  10115. static void ggml_compute_forward_rms_norm_back(
  10116. const struct ggml_compute_params * params,
  10117. struct ggml_tensor * dst) {
  10118. const struct ggml_tensor * src0 = dst->src[0];
  10119. switch (src0->type) {
  10120. case GGML_TYPE_F32:
  10121. {
  10122. ggml_compute_forward_rms_norm_back_f32(params, dst);
  10123. } break;
  10124. default:
  10125. {
  10126. GGML_ABORT("fatal error");
  10127. }
  10128. }
  10129. }
  10130. // ggml_compute_forward_group_norm
  10131. static void ggml_compute_forward_group_norm_f32(
  10132. const struct ggml_compute_params * params,
  10133. struct ggml_tensor * dst) {
  10134. const struct ggml_tensor * src0 = dst->src[0];
  10135. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10136. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10137. const int ith = params->ith;
  10138. const int nth = params->nth;
  10139. GGML_TENSOR_UNARY_OP_LOCALS
  10140. // TODO: optimize
  10141. float eps;
  10142. memcpy(&eps, dst->op_params + 1, sizeof(float));
  10143. int n_channels = src0->ne[2];
  10144. int n_groups = dst->op_params[0];
  10145. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  10146. for (int i = ith; i < n_groups; i += nth) {
  10147. int start = i * n_channels_per_group;
  10148. int end = start + n_channels_per_group;
  10149. if (end > n_channels) {
  10150. end = n_channels;
  10151. }
  10152. int step = end - start;
  10153. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10154. ggml_float sum = 0.0;
  10155. for (int64_t i02 = start; i02 < end; i02++) {
  10156. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10157. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10158. ggml_float sumr = 0.0;
  10159. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10160. sumr += (ggml_float)x[i00];
  10161. }
  10162. sum += sumr;
  10163. }
  10164. }
  10165. const float mean = sum / (ne00 * ne01 * step);
  10166. ggml_float sum2 = 0.0;
  10167. for (int64_t i02 = start; i02 < end; i02++) {
  10168. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10169. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10170. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10171. ggml_float sumr = 0.0;
  10172. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10173. float v = x[i00] - mean;
  10174. y[i00] = v;
  10175. sumr += (ggml_float)(v * v);
  10176. }
  10177. sum2 += sumr;
  10178. }
  10179. }
  10180. const float variance = sum2 / (ne00 * ne01 * step);
  10181. const float scale = 1.0f / sqrtf(variance + eps);
  10182. for (int64_t i02 = start; i02 < end; i02++) {
  10183. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10184. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10185. ggml_vec_scale_f32(ne00, y, scale);
  10186. }
  10187. }
  10188. }
  10189. }
  10190. }
  10191. static void ggml_compute_forward_group_norm(
  10192. const struct ggml_compute_params * params,
  10193. struct ggml_tensor * dst) {
  10194. const struct ggml_tensor * src0 = dst->src[0];
  10195. switch (src0->type) {
  10196. case GGML_TYPE_F32:
  10197. {
  10198. ggml_compute_forward_group_norm_f32(params, dst);
  10199. } break;
  10200. default:
  10201. {
  10202. GGML_ABORT("fatal error");
  10203. }
  10204. }
  10205. }
  10206. // ggml_compute_forward_mul_mat
  10207. static void ggml_compute_forward_mul_mat_one_chunk(
  10208. const struct ggml_compute_params * params,
  10209. struct ggml_tensor * dst,
  10210. const int64_t num_rows_per_vec_dot,
  10211. const int64_t ir0_start,
  10212. const int64_t ir0_end,
  10213. const int64_t ir1_start,
  10214. const int64_t ir1_end) {
  10215. const struct ggml_tensor * src0 = dst->src[0];
  10216. const struct ggml_tensor * src1 = dst->src[1];
  10217. GGML_TENSOR_BINARY_OP_LOCALS
  10218. const enum ggml_type type = src0->type;
  10219. const bool src1_cont = ggml_is_contiguous(src1);
  10220. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10221. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10222. // broadcast factors
  10223. const int64_t r2 = ne12 / ne02;
  10224. const int64_t r3 = ne13 / ne03;
  10225. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10226. // threads with no work simply yield (not sure if it helps)
  10227. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10228. return;
  10229. }
  10230. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10231. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10232. assert(ne12 % ne02 == 0);
  10233. assert(ne13 % ne03 == 0);
  10234. // block-tiling attempt
  10235. const int64_t blck_0 = 16;
  10236. const int64_t blck_1 = 16;
  10237. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10238. // attempt to reduce false-sharing (does not seem to make a difference)
  10239. // 16 * 2, accounting for mmla kernels
  10240. float tmp[32];
  10241. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10242. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10243. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10244. const int64_t i13 = (ir1 / (ne12 * ne1));
  10245. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10246. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10247. // broadcast src0 into src1
  10248. const int64_t i03 = i13 / r3;
  10249. const int64_t i02 = i12 / r2;
  10250. const int64_t i1 = i11;
  10251. const int64_t i2 = i12;
  10252. const int64_t i3 = i13;
  10253. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10254. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10255. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10256. // the original src1 data pointer, so we should index using the indices directly
  10257. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10258. const char * src1_col = (const char*)wdata +
  10259. (src1_cont || src1->type != vec_dot_type
  10260. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10261. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10262. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10263. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10264. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10265. //}
  10266. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10267. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10268. }
  10269. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10270. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10271. }
  10272. }
  10273. }
  10274. }
  10275. }
  10276. static void ggml_compute_forward_mul_mat(
  10277. const struct ggml_compute_params * params,
  10278. struct ggml_tensor * dst) {
  10279. const struct ggml_tensor * src0 = dst->src[0];
  10280. const struct ggml_tensor * src1 = dst->src[1];
  10281. GGML_TENSOR_BINARY_OP_LOCALS
  10282. const int ith = params->ith;
  10283. const int nth = params->nth;
  10284. const enum ggml_type type = src0->type;
  10285. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10286. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10287. ggml_from_float_to_mat_t const from_float_to_mat = type_traits[vec_dot_type].from_float_to_mat;
  10288. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10289. int64_t const matmul_num_cols = type_traits[type].ncols;
  10290. int64_t const blck_size_interleave = type_traits[type].blck_size_interleave;
  10291. ggml_gemv_t const gemv = type_traits[type].gemv;
  10292. ggml_gemm_t const gemm = type_traits[type].gemm;
  10293. GGML_ASSERT(ne0 == ne01);
  10294. GGML_ASSERT(ne1 == ne11);
  10295. GGML_ASSERT(ne2 == ne12);
  10296. GGML_ASSERT(ne3 == ne13);
  10297. // we don't support permuted src0 or src1
  10298. GGML_ASSERT(nb00 == ggml_type_size(type));
  10299. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10300. // dst cannot be transposed or permuted
  10301. GGML_ASSERT(nb0 == sizeof(float));
  10302. GGML_ASSERT(nb0 <= nb1);
  10303. GGML_ASSERT(nb1 <= nb2);
  10304. GGML_ASSERT(nb2 <= nb3);
  10305. // nb01 >= nb00 - src0 is not transposed
  10306. // compute by src0 rows
  10307. #if GGML_USE_LLAMAFILE
  10308. // broadcast factors
  10309. const int64_t r2 = ne12 / ne02;
  10310. const int64_t r3 = ne13 / ne03;
  10311. const bool src1_cont = ggml_is_contiguous(src1);
  10312. if (src1_cont) {
  10313. for (int64_t i13 = 0; i13 < ne13; i13++)
  10314. for (int64_t i12 = 0; i12 < ne12; i12++)
  10315. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10316. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10317. nb01/ggml_type_size(src0->type),
  10318. (const char *)src1->data + i12*nb12 + i13*nb13,
  10319. nb11/ggml_type_size(src1->type),
  10320. (char *)dst->data + i12*nb2 + i13*nb3,
  10321. nb1/ggml_type_size(dst->type),
  10322. ith, nth,
  10323. src0->type,
  10324. src1->type,
  10325. dst->type))
  10326. goto UseGgmlGemm1;
  10327. return;
  10328. }
  10329. UseGgmlGemm1:;
  10330. #endif
  10331. if (src1->type != vec_dot_type) {
  10332. char * wdata = params->wdata;
  10333. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10334. const size_t nbw2 = nbw1*ne11;
  10335. const size_t nbw3 = nbw2*ne12;
  10336. assert(params->wsize >= ne13*nbw3);
  10337. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10338. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10339. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10340. int64_t i11_processed = 0;
  10341. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  10342. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  10343. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10344. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10345. 4, ne10, blck_size_interleave);
  10346. }
  10347. i11_processed = ne11 - ne11 % 4;
  10348. }
  10349. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  10350. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10351. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10352. ne10);
  10353. }
  10354. }
  10355. }
  10356. }
  10357. if (ith == 0) {
  10358. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10359. atomic_store_explicit(&params->threadpool->current_chunk, nth, memory_order_relaxed);
  10360. }
  10361. ggml_barrier(params->threadpool);
  10362. #if GGML_USE_LLAMAFILE
  10363. if (src1->type != vec_dot_type) {
  10364. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10365. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10366. for (int64_t i13 = 0; i13 < ne13; i13++)
  10367. for (int64_t i12 = 0; i12 < ne12; i12++)
  10368. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10369. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10370. nb01/ggml_type_size(src0->type),
  10371. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10372. row_size/ggml_type_size(vec_dot_type),
  10373. (char *)dst->data + i12*nb2 + i13*nb3,
  10374. nb1/ggml_type_size(dst->type),
  10375. ith, nth,
  10376. src0->type,
  10377. vec_dot_type,
  10378. dst->type))
  10379. goto UseGgmlGemm2;
  10380. return;
  10381. }
  10382. UseGgmlGemm2:;
  10383. #endif
  10384. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10385. const int64_t nr0 = ne0;
  10386. // This is the size of the rest of the dimensions of the result
  10387. const int64_t nr1 = ne1 * ne2 * ne3;
  10388. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10389. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10390. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10391. // this check can be removed once they are extended to support odd numbered rows/cols too
  10392. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10393. num_rows_per_vec_dot = 1;
  10394. }
  10395. // Now select a reasonable chunk size.
  10396. int chunk_size = 16;
  10397. // We need to step up the size if it's small
  10398. if (nr0 == 1 || nr1 == 1) {
  10399. chunk_size = 64;
  10400. }
  10401. // distribute the work across the inner or outer loop based on which one is larger
  10402. // The number of chunks in the 0/1 dim.
  10403. // CEIL(nr0/chunk_size)
  10404. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10405. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10406. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10407. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10408. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10409. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10410. // distribute the thread work across the inner or outer loop based on which one is larger
  10411. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10412. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10413. }
  10414. // The number of elements in each chunk
  10415. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10416. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10417. if ((ggml_n_dims(src0) == 2) && gemv) {
  10418. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10419. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  10420. int64_t src0_start = (ith * ne01) / nth;
  10421. int64_t src0_end = ((ith + 1) * ne01) / nth;
  10422. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  10423. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  10424. if (src0_start >= src0_end) return;
  10425. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  10426. if (gemm && (ne11 > 3)) {
  10427. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  10428. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  10429. }
  10430. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  10431. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  10432. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  10433. src0_end - src0_start);
  10434. }
  10435. return;
  10436. }
  10437. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10438. int current_chunk = ith;
  10439. while (current_chunk < nchunk0 * nchunk1) {
  10440. const int64_t ith0 = current_chunk % nchunk0;
  10441. const int64_t ith1 = current_chunk / nchunk0;
  10442. const int64_t ir0_start = dr0 * ith0;
  10443. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10444. const int64_t ir1_start = dr1 * ith1;
  10445. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10446. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10447. if (nth >= nchunk0 * nchunk1) {
  10448. break;
  10449. }
  10450. current_chunk = atomic_fetch_add_explicit(&params->threadpool->current_chunk, 1, memory_order_relaxed);
  10451. }
  10452. }
  10453. // ggml_compute_forward_mul_mat_id
  10454. static void ggml_compute_forward_mul_mat_id(
  10455. const struct ggml_compute_params * params,
  10456. struct ggml_tensor * dst) {
  10457. const struct ggml_tensor * src0 = dst->src[0];
  10458. const struct ggml_tensor * src1 = dst->src[1];
  10459. const struct ggml_tensor * ids = dst->src[2];
  10460. GGML_TENSOR_BINARY_OP_LOCALS
  10461. const int ith = params->ith;
  10462. const int nth = params->nth;
  10463. const enum ggml_type type = src0->type;
  10464. const bool src1_cont = ggml_is_contiguous(src1);
  10465. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10466. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10467. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10468. int64_t const matmul_num_cols = type_traits[type].ncols;
  10469. ggml_gemv_t const gemv = type_traits[type].gemv;
  10470. // we don't support permuted src0 or src1
  10471. GGML_ASSERT(nb00 == ggml_type_size(type));
  10472. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10473. // dst cannot be transposed or permuted
  10474. GGML_ASSERT(nb0 == sizeof(float));
  10475. GGML_ASSERT(nb0 <= nb1);
  10476. GGML_ASSERT(nb1 <= nb2);
  10477. GGML_ASSERT(nb2 <= nb3);
  10478. // row groups
  10479. const int n_ids = ids->ne[0]; // n_expert_used
  10480. const int n_as = ne02; // n_expert
  10481. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10482. (char *) params->wdata :
  10483. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10484. struct mmid_row_mapping {
  10485. int32_t i1;
  10486. int32_t i2;
  10487. };
  10488. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10489. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10490. if (src1->type != vec_dot_type) {
  10491. char * wdata = params->wdata;
  10492. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10493. const size_t nbw2 = nbw1*ne11;
  10494. const size_t nbw3 = nbw2*ne12;
  10495. assert(params->wsize >= ne13*nbw3);
  10496. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10497. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10498. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10499. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  10500. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10501. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10502. ne10);
  10503. }
  10504. }
  10505. }
  10506. }
  10507. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10508. if (ith == 0) {
  10509. // initialize matrix_row_counts
  10510. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10511. // group rows by src0 matrix
  10512. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10513. for (int id = 0; id < n_ids; ++id) {
  10514. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10515. assert(i02 >= 0 && i02 < n_as);
  10516. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10517. matrix_row_counts[i02] += 1;
  10518. }
  10519. }
  10520. }
  10521. ggml_barrier(params->threadpool);
  10522. // compute each matrix multiplication in sequence
  10523. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10524. const int64_t cne1 = matrix_row_counts[cur_a];
  10525. if (cne1 == 0) {
  10526. continue;
  10527. }
  10528. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10529. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10530. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10531. const int64_t nr0 = ne01; // src0 rows
  10532. const int64_t nr1 = cne1; // src1 rows
  10533. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  10534. int64_t src0_cur_start = (ith * ne01) / nth;
  10535. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  10536. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  10537. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  10538. if (src0_cur_start >= src0_cur_end) return;
  10539. for (int ir1 = 0; ir1 < nr1; ir1++) {
  10540. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  10541. const int id = row_mapping.i1; // selected expert index
  10542. const int64_t i11 = id % ne11;
  10543. const int64_t i12 = row_mapping.i2; // row index in src1
  10544. const int64_t i1 = id; // selected expert index
  10545. const int64_t i2 = i12; // row
  10546. const char * src1_col = (const char *) wdata +
  10547. (src1_cont || src1->type != vec_dot_type
  10548. ? (i11 + i12 * ne11) * row_size
  10549. : (i11 * nb11 + i12 * nb12));
  10550. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  10551. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  10552. }
  10553. continue;
  10554. }
  10555. // distribute the thread work across the inner or outer loop based on which one is larger
  10556. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10557. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10558. const int64_t ith0 = ith % nth0;
  10559. const int64_t ith1 = ith / nth0;
  10560. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10561. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10562. const int64_t ir010 = dr0*ith0;
  10563. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10564. const int64_t ir110 = dr1*ith1;
  10565. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10566. // threads with no work simply yield (not sure if it helps)
  10567. //if (ir010 >= ir011 || ir110 >= ir111) {
  10568. // sched_yield();
  10569. // continue;
  10570. //}
  10571. // block-tiling attempt
  10572. const int64_t blck_0 = 16;
  10573. const int64_t blck_1 = 16;
  10574. // attempt to reduce false-sharing (does not seem to make a difference)
  10575. float tmp[16];
  10576. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10577. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10578. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10579. const int64_t _i12 = ir1; // logical row index for this expert
  10580. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10581. const int id = row_mapping.i1; // selected expert index
  10582. const int64_t i11 = id % ne11;
  10583. const int64_t i12 = row_mapping.i2; // row index in src1
  10584. const int64_t i1 = id; // selected expert index
  10585. const int64_t i2 = i12; // row
  10586. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10587. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10588. // the original src1 data pointer, so we should index using the indices directly
  10589. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10590. const char * src1_col = (const char *) wdata +
  10591. (src1_cont || src1->type != vec_dot_type
  10592. ? (i11 + i12*ne11)*row_size
  10593. : (i11*nb11 + i12*nb12));
  10594. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10595. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10596. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10597. //}
  10598. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10599. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10600. }
  10601. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10602. }
  10603. }
  10604. }
  10605. }
  10606. #undef MMID_MATRIX_ROW
  10607. }
  10608. // ggml_compute_forward_out_prod
  10609. static void ggml_compute_forward_out_prod_f32(
  10610. const struct ggml_compute_params * params,
  10611. struct ggml_tensor * dst) {
  10612. const struct ggml_tensor * src0 = dst->src[0];
  10613. const struct ggml_tensor * src1 = dst->src[1];
  10614. GGML_TENSOR_BINARY_OP_LOCALS
  10615. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  10616. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10617. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10618. const int ith = params->ith;
  10619. const int nth = params->nth;
  10620. GGML_ASSERT(ne0 == ne00);
  10621. GGML_ASSERT(ne1 == ne10);
  10622. GGML_ASSERT(ne2 == ne02);
  10623. GGML_ASSERT(ne02 == ne12);
  10624. GGML_ASSERT(ne3 == ne13);
  10625. GGML_ASSERT(ne03 == ne13);
  10626. // we don't support permuted src0 or src1
  10627. GGML_ASSERT(nb00 == sizeof(float));
  10628. // dst cannot be transposed or permuted
  10629. GGML_ASSERT(nb0 == sizeof(float));
  10630. // GGML_ASSERT(nb0 <= nb1);
  10631. // GGML_ASSERT(nb1 <= nb2);
  10632. // GGML_ASSERT(nb2 <= nb3);
  10633. // nb01 >= nb00 - src0 is not transposed
  10634. // compute by src0 rows
  10635. if (ith == 0) {
  10636. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10637. }
  10638. ggml_barrier(params->threadpool);
  10639. // dst[:,:,:,:] = 0
  10640. // for i2,i3:
  10641. // for i1:
  10642. // for i01:
  10643. // for i0:
  10644. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10645. // parallelize by last three dimensions
  10646. // total rows in dst
  10647. const int64_t nr = ne1*ne2*ne3;
  10648. // rows per thread
  10649. const int64_t dr = (nr + nth - 1)/nth;
  10650. // row range for this thread
  10651. const int64_t ir0 = dr*ith;
  10652. const int64_t ir1 = MIN(ir0 + dr, nr);
  10653. // block-tiling attempt
  10654. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10655. const int64_t blck_1 = 16;
  10656. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10657. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10658. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10659. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10660. for (int64_t ir = bir; ir < bir1; ++ir) {
  10661. // dst indices
  10662. const int64_t i3 = ir/(ne2*ne1);
  10663. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10664. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10665. const int64_t i02 = i2;
  10666. const int64_t i03 = i3;
  10667. //const int64_t i10 = i1;
  10668. const int64_t i12 = i2;
  10669. const int64_t i13 = i3;
  10670. #if GGML_VEC_MAD_UNROLL > 2
  10671. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10672. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10673. const int64_t i11 = i01;
  10674. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10675. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10676. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10677. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10678. }
  10679. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10680. const int64_t i11 = i01;
  10681. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10682. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10683. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10684. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10685. }
  10686. #else
  10687. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10688. const int64_t i11 = i01;
  10689. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10690. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10691. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10692. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10693. }
  10694. #endif
  10695. }
  10696. }
  10697. }
  10698. }
  10699. static void ggml_compute_forward_out_prod_q_f32(
  10700. const struct ggml_compute_params * params,
  10701. struct ggml_tensor * dst) {
  10702. const struct ggml_tensor * src0 = dst->src[0];
  10703. const struct ggml_tensor * src1 = dst->src[1];
  10704. GGML_TENSOR_BINARY_OP_LOCALS;
  10705. const int ith = params->ith;
  10706. const int nth = params->nth;
  10707. const enum ggml_type type = src0->type;
  10708. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10709. GGML_ASSERT(ne02 == ne12);
  10710. GGML_ASSERT(ne03 == ne13);
  10711. GGML_ASSERT(ne2 == ne12);
  10712. GGML_ASSERT(ne3 == ne13);
  10713. // we don't support permuted src0 dim0
  10714. GGML_ASSERT(nb00 == ggml_type_size(type));
  10715. // dst dim0 cannot be transposed or permuted
  10716. GGML_ASSERT(nb0 == sizeof(float));
  10717. // GGML_ASSERT(nb0 <= nb1);
  10718. // GGML_ASSERT(nb1 <= nb2);
  10719. // GGML_ASSERT(nb2 <= nb3);
  10720. GGML_ASSERT(ne0 == ne00);
  10721. GGML_ASSERT(ne1 == ne10);
  10722. GGML_ASSERT(ne2 == ne02);
  10723. GGML_ASSERT(ne3 == ne03);
  10724. // nb01 >= nb00 - src0 is not transposed
  10725. // compute by src0 rows
  10726. if (ith == 0) {
  10727. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10728. }
  10729. ggml_barrier(params->threadpool);
  10730. // parallelize by last three dimensions
  10731. // total rows in dst
  10732. const int64_t nr = ne1*ne2*ne3;
  10733. // rows per thread
  10734. const int64_t dr = (nr + nth - 1)/nth;
  10735. // row range for this thread
  10736. const int64_t ir0 = dr*ith;
  10737. const int64_t ir1 = MIN(ir0 + dr, nr);
  10738. // dst[:,:,:,:] = 0
  10739. // for i2,i3:
  10740. // for i1:
  10741. // for i01:
  10742. // for i0:
  10743. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10744. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10745. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10746. // dst indices
  10747. const int64_t i3 = ir/(ne2*ne1);
  10748. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10749. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10750. const int64_t i02 = i2;
  10751. const int64_t i03 = i3;
  10752. //const int64_t i10 = i1;
  10753. const int64_t i12 = i2;
  10754. const int64_t i13 = i3;
  10755. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10756. const int64_t i11 = i01;
  10757. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10758. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10759. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10760. dequantize_row_q(s0, wdata, ne0);
  10761. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10762. }
  10763. }
  10764. }
  10765. static void ggml_compute_forward_out_prod(
  10766. const struct ggml_compute_params * params,
  10767. struct ggml_tensor * dst) {
  10768. const struct ggml_tensor * src0 = dst->src[0];
  10769. switch (src0->type) {
  10770. case GGML_TYPE_Q4_0:
  10771. case GGML_TYPE_Q4_1:
  10772. case GGML_TYPE_Q5_0:
  10773. case GGML_TYPE_Q5_1:
  10774. case GGML_TYPE_Q8_0:
  10775. case GGML_TYPE_Q2_K:
  10776. case GGML_TYPE_Q3_K:
  10777. case GGML_TYPE_Q4_K:
  10778. case GGML_TYPE_Q5_K:
  10779. case GGML_TYPE_Q6_K:
  10780. case GGML_TYPE_TQ1_0:
  10781. case GGML_TYPE_TQ2_0:
  10782. case GGML_TYPE_IQ2_XXS:
  10783. case GGML_TYPE_IQ2_XS:
  10784. case GGML_TYPE_IQ3_XXS:
  10785. case GGML_TYPE_IQ1_S:
  10786. case GGML_TYPE_IQ1_M:
  10787. case GGML_TYPE_IQ4_NL:
  10788. case GGML_TYPE_IQ4_XS:
  10789. case GGML_TYPE_IQ3_S:
  10790. case GGML_TYPE_IQ2_S:
  10791. case GGML_TYPE_Q4_0_4_4:
  10792. case GGML_TYPE_Q4_0_4_8:
  10793. case GGML_TYPE_Q4_0_8_8:
  10794. {
  10795. ggml_compute_forward_out_prod_q_f32(params, dst);
  10796. } break;
  10797. case GGML_TYPE_F16:
  10798. {
  10799. GGML_ABORT("fatal error"); // todo
  10800. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10801. }
  10802. case GGML_TYPE_F32:
  10803. {
  10804. ggml_compute_forward_out_prod_f32(params, dst);
  10805. } break;
  10806. default:
  10807. {
  10808. GGML_ABORT("fatal error");
  10809. }
  10810. }
  10811. }
  10812. // ggml_compute_forward_scale
  10813. static void ggml_compute_forward_scale_f32(
  10814. const struct ggml_compute_params * params,
  10815. struct ggml_tensor * dst) {
  10816. const struct ggml_tensor * src0 = dst->src[0];
  10817. GGML_ASSERT(ggml_is_contiguous(src0));
  10818. GGML_ASSERT(ggml_is_contiguous(dst));
  10819. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10820. // scale factor
  10821. float v;
  10822. memcpy(&v, dst->op_params, sizeof(float));
  10823. const int ith = params->ith;
  10824. const int nth = params->nth;
  10825. const int nc = src0->ne[0];
  10826. const int nr = ggml_nrows(src0);
  10827. // rows per thread
  10828. const int dr = (nr + nth - 1)/nth;
  10829. // row range for this thread
  10830. const int ir0 = dr*ith;
  10831. const int ir1 = MIN(ir0 + dr, nr);
  10832. const size_t nb01 = src0->nb[1];
  10833. const size_t nb1 = dst->nb[1];
  10834. for (int i1 = ir0; i1 < ir1; i1++) {
  10835. if (dst->data != src0->data) {
  10836. // src0 is same shape as dst => same indices
  10837. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10838. }
  10839. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10840. }
  10841. }
  10842. static void ggml_compute_forward_scale(
  10843. const struct ggml_compute_params * params,
  10844. struct ggml_tensor * dst) {
  10845. const struct ggml_tensor * src0 = dst->src[0];
  10846. switch (src0->type) {
  10847. case GGML_TYPE_F32:
  10848. {
  10849. ggml_compute_forward_scale_f32(params, dst);
  10850. } break;
  10851. default:
  10852. {
  10853. GGML_ABORT("fatal error");
  10854. }
  10855. }
  10856. }
  10857. // ggml_compute_forward_set
  10858. static void ggml_compute_forward_set_f32(
  10859. const struct ggml_compute_params * params,
  10860. struct ggml_tensor * dst) {
  10861. const struct ggml_tensor * src0 = dst->src[0];
  10862. const struct ggml_tensor * src1 = dst->src[1];
  10863. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10864. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10865. // view src0 and dst with these strides and data offset inbytes during set
  10866. // nb0 is implicitly element_size because src0 and dst are contiguous
  10867. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10868. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10869. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10870. size_t offset = ((int32_t *) dst->op_params)[3];
  10871. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10872. if (!inplace) {
  10873. if (params->ith == 0) {
  10874. // memcpy needs to be synchronized across threads to avoid race conditions.
  10875. // => do it in INIT phase
  10876. memcpy(
  10877. ((char *) dst->data),
  10878. ((char *) src0->data),
  10879. ggml_nbytes(dst));
  10880. }
  10881. ggml_barrier(params->threadpool);
  10882. }
  10883. const int ith = params->ith;
  10884. const int nth = params->nth;
  10885. const int nr = ggml_nrows(src1);
  10886. const int nc = src1->ne[0];
  10887. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10888. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10889. // src0 and dst as viewed during set
  10890. const size_t nb0 = ggml_element_size(src0);
  10891. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10892. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10893. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10894. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10895. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10896. GGML_ASSERT(nb10 == sizeof(float));
  10897. // rows per thread
  10898. const int dr = (nr + nth - 1)/nth;
  10899. // row range for this thread
  10900. const int ir0 = dr*ith;
  10901. const int ir1 = MIN(ir0 + dr, nr);
  10902. for (int ir = ir0; ir < ir1; ++ir) {
  10903. // src0 and dst are viewed with shape of src1 and offset
  10904. // => same indices
  10905. const int i3 = ir/(ne12*ne11);
  10906. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10907. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10908. ggml_vec_cpy_f32(nc,
  10909. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10910. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10911. }
  10912. }
  10913. static void ggml_compute_forward_set(
  10914. const struct ggml_compute_params * params,
  10915. struct ggml_tensor * dst) {
  10916. const struct ggml_tensor * src0 = dst->src[0];
  10917. switch (src0->type) {
  10918. case GGML_TYPE_F32:
  10919. {
  10920. ggml_compute_forward_set_f32(params, dst);
  10921. } break;
  10922. case GGML_TYPE_F16:
  10923. case GGML_TYPE_BF16:
  10924. case GGML_TYPE_Q4_0:
  10925. case GGML_TYPE_Q4_1:
  10926. case GGML_TYPE_Q5_0:
  10927. case GGML_TYPE_Q5_1:
  10928. case GGML_TYPE_Q8_0:
  10929. case GGML_TYPE_Q8_1:
  10930. case GGML_TYPE_Q2_K:
  10931. case GGML_TYPE_Q3_K:
  10932. case GGML_TYPE_Q4_K:
  10933. case GGML_TYPE_Q5_K:
  10934. case GGML_TYPE_Q6_K:
  10935. case GGML_TYPE_TQ1_0:
  10936. case GGML_TYPE_TQ2_0:
  10937. case GGML_TYPE_IQ2_XXS:
  10938. case GGML_TYPE_IQ2_XS:
  10939. case GGML_TYPE_IQ3_XXS:
  10940. case GGML_TYPE_IQ1_S:
  10941. case GGML_TYPE_IQ1_M:
  10942. case GGML_TYPE_IQ4_NL:
  10943. case GGML_TYPE_IQ4_XS:
  10944. case GGML_TYPE_IQ3_S:
  10945. case GGML_TYPE_IQ2_S:
  10946. case GGML_TYPE_Q4_0_4_4:
  10947. case GGML_TYPE_Q4_0_4_8:
  10948. case GGML_TYPE_Q4_0_8_8:
  10949. default:
  10950. {
  10951. GGML_ABORT("fatal error");
  10952. }
  10953. }
  10954. }
  10955. // ggml_compute_forward_cpy
  10956. static void ggml_compute_forward_cpy(
  10957. const struct ggml_compute_params * params,
  10958. struct ggml_tensor * dst) {
  10959. ggml_compute_forward_dup(params, dst);
  10960. }
  10961. // ggml_compute_forward_cont
  10962. static void ggml_compute_forward_cont(
  10963. const struct ggml_compute_params * params,
  10964. struct ggml_tensor * dst) {
  10965. ggml_compute_forward_dup(params, dst);
  10966. }
  10967. // ggml_compute_forward_reshape
  10968. static void ggml_compute_forward_reshape(
  10969. const struct ggml_compute_params * params,
  10970. struct ggml_tensor * dst) {
  10971. // NOP
  10972. UNUSED(params);
  10973. UNUSED(dst);
  10974. }
  10975. // ggml_compute_forward_view
  10976. static void ggml_compute_forward_view(
  10977. const struct ggml_compute_params * params,
  10978. const struct ggml_tensor * dst) {
  10979. // NOP
  10980. UNUSED(params);
  10981. UNUSED(dst);
  10982. }
  10983. // ggml_compute_forward_permute
  10984. static void ggml_compute_forward_permute(
  10985. const struct ggml_compute_params * params,
  10986. const struct ggml_tensor * dst) {
  10987. // NOP
  10988. UNUSED(params);
  10989. UNUSED(dst);
  10990. }
  10991. // ggml_compute_forward_transpose
  10992. static void ggml_compute_forward_transpose(
  10993. const struct ggml_compute_params * params,
  10994. const struct ggml_tensor * dst) {
  10995. // NOP
  10996. UNUSED(params);
  10997. UNUSED(dst);
  10998. }
  10999. // ggml_compute_forward_get_rows
  11000. static void ggml_compute_forward_get_rows_q(
  11001. const struct ggml_compute_params * params,
  11002. struct ggml_tensor * dst) {
  11003. const struct ggml_tensor * src0 = dst->src[0];
  11004. const struct ggml_tensor * src1 = dst->src[1];
  11005. GGML_TENSOR_BINARY_OP_LOCALS
  11006. const int64_t nc = ne00;
  11007. const int64_t nr = ggml_nelements(src1);
  11008. const enum ggml_type type = src0->type;
  11009. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  11010. assert(ne0 == nc);
  11011. assert(ne02 == ne11);
  11012. assert(nb00 == ggml_type_size(type));
  11013. assert(ggml_nrows(dst) == nr);
  11014. const int ith = params->ith;
  11015. const int nth = params->nth;
  11016. // rows per thread
  11017. const int dr = (nr + nth - 1)/nth;
  11018. // row range for this thread
  11019. const int ir0 = dr*ith;
  11020. const int ir1 = MIN(ir0 + dr, nr);
  11021. for (int64_t i = ir0; i < ir1; ++i) {
  11022. const int64_t i12 = i/(ne11*ne10);
  11023. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11024. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11025. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11026. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11027. dequantize_row_q(
  11028. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11029. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11030. }
  11031. }
  11032. static void ggml_compute_forward_get_rows_f16(
  11033. const struct ggml_compute_params * params,
  11034. struct ggml_tensor * dst) {
  11035. const struct ggml_tensor * src0 = dst->src[0];
  11036. const struct ggml_tensor * src1 = dst->src[1];
  11037. GGML_TENSOR_BINARY_OP_LOCALS
  11038. const int64_t nc = ne00;
  11039. const int64_t nr = ggml_nelements(src1);
  11040. assert(ne0 == nc);
  11041. assert(ne02 == ne11);
  11042. assert(nb00 == sizeof(ggml_fp16_t));
  11043. assert(ggml_nrows(dst) == nr);
  11044. const int ith = params->ith;
  11045. const int nth = params->nth;
  11046. // rows per thread
  11047. const int dr = (nr + nth - 1)/nth;
  11048. // row range for this thread
  11049. const int ir0 = dr*ith;
  11050. const int ir1 = MIN(ir0 + dr, nr);
  11051. for (int64_t i = ir0; i < ir1; ++i) {
  11052. const int64_t i12 = i/(ne11*ne10);
  11053. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11054. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11055. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11056. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11057. ggml_fp16_to_fp32_row(
  11058. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11059. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11060. }
  11061. }
  11062. static void ggml_compute_forward_get_rows_bf16(
  11063. const struct ggml_compute_params * params,
  11064. struct ggml_tensor * dst) {
  11065. const struct ggml_tensor * src0 = dst->src[0];
  11066. const struct ggml_tensor * src1 = dst->src[1];
  11067. GGML_TENSOR_BINARY_OP_LOCALS
  11068. const int64_t nc = ne00;
  11069. const int64_t nr = ggml_nelements(src1);
  11070. assert(ne0 == nc);
  11071. assert(ne02 == ne11);
  11072. assert(nb00 == sizeof(ggml_bf16_t));
  11073. assert(ggml_nrows(dst) == nr);
  11074. const int ith = params->ith;
  11075. const int nth = params->nth;
  11076. // rows per thread
  11077. const int dr = (nr + nth - 1)/nth;
  11078. // row range for this thread
  11079. const int ir0 = dr*ith;
  11080. const int ir1 = MIN(ir0 + dr, nr);
  11081. for (int64_t i = ir0; i < ir1; ++i) {
  11082. const int64_t i12 = i/(ne11*ne10);
  11083. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11084. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11085. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11086. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11087. ggml_bf16_to_fp32_row(
  11088. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11089. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11090. }
  11091. }
  11092. static void ggml_compute_forward_get_rows_f32(
  11093. const struct ggml_compute_params * params,
  11094. struct ggml_tensor * dst) {
  11095. const struct ggml_tensor * src0 = dst->src[0];
  11096. const struct ggml_tensor * src1 = dst->src[1];
  11097. GGML_TENSOR_BINARY_OP_LOCALS
  11098. const int64_t nc = ne00;
  11099. const int64_t nr = ggml_nelements(src1);
  11100. assert(ne0 == nc);
  11101. assert(ne02 == ne11);
  11102. assert(nb00 == sizeof(float));
  11103. assert(ggml_nrows(dst) == nr);
  11104. const int ith = params->ith;
  11105. const int nth = params->nth;
  11106. // rows per thread
  11107. const int dr = (nr + nth - 1)/nth;
  11108. // row range for this thread
  11109. const int ir0 = dr*ith;
  11110. const int ir1 = MIN(ir0 + dr, nr);
  11111. for (int64_t i = ir0; i < ir1; ++i) {
  11112. const int64_t i12 = i/(ne11*ne10);
  11113. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11114. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11115. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11116. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11117. ggml_vec_cpy_f32(nc,
  11118. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11119. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11120. }
  11121. }
  11122. static void ggml_compute_forward_get_rows(
  11123. const struct ggml_compute_params * params,
  11124. struct ggml_tensor * dst) {
  11125. const struct ggml_tensor * src0 = dst->src[0];
  11126. switch (src0->type) {
  11127. case GGML_TYPE_Q4_0:
  11128. case GGML_TYPE_Q4_1:
  11129. case GGML_TYPE_Q5_0:
  11130. case GGML_TYPE_Q5_1:
  11131. case GGML_TYPE_Q8_0:
  11132. case GGML_TYPE_Q8_1:
  11133. case GGML_TYPE_Q2_K:
  11134. case GGML_TYPE_Q3_K:
  11135. case GGML_TYPE_Q4_K:
  11136. case GGML_TYPE_Q5_K:
  11137. case GGML_TYPE_Q6_K:
  11138. case GGML_TYPE_TQ1_0:
  11139. case GGML_TYPE_TQ2_0:
  11140. case GGML_TYPE_IQ2_XXS:
  11141. case GGML_TYPE_IQ2_XS:
  11142. case GGML_TYPE_IQ3_XXS:
  11143. case GGML_TYPE_IQ1_S:
  11144. case GGML_TYPE_IQ1_M:
  11145. case GGML_TYPE_IQ4_NL:
  11146. case GGML_TYPE_IQ4_XS:
  11147. case GGML_TYPE_IQ3_S:
  11148. case GGML_TYPE_IQ2_S:
  11149. case GGML_TYPE_Q4_0_4_4:
  11150. case GGML_TYPE_Q4_0_4_8:
  11151. case GGML_TYPE_Q4_0_8_8:
  11152. {
  11153. ggml_compute_forward_get_rows_q(params, dst);
  11154. } break;
  11155. case GGML_TYPE_F16:
  11156. {
  11157. ggml_compute_forward_get_rows_f16(params, dst);
  11158. } break;
  11159. case GGML_TYPE_BF16:
  11160. {
  11161. ggml_compute_forward_get_rows_bf16(params, dst);
  11162. } break;
  11163. case GGML_TYPE_F32:
  11164. case GGML_TYPE_I32:
  11165. {
  11166. ggml_compute_forward_get_rows_f32(params, dst);
  11167. } break;
  11168. default:
  11169. {
  11170. GGML_ABORT("fatal error");
  11171. }
  11172. }
  11173. //static bool first = true;
  11174. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11175. //if (first) {
  11176. // first = false;
  11177. //} else {
  11178. // for (int k = 0; k < dst->ne[1]; ++k) {
  11179. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11180. // for (int i = 0; i < 16; ++i) {
  11181. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11182. // }
  11183. // printf("\n");
  11184. // }
  11185. // printf("\n");
  11186. // }
  11187. // printf("\n");
  11188. // exit(0);
  11189. //}
  11190. }
  11191. // ggml_compute_forward_get_rows_back
  11192. static void ggml_compute_forward_get_rows_back_f32_f16(
  11193. const struct ggml_compute_params * params,
  11194. struct ggml_tensor * dst) {
  11195. const struct ggml_tensor * src0 = dst->src[0];
  11196. const struct ggml_tensor * src1 = dst->src[1];
  11197. if (params->ith != 0) {
  11198. return;
  11199. }
  11200. GGML_ASSERT(ggml_is_contiguous(dst));
  11201. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11202. memset(dst->data, 0, ggml_nbytes(dst));
  11203. const int nc = src0->ne[0];
  11204. const int nr = ggml_nelements(src1);
  11205. GGML_ASSERT( dst->ne[0] == nc);
  11206. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11207. for (int i = 0; i < nr; ++i) {
  11208. const int r = ((int32_t *) src1->data)[i];
  11209. for (int j = 0; j < nc; ++j) {
  11210. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11211. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11212. }
  11213. }
  11214. }
  11215. static void ggml_compute_forward_get_rows_back_f32(
  11216. const struct ggml_compute_params * params,
  11217. struct ggml_tensor * dst) {
  11218. const struct ggml_tensor * src0 = dst->src[0];
  11219. const struct ggml_tensor * src1 = dst->src[1];
  11220. if (params->ith != 0) {
  11221. return;
  11222. }
  11223. GGML_ASSERT(ggml_is_contiguous(dst));
  11224. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11225. memset(dst->data, 0, ggml_nbytes(dst));
  11226. const int nc = src0->ne[0];
  11227. const int nr = ggml_nelements(src1);
  11228. GGML_ASSERT( dst->ne[0] == nc);
  11229. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11230. for (int i = 0; i < nr; ++i) {
  11231. const int r = ((int32_t *) src1->data)[i];
  11232. ggml_vec_add_f32(nc,
  11233. (float *) ((char *) dst->data + r*dst->nb[1]),
  11234. (float *) ((char *) dst->data + r*dst->nb[1]),
  11235. (float *) ((char *) src0->data + i*src0->nb[1]));
  11236. }
  11237. }
  11238. static void ggml_compute_forward_get_rows_back(
  11239. const struct ggml_compute_params * params,
  11240. struct ggml_tensor * dst) {
  11241. const struct ggml_tensor * src0 = dst->src[0];
  11242. switch (src0->type) {
  11243. case GGML_TYPE_F16:
  11244. {
  11245. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11246. } break;
  11247. case GGML_TYPE_F32:
  11248. {
  11249. ggml_compute_forward_get_rows_back_f32(params, dst);
  11250. } break;
  11251. default:
  11252. {
  11253. GGML_ABORT("fatal error");
  11254. }
  11255. }
  11256. //static bool first = true;
  11257. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11258. //if (first) {
  11259. // first = false;
  11260. //} else {
  11261. // for (int k = 0; k < dst->ne[1]; ++k) {
  11262. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11263. // for (int i = 0; i < 16; ++i) {
  11264. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11265. // }
  11266. // printf("\n");
  11267. // }
  11268. // printf("\n");
  11269. // }
  11270. // printf("\n");
  11271. // exit(0);
  11272. //}
  11273. }
  11274. // ggml_compute_forward_diag
  11275. static void ggml_compute_forward_diag_f32(
  11276. const struct ggml_compute_params * params,
  11277. struct ggml_tensor * dst) {
  11278. const struct ggml_tensor * src0 = dst->src[0];
  11279. if (params->ith != 0) {
  11280. return;
  11281. }
  11282. // TODO: handle transposed/permuted matrices
  11283. GGML_TENSOR_UNARY_OP_LOCALS
  11284. GGML_ASSERT(ne00 == ne0);
  11285. GGML_ASSERT(ne00 == ne1);
  11286. GGML_ASSERT(ne01 == 1);
  11287. GGML_ASSERT(ne02 == ne2);
  11288. GGML_ASSERT(ne03 == ne3);
  11289. GGML_ASSERT(nb00 == sizeof(float));
  11290. GGML_ASSERT(nb0 == sizeof(float));
  11291. for (int i3 = 0; i3 < ne3; i3++) {
  11292. for (int i2 = 0; i2 < ne2; i2++) {
  11293. for (int i1 = 0; i1 < ne1; i1++) {
  11294. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11295. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11296. for (int i0 = 0; i0 < i1; i0++) {
  11297. d[i0] = 0;
  11298. }
  11299. d[i1] = s[i1];
  11300. for (int i0 = i1+1; i0 < ne0; i0++) {
  11301. d[i0] = 0;
  11302. }
  11303. }
  11304. }
  11305. }
  11306. }
  11307. static void ggml_compute_forward_diag(
  11308. const struct ggml_compute_params * params,
  11309. struct ggml_tensor * dst) {
  11310. const struct ggml_tensor * src0 = dst->src[0];
  11311. switch (src0->type) {
  11312. case GGML_TYPE_F32:
  11313. {
  11314. ggml_compute_forward_diag_f32(params, dst);
  11315. } break;
  11316. default:
  11317. {
  11318. GGML_ABORT("fatal error");
  11319. }
  11320. }
  11321. }
  11322. // ggml_compute_forward_diag_mask_inf
  11323. static void ggml_compute_forward_diag_mask_f32(
  11324. const struct ggml_compute_params * params,
  11325. struct ggml_tensor * dst,
  11326. const float value) {
  11327. const struct ggml_tensor * src0 = dst->src[0];
  11328. const int ith = params->ith;
  11329. const int nth = params->nth;
  11330. const int n_past = ((int32_t *) dst->op_params)[0];
  11331. const bool inplace = src0->data == dst->data;
  11332. GGML_ASSERT(n_past >= 0);
  11333. if (!inplace) {
  11334. if (ith == 0) {
  11335. // memcpy needs to be synchronized across threads to avoid race conditions.
  11336. // => do it in INIT phase
  11337. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11338. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11339. memcpy(
  11340. ((char *) dst->data),
  11341. ((char *) src0->data),
  11342. ggml_nbytes(dst));
  11343. }
  11344. ggml_barrier(params->threadpool);
  11345. }
  11346. // TODO: handle transposed/permuted matrices
  11347. const int n = ggml_nrows(src0);
  11348. const int nc = src0->ne[0];
  11349. const int nr = src0->ne[1];
  11350. const int nz = n/nr;
  11351. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11352. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11353. for (int k = 0; k < nz; k++) {
  11354. for (int j = ith; j < nr; j += nth) {
  11355. for (int i = n_past; i < nc; i++) {
  11356. if (i > n_past + j) {
  11357. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11358. }
  11359. }
  11360. }
  11361. }
  11362. }
  11363. static void ggml_compute_forward_diag_mask_inf(
  11364. const struct ggml_compute_params * params,
  11365. struct ggml_tensor * dst) {
  11366. const struct ggml_tensor * src0 = dst->src[0];
  11367. switch (src0->type) {
  11368. case GGML_TYPE_F32:
  11369. {
  11370. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11371. } break;
  11372. default:
  11373. {
  11374. GGML_ABORT("fatal error");
  11375. }
  11376. }
  11377. }
  11378. static void ggml_compute_forward_diag_mask_zero(
  11379. const struct ggml_compute_params * params,
  11380. struct ggml_tensor * dst) {
  11381. const struct ggml_tensor * src0 = dst->src[0];
  11382. switch (src0->type) {
  11383. case GGML_TYPE_F32:
  11384. {
  11385. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11386. } break;
  11387. default:
  11388. {
  11389. GGML_ABORT("fatal error");
  11390. }
  11391. }
  11392. }
  11393. // ggml_compute_forward_soft_max
  11394. static void ggml_compute_forward_soft_max_f32(
  11395. const struct ggml_compute_params * params,
  11396. struct ggml_tensor * dst) {
  11397. const struct ggml_tensor * src0 = dst->src[0];
  11398. const struct ggml_tensor * src1 = dst->src[1];
  11399. assert(ggml_is_contiguous(dst));
  11400. assert(ggml_are_same_shape(src0, dst));
  11401. float scale = 1.0f;
  11402. float max_bias = 0.0f;
  11403. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11404. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11405. // TODO: handle transposed/permuted matrices
  11406. const int ith = params->ith;
  11407. const int nth = params->nth;
  11408. GGML_TENSOR_UNARY_OP_LOCALS
  11409. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11410. // TODO: is this supposed to be ceil instead of floor?
  11411. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11412. const uint32_t n_head = ne02;
  11413. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11414. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11415. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11416. const int nc = src0->ne[0];
  11417. const int nr = ggml_nrows(src0);
  11418. // rows per thread
  11419. const int dr = (nr + nth - 1)/nth;
  11420. // row range for this thread
  11421. const int ir0 = dr*ith;
  11422. const int ir1 = MIN(ir0 + dr, nr);
  11423. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11424. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11425. for (int i1 = ir0; i1 < ir1; i1++) {
  11426. // ALiBi
  11427. const uint32_t h = (i1/ne01)%ne02; // head
  11428. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11429. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11430. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11431. // broadcast the mask across rows
  11432. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11433. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11434. ggml_vec_cpy_f32 (nc, wp, sp);
  11435. ggml_vec_scale_f32(nc, wp, scale);
  11436. if (mp_f32) {
  11437. if (use_f16) {
  11438. for (int i = 0; i < nc; ++i) {
  11439. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11440. }
  11441. } else {
  11442. for (int i = 0; i < nc; ++i) {
  11443. wp[i] += slope*mp_f32[i];
  11444. }
  11445. }
  11446. }
  11447. #ifndef NDEBUG
  11448. for (int i = 0; i < nc; ++i) {
  11449. //printf("p[%d] = %f\n", i, p[i]);
  11450. assert(!isnan(wp[i]));
  11451. }
  11452. #endif
  11453. float max = -INFINITY;
  11454. ggml_vec_max_f32(nc, &max, wp);
  11455. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11456. assert(sum > 0.0);
  11457. sum = 1.0/sum;
  11458. ggml_vec_scale_f32(nc, dp, sum);
  11459. #ifndef NDEBUG
  11460. for (int i = 0; i < nc; ++i) {
  11461. assert(!isnan(dp[i]));
  11462. assert(!isinf(dp[i]));
  11463. }
  11464. #endif
  11465. }
  11466. }
  11467. static void ggml_compute_forward_soft_max(
  11468. const struct ggml_compute_params * params,
  11469. struct ggml_tensor * dst) {
  11470. const struct ggml_tensor * src0 = dst->src[0];
  11471. switch (src0->type) {
  11472. case GGML_TYPE_F32:
  11473. {
  11474. ggml_compute_forward_soft_max_f32(params, dst);
  11475. } break;
  11476. default:
  11477. {
  11478. GGML_ABORT("fatal error");
  11479. }
  11480. }
  11481. }
  11482. // ggml_compute_forward_soft_max_back
  11483. static void ggml_compute_forward_soft_max_back_f32(
  11484. const struct ggml_compute_params * params,
  11485. struct ggml_tensor * dst) {
  11486. const struct ggml_tensor * src0 = dst->src[0];
  11487. const struct ggml_tensor * src1 = dst->src[1];
  11488. GGML_ASSERT(ggml_is_contiguous(src0));
  11489. GGML_ASSERT(ggml_is_contiguous(src1));
  11490. GGML_ASSERT(ggml_is_contiguous(dst));
  11491. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11492. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11493. // TODO: handle transposed/permuted matrices
  11494. const int ith = params->ith;
  11495. const int nth = params->nth;
  11496. const int nc = src0->ne[0];
  11497. const int nr = ggml_nrows(src0);
  11498. // rows per thread
  11499. const int dr = (nr + nth - 1)/nth;
  11500. // row range for this thread
  11501. const int ir0 = dr*ith;
  11502. const int ir1 = MIN(ir0 + dr, nr);
  11503. for (int i1 = ir0; i1 < ir1; i1++) {
  11504. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11505. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11506. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11507. #ifndef NDEBUG
  11508. for (int i = 0; i < nc; ++i) {
  11509. //printf("p[%d] = %f\n", i, p[i]);
  11510. assert(!isnan(dy[i]));
  11511. assert(!isnan(y[i]));
  11512. }
  11513. #endif
  11514. // Jii = yi - yi*yi
  11515. // Jij = -yi*yj
  11516. // J = diag(y)-y.T*y
  11517. // dx = J * dy
  11518. // dxk = sum_i(Jki * dyi)
  11519. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11520. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11521. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11522. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11523. // dxk = -yk * dot(y, dy) + yk*dyk
  11524. // dxk = yk * (- dot(y, dy) + dyk)
  11525. // dxk = yk * (dyk - dot(y, dy))
  11526. //
  11527. // post-order:
  11528. // dot_y_dy := dot(y, dy)
  11529. // dx := dy
  11530. // dx := dx - dot_y_dy
  11531. // dx := dx * y
  11532. // linear runtime, no additional memory
  11533. float dot_y_dy = 0;
  11534. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11535. ggml_vec_cpy_f32 (nc, dx, dy);
  11536. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11537. ggml_vec_mul_f32 (nc, dx, dx, y);
  11538. #ifndef NDEBUG
  11539. for (int i = 0; i < nc; ++i) {
  11540. assert(!isnan(dx[i]));
  11541. assert(!isinf(dx[i]));
  11542. }
  11543. #endif
  11544. }
  11545. }
  11546. static void ggml_compute_forward_soft_max_back(
  11547. const struct ggml_compute_params * params,
  11548. struct ggml_tensor * dst) {
  11549. const struct ggml_tensor * src0 = dst->src[0];
  11550. switch (src0->type) {
  11551. case GGML_TYPE_F32:
  11552. {
  11553. ggml_compute_forward_soft_max_back_f32(params, dst);
  11554. } break;
  11555. default:
  11556. {
  11557. GGML_ABORT("fatal error");
  11558. }
  11559. }
  11560. }
  11561. // ggml_compute_forward_clamp
  11562. static void ggml_compute_forward_clamp_f32(
  11563. const struct ggml_compute_params * params,
  11564. struct ggml_tensor * dst) {
  11565. const struct ggml_tensor * src0 = dst->src[0];
  11566. if (params->ith != 0) {
  11567. return;
  11568. }
  11569. float min;
  11570. float max;
  11571. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11572. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11573. const int ith = params->ith;
  11574. const int nth = params->nth;
  11575. const int n = ggml_nrows(src0);
  11576. const int nc = src0->ne[0];
  11577. const size_t nb00 = src0->nb[0];
  11578. const size_t nb01 = src0->nb[1];
  11579. const size_t nb0 = dst->nb[0];
  11580. const size_t nb1 = dst->nb[1];
  11581. GGML_ASSERT( nb0 == sizeof(float));
  11582. GGML_ASSERT(nb00 == sizeof(float));
  11583. for (int j = ith; j < n; j += nth) {
  11584. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11585. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11586. for (int i = 0; i < nc; i++) {
  11587. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11588. }
  11589. }
  11590. }
  11591. static void ggml_compute_forward_clamp(
  11592. const struct ggml_compute_params * params,
  11593. struct ggml_tensor * dst) {
  11594. const struct ggml_tensor * src0 = dst->src[0];
  11595. switch (src0->type) {
  11596. case GGML_TYPE_F32:
  11597. {
  11598. ggml_compute_forward_clamp_f32(params, dst);
  11599. } break;
  11600. case GGML_TYPE_F16:
  11601. case GGML_TYPE_BF16:
  11602. case GGML_TYPE_Q4_0:
  11603. case GGML_TYPE_Q4_1:
  11604. case GGML_TYPE_Q5_0:
  11605. case GGML_TYPE_Q5_1:
  11606. case GGML_TYPE_Q8_0:
  11607. case GGML_TYPE_Q8_1:
  11608. case GGML_TYPE_Q2_K:
  11609. case GGML_TYPE_Q3_K:
  11610. case GGML_TYPE_Q4_K:
  11611. case GGML_TYPE_Q5_K:
  11612. case GGML_TYPE_Q6_K:
  11613. case GGML_TYPE_TQ1_0:
  11614. case GGML_TYPE_TQ2_0:
  11615. case GGML_TYPE_IQ2_XXS:
  11616. case GGML_TYPE_IQ2_XS:
  11617. case GGML_TYPE_IQ3_XXS:
  11618. case GGML_TYPE_IQ1_S:
  11619. case GGML_TYPE_IQ1_M:
  11620. case GGML_TYPE_IQ4_NL:
  11621. case GGML_TYPE_IQ4_XS:
  11622. case GGML_TYPE_IQ3_S:
  11623. case GGML_TYPE_IQ2_S:
  11624. case GGML_TYPE_Q8_K:
  11625. case GGML_TYPE_Q4_0_4_4:
  11626. case GGML_TYPE_Q4_0_4_8:
  11627. case GGML_TYPE_Q4_0_8_8:
  11628. case GGML_TYPE_I8:
  11629. case GGML_TYPE_I16:
  11630. case GGML_TYPE_I32:
  11631. case GGML_TYPE_I64:
  11632. case GGML_TYPE_F64:
  11633. case GGML_TYPE_COUNT:
  11634. {
  11635. GGML_ABORT("fatal error");
  11636. }
  11637. }
  11638. }
  11639. // ggml_compute_forward_rope
  11640. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11641. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11642. return 1 - MIN(1, MAX(0, y));
  11643. }
  11644. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11645. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11646. static void rope_yarn(
  11647. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11648. float * cos_theta, float * sin_theta) {
  11649. // Get n-d rotational scaling corrected for extrapolation
  11650. float theta_interp = freq_scale * theta_extrap;
  11651. float theta = theta_interp;
  11652. if (ext_factor != 0.0f) {
  11653. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11654. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11655. // Get n-d magnitude scaling corrected for interpolation
  11656. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11657. }
  11658. *cos_theta = cosf(theta) * mscale;
  11659. *sin_theta = sinf(theta) * mscale;
  11660. }
  11661. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11662. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11663. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11664. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11665. }
  11666. static void ggml_rope_cache_init(
  11667. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11668. float * cache, float sin_sign, float theta_scale) {
  11669. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11670. float theta = theta_base;
  11671. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11672. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11673. rope_yarn(
  11674. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11675. );
  11676. cache[i0 + 1] *= sin_sign;
  11677. theta *= theta_scale;
  11678. }
  11679. }
  11680. void ggml_rope_yarn_corr_dims(
  11681. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11682. ) {
  11683. // start and end correction dims
  11684. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11685. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11686. dims[0] = MAX(0, start);
  11687. dims[1] = MIN(n_dims - 1, end);
  11688. }
  11689. static void ggml_compute_forward_rope_f32(
  11690. const struct ggml_compute_params * params,
  11691. struct ggml_tensor * dst,
  11692. const bool forward) {
  11693. const struct ggml_tensor * src0 = dst->src[0];
  11694. const struct ggml_tensor * src1 = dst->src[1];
  11695. const struct ggml_tensor * src2 = dst->src[2];
  11696. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11697. //const int n_past = ((int32_t *) dst->op_params)[0];
  11698. const int n_dims = ((int32_t *) dst->op_params)[1];
  11699. const int mode = ((int32_t *) dst->op_params)[2];
  11700. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11701. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11702. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11703. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11704. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11705. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11706. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11707. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11708. GGML_TENSOR_UNARY_OP_LOCALS
  11709. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11710. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11711. GGML_ASSERT(nb00 == sizeof(float));
  11712. const int ith = params->ith;
  11713. const int nth = params->nth;
  11714. const int nr = ggml_nrows(dst);
  11715. GGML_ASSERT(n_dims <= ne0);
  11716. GGML_ASSERT(n_dims % 2 == 0);
  11717. // rows per thread
  11718. const int dr = (nr + nth - 1)/nth;
  11719. // row range for this thread
  11720. const int ir0 = dr*ith;
  11721. const int ir1 = MIN(ir0 + dr, nr);
  11722. // row index used to determine which thread to use
  11723. int ir = 0;
  11724. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11725. float corr_dims[2];
  11726. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11727. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  11728. const float * freq_factors = NULL;
  11729. if (src2 != NULL) {
  11730. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11731. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11732. freq_factors = (const float *) src2->data;
  11733. }
  11734. // backward process uses inverse rotation by cos and sin.
  11735. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11736. // this essentially just switches the sign of sin.
  11737. const float sin_sign = forward ? 1.0f : -1.0f;
  11738. const int32_t * pos = (const int32_t *) src1->data;
  11739. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11740. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11741. const int64_t p = pos[i2];
  11742. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11743. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11744. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11745. if (ir++ < ir0) continue;
  11746. if (ir > ir1) break;
  11747. if (!is_neox) {
  11748. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11749. const float cos_theta = cache[i0 + 0];
  11750. const float sin_theta = cache[i0 + 1];
  11751. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11752. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11753. const float x0 = src[0];
  11754. const float x1 = src[1];
  11755. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11756. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11757. }
  11758. } else {
  11759. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11760. const int64_t ic = i0/2;
  11761. const float cos_theta = cache[i0 + 0];
  11762. const float sin_theta = cache[i0 + 1];
  11763. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11764. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11765. const float x0 = src[0];
  11766. const float x1 = src[n_dims/2];
  11767. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11768. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11769. }
  11770. }
  11771. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11772. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11773. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11774. dst_data[0] = src[0];
  11775. dst_data[1] = src[1];
  11776. }
  11777. }
  11778. }
  11779. }
  11780. }
  11781. // TODO: deduplicate f16/f32 code
  11782. static void ggml_compute_forward_rope_f16(
  11783. const struct ggml_compute_params * params,
  11784. struct ggml_tensor * dst,
  11785. const bool forward) {
  11786. const struct ggml_tensor * src0 = dst->src[0];
  11787. const struct ggml_tensor * src1 = dst->src[1];
  11788. const struct ggml_tensor * src2 = dst->src[2];
  11789. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11790. //const int n_past = ((int32_t *) dst->op_params)[0];
  11791. const int n_dims = ((int32_t *) dst->op_params)[1];
  11792. const int mode = ((int32_t *) dst->op_params)[2];
  11793. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11794. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11795. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11796. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11797. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11798. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11799. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11800. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11801. GGML_TENSOR_UNARY_OP_LOCALS
  11802. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11803. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11804. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11805. const int ith = params->ith;
  11806. const int nth = params->nth;
  11807. const int nr = ggml_nrows(dst);
  11808. GGML_ASSERT(n_dims <= ne0);
  11809. GGML_ASSERT(n_dims % 2 == 0);
  11810. // rows per thread
  11811. const int dr = (nr + nth - 1)/nth;
  11812. // row range for this thread
  11813. const int ir0 = dr*ith;
  11814. const int ir1 = MIN(ir0 + dr, nr);
  11815. // row index used to determine which thread to use
  11816. int ir = 0;
  11817. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11818. float corr_dims[2];
  11819. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11820. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  11821. const float * freq_factors = NULL;
  11822. if (src2 != NULL) {
  11823. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11824. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11825. freq_factors = (const float *) src2->data;
  11826. }
  11827. // backward process uses inverse rotation by cos and sin.
  11828. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11829. // this essentially just switches the sign of sin.
  11830. const float sin_sign = forward ? 1.0f : -1.0f;
  11831. const int32_t * pos = (const int32_t *) src1->data;
  11832. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11833. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11834. const int64_t p = pos[i2];
  11835. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11836. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11837. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11838. if (ir++ < ir0) continue;
  11839. if (ir > ir1) break;
  11840. if (!is_neox) {
  11841. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11842. const float cos_theta = cache[i0 + 0];
  11843. const float sin_theta = cache[i0 + 1];
  11844. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11845. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11846. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11847. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11848. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11849. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11850. }
  11851. } else {
  11852. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11853. const int64_t ic = i0/2;
  11854. const float cos_theta = cache[i0 + 0];
  11855. const float sin_theta = cache[i0 + 1];
  11856. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11857. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11858. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11859. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11860. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11861. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11862. }
  11863. }
  11864. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11865. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11866. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11867. dst_data[0] = src[0];
  11868. dst_data[1] = src[1];
  11869. }
  11870. }
  11871. }
  11872. }
  11873. }
  11874. static void ggml_compute_forward_rope(
  11875. const struct ggml_compute_params * params,
  11876. struct ggml_tensor * dst) {
  11877. const struct ggml_tensor * src0 = dst->src[0];
  11878. switch (src0->type) {
  11879. case GGML_TYPE_F16:
  11880. {
  11881. ggml_compute_forward_rope_f16(params, dst, true);
  11882. } break;
  11883. case GGML_TYPE_F32:
  11884. {
  11885. ggml_compute_forward_rope_f32(params, dst, true);
  11886. } break;
  11887. default:
  11888. {
  11889. GGML_ABORT("fatal error");
  11890. }
  11891. }
  11892. }
  11893. // ggml_compute_forward_rope_back
  11894. static void ggml_compute_forward_rope_back(
  11895. const struct ggml_compute_params * params,
  11896. struct ggml_tensor * dst) {
  11897. const struct ggml_tensor * src0 = dst->src[0];
  11898. switch (src0->type) {
  11899. case GGML_TYPE_F16:
  11900. {
  11901. ggml_compute_forward_rope_f16(params, dst, false);
  11902. } break;
  11903. case GGML_TYPE_F32:
  11904. {
  11905. ggml_compute_forward_rope_f32(params, dst, false);
  11906. } break;
  11907. default:
  11908. {
  11909. GGML_ABORT("fatal error");
  11910. }
  11911. }
  11912. }
  11913. // ggml_compute_forward_conv_transpose_1d
  11914. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11915. const struct ggml_compute_params * params,
  11916. struct ggml_tensor * dst) {
  11917. const struct ggml_tensor * src0 = dst->src[0];
  11918. const struct ggml_tensor * src1 = dst->src[1];
  11919. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11920. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11921. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11922. GGML_TENSOR_BINARY_OP_LOCALS
  11923. const int ith = params->ith;
  11924. const int nth = params->nth;
  11925. const int nk = ne00*ne01*ne02;
  11926. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11927. GGML_ASSERT(nb10 == sizeof(float));
  11928. if (ith == 0) {
  11929. memset(params->wdata, 0, params->wsize);
  11930. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11931. {
  11932. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11933. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11934. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11935. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11936. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11937. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11938. dst_data[i00*ne02 + i02] = src[i00];
  11939. }
  11940. }
  11941. }
  11942. }
  11943. // permute source data (src1) from (L x Cin) to (Cin x L)
  11944. {
  11945. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11946. ggml_fp16_t * dst_data = wdata;
  11947. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11948. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11949. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11950. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11951. }
  11952. }
  11953. }
  11954. // need to zero dst since we are accumulating into it
  11955. memset(dst->data, 0, ggml_nbytes(dst));
  11956. }
  11957. ggml_barrier(params->threadpool);
  11958. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11959. // total rows in dst
  11960. const int nr = ne1;
  11961. // rows per thread
  11962. const int dr = (nr + nth - 1)/nth;
  11963. // row range for this thread
  11964. const int ir0 = dr*ith;
  11965. const int ir1 = MIN(ir0 + dr, nr);
  11966. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11967. ggml_fp16_t * const wdata_src = wdata + nk;
  11968. for (int i1 = ir0; i1 < ir1; i1++) {
  11969. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11970. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11971. for (int i10 = 0; i10 < ne10; i10++) {
  11972. const int i1n = i10*ne11;
  11973. for (int i00 = 0; i00 < ne00; i00++) {
  11974. float v = 0;
  11975. ggml_vec_dot_f16(ne02, &v, 0,
  11976. (ggml_fp16_t *) wdata_src + i1n, 0,
  11977. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11978. dst_data[i10*s0 + i00] += v;
  11979. }
  11980. }
  11981. }
  11982. }
  11983. static void ggml_compute_forward_conv_transpose_1d_f32(
  11984. const struct ggml_compute_params * params,
  11985. struct ggml_tensor * dst) {
  11986. const struct ggml_tensor * src0 = dst->src[0];
  11987. const struct ggml_tensor * src1 = dst->src[1];
  11988. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11989. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11990. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11991. GGML_TENSOR_BINARY_OP_LOCALS
  11992. const int ith = params->ith;
  11993. const int nth = params->nth;
  11994. const int nk = ne00*ne01*ne02;
  11995. GGML_ASSERT(nb00 == sizeof(float));
  11996. GGML_ASSERT(nb10 == sizeof(float));
  11997. if (ith == 0) {
  11998. memset(params->wdata, 0, params->wsize);
  11999. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12000. {
  12001. float * const wdata = (float *) params->wdata + 0;
  12002. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12003. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12004. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12005. float * dst_data = wdata + i01*ne00*ne02;
  12006. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12007. dst_data[i00*ne02 + i02] = src[i00];
  12008. }
  12009. }
  12010. }
  12011. }
  12012. // prepare source data (src1)
  12013. {
  12014. float * const wdata = (float *) params->wdata + nk;
  12015. float * dst_data = wdata;
  12016. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12017. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12018. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12019. dst_data[i10*ne11 + i11] = src[i10];
  12020. }
  12021. }
  12022. }
  12023. // need to zero dst since we are accumulating into it
  12024. memset(dst->data, 0, ggml_nbytes(dst));
  12025. }
  12026. ggml_barrier(params->threadpool);
  12027. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12028. // total rows in dst
  12029. const int nr = ne1;
  12030. // rows per thread
  12031. const int dr = (nr + nth - 1)/nth;
  12032. // row range for this thread
  12033. const int ir0 = dr*ith;
  12034. const int ir1 = MIN(ir0 + dr, nr);
  12035. float * const wdata = (float *) params->wdata + 0;
  12036. float * const wdata_src = wdata + nk;
  12037. for (int i1 = ir0; i1 < ir1; i1++) {
  12038. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12039. float * wdata_kernel = wdata + i1*ne02*ne00;
  12040. for (int i10 = 0; i10 < ne10; i10++) {
  12041. const int i1n = i10*ne11;
  12042. for (int i00 = 0; i00 < ne00; i00++) {
  12043. float v = 0;
  12044. ggml_vec_dot_f32(ne02, &v, 0,
  12045. wdata_src + i1n, 0,
  12046. wdata_kernel + i00*ne02, 0, 1);
  12047. dst_data[i10*s0 + i00] += v;
  12048. }
  12049. }
  12050. }
  12051. }
  12052. static void ggml_compute_forward_conv_transpose_1d(
  12053. const struct ggml_compute_params * params,
  12054. struct ggml_tensor * dst) {
  12055. const struct ggml_tensor * src0 = dst->src[0];
  12056. switch (src0->type) {
  12057. case GGML_TYPE_F16:
  12058. {
  12059. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12060. } break;
  12061. case GGML_TYPE_F32:
  12062. {
  12063. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12064. } break;
  12065. default:
  12066. {
  12067. GGML_ABORT("fatal error");
  12068. }
  12069. }
  12070. }
  12071. // ggml_compute_forward_im2col_f32
  12072. // src0: kernel [OC, IC, KH, KW]
  12073. // src1: image [N, IC, IH, IW]
  12074. // dst: result [N, OH, OW, IC*KH*KW]
  12075. static void ggml_compute_forward_im2col_f32(
  12076. const struct ggml_compute_params * params,
  12077. struct ggml_tensor * dst) {
  12078. const struct ggml_tensor * src0 = dst->src[0];
  12079. const struct ggml_tensor * src1 = dst->src[1];
  12080. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12081. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12082. GGML_TENSOR_BINARY_OP_LOCALS;
  12083. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12084. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12085. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12086. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12087. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12088. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12089. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12090. const int ith = params->ith;
  12091. const int nth = params->nth;
  12092. const int64_t N = is_2D ? ne13 : ne12;
  12093. const int64_t IC = is_2D ? ne12 : ne11;
  12094. const int64_t IH = is_2D ? ne11 : 1;
  12095. const int64_t IW = ne10;
  12096. const int64_t KH = is_2D ? ne01 : 1;
  12097. const int64_t KW = ne00;
  12098. const int64_t OH = is_2D ? ne2 : 1;
  12099. const int64_t OW = ne1;
  12100. int ofs0 = is_2D ? nb13 : nb12;
  12101. int ofs1 = is_2D ? nb12 : nb11;
  12102. GGML_ASSERT(nb10 == sizeof(float));
  12103. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12104. {
  12105. float * const wdata = (float *) dst->data;
  12106. for (int64_t in = 0; in < N; in++) {
  12107. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12108. for (int64_t iow = 0; iow < OW; iow++) {
  12109. for (int64_t iic = ith; iic < IC; iic += nth) {
  12110. // micro kernel
  12111. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12112. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12113. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12114. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12115. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12116. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12117. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12118. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12119. } else {
  12120. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12121. }
  12122. }
  12123. }
  12124. }
  12125. }
  12126. }
  12127. }
  12128. }
  12129. }
  12130. // ggml_compute_forward_im2col_f16
  12131. // src0: kernel [OC, IC, KH, KW]
  12132. // src1: image [N, IC, IH, IW]
  12133. // dst: result [N, OH, OW, IC*KH*KW]
  12134. static void ggml_compute_forward_im2col_f16(
  12135. const struct ggml_compute_params * params,
  12136. struct ggml_tensor * dst) {
  12137. const struct ggml_tensor * src0 = dst->src[0];
  12138. const struct ggml_tensor * src1 = dst->src[1];
  12139. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12140. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12141. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12142. GGML_TENSOR_BINARY_OP_LOCALS;
  12143. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12144. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12145. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12146. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12147. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12148. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12149. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12150. const int ith = params->ith;
  12151. const int nth = params->nth;
  12152. const int64_t N = is_2D ? ne13 : ne12;
  12153. const int64_t IC = is_2D ? ne12 : ne11;
  12154. const int64_t IH = is_2D ? ne11 : 1;
  12155. const int64_t IW = ne10;
  12156. const int64_t KH = is_2D ? ne01 : 1;
  12157. const int64_t KW = ne00;
  12158. const int64_t OH = is_2D ? ne2 : 1;
  12159. const int64_t OW = ne1;
  12160. int ofs0 = is_2D ? nb13 : nb12;
  12161. int ofs1 = is_2D ? nb12 : nb11;
  12162. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12163. GGML_ASSERT(nb10 == sizeof(float));
  12164. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12165. {
  12166. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12167. for (int64_t in = 0; in < N; in++) {
  12168. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12169. for (int64_t iow = 0; iow < OW; iow++) {
  12170. for (int64_t iic = ith; iic < IC; iic += nth) {
  12171. // micro kernel
  12172. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12173. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12174. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12175. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12176. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12177. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12178. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12179. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12180. } else {
  12181. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12182. }
  12183. }
  12184. }
  12185. }
  12186. }
  12187. }
  12188. }
  12189. }
  12190. }
  12191. static void ggml_compute_forward_im2col(
  12192. const struct ggml_compute_params * params,
  12193. struct ggml_tensor * dst) {
  12194. switch (dst->type) {
  12195. case GGML_TYPE_F16:
  12196. {
  12197. ggml_compute_forward_im2col_f16(params, dst);
  12198. } break;
  12199. case GGML_TYPE_F32:
  12200. {
  12201. ggml_compute_forward_im2col_f32(params, dst);
  12202. } break;
  12203. default:
  12204. {
  12205. GGML_ABORT("fatal error");
  12206. }
  12207. }
  12208. }
  12209. // ggml_compute_forward_im2col_back_f32
  12210. static void ggml_compute_forward_im2col_back_f32(
  12211. const struct ggml_compute_params * params,
  12212. struct ggml_tensor * dst) {
  12213. const struct ggml_tensor * src0 = dst->src[0];
  12214. const struct ggml_tensor * src1 = dst->src[1];
  12215. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12216. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12217. GGML_TENSOR_BINARY_OP_LOCALS;
  12218. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12219. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12220. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12221. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12222. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12223. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12224. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12225. const int ith = params->ith;
  12226. const int nth = params->nth;
  12227. const int64_t N = is_2D ? ne3 : ne2;
  12228. const int64_t IC = is_2D ? ne2 : ne1;
  12229. const int64_t IH = is_2D ? ne1 : 1;
  12230. const int64_t IW = ne0;
  12231. const int64_t KH = is_2D ? ne01 : 1;
  12232. const int64_t KW = ne00;
  12233. const int64_t OH = is_2D ? ne12 : 1;
  12234. const int64_t OW = ne11;
  12235. int ofs0 = is_2D ? nb3 : nb2;
  12236. int ofs1 = is_2D ? nb2 : nb1;
  12237. GGML_ASSERT(nb0 == sizeof(float));
  12238. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12239. {
  12240. float * const wdata = (float *) dst->data;
  12241. for (int64_t in = 0; in < N; in++) {
  12242. for (int64_t iic = ith; iic < IC; iic += nth) {
  12243. for (int64_t iih = 0; iih < IH; iih++) {
  12244. for (int64_t iiw = 0; iiw < IW; iiw++) {
  12245. // micro kernel
  12246. float grad = 0.0f;
  12247. for (int64_t ikh = 0; ikh < KH; ikh++) {
  12248. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12249. // For s0 > 1 some values were skipped over in the forward pass.
  12250. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
  12251. const int64_t tmpw = (iiw + p0 - ikw*d0);
  12252. if (tmpw % s0 != 0) {
  12253. continue;
  12254. }
  12255. const int64_t iow = tmpw / s0;
  12256. // Equivalent logic as above except for s1.
  12257. int64_t ioh;
  12258. if (is_2D) {
  12259. const int64_t tmph = iih + p1 - ikh*d1;
  12260. if (tmph % s1 != 0) {
  12261. continue;
  12262. }
  12263. ioh = tmph / s1;
  12264. } else {
  12265. ioh = 0;
  12266. }
  12267. if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
  12268. continue;
  12269. }
  12270. const float * const src_data = (const float *) src1->data
  12271. + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12272. grad += src_data[iic*(KH*KW) + ikh*KW + ikw];
  12273. }
  12274. }
  12275. float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
  12276. dst_data[iih*IW + iiw] = grad;
  12277. }
  12278. }
  12279. }
  12280. }
  12281. }
  12282. }
  12283. // ggml_compute_forward_conv_transpose_2d
  12284. static void ggml_compute_forward_conv_transpose_2d(
  12285. const struct ggml_compute_params * params,
  12286. struct ggml_tensor * dst) {
  12287. const struct ggml_tensor * src0 = dst->src[0];
  12288. const struct ggml_tensor * src1 = dst->src[1];
  12289. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12290. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12291. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12292. GGML_TENSOR_BINARY_OP_LOCALS
  12293. const int ith = params->ith;
  12294. const int nth = params->nth;
  12295. const int nk = ne00*ne01*ne02*ne03;
  12296. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12297. GGML_ASSERT(nb10 == sizeof(float));
  12298. if (ith == 0) {
  12299. memset(params->wdata, 0, params->wsize);
  12300. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12301. {
  12302. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12303. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12304. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12305. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12306. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12307. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12308. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12309. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12310. }
  12311. }
  12312. }
  12313. }
  12314. }
  12315. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12316. {
  12317. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12318. for (int i12 = 0; i12 < ne12; i12++) {
  12319. for (int i11 = 0; i11 < ne11; i11++) {
  12320. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12321. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12322. for (int i10 = 0; i10 < ne10; i10++) {
  12323. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12324. }
  12325. }
  12326. }
  12327. }
  12328. memset(dst->data, 0, ggml_nbytes(dst));
  12329. }
  12330. ggml_barrier(params->threadpool);
  12331. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12332. // total patches in dst
  12333. const int np = ne2;
  12334. // patches per thread
  12335. const int dp = (np + nth - 1)/nth;
  12336. // patch range for this thread
  12337. const int ip0 = dp*ith;
  12338. const int ip1 = MIN(ip0 + dp, np);
  12339. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12340. ggml_fp16_t * const wdata_src = wdata + nk;
  12341. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12342. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12343. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12344. for (int i11 = 0; i11 < ne11; i11++) {
  12345. for (int i10 = 0; i10 < ne10; i10++) {
  12346. const int i1n = i11*ne10*ne12 + i10*ne12;
  12347. for (int i01 = 0; i01 < ne01; i01++) {
  12348. for (int i00 = 0; i00 < ne00; i00++) {
  12349. float v = 0;
  12350. ggml_vec_dot_f16(ne03, &v, 0,
  12351. wdata_src + i1n, 0,
  12352. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12353. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12354. }
  12355. }
  12356. }
  12357. }
  12358. }
  12359. }
  12360. // ggml_compute_forward_pool_1d_sk_p0
  12361. static void ggml_compute_forward_pool_1d_sk_p0(
  12362. const struct ggml_compute_params * params,
  12363. const enum ggml_op_pool op,
  12364. const int k,
  12365. struct ggml_tensor * dst) {
  12366. const struct ggml_tensor * src = dst->src[0];
  12367. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12368. if (params->ith != 0) {
  12369. return;
  12370. }
  12371. const char * cdata = (const char *)src->data;
  12372. const char * const data_end = cdata + ggml_nbytes(src);
  12373. float * drow = (float *)dst->data;
  12374. const int64_t rs = dst->ne[0];
  12375. while (cdata < data_end) {
  12376. const void * srow = (const void *)cdata;
  12377. int j = 0;
  12378. for (int64_t i = 0; i < rs; ++i) {
  12379. switch (op) {
  12380. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12381. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12382. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12383. }
  12384. for (int ki = 0; ki < k; ++ki) {
  12385. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12386. switch (op) {
  12387. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  12388. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  12389. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12390. }
  12391. ++j;
  12392. }
  12393. switch (op) {
  12394. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12395. case GGML_OP_POOL_MAX: break;
  12396. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12397. }
  12398. }
  12399. cdata += src->nb[1];
  12400. drow += rs;
  12401. }
  12402. }
  12403. // ggml_compute_forward_pool_1d
  12404. static void ggml_compute_forward_pool_1d(
  12405. const struct ggml_compute_params * params,
  12406. struct ggml_tensor * dst) {
  12407. const int32_t * opts = (const int32_t *)dst->op_params;
  12408. enum ggml_op_pool op = opts[0];
  12409. const int k0 = opts[1];
  12410. const int s0 = opts[2];
  12411. const int p0 = opts[3];
  12412. GGML_ASSERT(p0 == 0); // padding not supported
  12413. GGML_ASSERT(k0 == s0); // only s = k supported
  12414. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12415. }
  12416. // ggml_compute_forward_pool_2d
  12417. static void ggml_compute_forward_pool_2d(
  12418. const struct ggml_compute_params * params,
  12419. struct ggml_tensor * dst) {
  12420. const struct ggml_tensor * src = dst->src[0];
  12421. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12422. if (params->ith != 0) {
  12423. return;
  12424. }
  12425. const int32_t * opts = (const int32_t *)dst->op_params;
  12426. enum ggml_op_pool op = opts[0];
  12427. const int k0 = opts[1];
  12428. const int k1 = opts[2];
  12429. const int s0 = opts[3];
  12430. const int s1 = opts[4];
  12431. const int p0 = opts[5];
  12432. const int p1 = opts[6];
  12433. const char * cdata = (const char*)src->data;
  12434. const char * const data_end = cdata + ggml_nbytes(src);
  12435. const int64_t px = dst->ne[0];
  12436. const int64_t py = dst->ne[1];
  12437. const int64_t pa = px * py;
  12438. float * dplane = (float *)dst->data;
  12439. const int ka = k0 * k1;
  12440. const int offset0 = -p0;
  12441. const int offset1 = -p1;
  12442. while (cdata < data_end) {
  12443. for (int oy = 0; oy < py; ++oy) {
  12444. float * const drow = dplane + oy * px;
  12445. for (int ox = 0; ox < px; ++ox) {
  12446. float * const out = drow + ox;
  12447. switch (op) {
  12448. case GGML_OP_POOL_AVG: *out = 0; break;
  12449. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12450. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12451. }
  12452. const int ix = offset0 + ox * s0;
  12453. const int iy = offset1 + oy * s1;
  12454. for (int ky = 0; ky < k1; ++ky) {
  12455. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12456. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  12457. for (int kx = 0; kx < k0; ++kx) {
  12458. int j = ix + kx;
  12459. if (j < 0 || j >= src->ne[0]) continue;
  12460. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12461. switch (op) {
  12462. case GGML_OP_POOL_AVG: *out += srow_j; break;
  12463. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  12464. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12465. }
  12466. }
  12467. }
  12468. switch (op) {
  12469. case GGML_OP_POOL_AVG: *out /= ka; break;
  12470. case GGML_OP_POOL_MAX: break;
  12471. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12472. }
  12473. }
  12474. }
  12475. cdata += src->nb[2];
  12476. dplane += pa;
  12477. }
  12478. }
  12479. // ggml_compute_forward_pool_2d_back
  12480. static void ggml_compute_forward_pool_2d_back(
  12481. const struct ggml_compute_params * params,
  12482. struct ggml_tensor * dst) {
  12483. const struct ggml_tensor * src = dst->src[0];
  12484. const struct ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
  12485. assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
  12486. if (params->ith != 0) {
  12487. return;
  12488. }
  12489. const int32_t * opts = (const int32_t *)dst->op_params;
  12490. enum ggml_op_pool op = opts[0];
  12491. const int k0 = opts[1];
  12492. const int k1 = opts[2];
  12493. const int s0 = opts[3];
  12494. const int s1 = opts[4];
  12495. const int p0 = opts[5];
  12496. const int p1 = opts[6];
  12497. char * cdata = (char *) dst->data;
  12498. const char * cdataf = (const char *) dstf->data;
  12499. const char * const data_end = cdata + ggml_nbytes(dst);
  12500. GGML_ASSERT(params->ith == 0);
  12501. memset(cdata, 0, ggml_nbytes(dst));
  12502. const int64_t px = src->ne[0];
  12503. const int64_t py = src->ne[1];
  12504. const int64_t pa = px * py;
  12505. const float * splane = (const float *) src->data;
  12506. const int ka = k0 * k1;
  12507. const int offset0 = -p0;
  12508. const int offset1 = -p1;
  12509. while (cdata < data_end) {
  12510. for (int oy = 0; oy < py; ++oy) {
  12511. const float * const srow = splane + oy * px;
  12512. for (int ox = 0; ox < px; ++ox) {
  12513. const float grad0 = srow[ox];
  12514. const int ix = offset0 + ox * s0;
  12515. const int iy = offset1 + oy * s1;
  12516. if (op == GGML_OP_POOL_MAX) {
  12517. float maxval = -FLT_MAX;
  12518. int kxmax = -1;
  12519. int kymax = -1;
  12520. for (int ky = 0; ky < k1; ++ky) {
  12521. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  12522. continue;
  12523. }
  12524. const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
  12525. for (int kx = 0; kx < k0; ++kx) {
  12526. int j = ix + kx;
  12527. if (j < 0 || j >= dst->ne[0]) {
  12528. continue;
  12529. }
  12530. const float val = dst->type == GGML_TYPE_F32 ?
  12531. ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
  12532. if (val <= maxval) {
  12533. continue;
  12534. }
  12535. maxval = val;
  12536. kxmax = kx;
  12537. kymax = ky;
  12538. }
  12539. }
  12540. if (kxmax == -1 || kymax == -1) {
  12541. continue;
  12542. }
  12543. void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
  12544. const int j = ix + kxmax;
  12545. if (dst->type == GGML_TYPE_F32) {
  12546. ((float *) drow)[j] += grad0;
  12547. } else {
  12548. ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
  12549. }
  12550. } else if (op == GGML_OP_POOL_AVG) {
  12551. const float grad = grad0 / ka;
  12552. for (int ky = 0; ky < k1; ++ky) {
  12553. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  12554. continue;
  12555. }
  12556. void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
  12557. for (int kx = 0; kx < k0; ++kx) {
  12558. int j = ix + kx;
  12559. if (j < 0 || j >= dst->ne[0]) {
  12560. continue;
  12561. }
  12562. if (dst->type == GGML_TYPE_F32) {
  12563. ((float *) drow)[j] += grad;
  12564. } else {
  12565. ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
  12566. }
  12567. }
  12568. }
  12569. } else {
  12570. GGML_ASSERT(false);
  12571. }
  12572. }
  12573. }
  12574. cdata += dst->nb[2];
  12575. cdataf += dst->nb[2];
  12576. splane += pa;
  12577. }
  12578. }
  12579. // ggml_compute_forward_upscale
  12580. static void ggml_compute_forward_upscale_f32(
  12581. const struct ggml_compute_params * params,
  12582. struct ggml_tensor * dst) {
  12583. const struct ggml_tensor * src0 = dst->src[0];
  12584. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12585. const int ith = params->ith;
  12586. const int nth = params->nth;
  12587. GGML_TENSOR_UNARY_OP_LOCALS
  12588. const float sf0 = (float)ne0/src0->ne[0];
  12589. const float sf1 = (float)ne1/src0->ne[1];
  12590. const float sf2 = (float)ne2/src0->ne[2];
  12591. const float sf3 = (float)ne3/src0->ne[3];
  12592. // TODO: optimize
  12593. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12594. const int64_t i03 = i3 / sf3;
  12595. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12596. const int64_t i02 = i2 / sf2;
  12597. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12598. const int64_t i01 = i1 / sf1;
  12599. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12600. const int64_t i00 = i0 / sf0;
  12601. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12602. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12603. *y = *x;
  12604. }
  12605. }
  12606. }
  12607. }
  12608. }
  12609. static void ggml_compute_forward_upscale(
  12610. const struct ggml_compute_params * params,
  12611. struct ggml_tensor * dst) {
  12612. const struct ggml_tensor * src0 = dst->src[0];
  12613. switch (src0->type) {
  12614. case GGML_TYPE_F32:
  12615. {
  12616. ggml_compute_forward_upscale_f32(params, dst);
  12617. } break;
  12618. default:
  12619. {
  12620. GGML_ABORT("fatal error");
  12621. }
  12622. }
  12623. }
  12624. // ggml_compute_forward_pad
  12625. static void ggml_compute_forward_pad_f32(
  12626. const struct ggml_compute_params * params,
  12627. struct ggml_tensor * dst) {
  12628. const struct ggml_tensor * src0 = dst->src[0];
  12629. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12630. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12631. const int ith = params->ith;
  12632. const int nth = params->nth;
  12633. GGML_TENSOR_UNARY_OP_LOCALS
  12634. float * dst_ptr = (float *) dst->data;
  12635. // TODO: optimize
  12636. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12637. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12638. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12639. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12640. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12641. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12642. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12643. dst_ptr[dst_idx] = *src_ptr;
  12644. } else {
  12645. dst_ptr[dst_idx] = 0;
  12646. }
  12647. }
  12648. }
  12649. }
  12650. }
  12651. }
  12652. static void ggml_compute_forward_pad(
  12653. const struct ggml_compute_params * params,
  12654. struct ggml_tensor * dst) {
  12655. const struct ggml_tensor * src0 = dst->src[0];
  12656. switch (src0->type) {
  12657. case GGML_TYPE_F32:
  12658. {
  12659. ggml_compute_forward_pad_f32(params, dst);
  12660. } break;
  12661. default:
  12662. {
  12663. GGML_ABORT("fatal error");
  12664. }
  12665. }
  12666. }
  12667. // ggml_compute_forward_arange
  12668. static void ggml_compute_forward_arange_f32(
  12669. const struct ggml_compute_params * params,
  12670. struct ggml_tensor * dst) {
  12671. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12672. const int ith = params->ith;
  12673. const int nth = params->nth;
  12674. const float start = ggml_get_op_params_f32(dst, 0);
  12675. const float stop = ggml_get_op_params_f32(dst, 1);
  12676. const float step = ggml_get_op_params_f32(dst, 2);
  12677. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12678. GGML_ASSERT(ggml_nelements(dst) == steps);
  12679. for (int64_t i = ith; i < steps; i+= nth) {
  12680. float value = start + step * i;
  12681. ((float *)dst->data)[i] = value;
  12682. }
  12683. }
  12684. static void ggml_compute_forward_arange(
  12685. const struct ggml_compute_params * params,
  12686. struct ggml_tensor * dst) {
  12687. switch (dst->type) {
  12688. case GGML_TYPE_F32:
  12689. {
  12690. ggml_compute_forward_arange_f32(params, dst);
  12691. } break;
  12692. default:
  12693. {
  12694. GGML_ABORT("fatal error");
  12695. }
  12696. }
  12697. }
  12698. static void ggml_compute_forward_timestep_embedding_f32(
  12699. const struct ggml_compute_params * params,
  12700. struct ggml_tensor * dst) {
  12701. const struct ggml_tensor * src0 = dst->src[0];
  12702. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12703. const int ith = params->ith;
  12704. const int nth = params->nth;
  12705. GGML_TENSOR_UNARY_OP_LOCALS
  12706. const int dim = ggml_get_op_params_i32(dst, 0);
  12707. const int max_period = ggml_get_op_params_i32(dst, 1);
  12708. int half = dim / 2;
  12709. for (int64_t i = 0; i < ne00; i++) {
  12710. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12711. for (int64_t j = ith; j < half; j += nth) {
  12712. float timestep = ((float *)src0->data)[i];
  12713. float freq = (float)expf(-logf(max_period) * j / half);
  12714. float arg = timestep * freq;
  12715. embed_data[j] = cosf(arg);
  12716. embed_data[j + half] = sinf(arg);
  12717. }
  12718. if (dim % 2 != 0 && ith == 0) {
  12719. embed_data[dim] = 0.f;
  12720. }
  12721. }
  12722. }
  12723. static void ggml_compute_forward_timestep_embedding(
  12724. const struct ggml_compute_params * params,
  12725. struct ggml_tensor * dst) {
  12726. const struct ggml_tensor * src0 = dst->src[0];
  12727. switch (src0->type) {
  12728. case GGML_TYPE_F32:
  12729. {
  12730. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12731. } break;
  12732. default:
  12733. {
  12734. GGML_ABORT("fatal error");
  12735. }
  12736. }
  12737. }
  12738. // ggml_compute_forward_argsort
  12739. static void ggml_compute_forward_argsort_f32(
  12740. const struct ggml_compute_params * params,
  12741. struct ggml_tensor * dst) {
  12742. const struct ggml_tensor * src0 = dst->src[0];
  12743. GGML_TENSOR_UNARY_OP_LOCALS
  12744. GGML_ASSERT(nb0 == sizeof(float));
  12745. const int ith = params->ith;
  12746. const int nth = params->nth;
  12747. const int64_t nr = ggml_nrows(src0);
  12748. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12749. for (int64_t i = ith; i < nr; i += nth) {
  12750. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12751. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12752. for (int64_t j = 0; j < ne0; j++) {
  12753. dst_data[j] = j;
  12754. }
  12755. // C doesn't have a functional sort, so we do a bubble sort instead
  12756. for (int64_t j = 0; j < ne0; j++) {
  12757. for (int64_t k = j + 1; k < ne0; k++) {
  12758. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12759. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12760. int32_t tmp = dst_data[j];
  12761. dst_data[j] = dst_data[k];
  12762. dst_data[k] = tmp;
  12763. }
  12764. }
  12765. }
  12766. }
  12767. }
  12768. static void ggml_compute_forward_argsort(
  12769. const struct ggml_compute_params * params,
  12770. struct ggml_tensor * dst) {
  12771. const struct ggml_tensor * src0 = dst->src[0];
  12772. switch (src0->type) {
  12773. case GGML_TYPE_F32:
  12774. {
  12775. ggml_compute_forward_argsort_f32(params, dst);
  12776. } break;
  12777. default:
  12778. {
  12779. GGML_ABORT("fatal error");
  12780. }
  12781. }
  12782. }
  12783. // ggml_compute_forward_flash_attn_ext
  12784. static void ggml_compute_forward_flash_attn_ext_f16(
  12785. const struct ggml_compute_params * params,
  12786. const struct ggml_tensor * q,
  12787. const struct ggml_tensor * k,
  12788. const struct ggml_tensor * v,
  12789. const struct ggml_tensor * mask,
  12790. struct ggml_tensor * dst) {
  12791. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12792. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12793. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12794. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12795. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12796. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12797. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12798. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12799. const int ith = params->ith;
  12800. const int nth = params->nth;
  12801. const int64_t D = neq0;
  12802. const int64_t N = neq1;
  12803. GGML_ASSERT(ne0 == D);
  12804. GGML_ASSERT(ne2 == N);
  12805. // input tensor rows must be contiguous
  12806. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12807. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12808. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12809. GGML_ASSERT(neq0 == D);
  12810. GGML_ASSERT(nek0 == D);
  12811. GGML_ASSERT(nev0 == D);
  12812. GGML_ASSERT(neq1 == N);
  12813. GGML_ASSERT(nev0 == D);
  12814. // dst cannot be transposed or permuted
  12815. GGML_ASSERT(nb0 == sizeof(float));
  12816. GGML_ASSERT(nb0 <= nb1);
  12817. GGML_ASSERT(nb1 <= nb2);
  12818. GGML_ASSERT(nb2 <= nb3);
  12819. // broadcast factors
  12820. const int64_t rk2 = neq2/nek2;
  12821. const int64_t rk3 = neq3/nek3;
  12822. const int64_t rv2 = neq2/nev2;
  12823. const int64_t rv3 = neq3/nev3;
  12824. // parallelize by q rows using ggml_vec_dot_f32
  12825. // total rows in q
  12826. const int nr = neq1*neq2*neq3;
  12827. // rows per thread
  12828. const int dr = (nr + nth - 1)/nth;
  12829. // row range for this thread
  12830. const int ir0 = dr*ith;
  12831. const int ir1 = MIN(ir0 + dr, nr);
  12832. float scale = 1.0f;
  12833. float max_bias = 0.0f;
  12834. float logit_softcap = 0.0f;
  12835. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12836. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12837. memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
  12838. if (logit_softcap != 0) {
  12839. scale /= logit_softcap;
  12840. }
  12841. const uint32_t n_head = neq2;
  12842. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12843. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12844. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12845. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12846. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12847. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12848. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12849. // loop over n_batch and n_head
  12850. for (int ir = ir0; ir < ir1; ++ir) {
  12851. // q indices
  12852. const int iq3 = ir/(neq2*neq1);
  12853. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12854. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12855. const uint32_t h = iq2; // head index
  12856. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12857. float S = 0.0f; // sum
  12858. float M = -INFINITY; // maximum KQ value
  12859. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12860. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12861. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12862. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12863. if (v->type == GGML_TYPE_F16) {
  12864. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12865. } else {
  12866. memset(VKQ32, 0, D*sizeof(float));
  12867. }
  12868. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12869. // k indices
  12870. const int ik3 = iq3 / rk3;
  12871. const int ik2 = iq2 / rk2;
  12872. // v indices
  12873. const int iv3 = iq3 / rv3;
  12874. const int iv2 = iq2 / rv2;
  12875. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12876. q_to_vec_dot(pq, Q_q, D);
  12877. // online softmax / attention
  12878. // loop over n_kv and n_head_kv
  12879. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12880. for (int64_t ic = 0; ic < nek1; ++ic) {
  12881. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12882. if (mv == -INFINITY) {
  12883. continue;
  12884. }
  12885. float s; // KQ value
  12886. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12887. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12888. s = s*scale; // scale KQ value
  12889. if (logit_softcap != 0.0f) {
  12890. s = logit_softcap*tanhf(s);
  12891. }
  12892. s += mv; // apply mask
  12893. const float Mold = M;
  12894. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12895. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12896. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12897. if (v->type == GGML_TYPE_F16) {
  12898. if (s > M) {
  12899. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12900. M = s;
  12901. ms = expf(Mold - M);
  12902. // V = V*expf(Mold - M)
  12903. ggml_vec_scale_f16(D, VKQ16, ms);
  12904. } else {
  12905. // no new maximum, ms == 1.0f, vs != 1.0f
  12906. vs = expf(s - M);
  12907. }
  12908. // V += v*expf(s - M)
  12909. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12910. } else {
  12911. if (s > M) {
  12912. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12913. M = s;
  12914. ms = expf(Mold - M);
  12915. // V = V*expf(Mold - M)
  12916. ggml_vec_scale_f32(D, VKQ32, ms);
  12917. } else {
  12918. // no new maximum, ms == 1.0f, vs != 1.0f
  12919. vs = expf(s - M);
  12920. }
  12921. v_to_float(v_data, V32, D);
  12922. // V += v*expf(s - M)
  12923. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12924. }
  12925. S = S*ms + vs; // scale and increment sum with partial sum
  12926. }
  12927. if (v->type == GGML_TYPE_F16) {
  12928. for (int64_t d = 0; d < D; ++d) {
  12929. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12930. }
  12931. }
  12932. // V /= S
  12933. const float S_inv = 1.0f/S;
  12934. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12935. // dst indices
  12936. const int i1 = iq1;
  12937. const int i2 = iq2;
  12938. const int i3 = iq3;
  12939. // original
  12940. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12941. // permute(0, 2, 1, 3)
  12942. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12943. }
  12944. }
  12945. static void ggml_compute_forward_flash_attn_ext(
  12946. const struct ggml_compute_params * params,
  12947. const struct ggml_tensor * q,
  12948. const struct ggml_tensor * k,
  12949. const struct ggml_tensor * v,
  12950. const struct ggml_tensor * mask,
  12951. struct ggml_tensor * dst) {
  12952. switch (dst->op_params[3]) {
  12953. case GGML_PREC_DEFAULT:
  12954. case GGML_PREC_F32:
  12955. {
  12956. // uses F32 accumulators
  12957. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12958. } break;
  12959. default:
  12960. {
  12961. GGML_ABORT("fatal error");
  12962. }
  12963. }
  12964. }
  12965. // ggml_compute_forward_flash_attn_back
  12966. static void ggml_compute_forward_flash_attn_back_f32(
  12967. const struct ggml_compute_params * params,
  12968. const bool masked,
  12969. struct ggml_tensor * dst) {
  12970. const struct ggml_tensor * q = dst->src[0];
  12971. const struct ggml_tensor * k = dst->src[1];
  12972. const struct ggml_tensor * v = dst->src[2];
  12973. const struct ggml_tensor * d = dst->src[3];
  12974. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12975. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12976. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12977. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12978. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12979. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12980. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12981. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12982. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12983. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12984. const int ith = params->ith;
  12985. const int nth = params->nth;
  12986. const int64_t D = neq0;
  12987. const int64_t N = neq1;
  12988. const int64_t P = nek1 - N;
  12989. const int64_t M = P + N;
  12990. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12991. const int mxDM = MAX(D, Mup);
  12992. // GGML_ASSERT(ne0 == D);
  12993. // GGML_ASSERT(ne1 == N);
  12994. GGML_ASSERT(P >= 0);
  12995. GGML_ASSERT(nbq0 == sizeof(float));
  12996. GGML_ASSERT(nbk0 == sizeof(float));
  12997. GGML_ASSERT(nbv0 == sizeof(float));
  12998. GGML_ASSERT(neq0 == D);
  12999. GGML_ASSERT(nek0 == D);
  13000. GGML_ASSERT(nev1 == D);
  13001. GGML_ASSERT(ned0 == D);
  13002. GGML_ASSERT(neq1 == N);
  13003. GGML_ASSERT(nek1 == N + P);
  13004. GGML_ASSERT(nev1 == D);
  13005. GGML_ASSERT(ned1 == N);
  13006. // dst cannot be transposed or permuted
  13007. GGML_ASSERT(nb0 == sizeof(float));
  13008. GGML_ASSERT(nb0 <= nb1);
  13009. GGML_ASSERT(nb1 <= nb2);
  13010. GGML_ASSERT(nb2 <= nb3);
  13011. if (ith == 0) {
  13012. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13013. }
  13014. ggml_barrier(params->threadpool);
  13015. const int64_t elem_q = ggml_nelements(q);
  13016. const int64_t elem_k = ggml_nelements(k);
  13017. enum ggml_type result_type = dst->type;
  13018. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13019. const size_t tsize = ggml_type_size(result_type);
  13020. const size_t offs_q = 0;
  13021. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13022. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13023. void * grad_q = (char *) dst->data;
  13024. void * grad_k = (char *) dst->data + offs_k;
  13025. void * grad_v = (char *) dst->data + offs_v;
  13026. const size_t nbgq1 = nb0*neq0;
  13027. const size_t nbgq2 = nb0*neq0*neq1;
  13028. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13029. const size_t nbgk1 = nb0*nek0;
  13030. const size_t nbgk2 = nb0*nek0*nek1;
  13031. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13032. const size_t nbgv1 = nb0*nev0;
  13033. const size_t nbgv2 = nb0*nev0*nev1;
  13034. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13035. // parallelize by k rows using ggml_vec_dot_f32
  13036. // total rows in k
  13037. const int nr = nek2*nek3;
  13038. // rows per thread
  13039. const int dr = (nr + nth - 1)/nth;
  13040. // row range for this thread
  13041. const int ir0 = dr*ith;
  13042. const int ir1 = MIN(ir0 + dr, nr);
  13043. const float scale = 1.0f/sqrtf(D);
  13044. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13045. // how often k2 (and v2) is repeated in q2
  13046. int nrep = neq2/nek2;
  13047. for (int ir = ir0; ir < ir1; ++ir) {
  13048. // q indices
  13049. const int ik3 = ir/(nek2);
  13050. const int ik2 = ir - ik3*nek2;
  13051. const int iq3 = ik3;
  13052. const int id3 = ik3;
  13053. const int iv3 = ik3;
  13054. const int iv2 = ik2;
  13055. for (int irep = 0; irep < nrep; ++irep) {
  13056. const int iq2 = ik2 + irep*nek2;
  13057. const int id2 = iq2;
  13058. // (ik2 + irep*nek2) % nek2 == ik2
  13059. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13060. const int id1 = iq1;
  13061. // not sure about CACHE_LINE_SIZE_F32..
  13062. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13063. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13064. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13065. for (int i = M; i < Mup; ++i) {
  13066. S[i] = -INFINITY;
  13067. }
  13068. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13069. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13070. // k indices
  13071. const int ik1 = ic;
  13072. // S indices
  13073. const int i1 = ik1;
  13074. ggml_vec_dot_f32(neq0,
  13075. S + i1, 0,
  13076. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13077. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13078. }
  13079. // scale
  13080. ggml_vec_scale_f32(masked_begin, S, scale);
  13081. for (int64_t i = masked_begin; i < M; i++) {
  13082. S[i] = -INFINITY;
  13083. }
  13084. // softmax
  13085. // exclude known -INF S[..] values from max and loop
  13086. // dont forget to set their SM values to zero
  13087. {
  13088. float max = -INFINITY;
  13089. ggml_vec_max_f32(masked_begin, &max, S);
  13090. ggml_float sum = 0.0;
  13091. {
  13092. #ifdef GGML_SOFT_MAX_ACCELERATE
  13093. max = -max;
  13094. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13095. vvexpf(SM, SM, &Mup);
  13096. ggml_vec_sum_f32(Mup, &sum, SM);
  13097. #else
  13098. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13099. #endif
  13100. }
  13101. assert(sum > 0.0);
  13102. sum = 1.0/sum;
  13103. ggml_vec_scale_f32(masked_begin, SM, sum);
  13104. }
  13105. // step-by-step explanation
  13106. {
  13107. // forward-process shape grads from backward process
  13108. // parallel_for ik2,ik3:
  13109. // for irep:
  13110. // iq2 = ik2 + irep*nek2
  13111. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13112. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13113. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13114. // for iq1:
  13115. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13116. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13117. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13118. // S0 = -Inf [D,1,1,1]
  13119. // ~S1[i] = dot(kcur[:D,i], qcur)
  13120. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13121. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13122. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13123. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13124. // ~S5[i] = dot(vcur[:,i], S4)
  13125. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13126. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13127. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13128. // dst backward-/ grad[dst] = d
  13129. //
  13130. // output gradients with their dependencies:
  13131. //
  13132. // grad[kcur] = grad[S1].T @ qcur
  13133. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13134. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13135. // grad[S4] = grad[S5] @ vcur
  13136. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13137. // grad[qcur] = grad[S1] @ kcur
  13138. // grad[vcur] = grad[S5].T @ S4
  13139. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13140. //
  13141. // in post-order:
  13142. //
  13143. // S1 = qcur @ kcur.T
  13144. // S2 = S1 * scale
  13145. // S3 = diag_mask_inf(S2, P)
  13146. // S4 = softmax(S3)
  13147. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13148. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13149. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13150. // grad[qcur] = grad[S1] @ kcur
  13151. // grad[kcur] = grad[S1].T @ qcur
  13152. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13153. //
  13154. // using less variables (SM=S4):
  13155. //
  13156. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13157. // SM = softmax(S)
  13158. // S = d[:D,iq1,iq2,iq3] @ vcur
  13159. // dot_SM_gradSM = dot(SM, S)
  13160. // S = SM * (S - dot(SM, S))
  13161. // S = diag_mask_zero(S, P) * scale
  13162. //
  13163. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13164. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13165. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13166. }
  13167. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13168. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13169. // for ic:
  13170. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13171. // exclude known future zero S[..] values from operation
  13172. ggml_vec_set_f32(masked_begin, S, 0);
  13173. for (int64_t ic = 0; ic < D; ++ic) {
  13174. ggml_vec_mad_f32(masked_begin,
  13175. S,
  13176. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13177. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13178. }
  13179. // S = SM * (S - dot(SM, S))
  13180. float dot_SM_gradSM = 0;
  13181. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13182. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13183. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13184. // S = diag_mask_zero(S, P) * scale
  13185. // already done by above ggml_vec_set_f32
  13186. // exclude known zero S[..] values from operation
  13187. ggml_vec_scale_f32(masked_begin, S, scale);
  13188. // S shape [M,1]
  13189. // SM shape [M,1]
  13190. // kcur shape [D,M]
  13191. // qcur shape [D,1]
  13192. // vcur shape [M,D]
  13193. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13194. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13195. // for ic:
  13196. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13197. // exclude known zero S[..] values from loop
  13198. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13199. ggml_vec_mad_f32(D,
  13200. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13201. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13202. S[ic]);
  13203. }
  13204. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13205. // for ic:
  13206. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13207. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13208. // exclude known zero S[..] values from loop
  13209. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13210. ggml_vec_mad_f32(D,
  13211. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13212. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13213. S[ic]);
  13214. }
  13215. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13216. // for ic:
  13217. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13218. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13219. // exclude known zero SM[..] values from mad
  13220. for (int64_t ic = 0; ic < D; ++ic) {
  13221. ggml_vec_mad_f32(masked_begin,
  13222. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13223. SM,
  13224. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13225. }
  13226. }
  13227. }
  13228. }
  13229. }
  13230. static void ggml_compute_forward_flash_attn_back(
  13231. const struct ggml_compute_params * params,
  13232. const bool masked,
  13233. struct ggml_tensor * dst) {
  13234. const struct ggml_tensor * q = dst->src[0];
  13235. switch (q->type) {
  13236. case GGML_TYPE_F32:
  13237. {
  13238. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13239. } break;
  13240. default:
  13241. {
  13242. GGML_ABORT("fatal error");
  13243. }
  13244. }
  13245. }
  13246. // ggml_compute_forward_ssm_conv
  13247. static void ggml_compute_forward_ssm_conv_f32(
  13248. const struct ggml_compute_params * params,
  13249. struct ggml_tensor * dst) {
  13250. const struct ggml_tensor * src0 = dst->src[0]; // conv_x
  13251. const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
  13252. const int ith = params->ith;
  13253. const int nth = params->nth;
  13254. const int nc = src1->ne[0]; // d_conv
  13255. const int ncs = src0->ne[0]; // d_conv - 1 + n_t
  13256. const int nr = src0->ne[1]; // d_inner
  13257. const int n_t = dst->ne[1]; // tokens per sequence
  13258. const int n_s = dst->ne[2]; // number of sequences in the batch
  13259. GGML_ASSERT( dst->ne[0] == nr);
  13260. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13261. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13262. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13263. // rows per thread
  13264. const int dr = (nr + nth - 1)/nth;
  13265. // row range for this thread
  13266. const int ir0 = dr*ith;
  13267. const int ir1 = MIN(ir0 + dr, nr);
  13268. const int ir = ir1 - ir0;
  13269. for (int i3 = 0; i3 < n_s; ++i3) {
  13270. for (int i2 = 0; i2 < n_t; ++i2) {
  13271. // {d_conv - 1 + n_t, d_inner, n_seqs}
  13272. // sliding window
  13273. const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
  13274. const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
  13275. float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
  13276. // TODO: transpose the output for smaller strides for big batches?
  13277. // d_inner
  13278. for (int i1 = 0; i1 < ir; ++i1) {
  13279. // rowwise dot product
  13280. // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
  13281. float sumf = 0.0f;
  13282. // d_conv
  13283. for (int i0 = 0; i0 < nc; ++i0) {
  13284. sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
  13285. }
  13286. x[i1] = sumf;
  13287. }
  13288. }
  13289. }
  13290. }
  13291. static void ggml_compute_forward_ssm_conv(
  13292. const struct ggml_compute_params * params,
  13293. struct ggml_tensor * dst) {
  13294. switch (dst->src[0]->type) {
  13295. case GGML_TYPE_F32:
  13296. {
  13297. ggml_compute_forward_ssm_conv_f32(params, dst);
  13298. } break;
  13299. default:
  13300. {
  13301. GGML_ABORT("fatal error");
  13302. }
  13303. }
  13304. }
  13305. // ggml_compute_forward_ssm_scan
  13306. static void ggml_compute_forward_ssm_scan_f32(
  13307. const struct ggml_compute_params * params,
  13308. struct ggml_tensor * dst) {
  13309. const struct ggml_tensor * src0 = dst->src[0]; // s
  13310. const struct ggml_tensor * src1 = dst->src[1]; // x
  13311. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13312. const struct ggml_tensor * src3 = dst->src[3]; // A
  13313. const struct ggml_tensor * src4 = dst->src[4]; // B
  13314. const struct ggml_tensor * src5 = dst->src[5]; // C
  13315. const int ith = params->ith;
  13316. const int nth = params->nth;
  13317. const int64_t nc = src0->ne[0]; // d_state
  13318. const int64_t nr = src0->ne[1]; // d_inner
  13319. const int64_t n_t = src1->ne[1]; // number of tokens per sequence
  13320. const int64_t n_s = src0->ne[2]; // number of sequences in the batch
  13321. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13322. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13323. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13324. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13325. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13326. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13327. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13328. // required for the dot product between s and C
  13329. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13330. // required for per-sequence offsets for states
  13331. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13332. // required to get correct offset for state destination (i.e. src1->nb[3])
  13333. GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
  13334. // rows per thread
  13335. const int dr = (nr + nth - 1)/nth;
  13336. // row range for this thread
  13337. const int ir0 = dr*ith;
  13338. const int ir1 = MIN(ir0 + dr, nr);
  13339. const int ir = ir1 - ir0;
  13340. for (int i3 = 0; i3 < n_s; ++i3) {
  13341. for (int i2 = 0; i2 < n_t; ++i2) {
  13342. const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
  13343. const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  13344. const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
  13345. const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13346. const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
  13347. const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
  13348. float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  13349. float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
  13350. // use the output as the source for the next token-wise iterations
  13351. if (i2 > 0) { s0 = s; }
  13352. // d_inner
  13353. for (int i1 = 0; i1 < ir; ++i1) {
  13354. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13355. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13356. float x_dt = x[i1] * dt_soft_plus;
  13357. float sumf = 0.0f;
  13358. // d_state
  13359. for (int i0 = 0; i0 < nc; ++i0) {
  13360. int i = i0 + i1*nc;
  13361. // state = prev_state * dA + dB * x
  13362. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13363. // y = rowwise_dotprod(state, C)
  13364. sumf += state * C[i0];
  13365. s[i] = state;
  13366. }
  13367. y[i1] = sumf;
  13368. }
  13369. }
  13370. }
  13371. }
  13372. static void ggml_compute_forward_ssm_scan(
  13373. const struct ggml_compute_params * params,
  13374. struct ggml_tensor * dst) {
  13375. switch (dst->src[0]->type) {
  13376. case GGML_TYPE_F32:
  13377. {
  13378. ggml_compute_forward_ssm_scan_f32(params, dst);
  13379. } break;
  13380. default:
  13381. {
  13382. GGML_ABORT("fatal error");
  13383. }
  13384. }
  13385. }
  13386. // ggml_compute_forward_win_part
  13387. static void ggml_compute_forward_win_part_f32(
  13388. const struct ggml_compute_params * params,
  13389. struct ggml_tensor * dst) {
  13390. UNUSED(params);
  13391. const struct ggml_tensor * src0 = dst->src[0];
  13392. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13393. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13394. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13395. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13396. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13397. assert(ne00 == ne0);
  13398. assert(ne3 == nep0*nep1);
  13399. // TODO: optimize / multi-thread
  13400. for (int py = 0; py < nep1; ++py) {
  13401. for (int px = 0; px < nep0; ++px) {
  13402. const int64_t i3 = py*nep0 + px;
  13403. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13404. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13405. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13406. const int64_t i02 = py*w + i2;
  13407. const int64_t i01 = px*w + i1;
  13408. const int64_t i00 = i0;
  13409. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13410. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13411. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13412. ((float *) dst->data)[i] = 0.0f;
  13413. } else {
  13414. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13415. }
  13416. }
  13417. }
  13418. }
  13419. }
  13420. }
  13421. }
  13422. static void ggml_compute_forward_win_part(
  13423. const struct ggml_compute_params * params,
  13424. struct ggml_tensor * dst) {
  13425. const struct ggml_tensor * src0 = dst->src[0];
  13426. switch (src0->type) {
  13427. case GGML_TYPE_F32:
  13428. {
  13429. ggml_compute_forward_win_part_f32(params, dst);
  13430. } break;
  13431. default:
  13432. {
  13433. GGML_ABORT("fatal error");
  13434. }
  13435. }
  13436. }
  13437. // ggml_compute_forward_win_unpart
  13438. static void ggml_compute_forward_win_unpart_f32(
  13439. const struct ggml_compute_params * params,
  13440. struct ggml_tensor * dst) {
  13441. UNUSED(params);
  13442. const struct ggml_tensor * src0 = dst->src[0];
  13443. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13444. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13445. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13446. // padding
  13447. const int px = (w - ne1%w)%w;
  13448. //const int py = (w - ne2%w)%w;
  13449. const int npx = (px + ne1)/w;
  13450. //const int npy = (py + ne2)/w;
  13451. assert(ne0 == ne00);
  13452. // TODO: optimize / multi-thread
  13453. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13454. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13455. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13456. const int ip2 = i2/w;
  13457. const int ip1 = i1/w;
  13458. const int64_t i02 = i2%w;
  13459. const int64_t i01 = i1%w;
  13460. const int64_t i00 = i0;
  13461. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13462. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13463. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13464. }
  13465. }
  13466. }
  13467. }
  13468. static void ggml_compute_forward_win_unpart(
  13469. const struct ggml_compute_params * params,
  13470. struct ggml_tensor * dst) {
  13471. const struct ggml_tensor * src0 = dst->src[0];
  13472. switch (src0->type) {
  13473. case GGML_TYPE_F32:
  13474. {
  13475. ggml_compute_forward_win_unpart_f32(params, dst);
  13476. } break;
  13477. default:
  13478. {
  13479. GGML_ABORT("fatal error");
  13480. }
  13481. }
  13482. }
  13483. //gmml_compute_forward_unary
  13484. static void ggml_compute_forward_unary(
  13485. const struct ggml_compute_params * params,
  13486. struct ggml_tensor * dst) {
  13487. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13488. switch (op) {
  13489. case GGML_UNARY_OP_ABS:
  13490. {
  13491. ggml_compute_forward_abs(params, dst);
  13492. } break;
  13493. case GGML_UNARY_OP_SGN:
  13494. {
  13495. ggml_compute_forward_sgn(params, dst);
  13496. } break;
  13497. case GGML_UNARY_OP_NEG:
  13498. {
  13499. ggml_compute_forward_neg(params, dst);
  13500. } break;
  13501. case GGML_UNARY_OP_STEP:
  13502. {
  13503. ggml_compute_forward_step(params, dst);
  13504. } break;
  13505. case GGML_UNARY_OP_TANH:
  13506. {
  13507. ggml_compute_forward_tanh(params, dst);
  13508. } break;
  13509. case GGML_UNARY_OP_ELU:
  13510. {
  13511. ggml_compute_forward_elu(params, dst);
  13512. } break;
  13513. case GGML_UNARY_OP_RELU:
  13514. {
  13515. ggml_compute_forward_relu(params, dst);
  13516. } break;
  13517. case GGML_UNARY_OP_SIGMOID:
  13518. {
  13519. ggml_compute_forward_sigmoid(params, dst);
  13520. } break;
  13521. case GGML_UNARY_OP_GELU:
  13522. {
  13523. ggml_compute_forward_gelu(params, dst);
  13524. } break;
  13525. case GGML_UNARY_OP_GELU_QUICK:
  13526. {
  13527. ggml_compute_forward_gelu_quick(params, dst);
  13528. } break;
  13529. case GGML_UNARY_OP_SILU:
  13530. {
  13531. ggml_compute_forward_silu(params, dst);
  13532. } break;
  13533. case GGML_UNARY_OP_HARDSWISH:
  13534. {
  13535. ggml_compute_forward_hardswish(params, dst);
  13536. } break;
  13537. case GGML_UNARY_OP_HARDSIGMOID:
  13538. {
  13539. ggml_compute_forward_hardsigmoid(params, dst);
  13540. } break;
  13541. case GGML_UNARY_OP_EXP:
  13542. {
  13543. ggml_compute_forward_exp(params, dst);
  13544. } break;
  13545. default:
  13546. {
  13547. GGML_ABORT("fatal error");
  13548. }
  13549. }
  13550. }
  13551. // ggml_compute_forward_get_rel_pos
  13552. static void ggml_compute_forward_get_rel_pos_f16(
  13553. const struct ggml_compute_params * params,
  13554. struct ggml_tensor * dst) {
  13555. UNUSED(params);
  13556. const struct ggml_tensor * src0 = dst->src[0];
  13557. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13558. GGML_TENSOR_UNARY_OP_LOCALS
  13559. const int64_t w = ne1;
  13560. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13561. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13562. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13563. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13564. const int64_t pos = (w - i1 - 1) + i2;
  13565. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13566. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13567. }
  13568. }
  13569. }
  13570. }
  13571. static void ggml_compute_forward_get_rel_pos(
  13572. const struct ggml_compute_params * params,
  13573. struct ggml_tensor * dst) {
  13574. const struct ggml_tensor * src0 = dst->src[0];
  13575. switch (src0->type) {
  13576. case GGML_TYPE_F16:
  13577. case GGML_TYPE_BF16:
  13578. {
  13579. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13580. } break;
  13581. default:
  13582. {
  13583. GGML_ABORT("fatal error");
  13584. }
  13585. }
  13586. }
  13587. // ggml_compute_forward_add_rel_pos
  13588. static void ggml_compute_forward_add_rel_pos_f32(
  13589. const struct ggml_compute_params * params,
  13590. struct ggml_tensor * dst) {
  13591. const struct ggml_tensor * src0 = dst->src[0];
  13592. const struct ggml_tensor * src1 = dst->src[1];
  13593. const struct ggml_tensor * src2 = dst->src[2];
  13594. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13595. if (!inplace) {
  13596. if (params->ith == 0) {
  13597. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13598. }
  13599. ggml_barrier(params->threadpool);
  13600. }
  13601. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13602. float * src1_data = (float *) src1->data;
  13603. float * src2_data = (float *) src2->data;
  13604. float * dst_data = (float *) dst->data;
  13605. const int64_t ne10 = src1->ne[0];
  13606. const int64_t ne11 = src1->ne[1];
  13607. const int64_t ne12 = src1->ne[2];
  13608. const int64_t ne13 = src1->ne[3];
  13609. const int ith = params->ith;
  13610. const int nth = params->nth;
  13611. // total patches in dst
  13612. const int np = ne13;
  13613. // patches per thread
  13614. const int dp = (np + nth - 1)/nth;
  13615. // patch range for this thread
  13616. const int ip0 = dp*ith;
  13617. const int ip1 = MIN(ip0 + dp, np);
  13618. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13619. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13620. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13621. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13622. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13623. const int64_t jp0 = jp1 + i10;
  13624. const float src1_e = src1_data[jp0];
  13625. const float src2_e = src2_data[jp0];
  13626. const int64_t jdh = jp0 * ne10;
  13627. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13628. for (int64_t j = 0; j < ne10; ++j) {
  13629. dst_data[jdh + j ] += src2_e;
  13630. dst_data[jdw + j*ne10] += src1_e;
  13631. }
  13632. }
  13633. }
  13634. }
  13635. }
  13636. }
  13637. static void ggml_compute_forward_add_rel_pos(
  13638. const struct ggml_compute_params * params,
  13639. struct ggml_tensor * dst) {
  13640. const struct ggml_tensor * src0 = dst->src[0];
  13641. switch (src0->type) {
  13642. case GGML_TYPE_F32:
  13643. {
  13644. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13645. } break;
  13646. default:
  13647. {
  13648. GGML_ABORT("fatal error");
  13649. }
  13650. }
  13651. }
  13652. // ggml_compute_forward_rwkv_wkv
  13653. static void ggml_compute_forward_rwkv_wkv_f32(
  13654. const struct ggml_compute_params * params,
  13655. struct ggml_tensor * dst) {
  13656. const size_t T = dst->src[1]->ne[3];
  13657. const size_t C = dst->ne[0];
  13658. const size_t H = dst->src[1]->ne[2];
  13659. const size_t n_seqs = dst->src[5]->ne[1];
  13660. float * dst_data = (float *) dst->data;
  13661. float * state = ((float *) dst->data) + C * T;
  13662. if (params->ith != 0) {
  13663. return;
  13664. }
  13665. memset(dst_data, 0, T * C * sizeof(float));
  13666. float * k = (float *) dst->src[0]->data;
  13667. float * v = (float *) dst->src[1]->data;
  13668. float * r = (float *) dst->src[2]->data;
  13669. float * time_faaaa = (float *) dst->src[3]->data;
  13670. float * time_decay = (float *) dst->src[4]->data;
  13671. size_t t_stride = H * (C / H);
  13672. size_t h_stride = C / H;
  13673. size_t h_stride_2d = (C / H) * (C / H);
  13674. // basically fused operations:
  13675. // dst = r @ (time_faaaa * (k @ v) + state),
  13676. // state = time_decay * state + (k @ v),
  13677. // recursive through each token
  13678. for (size_t t = 0; t < T; t++) {
  13679. size_t t_offset = t * t_stride;
  13680. size_t state_offset = (C / H) * C * (t / (T / n_seqs));
  13681. float * state_cur = state + state_offset;
  13682. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  13683. for (size_t h = 0; h < H; h++) {
  13684. size_t h_offset = h * h_stride;
  13685. size_t t_h_offset = t_offset + h_offset;
  13686. size_t h_2d_offset = h * h_stride_2d;
  13687. for (size_t i = 0; i < C / H; i++) {
  13688. size_t t_h_i_offset = t_h_offset + i;
  13689. size_t h_i_offset = h_offset + i;
  13690. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  13691. float k_val = k[t_h_i_offset];
  13692. float r_val = r[t_h_i_offset];
  13693. float time_faaaa_val = time_faaaa[h_i_offset];
  13694. // RWKV v6: different time_decay for each token.
  13695. float time_decay_val = time_decay[t_h_i_offset];
  13696. for (size_t j = 0; j < C / H; j ++) {
  13697. size_t t_h_j_offset = t_h_offset + j;
  13698. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  13699. float v_val = v[t_h_j_offset];
  13700. float kv_val = v_val * k_val;
  13701. float prev_state_val = state_prev[h_2d_i_j_offset];
  13702. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  13703. dst_data[t_h_j_offset] += temp_val * r_val;
  13704. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  13705. }
  13706. }
  13707. }
  13708. }
  13709. }
  13710. static void ggml_compute_forward_rwkv_wkv(
  13711. const struct ggml_compute_params * params,
  13712. struct ggml_tensor * dst) {
  13713. const struct ggml_tensor * src0 = dst->src[0];
  13714. switch (src0->type) {
  13715. case GGML_TYPE_F32:
  13716. {
  13717. ggml_compute_forward_rwkv_wkv_f32(params, dst);
  13718. } break;
  13719. default:
  13720. {
  13721. GGML_ABORT("fatal error");
  13722. }
  13723. }
  13724. }
  13725. // ggml_compute_forward_map_unary
  13726. static void ggml_compute_forward_map_unary_f32(
  13727. const struct ggml_compute_params * params,
  13728. struct ggml_tensor * dst,
  13729. const ggml_unary_op_f32_t fun) {
  13730. const struct ggml_tensor * src0 = dst->src[0];
  13731. if (params->ith != 0) {
  13732. return;
  13733. }
  13734. assert(ggml_is_contiguous_1(src0));
  13735. assert(ggml_is_contiguous_1(dst));
  13736. assert(ggml_are_same_shape(src0, dst));
  13737. const int n = ggml_nrows(src0);
  13738. const int nc = src0->ne[0];
  13739. for (int i = 0; i < n; i++) {
  13740. fun(nc,
  13741. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13742. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13743. }
  13744. }
  13745. static void ggml_compute_forward_map_unary(
  13746. const struct ggml_compute_params * params,
  13747. struct ggml_tensor * dst,
  13748. const ggml_unary_op_f32_t fun) {
  13749. const struct ggml_tensor * src0 = dst->src[0];
  13750. switch (src0->type) {
  13751. case GGML_TYPE_F32:
  13752. {
  13753. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13754. } break;
  13755. default:
  13756. {
  13757. GGML_ABORT("fatal error");
  13758. }
  13759. }
  13760. }
  13761. // ggml_compute_forward_map_binary
  13762. static void ggml_compute_forward_map_binary_f32(
  13763. const struct ggml_compute_params * params,
  13764. struct ggml_tensor * dst,
  13765. const ggml_binary_op_f32_t fun) {
  13766. const struct ggml_tensor * src0 = dst->src[0];
  13767. const struct ggml_tensor * src1 = dst->src[1];
  13768. if (params->ith != 0) {
  13769. return;
  13770. }
  13771. assert(ggml_is_contiguous_1(src0));
  13772. assert(ggml_is_contiguous_1(src1));
  13773. assert(ggml_is_contiguous_1(dst));
  13774. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13775. const int n = ggml_nrows(src0);
  13776. const int nc = src0->ne[0];
  13777. for (int i = 0; i < n; i++) {
  13778. fun(nc,
  13779. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13780. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13781. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13782. }
  13783. }
  13784. static void ggml_compute_forward_map_binary(
  13785. const struct ggml_compute_params * params,
  13786. struct ggml_tensor * dst,
  13787. const ggml_binary_op_f32_t fun) {
  13788. const struct ggml_tensor * src0 = dst->src[0];
  13789. switch (src0->type) {
  13790. case GGML_TYPE_F32:
  13791. {
  13792. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13793. } break;
  13794. default:
  13795. {
  13796. GGML_ABORT("fatal error");
  13797. }
  13798. }
  13799. }
  13800. // ggml_compute_forward_map_custom1
  13801. static void ggml_compute_forward_map_custom1_f32(
  13802. const struct ggml_compute_params * params,
  13803. struct ggml_tensor * dst,
  13804. const ggml_custom1_op_f32_t fun) {
  13805. const struct ggml_tensor * a = dst->src[0];
  13806. if (params->ith != 0) {
  13807. return;
  13808. }
  13809. fun(dst, a);
  13810. }
  13811. // ggml_compute_forward_map_custom2
  13812. static void ggml_compute_forward_map_custom2_f32(
  13813. const struct ggml_compute_params * params,
  13814. struct ggml_tensor * dst,
  13815. const ggml_custom2_op_f32_t fun) {
  13816. const struct ggml_tensor * a = dst->src[0];
  13817. const struct ggml_tensor * b = dst->src[1];
  13818. if (params->ith != 0) {
  13819. return;
  13820. }
  13821. fun(dst, a, b);
  13822. }
  13823. // ggml_compute_forward_map_custom3
  13824. static void ggml_compute_forward_map_custom3_f32(
  13825. const struct ggml_compute_params * params,
  13826. struct ggml_tensor * dst,
  13827. const ggml_custom3_op_f32_t fun) {
  13828. const struct ggml_tensor * a = dst->src[0];
  13829. const struct ggml_tensor * b = dst->src[1];
  13830. const struct ggml_tensor * c = dst->src[1];
  13831. if (params->ith != 0) {
  13832. return;
  13833. }
  13834. fun(dst, a, b, c);
  13835. }
  13836. // ggml_compute_forward_map_custom1
  13837. static void ggml_compute_forward_map_custom1(
  13838. const struct ggml_compute_params * params,
  13839. struct ggml_tensor * dst) {
  13840. const struct ggml_tensor * a = dst->src[0];
  13841. struct ggml_map_custom1_op_params p;
  13842. memcpy(&p, dst->op_params, sizeof(p));
  13843. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13844. }
  13845. // ggml_compute_forward_map_custom2
  13846. static void ggml_compute_forward_map_custom2(
  13847. const struct ggml_compute_params * params,
  13848. struct ggml_tensor * dst) {
  13849. const struct ggml_tensor * a = dst->src[0];
  13850. const struct ggml_tensor * b = dst->src[1];
  13851. struct ggml_map_custom2_op_params p;
  13852. memcpy(&p, dst->op_params, sizeof(p));
  13853. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13854. }
  13855. // ggml_compute_forward_map_custom3
  13856. static void ggml_compute_forward_map_custom3(
  13857. const struct ggml_compute_params * params,
  13858. struct ggml_tensor * dst) {
  13859. const struct ggml_tensor * a = dst->src[0];
  13860. const struct ggml_tensor * b = dst->src[1];
  13861. const struct ggml_tensor * c = dst->src[2];
  13862. struct ggml_map_custom3_op_params p;
  13863. memcpy(&p, dst->op_params, sizeof(p));
  13864. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13865. }
  13866. // ggml_compute_forward_cross_entropy_loss
  13867. static void ggml_compute_forward_cross_entropy_loss_f32(
  13868. const struct ggml_compute_params * params,
  13869. struct ggml_tensor * dst) {
  13870. const struct ggml_tensor * src0 = dst->src[0];
  13871. const struct ggml_tensor * src1 = dst->src[1];
  13872. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  13873. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  13874. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  13875. GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
  13876. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13877. GGML_ASSERT(ggml_is_scalar(dst));
  13878. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  13879. // TODO: handle transposed/permuted matrices
  13880. const int64_t nc = src0->ne[0];
  13881. const int64_t nr = ggml_nrows(src0);
  13882. const int ith = params->ith;
  13883. const int nth = params->nth;
  13884. float * sums = (float *) params->wdata;
  13885. float * st = ((float *) params->wdata) + nth + ith*nc;
  13886. float sum_thread = 0.0f;
  13887. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13888. // rows per thread
  13889. const int64_t dr = (nr + nth - 1)/nth;
  13890. // row range for this thread
  13891. const int64_t ir0 = dr*ith;
  13892. const int64_t ir1 = MIN(ir0 + dr, nr);
  13893. for (int64_t i1 = ir0; i1 < ir1; ++i1) {
  13894. const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
  13895. const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
  13896. #ifndef NDEBUG
  13897. for (int64_t i = 0; i < nc; ++i) {
  13898. //printf("p[%d] = %f\n", i, p[i]);
  13899. assert(!isnan(s0[i]));
  13900. assert(!isnan(s1[i]));
  13901. }
  13902. #endif
  13903. float max = -INFINITY;
  13904. ggml_vec_max_f32(nc, &max, s0);
  13905. const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
  13906. assert(sum_softmax >= 0.0);
  13907. ggml_vec_add1_f32(nc, st, st, -sum_softmax);
  13908. ggml_vec_mul_f32(nc, st, st, s1);
  13909. float sum_st = 0.0f;
  13910. ggml_vec_sum_f32(nc, &sum_st, st);
  13911. sum_thread += sum_st;
  13912. #ifndef NDEBUG
  13913. for (int64_t i = 0; i < nc; ++i) {
  13914. assert(!isnan(st[i]));
  13915. assert(!isinf(st[i]));
  13916. }
  13917. #endif
  13918. }
  13919. sums[ith] = sum_thread;
  13920. ggml_barrier(params->threadpool);
  13921. if (ith == 0) {
  13922. float * dp = (float *) dst->data;
  13923. ggml_vec_sum_f32(nth, dp, sums);
  13924. dp[0] *= -1.0f / (float) nr;
  13925. }
  13926. }
  13927. static void ggml_compute_forward_cross_entropy_loss(
  13928. const struct ggml_compute_params * params,
  13929. struct ggml_tensor * dst) {
  13930. const struct ggml_tensor * src0 = dst->src[0];
  13931. switch (src0->type) {
  13932. case GGML_TYPE_F32:
  13933. {
  13934. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13935. } break;
  13936. default:
  13937. {
  13938. GGML_ABORT("fatal error");
  13939. }
  13940. }
  13941. }
  13942. // ggml_compute_forward_cross_entropy_loss_back
  13943. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13944. const struct ggml_compute_params * params,
  13945. struct ggml_tensor * dst) {
  13946. const struct ggml_tensor * src0 = dst->src[0];
  13947. const struct ggml_tensor * src1 = dst->src[1];
  13948. const struct ggml_tensor * opt0 = dst->src[2];
  13949. GGML_ASSERT(ggml_is_contiguous(dst));
  13950. GGML_ASSERT(ggml_is_contiguous(src0));
  13951. GGML_ASSERT(ggml_is_contiguous(src1));
  13952. GGML_ASSERT(ggml_is_contiguous(opt0));
  13953. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13954. const int64_t ith = params->ith;
  13955. const int64_t nth = params->nth;
  13956. // TODO: handle transposed/permuted matrices
  13957. const int64_t nc = src0->ne[0];
  13958. const int64_t nr = ggml_nrows(src0);
  13959. // rows per thread
  13960. const int64_t dr = (nr + nth - 1)/nth;
  13961. // row range for this thread
  13962. const int64_t ir0 = dr*ith;
  13963. const int64_t ir1 = MIN(ir0 + dr, nr);
  13964. const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
  13965. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13966. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13967. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13968. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13969. #ifndef NDEBUG
  13970. for (int64_t i = 0; i < nc; ++i) {
  13971. //printf("p[%d] = %f\n", i, p[i]);
  13972. assert(!isnan(s0[i]));
  13973. assert(!isnan(s1[i]));
  13974. }
  13975. #endif
  13976. // soft_max
  13977. float max = -INFINITY;
  13978. ggml_vec_max_f32(nc, &max, s0);
  13979. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13980. assert(sum > 0.0);
  13981. ggml_vec_scale_f32(nc, ds0, 1.0/sum);
  13982. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13983. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13984. ggml_vec_scale_f32(nc, ds0, d_by_nr);
  13985. #ifndef NDEBUG
  13986. for (int64_t i = 0; i < nc; ++i) {
  13987. assert(!isnan(ds0[i]));
  13988. assert(!isinf(ds0[i]));
  13989. }
  13990. #endif
  13991. }
  13992. }
  13993. static void ggml_compute_forward_cross_entropy_loss_back(
  13994. const struct ggml_compute_params * params,
  13995. struct ggml_tensor * dst) {
  13996. const struct ggml_tensor * src0 = dst->src[0];
  13997. switch (src0->type) {
  13998. case GGML_TYPE_F32:
  13999. {
  14000. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14001. } break;
  14002. default:
  14003. {
  14004. GGML_ABORT("fatal error");
  14005. }
  14006. }
  14007. }
  14008. static void ggml_compute_forward_opt_step_adamw_f32(
  14009. const struct ggml_compute_params * params,
  14010. struct ggml_tensor * dst) {
  14011. const struct ggml_tensor * src0 = dst->src[0];
  14012. const struct ggml_tensor * src0_grad = dst->src[1];
  14013. const struct ggml_tensor * src0_grad_m = dst->src[2];
  14014. const struct ggml_tensor * src0_grad_v = dst->src[3];
  14015. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  14016. const int ith = params->ith;
  14017. const int nth = params->nth;
  14018. const int nr = ggml_nrows(src0);
  14019. GGML_TENSOR_UNARY_OP_LOCALS
  14020. GGML_ASSERT(nb00 == sizeof(float));
  14021. // rows per thread
  14022. const int dr = (nr + nth - 1)/nth;
  14023. // row range for this thread
  14024. const int ir0 = dr*ith;
  14025. const int ir1 = MIN(ir0 + dr, nr);
  14026. /* const float gnorm = 1.0f; */
  14027. int64_t iter; memcpy(&iter, &dst->op_params[0], sizeof(int64_t));
  14028. const float alpha = ggml_get_op_params_f32(dst, 2);
  14029. const float beta1 = ggml_get_op_params_f32(dst, 3);
  14030. const float beta2 = ggml_get_op_params_f32(dst, 4);
  14031. const float eps = ggml_get_op_params_f32(dst, 5);
  14032. const float wd = ggml_get_op_params_f32(dst, 6);
  14033. const float beta1h = alpha/(1.0f - powf(beta1, iter));
  14034. const float beta2h = 1.0f/(1.0f - powf(beta2, iter));
  14035. for (int ir = ir0; ir < ir1; ++ir) {
  14036. const int64_t i03 = ir/(ne02*ne01);
  14037. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  14038. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  14039. const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
  14040. float * w = (float *) ((char *) src0->data + offset); // weight
  14041. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  14042. float * m = (float *) ((char *) src0_grad_m->data + offset);
  14043. float * v = (float *) ((char *) src0_grad_v->data + offset);
  14044. for (int i00 = 0; i00 < ne00; ++i00) {
  14045. m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
  14046. v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
  14047. const float mh = m[i00]*beta1h;
  14048. const float vh = sqrtf(v[i00]*beta2h) + eps;
  14049. // The weight decay is applied independently of the Adam momenta m and v.
  14050. // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
  14051. // See: https://arxiv.org/pdf/1711.05101v3.pdf
  14052. w[i00] = w[i00]*(1.0f - alpha*wd) - mh/vh;
  14053. }
  14054. }
  14055. ggml_barrier(params->threadpool);
  14056. if (ith != 0) {
  14057. return;
  14058. }
  14059. iter++;
  14060. memcpy(&dst->op_params[0], &iter, sizeof(int64_t));
  14061. }
  14062. static void ggml_compute_forward_opt_step_adamw(
  14063. const struct ggml_compute_params * params,
  14064. struct ggml_tensor * dst) {
  14065. const struct ggml_tensor * src0 = dst->src[0];
  14066. switch (src0->type) {
  14067. case GGML_TYPE_F32:
  14068. {
  14069. ggml_compute_forward_opt_step_adamw_f32(params, dst);
  14070. } break;
  14071. default:
  14072. {
  14073. GGML_ABORT("fatal error");
  14074. }
  14075. }
  14076. }
  14077. /////////////////////////////////
  14078. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  14079. GGML_ASSERT(params);
  14080. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14081. return;
  14082. }
  14083. switch (tensor->op) {
  14084. case GGML_OP_DUP:
  14085. {
  14086. ggml_compute_forward_dup(params, tensor);
  14087. } break;
  14088. case GGML_OP_ADD:
  14089. {
  14090. ggml_compute_forward_add(params, tensor);
  14091. } break;
  14092. case GGML_OP_ADD1:
  14093. {
  14094. ggml_compute_forward_add1(params, tensor);
  14095. } break;
  14096. case GGML_OP_ACC:
  14097. {
  14098. ggml_compute_forward_acc(params, tensor);
  14099. } break;
  14100. case GGML_OP_SUB:
  14101. {
  14102. ggml_compute_forward_sub(params, tensor);
  14103. } break;
  14104. case GGML_OP_MUL:
  14105. {
  14106. ggml_compute_forward_mul(params, tensor);
  14107. } break;
  14108. case GGML_OP_DIV:
  14109. {
  14110. ggml_compute_forward_div(params, tensor);
  14111. } break;
  14112. case GGML_OP_SQR:
  14113. {
  14114. ggml_compute_forward_sqr(params, tensor);
  14115. } break;
  14116. case GGML_OP_SQRT:
  14117. {
  14118. ggml_compute_forward_sqrt(params, tensor);
  14119. } break;
  14120. case GGML_OP_LOG:
  14121. {
  14122. ggml_compute_forward_log(params, tensor);
  14123. } break;
  14124. case GGML_OP_SIN:
  14125. {
  14126. ggml_compute_forward_sin(params, tensor);
  14127. } break;
  14128. case GGML_OP_COS:
  14129. {
  14130. ggml_compute_forward_cos(params, tensor);
  14131. } break;
  14132. case GGML_OP_SUM:
  14133. {
  14134. ggml_compute_forward_sum(params, tensor);
  14135. } break;
  14136. case GGML_OP_SUM_ROWS:
  14137. {
  14138. ggml_compute_forward_sum_rows(params, tensor);
  14139. } break;
  14140. case GGML_OP_MEAN:
  14141. {
  14142. ggml_compute_forward_mean(params, tensor);
  14143. } break;
  14144. case GGML_OP_ARGMAX:
  14145. {
  14146. ggml_compute_forward_argmax(params, tensor);
  14147. } break;
  14148. case GGML_OP_COUNT_EQUAL:
  14149. {
  14150. ggml_compute_forward_count_equal(params, tensor);
  14151. } break;
  14152. case GGML_OP_REPEAT:
  14153. {
  14154. ggml_compute_forward_repeat(params, tensor);
  14155. } break;
  14156. case GGML_OP_REPEAT_BACK:
  14157. {
  14158. ggml_compute_forward_repeat_back(params, tensor);
  14159. } break;
  14160. case GGML_OP_CONCAT:
  14161. {
  14162. ggml_compute_forward_concat(params, tensor);
  14163. } break;
  14164. case GGML_OP_SILU_BACK:
  14165. {
  14166. ggml_compute_forward_silu_back(params, tensor);
  14167. } break;
  14168. case GGML_OP_NORM:
  14169. {
  14170. ggml_compute_forward_norm(params, tensor);
  14171. } break;
  14172. case GGML_OP_RMS_NORM:
  14173. {
  14174. ggml_compute_forward_rms_norm(params, tensor);
  14175. } break;
  14176. case GGML_OP_RMS_NORM_BACK:
  14177. {
  14178. ggml_compute_forward_rms_norm_back(params, tensor);
  14179. } break;
  14180. case GGML_OP_GROUP_NORM:
  14181. {
  14182. ggml_compute_forward_group_norm(params, tensor);
  14183. } break;
  14184. case GGML_OP_MUL_MAT:
  14185. {
  14186. ggml_compute_forward_mul_mat(params, tensor);
  14187. } break;
  14188. case GGML_OP_MUL_MAT_ID:
  14189. {
  14190. ggml_compute_forward_mul_mat_id(params, tensor);
  14191. } break;
  14192. case GGML_OP_OUT_PROD:
  14193. {
  14194. ggml_compute_forward_out_prod(params, tensor);
  14195. } break;
  14196. case GGML_OP_SCALE:
  14197. {
  14198. ggml_compute_forward_scale(params, tensor);
  14199. } break;
  14200. case GGML_OP_SET:
  14201. {
  14202. ggml_compute_forward_set(params, tensor);
  14203. } break;
  14204. case GGML_OP_CPY:
  14205. {
  14206. ggml_compute_forward_cpy(params, tensor);
  14207. } break;
  14208. case GGML_OP_CONT:
  14209. {
  14210. ggml_compute_forward_cont(params, tensor);
  14211. } break;
  14212. case GGML_OP_RESHAPE:
  14213. {
  14214. ggml_compute_forward_reshape(params, tensor);
  14215. } break;
  14216. case GGML_OP_VIEW:
  14217. {
  14218. ggml_compute_forward_view(params, tensor);
  14219. } break;
  14220. case GGML_OP_PERMUTE:
  14221. {
  14222. ggml_compute_forward_permute(params, tensor);
  14223. } break;
  14224. case GGML_OP_TRANSPOSE:
  14225. {
  14226. ggml_compute_forward_transpose(params, tensor);
  14227. } break;
  14228. case GGML_OP_GET_ROWS:
  14229. {
  14230. ggml_compute_forward_get_rows(params, tensor);
  14231. } break;
  14232. case GGML_OP_GET_ROWS_BACK:
  14233. {
  14234. ggml_compute_forward_get_rows_back(params, tensor);
  14235. } break;
  14236. case GGML_OP_DIAG:
  14237. {
  14238. ggml_compute_forward_diag(params, tensor);
  14239. } break;
  14240. case GGML_OP_DIAG_MASK_INF:
  14241. {
  14242. ggml_compute_forward_diag_mask_inf(params, tensor);
  14243. } break;
  14244. case GGML_OP_DIAG_MASK_ZERO:
  14245. {
  14246. ggml_compute_forward_diag_mask_zero(params, tensor);
  14247. } break;
  14248. case GGML_OP_SOFT_MAX:
  14249. {
  14250. ggml_compute_forward_soft_max(params, tensor);
  14251. } break;
  14252. case GGML_OP_SOFT_MAX_BACK:
  14253. {
  14254. ggml_compute_forward_soft_max_back(params, tensor);
  14255. } break;
  14256. case GGML_OP_ROPE:
  14257. {
  14258. ggml_compute_forward_rope(params, tensor);
  14259. } break;
  14260. case GGML_OP_ROPE_BACK:
  14261. {
  14262. ggml_compute_forward_rope_back(params, tensor);
  14263. } break;
  14264. case GGML_OP_CLAMP:
  14265. {
  14266. ggml_compute_forward_clamp(params, tensor);
  14267. } break;
  14268. case GGML_OP_CONV_TRANSPOSE_1D:
  14269. {
  14270. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14271. } break;
  14272. case GGML_OP_IM2COL:
  14273. {
  14274. ggml_compute_forward_im2col(params, tensor);
  14275. } break;
  14276. case GGML_OP_IM2COL_BACK:
  14277. {
  14278. ggml_compute_forward_im2col_back_f32(params, tensor);
  14279. } break;
  14280. case GGML_OP_CONV_TRANSPOSE_2D:
  14281. {
  14282. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14283. } break;
  14284. case GGML_OP_POOL_1D:
  14285. {
  14286. ggml_compute_forward_pool_1d(params, tensor);
  14287. } break;
  14288. case GGML_OP_POOL_2D:
  14289. {
  14290. ggml_compute_forward_pool_2d(params, tensor);
  14291. } break;
  14292. case GGML_OP_POOL_2D_BACK:
  14293. {
  14294. ggml_compute_forward_pool_2d_back(params, tensor);
  14295. } break;
  14296. case GGML_OP_UPSCALE:
  14297. {
  14298. ggml_compute_forward_upscale(params, tensor);
  14299. } break;
  14300. case GGML_OP_PAD:
  14301. {
  14302. ggml_compute_forward_pad(params, tensor);
  14303. } break;
  14304. case GGML_OP_ARANGE:
  14305. {
  14306. ggml_compute_forward_arange(params, tensor);
  14307. } break;
  14308. case GGML_OP_TIMESTEP_EMBEDDING:
  14309. {
  14310. ggml_compute_forward_timestep_embedding(params, tensor);
  14311. } break;
  14312. case GGML_OP_ARGSORT:
  14313. {
  14314. ggml_compute_forward_argsort(params, tensor);
  14315. } break;
  14316. case GGML_OP_LEAKY_RELU:
  14317. {
  14318. ggml_compute_forward_leaky_relu(params, tensor);
  14319. } break;
  14320. case GGML_OP_FLASH_ATTN_EXT:
  14321. {
  14322. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14323. } break;
  14324. case GGML_OP_FLASH_ATTN_BACK:
  14325. {
  14326. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14327. GGML_ASSERT(t == 0 || t == 1);
  14328. bool masked = t != 0;
  14329. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14330. } break;
  14331. case GGML_OP_SSM_CONV:
  14332. {
  14333. ggml_compute_forward_ssm_conv(params, tensor);
  14334. } break;
  14335. case GGML_OP_SSM_SCAN:
  14336. {
  14337. ggml_compute_forward_ssm_scan(params, tensor);
  14338. } break;
  14339. case GGML_OP_WIN_PART:
  14340. {
  14341. ggml_compute_forward_win_part(params, tensor);
  14342. } break;
  14343. case GGML_OP_WIN_UNPART:
  14344. {
  14345. ggml_compute_forward_win_unpart(params, tensor);
  14346. } break;
  14347. case GGML_OP_UNARY:
  14348. {
  14349. ggml_compute_forward_unary(params, tensor);
  14350. } break;
  14351. case GGML_OP_GET_REL_POS:
  14352. {
  14353. ggml_compute_forward_get_rel_pos(params, tensor);
  14354. } break;
  14355. case GGML_OP_ADD_REL_POS:
  14356. {
  14357. ggml_compute_forward_add_rel_pos(params, tensor);
  14358. } break;
  14359. case GGML_OP_RWKV_WKV:
  14360. {
  14361. ggml_compute_forward_rwkv_wkv(params, tensor);
  14362. } break;
  14363. case GGML_OP_MAP_UNARY:
  14364. {
  14365. ggml_unary_op_f32_t fun;
  14366. memcpy(&fun, tensor->op_params, sizeof(fun));
  14367. ggml_compute_forward_map_unary(params, tensor, fun);
  14368. }
  14369. break;
  14370. case GGML_OP_MAP_BINARY:
  14371. {
  14372. ggml_binary_op_f32_t fun;
  14373. memcpy(&fun, tensor->op_params, sizeof(fun));
  14374. ggml_compute_forward_map_binary(params, tensor, fun);
  14375. }
  14376. break;
  14377. case GGML_OP_MAP_CUSTOM1_F32:
  14378. {
  14379. ggml_custom1_op_f32_t fun;
  14380. memcpy(&fun, tensor->op_params, sizeof(fun));
  14381. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14382. }
  14383. break;
  14384. case GGML_OP_MAP_CUSTOM2_F32:
  14385. {
  14386. ggml_custom2_op_f32_t fun;
  14387. memcpy(&fun, tensor->op_params, sizeof(fun));
  14388. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14389. }
  14390. break;
  14391. case GGML_OP_MAP_CUSTOM3_F32:
  14392. {
  14393. ggml_custom3_op_f32_t fun;
  14394. memcpy(&fun, tensor->op_params, sizeof(fun));
  14395. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14396. }
  14397. break;
  14398. case GGML_OP_MAP_CUSTOM1:
  14399. {
  14400. ggml_compute_forward_map_custom1(params, tensor);
  14401. }
  14402. break;
  14403. case GGML_OP_MAP_CUSTOM2:
  14404. {
  14405. ggml_compute_forward_map_custom2(params, tensor);
  14406. }
  14407. break;
  14408. case GGML_OP_MAP_CUSTOM3:
  14409. {
  14410. ggml_compute_forward_map_custom3(params, tensor);
  14411. }
  14412. break;
  14413. case GGML_OP_CROSS_ENTROPY_LOSS:
  14414. {
  14415. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14416. }
  14417. break;
  14418. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14419. {
  14420. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14421. }
  14422. break;
  14423. case GGML_OP_OPT_STEP_ADAMW:
  14424. {
  14425. ggml_compute_forward_opt_step_adamw(params, tensor);
  14426. }
  14427. break;
  14428. case GGML_OP_NONE:
  14429. {
  14430. // nop
  14431. } break;
  14432. case GGML_OP_COUNT:
  14433. {
  14434. GGML_ABORT("fatal error");
  14435. }
  14436. }
  14437. }
  14438. ////////////////////////////////////////////////////////////////////////////////
  14439. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14440. size = ggml_hash_size(size);
  14441. struct ggml_hash_set result;
  14442. result.size = size;
  14443. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14444. result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
  14445. return result;
  14446. }
  14447. void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
  14448. memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
  14449. }
  14450. void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
  14451. GGML_FREE(hash_set->used);
  14452. GGML_FREE(hash_set->keys);
  14453. }
  14454. size_t ggml_hash_size(size_t min_sz) {
  14455. // next primes after powers of two
  14456. static const size_t primes[] = {
  14457. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14458. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14459. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14460. 16777259, 33554467, 67108879, 134217757, 268435459,
  14461. 536870923, 1073741827, 2147483659
  14462. };
  14463. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14464. // find the smallest prime that is larger or equal than min_sz
  14465. size_t l = 0;
  14466. size_t r = n_primes;
  14467. while (l < r) {
  14468. size_t m = (l + r)/2;
  14469. if (primes[m] < min_sz) {
  14470. l = m + 1;
  14471. } else {
  14472. r = m;
  14473. }
  14474. }
  14475. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14476. return sz;
  14477. }
  14478. struct hash_map {
  14479. struct ggml_hash_set set;
  14480. struct ggml_tensor ** vals;
  14481. };
  14482. static struct hash_map * ggml_new_hash_map(size_t size) {
  14483. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14484. result->set = ggml_hash_set_new(size);
  14485. result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
  14486. return result;
  14487. }
  14488. static void ggml_hash_map_free(struct hash_map * map) {
  14489. ggml_hash_set_free(&map->set);
  14490. GGML_FREE(map->vals);
  14491. GGML_FREE(map);
  14492. }
  14493. // gradient checkpointing
  14494. static struct ggml_tensor * ggml_recompute_graph_node(
  14495. struct ggml_context * ctx,
  14496. struct ggml_cgraph * graph,
  14497. struct hash_map * replacements,
  14498. struct ggml_tensor * node) {
  14499. if (node == NULL) {
  14500. return NULL;
  14501. }
  14502. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14503. return node;
  14504. }
  14505. if (!ggml_hash_contains(&graph->visited_hash_set, node)) {
  14506. return node;
  14507. }
  14508. int count_children = 0;
  14509. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14510. if (node->src[k]) {
  14511. ++count_children;
  14512. }
  14513. }
  14514. if (count_children == 0) {
  14515. return node;
  14516. }
  14517. size_t i = ggml_hash_find(&replacements->set, node);
  14518. GGML_ASSERT(i != GGML_HASHSET_FULL); // assert that not full
  14519. if (replacements->set.keys[i] == node) {
  14520. return replacements->vals[i];
  14521. }
  14522. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14523. // insert clone into replacements
  14524. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14525. replacements->set.keys[i] = node;
  14526. replacements->vals[i] = clone;
  14527. clone->op = node->op;
  14528. clone->grad = node->grad;
  14529. clone->flags = node->flags;
  14530. clone->extra = node->extra;
  14531. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14532. clone->nb[k] = node->nb[k];
  14533. }
  14534. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14535. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14536. }
  14537. if (node->view_src != NULL) {
  14538. clone->data = (node->view_src->data == NULL)
  14539. ? NULL // view_src not yet allocated
  14540. : (char *) node->view_src->data // view_src already allocated
  14541. + node->view_offs;
  14542. clone->view_src = node->view_src;
  14543. clone->view_offs = node->view_offs;
  14544. }
  14545. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14546. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14547. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14548. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14549. return clone;
  14550. }
  14551. void ggml_build_backward_gradient_checkpointing(
  14552. struct ggml_context * ctx,
  14553. struct ggml_cgraph * gf,
  14554. struct ggml_cgraph * gb,
  14555. struct ggml_cgraph * gb_tmp,
  14556. struct ggml_tensor * * checkpoints,
  14557. int n_checkpoints) {
  14558. ggml_graph_cpy(gf, gb_tmp);
  14559. ggml_build_backward_expand(ctx, gf, gb_tmp, false);
  14560. if (n_checkpoints <= 0) {
  14561. ggml_graph_cpy(gb_tmp, gb);
  14562. return;
  14563. }
  14564. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14565. // insert checkpoints in replacements
  14566. for (int i = 0; i < n_checkpoints; ++i) {
  14567. size_t k = ggml_hash_find(&replacements->set, checkpoints[i]);
  14568. GGML_ASSERT(k != GGML_HASHSET_FULL); // assert that not full
  14569. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14570. replacements->set.keys[k] = checkpoints[i];
  14571. replacements->vals[k] = checkpoints[i];
  14572. }
  14573. ggml_graph_cpy(gf, gb);
  14574. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14575. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14576. // by recomputing them from checkpoints
  14577. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14578. struct ggml_tensor * node = gb_tmp->nodes[i];
  14579. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14580. // insert new tensors recomputing src, reusing already made replacements,
  14581. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14582. // recurse for input tensors,
  14583. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14584. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14585. }
  14586. // insert rewritten backward node with replacements made into resulting backward graph gb
  14587. ggml_build_forward_expand(gb, node);
  14588. }
  14589. ggml_hash_map_free(replacements);
  14590. }
  14591. // utility functions to change gradients
  14592. // if a is in acc_table, modify gradients in-place and mark result as gradient accumulator
  14593. // else if a is in zero_table, replace a
  14594. // else, just add/subtract/etc. the gradients
  14595. static struct ggml_tensor * ggml_add_or_set(
  14596. struct ggml_context * ctx,
  14597. struct ggml_tensor * a,
  14598. struct ggml_tensor * b,
  14599. struct ggml_hash_set * zero_table,
  14600. struct ggml_hash_set * acc_table) {
  14601. if (ggml_hash_contains(acc_table, a)) {
  14602. struct ggml_tensor * ret = ggml_add_impl(ctx, a, b, true);
  14603. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14604. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14605. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14606. return ret;
  14607. }
  14608. if (ggml_hash_contains(zero_table, a)) {
  14609. return b;
  14610. }
  14611. return ggml_add_impl(ctx, a, b, false);
  14612. }
  14613. static struct ggml_tensor * ggml_acc_or_set(
  14614. struct ggml_context * ctx,
  14615. struct ggml_tensor * a,
  14616. struct ggml_tensor * b,
  14617. const size_t nb1,
  14618. const size_t nb2,
  14619. const size_t nb3,
  14620. const size_t offset,
  14621. struct ggml_hash_set * zero_table,
  14622. struct ggml_hash_set * acc_table) {
  14623. if (ggml_hash_contains(acc_table, a)) {
  14624. struct ggml_tensor * ret = ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  14625. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14626. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14627. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14628. return ret;
  14629. }
  14630. if (ggml_hash_contains(zero_table, a)) {
  14631. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
  14632. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14633. }
  14634. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14635. }
  14636. static struct ggml_tensor * ggml_add1_or_set(
  14637. struct ggml_context * ctx,
  14638. struct ggml_tensor * a,
  14639. struct ggml_tensor * b,
  14640. struct ggml_hash_set * zero_table,
  14641. struct ggml_hash_set * acc_table) {
  14642. if (ggml_hash_contains(acc_table, a)) {
  14643. struct ggml_tensor * ret = ggml_add1_impl(ctx, a, b, true);
  14644. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14645. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14646. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14647. return ret;
  14648. }
  14649. if (ggml_hash_contains(zero_table, a)) {
  14650. return ggml_repeat(ctx, b, a);
  14651. }
  14652. return ggml_add1_impl(ctx, a, b, false);
  14653. }
  14654. static struct ggml_tensor * ggml_sub_or_set(
  14655. struct ggml_context * ctx,
  14656. struct ggml_tensor * a,
  14657. struct ggml_tensor * b,
  14658. struct ggml_hash_set * zero_table,
  14659. struct ggml_hash_set * acc_table) {
  14660. if (ggml_hash_contains(acc_table, a)) {
  14661. struct ggml_tensor * ret = ggml_sub_impl(ctx, a, b, true);
  14662. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14663. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14664. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14665. return ret;
  14666. }
  14667. if (ggml_hash_contains(zero_table, a)) {
  14668. return ggml_neg(ctx, b);
  14669. }
  14670. return ggml_sub_impl(ctx, a, b, false);
  14671. }
  14672. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table, struct ggml_hash_set * acc_table) {
  14673. struct ggml_tensor * src0 = tensor->src[0];
  14674. struct ggml_tensor * src1 = tensor->src[1];
  14675. struct ggml_tensor * src2 = tensor->src[2];
  14676. switch (tensor->op) {
  14677. case GGML_OP_DUP:
  14678. {
  14679. if (src0->grad) {
  14680. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14681. }
  14682. } break;
  14683. case GGML_OP_ADD:
  14684. {
  14685. if (src0->grad) {
  14686. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14687. }
  14688. if (src1->grad) {
  14689. if (ggml_are_same_shape(src0, src1)) {
  14690. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
  14691. } else {
  14692. src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_repeat_back(ctx, tensor->grad, src1), zero_table, acc_table);
  14693. }
  14694. }
  14695. } break;
  14696. case GGML_OP_ADD1:
  14697. {
  14698. if (src0->grad) {
  14699. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14700. }
  14701. if (src1->grad) {
  14702. src1->grad = ggml_add_or_set(ctx,
  14703. src1->grad,
  14704. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14705. zero_table, acc_table);
  14706. }
  14707. } break;
  14708. case GGML_OP_ACC:
  14709. {
  14710. if (src0->grad) {
  14711. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14712. }
  14713. if (src1->grad) {
  14714. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14715. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14716. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14717. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14718. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14719. tensor->grad,
  14720. src1->grad->ne[0],
  14721. src1->grad->ne[1],
  14722. src1->grad->ne[2],
  14723. src1->grad->ne[3],
  14724. nb1, nb2, nb3, offset);
  14725. src1->grad =
  14726. ggml_add_or_set(ctx,
  14727. src1->grad,
  14728. ggml_reshape(ctx,
  14729. ggml_cont(ctx, tensor_grad_view),
  14730. src1->grad),
  14731. zero_table, acc_table);
  14732. }
  14733. } break;
  14734. case GGML_OP_SUB:
  14735. {
  14736. if (src0->grad) {
  14737. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14738. }
  14739. if (src1->grad) {
  14740. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
  14741. }
  14742. } break;
  14743. case GGML_OP_MUL:
  14744. {
  14745. if (src0->grad) {
  14746. src0->grad =
  14747. ggml_add_or_set(ctx,
  14748. src0->grad,
  14749. ggml_mul(ctx, src1, tensor->grad),
  14750. zero_table, acc_table);
  14751. }
  14752. if (src1->grad) {
  14753. src1->grad =
  14754. ggml_add_or_set(ctx,
  14755. src1->grad,
  14756. ggml_mul(ctx, src0, tensor->grad),
  14757. zero_table, acc_table);
  14758. }
  14759. } break;
  14760. case GGML_OP_DIV:
  14761. {
  14762. if (src0->grad) {
  14763. src0->grad =
  14764. ggml_add_or_set(ctx,
  14765. src0->grad,
  14766. ggml_div(ctx, tensor->grad, src1),
  14767. zero_table, acc_table);
  14768. }
  14769. if (src1->grad) {
  14770. src1->grad =
  14771. ggml_sub_or_set(ctx,
  14772. src1->grad,
  14773. ggml_mul(ctx,
  14774. tensor->grad,
  14775. ggml_div(ctx, tensor, src1)),
  14776. zero_table, acc_table);
  14777. }
  14778. } break;
  14779. case GGML_OP_SQR:
  14780. {
  14781. if (src0->grad) {
  14782. src0->grad =
  14783. ggml_add_or_set(ctx,
  14784. src0->grad,
  14785. ggml_scale(ctx,
  14786. ggml_mul(ctx, src0, tensor->grad),
  14787. 2.0f),
  14788. zero_table, acc_table);
  14789. }
  14790. } break;
  14791. case GGML_OP_SQRT:
  14792. {
  14793. if (src0->grad) {
  14794. src0->grad =
  14795. ggml_add_or_set(ctx,
  14796. src0->grad,
  14797. ggml_scale(ctx,
  14798. ggml_div(ctx,
  14799. tensor->grad,
  14800. tensor),
  14801. 0.5f),
  14802. zero_table, acc_table);
  14803. }
  14804. } break;
  14805. case GGML_OP_LOG:
  14806. {
  14807. if (src0->grad) {
  14808. src0->grad =
  14809. ggml_add_or_set(ctx,
  14810. src0->grad,
  14811. ggml_div(ctx,
  14812. tensor->grad,
  14813. src0),
  14814. zero_table, acc_table);
  14815. }
  14816. } break;
  14817. case GGML_OP_SIN:
  14818. {
  14819. if (src0->grad) {
  14820. src0->grad =
  14821. ggml_add_or_set(ctx,
  14822. src0->grad,
  14823. ggml_mul(ctx,
  14824. tensor->grad,
  14825. ggml_cos(ctx, src0)),
  14826. zero_table, acc_table);
  14827. }
  14828. } break;
  14829. case GGML_OP_COS:
  14830. {
  14831. if (src0->grad) {
  14832. src0->grad =
  14833. ggml_sub_or_set(ctx,
  14834. src0->grad,
  14835. ggml_mul(ctx,
  14836. tensor->grad,
  14837. ggml_sin(ctx, src0)),
  14838. zero_table, acc_table);
  14839. }
  14840. } break;
  14841. case GGML_OP_SUM:
  14842. {
  14843. if (src0->grad) {
  14844. src0->grad =
  14845. ggml_add1_or_set(ctx,
  14846. src0->grad,
  14847. tensor->grad,
  14848. zero_table, acc_table);
  14849. }
  14850. } break;
  14851. case GGML_OP_SUM_ROWS:
  14852. {
  14853. if (src0->grad) {
  14854. src0->grad =
  14855. ggml_add_or_set(ctx,
  14856. src0->grad,
  14857. ggml_repeat(ctx,
  14858. tensor->grad,
  14859. src0->grad),
  14860. zero_table, acc_table);
  14861. }
  14862. } break;
  14863. case GGML_OP_MEAN:
  14864. case GGML_OP_ARGMAX:
  14865. case GGML_OP_COUNT_EQUAL:
  14866. {
  14867. GGML_ABORT("fatal error"); // TODO: implement
  14868. }
  14869. case GGML_OP_REPEAT:
  14870. {
  14871. // necessary for llama
  14872. if (src0->grad) {
  14873. src0->grad = ggml_add_or_set(ctx,
  14874. src0->grad,
  14875. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14876. zero_table, acc_table);
  14877. }
  14878. } break;
  14879. case GGML_OP_REPEAT_BACK:
  14880. {
  14881. if (src0->grad) {
  14882. // TODO: test this
  14883. src0->grad = ggml_add_or_set(ctx,
  14884. src0->grad,
  14885. ggml_repeat(ctx, tensor->grad, src0->grad),
  14886. zero_table, acc_table);
  14887. }
  14888. } break;
  14889. case GGML_OP_CONCAT:
  14890. {
  14891. GGML_ABORT("fatal error"); // TODO: implement
  14892. }
  14893. case GGML_OP_SILU_BACK:
  14894. {
  14895. GGML_ABORT("fatal error"); // TODO: not implemented
  14896. }
  14897. case GGML_OP_NORM:
  14898. {
  14899. GGML_ABORT("fatal error"); // TODO: not implemented
  14900. }
  14901. case GGML_OP_RMS_NORM:
  14902. {
  14903. // necessary for llama
  14904. if (src0->grad) {
  14905. float eps;
  14906. memcpy(&eps, tensor->op_params, sizeof(float));
  14907. src0->grad = ggml_add_or_set(ctx,
  14908. src0->grad,
  14909. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14910. zero_table, acc_table);
  14911. }
  14912. } break;
  14913. case GGML_OP_RMS_NORM_BACK:
  14914. {
  14915. GGML_ABORT("fatal error"); // TODO: not implemented
  14916. }
  14917. case GGML_OP_GROUP_NORM:
  14918. {
  14919. GGML_ABORT("fatal error"); // TODO: not implemented
  14920. }
  14921. case GGML_OP_MUL_MAT:
  14922. {
  14923. // https://cs231n.github.io/optimization-2/#staged
  14924. // # forward pass
  14925. // s0 = np.random.randn(5, 10)
  14926. // s1 = np.random.randn(10, 3)
  14927. // t = s0.dot(s1)
  14928. // # now suppose we had the gradient on t from above in the circuit
  14929. // dt = np.random.randn(*t.shape) # same shape as t
  14930. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14931. // ds1 = t.T.dot(dt)
  14932. // tensor.shape [m,p,qq,rr]
  14933. // src0.shape [n,m,q1,r1]
  14934. // src1.shape [n,p,qq,rr]
  14935. // necessary for llama
  14936. if (src0->grad) {
  14937. struct ggml_tensor * s1_tg =
  14938. ggml_out_prod(ctx, // [n,m,qq,rr]
  14939. src1, // [n,p,qq,rr]
  14940. tensor->grad); // [m,p,qq,rr]
  14941. const int64_t qq = s1_tg->ne[2];
  14942. const int64_t rr = s1_tg->ne[3];
  14943. const int64_t q1 = src0->ne[2];
  14944. const int64_t r1 = src0->ne[3];
  14945. const bool ne2_broadcasted = qq > q1;
  14946. const bool ne3_broadcasted = rr > r1;
  14947. if (ne2_broadcasted || ne3_broadcasted) {
  14948. // sum broadcast repetitions of s1_tg into shape of src0
  14949. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14950. }
  14951. src0->grad =
  14952. ggml_add_or_set(ctx,
  14953. src0->grad, // [n,m,q1,r1]
  14954. s1_tg, // [n,m,q1,r1]
  14955. zero_table, acc_table);
  14956. }
  14957. if (src1->grad) {
  14958. src1->grad =
  14959. ggml_add_or_set(ctx,
  14960. src1->grad, // [n,p,qq,rr]
  14961. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14962. // ggml_cont(ctx, // [m,n,q1,r1]
  14963. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14964. // tensor->grad), // [m,p,qq,rr]
  14965. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14966. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14967. // // and then use ggml_out_prod
  14968. ggml_out_prod(ctx, // [n,p,qq,rr]
  14969. src0, // [n,m,q1,r1]
  14970. ggml_transpose(ctx, // [p,m,qq,rr]
  14971. tensor->grad)), // [m,p,qq,rr]
  14972. zero_table, acc_table);
  14973. }
  14974. } break;
  14975. case GGML_OP_MUL_MAT_ID:
  14976. {
  14977. GGML_ABORT("fatal error"); // TODO: not implemented
  14978. }
  14979. case GGML_OP_OUT_PROD:
  14980. {
  14981. GGML_ABORT("fatal error"); // TODO: not implemented
  14982. }
  14983. case GGML_OP_SCALE:
  14984. {
  14985. // necessary for llama
  14986. if (src0->grad) {
  14987. float s;
  14988. memcpy(&s, tensor->op_params, sizeof(float));
  14989. src0->grad =
  14990. ggml_add_or_set(ctx,
  14991. src0->grad,
  14992. ggml_scale_impl(ctx, tensor->grad, s, false),
  14993. zero_table, acc_table);
  14994. }
  14995. } break;
  14996. case GGML_OP_SET:
  14997. {
  14998. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14999. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15000. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15001. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15002. struct ggml_tensor * tensor_grad_view = NULL;
  15003. if (src0->grad || src1->grad) {
  15004. GGML_ASSERT(src0->type == tensor->type);
  15005. GGML_ASSERT(tensor->grad->type == tensor->type);
  15006. GGML_ASSERT(!src1->grad || src1->grad->type == tensor->grad->type);
  15007. tensor_grad_view = ggml_view_4d(ctx,
  15008. tensor->grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
  15009. nb1, nb2, nb3, offset);
  15010. }
  15011. if (src0->grad) {
  15012. src0->grad = ggml_add_or_set(ctx,
  15013. src0->grad,
  15014. ggml_acc_impl(ctx,
  15015. tensor->grad,
  15016. ggml_neg(ctx, tensor_grad_view),
  15017. nb1, nb2, nb3, offset, false),
  15018. zero_table, acc_table);
  15019. }
  15020. if (src1->grad) {
  15021. src1->grad =
  15022. ggml_add_or_set(ctx,
  15023. src1->grad,
  15024. ggml_reshape(ctx,
  15025. ggml_cont(ctx, tensor_grad_view),
  15026. src1->grad),
  15027. zero_table, acc_table);
  15028. }
  15029. } break;
  15030. case GGML_OP_CPY:
  15031. {
  15032. // necessary for llama
  15033. // cpy overwrites value of src1 by src0 and returns view(src1)
  15034. // the overwriting is mathematically equivalent to:
  15035. // tensor = src0 * 1 + src1 * 0
  15036. if (src0->grad) {
  15037. // dsrc0 = dtensor * 1
  15038. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15039. }
  15040. if (src1->grad) {
  15041. // dsrc1 = dtensor * 0 -> noop
  15042. }
  15043. } break;
  15044. case GGML_OP_CONT:
  15045. {
  15046. // same as cpy
  15047. if (src0->grad) {
  15048. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15049. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15050. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15051. }
  15052. } break;
  15053. case GGML_OP_RESHAPE:
  15054. {
  15055. // necessary for llama
  15056. if (src0->grad) {
  15057. src0->grad =
  15058. ggml_add_or_set(ctx, src0->grad,
  15059. ggml_reshape(ctx,
  15060. ggml_is_contiguous(tensor->grad)
  15061. ? tensor->grad
  15062. : ggml_cont(ctx, tensor->grad),
  15063. src0->grad),
  15064. zero_table, acc_table);
  15065. }
  15066. } break;
  15067. case GGML_OP_VIEW:
  15068. {
  15069. // necessary for llama
  15070. if (src0->grad) {
  15071. size_t offset;
  15072. memcpy(&offset, tensor->op_params, sizeof(offset));
  15073. size_t nb1 = tensor->nb[1];
  15074. size_t nb2 = tensor->nb[2];
  15075. size_t nb3 = tensor->nb[3];
  15076. if (src0->type != src0->grad->type) {
  15077. // gradient is typically F32, but src0 could be other type
  15078. size_t ng = ggml_element_size(src0->grad);
  15079. size_t n0 = ggml_element_size(src0);
  15080. GGML_ASSERT(offset % n0 == 0);
  15081. GGML_ASSERT(nb1 % n0 == 0);
  15082. GGML_ASSERT(nb2 % n0 == 0);
  15083. GGML_ASSERT(nb3 % n0 == 0);
  15084. offset = (offset / n0) * ng;
  15085. nb1 = (nb1 / n0) * ng;
  15086. nb2 = (nb2 / n0) * ng;
  15087. nb3 = (nb3 / n0) * ng;
  15088. }
  15089. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table, acc_table);
  15090. }
  15091. } break;
  15092. case GGML_OP_PERMUTE:
  15093. {
  15094. // necessary for llama
  15095. if (src0->grad) {
  15096. int32_t * axes = (int32_t *) tensor->op_params;
  15097. int axis0 = axes[0] & 0x3;
  15098. int axis1 = axes[1] & 0x3;
  15099. int axis2 = axes[2] & 0x3;
  15100. int axis3 = axes[3] & 0x3;
  15101. int axes_backward[4] = {0,0,0,0};
  15102. axes_backward[axis0] = 0;
  15103. axes_backward[axis1] = 1;
  15104. axes_backward[axis2] = 2;
  15105. axes_backward[axis3] = 3;
  15106. src0->grad =
  15107. ggml_add_or_set(ctx, src0->grad,
  15108. ggml_permute(ctx,
  15109. tensor->grad,
  15110. axes_backward[0],
  15111. axes_backward[1],
  15112. axes_backward[2],
  15113. axes_backward[3]),
  15114. zero_table, acc_table);
  15115. }
  15116. } break;
  15117. case GGML_OP_TRANSPOSE:
  15118. {
  15119. // necessary for llama
  15120. if (src0->grad) {
  15121. src0->grad =
  15122. ggml_add_or_set(ctx, src0->grad,
  15123. ggml_transpose(ctx, tensor->grad),
  15124. zero_table, acc_table);
  15125. }
  15126. } break;
  15127. case GGML_OP_GET_ROWS:
  15128. {
  15129. // necessary for llama (only for tokenizer)
  15130. if (src0->grad) {
  15131. src0->grad =
  15132. ggml_add_or_set(ctx, src0->grad,
  15133. // last ggml_get_rows_back argument src0->grad is only
  15134. // necessary to setup correct output shape
  15135. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15136. zero_table, acc_table);
  15137. }
  15138. if (src1->grad) {
  15139. // noop
  15140. }
  15141. } break;
  15142. case GGML_OP_GET_ROWS_BACK:
  15143. {
  15144. GGML_ABORT("fatal error"); // TODO: not implemented
  15145. }
  15146. case GGML_OP_DIAG:
  15147. {
  15148. GGML_ABORT("fatal error"); // TODO: not implemented
  15149. }
  15150. case GGML_OP_DIAG_MASK_INF:
  15151. {
  15152. // necessary for llama
  15153. if (src0->grad) {
  15154. const int n_past = ((int32_t *) tensor->op_params)[0];
  15155. src0->grad =
  15156. ggml_add_or_set(ctx, src0->grad,
  15157. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15158. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15159. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15160. zero_table, acc_table);
  15161. }
  15162. } break;
  15163. case GGML_OP_DIAG_MASK_ZERO:
  15164. {
  15165. // necessary for llama
  15166. if (src0->grad) {
  15167. const int n_past = ((int32_t *) tensor->op_params)[0];
  15168. src0->grad =
  15169. ggml_add_or_set(ctx, src0->grad,
  15170. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15171. zero_table, acc_table);
  15172. }
  15173. } break;
  15174. case GGML_OP_SOFT_MAX:
  15175. {
  15176. // necessary for llama
  15177. if (src0->grad) {
  15178. src0->grad =
  15179. ggml_add_or_set(ctx, src0->grad,
  15180. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15181. zero_table, acc_table);
  15182. }
  15183. GGML_ASSERT((!src1 || !src1->grad) && "backward pass for softmax mask not implemented");
  15184. } break;
  15185. case GGML_OP_SOFT_MAX_BACK:
  15186. {
  15187. GGML_ABORT("fatal error"); // TODO: not implemented
  15188. }
  15189. case GGML_OP_ROPE:
  15190. {
  15191. // necessary for llama
  15192. if (src0->grad) {
  15193. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15194. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15195. const int mode = ((int32_t *) tensor->op_params)[2];
  15196. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15197. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  15198. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  15199. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15200. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15201. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15202. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15203. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15204. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15205. src0->grad = ggml_add_or_set(ctx,
  15206. src0->grad,
  15207. ggml_rope_back(ctx,
  15208. tensor->grad,
  15209. src1,
  15210. src2,
  15211. n_dims,
  15212. mode,
  15213. n_ctx_orig,
  15214. freq_base,
  15215. freq_scale,
  15216. ext_factor,
  15217. attn_factor,
  15218. beta_fast,
  15219. beta_slow),
  15220. zero_table, acc_table);
  15221. }
  15222. GGML_ASSERT((!src2 || !src2->grad) && "gradients for freq factors not implemented");
  15223. } break;
  15224. case GGML_OP_ROPE_BACK:
  15225. {
  15226. if (src0->grad) {
  15227. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15228. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15229. const int mode = ((int32_t *) tensor->op_params)[2];
  15230. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15231. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  15232. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  15233. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15234. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15235. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15236. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15237. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15238. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15239. src0->grad = ggml_add_or_set(ctx,
  15240. src0->grad,
  15241. ggml_rope_impl(ctx,
  15242. tensor->grad,
  15243. src1,
  15244. src2,
  15245. n_dims,
  15246. mode,
  15247. n_ctx_orig,
  15248. freq_base,
  15249. freq_scale,
  15250. ext_factor,
  15251. attn_factor,
  15252. beta_fast,
  15253. beta_slow,
  15254. false),
  15255. zero_table, acc_table);
  15256. }
  15257. } break;
  15258. case GGML_OP_CLAMP:
  15259. {
  15260. GGML_ABORT("fatal error"); // TODO: not implemented
  15261. }
  15262. case GGML_OP_CONV_TRANSPOSE_1D:
  15263. {
  15264. GGML_ABORT("fatal error"); // TODO: not implemented
  15265. }
  15266. case GGML_OP_IM2COL:
  15267. {
  15268. if (src1->grad) {
  15269. const int32_t s0 = ggml_get_op_params_i32(tensor, 0);
  15270. const int32_t s1 = ggml_get_op_params_i32(tensor, 1);
  15271. const int32_t p0 = ggml_get_op_params_i32(tensor, 2);
  15272. const int32_t p1 = ggml_get_op_params_i32(tensor, 3);
  15273. const int32_t d0 = ggml_get_op_params_i32(tensor, 4);
  15274. const int32_t d1 = ggml_get_op_params_i32(tensor, 5);
  15275. const bool is_2D = ggml_get_op_params_i32(tensor, 6) == 1;
  15276. src1->grad = ggml_add_or_set(ctx,
  15277. src1->grad,
  15278. ggml_im2col_back(ctx, src0, tensor->grad, src1->ne, s0, s1, p0, p1, d0, d1, is_2D),
  15279. zero_table, acc_table);
  15280. }
  15281. } break;
  15282. case GGML_OP_IM2COL_BACK:
  15283. {
  15284. GGML_ABORT("fatal error"); // TODO: not implemented
  15285. }
  15286. case GGML_OP_CONV_TRANSPOSE_2D:
  15287. {
  15288. GGML_ABORT("fatal error"); // TODO: not implemented
  15289. }
  15290. case GGML_OP_POOL_1D:
  15291. {
  15292. GGML_ABORT("fatal error"); // TODO: not implemented
  15293. }
  15294. case GGML_OP_POOL_2D:
  15295. {
  15296. if (src0->grad) {
  15297. const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0);
  15298. const int32_t k0 = ggml_get_op_params_i32(tensor, 1);
  15299. const int32_t k1 = ggml_get_op_params_i32(tensor, 2);
  15300. const int32_t s0 = ggml_get_op_params_i32(tensor, 3);
  15301. const int32_t s1 = ggml_get_op_params_i32(tensor, 4);
  15302. const int32_t p0 = ggml_get_op_params_i32(tensor, 5);
  15303. const int32_t p1 = ggml_get_op_params_i32(tensor, 6);
  15304. src0->grad = ggml_add_or_set(ctx,
  15305. src0->grad,
  15306. ggml_pool_2d_back(ctx, tensor->grad, src0, op, k0, k1, s0, s1, p0, p1),
  15307. zero_table, acc_table);
  15308. }
  15309. } break;
  15310. case GGML_OP_POOL_2D_BACK:
  15311. {
  15312. GGML_ABORT("fatal error"); // TODO: not implemented
  15313. }
  15314. case GGML_OP_UPSCALE:
  15315. {
  15316. GGML_ABORT("fatal error"); // TODO: not implemented
  15317. }
  15318. case GGML_OP_PAD:
  15319. {
  15320. GGML_ABORT("fatal error"); // TODO: not implemented
  15321. }
  15322. case GGML_OP_ARANGE:
  15323. {
  15324. GGML_ABORT("fatal error"); // TODO: not implemented
  15325. }
  15326. case GGML_OP_TIMESTEP_EMBEDDING:
  15327. {
  15328. GGML_ABORT("fatal error"); // TODO: not implemented
  15329. }
  15330. case GGML_OP_ARGSORT:
  15331. {
  15332. GGML_ABORT("fatal error"); // TODO: not implemented
  15333. }
  15334. case GGML_OP_LEAKY_RELU:
  15335. {
  15336. GGML_ABORT("fatal error"); // TODO: not implemented
  15337. }
  15338. case GGML_OP_FLASH_ATTN_EXT:
  15339. {
  15340. GGML_ABORT("FA backward pass not adapted after rework");
  15341. struct ggml_tensor * flash_grad = NULL;
  15342. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15343. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15344. GGML_ASSERT(t == 0 || t == 1);
  15345. bool masked = t != 0;
  15346. flash_grad =
  15347. ggml_flash_attn_back(ctx,
  15348. src0,
  15349. src1,
  15350. tensor->src[2],
  15351. tensor->grad,
  15352. masked);
  15353. }
  15354. const int64_t elem_q = ggml_nelements(src0);
  15355. const int64_t elem_k = ggml_nelements(src1);
  15356. const int64_t elem_v = ggml_nelements(src2);
  15357. enum ggml_type result_type = flash_grad->type;
  15358. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15359. const size_t tsize = ggml_type_size(result_type);
  15360. const size_t offs_q = 0;
  15361. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15362. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15363. if (src0->grad) {
  15364. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15365. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15366. src0->grad = ggml_add_or_set(ctx,
  15367. src0->grad,
  15368. grad_q,
  15369. zero_table, acc_table);
  15370. }
  15371. if (src1->grad) {
  15372. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15373. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15374. src1->grad = ggml_add_or_set(ctx,
  15375. src1->grad,
  15376. grad_k,
  15377. zero_table, acc_table);
  15378. }
  15379. if (src2->grad) {
  15380. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15381. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15382. src2->grad = ggml_add_or_set(ctx,
  15383. src2->grad,
  15384. grad_v,
  15385. zero_table, acc_table);
  15386. }
  15387. } break;
  15388. case GGML_OP_FLASH_ATTN_BACK:
  15389. {
  15390. GGML_ABORT("fatal error"); // not supported
  15391. }
  15392. case GGML_OP_SSM_CONV:
  15393. case GGML_OP_SSM_SCAN:
  15394. {
  15395. GGML_ABORT("fatal error"); // TODO: not implemented
  15396. }
  15397. case GGML_OP_WIN_PART:
  15398. case GGML_OP_WIN_UNPART:
  15399. case GGML_OP_UNARY:
  15400. {
  15401. switch (ggml_get_unary_op(tensor)) {
  15402. case GGML_UNARY_OP_ABS:
  15403. {
  15404. if (src0->grad) {
  15405. src0->grad =
  15406. ggml_add_or_set(ctx,
  15407. src0->grad,
  15408. ggml_mul(ctx,
  15409. ggml_sgn(ctx, src0),
  15410. tensor->grad),
  15411. zero_table, acc_table);
  15412. }
  15413. } break;
  15414. case GGML_UNARY_OP_SGN:
  15415. {
  15416. if (src0->grad) {
  15417. // noop
  15418. }
  15419. } break;
  15420. case GGML_UNARY_OP_NEG:
  15421. {
  15422. if (src0->grad) {
  15423. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15424. }
  15425. } break;
  15426. case GGML_UNARY_OP_STEP:
  15427. {
  15428. if (src0->grad) {
  15429. // noop
  15430. }
  15431. } break;
  15432. case GGML_UNARY_OP_TANH:
  15433. {
  15434. GGML_ABORT("fatal error"); // TODO: not implemented
  15435. }
  15436. case GGML_UNARY_OP_ELU:
  15437. {
  15438. GGML_ABORT("fatal error"); // TODO: not implemented
  15439. }
  15440. case GGML_UNARY_OP_RELU:
  15441. {
  15442. if (src0->grad) {
  15443. src0->grad = ggml_add_or_set(ctx,
  15444. src0->grad,
  15445. ggml_mul(ctx,
  15446. ggml_step(ctx, src0),
  15447. tensor->grad),
  15448. zero_table, acc_table);
  15449. }
  15450. } break;
  15451. case GGML_UNARY_OP_SIGMOID:
  15452. {
  15453. GGML_ABORT("fatal error"); // TODO: not implemented
  15454. }
  15455. case GGML_UNARY_OP_GELU:
  15456. {
  15457. GGML_ABORT("fatal error"); // TODO: not implemented
  15458. }
  15459. case GGML_UNARY_OP_GELU_QUICK:
  15460. {
  15461. GGML_ABORT("fatal error"); // TODO: not implemented
  15462. }
  15463. case GGML_UNARY_OP_SILU:
  15464. {
  15465. // necessary for llama
  15466. if (src0->grad) {
  15467. src0->grad = ggml_add_or_set(ctx,
  15468. src0->grad,
  15469. ggml_silu_back(ctx, src0, tensor->grad),
  15470. zero_table, acc_table);
  15471. }
  15472. } break;
  15473. case GGML_UNARY_OP_EXP:
  15474. {
  15475. if (src0->grad) {
  15476. src0->grad = ggml_add_or_set(ctx,
  15477. src0->grad,
  15478. ggml_mul(ctx, tensor, tensor->grad),
  15479. zero_table, acc_table);
  15480. }
  15481. } break;
  15482. default:
  15483. GGML_ABORT("fatal error");
  15484. }
  15485. } break;
  15486. case GGML_OP_GET_REL_POS:
  15487. case GGML_OP_ADD_REL_POS:
  15488. case GGML_OP_RWKV_WKV:
  15489. case GGML_OP_MAP_UNARY:
  15490. case GGML_OP_MAP_BINARY:
  15491. case GGML_OP_MAP_CUSTOM1_F32:
  15492. case GGML_OP_MAP_CUSTOM2_F32:
  15493. case GGML_OP_MAP_CUSTOM3_F32:
  15494. case GGML_OP_MAP_CUSTOM1:
  15495. case GGML_OP_MAP_CUSTOM2:
  15496. case GGML_OP_MAP_CUSTOM3:
  15497. {
  15498. GGML_ABORT("fatal error"); // not supported
  15499. }
  15500. case GGML_OP_CROSS_ENTROPY_LOSS:
  15501. {
  15502. if (src0->grad) {
  15503. src0->grad = ggml_add_or_set(ctx,
  15504. src0->grad,
  15505. ggml_cross_entropy_loss_back(ctx,
  15506. src0,
  15507. src1,
  15508. tensor->grad),
  15509. zero_table, acc_table);
  15510. }
  15511. GGML_ASSERT(!src1->grad && "backward pass for labels not implemented");
  15512. } break;
  15513. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15514. {
  15515. GGML_ABORT("fatal error"); // not supported
  15516. }
  15517. case GGML_OP_OPT_STEP_ADAMW:
  15518. {
  15519. GGML_ABORT("fatal error"); // not supported
  15520. }
  15521. case GGML_OP_NONE:
  15522. {
  15523. // nop
  15524. } break;
  15525. case GGML_OP_COUNT:
  15526. {
  15527. GGML_ABORT("fatal error");
  15528. }
  15529. }
  15530. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15531. if (tensor->src[i] && tensor->src[i]->grad) {
  15532. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15533. }
  15534. }
  15535. }
  15536. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15537. if (node->grad == NULL) {
  15538. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15539. // it can also happen during forward pass, if the user performs computations with constants
  15540. if (node->op != GGML_OP_NONE) {
  15541. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15542. }
  15543. }
  15544. // check if already visited
  15545. if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
  15546. return;
  15547. }
  15548. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15549. const int k =
  15550. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15551. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15552. /* unknown order, just fall back to using i*/ i;
  15553. if (node->src[k]) {
  15554. ggml_visit_parents(cgraph, node->src[k]);
  15555. }
  15556. }
  15557. if (node->op == GGML_OP_NONE && !(node->flags & GGML_TENSOR_FLAG_PARAM)) {
  15558. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15559. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15560. if (strlen(node->name) == 0) {
  15561. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15562. }
  15563. cgraph->leafs[cgraph->n_leafs] = node;
  15564. cgraph->n_leafs++;
  15565. } else {
  15566. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15567. if (strlen(node->name) == 0) {
  15568. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15569. }
  15570. cgraph->nodes[cgraph->n_nodes] = node;
  15571. cgraph->n_nodes++;
  15572. }
  15573. }
  15574. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15575. if (!expand) {
  15576. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15577. ggml_graph_clear(cgraph);
  15578. }
  15579. const int n0 = cgraph->n_nodes;
  15580. ggml_visit_parents(cgraph, tensor);
  15581. const int n_new = cgraph->n_nodes - n0;
  15582. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15583. if (n_new > 0) {
  15584. // the last added node should always be starting point
  15585. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15586. }
  15587. }
  15588. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15589. ggml_build_forward_impl(cgraph, tensor, true);
  15590. }
  15591. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate) {
  15592. GGML_ASSERT(gf->n_nodes > 0);
  15593. GGML_ASSERT(gf->grads);
  15594. for (int i = 0; i < gf->n_nodes; ++i) {
  15595. struct ggml_tensor * node = gf->nodes[i];
  15596. if (node->type == GGML_TYPE_I32) {
  15597. continue;
  15598. }
  15599. bool needs_grad = node->flags & GGML_TENSOR_FLAG_PARAM;
  15600. bool ignore_src[GGML_MAX_SRC] = {false};
  15601. switch (node->op) {
  15602. // gradients in node->src[0] for one reason or another have no effect on output gradients
  15603. case GGML_OP_IM2COL: // only used for its shape
  15604. case GGML_OP_IM2COL_BACK: // same as IM2COL
  15605. ignore_src[0] = true;
  15606. break;
  15607. case GGML_OP_UNARY: {
  15608. const enum ggml_unary_op uop = ggml_get_unary_op(node);
  15609. // SGN and STEP unary ops are piecewise constant
  15610. if (uop == GGML_UNARY_OP_SGN || uop == GGML_UNARY_OP_STEP) {
  15611. ignore_src[0] = true;
  15612. }
  15613. } break;
  15614. // gradients in node->src[1] for one reason or another have no effect on output gradients
  15615. case GGML_OP_CPY: // gradients in CPY target are irrelevant
  15616. case GGML_OP_GET_ROWS: // row indices not differentiable
  15617. case GGML_OP_GET_ROWS_BACK: // same as for GET_ROWS
  15618. case GGML_OP_ROPE: // positions not differentiable
  15619. ignore_src[1] = true;
  15620. break;
  15621. default:
  15622. break;
  15623. }
  15624. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15625. if (!node->src[j] || !node->src[j]->grad || ignore_src[j]) {
  15626. continue;
  15627. }
  15628. GGML_ASSERT(node->src[j]->type == GGML_TYPE_F32 || node->src[j]->type == GGML_TYPE_F16);
  15629. needs_grad = true;
  15630. break;
  15631. }
  15632. if (!needs_grad) {
  15633. continue;
  15634. }
  15635. // inplace operations are currently not supported
  15636. GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW ||
  15637. node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE);
  15638. // create a new tensor with the same type and shape as the node and set it as grad
  15639. node->grad = ggml_dup_tensor(ctx, node);
  15640. }
  15641. // keep tables of original gradients for replacement/accumulation logic
  15642. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15643. struct ggml_hash_set acc_table = ggml_hash_set_new(gf->size);
  15644. for (int i = 0; i < gf->n_nodes; i++) {
  15645. struct ggml_tensor * node = gf->nodes[i];
  15646. if (node->grad) {
  15647. {
  15648. const size_t insert_result = ggml_hash_insert(&zero_table, node->grad);
  15649. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  15650. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  15651. }
  15652. // only gradients of trainable parameters should be accumulated
  15653. if (accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) {
  15654. const size_t insert_result = ggml_hash_insert(&acc_table, node->grad);
  15655. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  15656. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  15657. }
  15658. }
  15659. }
  15660. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15661. struct ggml_tensor * node = gf->nodes[i];
  15662. // inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
  15663. // use allocator to automatically make inplace operations
  15664. if (node->grad) {
  15665. ggml_compute_backward(ctx, node, &zero_table, &acc_table);
  15666. }
  15667. }
  15668. for (int i = 0; i < gf->n_nodes; i++) {
  15669. struct ggml_tensor * node = gf->nodes[i];
  15670. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15671. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15672. ggml_build_forward_expand(gb, node->grad);
  15673. }
  15674. }
  15675. ggml_hash_set_free(&zero_table);
  15676. ggml_hash_set_free(&acc_table);
  15677. }
  15678. void ggml_build_opt_adamw(
  15679. struct ggml_context * ctx,
  15680. struct ggml_cgraph * gf,
  15681. struct ggml_cgraph * gb,
  15682. float alpha,
  15683. float beta1,
  15684. float beta2,
  15685. float eps,
  15686. float wd) {
  15687. for (int i = 0; i < gf->n_nodes; i++) {
  15688. struct ggml_tensor * node = gf->nodes[i];
  15689. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15690. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15691. struct ggml_tensor * opt_step = ggml_opt_step_adamw(ctx, node, node->grad, alpha, beta1, beta2, eps, wd);
  15692. ggml_build_forward_expand(gb, opt_step);
  15693. }
  15694. }
  15695. }
  15696. static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
  15697. void * ptr = *p;
  15698. ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
  15699. *p = (void *) ((char *) ptr + size);
  15700. return ptr;
  15701. }
  15702. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15703. size_t hash_size = ggml_hash_size(size * 2);
  15704. void * p = 0;
  15705. incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
  15706. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
  15707. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
  15708. incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
  15709. if (grads) {
  15710. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
  15711. }
  15712. incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15713. size_t nbytes = (size_t) p;
  15714. return nbytes;
  15715. }
  15716. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15717. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15718. }
  15719. size_t ggml_graph_overhead(void) {
  15720. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15721. }
  15722. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15723. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15724. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15725. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15726. // the size of the hash table is doubled since it needs to hold both nodes and leafs
  15727. size_t hash_size = ggml_hash_size(size * 2);
  15728. void * p = cgraph + 1;
  15729. struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15730. struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15731. struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15732. struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
  15733. ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15734. // check that we allocated the correct amount of memory
  15735. assert(obj_size == (size_t)((char *)p - (char *)cgraph));
  15736. *cgraph = (struct ggml_cgraph) {
  15737. /*.size =*/ size,
  15738. /*.n_nodes =*/ 0,
  15739. /*.n_leafs =*/ 0,
  15740. /*.nodes =*/ nodes_ptr,
  15741. /*.grads =*/ grads_ptr,
  15742. /*.leafs =*/ leafs_ptr,
  15743. /*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
  15744. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15745. };
  15746. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15747. return cgraph;
  15748. }
  15749. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15750. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15751. }
  15752. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15753. struct ggml_cgraph cgraph = {
  15754. /*.size =*/ 0,
  15755. /*.n_nodes =*/ i1 - i0,
  15756. /*.n_leafs =*/ 0,
  15757. /*.nodes =*/ cgraph0->nodes + i0,
  15758. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15759. /*.leafs =*/ NULL,
  15760. /*.hash_table =*/ { 0, NULL, NULL },
  15761. /*.order =*/ cgraph0->order,
  15762. };
  15763. return cgraph;
  15764. }
  15765. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15766. GGML_ASSERT(dst->size >= src->n_leafs);
  15767. GGML_ASSERT(dst->size >= src->n_nodes);
  15768. GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
  15769. dst->n_leafs = src->n_leafs;
  15770. dst->n_nodes = src->n_nodes;
  15771. dst->order = src->order;
  15772. for (int i = 0; i < src->n_leafs; ++i) {
  15773. dst->leafs[i] = src->leafs[i];
  15774. }
  15775. for (int i = 0; i < src->n_nodes; ++i) {
  15776. dst->nodes[i] = src->nodes[i];
  15777. }
  15778. if (src->grads) {
  15779. GGML_ASSERT(dst->grads != NULL);
  15780. for (int i = 0; i < src->n_nodes; ++i) {
  15781. dst->grads[i] = src->grads[i];
  15782. }
  15783. }
  15784. for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
  15785. // copy all hashset keys (tensors) that are in use
  15786. if (ggml_bitset_get(src->visited_hash_set.used, i)) {
  15787. ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
  15788. }
  15789. }
  15790. }
  15791. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15792. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15793. ggml_graph_cpy(cgraph, result);
  15794. return result;
  15795. }
  15796. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15797. GGML_ASSERT(cgraph->grads != NULL);
  15798. for (int i = 0; i < cgraph->n_nodes; i++) {
  15799. struct ggml_tensor * node = cgraph->nodes[i];
  15800. // initial gradients of loss should be 1, 0 otherwise
  15801. if (node->grad) {
  15802. if (node->flags & GGML_TENSOR_FLAG_LOSS) {
  15803. GGML_ASSERT(node->grad->buffer);
  15804. GGML_ASSERT(node->type == GGML_TYPE_F32);
  15805. GGML_ASSERT(ggml_is_scalar(node));
  15806. const float onef = 1.0f;
  15807. ggml_backend_tensor_set(node->grad, &onef, 0, ggml_nbytes(node->grad));
  15808. } else {
  15809. ggml_set_zero(node->grad);
  15810. }
  15811. }
  15812. GGML_ASSERT(node);
  15813. if (node->op == GGML_OP_OPT_STEP_ADAMW) {
  15814. // set iteration to 1 and clear momenta
  15815. ggml_set_op_params_i32(node, 0, 1);
  15816. ggml_set_zero(node->src[2]);
  15817. ggml_set_zero(node->src[3]);
  15818. }
  15819. }
  15820. }
  15821. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15822. cgraph->n_leafs = 0;
  15823. cgraph->n_nodes = 0;
  15824. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15825. }
  15826. int ggml_graph_size(struct ggml_cgraph * cgraph) {
  15827. return cgraph->size;
  15828. }
  15829. struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) {
  15830. if (i < 0) {
  15831. GGML_ASSERT(cgraph->n_nodes + i >= 0);
  15832. return cgraph->nodes[cgraph->n_nodes + i];
  15833. }
  15834. GGML_ASSERT(i < cgraph->n_nodes);
  15835. return cgraph->nodes[i];
  15836. }
  15837. struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) {
  15838. return cgraph->nodes;
  15839. }
  15840. int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) {
  15841. return cgraph->n_nodes;
  15842. }
  15843. void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15844. GGML_ASSERT(cgraph->size > cgraph->n_nodes);
  15845. cgraph->nodes[cgraph->n_nodes] = tensor;
  15846. cgraph->n_nodes++;
  15847. }
  15848. // Android's libc implementation "bionic" does not support setting affinity
  15849. #if defined(__gnu_linux__)
  15850. static void set_numa_thread_affinity(int thread_n) {
  15851. if (!ggml_is_numa()) {
  15852. return;
  15853. }
  15854. int node_num;
  15855. int rv;
  15856. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15857. switch(g_state.numa.numa_strategy) {
  15858. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15859. // run thread on node_num thread_n / (threads per node)
  15860. node_num = thread_n % g_state.numa.n_nodes;
  15861. break;
  15862. case GGML_NUMA_STRATEGY_ISOLATE:
  15863. // run thread on current_node
  15864. node_num = g_state.numa.current_node;
  15865. break;
  15866. case GGML_NUMA_STRATEGY_NUMACTL:
  15867. // use the cpuset that numactl gave us
  15868. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15869. if (rv) {
  15870. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15871. }
  15872. return;
  15873. default:
  15874. return;
  15875. }
  15876. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15877. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15878. CPU_ZERO_S(setsize, cpus);
  15879. for (size_t i = 0; i < node->n_cpus; ++i) {
  15880. CPU_SET_S(node->cpus[i], setsize, cpus);
  15881. }
  15882. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15883. if (rv) {
  15884. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15885. }
  15886. CPU_FREE(cpus);
  15887. }
  15888. static void clear_numa_thread_affinity(void) {
  15889. if (!ggml_is_numa()) {
  15890. return;
  15891. }
  15892. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15893. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15894. CPU_ZERO_S(setsize, cpus);
  15895. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15896. CPU_SET_S(i, setsize, cpus);
  15897. }
  15898. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15899. if (rv) {
  15900. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15901. }
  15902. CPU_FREE(cpus);
  15903. }
  15904. #else
  15905. // TODO: Windows etc.
  15906. // (the linux implementation may also work on BSD, someone should test)
  15907. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15908. static void clear_numa_thread_affinity(void) {}
  15909. #endif
  15910. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  15911. int n_tasks = 0;
  15912. if (ggml_is_empty(node)) {
  15913. // no need to multi-thread a no-op
  15914. n_tasks = 1;
  15915. return n_tasks;
  15916. }
  15917. switch (node->op) {
  15918. case GGML_OP_CPY:
  15919. case GGML_OP_DUP:
  15920. case GGML_OP_CONT:
  15921. case GGML_OP_ADD:
  15922. case GGML_OP_ADD1:
  15923. case GGML_OP_ACC:
  15924. {
  15925. n_tasks = n_threads;
  15926. } break;
  15927. case GGML_OP_SUB:
  15928. case GGML_OP_SQR:
  15929. case GGML_OP_SQRT:
  15930. case GGML_OP_LOG:
  15931. case GGML_OP_SIN:
  15932. case GGML_OP_COS:
  15933. case GGML_OP_SUM:
  15934. case GGML_OP_SUM_ROWS:
  15935. case GGML_OP_MEAN:
  15936. case GGML_OP_ARGMAX:
  15937. {
  15938. n_tasks = 1;
  15939. } break;
  15940. case GGML_OP_COUNT_EQUAL:
  15941. {
  15942. n_tasks = n_threads;
  15943. } break;
  15944. case GGML_OP_REPEAT:
  15945. case GGML_OP_REPEAT_BACK:
  15946. case GGML_OP_LEAKY_RELU:
  15947. {
  15948. n_tasks = 1;
  15949. } break;
  15950. case GGML_OP_UNARY:
  15951. switch (ggml_get_unary_op(node)) {
  15952. case GGML_UNARY_OP_ABS:
  15953. case GGML_UNARY_OP_SGN:
  15954. case GGML_UNARY_OP_NEG:
  15955. case GGML_UNARY_OP_STEP:
  15956. case GGML_UNARY_OP_TANH:
  15957. case GGML_UNARY_OP_ELU:
  15958. case GGML_UNARY_OP_RELU:
  15959. case GGML_UNARY_OP_SIGMOID:
  15960. case GGML_UNARY_OP_HARDSWISH:
  15961. case GGML_UNARY_OP_HARDSIGMOID:
  15962. case GGML_UNARY_OP_EXP:
  15963. {
  15964. n_tasks = 1;
  15965. } break;
  15966. case GGML_UNARY_OP_GELU:
  15967. case GGML_UNARY_OP_GELU_QUICK:
  15968. case GGML_UNARY_OP_SILU:
  15969. {
  15970. n_tasks = n_threads;
  15971. } break;
  15972. default:
  15973. GGML_ABORT("fatal error");
  15974. }
  15975. break;
  15976. case GGML_OP_SILU_BACK:
  15977. case GGML_OP_MUL:
  15978. case GGML_OP_DIV:
  15979. case GGML_OP_NORM:
  15980. case GGML_OP_RMS_NORM:
  15981. case GGML_OP_RMS_NORM_BACK:
  15982. case GGML_OP_GROUP_NORM:
  15983. case GGML_OP_CONCAT:
  15984. case GGML_OP_MUL_MAT:
  15985. case GGML_OP_MUL_MAT_ID:
  15986. case GGML_OP_OUT_PROD:
  15987. {
  15988. n_tasks = n_threads;
  15989. } break;
  15990. case GGML_OP_GET_ROWS:
  15991. {
  15992. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  15993. // decreases performance with GPU offloading
  15994. //n_tasks = n_threads;
  15995. n_tasks = 1;
  15996. } break;
  15997. case GGML_OP_SCALE:
  15998. case GGML_OP_SET:
  15999. case GGML_OP_RESHAPE:
  16000. case GGML_OP_VIEW:
  16001. case GGML_OP_PERMUTE:
  16002. case GGML_OP_TRANSPOSE:
  16003. case GGML_OP_GET_ROWS_BACK:
  16004. case GGML_OP_DIAG:
  16005. {
  16006. n_tasks = 1;
  16007. } break;
  16008. case GGML_OP_DIAG_MASK_ZERO:
  16009. case GGML_OP_DIAG_MASK_INF:
  16010. case GGML_OP_SOFT_MAX_BACK:
  16011. case GGML_OP_ROPE:
  16012. case GGML_OP_ROPE_BACK:
  16013. case GGML_OP_ADD_REL_POS:
  16014. {
  16015. n_tasks = n_threads;
  16016. } break;
  16017. case GGML_OP_CLAMP:
  16018. {
  16019. n_tasks = 1; //TODO
  16020. } break;
  16021. case GGML_OP_SOFT_MAX:
  16022. {
  16023. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  16024. } break;
  16025. case GGML_OP_IM2COL:
  16026. case GGML_OP_IM2COL_BACK:
  16027. case GGML_OP_CONV_TRANSPOSE_1D:
  16028. case GGML_OP_CONV_TRANSPOSE_2D:
  16029. {
  16030. n_tasks = n_threads;
  16031. } break;
  16032. case GGML_OP_POOL_1D:
  16033. case GGML_OP_POOL_2D:
  16034. case GGML_OP_POOL_2D_BACK:
  16035. {
  16036. n_tasks = 1;
  16037. } break;
  16038. case GGML_OP_UPSCALE:
  16039. case GGML_OP_PAD:
  16040. case GGML_OP_ARANGE:
  16041. case GGML_OP_TIMESTEP_EMBEDDING:
  16042. case GGML_OP_ARGSORT:
  16043. case GGML_OP_FLASH_ATTN_EXT:
  16044. case GGML_OP_FLASH_ATTN_BACK:
  16045. case GGML_OP_SSM_CONV:
  16046. case GGML_OP_SSM_SCAN:
  16047. {
  16048. n_tasks = n_threads;
  16049. } break;
  16050. case GGML_OP_WIN_PART:
  16051. case GGML_OP_WIN_UNPART:
  16052. case GGML_OP_GET_REL_POS:
  16053. case GGML_OP_RWKV_WKV:
  16054. case GGML_OP_MAP_UNARY:
  16055. case GGML_OP_MAP_BINARY:
  16056. case GGML_OP_MAP_CUSTOM1_F32:
  16057. case GGML_OP_MAP_CUSTOM2_F32:
  16058. case GGML_OP_MAP_CUSTOM3_F32:
  16059. {
  16060. n_tasks = 1;
  16061. } break;
  16062. case GGML_OP_MAP_CUSTOM1:
  16063. {
  16064. struct ggml_map_custom1_op_params p;
  16065. memcpy(&p, node->op_params, sizeof(p));
  16066. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16067. n_tasks = n_threads;
  16068. } else {
  16069. n_tasks = MIN(p.n_tasks, n_threads);
  16070. }
  16071. } break;
  16072. case GGML_OP_MAP_CUSTOM2:
  16073. {
  16074. struct ggml_map_custom2_op_params p;
  16075. memcpy(&p, node->op_params, sizeof(p));
  16076. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16077. n_tasks = n_threads;
  16078. } else {
  16079. n_tasks = MIN(p.n_tasks, n_threads);
  16080. }
  16081. } break;
  16082. case GGML_OP_MAP_CUSTOM3:
  16083. {
  16084. struct ggml_map_custom3_op_params p;
  16085. memcpy(&p, node->op_params, sizeof(p));
  16086. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16087. n_tasks = n_threads;
  16088. } else {
  16089. n_tasks = MIN(p.n_tasks, n_threads);
  16090. }
  16091. } break;
  16092. case GGML_OP_CROSS_ENTROPY_LOSS:
  16093. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16094. case GGML_OP_OPT_STEP_ADAMW:
  16095. {
  16096. n_tasks = n_threads;
  16097. } break;
  16098. case GGML_OP_NONE:
  16099. {
  16100. n_tasks = 1;
  16101. } break;
  16102. case GGML_OP_COUNT:
  16103. {
  16104. GGML_ABORT("fatal error");
  16105. }
  16106. default:
  16107. {
  16108. fprintf(stderr, "%s: op not implemented: ", __func__);
  16109. if (node->op < GGML_OP_COUNT) {
  16110. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16111. } else {
  16112. fprintf(stderr, "%d\n", node->op);
  16113. }
  16114. GGML_ABORT("fatal error");
  16115. }
  16116. }
  16117. assert(n_tasks > 0);
  16118. return n_tasks;
  16119. }
  16120. static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
  16121. #if defined(_WIN32)
  16122. #include "windows.h"
  16123. // TODO: support > 64 CPUs
  16124. bool ggml_thread_apply_affinity(bool * mask) {
  16125. HANDLE h = GetCurrentThread();
  16126. uint64_t bitmask = 0ULL;
  16127. assert(GGML_MAX_N_THREADS >= 64);
  16128. for (int32_t i = 0; i < 8; i++) {
  16129. int32_t idx = i * 8;
  16130. uint8_t val = 0;
  16131. val |= mask[idx + 0] << 0;
  16132. val |= mask[idx + 1] << 1;
  16133. val |= mask[idx + 2] << 2;
  16134. val |= mask[idx + 3] << 3;
  16135. val |= mask[idx + 4] << 4;
  16136. val |= mask[idx + 5] << 5;
  16137. val |= mask[idx + 6] << 6;
  16138. val |= mask[idx + 7] << 7;
  16139. bitmask |= (uint64_t)val << idx;
  16140. }
  16141. for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) {
  16142. if (mask[i]) {
  16143. fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n");
  16144. break;
  16145. }
  16146. }
  16147. DWORD_PTR m = (DWORD_PTR)bitmask;
  16148. m = SetThreadAffinityMask(h, m);
  16149. return m != 0;
  16150. }
  16151. static bool ggml_thread_apply_priority(int32_t prio) {
  16152. // Note that on Windows the Process Priority Class must be updated in order to set Thread priority.
  16153. // This is up to the applications.
  16154. DWORD p = THREAD_PRIORITY_NORMAL;
  16155. switch (prio) {
  16156. case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
  16157. case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
  16158. case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
  16159. case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
  16160. }
  16161. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16162. // Keep inherited policy/priority
  16163. return true;
  16164. }
  16165. if (!SetThreadPriority(GetCurrentThread(), p)) {
  16166. fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError());
  16167. return false;
  16168. }
  16169. return true;
  16170. }
  16171. #elif defined(__APPLE__)
  16172. #include <sys/types.h>
  16173. #include <sys/resource.h>
  16174. static bool ggml_thread_apply_affinity(const bool * mask) {
  16175. // Not supported on Apple platforms
  16176. UNUSED(mask);
  16177. return true;
  16178. }
  16179. static bool ggml_thread_apply_priority(int32_t prio) {
  16180. struct sched_param p;
  16181. int32_t policy = SCHED_OTHER;
  16182. switch (prio) {
  16183. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  16184. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  16185. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  16186. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  16187. }
  16188. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16189. // Keep inherited policy/priority
  16190. return true;
  16191. }
  16192. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  16193. if (err != 0) {
  16194. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  16195. return false;
  16196. }
  16197. return true;
  16198. }
  16199. #elif defined(__gnu_linux__)
  16200. // TODO: this may not work on BSD, to be verified
  16201. static bool ggml_thread_apply_affinity(const bool * mask) {
  16202. cpu_set_t cpuset;
  16203. int err;
  16204. CPU_ZERO(&cpuset);
  16205. for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  16206. if (mask[i]) {
  16207. GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i);
  16208. CPU_SET(i, &cpuset);
  16209. }
  16210. }
  16211. #ifdef __ANDROID__
  16212. err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
  16213. if (err < 0) {
  16214. err = errno;
  16215. }
  16216. #else
  16217. err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
  16218. #endif
  16219. if (err != 0) {
  16220. fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err);
  16221. return false;
  16222. }
  16223. return true;
  16224. }
  16225. static bool ggml_thread_apply_priority(int32_t prio) {
  16226. struct sched_param p;
  16227. int32_t policy = SCHED_OTHER;
  16228. switch (prio) {
  16229. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  16230. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  16231. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  16232. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  16233. }
  16234. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16235. // Keep inherited policy/priority
  16236. return true;
  16237. }
  16238. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  16239. if (err != 0) {
  16240. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  16241. return false;
  16242. }
  16243. return true;
  16244. }
  16245. #else // unsupported platforms
  16246. static bool ggml_thread_apply_affinity(const bool * mask) {
  16247. UNUSED(mask);
  16248. return true;
  16249. }
  16250. static bool ggml_thread_apply_priority(int32_t prio) {
  16251. UNUSED(prio);
  16252. return true;
  16253. }
  16254. #endif
  16255. static bool ggml_thread_cpumask_is_valid(const bool * mask) {
  16256. for (int i = 0; i < GGML_MAX_N_THREADS; i++) {
  16257. if (mask[i]) { return true; }
  16258. }
  16259. return false;
  16260. }
  16261. static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) {
  16262. if (!strict) {
  16263. memcpy(local_mask, global_mask, GGML_MAX_N_THREADS);
  16264. return;
  16265. } else {
  16266. memset(local_mask, 0, GGML_MAX_N_THREADS);
  16267. int32_t base_idx = *iter;
  16268. for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  16269. int32_t idx = base_idx + i;
  16270. if (idx >= GGML_MAX_N_THREADS) {
  16271. // Just a cheaper modulo
  16272. idx -= GGML_MAX_N_THREADS;
  16273. }
  16274. if (global_mask[idx]) {
  16275. local_mask[idx] = 1;
  16276. *iter = idx + 1;
  16277. return;
  16278. }
  16279. }
  16280. }
  16281. }
  16282. void ggml_threadpool_free(struct ggml_threadpool* threadpool) {
  16283. if (!threadpool) return;
  16284. #ifndef GGML_USE_OPENMP
  16285. struct ggml_compute_state* workers = threadpool->workers;
  16286. const int n_threads = threadpool->n_threads_max;
  16287. ggml_mutex_lock(&threadpool->mutex);
  16288. threadpool->stop = true;
  16289. threadpool->pause = false;
  16290. ggml_cond_broadcast(&threadpool->cond);
  16291. ggml_mutex_unlock(&threadpool->mutex);
  16292. for (int j = 1; j < n_threads; j++) {
  16293. int32_t rc = ggml_thread_join(workers[j].thrd, NULL);
  16294. GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED);
  16295. UNUSED(rc);
  16296. }
  16297. ggml_mutex_destroy(&threadpool->mutex);
  16298. ggml_cond_destroy(&threadpool->cond);
  16299. #endif // GGML_USE_OPENMP
  16300. GGML_ALIGNED_FREE(threadpool->workers);
  16301. GGML_ALIGNED_FREE(threadpool);
  16302. }
  16303. #ifndef GGML_USE_OPENMP
  16304. // pause/resume must be called under mutex
  16305. static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) {
  16306. GGML_PRINT_DEBUG("Pausing threadpool\n");
  16307. threadpool->pause = true;
  16308. ggml_cond_broadcast(&threadpool->cond);
  16309. }
  16310. static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) {
  16311. GGML_PRINT_DEBUG("Resuming threadpool\n");
  16312. threadpool->pause = false;
  16313. ggml_cond_broadcast(&threadpool->cond);
  16314. }
  16315. #endif
  16316. void ggml_threadpool_pause(struct ggml_threadpool * threadpool) {
  16317. #ifndef GGML_USE_OPENMP
  16318. ggml_mutex_lock(&threadpool->mutex);
  16319. if (!threadpool->pause) {
  16320. ggml_threadpool_pause_locked(threadpool);
  16321. }
  16322. ggml_mutex_unlock(&threadpool->mutex);
  16323. #else
  16324. UNUSED(threadpool);
  16325. #endif
  16326. }
  16327. void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
  16328. #ifndef GGML_USE_OPENMP
  16329. ggml_mutex_lock(&threadpool->mutex);
  16330. if (threadpool->pause) {
  16331. ggml_threadpool_resume_locked(threadpool);
  16332. }
  16333. ggml_mutex_unlock(&threadpool->mutex);
  16334. #else
  16335. UNUSED(threadpool);
  16336. #endif
  16337. }
  16338. struct ggml_cplan ggml_graph_plan(
  16339. const struct ggml_cgraph * cgraph,
  16340. int n_threads,
  16341. struct ggml_threadpool * threadpool) {
  16342. if (threadpool == NULL) {
  16343. GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  16344. }
  16345. if (n_threads <= 0) {
  16346. n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
  16347. }
  16348. size_t work_size = 0;
  16349. struct ggml_cplan cplan;
  16350. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16351. int max_tasks = 1;
  16352. // thread scheduling for the different operations + work buffer size estimation
  16353. for (int i = 0; i < cgraph->n_nodes; i++) {
  16354. struct ggml_tensor * node = cgraph->nodes[i];
  16355. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  16356. max_tasks = MAX(max_tasks, n_tasks);
  16357. size_t cur = 0;
  16358. switch (node->op) {
  16359. case GGML_OP_CPY:
  16360. case GGML_OP_DUP:
  16361. {
  16362. if (ggml_is_quantized(node->type) ||
  16363. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16364. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16365. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16366. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16367. }
  16368. } break;
  16369. case GGML_OP_ADD:
  16370. case GGML_OP_ADD1:
  16371. {
  16372. if (ggml_is_quantized(node->src[0]->type)) {
  16373. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16374. }
  16375. } break;
  16376. case GGML_OP_ACC:
  16377. {
  16378. if (ggml_is_quantized(node->src[0]->type)) {
  16379. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16380. }
  16381. } break;
  16382. case GGML_OP_COUNT_EQUAL:
  16383. {
  16384. cur = ggml_type_size(node->type)*n_tasks;
  16385. } break;
  16386. case GGML_OP_MUL_MAT:
  16387. {
  16388. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16389. if (node->src[1]->type != vec_dot_type) {
  16390. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16391. }
  16392. } break;
  16393. case GGML_OP_MUL_MAT_ID:
  16394. {
  16395. cur = 0;
  16396. const struct ggml_tensor * src0 = node->src[0];
  16397. const struct ggml_tensor * src1 = node->src[1];
  16398. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16399. if (src1->type != vec_dot_type) {
  16400. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16401. }
  16402. const int n_as = src0->ne[2];
  16403. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16404. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16405. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16406. } break;
  16407. case GGML_OP_OUT_PROD:
  16408. {
  16409. if (ggml_is_quantized(node->src[0]->type)) {
  16410. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16411. }
  16412. } break;
  16413. case GGML_OP_SOFT_MAX:
  16414. case GGML_OP_ROPE:
  16415. {
  16416. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16417. } break;
  16418. case GGML_OP_CONV_TRANSPOSE_1D:
  16419. {
  16420. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16421. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16422. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16423. const int64_t ne00 = node->src[0]->ne[0]; // K
  16424. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16425. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16426. const int64_t ne10 = node->src[1]->ne[0]; // L
  16427. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16428. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16429. node->src[0]->type == GGML_TYPE_BF16) &&
  16430. node->src[1]->type == GGML_TYPE_F32) {
  16431. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16432. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16433. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16434. node->src[1]->type == GGML_TYPE_F32) {
  16435. cur += sizeof(float)*ne00*ne01*ne02;
  16436. cur += sizeof(float)*ne10*ne11;
  16437. } else {
  16438. GGML_ABORT("fatal error");
  16439. }
  16440. } break;
  16441. case GGML_OP_CONV_TRANSPOSE_2D:
  16442. {
  16443. const int64_t ne00 = node->src[0]->ne[0]; // W
  16444. const int64_t ne01 = node->src[0]->ne[1]; // H
  16445. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16446. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16447. const int64_t ne10 = node->src[1]->ne[0]; // W
  16448. const int64_t ne11 = node->src[1]->ne[1]; // H
  16449. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16450. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16451. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16452. } break;
  16453. case GGML_OP_FLASH_ATTN_EXT:
  16454. {
  16455. const int64_t ne00 = node->src[0]->ne[0]; // D
  16456. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16457. } break;
  16458. case GGML_OP_FLASH_ATTN_BACK:
  16459. {
  16460. const int64_t D = node->src[0]->ne[0];
  16461. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16462. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16463. if (node->src[1]->type == GGML_TYPE_F32) {
  16464. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16465. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16466. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16467. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16468. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16469. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16470. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16471. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16472. }
  16473. } break;
  16474. case GGML_OP_CROSS_ENTROPY_LOSS:
  16475. {
  16476. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16477. } break;
  16478. case GGML_OP_COUNT:
  16479. {
  16480. GGML_ABORT("fatal error");
  16481. }
  16482. default:
  16483. break;
  16484. }
  16485. work_size = MAX(work_size, cur);
  16486. }
  16487. if (work_size > 0) {
  16488. work_size += CACHE_LINE_SIZE*(n_threads);
  16489. }
  16490. cplan.threadpool = threadpool;
  16491. cplan.n_threads = MIN(max_tasks, n_threads);
  16492. cplan.work_size = work_size;
  16493. cplan.work_data = NULL;
  16494. return cplan;
  16495. }
  16496. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16497. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16498. struct ggml_threadpool * tp = state->threadpool;
  16499. const struct ggml_cgraph * cgraph = tp->cgraph;
  16500. const struct ggml_cplan * cplan = tp->cplan;
  16501. set_numa_thread_affinity(state->ith);
  16502. struct ggml_compute_params params = {
  16503. /*.ith =*/ state->ith,
  16504. /*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed),
  16505. /*.wsize =*/ cplan->work_size,
  16506. /*.wdata =*/ cplan->work_data,
  16507. /*.threadpool=*/ tp,
  16508. };
  16509. for (int node_n = 0; node_n < cgraph->n_nodes && !tp->abort; node_n++) {
  16510. struct ggml_tensor * node = cgraph->nodes[node_n];
  16511. ggml_compute_forward(&params, node);
  16512. if (state->ith == 0 && cplan->abort_callback &&
  16513. cplan->abort_callback(cplan->abort_callback_data)) {
  16514. tp->abort = true;
  16515. tp->ec = GGML_STATUS_ABORTED;
  16516. }
  16517. ggml_barrier(state->threadpool);
  16518. }
  16519. return 0;
  16520. }
  16521. #ifndef GGML_USE_OPENMP
  16522. // check if thread is active
  16523. static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) {
  16524. struct ggml_threadpool * threadpool = state->threadpool;
  16525. int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed);
  16526. return (state->ith < n_threads);
  16527. }
  16528. // check if thread is ready to proceed (exit from polling or sleeping)
  16529. static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) {
  16530. struct ggml_threadpool * threadpool = state->threadpool;
  16531. if (state->pending || threadpool->stop || threadpool->pause) { return true; }
  16532. // check for new graph/work
  16533. int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed);
  16534. if (new_graph != state->last_graph) {
  16535. state->pending = ggml_graph_compute_thread_active(state);
  16536. state->last_graph = new_graph;
  16537. }
  16538. return state->pending;
  16539. }
  16540. // sync thread state after polling
  16541. static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) {
  16542. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  16543. #ifdef GGML_TSAN_ENABLED
  16544. atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst);
  16545. #else
  16546. atomic_thread_fence(memory_order_seq_cst);
  16547. #endif
  16548. UNUSED(state);
  16549. }
  16550. static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) {
  16551. struct ggml_threadpool * threadpool = state->threadpool;
  16552. // Skip polling for unused threads
  16553. if (!ggml_graph_compute_thread_active(state)) {
  16554. return state->pending;
  16555. }
  16556. // This seems to make 0 ... 100 a decent range for polling level across modern processors.
  16557. // Perhaps, we can adjust it dynamically based on load and things.
  16558. const uint64_t n_rounds = 1024UL * 128 * threadpool->poll;
  16559. for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) {
  16560. // No new work. Keep polling.
  16561. ggml_thread_cpu_relax();
  16562. }
  16563. return state->pending;
  16564. }
  16565. static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) {
  16566. struct ggml_threadpool * threadpool = state->threadpool;
  16567. if (ggml_graph_compute_poll_for_work(state)) {
  16568. ggml_graph_compute_thread_sync(state);
  16569. return state->pending;
  16570. }
  16571. ggml_mutex_lock_shared(&threadpool->mutex);
  16572. while (!ggml_graph_compute_thread_ready(state)) {
  16573. // No new work. Wait for the signal.
  16574. GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith);
  16575. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  16576. }
  16577. ggml_mutex_unlock_shared(&threadpool->mutex);
  16578. return state->pending;
  16579. }
  16580. static thread_ret_t ggml_graph_compute_secondary_thread(void* data) {
  16581. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16582. struct ggml_threadpool * threadpool = state->threadpool;
  16583. ggml_thread_apply_priority(threadpool->prio);
  16584. if (ggml_thread_cpumask_is_valid(state->cpumask)) {
  16585. ggml_thread_apply_affinity(state->cpumask);
  16586. }
  16587. while (true) {
  16588. // Check if we need to sleep
  16589. while (threadpool->pause) {
  16590. GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith);
  16591. ggml_mutex_lock_shared(&threadpool->mutex);
  16592. if (threadpool->pause) {
  16593. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  16594. }
  16595. GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith);
  16596. ggml_mutex_unlock_shared(&threadpool->mutex);
  16597. }
  16598. // This needs to be checked for after the cond_wait
  16599. if (threadpool->stop) break;
  16600. // Check if there is new work
  16601. // The main thread is the only one that can dispatch new work
  16602. ggml_graph_compute_check_for_work(state);
  16603. if (state->pending) {
  16604. state->pending = false;
  16605. ggml_graph_compute_thread(state);
  16606. }
  16607. }
  16608. return (thread_ret_t) 0;
  16609. }
  16610. // Start processing new graph
  16611. static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads)
  16612. {
  16613. // Always take the mutex here because the worker threads are doing hybrid poll/wait
  16614. ggml_mutex_lock(&threadpool->mutex);
  16615. GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n", threadpool->n_threads_cur, n_threads);
  16616. // Update the number of active threads
  16617. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  16618. // Indicate the graph is ready to be processed
  16619. // We need the full seq-cst fence here because of the polling threads (used in thread_sync)
  16620. atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst);
  16621. if (threadpool->pause) {
  16622. // Update main thread prio and affinity to match the threadpool settings
  16623. ggml_thread_apply_priority(threadpool->prio);
  16624. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  16625. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  16626. }
  16627. // resume does cond broadcast
  16628. ggml_threadpool_resume_locked(threadpool);
  16629. } else {
  16630. ggml_cond_broadcast(&threadpool->cond);
  16631. }
  16632. ggml_mutex_unlock(&threadpool->mutex);
  16633. }
  16634. #endif // GGML_USE_OPENMP
  16635. void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
  16636. p->n_threads = n_threads;
  16637. p->prio = 0; // default priority (usually means normal or inherited)
  16638. p->poll = 50; // hybrid-polling enabled
  16639. p->strict_cpu = false; // no strict placement (all threads share same cpumask)
  16640. p->paused = false; // threads are ready to go
  16641. memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
  16642. }
  16643. struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
  16644. struct ggml_threadpool_params p;
  16645. ggml_threadpool_params_init(&p, n_threads);
  16646. return p;
  16647. }
  16648. bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
  16649. if (p0->n_threads != p1->n_threads ) return false;
  16650. if (p0->prio != p1->prio ) return false;
  16651. if (p0->poll != p1->poll ) return false;
  16652. if (p0->strict_cpu != p1->strict_cpu ) return false;
  16653. return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
  16654. }
  16655. static struct ggml_threadpool * ggml_threadpool_new_impl(
  16656. struct ggml_threadpool_params * tpp,
  16657. struct ggml_cgraph * cgraph,
  16658. struct ggml_cplan * cplan) {
  16659. struct ggml_threadpool * threadpool =
  16660. GGML_ALIGNED_MALLOC(sizeof(struct ggml_threadpool));
  16661. {
  16662. threadpool->cgraph = cgraph;
  16663. threadpool->cplan = cplan;
  16664. threadpool->n_graph = 0;
  16665. threadpool->n_barrier = 0;
  16666. threadpool->n_barrier_passed = 0;
  16667. threadpool->current_chunk = 0;
  16668. threadpool->stop = false;
  16669. threadpool->pause = tpp->paused;
  16670. threadpool->abort = false;
  16671. threadpool->workers = NULL;
  16672. threadpool->n_threads_max = tpp->n_threads;
  16673. threadpool->n_threads_cur = tpp->n_threads;
  16674. threadpool->poll = tpp->poll;
  16675. threadpool->prio = tpp->prio;
  16676. threadpool->ec = GGML_STATUS_SUCCESS;
  16677. }
  16678. // Allocate and init workers state
  16679. const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads;
  16680. struct ggml_compute_state * workers = GGML_ALIGNED_MALLOC(workers_size);
  16681. memset(workers, 0, workers_size);
  16682. for (int j = 0; j < tpp->n_threads; j++) {
  16683. workers[j].threadpool = threadpool;
  16684. workers[j].ith = j;
  16685. }
  16686. threadpool->workers = workers;
  16687. #ifndef GGML_USE_OPENMP
  16688. ggml_mutex_init(&threadpool->mutex);
  16689. ggml_cond_init(&threadpool->cond);
  16690. // Spin the threads for all workers, and update CPU placements.
  16691. // Place the main thread last (towards the higher numbered CPU cores).
  16692. int32_t cpumask_iter = 0;
  16693. for (int j = 1; j < tpp->n_threads; j++) {
  16694. ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
  16695. int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]);
  16696. GGML_ASSERT(rc == 0);
  16697. }
  16698. ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter);
  16699. if (!threadpool->pause) {
  16700. // Update main thread prio and affinity at the start, otherwise we'll do it in resume
  16701. ggml_thread_apply_priority(threadpool->prio);
  16702. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  16703. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  16704. }
  16705. }
  16706. #endif // GGML_USE_OPENMP
  16707. return threadpool;
  16708. }
  16709. struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
  16710. return ggml_threadpool_new_impl(tpp, NULL, NULL);
  16711. }
  16712. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16713. GGML_ASSERT(cplan);
  16714. GGML_ASSERT(cplan->n_threads > 0);
  16715. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  16716. int n_threads = cplan->n_threads;
  16717. struct ggml_threadpool * threadpool = cplan->threadpool;
  16718. bool disposable_threadpool = false;
  16719. if (threadpool == NULL) {
  16720. GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  16721. disposable_threadpool = true;
  16722. struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
  16723. threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
  16724. } else {
  16725. // Reset some of the parameters that need resetting
  16726. // No worker threads should be accessing the parameters below at this stage
  16727. threadpool->cgraph = cgraph;
  16728. threadpool->cplan = cplan;
  16729. threadpool->current_chunk = 0;
  16730. threadpool->abort = false;
  16731. threadpool->ec = GGML_STATUS_SUCCESS;
  16732. }
  16733. #ifdef GGML_USE_OPENMP
  16734. if (n_threads > 1) {
  16735. #pragma omp parallel num_threads(n_threads)
  16736. {
  16737. #pragma omp single
  16738. {
  16739. // update the number of threads from the actual number of threads that we got from OpenMP
  16740. n_threads = omp_get_num_threads();
  16741. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  16742. }
  16743. ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
  16744. }
  16745. } else {
  16746. atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed);
  16747. ggml_graph_compute_thread(&threadpool->workers[0]);
  16748. }
  16749. #else
  16750. if (n_threads > threadpool->n_threads_max) {
  16751. GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads_max);
  16752. n_threads = threadpool->n_threads_max;
  16753. }
  16754. // Kick all threads to start the new graph
  16755. ggml_graph_compute_kickoff(threadpool, n_threads);
  16756. // This is a work thread too
  16757. ggml_graph_compute_thread(&threadpool->workers[0]);
  16758. #endif
  16759. // don't leave affinity set on the main thread
  16760. clear_numa_thread_affinity();
  16761. enum ggml_status ret = threadpool->ec;
  16762. if (disposable_threadpool) {
  16763. ggml_threadpool_free(threadpool);
  16764. }
  16765. return ret;
  16766. }
  16767. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16768. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
  16769. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16770. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16771. return ggml_graph_compute(cgraph, &cplan);
  16772. }
  16773. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16774. for (int i = 0; i < cgraph->n_leafs; i++) {
  16775. struct ggml_tensor * leaf = cgraph->leafs[i];
  16776. if (strcmp(leaf->name, name) == 0) {
  16777. return leaf;
  16778. }
  16779. }
  16780. for (int i = 0; i < cgraph->n_nodes; i++) {
  16781. struct ggml_tensor * node = cgraph->nodes[i];
  16782. if (strcmp(node->name, name) == 0) {
  16783. return node;
  16784. }
  16785. }
  16786. return NULL;
  16787. }
  16788. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16789. const int64_t * ne = tensor->ne;
  16790. const size_t * nb = tensor->nb;
  16791. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16792. ggml_type_name(tensor->type),
  16793. ggml_op_name (tensor->op),
  16794. ggml_n_dims(tensor),
  16795. ne[0], ne[1], ne[2], ne[3],
  16796. nb[0], nb[1], nb[2], nb[3],
  16797. tensor->data,
  16798. tensor->name);
  16799. }
  16800. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16801. const int64_t * ne = tensor->ne;
  16802. const size_t * nb = tensor->nb;
  16803. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16804. arg,
  16805. ggml_type_name(tensor->type),
  16806. ggml_op_name (tensor->op),
  16807. ggml_n_dims(tensor),
  16808. ne[0], ne[1], ne[2], ne[3],
  16809. nb[0], nb[1], nb[2], nb[3],
  16810. tensor->data,
  16811. tensor->name);
  16812. }
  16813. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16814. uint64_t size_eval = 0;
  16815. // compute size of intermediate results
  16816. // TODO: does not take into account scratch buffers !!!!
  16817. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16818. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16819. }
  16820. // print
  16821. {
  16822. FILE * fout = stdout;
  16823. fprintf(fout, "\n");
  16824. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16825. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16826. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16827. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16828. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16829. // header
  16830. fprintf(fout, "\n");
  16831. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16832. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16833. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16834. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16835. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16836. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16837. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16838. }
  16839. // header
  16840. fprintf(fout, "\n");
  16841. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16842. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16843. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16844. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16845. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16846. if (cgraph->nodes[i]->src[j]) {
  16847. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16848. }
  16849. }
  16850. fprintf(fout, "\n");
  16851. }
  16852. fprintf(fout, "\n");
  16853. }
  16854. // write binary data
  16855. {
  16856. FILE * fout = ggml_fopen(fname, "wb");
  16857. if (!fout) {
  16858. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  16859. return;
  16860. }
  16861. // header
  16862. {
  16863. const uint32_t magic = GGML_FILE_MAGIC;
  16864. const uint32_t version = GGML_FILE_VERSION;
  16865. const uint32_t n_leafs = cgraph->n_leafs;
  16866. const uint32_t n_nodes = cgraph->n_nodes;
  16867. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16868. fwrite(&version, sizeof(uint32_t), 1, fout);
  16869. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16870. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16871. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16872. }
  16873. // leafs
  16874. {
  16875. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16876. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16877. const uint32_t type = tensor->type;
  16878. const uint32_t op = tensor->op;
  16879. const int32_t flags = tensor->flags;
  16880. fwrite(&type, sizeof(uint32_t), 1, fout);
  16881. fwrite(&op, sizeof(uint32_t), 1, fout);
  16882. fwrite(&flags, sizeof(int32_t), 1, fout);
  16883. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16884. const uint64_t ne = tensor->ne[j];
  16885. const uint64_t nb = tensor->nb[j];
  16886. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16887. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16888. }
  16889. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16890. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16891. // dump the data
  16892. // TODO: pad this to 32 byte boundary
  16893. {
  16894. const size_t size = ggml_nbytes(tensor);
  16895. fwrite(tensor->data, sizeof(char), size, fout);
  16896. }
  16897. }
  16898. }
  16899. // nodes
  16900. {
  16901. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16902. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16903. const uint32_t type = tensor->type;
  16904. const uint32_t op = tensor->op;
  16905. const int32_t flags = tensor->flags;
  16906. fwrite(&type, sizeof(uint32_t), 1, fout);
  16907. fwrite(&op, sizeof(uint32_t), 1, fout);
  16908. fwrite(&flags, sizeof(int32_t), 1, fout);
  16909. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16910. const uint64_t ne = tensor->ne[j];
  16911. const uint64_t nb = tensor->nb[j];
  16912. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16913. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16914. }
  16915. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16916. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16917. // output the op arguments
  16918. {
  16919. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16920. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16921. args[j] = tensor->src[j];
  16922. }
  16923. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16924. if (args[j]) {
  16925. int32_t idx = -1;
  16926. // check if leaf
  16927. {
  16928. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16929. if (args[j] == cgraph->leafs[k]) {
  16930. idx = k;
  16931. break;
  16932. }
  16933. }
  16934. }
  16935. // check if node
  16936. if (idx == -1) {
  16937. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16938. if (args[j] == cgraph->nodes[k]) {
  16939. idx = cgraph->n_leafs + k;
  16940. break;
  16941. }
  16942. }
  16943. }
  16944. if (idx == -1) {
  16945. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16946. fclose(fout);
  16947. return;
  16948. }
  16949. fwrite(&idx, sizeof(int32_t), 1, fout);
  16950. } else {
  16951. const int32_t nul = -1;
  16952. fwrite(&nul, sizeof(int32_t), 1, fout);
  16953. }
  16954. }
  16955. }
  16956. // dump the data
  16957. // TODO: pad this to 32 byte boundary
  16958. if ((flags & GGML_TENSOR_FLAG_PARAM)) {
  16959. const size_t size = ggml_nbytes(tensor);
  16960. fwrite(tensor->data, sizeof(char), size, fout);
  16961. }
  16962. }
  16963. }
  16964. fclose(fout);
  16965. }
  16966. }
  16967. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16968. assert(*ctx_data == NULL);
  16969. assert(*ctx_eval == NULL);
  16970. struct ggml_cgraph * result = NULL;
  16971. struct ggml_tensor * data = NULL;
  16972. // read file into data
  16973. {
  16974. FILE * fin = ggml_fopen(fname, "rb");
  16975. if (!fin) {
  16976. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  16977. return result;
  16978. }
  16979. size_t fsize = 0;
  16980. fseek(fin, 0, SEEK_END);
  16981. fsize = ftell(fin);
  16982. fseek(fin, 0, SEEK_SET);
  16983. // create the data context
  16984. {
  16985. const size_t overhead = 1*ggml_tensor_overhead();
  16986. struct ggml_init_params params = {
  16987. .mem_size = fsize + overhead,
  16988. .mem_buffer = NULL,
  16989. .no_alloc = false,
  16990. };
  16991. *ctx_data = ggml_init(params);
  16992. if (!*ctx_data) {
  16993. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16994. fclose(fin);
  16995. return result;
  16996. }
  16997. }
  16998. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16999. {
  17000. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  17001. if (ret != fsize) {
  17002. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  17003. fclose(fin);
  17004. return result;
  17005. }
  17006. }
  17007. fclose(fin);
  17008. }
  17009. // populate result
  17010. {
  17011. char * ptr = (char *) data->data;
  17012. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  17013. if (magic != GGML_FILE_MAGIC) {
  17014. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  17015. return result;
  17016. }
  17017. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  17018. if (version != GGML_FILE_VERSION) {
  17019. fprintf(stderr, "%s: invalid version number\n", __func__);
  17020. return result;
  17021. }
  17022. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  17023. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  17024. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  17025. const int graph_size = MAX(n_leafs, n_nodes);
  17026. // create the data context
  17027. {
  17028. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  17029. struct ggml_init_params params = {
  17030. .mem_size = size_eval + overhead,
  17031. .mem_buffer = NULL,
  17032. .no_alloc = true,
  17033. };
  17034. *ctx_eval = ggml_init(params);
  17035. if (!*ctx_eval) {
  17036. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17037. return result;
  17038. }
  17039. }
  17040. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  17041. result->n_leafs = n_leafs;
  17042. result->n_nodes = n_nodes;
  17043. // leafs
  17044. {
  17045. uint32_t type;
  17046. uint32_t op;
  17047. int32_t flags;
  17048. for (uint32_t i = 0; i < n_leafs; ++i) {
  17049. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17050. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17051. flags = *(const int32_t *) ptr; ptr += sizeof(flags);
  17052. int64_t ne[GGML_MAX_DIMS];
  17053. size_t nb[GGML_MAX_DIMS];
  17054. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17055. uint64_t ne_cur;
  17056. uint64_t nb_cur;
  17057. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17058. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17059. ne[j] = ne_cur;
  17060. nb[j] = nb_cur;
  17061. }
  17062. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17063. tensor->op = (enum ggml_op) op;
  17064. tensor->flags = flags;
  17065. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  17066. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  17067. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17068. tensor->nb[j] = nb[j];
  17069. }
  17070. tensor->data = (void *) ptr; ptr += ggml_nbytes(tensor);
  17071. result->leafs[i] = tensor;
  17072. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17073. }
  17074. }
  17075. ggml_set_no_alloc(*ctx_eval, false);
  17076. // nodes
  17077. {
  17078. uint32_t type;
  17079. uint32_t op;
  17080. int32_t flags;
  17081. for (uint32_t i = 0; i < n_nodes; ++i) {
  17082. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17083. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17084. flags = *(const int32_t *) ptr; ptr += sizeof(flags);
  17085. enum ggml_op eop = (enum ggml_op) op;
  17086. int64_t ne[GGML_MAX_DIMS];
  17087. size_t nb[GGML_MAX_DIMS];
  17088. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17089. uint64_t ne_cur;
  17090. uint64_t nb_cur;
  17091. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17092. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17093. ne[j] = ne_cur;
  17094. nb[j] = nb_cur;
  17095. }
  17096. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  17097. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  17098. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  17099. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  17100. // parse args
  17101. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17102. const int32_t arg_idx = ptr_arg_idx[j];
  17103. if (arg_idx == -1) {
  17104. continue;
  17105. }
  17106. if (arg_idx < result->n_leafs) {
  17107. args[j] = result->leafs[arg_idx];
  17108. } else {
  17109. args[j] = result->nodes[arg_idx - result->n_leafs];
  17110. }
  17111. }
  17112. // create the tensor
  17113. // "view" operations are handled differently
  17114. // TODO: handle inplace ops - currently a copy is always made
  17115. struct ggml_tensor * tensor = NULL;
  17116. switch (eop) {
  17117. // TODO: implement other view ops
  17118. case GGML_OP_RESHAPE:
  17119. {
  17120. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  17121. } break;
  17122. case GGML_OP_VIEW:
  17123. {
  17124. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17125. size_t offs;
  17126. memcpy(&offs, ptr_op_params, sizeof(offs));
  17127. tensor->data = ((char *) tensor->data) + offs;
  17128. } break;
  17129. case GGML_OP_TRANSPOSE:
  17130. {
  17131. tensor = ggml_transpose(*ctx_eval, args[0]);
  17132. } break;
  17133. case GGML_OP_PERMUTE:
  17134. {
  17135. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17136. } break;
  17137. default:
  17138. {
  17139. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17140. tensor->op = eop;
  17141. } break;
  17142. }
  17143. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  17144. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  17145. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17146. tensor->nb[j] = nb[j];
  17147. }
  17148. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17149. tensor->src[j] = args[j];
  17150. }
  17151. result->nodes[i] = tensor;
  17152. // TODO tensor data is be duplicated due to ggml_new_tensor call above
  17153. if (flags & GGML_TENSOR_FLAG_PARAM) {
  17154. tensor->data = (void *) ptr; ptr += ggml_nbytes(tensor);
  17155. }
  17156. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17157. }
  17158. }
  17159. }
  17160. return result;
  17161. }
  17162. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  17163. GGML_LOG_INFO("=== GRAPH ===\n");
  17164. GGML_LOG_INFO("n_nodes = %d\n", cgraph->n_nodes);
  17165. for (int i = 0; i < cgraph->n_nodes; i++) {
  17166. struct ggml_tensor * node = cgraph->nodes[i];
  17167. GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
  17168. i,
  17169. node->ne[0], node->ne[1], node->ne[2],
  17170. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
  17171. }
  17172. GGML_LOG_INFO("n_leafs = %d\n", cgraph->n_leafs);
  17173. for (int i = 0; i < cgraph->n_leafs; i++) {
  17174. struct ggml_tensor * node = cgraph->leafs[i];
  17175. GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  17176. i,
  17177. node->ne[0], node->ne[1],
  17178. ggml_op_name(node->op),
  17179. ggml_get_name(node));
  17180. }
  17181. GGML_LOG_INFO("========================================\n");
  17182. }
  17183. // check if node is part of the graph
  17184. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17185. if (cgraph == NULL) {
  17186. return true;
  17187. }
  17188. for (int i = 0; i < cgraph->n_nodes; i++) {
  17189. if (cgraph->nodes[i] == node) {
  17190. return true;
  17191. }
  17192. }
  17193. return false;
  17194. }
  17195. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17196. for (int i = 0; i < cgraph->n_nodes; i++) {
  17197. struct ggml_tensor * parent = cgraph->nodes[i];
  17198. if (parent->grad == node) {
  17199. return parent;
  17200. }
  17201. }
  17202. return NULL;
  17203. }
  17204. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17205. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  17206. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  17207. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  17208. gparent0 ? (void *) gparent0 : (void *) parent,
  17209. gparent0 ? "g" : "x",
  17210. gparent ? (void *) gparent : (void *) node,
  17211. gparent ? "g" : "x",
  17212. gparent ? "empty" : "vee",
  17213. gparent ? "dashed" : "solid",
  17214. label);
  17215. }
  17216. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17217. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  17218. (void *) parent, "x",
  17219. (void *) node, "x",
  17220. label);
  17221. }
  17222. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  17223. char color[16];
  17224. FILE * fp = ggml_fopen(filename, "w");
  17225. GGML_ASSERT(fp);
  17226. fprintf(fp, "digraph G {\n");
  17227. fprintf(fp, " newrank = true;\n");
  17228. fprintf(fp, " rankdir = TB;\n");
  17229. for (int i = 0; i < gb->n_nodes; i++) {
  17230. struct ggml_tensor * node = gb->nodes[i];
  17231. if (ggml_graph_get_parent(gb, node) != NULL) {
  17232. continue;
  17233. }
  17234. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  17235. snprintf(color, sizeof(color), "yellow");
  17236. } else if (node->grad) {
  17237. if (ggml_graph_find(gf, node)) {
  17238. snprintf(color, sizeof(color), "green");
  17239. } else {
  17240. snprintf(color, sizeof(color), "lightblue");
  17241. }
  17242. } else {
  17243. snprintf(color, sizeof(color), "white");
  17244. }
  17245. fprintf(fp, " \"%p\" [ "
  17246. "style = filled; fillcolor = %s; shape = record; "
  17247. "label=\"",
  17248. (void *) node, color);
  17249. if (strlen(node->name) > 0) {
  17250. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17251. } else {
  17252. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17253. }
  17254. if (ggml_is_matrix(node)) {
  17255. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  17256. } else {
  17257. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  17258. }
  17259. if (node->grad) {
  17260. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  17261. } else {
  17262. fprintf(fp, "\"; ]\n");
  17263. }
  17264. }
  17265. for (int i = 0; i < gb->n_leafs; i++) {
  17266. struct ggml_tensor * node = gb->leafs[i];
  17267. snprintf(color, sizeof(color), "pink");
  17268. fprintf(fp, " \"%p\" [ "
  17269. "style = filled; fillcolor = %s; shape = record; "
  17270. "label=\"<x>",
  17271. (void *) node, color);
  17272. if (strlen(node->name) > 0) {
  17273. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17274. } else {
  17275. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17276. }
  17277. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17278. if (ggml_nelements(node) < 5 && node->data != NULL) {
  17279. fprintf(fp, " | (");
  17280. for (int j = 0; j < ggml_nelements(node); j++) {
  17281. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17282. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17283. }
  17284. else if (node->type == GGML_TYPE_F32 ||
  17285. node->type == GGML_TYPE_F16 ||
  17286. node->type == GGML_TYPE_BF16) {
  17287. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17288. }
  17289. else {
  17290. fprintf(fp, "#");
  17291. }
  17292. if (j < ggml_nelements(node) - 1) {
  17293. fprintf(fp, ", ");
  17294. }
  17295. }
  17296. fprintf(fp, ")");
  17297. }
  17298. fprintf(fp, "\"; ]\n");
  17299. }
  17300. for (int i = 0; i < gb->n_nodes; i++) {
  17301. struct ggml_tensor * node = gb->nodes[i];
  17302. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17303. if (node->src[j]) {
  17304. char label[16];
  17305. snprintf(label, sizeof(label), "src %d", j);
  17306. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17307. }
  17308. }
  17309. }
  17310. for (int i = 0; i < gb->n_leafs; i++) {
  17311. struct ggml_tensor * node = gb->leafs[i];
  17312. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17313. if (node->src[j]) {
  17314. char label[16];
  17315. snprintf(label, sizeof(label), "src %d", j);
  17316. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17317. }
  17318. }
  17319. }
  17320. fprintf(fp, "}\n");
  17321. fclose(fp);
  17322. GGML_LOG_INFO("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17323. }
  17324. ////////////////////////////////////////////////////////////////////////////////
  17325. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17326. int i = 0;
  17327. for (int p = 0; p < np; ++p) {
  17328. const int64_t ne = ggml_nelements(ps[p]) ;
  17329. // TODO: add function to set tensor from array
  17330. for (int64_t j = 0; j < ne; ++j) {
  17331. ggml_set_f32_1d(ps[p], j, x[i++]);
  17332. }
  17333. }
  17334. }
  17335. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17336. int i = 0;
  17337. for (int p = 0; p < np; ++p) {
  17338. const int64_t ne = ggml_nelements(ps[p]) ;
  17339. // TODO: add function to get all elements at once
  17340. for (int64_t j = 0; j < ne; ++j) {
  17341. x[i++] = ggml_get_f32_1d(ps[p], j);
  17342. }
  17343. }
  17344. }
  17345. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17346. int64_t i = 0;
  17347. for (int p = 0; p < np; ++p) {
  17348. const int64_t ne = ggml_nelements(ps[p]) ;
  17349. // TODO: add function to get all elements at once
  17350. for (int64_t j = 0; j < ne; ++j) {
  17351. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17352. }
  17353. }
  17354. }
  17355. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17356. int64_t i = 0;
  17357. for (int p = 0; p < np; ++p) {
  17358. const int64_t ne = ggml_nelements(ps[p]) ;
  17359. // TODO: add function to get all elements at once
  17360. for (int64_t j = 0; j < ne; ++j) {
  17361. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17362. }
  17363. }
  17364. }
  17365. //
  17366. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17367. //
  17368. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17369. //
  17370. static enum ggml_opt_result ggml_opt_adam(
  17371. struct ggml_context * ctx,
  17372. struct ggml_opt_context * opt,
  17373. struct ggml_opt_params params,
  17374. struct ggml_tensor * f,
  17375. struct ggml_cgraph * gf,
  17376. struct ggml_cgraph * gb,
  17377. ggml_opt_callback callback,
  17378. void * callback_data) {
  17379. GGML_ASSERT(ggml_is_scalar(f));
  17380. GGML_ASSERT(f->type == GGML_TYPE_F32);
  17381. // these will store the parameters we want to optimize
  17382. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17383. int np = 0;
  17384. int64_t nx = 0;
  17385. for (int i = 0; i < gf->n_nodes; ++i) {
  17386. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17387. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17388. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17389. ps[np++] = gf->nodes[i];
  17390. nx += ggml_nelements(gf->nodes[i]);
  17391. }
  17392. }
  17393. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17394. int iter = opt->iter;
  17395. ggml_opt_init(opt->ctx, opt, params, nx);
  17396. opt->iter = iter;
  17397. }
  17398. // constants
  17399. float sched = params.adam.sched;
  17400. const float alpha = params.adam.alpha;
  17401. const float decay = params.adam.decay * alpha;
  17402. const float beta1 = params.adam.beta1;
  17403. const float beta2 = params.adam.beta2;
  17404. const float eps = params.adam.eps;
  17405. const float gclip = params.adam.gclip;
  17406. const int decay_min_ndim = params.adam.decay_min_ndim;
  17407. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17408. const float accum_norm = 1.0f / (float) n_accum;
  17409. float * g = opt->adam.g->data; // gradients
  17410. float * m = opt->adam.m->data; // first moment
  17411. float * v = opt->adam.v->data; // second moment
  17412. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17413. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
  17414. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17415. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17416. bool cancel = false;
  17417. // compute the function value
  17418. float fx = 0;
  17419. ggml_set_zero(opt->adam.g);
  17420. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17421. if (callback) {
  17422. callback(callback_data, accum_step, &sched, &cancel);
  17423. if (cancel) {
  17424. return GGML_OPT_RESULT_CANCEL;
  17425. }
  17426. }
  17427. // ggml_graph_reset (gf);
  17428. ggml_set_f32 (f->grad, 1.0f);
  17429. ggml_graph_compute(gb, &cplan);
  17430. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17431. fx += ggml_get_f32_1d(f, 0);
  17432. }
  17433. fx *= accum_norm;
  17434. opt->adam.fx_prev = fx;
  17435. opt->adam.fx_best = opt->adam.fx_prev;
  17436. if (pf) {
  17437. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17438. }
  17439. opt->loss_before = opt->adam.fx_prev;
  17440. opt->loss_after = opt->adam.fx_prev;
  17441. // initialize
  17442. if (opt->just_initialized) {
  17443. opt->adam.n_no_improvement = 0;
  17444. opt->just_initialized = false;
  17445. }
  17446. float * fx_best = &opt->adam.fx_best;
  17447. float * fx_prev = &opt->adam.fx_prev;
  17448. int * n_no_improvement = &opt->adam.n_no_improvement;
  17449. int iter0 = opt->iter;
  17450. // run the optimizer
  17451. for (int t = 0; t < params.adam.n_iter; ++t) {
  17452. opt->iter = iter0 + t + 1;
  17453. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17454. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17455. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17456. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17457. for (int i = 0; i < np; ++i) {
  17458. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17459. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17460. }
  17461. const int64_t t_start_wall = ggml_time_us();
  17462. const int64_t t_start_cpu = ggml_cycles();
  17463. UNUSED(t_start_wall);
  17464. UNUSED(t_start_cpu);
  17465. {
  17466. float gnorm = 1.0f;
  17467. if (gclip > 0.0f) {
  17468. // gradient clipping
  17469. ggml_float sum = 0.0;
  17470. for (int64_t i = 0; i < nx; ++i) {
  17471. sum += (ggml_float)(g[i]*g[i]);
  17472. }
  17473. ggml_float norm = sqrt(sum);
  17474. if (norm > (ggml_float) gclip) {
  17475. gnorm = (float) ((ggml_float) gclip / norm);
  17476. }
  17477. }
  17478. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17479. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17480. int64_t i = 0;
  17481. for (int p = 0; p < np; ++p) {
  17482. const int64_t ne = ggml_nelements(ps[p]);
  17483. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17484. for (int64_t j = 0; j < ne; ++j) {
  17485. float x = ggml_get_f32_1d(ps[p], j);
  17486. float g_ = g[i]*gnorm;
  17487. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17488. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17489. float mh = m[i]*beta1h;
  17490. float vh = v[i]*beta2h;
  17491. vh = sqrtf(vh) + eps;
  17492. x = x*(1.0f - p_decay) - mh/vh;
  17493. ggml_set_f32_1d(ps[p], j, x);
  17494. ++i;
  17495. }
  17496. }
  17497. }
  17498. fx = 0;
  17499. ggml_set_zero(opt->adam.g);
  17500. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17501. if (callback) {
  17502. callback(callback_data, accum_step, &sched, &cancel);
  17503. if (cancel) {
  17504. return GGML_OPT_RESULT_CANCEL;;
  17505. }
  17506. }
  17507. // ggml_graph_reset (gf);
  17508. ggml_set_f32 (f->grad, 1.0f);
  17509. ggml_graph_compute(gb, &cplan);
  17510. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17511. fx += ggml_get_f32_1d(f, 0);
  17512. }
  17513. fx *= accum_norm;
  17514. opt->loss_after = fx;
  17515. // check convergence
  17516. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17517. GGML_PRINT_DEBUG("converged\n");
  17518. return GGML_OPT_RESULT_OK;
  17519. }
  17520. // delta-based convergence test
  17521. if (pf != NULL) {
  17522. // need at least params.past iterations to start checking for convergence
  17523. if (params.past <= iter0 + t) {
  17524. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17525. if (fabsf(rate) < params.delta) {
  17526. return GGML_OPT_RESULT_OK;
  17527. }
  17528. }
  17529. pf[(iter0 + t)%params.past] = fx;
  17530. }
  17531. // check for improvement
  17532. if (params.max_no_improvement > 0) {
  17533. if (fx_best[0] > fx) {
  17534. fx_best[0] = fx;
  17535. n_no_improvement[0] = 0;
  17536. } else {
  17537. ++n_no_improvement[0];
  17538. if (n_no_improvement[0] >= params.max_no_improvement) {
  17539. return GGML_OPT_RESULT_OK;
  17540. }
  17541. }
  17542. }
  17543. fx_prev[0] = fx;
  17544. {
  17545. const int64_t t_end_cpu = ggml_cycles();
  17546. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17547. UNUSED(t_end_cpu);
  17548. const int64_t t_end_wall = ggml_time_us();
  17549. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17550. UNUSED(t_end_wall);
  17551. }
  17552. }
  17553. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17554. }
  17555. //
  17556. // L-BFGS
  17557. //
  17558. // the L-BFGS implementation below is based on the following implementation:
  17559. //
  17560. // https://github.com/chokkan/liblbfgs
  17561. //
  17562. struct ggml_lbfgs_iteration_data {
  17563. float alpha;
  17564. float ys;
  17565. float * s;
  17566. float * y;
  17567. };
  17568. static enum ggml_opt_result linesearch_backtracking(
  17569. const struct ggml_opt_params * params,
  17570. int nx,
  17571. float * x,
  17572. float * fx,
  17573. float * g,
  17574. float * d,
  17575. float * step,
  17576. const float * xp,
  17577. struct ggml_tensor * f,
  17578. struct ggml_cgraph * gb,
  17579. struct ggml_cplan * cplan,
  17580. const int np,
  17581. struct ggml_tensor * ps[],
  17582. bool * cancel,
  17583. ggml_opt_callback callback,
  17584. void * callback_data) {
  17585. int count = 0;
  17586. float width = 0.0f;
  17587. float dg = 0.0f;
  17588. float finit = 0.0f;
  17589. float dginit = 0.0f;
  17590. float dgtest = 0.0f;
  17591. const float dec = 0.5f;
  17592. const float inc = 2.1f;
  17593. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17594. const float accum_norm = 1.0f / (float) n_accum;
  17595. if (*step <= 0.f) {
  17596. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17597. }
  17598. // compute the initial gradient in the search direction
  17599. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17600. // make sure that d points to a descent direction
  17601. if (0 < dginit) {
  17602. return GGML_LINESEARCH_FAIL;
  17603. }
  17604. // initialize local variables
  17605. finit = *fx;
  17606. dgtest = params->lbfgs.ftol*dginit;
  17607. while (true) {
  17608. ggml_vec_cpy_f32(nx, x, xp);
  17609. ggml_vec_mad_f32(nx, x, d, *step);
  17610. // evaluate the function and gradient values
  17611. {
  17612. ggml_opt_set_params(np, ps, x);
  17613. *fx = 0;
  17614. memset(g, 0, sizeof(float)*nx);
  17615. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17616. if (callback) {
  17617. // LBFG-S does not support learning rate -> ignore learning schedule
  17618. float sched = 0;
  17619. callback(callback_data, accum_step, &sched, cancel);
  17620. if (*cancel) {
  17621. return GGML_OPT_RESULT_CANCEL;
  17622. }
  17623. }
  17624. // ggml_graph_reset (gf);
  17625. ggml_set_f32 (f->grad, 1.0f);
  17626. ggml_graph_compute(gb, cplan);
  17627. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17628. *fx += ggml_get_f32_1d(f, 0);
  17629. }
  17630. *fx *= accum_norm;
  17631. }
  17632. ++count;
  17633. if (*fx > finit + (*step)*dgtest) {
  17634. width = dec;
  17635. } else {
  17636. // Armijo condition is satisfied
  17637. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17638. return count;
  17639. }
  17640. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17641. // check the Wolfe condition
  17642. if (dg < params->lbfgs.wolfe * dginit) {
  17643. width = inc;
  17644. } else {
  17645. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17646. // regular Wolfe conditions
  17647. return count;
  17648. }
  17649. if(dg > -params->lbfgs.wolfe*dginit) {
  17650. width = dec;
  17651. } else {
  17652. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17653. return count;
  17654. }
  17655. }
  17656. }
  17657. if (*step < params->lbfgs.min_step) {
  17658. return GGML_LINESEARCH_MINIMUM_STEP;
  17659. }
  17660. if (*step > params->lbfgs.max_step) {
  17661. return GGML_LINESEARCH_MAXIMUM_STEP;
  17662. }
  17663. if (params->lbfgs.max_linesearch <= count) {
  17664. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17665. }
  17666. (*step) *= width;
  17667. }
  17668. GGML_ABORT("line search failed");
  17669. //return GGML_LINESEARCH_FAIL;
  17670. }
  17671. static enum ggml_opt_result ggml_opt_lbfgs(
  17672. struct ggml_context * ctx,
  17673. struct ggml_opt_context * opt,
  17674. struct ggml_opt_params params,
  17675. struct ggml_tensor * f,
  17676. struct ggml_cgraph * gf,
  17677. struct ggml_cgraph * gb,
  17678. ggml_opt_callback callback,
  17679. void * callback_data) {
  17680. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17681. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17682. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17683. return GGML_OPT_RESULT_INVALID_WOLFE;
  17684. }
  17685. }
  17686. const int m = params.lbfgs.m;
  17687. // these will store the parameters we want to optimize
  17688. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17689. int np = 0;
  17690. int nx = 0;
  17691. for (int i = 0; i < gf->n_nodes; ++i) {
  17692. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17693. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17694. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17695. ps[np++] = gf->nodes[i];
  17696. nx += ggml_nelements(gf->nodes[i]);
  17697. }
  17698. }
  17699. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17700. int iter = opt->iter;
  17701. ggml_opt_init(ctx, opt, params, nx);
  17702. opt->iter = iter;
  17703. }
  17704. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
  17705. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17706. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17707. float * x = opt->lbfgs.x->data; // current parameters
  17708. float * xp = opt->lbfgs.xp->data; // previous parameters
  17709. float * g = opt->lbfgs.g->data; // current gradient
  17710. float * gp = opt->lbfgs.gp->data; // previous gradient
  17711. float * d = opt->lbfgs.d->data; // search direction
  17712. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17713. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17714. const float accum_norm = 1.0f / (float) n_accum;
  17715. float fx = 0.0f; // cost function value
  17716. float xnorm = 0.0f; // ||x||
  17717. float gnorm = 0.0f; // ||g||
  17718. // initialize x from the graph nodes
  17719. ggml_opt_get_params(np, ps, x);
  17720. // the L-BFGS memory
  17721. float * lm_alpha = opt->lbfgs.lmal->data;
  17722. float * lm_ys = opt->lbfgs.lmys->data;
  17723. float * lm_s = opt->lbfgs.lms->data;
  17724. float * lm_y = opt->lbfgs.lmy->data;
  17725. bool cancel = false;
  17726. // evaluate the function value and its gradient
  17727. {
  17728. ggml_opt_set_params(np, ps, x);
  17729. fx = 0;
  17730. memset(g, 0, sizeof(float)*nx);
  17731. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17732. if (callback) {
  17733. // LBFG-S does not support learning rate -> ignore learning schedule
  17734. float sched = 0;
  17735. callback(callback_data, accum_step, &sched, &cancel);
  17736. if (cancel) {
  17737. return GGML_OPT_RESULT_CANCEL;
  17738. }
  17739. }
  17740. // ggml_graph_reset (gf);
  17741. ggml_set_f32 (f->grad, 1.0f);
  17742. ggml_graph_compute(gb, &cplan);
  17743. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17744. fx += ggml_get_f32_1d(f, 0);
  17745. }
  17746. fx *= accum_norm;
  17747. opt->loss_before = fx;
  17748. opt->loss_after = fx;
  17749. }
  17750. // search direction = -gradient
  17751. ggml_vec_neg_f32(nx, d, g);
  17752. // ||x||, ||g||
  17753. ggml_vec_norm_f32(nx, &xnorm, x);
  17754. ggml_vec_norm_f32(nx, &gnorm, g);
  17755. if (xnorm < 1.0f) {
  17756. xnorm = 1.0f;
  17757. }
  17758. // already optimized
  17759. if (gnorm/xnorm <= params.lbfgs.eps) {
  17760. return GGML_OPT_RESULT_OK;
  17761. }
  17762. if (opt->just_initialized) {
  17763. if (pf) {
  17764. pf[0] = fx;
  17765. }
  17766. opt->lbfgs.fx_best = fx;
  17767. // initial step
  17768. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17769. opt->lbfgs.j = 0;
  17770. opt->lbfgs.k = 1;
  17771. opt->lbfgs.end = 0;
  17772. opt->lbfgs.n_no_improvement = 0;
  17773. opt->just_initialized = false;
  17774. }
  17775. float * fx_best = &opt->lbfgs.fx_best;
  17776. float * step = &opt->lbfgs.step;
  17777. int * j = &opt->lbfgs.j;
  17778. int * k = &opt->lbfgs.k;
  17779. int * end = &opt->lbfgs.end;
  17780. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17781. int ls = 0;
  17782. int bound = 0;
  17783. float ys = 0.0f;
  17784. float yy = 0.0f;
  17785. float beta = 0.0f;
  17786. int it = 0;
  17787. while (true) {
  17788. // store the current position and gradient vectors
  17789. ggml_vec_cpy_f32(nx, xp, x);
  17790. ggml_vec_cpy_f32(nx, gp, g);
  17791. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17792. // to determine if the optimization should be cancelled
  17793. // this is a simple change, but not doing this atm, since I don't have a nice
  17794. // way to test and don't want to break something with so many changes lined up
  17795. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17796. if (cancel) {
  17797. return GGML_OPT_RESULT_CANCEL;
  17798. }
  17799. if (ls < 0) {
  17800. // linesearch failed - go back to the previous point and return
  17801. ggml_vec_cpy_f32(nx, x, xp);
  17802. ggml_vec_cpy_f32(nx, g, gp);
  17803. return ls;
  17804. }
  17805. opt->loss_after = fx;
  17806. ggml_vec_norm_f32(nx, &xnorm, x);
  17807. ggml_vec_norm_f32(nx, &gnorm, g);
  17808. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17809. if (xnorm < 1.0f) {
  17810. xnorm = 1.0f;
  17811. }
  17812. if (gnorm/xnorm <= params.lbfgs.eps) {
  17813. // converged
  17814. return GGML_OPT_RESULT_OK;
  17815. }
  17816. // delta-based convergence test
  17817. if (pf != NULL) {
  17818. // need at least params.past iterations to start checking for convergence
  17819. if (params.past <= k[0]) {
  17820. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17821. if (fabsf(rate) < params.delta) {
  17822. return GGML_OPT_RESULT_OK;
  17823. }
  17824. }
  17825. pf[k[0]%params.past] = fx;
  17826. }
  17827. // check for improvement
  17828. if (params.max_no_improvement > 0) {
  17829. if (fx < fx_best[0]) {
  17830. fx_best[0] = fx;
  17831. n_no_improvement[0] = 0;
  17832. } else {
  17833. n_no_improvement[0]++;
  17834. if (n_no_improvement[0] >= params.max_no_improvement) {
  17835. return GGML_OPT_RESULT_OK;
  17836. }
  17837. }
  17838. }
  17839. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17840. // reached the maximum number of iterations
  17841. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17842. }
  17843. // update vectors s and y:
  17844. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17845. // y_{k+1} = g_{k+1} - g_{k}.
  17846. //
  17847. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17848. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17849. // compute scalars ys and yy:
  17850. // ys = y^t \cdot s -> 1 / \rho.
  17851. // yy = y^t \cdot y.
  17852. //
  17853. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17854. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17855. lm_ys[end[0]] = ys;
  17856. // find new search direction
  17857. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17858. bound = (m <= k[0]) ? m : k[0];
  17859. k[0]++;
  17860. it++;
  17861. end[0] = (end[0] + 1)%m;
  17862. // initialize search direction with -g
  17863. ggml_vec_neg_f32(nx, d, g);
  17864. j[0] = end[0];
  17865. for (int i = 0; i < bound; ++i) {
  17866. j[0] = (j[0] + m - 1) % m;
  17867. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17868. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17869. lm_alpha[j[0]] /= lm_ys[j[0]];
  17870. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17871. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17872. }
  17873. ggml_vec_scale_f32(nx, d, ys/yy);
  17874. for (int i = 0; i < bound; ++i) {
  17875. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17876. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17877. beta /= lm_ys[j[0]];
  17878. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17879. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17880. j[0] = (j[0] + 1)%m;
  17881. }
  17882. step[0] = 1.0;
  17883. }
  17884. GGML_ABORT("lbfgs failed");
  17885. //return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17886. }
  17887. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17888. struct ggml_opt_params result;
  17889. switch (type) {
  17890. case GGML_OPT_TYPE_ADAM:
  17891. {
  17892. result = (struct ggml_opt_params) {
  17893. .type = GGML_OPT_TYPE_ADAM,
  17894. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17895. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17896. .past = 0,
  17897. .delta = 1e-5f,
  17898. .max_no_improvement = 100,
  17899. .print_forward_graph = true,
  17900. .print_backward_graph = true,
  17901. .n_gradient_accumulation = 1,
  17902. .adam = {
  17903. .n_iter = 10000,
  17904. .sched = 1.000f,
  17905. .decay = 0.0f,
  17906. .decay_min_ndim = 2,
  17907. .alpha = 0.001f,
  17908. .beta1 = 0.9f,
  17909. .beta2 = 0.999f,
  17910. .eps = 1e-8f,
  17911. .eps_f = 1e-5f,
  17912. .eps_g = 1e-3f,
  17913. .gclip = 0.0f,
  17914. },
  17915. };
  17916. } break;
  17917. case GGML_OPT_TYPE_LBFGS:
  17918. {
  17919. result = (struct ggml_opt_params) {
  17920. .type = GGML_OPT_TYPE_LBFGS,
  17921. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17922. .n_threads = 1,
  17923. .past = 0,
  17924. .delta = 1e-5f,
  17925. .max_no_improvement = 0,
  17926. .print_forward_graph = true,
  17927. .print_backward_graph = true,
  17928. .n_gradient_accumulation = 1,
  17929. .lbfgs = {
  17930. .m = 6,
  17931. .n_iter = 100,
  17932. .max_linesearch = 20,
  17933. .eps = 1e-5f,
  17934. .ftol = 1e-4f,
  17935. .wolfe = 0.9f,
  17936. .min_step = 1e-20f,
  17937. .max_step = 1e+20f,
  17938. .linesearch = GGML_LINESEARCH_DEFAULT,
  17939. },
  17940. };
  17941. } break;
  17942. }
  17943. return result;
  17944. }
  17945. GGML_API void ggml_opt_init(
  17946. struct ggml_context * ctx,
  17947. struct ggml_opt_context * opt,
  17948. struct ggml_opt_params params,
  17949. int64_t nx) {
  17950. opt->ctx = ctx;
  17951. opt->params = params;
  17952. opt->iter = 0;
  17953. opt->nx = nx;
  17954. opt->just_initialized = true;
  17955. if (opt->ctx == NULL) {
  17956. struct ggml_init_params ctx_opt_params;
  17957. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17958. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17959. if (opt->params.past > 0) {
  17960. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17961. }
  17962. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17963. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17964. if (opt->params.past > 0) {
  17965. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17966. }
  17967. }
  17968. ctx_opt_params.mem_buffer = NULL;
  17969. ctx_opt_params.no_alloc = false;
  17970. opt->ctx = ggml_init(ctx_opt_params);
  17971. }
  17972. switch (opt->params.type) {
  17973. case GGML_OPT_TYPE_ADAM:
  17974. {
  17975. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17976. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17977. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17978. opt->adam.pf = params.past > 0
  17979. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17980. : NULL;
  17981. ggml_set_zero(opt->adam.m);
  17982. ggml_set_zero(opt->adam.v);
  17983. if (opt->adam.pf) {
  17984. ggml_set_zero(opt->adam.pf);
  17985. }
  17986. } break;
  17987. case GGML_OPT_TYPE_LBFGS:
  17988. {
  17989. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17990. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17991. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17992. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17993. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17994. opt->lbfgs.pf = params.past > 0
  17995. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17996. : NULL;
  17997. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17998. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17999. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18000. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18001. ggml_set_zero(opt->lbfgs.x);
  18002. ggml_set_zero(opt->lbfgs.xp);
  18003. ggml_set_zero(opt->lbfgs.g);
  18004. ggml_set_zero(opt->lbfgs.gp);
  18005. ggml_set_zero(opt->lbfgs.d);
  18006. if (opt->lbfgs.pf) {
  18007. ggml_set_zero(opt->lbfgs.pf);
  18008. }
  18009. ggml_set_zero(opt->lbfgs.lmal);
  18010. ggml_set_zero(opt->lbfgs.lmys);
  18011. ggml_set_zero(opt->lbfgs.lms);
  18012. ggml_set_zero(opt->lbfgs.lmy);
  18013. } break;
  18014. }
  18015. }
  18016. enum ggml_opt_result ggml_opt(
  18017. struct ggml_context * ctx,
  18018. struct ggml_opt_params params,
  18019. struct ggml_tensor * f) {
  18020. bool free_ctx = false;
  18021. if (ctx == NULL) {
  18022. struct ggml_init_params params_ctx = {
  18023. .mem_size = 16*1024*1024,
  18024. .mem_buffer = NULL,
  18025. .no_alloc = false,
  18026. };
  18027. ctx = ggml_init(params_ctx);
  18028. if (ctx == NULL) {
  18029. return GGML_OPT_RESULT_NO_CONTEXT;
  18030. }
  18031. free_ctx = true;
  18032. }
  18033. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18034. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  18035. ggml_opt_init(ctx, opt, params, 0);
  18036. result = ggml_opt_resume(ctx, opt, f);
  18037. if (free_ctx) {
  18038. ggml_free(ctx);
  18039. }
  18040. return result;
  18041. }
  18042. enum ggml_opt_result ggml_opt_resume(
  18043. struct ggml_context * ctx,
  18044. struct ggml_opt_context * opt,
  18045. struct ggml_tensor * f) {
  18046. // build forward + backward compute graphs
  18047. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  18048. ggml_build_forward_expand(gf, f);
  18049. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  18050. ggml_build_backward_expand(ctx, gf, gb, false);
  18051. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  18052. }
  18053. enum ggml_opt_result ggml_opt_resume_g(
  18054. struct ggml_context * ctx,
  18055. struct ggml_opt_context * opt,
  18056. struct ggml_tensor * f,
  18057. struct ggml_cgraph * gf,
  18058. struct ggml_cgraph * gb,
  18059. ggml_opt_callback callback,
  18060. void * callback_data) {
  18061. GGML_ASSERT(f->grad && "ggml_set_param must be called for at least one ancestor");
  18062. // build forward + backward compute graphs
  18063. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18064. switch (opt->params.type) {
  18065. case GGML_OPT_TYPE_ADAM:
  18066. {
  18067. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18068. } break;
  18069. case GGML_OPT_TYPE_LBFGS:
  18070. {
  18071. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18072. } break;
  18073. }
  18074. if (opt->params.print_forward_graph) {
  18075. ggml_graph_print (gf);
  18076. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  18077. }
  18078. if (opt->params.print_backward_graph) {
  18079. ggml_graph_print (gb);
  18080. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  18081. }
  18082. return result;
  18083. }
  18084. ////////////////////////////////////////////////////////////////////////////////
  18085. void ggml_set_input(struct ggml_tensor * tensor) {
  18086. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  18087. }
  18088. void ggml_set_output(struct ggml_tensor * tensor) {
  18089. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  18090. }
  18091. void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  18092. GGML_UNUSED(ctx); // TODO: remove this parameter
  18093. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  18094. }
  18095. void ggml_set_loss(struct ggml_tensor * tensor) {
  18096. GGML_ASSERT(ggml_is_scalar(tensor));
  18097. GGML_ASSERT(tensor->type == GGML_TYPE_F32);
  18098. tensor->flags |= GGML_TENSOR_FLAG_LOSS;
  18099. }
  18100. ////////////////////////////////////////////////////////////////////////////////
  18101. void ggml_quantize_init(enum ggml_type type) {
  18102. ggml_critical_section_start();
  18103. switch (type) {
  18104. case GGML_TYPE_IQ2_XXS:
  18105. case GGML_TYPE_IQ2_XS:
  18106. case GGML_TYPE_IQ2_S:
  18107. case GGML_TYPE_IQ1_S:
  18108. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  18109. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  18110. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  18111. default: // nothing
  18112. break;
  18113. }
  18114. ggml_critical_section_end();
  18115. }
  18116. void ggml_quantize_free(void) {
  18117. ggml_critical_section_start();
  18118. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  18119. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  18120. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  18121. iq3xs_free_impl(256);
  18122. ggml_critical_section_end();
  18123. }
  18124. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  18125. return
  18126. type == GGML_TYPE_IQ2_XXS ||
  18127. type == GGML_TYPE_IQ2_XS ||
  18128. type == GGML_TYPE_IQ1_S;// ||
  18129. //type == GGML_TYPE_IQ1_M;
  18130. }
  18131. size_t ggml_quantize_chunk(
  18132. enum ggml_type type,
  18133. const float * src,
  18134. void * dst,
  18135. int64_t start,
  18136. int64_t nrows,
  18137. int64_t n_per_row,
  18138. const float * imatrix) {
  18139. const int64_t n = (int64_t) nrows * n_per_row;
  18140. if (ggml_quantize_requires_imatrix(type)) {
  18141. GGML_ASSERT(imatrix != NULL);
  18142. }
  18143. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  18144. GGML_ASSERT(start % n_per_row == 0);
  18145. ggml_quantize_init(type); // this is noop if already initialized
  18146. const size_t start_row = start / n_per_row;
  18147. const size_t row_size = ggml_row_size(type, n_per_row);
  18148. size_t result = 0;
  18149. switch (type) {
  18150. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18151. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18152. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18153. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18154. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18155. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18156. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18157. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18158. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18159. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18160. case GGML_TYPE_TQ1_0: result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18161. case GGML_TYPE_TQ2_0: result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18162. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18163. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18164. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18165. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18166. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18167. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18168. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18169. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18170. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18171. case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18172. case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18173. case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18174. case GGML_TYPE_F16:
  18175. {
  18176. size_t elemsize = sizeof(ggml_fp16_t);
  18177. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  18178. result = n * elemsize;
  18179. } break;
  18180. case GGML_TYPE_BF16:
  18181. {
  18182. size_t elemsize = sizeof(ggml_bf16_t);
  18183. ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
  18184. result = n * elemsize;
  18185. } break;
  18186. case GGML_TYPE_F32:
  18187. {
  18188. size_t elemsize = sizeof(float);
  18189. result = n * elemsize;
  18190. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  18191. } break;
  18192. default:
  18193. assert(false);
  18194. }
  18195. GGML_ASSERT(result == nrows * row_size);
  18196. return result;
  18197. }
  18198. ////////////////////////////////////////////////////////////////////////////////
  18199. struct gguf_str {
  18200. uint64_t n; // GGUFv2
  18201. char * data;
  18202. };
  18203. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  18204. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  18205. [GGUF_TYPE_INT8] = sizeof(int8_t),
  18206. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  18207. [GGUF_TYPE_INT16] = sizeof(int16_t),
  18208. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  18209. [GGUF_TYPE_INT32] = sizeof(int32_t),
  18210. [GGUF_TYPE_FLOAT32] = sizeof(float),
  18211. [GGUF_TYPE_BOOL] = sizeof(bool),
  18212. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  18213. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  18214. [GGUF_TYPE_INT64] = sizeof(int64_t),
  18215. [GGUF_TYPE_FLOAT64] = sizeof(double),
  18216. [GGUF_TYPE_ARRAY] = 0, // undefined
  18217. };
  18218. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18219. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  18220. [GGUF_TYPE_UINT8] = "u8",
  18221. [GGUF_TYPE_INT8] = "i8",
  18222. [GGUF_TYPE_UINT16] = "u16",
  18223. [GGUF_TYPE_INT16] = "i16",
  18224. [GGUF_TYPE_UINT32] = "u32",
  18225. [GGUF_TYPE_INT32] = "i32",
  18226. [GGUF_TYPE_FLOAT32] = "f32",
  18227. [GGUF_TYPE_BOOL] = "bool",
  18228. [GGUF_TYPE_STRING] = "str",
  18229. [GGUF_TYPE_ARRAY] = "arr",
  18230. [GGUF_TYPE_UINT64] = "u64",
  18231. [GGUF_TYPE_INT64] = "i64",
  18232. [GGUF_TYPE_FLOAT64] = "f64",
  18233. };
  18234. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18235. union gguf_value {
  18236. uint8_t uint8;
  18237. int8_t int8;
  18238. uint16_t uint16;
  18239. int16_t int16;
  18240. uint32_t uint32;
  18241. int32_t int32;
  18242. float float32;
  18243. uint64_t uint64;
  18244. int64_t int64;
  18245. double float64;
  18246. bool bool_;
  18247. struct gguf_str str;
  18248. struct {
  18249. enum gguf_type type;
  18250. uint64_t n; // GGUFv2
  18251. void * data;
  18252. } arr;
  18253. };
  18254. struct gguf_kv {
  18255. struct gguf_str key;
  18256. enum gguf_type type;
  18257. union gguf_value value;
  18258. };
  18259. struct gguf_header {
  18260. char magic[4];
  18261. uint32_t version;
  18262. uint64_t n_tensors; // GGUFv2
  18263. uint64_t n_kv; // GGUFv2
  18264. };
  18265. struct gguf_tensor_info {
  18266. struct gguf_str name;
  18267. uint32_t n_dims;
  18268. uint64_t ne[GGML_MAX_DIMS];
  18269. enum ggml_type type;
  18270. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  18271. // for writing API
  18272. const void * data;
  18273. size_t size;
  18274. };
  18275. struct gguf_context {
  18276. struct gguf_header header;
  18277. struct gguf_kv * kv;
  18278. struct gguf_tensor_info * infos;
  18279. size_t alignment;
  18280. size_t offset; // offset of `data` from beginning of file
  18281. size_t size; // size of `data` in bytes
  18282. //uint8_t * padding;
  18283. void * data;
  18284. };
  18285. static size_t gguf_type_size(enum gguf_type type) {
  18286. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18287. return GGUF_TYPE_SIZE[type];
  18288. }
  18289. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18290. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18291. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18292. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18293. GGML_ASSERT(info->ne[i] > 0);
  18294. }
  18295. // prevent overflow for total number of elements
  18296. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18297. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18298. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18299. }
  18300. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18301. const size_t n = fread(dst, 1, size, file);
  18302. *offset += n;
  18303. return n == size;
  18304. }
  18305. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18306. p->n = 0;
  18307. p->data = NULL;
  18308. bool ok = true;
  18309. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18310. // early exit if string length is invalid, prevents from integer overflow
  18311. if (p->n == SIZE_MAX) {
  18312. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18313. return false;
  18314. }
  18315. p->data = GGML_CALLOC(p->n + 1, 1);
  18316. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18317. return ok;
  18318. }
  18319. static void gguf_free_kv(struct gguf_kv * kv) {
  18320. if (kv->key.data) {
  18321. GGML_FREE(kv->key.data);
  18322. }
  18323. if (kv->type == GGUF_TYPE_STRING) {
  18324. if (kv->value.str.data) {
  18325. GGML_FREE(kv->value.str.data);
  18326. }
  18327. }
  18328. if (kv->type == GGUF_TYPE_ARRAY) {
  18329. if (kv->value.arr.data) {
  18330. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18331. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18332. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18333. if (str->data) {
  18334. GGML_FREE(str->data);
  18335. }
  18336. }
  18337. }
  18338. GGML_FREE(kv->value.arr.data);
  18339. }
  18340. }
  18341. }
  18342. struct gguf_context * gguf_init_empty(void) {
  18343. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18344. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18345. ctx->header.version = GGUF_VERSION;
  18346. ctx->header.n_tensors = 0;
  18347. ctx->header.n_kv = 0;
  18348. ctx->kv = NULL;
  18349. ctx->infos = NULL;
  18350. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18351. ctx->offset = 0;
  18352. ctx->size = 0;
  18353. ctx->data = NULL;
  18354. return ctx;
  18355. }
  18356. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18357. FILE * file = ggml_fopen(fname, "rb");
  18358. if (!file) {
  18359. fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
  18360. return NULL;
  18361. }
  18362. // offset from start of file
  18363. size_t offset = 0;
  18364. char magic[4];
  18365. // check the magic before making allocations
  18366. {
  18367. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18368. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18369. if (magic[i] != GGUF_MAGIC[i]) {
  18370. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18371. fclose(file);
  18372. return NULL;
  18373. }
  18374. }
  18375. }
  18376. bool ok = true;
  18377. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18378. // read the header
  18379. {
  18380. strncpy(ctx->header.magic, magic, 4);
  18381. ctx->kv = NULL;
  18382. ctx->infos = NULL;
  18383. ctx->data = NULL;
  18384. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18385. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18386. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18387. if (ctx->header.version == 1) {
  18388. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18389. fclose(file);
  18390. gguf_free(ctx);
  18391. return NULL;
  18392. }
  18393. // sanity-checks to prevent from integer/buffer overflows
  18394. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18395. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18396. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18397. if (!ok) {
  18398. fprintf(stderr, "%s: failed to read header\n", __func__);
  18399. fclose(file);
  18400. gguf_free(ctx);
  18401. return NULL;
  18402. }
  18403. }
  18404. // read the kv pairs
  18405. {
  18406. const uint64_t n_kv = ctx->header.n_kv;
  18407. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18408. ctx->header.n_kv = 0;
  18409. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18410. for (uint64_t i = 0; i < n_kv; ++i) {
  18411. struct gguf_kv * kv = &ctx->kv[i];
  18412. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18413. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18414. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18415. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18416. switch (kv->type) {
  18417. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18418. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18419. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18420. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18421. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18422. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18423. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18424. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18425. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18426. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18427. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18428. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18429. case GGUF_TYPE_ARRAY:
  18430. {
  18431. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18432. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18433. switch (kv->value.arr.type) {
  18434. case GGUF_TYPE_UINT8:
  18435. case GGUF_TYPE_INT8:
  18436. case GGUF_TYPE_UINT16:
  18437. case GGUF_TYPE_INT16:
  18438. case GGUF_TYPE_UINT32:
  18439. case GGUF_TYPE_INT32:
  18440. case GGUF_TYPE_FLOAT32:
  18441. case GGUF_TYPE_UINT64:
  18442. case GGUF_TYPE_INT64:
  18443. case GGUF_TYPE_FLOAT64:
  18444. case GGUF_TYPE_BOOL:
  18445. {
  18446. // prevent from integer overflow in the malloc below
  18447. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18448. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18449. fclose(file);
  18450. gguf_free(ctx);
  18451. return NULL;
  18452. }
  18453. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18454. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18455. } break;
  18456. case GGUF_TYPE_STRING:
  18457. {
  18458. // prevent from integer overflow in the malloc below
  18459. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18460. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18461. fclose(file);
  18462. gguf_free(ctx);
  18463. return NULL;
  18464. }
  18465. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18466. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18467. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18468. }
  18469. } break;
  18470. case GGUF_TYPE_ARRAY:
  18471. default: GGML_ABORT("invalid type");
  18472. }
  18473. } break;
  18474. default: GGML_ABORT("invalid type");
  18475. }
  18476. if (!ok) {
  18477. break;
  18478. }
  18479. ctx->header.n_kv++;
  18480. }
  18481. if (!ok) {
  18482. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18483. fclose(file);
  18484. gguf_free(ctx);
  18485. return NULL;
  18486. }
  18487. }
  18488. // read the tensor infos
  18489. if (ctx->header.n_tensors > 0) {
  18490. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18491. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18492. struct gguf_tensor_info * info = &ctx->infos[i];
  18493. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18494. info->ne[j] = 1;
  18495. }
  18496. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18497. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18498. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18499. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18500. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18501. }
  18502. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18503. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18504. // TODO: return an error instead of crashing with GGML_ASSERT
  18505. gguf_tensor_info_sanitize(info);
  18506. // make sure there is no duplicated tensor names
  18507. for (uint64_t j = 0; j < i && ok; ++j) {
  18508. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18509. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18510. ok = false;
  18511. }
  18512. }
  18513. if (!ok) {
  18514. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18515. fclose(file);
  18516. gguf_free(ctx);
  18517. return NULL;
  18518. }
  18519. }
  18520. }
  18521. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18522. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18523. if (alignment_idx != -1) {
  18524. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18525. }
  18526. // we require the data section to be aligned, so take into account any padding
  18527. {
  18528. const size_t offset_pad = offset % ctx->alignment;
  18529. if (offset_pad != 0) {
  18530. offset += ctx->alignment - offset_pad;
  18531. fseek(file, offset, SEEK_SET);
  18532. }
  18533. }
  18534. // store the current file offset - this is where the data section starts
  18535. ctx->offset = offset;
  18536. // compute the total size of the data section, taking into account the alignment
  18537. {
  18538. ctx->size = 0;
  18539. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18540. struct gguf_tensor_info * info = &ctx->infos[i];
  18541. const int64_t ne =
  18542. (int64_t) info->ne[0] *
  18543. (int64_t) info->ne[1] *
  18544. (int64_t) info->ne[2] *
  18545. (int64_t) info->ne[3];
  18546. if (ggml_blck_size(info->type) == 0 || ne % ggml_blck_size(info->type) != 0) {
  18547. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
  18548. __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18549. fclose(file);
  18550. gguf_free(ctx);
  18551. return NULL;
  18552. }
  18553. const size_t size_cur = ggml_row_size(info->type, ne);
  18554. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18555. }
  18556. }
  18557. // load the tensor data only if requested
  18558. if (params.ctx != NULL) {
  18559. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18560. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18561. // the ggml_tensor structs to the appropriate locations in the binary blob
  18562. // compute the exact size needed for the new ggml_context
  18563. const size_t mem_size =
  18564. params.no_alloc ?
  18565. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18566. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18567. struct ggml_init_params pdata = {
  18568. .mem_size = mem_size,
  18569. .mem_buffer = NULL,
  18570. .no_alloc = params.no_alloc,
  18571. };
  18572. *params.ctx = ggml_init(pdata);
  18573. if (*params.ctx == NULL) {
  18574. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  18575. fclose(file);
  18576. gguf_free(ctx);
  18577. return NULL;
  18578. }
  18579. struct ggml_context * ctx_data = *params.ctx;
  18580. struct ggml_tensor * data = NULL;
  18581. if (!params.no_alloc) {
  18582. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18583. ok = ok && data != NULL;
  18584. // read the binary blob with the tensor data
  18585. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18586. if (!ok) {
  18587. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18588. fclose(file);
  18589. ggml_free(ctx_data);
  18590. gguf_free(ctx);
  18591. return NULL;
  18592. }
  18593. ctx->data = data->data;
  18594. }
  18595. ggml_set_no_alloc(ctx_data, true);
  18596. // create the tensors
  18597. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18598. const int64_t ne[GGML_MAX_DIMS] = {
  18599. ctx->infos[i].ne[0],
  18600. ctx->infos[i].ne[1],
  18601. ctx->infos[i].ne[2],
  18602. ctx->infos[i].ne[3],
  18603. };
  18604. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18605. ok = ok && cur != NULL;
  18606. if (!ok) {
  18607. break;
  18608. }
  18609. ggml_set_name(cur, ctx->infos[i].name.data);
  18610. // point the data member to the appropriate location in the binary blob using the tensor infos
  18611. if (!params.no_alloc) {
  18612. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18613. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18614. }
  18615. }
  18616. if (!ok) {
  18617. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18618. fclose(file);
  18619. ggml_free(ctx_data);
  18620. gguf_free(ctx);
  18621. return NULL;
  18622. }
  18623. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18624. }
  18625. fclose(file);
  18626. return ctx;
  18627. }
  18628. void gguf_free(struct gguf_context * ctx) {
  18629. if (ctx == NULL) {
  18630. return;
  18631. }
  18632. if (ctx->kv) {
  18633. // free string memory - not great..
  18634. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18635. gguf_free_kv(&ctx->kv[i]);
  18636. }
  18637. GGML_FREE(ctx->kv);
  18638. }
  18639. if (ctx->infos) {
  18640. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18641. struct gguf_tensor_info * info = &ctx->infos[i];
  18642. if (info->name.data) {
  18643. GGML_FREE(info->name.data);
  18644. }
  18645. }
  18646. GGML_FREE(ctx->infos);
  18647. }
  18648. GGML_FREE(ctx);
  18649. }
  18650. const char * gguf_type_name(enum gguf_type type) {
  18651. return GGUF_TYPE_NAME[type];
  18652. }
  18653. int gguf_get_version(const struct gguf_context * ctx) {
  18654. return ctx->header.version;
  18655. }
  18656. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18657. return ctx->alignment;
  18658. }
  18659. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18660. return ctx->offset;
  18661. }
  18662. void * gguf_get_data(const struct gguf_context * ctx) {
  18663. return ctx->data;
  18664. }
  18665. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18666. return ctx->header.n_kv;
  18667. }
  18668. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18669. // return -1 if key not found
  18670. int keyfound = -1;
  18671. const int n_kv = gguf_get_n_kv(ctx);
  18672. for (int i = 0; i < n_kv; ++i) {
  18673. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18674. keyfound = i;
  18675. break;
  18676. }
  18677. }
  18678. return keyfound;
  18679. }
  18680. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18681. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18682. return ctx->kv[key_id].key.data;
  18683. }
  18684. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18685. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18686. return ctx->kv[key_id].type;
  18687. }
  18688. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18689. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18690. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18691. return ctx->kv[key_id].value.arr.type;
  18692. }
  18693. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18694. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18695. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18696. return ctx->kv[key_id].value.arr.data;
  18697. }
  18698. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18699. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18700. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18701. struct gguf_kv * kv = &ctx->kv[key_id];
  18702. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18703. return str->data;
  18704. }
  18705. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18706. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18707. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18708. return ctx->kv[key_id].value.arr.n;
  18709. }
  18710. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18711. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18712. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18713. return ctx->kv[key_id].value.uint8;
  18714. }
  18715. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18716. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18717. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18718. return ctx->kv[key_id].value.int8;
  18719. }
  18720. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18721. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18722. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18723. return ctx->kv[key_id].value.uint16;
  18724. }
  18725. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18726. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18727. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18728. return ctx->kv[key_id].value.int16;
  18729. }
  18730. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18731. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18732. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18733. return ctx->kv[key_id].value.uint32;
  18734. }
  18735. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18736. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18737. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18738. return ctx->kv[key_id].value.int32;
  18739. }
  18740. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18741. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18742. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18743. return ctx->kv[key_id].value.float32;
  18744. }
  18745. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18746. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18747. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18748. return ctx->kv[key_id].value.uint64;
  18749. }
  18750. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18751. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18752. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18753. return ctx->kv[key_id].value.int64;
  18754. }
  18755. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18756. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18757. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18758. return ctx->kv[key_id].value.float64;
  18759. }
  18760. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18761. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18762. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18763. return ctx->kv[key_id].value.bool_;
  18764. }
  18765. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18766. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18767. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18768. return ctx->kv[key_id].value.str.data;
  18769. }
  18770. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18771. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18772. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18773. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18774. return &ctx->kv[key_id].value;
  18775. }
  18776. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18777. return ctx->header.n_tensors;
  18778. }
  18779. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18780. // return -1 if tensor not found
  18781. int tensorfound = -1;
  18782. const int n_tensors = gguf_get_n_tensors(ctx);
  18783. for (int i = 0; i < n_tensors; ++i) {
  18784. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18785. tensorfound = i;
  18786. break;
  18787. }
  18788. }
  18789. return tensorfound;
  18790. }
  18791. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18792. return ctx->infos[i].offset;
  18793. }
  18794. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18795. return ctx->infos[i].name.data;
  18796. }
  18797. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18798. return ctx->infos[i].type;
  18799. }
  18800. // returns the index
  18801. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18802. const int idx = gguf_find_key(ctx, key);
  18803. if (idx >= 0) {
  18804. return idx;
  18805. }
  18806. const int n_kv = gguf_get_n_kv(ctx);
  18807. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18808. ctx->kv[n_kv].key.n = strlen(key);
  18809. ctx->kv[n_kv].key.data = strdup(key);
  18810. ctx->header.n_kv++;
  18811. return n_kv;
  18812. }
  18813. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18814. const int idx = gguf_find_key(ctx, key);
  18815. if (idx >= 0) {
  18816. const int n_kv = gguf_get_n_kv(ctx);
  18817. gguf_free_kv(&ctx->kv[idx]);
  18818. for (int i = idx; i < n_kv-1; ++i) {
  18819. ctx->kv[i] = ctx->kv[i+1];
  18820. }
  18821. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18822. ctx->header.n_kv--;
  18823. }
  18824. }
  18825. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18826. const int idx = gguf_get_or_add_key(ctx, key);
  18827. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18828. ctx->kv[idx].value.uint8 = val;
  18829. }
  18830. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18831. const int idx = gguf_get_or_add_key(ctx, key);
  18832. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18833. ctx->kv[idx].value.int8 = val;
  18834. }
  18835. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18836. const int idx = gguf_get_or_add_key(ctx, key);
  18837. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18838. ctx->kv[idx].value.uint16 = val;
  18839. }
  18840. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18841. const int idx = gguf_get_or_add_key(ctx, key);
  18842. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18843. ctx->kv[idx].value.int16 = val;
  18844. }
  18845. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18846. const int idx = gguf_get_or_add_key(ctx, key);
  18847. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18848. ctx->kv[idx].value.uint32 = val;
  18849. }
  18850. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18851. const int idx = gguf_get_or_add_key(ctx, key);
  18852. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18853. ctx->kv[idx].value.int32 = val;
  18854. }
  18855. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18856. const int idx = gguf_get_or_add_key(ctx, key);
  18857. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18858. ctx->kv[idx].value.float32 = val;
  18859. }
  18860. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18861. const int idx = gguf_get_or_add_key(ctx, key);
  18862. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18863. ctx->kv[idx].value.uint64 = val;
  18864. }
  18865. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18866. const int idx = gguf_get_or_add_key(ctx, key);
  18867. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18868. ctx->kv[idx].value.int64 = val;
  18869. }
  18870. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18871. const int idx = gguf_get_or_add_key(ctx, key);
  18872. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18873. ctx->kv[idx].value.float64 = val;
  18874. }
  18875. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18876. const int idx = gguf_get_or_add_key(ctx, key);
  18877. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18878. ctx->kv[idx].value.bool_ = val;
  18879. }
  18880. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18881. const int idx = gguf_get_or_add_key(ctx, key);
  18882. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18883. ctx->kv[idx].value.str.n = strlen(val);
  18884. ctx->kv[idx].value.str.data = strdup(val);
  18885. }
  18886. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18887. const int idx = gguf_get_or_add_key(ctx, key);
  18888. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18889. ctx->kv[idx].value.arr.type = type;
  18890. ctx->kv[idx].value.arr.n = n;
  18891. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18892. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18893. }
  18894. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18895. const int idx = gguf_get_or_add_key(ctx, key);
  18896. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18897. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18898. ctx->kv[idx].value.arr.n = n;
  18899. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18900. for (int i = 0; i < n; i++) {
  18901. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18902. str->n = strlen(data[i]);
  18903. str->data = strdup(data[i]);
  18904. }
  18905. }
  18906. // set or add KV pairs from another context
  18907. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18908. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18909. switch (src->kv[i].type) {
  18910. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18911. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18912. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18913. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18914. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18915. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18916. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18917. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18918. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18919. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18920. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18921. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18922. case GGUF_TYPE_ARRAY:
  18923. {
  18924. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18925. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18926. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18927. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18928. }
  18929. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18930. GGML_FREE((void *)data);
  18931. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18932. GGML_ABORT("nested arrays not supported");
  18933. } else {
  18934. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18935. }
  18936. } break;
  18937. default: GGML_ABORT("invalid type");
  18938. }
  18939. }
  18940. }
  18941. void gguf_add_tensor(
  18942. struct gguf_context * ctx,
  18943. const struct ggml_tensor * tensor) {
  18944. GGML_ASSERT(tensor);
  18945. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18946. GGML_ABORT("duplicated tensor name");
  18947. }
  18948. const int idx = ctx->header.n_tensors;
  18949. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18950. ctx->infos[idx].name.n = strlen(tensor->name);
  18951. ctx->infos[idx].name.data = strdup(tensor->name);
  18952. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18953. ctx->infos[idx].ne[i] = 1;
  18954. }
  18955. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18956. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18957. ctx->infos[idx].ne[i] = tensor->ne[i];
  18958. }
  18959. ctx->infos[idx].type = tensor->type;
  18960. ctx->infos[idx].offset = 0;
  18961. ctx->infos[idx].data = tensor->data;
  18962. ctx->infos[idx].size = ggml_nbytes(tensor);
  18963. if (ctx->header.n_tensors > 0) {
  18964. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18965. }
  18966. ctx->header.n_tensors++;
  18967. }
  18968. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18969. const int idx = gguf_find_tensor(ctx, name);
  18970. if (idx < 0) {
  18971. GGML_ABORT("tensor not found");
  18972. }
  18973. ctx->infos[idx].type = type;
  18974. }
  18975. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18976. const int idx = gguf_find_tensor(ctx, name);
  18977. if (idx < 0) {
  18978. GGML_ABORT("tensor not found");
  18979. }
  18980. ctx->infos[idx].data = data;
  18981. ctx->infos[idx].size = size;
  18982. // update offsets
  18983. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18984. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18985. }
  18986. }
  18987. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18988. // fwrite(&val->n, sizeof(val->n), 1, file);
  18989. // fwrite(val->data, sizeof(char), val->n, file);
  18990. //}
  18991. //
  18992. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18993. // fwrite(val, sizeof(char), size, file);
  18994. //}
  18995. struct gguf_buf {
  18996. void * data;
  18997. size_t size;
  18998. size_t offset;
  18999. };
  19000. static struct gguf_buf gguf_buf_init(size_t size) {
  19001. struct gguf_buf buf = {
  19002. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  19003. /*buf.size =*/ size,
  19004. /*buf.offset =*/ 0,
  19005. };
  19006. return buf;
  19007. }
  19008. static void gguf_buf_free(struct gguf_buf buf) {
  19009. if (buf.data) {
  19010. GGML_FREE(buf.data);
  19011. }
  19012. }
  19013. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  19014. if (buf->offset + size > buf->size) {
  19015. buf->size = 1.5*(buf->offset + size);
  19016. if (buf->data) {
  19017. buf->data = realloc(buf->data, buf->size);
  19018. }
  19019. }
  19020. }
  19021. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  19022. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  19023. if (buf->data) {
  19024. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  19025. }
  19026. buf->offset += sizeof(val->n);
  19027. if (buf->data) {
  19028. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  19029. }
  19030. buf->offset += val->n;
  19031. }
  19032. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  19033. gguf_buf_grow(buf, el_size);
  19034. if (buf->data) {
  19035. memcpy((char *) buf->data + buf->offset, val, el_size);
  19036. }
  19037. buf->offset += el_size;
  19038. }
  19039. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  19040. // write header
  19041. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  19042. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  19043. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  19044. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  19045. // write key-value pairs
  19046. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  19047. struct gguf_kv * kv = &ctx->kv[i];
  19048. gguf_bwrite_str(buf, &kv->key);
  19049. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  19050. switch (kv->type) {
  19051. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  19052. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  19053. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  19054. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  19055. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  19056. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  19057. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  19058. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  19059. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  19060. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  19061. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  19062. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  19063. case GGUF_TYPE_ARRAY:
  19064. {
  19065. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  19066. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  19067. switch (kv->value.arr.type) {
  19068. case GGUF_TYPE_UINT8:
  19069. case GGUF_TYPE_INT8:
  19070. case GGUF_TYPE_UINT16:
  19071. case GGUF_TYPE_INT16:
  19072. case GGUF_TYPE_UINT32:
  19073. case GGUF_TYPE_INT32:
  19074. case GGUF_TYPE_FLOAT32:
  19075. case GGUF_TYPE_UINT64:
  19076. case GGUF_TYPE_INT64:
  19077. case GGUF_TYPE_FLOAT64:
  19078. case GGUF_TYPE_BOOL:
  19079. {
  19080. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  19081. } break;
  19082. case GGUF_TYPE_STRING:
  19083. {
  19084. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  19085. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  19086. }
  19087. } break;
  19088. case GGUF_TYPE_ARRAY:
  19089. default: GGML_ABORT("invalid type");
  19090. }
  19091. } break;
  19092. default: GGML_ABORT("invalid type");
  19093. }
  19094. }
  19095. // write tensor infos
  19096. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19097. struct gguf_tensor_info * info = &ctx->infos[i];
  19098. gguf_bwrite_str(buf, &info->name);
  19099. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  19100. for (uint32_t j = 0; j < info->n_dims; ++j) {
  19101. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  19102. }
  19103. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  19104. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  19105. }
  19106. // we require the data section to be aligned, so take into account any padding
  19107. {
  19108. const size_t offset = buf->offset;
  19109. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  19110. if (offset_pad != offset) {
  19111. uint8_t pad = 0;
  19112. for (size_t i = 0; i < offset_pad - offset; ++i) {
  19113. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19114. }
  19115. }
  19116. }
  19117. if (only_meta) {
  19118. return;
  19119. }
  19120. size_t offset = 0;
  19121. // write tensor data
  19122. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19123. struct gguf_tensor_info * info = &ctx->infos[i];
  19124. const size_t size = info->size;
  19125. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  19126. gguf_bwrite_el(buf, info->data, size);
  19127. if (size_pad != size) {
  19128. uint8_t pad = 0;
  19129. for (size_t j = 0; j < size_pad - size; ++j) {
  19130. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19131. }
  19132. }
  19133. GGML_ASSERT(offset == info->offset);
  19134. offset += size_pad;
  19135. }
  19136. }
  19137. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  19138. FILE * file = ggml_fopen(fname, "wb");
  19139. if (!file) {
  19140. GGML_ABORT("failed to open file for writing");
  19141. }
  19142. struct gguf_buf buf = gguf_buf_init(16*1024);
  19143. gguf_write_to_buf(ctx, &buf, only_meta);
  19144. fwrite(buf.data, 1, buf.offset, file);
  19145. gguf_buf_free(buf);
  19146. fclose(file);
  19147. }
  19148. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  19149. // no allocs - only compute size
  19150. struct gguf_buf buf = gguf_buf_init(0);
  19151. gguf_write_to_buf(ctx, &buf, true);
  19152. return buf.offset;
  19153. }
  19154. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  19155. struct gguf_buf buf = gguf_buf_init(16*1024);
  19156. gguf_write_to_buf(ctx, &buf, true);
  19157. memcpy(data, buf.data, buf.offset);
  19158. gguf_buf_free(buf);
  19159. }
  19160. ////////////////////////////////////////////////////////////////////////////////
  19161. int ggml_cpu_has_avx(void) {
  19162. #if defined(__AVX__)
  19163. return 1;
  19164. #else
  19165. return 0;
  19166. #endif
  19167. }
  19168. int ggml_cpu_has_avx_vnni(void) {
  19169. #if defined(__AVXVNNI__)
  19170. return 1;
  19171. #else
  19172. return 0;
  19173. #endif
  19174. }
  19175. int ggml_cpu_has_avx2(void) {
  19176. #if defined(__AVX2__)
  19177. return 1;
  19178. #else
  19179. return 0;
  19180. #endif
  19181. }
  19182. int ggml_cpu_has_avx512(void) {
  19183. #if defined(__AVX512F__)
  19184. return 1;
  19185. #else
  19186. return 0;
  19187. #endif
  19188. }
  19189. int ggml_cpu_has_avx512_vbmi(void) {
  19190. #if defined(__AVX512VBMI__)
  19191. return 1;
  19192. #else
  19193. return 0;
  19194. #endif
  19195. }
  19196. int ggml_cpu_has_avx512_vnni(void) {
  19197. #if defined(__AVX512VNNI__)
  19198. return 1;
  19199. #else
  19200. return 0;
  19201. #endif
  19202. }
  19203. int ggml_cpu_has_avx512_bf16(void) {
  19204. #if defined(__AVX512BF16__)
  19205. return 1;
  19206. #else
  19207. return 0;
  19208. #endif
  19209. }
  19210. int ggml_cpu_has_fma(void) {
  19211. #if defined(__FMA__)
  19212. return 1;
  19213. #else
  19214. return 0;
  19215. #endif
  19216. }
  19217. int ggml_cpu_has_neon(void) {
  19218. #if defined(__ARM_ARCH)
  19219. return ggml_arm_arch_features.has_neon;
  19220. #else
  19221. return 0;
  19222. #endif
  19223. }
  19224. int ggml_cpu_has_sve(void) {
  19225. #if defined(__ARM_ARCH)
  19226. return ggml_arm_arch_features.has_sve;
  19227. #else
  19228. return 0;
  19229. #endif
  19230. }
  19231. int ggml_cpu_has_arm_fma(void) {
  19232. #if defined(__ARM_FEATURE_FMA)
  19233. return 1;
  19234. #else
  19235. return 0;
  19236. #endif
  19237. }
  19238. int ggml_cpu_has_riscv_v(void) {
  19239. #if defined(__riscv_v_intrinsic)
  19240. return 1;
  19241. #else
  19242. return 0;
  19243. #endif
  19244. }
  19245. int ggml_cpu_has_metal(void) {
  19246. #if defined(GGML_USE_METAL)
  19247. return 1;
  19248. #else
  19249. return 0;
  19250. #endif
  19251. }
  19252. int ggml_cpu_has_f16c(void) {
  19253. #if defined(__F16C__)
  19254. return 1;
  19255. #else
  19256. return 0;
  19257. #endif
  19258. }
  19259. int ggml_cpu_has_fp16_va(void) {
  19260. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  19261. return 1;
  19262. #else
  19263. return 0;
  19264. #endif
  19265. }
  19266. int ggml_cpu_has_wasm_simd(void) {
  19267. #if defined(__wasm_simd128__)
  19268. return 1;
  19269. #else
  19270. return 0;
  19271. #endif
  19272. }
  19273. int ggml_cpu_has_blas(void) {
  19274. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  19275. return 1;
  19276. #else
  19277. return 0;
  19278. #endif
  19279. }
  19280. int ggml_cpu_has_cuda(void) {
  19281. #if defined(GGML_USE_CUDA)
  19282. return 1;
  19283. #else
  19284. return 0;
  19285. #endif
  19286. }
  19287. int ggml_cpu_has_vulkan(void) {
  19288. #if defined(GGML_USE_VULKAN)
  19289. return 1;
  19290. #else
  19291. return 0;
  19292. #endif
  19293. }
  19294. int ggml_cpu_has_kompute(void) {
  19295. #if defined(GGML_USE_KOMPUTE)
  19296. return 1;
  19297. #else
  19298. return 0;
  19299. #endif
  19300. }
  19301. int ggml_cpu_has_sycl(void) {
  19302. #if defined(GGML_USE_SYCL)
  19303. return 1;
  19304. #else
  19305. return 0;
  19306. #endif
  19307. }
  19308. int ggml_cpu_has_rpc(void) {
  19309. #if defined(GGML_USE_RPC)
  19310. return 1;
  19311. #else
  19312. return 0;
  19313. #endif
  19314. }
  19315. int ggml_cpu_has_cann(void) {
  19316. #if defined(GGML_USE_CANN)
  19317. return 1;
  19318. #else
  19319. return 0;
  19320. #endif
  19321. }
  19322. int ggml_cpu_has_llamafile(void) {
  19323. #if defined(GGML_USE_LLAMAFILE)
  19324. return 1;
  19325. #else
  19326. return 0;
  19327. #endif
  19328. }
  19329. int ggml_cpu_has_gpublas(void) {
  19330. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  19331. }
  19332. int ggml_cpu_has_sse3(void) {
  19333. #if defined(__SSE3__)
  19334. return 1;
  19335. #else
  19336. return 0;
  19337. #endif
  19338. }
  19339. int ggml_cpu_has_ssse3(void) {
  19340. #if defined(__SSSE3__)
  19341. return 1;
  19342. #else
  19343. return 0;
  19344. #endif
  19345. }
  19346. int ggml_cpu_has_vsx(void) {
  19347. #if defined(__POWER9_VECTOR__)
  19348. return 1;
  19349. #else
  19350. return 0;
  19351. #endif
  19352. }
  19353. int ggml_cpu_has_matmul_int8(void) {
  19354. #if defined(__ARM_ARCH)
  19355. return ggml_arm_arch_features.has_i8mm;
  19356. #else
  19357. return 0;
  19358. #endif
  19359. }
  19360. int ggml_cpu_get_sve_cnt(void) {
  19361. #if defined(__ARM_ARCH)
  19362. return ggml_arm_arch_features.sve_cnt;
  19363. #else
  19364. return 0;
  19365. #endif
  19366. }
  19367. void ggml_log_set(ggml_log_callback log_callback, void * user_data) {
  19368. g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default;
  19369. g_logger_state.log_callback_user_data = user_data;
  19370. }
  19371. ////////////////////////////////////////////////////////////////////////////////