llama-model.cpp 594 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-batch.h"
  5. #include "llama-cparams.h"
  6. #include "llama-model-loader.h"
  7. #include "llama-kv-cache.h"
  8. #include "ggml-cpp.h"
  9. #include <algorithm>
  10. #include <cassert>
  11. #include <cmath>
  12. #include <cfloat>
  13. #include <cstring>
  14. #include <cmath>
  15. #include <functional>
  16. #include <map>
  17. #include <regex>
  18. #include <sstream>
  19. #include <stdexcept>
  20. const char * llm_type_name(llm_type type) {
  21. switch (type) {
  22. case LLM_TYPE_14M: return "14M";
  23. case LLM_TYPE_17M: return "17M";
  24. case LLM_TYPE_22M: return "22M";
  25. case LLM_TYPE_33M: return "33M";
  26. case LLM_TYPE_60M: return "60M";
  27. case LLM_TYPE_70M: return "70M";
  28. case LLM_TYPE_80M: return "80M";
  29. case LLM_TYPE_109M: return "109M";
  30. case LLM_TYPE_137M: return "137M";
  31. case LLM_TYPE_160M: return "160M";
  32. case LLM_TYPE_190M: return "190M";
  33. case LLM_TYPE_220M: return "220M";
  34. case LLM_TYPE_250M: return "250M";
  35. case LLM_TYPE_270M: return "270M";
  36. case LLM_TYPE_335M: return "335M";
  37. case LLM_TYPE_410M: return "410M";
  38. case LLM_TYPE_450M: return "450M";
  39. case LLM_TYPE_475M: return "475M";
  40. case LLM_TYPE_770M: return "770M";
  41. case LLM_TYPE_780M: return "780M";
  42. case LLM_TYPE_0_5B: return "0.5B";
  43. case LLM_TYPE_0_6B: return "0.6B";
  44. case LLM_TYPE_1B: return "1B";
  45. case LLM_TYPE_1_3B: return "1.3B";
  46. case LLM_TYPE_1_4B: return "1.4B";
  47. case LLM_TYPE_1_5B: return "1.5B";
  48. case LLM_TYPE_1_6B: return "1.6B";
  49. case LLM_TYPE_1_7B: return "1.7B";
  50. case LLM_TYPE_1_8B: return "1.8B";
  51. case LLM_TYPE_2B: return "2B";
  52. case LLM_TYPE_2_8B: return "2.8B";
  53. case LLM_TYPE_2_9B: return "2.9B";
  54. case LLM_TYPE_3B: return "3B";
  55. case LLM_TYPE_4B: return "4B";
  56. case LLM_TYPE_6B: return "6B";
  57. case LLM_TYPE_6_9B: return "6.9B";
  58. case LLM_TYPE_7B: return "7B";
  59. case LLM_TYPE_8B: return "8B";
  60. case LLM_TYPE_9B: return "9B";
  61. case LLM_TYPE_11B: return "11B";
  62. case LLM_TYPE_12B: return "12B";
  63. case LLM_TYPE_13B: return "13B";
  64. case LLM_TYPE_14B: return "14B";
  65. case LLM_TYPE_15B: return "15B";
  66. case LLM_TYPE_16B: return "16B";
  67. case LLM_TYPE_20B: return "20B";
  68. case LLM_TYPE_27B: return "27B";
  69. case LLM_TYPE_30B: return "30B";
  70. case LLM_TYPE_32B: return "32B";
  71. case LLM_TYPE_34B: return "34B";
  72. case LLM_TYPE_35B: return "35B";
  73. case LLM_TYPE_40B: return "40B";
  74. case LLM_TYPE_65B: return "65B";
  75. case LLM_TYPE_70B: return "70B";
  76. case LLM_TYPE_236B: return "236B";
  77. case LLM_TYPE_290B: return "290B";
  78. case LLM_TYPE_314B: return "314B";
  79. case LLM_TYPE_405B: return "405B";
  80. case LLM_TYPE_671B: return "671B";
  81. case LLM_TYPE_SMALL: return "0.1B";
  82. case LLM_TYPE_MEDIUM: return "0.4B";
  83. case LLM_TYPE_LARGE: return "0.8B";
  84. case LLM_TYPE_XL: return "1.5B";
  85. case LLM_TYPE_A1_7B: return "A1.7B";
  86. case LLM_TYPE_A2_7B: return "A2.7B";
  87. case LLM_TYPE_8x7B: return "8x7B";
  88. case LLM_TYPE_8x22B: return "8x22B";
  89. case LLM_TYPE_16x12B: return "16x12B";
  90. case LLM_TYPE_16x3_8B: return "16x3.8B";
  91. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  92. case LLM_TYPE_57B_A14B: return "57B.A14B";
  93. case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
  94. case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
  95. case LLM_TYPE_30B_A3B: return "30B.A3B";
  96. case LLM_TYPE_235B_A22B: return "235B.A22B";
  97. default: return "?B";
  98. }
  99. }
  100. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  101. switch (type) {
  102. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  103. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  104. default: return "unknown";
  105. }
  106. }
  107. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  108. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  109. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  110. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  111. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  112. };
  113. std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
  114. return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
  115. }
  116. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  117. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  118. if (kv.second == name) {
  119. return (llama_rope_scaling_type) kv.first;
  120. }
  121. }
  122. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  123. }
  124. // checks if the weight tensor can be used with the specified buffer type and device
  125. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  126. GGML_ASSERT(w != nullptr);
  127. if (op == GGML_OP_NONE) {
  128. return true;
  129. }
  130. ggml_init_params params = {
  131. /*.mem_size =*/ ggml_tensor_overhead()*8,
  132. /*.mem_buffer =*/ NULL,
  133. /*.no_alloc =*/ true,
  134. };
  135. ggml_context_ptr ctx_ptr { ggml_init(params) };
  136. if (!ctx_ptr) {
  137. throw std::runtime_error(format("failed to create ggml context"));
  138. }
  139. ggml_context * ctx = ctx_ptr.get();
  140. ggml_tensor * op_tensor = nullptr;
  141. switch (op) {
  142. case GGML_OP_GET_ROWS:
  143. {
  144. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  145. op_tensor = ggml_get_rows(ctx, w, b);
  146. } break;
  147. case GGML_OP_MUL_MAT:
  148. {
  149. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  150. op_tensor = ggml_mul_mat(ctx, w, b);
  151. } break;
  152. case GGML_OP_MUL_MAT_ID:
  153. {
  154. int n_expert_used = hparams.n_expert_used;
  155. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  156. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  157. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  158. } break;
  159. case GGML_OP_ADD:
  160. {
  161. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  162. op_tensor = ggml_add(ctx, a, w);
  163. } break;
  164. case GGML_OP_MUL:
  165. {
  166. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  167. op_tensor = ggml_mul(ctx, a, w);
  168. } break;
  169. case GGML_OP_DIV:
  170. {
  171. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  172. op_tensor = ggml_div(ctx, a, w);
  173. } break;
  174. case GGML_OP_ROPE:
  175. {
  176. int n_embd_head = hparams.n_embd_head_v;
  177. int n_head = hparams.n_head();
  178. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  179. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  180. op_tensor = ggml_rope_ext(
  181. ctx, a, b, w,
  182. 0, 0, 0, 0, 0,
  183. 0, 0, 0, 0
  184. );
  185. } break;
  186. case GGML_OP_SSM_CONV:
  187. {
  188. // FIXME
  189. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
  190. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  191. } break;
  192. case GGML_OP_SSM_SCAN:
  193. {
  194. // FIXME
  195. const int64_t d_state = w->ne[0];
  196. const int64_t d_inner = w->ne[1];
  197. const int64_t n_seq_tokens = 512;
  198. const int64_t n_seqs = 1;
  199. ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
  200. ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  201. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  202. ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  203. ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  204. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
  205. } break;
  206. case GGML_OP_RWKV_WKV6:
  207. {
  208. // FIXME
  209. const int64_t S = 123;
  210. const int64_t H = 123;
  211. const int64_t n_tokens = 123;
  212. const int64_t n_seqs = 123;
  213. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  214. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  215. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  216. ggml_tensor * tf = w;
  217. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  218. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  219. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  220. } break;
  221. case GGML_OP_IM2COL:
  222. {
  223. const int n_embd = hparams.n_embd;
  224. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  225. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  226. } break;
  227. default:
  228. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  229. }
  230. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  231. GGML_ASSERT(w->buffer == nullptr);
  232. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  233. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  234. ggml_backend_buffer_free(w->buffer);
  235. w->buffer = nullptr;
  236. return op_supported;
  237. }
  238. // lists of buffer types used for each layer
  239. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  240. // find the first buffer type in the list that can use the tensor
  241. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  242. GGML_ASSERT(!buft_list.empty());
  243. for (const auto & cur : buft_list) {
  244. ggml_backend_dev_t cur_dev = cur.first;
  245. ggml_backend_buffer_type_t cur_buft = cur.second;
  246. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  247. return cur_buft;
  248. }
  249. }
  250. return nullptr;
  251. }
  252. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  253. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
  254. buft_list_t buft_list;
  255. // add ACCEL buffer types
  256. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  257. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  258. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  259. auto * buft = ggml_backend_dev_buffer_type(dev);
  260. // skip
  261. if (buft != ggml_backend_cpu_buffer_type()) {
  262. buft_list.emplace_back(dev, buft);
  263. }
  264. }
  265. }
  266. // add a host buffer type
  267. // storing the tensors in a host buffer is useful when the processing of large batches
  268. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  269. // generally, this will be done using the first device in the list
  270. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  271. // function of the device to determine if it would benefit from being stored in a host buffer
  272. for (auto * dev : devices) {
  273. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  274. if (buft) {
  275. buft_list.emplace_back(dev, buft);
  276. break;
  277. }
  278. }
  279. // add extra buffer types, only if no GPU device is present
  280. // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
  281. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  282. if (cpu_dev == nullptr) {
  283. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  284. }
  285. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  286. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  287. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  288. if (ggml_backend_dev_get_extra_bufts_fn) {
  289. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  290. while (extra_bufts && *extra_bufts) {
  291. buft_list.emplace_back(cpu_dev, *extra_bufts);
  292. ++extra_bufts;
  293. }
  294. }
  295. // add the CPU buffer type
  296. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  297. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  298. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  299. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  300. }
  301. }
  302. return buft_list;
  303. }
  304. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  305. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  306. buft_list_t buft_list;
  307. // add the device split buffer type if requested and available
  308. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  309. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  310. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  311. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  312. if (ggml_backend_split_buffer_type_fn) {
  313. size_t dev_index = [&]() {
  314. auto * reg = ggml_backend_dev_backend_reg(dev);
  315. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  316. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  317. return i;
  318. }
  319. }
  320. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  321. }();
  322. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  323. if (buft != nullptr) {
  324. buft_list.emplace_back(dev, buft);
  325. }
  326. }
  327. }
  328. // add the device default buffer type
  329. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  330. return buft_list;
  331. }
  332. struct llama_model::impl {
  333. impl() {}
  334. ~impl() {}
  335. uint64_t n_elements = 0;
  336. size_t n_bytes = 0;
  337. std::string desc_str;
  338. // model memory mapped files
  339. llama_mmaps mappings;
  340. // objects representing data potentially being locked in memory
  341. llama_mlocks mlock_bufs;
  342. llama_mlocks mlock_mmaps;
  343. // contexts where the model tensors metadata is stored
  344. std::vector<ggml_context_ptr> ctxs;
  345. // the model memory buffers for the tensor data
  346. std::vector<ggml_backend_buffer_ptr> bufs;
  347. buft_list_t cpu_buft_list;
  348. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  349. struct layer_dev {
  350. ggml_backend_dev_t dev;
  351. buft_list_t * buft_list;
  352. };
  353. layer_dev dev_input = {};
  354. layer_dev dev_output = {};
  355. std::vector<layer_dev> dev_layer;
  356. bool has_tensor_overrides;
  357. };
  358. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  359. pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
  360. }
  361. llama_model::~llama_model() {}
  362. void llama_model::load_stats(llama_model_loader & ml) {
  363. pimpl->n_elements = ml.n_elements;
  364. pimpl->n_bytes = ml.n_bytes;
  365. }
  366. void llama_model::load_arch(llama_model_loader & ml) {
  367. arch = ml.get_arch();
  368. if (arch == LLM_ARCH_UNKNOWN) {
  369. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  370. }
  371. }
  372. void llama_model::load_hparams(llama_model_loader & ml) {
  373. const gguf_context * ctx = ml.meta.get();
  374. // get metadata as string
  375. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  376. gguf_type type = gguf_get_kv_type(ctx, i);
  377. if (type == GGUF_TYPE_ARRAY) {
  378. continue;
  379. }
  380. const char * name = gguf_get_key(ctx, i);
  381. const std::string value = gguf_kv_to_str(ctx, i);
  382. gguf_kv.emplace(name, value);
  383. }
  384. // get general kv
  385. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  386. // everything past this point is not vocab-related
  387. if (hparams.vocab_only) {
  388. return;
  389. }
  390. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  391. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  392. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  393. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  394. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  395. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  396. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  397. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  398. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  399. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  400. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  401. }
  402. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  403. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  404. if (hparams.n_expert > 0) {
  405. GGML_ASSERT(hparams.n_expert_used > 0);
  406. } else {
  407. GGML_ASSERT(hparams.n_expert_used == 0);
  408. }
  409. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  410. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  411. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  412. std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0);
  413. std::fill(hparams.swa_layers.begin(), hparams.swa_layers.end(), 0);
  414. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  415. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  416. // n_head_kv is optional, default to n_head
  417. hparams.n_head_kv_arr = hparams.n_head_arr;
  418. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  419. bool rope_finetuned = false;
  420. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  421. hparams.rope_finetuned = rope_finetuned;
  422. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  423. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  424. // rope_freq_base (optional)
  425. hparams.rope_freq_base_train = 10000.0f;
  426. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  427. std::string rope_scaling("linear");
  428. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  429. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  430. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  431. // rope_freq_scale (inverse of the kv) is optional
  432. float ropescale = 0.0f;
  433. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  434. // try the old key name
  435. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  436. }
  437. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  438. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  439. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  440. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  441. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  442. // non-transformer models do not have attention heads
  443. if (hparams.n_head() > 0) {
  444. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  445. // gpt-j n_rot = rotary_dim
  446. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  447. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  448. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  449. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  450. // sanity check for n_rot (optional)
  451. hparams.n_rot = hparams.n_embd_head_k;
  452. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  453. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  454. if (hparams.n_rot != hparams.n_embd_head_k) {
  455. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  456. }
  457. }
  458. } else {
  459. hparams.n_rot = 0;
  460. hparams.n_embd_head_k = 0;
  461. hparams.n_embd_head_v = 0;
  462. }
  463. // for differentiating model types
  464. uint32_t n_vocab = 0;
  465. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  466. // arch-specific KVs
  467. switch (arch) {
  468. case LLM_ARCH_LLAMA:
  469. {
  470. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  471. if (hparams.n_expert == 8) {
  472. switch (hparams.n_layer) {
  473. case 32: type = LLM_TYPE_8x7B; break;
  474. case 56: type = LLM_TYPE_8x22B; break;
  475. default: type = LLM_TYPE_UNKNOWN;
  476. }
  477. } else {
  478. switch (hparams.n_layer) {
  479. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  480. case 22: type = LLM_TYPE_1B; break;
  481. case 26: type = LLM_TYPE_3B; break;
  482. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  483. // granite uses a vocab with len 49152
  484. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  485. case 36: type = LLM_TYPE_8B; break; // granite
  486. case 40: type = LLM_TYPE_13B; break;
  487. case 48: type = LLM_TYPE_34B; break;
  488. case 60: type = LLM_TYPE_30B; break;
  489. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  490. default: type = LLM_TYPE_UNKNOWN;
  491. }
  492. }
  493. } break;
  494. case LLM_ARCH_LLAMA4:
  495. {
  496. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  497. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  498. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  499. hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
  500. hparams.n_swa = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
  501. hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
  502. switch (hparams.n_expert) {
  503. case 16: type = LLM_TYPE_17B_16E; break;
  504. case 128: type = LLM_TYPE_17B_128E; break;
  505. default: type = LLM_TYPE_UNKNOWN;
  506. }
  507. if (type == LLM_TYPE_17B_128E) {
  508. hparams.use_kq_norm = false;
  509. }
  510. } break;
  511. case LLM_ARCH_DECI:
  512. {
  513. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  514. switch (hparams.n_layer) {
  515. case 32: type = LLM_TYPE_7B; break;
  516. case 80: type = LLM_TYPE_70B; break;
  517. case 162: type = LLM_TYPE_405B; break;
  518. default: type = LLM_TYPE_UNKNOWN;
  519. }
  520. } break;
  521. case LLM_ARCH_MINICPM:
  522. {
  523. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  524. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  525. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  526. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  527. switch (hparams.n_layer) {
  528. case 52: type = LLM_TYPE_1B; break;
  529. case 40: type = LLM_TYPE_2B; break;
  530. default: type = LLM_TYPE_UNKNOWN;
  531. }
  532. } break;
  533. case LLM_ARCH_MINICPM3:
  534. {
  535. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  536. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  537. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  538. switch (hparams.n_layer) {
  539. case 62: type = LLM_TYPE_4B; break;
  540. default: type = LLM_TYPE_UNKNOWN;
  541. }
  542. } break;
  543. case LLM_ARCH_GROK:
  544. {
  545. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  546. switch (hparams.n_layer) {
  547. case 64: type = LLM_TYPE_314B; break;
  548. default: type = LLM_TYPE_UNKNOWN;
  549. }
  550. } break;
  551. case LLM_ARCH_FALCON:
  552. {
  553. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  554. switch (hparams.n_layer) {
  555. case 32: type = LLM_TYPE_7B; break;
  556. case 60: type = LLM_TYPE_40B; break;
  557. default: type = LLM_TYPE_UNKNOWN;
  558. }
  559. } break;
  560. case LLM_ARCH_BAICHUAN:
  561. {
  562. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  563. switch (hparams.n_layer) {
  564. case 32: type = LLM_TYPE_7B; break;
  565. case 40: type = LLM_TYPE_13B; break;
  566. default: type = LLM_TYPE_UNKNOWN;
  567. }
  568. if (type == LLM_TYPE_13B) {
  569. // TODO: become GGUF KV parameter
  570. hparams.f_max_alibi_bias = 8.0f;
  571. }
  572. } break;
  573. case LLM_ARCH_STARCODER:
  574. {
  575. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  576. switch (hparams.n_layer) {
  577. case 24: type = LLM_TYPE_1B; break;
  578. case 36: type = LLM_TYPE_3B; break;
  579. case 42: type = LLM_TYPE_7B; break;
  580. case 40: type = LLM_TYPE_15B; break;
  581. default: type = LLM_TYPE_UNKNOWN;
  582. }
  583. } break;
  584. case LLM_ARCH_REFACT:
  585. {
  586. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  587. switch (hparams.n_layer) {
  588. case 32: type = LLM_TYPE_1B; break;
  589. default: type = LLM_TYPE_UNKNOWN;
  590. }
  591. // TODO: become GGUF KV parameter
  592. hparams.f_max_alibi_bias = 8.0f;
  593. } break;
  594. case LLM_ARCH_BERT:
  595. {
  596. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  597. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  598. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  599. ml.get_arr_n(LLM_KV_CLASSIFIER_OUTPUT_LABELS, hparams.n_cls_out, false);
  600. switch (hparams.n_layer) {
  601. case 3:
  602. type = LLM_TYPE_17M; break; // bge-micro
  603. case 6:
  604. type = LLM_TYPE_22M; break; // MiniLM-L6
  605. case 12:
  606. switch (hparams.n_embd) {
  607. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  608. case 768: type = LLM_TYPE_109M; break; // bge-base
  609. default: type = LLM_TYPE_UNKNOWN;
  610. } break;
  611. case 24:
  612. type = LLM_TYPE_335M; break; // bge-large
  613. default: type = LLM_TYPE_UNKNOWN;
  614. }
  615. } break;
  616. case LLM_ARCH_JINA_BERT_V2:
  617. {
  618. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  619. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  620. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  621. hparams.f_max_alibi_bias = 8.0f;
  622. switch (hparams.n_layer) {
  623. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  624. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  625. default: type = LLM_TYPE_UNKNOWN;
  626. }
  627. } break;
  628. case LLM_ARCH_NOMIC_BERT:
  629. case LLM_ARCH_NOMIC_BERT_MOE:
  630. {
  631. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  632. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  633. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  634. ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
  635. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  636. if (arch == LLM_ARCH_NOMIC_BERT) {
  637. type = LLM_TYPE_137M;
  638. } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
  639. type = LLM_TYPE_475M;
  640. }
  641. }
  642. } break;
  643. case LLM_ARCH_BLOOM:
  644. {
  645. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  646. switch (hparams.n_layer) {
  647. case 24: type = LLM_TYPE_1B; break;
  648. case 30:
  649. switch (hparams.n_embd) {
  650. case 2560: type = LLM_TYPE_3B; break;
  651. case 4096: type = LLM_TYPE_7B; break;
  652. default: type = LLM_TYPE_UNKNOWN;
  653. } break;
  654. default: type = LLM_TYPE_UNKNOWN;
  655. }
  656. // TODO: become GGUF KV parameter
  657. hparams.f_max_alibi_bias = 8.0f;
  658. } break;
  659. case LLM_ARCH_MPT:
  660. {
  661. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  662. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  663. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  664. switch (hparams.n_layer) {
  665. case 32: type = LLM_TYPE_7B; break;
  666. case 48: type = LLM_TYPE_30B; break;
  667. default: type = LLM_TYPE_UNKNOWN;
  668. }
  669. } break;
  670. case LLM_ARCH_STABLELM:
  671. {
  672. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  673. switch (hparams.n_layer) {
  674. case 24: type = LLM_TYPE_1B; break;
  675. case 32: type = LLM_TYPE_3B; break;
  676. case 40: type = LLM_TYPE_12B; break;
  677. default: type = LLM_TYPE_UNKNOWN;
  678. }
  679. } break;
  680. case LLM_ARCH_QWEN:
  681. {
  682. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  683. switch (hparams.n_layer) {
  684. case 32: type = LLM_TYPE_7B; break;
  685. case 40: type = LLM_TYPE_13B; break;
  686. default: type = LLM_TYPE_UNKNOWN;
  687. }
  688. } break;
  689. case LLM_ARCH_QWEN2VL:
  690. {
  691. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  692. }
  693. // fall through
  694. case LLM_ARCH_QWEN2:
  695. {
  696. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  697. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  698. switch (hparams.n_layer) {
  699. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  700. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  701. case 32: type = LLM_TYPE_7B; break;
  702. case 36: type = LLM_TYPE_3B; break;
  703. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  704. case 48: type = LLM_TYPE_14B; break;
  705. case 64: type = LLM_TYPE_32B; break;
  706. case 80: type = LLM_TYPE_70B; break;
  707. default: type = LLM_TYPE_UNKNOWN;
  708. }
  709. } break;
  710. case LLM_ARCH_QWEN2MOE:
  711. {
  712. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  713. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  714. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  715. switch (hparams.n_layer) {
  716. case 24: type = LLM_TYPE_A2_7B; break;
  717. case 28: type = LLM_TYPE_57B_A14B; break;
  718. default: type = LLM_TYPE_UNKNOWN;
  719. }
  720. } break;
  721. case LLM_ARCH_QWEN3:
  722. {
  723. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  724. switch (hparams.n_layer) {
  725. case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
  726. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  727. case 40: type = LLM_TYPE_14B; break;
  728. case 64: type = LLM_TYPE_32B; break;
  729. default: type = LLM_TYPE_UNKNOWN;
  730. }
  731. } break;
  732. case LLM_ARCH_QWEN3MOE:
  733. {
  734. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  735. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  736. switch (hparams.n_layer) {
  737. case 48: type = LLM_TYPE_30B_A3B; break;
  738. case 94: type = LLM_TYPE_235B_A22B; break;
  739. default: type = LLM_TYPE_UNKNOWN;
  740. }
  741. } break;
  742. case LLM_ARCH_PHI2:
  743. {
  744. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  745. switch (hparams.n_layer) {
  746. case 24: type = LLM_TYPE_1B; break;
  747. case 32: type = LLM_TYPE_3B; break;
  748. default: type = LLM_TYPE_UNKNOWN;
  749. }
  750. } break;
  751. case LLM_ARCH_PHI3:
  752. {
  753. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  754. switch (hparams.n_layer) {
  755. case 24: type = LLM_TYPE_1B; break;
  756. case 32: type = LLM_TYPE_3B; break;
  757. case 40: type = LLM_TYPE_14B; break;
  758. default: type = LLM_TYPE_UNKNOWN;
  759. }
  760. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  761. if (found_swa && hparams.n_swa > 0) {
  762. LLAMA_LOG_WARN("%s: Phi SWA is currently disabled - results might be suboptimal for some models (see %s)\n",
  763. __func__, "https://github.com/ggml-org/llama.cpp/pull/13676");
  764. // TODO: fix conversion scripts to correctly populate `n_swa` and `n_swa_pattern`
  765. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  766. hparams.n_swa = 0;
  767. hparams.set_swa_pattern(1);
  768. }
  769. } break;
  770. case LLM_ARCH_PHIMOE:
  771. {
  772. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  773. switch (hparams.n_layer) {
  774. case 32: type = LLM_TYPE_16x3_8B; break;
  775. default: type = LLM_TYPE_UNKNOWN;
  776. }
  777. } break;
  778. case LLM_ARCH_PLAMO:
  779. {
  780. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  781. switch (hparams.n_layer) {
  782. case 40: type = LLM_TYPE_13B; break;
  783. default: type = LLM_TYPE_UNKNOWN;
  784. }
  785. } break;
  786. case LLM_ARCH_GPT2:
  787. {
  788. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  789. switch (hparams.n_layer) {
  790. case 12: type = LLM_TYPE_SMALL; break;
  791. case 24: type = LLM_TYPE_MEDIUM; break;
  792. case 36: type = LLM_TYPE_LARGE; break;
  793. case 48: type = LLM_TYPE_XL; break;
  794. default: type = LLM_TYPE_UNKNOWN;
  795. }
  796. } break;
  797. case LLM_ARCH_CODESHELL:
  798. {
  799. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  800. switch (hparams.n_layer) {
  801. case 42: type = LLM_TYPE_7B; break;
  802. default: type = LLM_TYPE_UNKNOWN;
  803. }
  804. } break;
  805. case LLM_ARCH_ORION:
  806. {
  807. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  808. switch (hparams.n_layer) {
  809. case 40: type = LLM_TYPE_14B; break;
  810. default: type = LLM_TYPE_UNKNOWN;
  811. }
  812. } break;
  813. case LLM_ARCH_INTERNLM2:
  814. {
  815. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  816. switch (hparams.n_layer) {
  817. case 32: type = LLM_TYPE_7B; break;
  818. case 48: type = LLM_TYPE_20B; break;
  819. default: type = LLM_TYPE_UNKNOWN;
  820. }
  821. } break;
  822. case LLM_ARCH_GEMMA:
  823. {
  824. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  825. switch (hparams.n_layer) {
  826. case 18: type = LLM_TYPE_2B; break;
  827. case 28: type = LLM_TYPE_7B; break;
  828. default: type = LLM_TYPE_UNKNOWN;
  829. }
  830. } break;
  831. case LLM_ARCH_GEMMA2:
  832. {
  833. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  834. hparams.n_swa = 4096; // default value of gemma 2
  835. hparams.set_swa_pattern(2);
  836. hparams.attn_soft_cap = true;
  837. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  838. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  839. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  840. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  841. switch (hparams.n_layer) {
  842. case 26: type = LLM_TYPE_2B; break;
  843. case 42: type = LLM_TYPE_9B; break;
  844. case 46: type = LLM_TYPE_27B; break;
  845. default: type = LLM_TYPE_UNKNOWN;
  846. }
  847. } break;
  848. case LLM_ARCH_GEMMA3:
  849. {
  850. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  851. hparams.set_swa_pattern(6);
  852. hparams.rope_freq_base_train_swa = 10000.0f;
  853. hparams.rope_freq_scale_train_swa = 1.0f;
  854. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  855. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  856. switch (hparams.n_layer) {
  857. case 26: type = LLM_TYPE_1B; break;
  858. case 34: type = LLM_TYPE_4B; break;
  859. case 48: type = LLM_TYPE_12B; break;
  860. case 62: type = LLM_TYPE_27B; break;
  861. default: type = LLM_TYPE_UNKNOWN;
  862. }
  863. hparams.f_attention_scale = type == LLM_TYPE_27B
  864. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  865. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  866. } break;
  867. case LLM_ARCH_STARCODER2:
  868. {
  869. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  870. switch (hparams.n_layer) {
  871. case 30: type = LLM_TYPE_3B; break;
  872. case 32: type = LLM_TYPE_7B; break;
  873. case 40: type = LLM_TYPE_15B; break;
  874. case 52: type = LLM_TYPE_20B; break; // granite
  875. case 88: type = LLM_TYPE_34B; break; // granite
  876. default: type = LLM_TYPE_UNKNOWN;
  877. }
  878. } break;
  879. case LLM_ARCH_MAMBA:
  880. {
  881. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  882. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  883. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  884. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  885. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  886. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  887. switch (hparams.n_layer) {
  888. case 24:
  889. switch (hparams.n_embd) {
  890. case 768: type = LLM_TYPE_SMALL; break;
  891. default: type = LLM_TYPE_UNKNOWN;
  892. } break;
  893. case 48:
  894. switch (hparams.n_embd) {
  895. case 1024: type = LLM_TYPE_MEDIUM; break;
  896. case 1536: type = LLM_TYPE_LARGE; break;
  897. case 2048: type = LLM_TYPE_XL; break;
  898. default: type = LLM_TYPE_UNKNOWN;
  899. } break;
  900. case 64:
  901. switch (hparams.n_embd) {
  902. case 2560: type = LLM_TYPE_3B; break;
  903. default: type = LLM_TYPE_UNKNOWN;
  904. } break;
  905. default: type = LLM_TYPE_UNKNOWN;
  906. }
  907. } break;
  908. case LLM_ARCH_XVERSE:
  909. {
  910. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  911. switch (hparams.n_layer) {
  912. case 32: type = LLM_TYPE_7B; break;
  913. case 40: type = LLM_TYPE_13B; break;
  914. case 80: type = LLM_TYPE_65B; break;
  915. default: type = LLM_TYPE_UNKNOWN;
  916. }
  917. } break;
  918. case LLM_ARCH_COMMAND_R:
  919. {
  920. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  921. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  922. switch (hparams.n_layer) {
  923. case 40: type = LLM_TYPE_35B; break;
  924. default: type = LLM_TYPE_UNKNOWN;
  925. }
  926. } break;
  927. case LLM_ARCH_COHERE2:
  928. {
  929. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  930. hparams.set_swa_pattern(4);
  931. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  932. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  933. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  934. switch (hparams.n_layer) {
  935. case 32: type = LLM_TYPE_8B; break;
  936. default: type = LLM_TYPE_UNKNOWN;
  937. }
  938. } break;
  939. case LLM_ARCH_DBRX:
  940. {
  941. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  942. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  943. switch (hparams.n_layer) {
  944. case 40: type = LLM_TYPE_16x12B; break;
  945. default: type = LLM_TYPE_UNKNOWN;
  946. }
  947. } break;
  948. case LLM_ARCH_OLMO:
  949. {
  950. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  951. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  952. switch (hparams.n_layer) {
  953. case 22: type = LLM_TYPE_1B; break;
  954. case 32: type = LLM_TYPE_7B; break;
  955. case 80: type = LLM_TYPE_70B; break;
  956. default: type = LLM_TYPE_UNKNOWN;
  957. }
  958. } break;
  959. case LLM_ARCH_OLMO2:
  960. {
  961. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  962. switch (hparams.n_layer) {
  963. case 16: type = LLM_TYPE_1B; break;
  964. case 32: type = LLM_TYPE_7B; break;
  965. case 40: type = LLM_TYPE_13B; break;
  966. case 64: type = LLM_TYPE_32B; break;
  967. default: type = LLM_TYPE_UNKNOWN;
  968. }
  969. } break;
  970. case LLM_ARCH_OLMOE:
  971. {
  972. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  973. switch (hparams.n_layer) {
  974. case 16: type = LLM_TYPE_A1_7B; break;
  975. default: type = LLM_TYPE_UNKNOWN;
  976. }
  977. } break;
  978. case LLM_ARCH_OPENELM:
  979. {
  980. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  981. switch (hparams.n_layer) {
  982. case 16: type = LLM_TYPE_270M; break;
  983. case 20: type = LLM_TYPE_450M; break;
  984. case 28: type = LLM_TYPE_1B; break;
  985. case 36: type = LLM_TYPE_3B; break;
  986. default: type = LLM_TYPE_UNKNOWN;
  987. }
  988. } break;
  989. case LLM_ARCH_GPTNEOX:
  990. {
  991. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  992. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  993. switch (hparams.n_layer) {
  994. case 6:
  995. switch (hparams.n_ff()) {
  996. case 512: type = LLM_TYPE_14M; break;
  997. case 2048: type = LLM_TYPE_70M; break;
  998. default: type = LLM_TYPE_UNKNOWN;
  999. } break;
  1000. case 12:
  1001. switch (hparams.n_ff()) {
  1002. case 3072: type = LLM_TYPE_160M; break;
  1003. default: type = LLM_TYPE_UNKNOWN;
  1004. } break;
  1005. case 16:
  1006. switch (hparams.n_ff()) {
  1007. case 8192: type = LLM_TYPE_1B; break;
  1008. default: type = LLM_TYPE_UNKNOWN;
  1009. } break;
  1010. case 24:
  1011. switch (hparams.n_ff()) {
  1012. case 4096: type = LLM_TYPE_410M; break;
  1013. case 8192: type = LLM_TYPE_1_4B; break;
  1014. default: type = LLM_TYPE_UNKNOWN;
  1015. } break;
  1016. case 32:
  1017. switch (hparams.n_ff()) {
  1018. case 10240: type = LLM_TYPE_2_8B; break;
  1019. case 16384: type = LLM_TYPE_6_9B; break;
  1020. default: type = LLM_TYPE_UNKNOWN;
  1021. } break;
  1022. case 36:
  1023. switch (hparams.n_ff()) {
  1024. case 20480: type = LLM_TYPE_12B; break;
  1025. default: type = LLM_TYPE_UNKNOWN;
  1026. } break;
  1027. case 44:
  1028. switch (hparams.n_ff()) {
  1029. case 24576: type = LLM_TYPE_20B; break;
  1030. default: type = LLM_TYPE_UNKNOWN;
  1031. } break;
  1032. default: type = LLM_TYPE_UNKNOWN;
  1033. }
  1034. } break;
  1035. case LLM_ARCH_ARCTIC:
  1036. {
  1037. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1038. if (hparams.n_expert == 128) {
  1039. switch (hparams.n_layer) {
  1040. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  1041. default: type = LLM_TYPE_UNKNOWN;
  1042. }
  1043. } else {
  1044. type = LLM_TYPE_UNKNOWN;
  1045. }
  1046. } break;
  1047. case LLM_ARCH_DEEPSEEK:
  1048. {
  1049. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1050. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1051. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1052. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1053. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1054. switch (hparams.n_layer) {
  1055. case 28: type = LLM_TYPE_20B; break;
  1056. default: type = LLM_TYPE_UNKNOWN;
  1057. }
  1058. } break;
  1059. case LLM_ARCH_DEEPSEEK2:
  1060. {
  1061. bool is_lite = (hparams.n_layer == 27);
  1062. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1063. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1064. if (!is_lite) {
  1065. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1066. }
  1067. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1068. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
  1069. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
  1070. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1071. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1072. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1073. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1074. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1075. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1076. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1077. // that have no expert_gating_func model parameter set
  1078. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1079. }
  1080. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  1081. switch (hparams.n_layer) {
  1082. case 27: type = LLM_TYPE_16B; break;
  1083. case 60: type = LLM_TYPE_236B; break;
  1084. case 61: type = LLM_TYPE_671B; break;
  1085. default: type = LLM_TYPE_UNKNOWN;
  1086. }
  1087. } break;
  1088. case LLM_ARCH_PLM:
  1089. {
  1090. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1091. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1092. switch (hparams.n_layer) {
  1093. case 32: type = LLM_TYPE_1_8B; break;
  1094. default: type = LLM_TYPE_UNKNOWN;
  1095. }
  1096. } break;
  1097. case LLM_ARCH_CHATGLM:
  1098. {
  1099. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1100. switch (hparams.n_layer) {
  1101. case 28: {
  1102. if (hparams.n_head(0) == 16) {
  1103. type = LLM_TYPE_1_5B;
  1104. } else {
  1105. type = LLM_TYPE_6B;
  1106. }
  1107. } break;
  1108. case 40: {
  1109. if (hparams.n_head(0) == 24) {
  1110. type = LLM_TYPE_4B;
  1111. } else {
  1112. type = LLM_TYPE_9B;
  1113. }
  1114. } break;
  1115. default: type = LLM_TYPE_UNKNOWN;
  1116. }
  1117. } break;
  1118. case LLM_ARCH_GLM4:
  1119. {
  1120. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1121. switch (hparams.n_layer) {
  1122. case 40: type = LLM_TYPE_9B; break;
  1123. case 61: type = LLM_TYPE_32B; break;
  1124. default: type = LLM_TYPE_UNKNOWN;
  1125. }
  1126. } break;
  1127. case LLM_ARCH_BITNET:
  1128. {
  1129. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1130. switch (hparams.n_layer) {
  1131. case 26: type = LLM_TYPE_3B; break;
  1132. default: type = LLM_TYPE_UNKNOWN;
  1133. }
  1134. } break;
  1135. case LLM_ARCH_T5:
  1136. {
  1137. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1138. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1139. uint32_t dec_start_token_id;
  1140. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1141. hparams.dec_start_token_id = dec_start_token_id;
  1142. }
  1143. switch (hparams.n_layer) {
  1144. case 6: type = LLM_TYPE_60M; break; // t5-small
  1145. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1146. case 12:
  1147. switch (hparams.n_ff()) {
  1148. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1149. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1150. default: type = LLM_TYPE_UNKNOWN;
  1151. } break;
  1152. case 24:
  1153. switch (hparams.n_ff()) {
  1154. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1155. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1156. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1157. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1158. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1159. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1160. default: type = LLM_TYPE_UNKNOWN;
  1161. } break;
  1162. default: type = LLM_TYPE_UNKNOWN;
  1163. }
  1164. } break;
  1165. case LLM_ARCH_T5ENCODER:
  1166. {
  1167. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1168. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1169. type = LLM_TYPE_UNKNOWN;
  1170. } break;
  1171. case LLM_ARCH_JAIS:
  1172. {
  1173. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1174. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1175. switch (hparams.n_layer) {
  1176. case 24: type = LLM_TYPE_1_3B; break;
  1177. case 40: type = LLM_TYPE_13B; break;
  1178. /* TODO: add variants */
  1179. default: type = LLM_TYPE_UNKNOWN;
  1180. }
  1181. } break;
  1182. case LLM_ARCH_NEMOTRON:
  1183. {
  1184. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1185. switch (hparams.n_layer) {
  1186. case 32: type = LLM_TYPE_4B; break;
  1187. default: type = LLM_TYPE_UNKNOWN;
  1188. }
  1189. } break;
  1190. case LLM_ARCH_EXAONE:
  1191. {
  1192. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1193. switch (hparams.n_layer) {
  1194. case 32: type = LLM_TYPE_8B; break;
  1195. default: type = LLM_TYPE_UNKNOWN;
  1196. }
  1197. } break;
  1198. case LLM_ARCH_RWKV6:
  1199. case LLM_ARCH_RWKV6QWEN2:
  1200. {
  1201. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1202. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1203. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1204. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1205. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1206. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1207. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1208. switch (hparams.n_layer) {
  1209. case 24: type = LLM_TYPE_1_6B; break;
  1210. case 32:
  1211. switch (hparams.n_embd) {
  1212. case 2560: type = LLM_TYPE_3B; break;
  1213. case 4096: type = LLM_TYPE_7B; break;
  1214. default: type = LLM_TYPE_UNKNOWN;
  1215. } break;
  1216. case 61: type = LLM_TYPE_14B; break;
  1217. case 64: type = LLM_TYPE_32B; break;
  1218. default: type = LLM_TYPE_UNKNOWN;
  1219. }
  1220. } break;
  1221. case LLM_ARCH_RWKV7:
  1222. case LLM_ARCH_ARWKV7:
  1223. {
  1224. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1225. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1226. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1227. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1228. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1229. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1230. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1231. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1232. switch (hparams.n_layer) {
  1233. case 12: type = LLM_TYPE_190M; break;
  1234. case 24:
  1235. switch (hparams.n_embd) {
  1236. case 1024: type = LLM_TYPE_450M; break;
  1237. case 2048: type = LLM_TYPE_1_5B; break;
  1238. default: type = LLM_TYPE_UNKNOWN;
  1239. } break;
  1240. case 28:
  1241. switch (hparams.n_embd) {
  1242. case 1536: type = LLM_TYPE_1_5B; break;
  1243. case 3584: type = LLM_TYPE_7B; break;
  1244. default: type = LLM_TYPE_UNKNOWN;
  1245. } break;
  1246. case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World
  1247. default: type = LLM_TYPE_UNKNOWN;
  1248. }
  1249. } break;
  1250. case LLM_ARCH_GRANITE:
  1251. case LLM_ARCH_GRANITE_MOE:
  1252. {
  1253. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1254. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1255. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1256. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1257. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1258. switch (hparams.n_layer) {
  1259. case 32: type = LLM_TYPE_3B; break;
  1260. case 40: type = LLM_TYPE_3B; break;
  1261. // Add additional layer/vocab/etc checks here for other model sizes
  1262. default: type = LLM_TYPE_UNKNOWN;
  1263. }
  1264. // For Granite MoE Shared
  1265. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
  1266. } break;
  1267. case LLM_ARCH_CHAMELEON:
  1268. {
  1269. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1270. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1271. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1272. switch (hparams.n_layer) {
  1273. case 32: type = LLM_TYPE_7B; break;
  1274. case 48: type = LLM_TYPE_34B; break;
  1275. default: type = LLM_TYPE_UNKNOWN;
  1276. }
  1277. } break;
  1278. case LLM_ARCH_WAVTOKENIZER_DEC:
  1279. {
  1280. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1281. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1282. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1283. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1284. } break;
  1285. case LLM_ARCH_BAILINGMOE:
  1286. {
  1287. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1288. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1289. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1290. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1291. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1292. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1293. switch (hparams.n_layer) {
  1294. case 28: type = LLM_TYPE_16B; break;
  1295. case 88: type = LLM_TYPE_290B; break;
  1296. default: type = LLM_TYPE_UNKNOWN;
  1297. }
  1298. } break;
  1299. default: throw std::runtime_error("unsupported model architecture");
  1300. }
  1301. pimpl->n_bytes = ml.n_bytes;
  1302. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1303. if (hparams.f_max_alibi_bias > 0.0f) {
  1304. hparams.use_alibi = true;
  1305. }
  1306. hparams.rope_type = llama_model_rope_type(this);
  1307. }
  1308. void llama_model::load_vocab(llama_model_loader & ml) {
  1309. const auto kv = LLM_KV(arch);
  1310. vocab.load(ml, kv);
  1311. }
  1312. bool llama_model::load_tensors(llama_model_loader & ml) {
  1313. const auto & split_mode = params.split_mode;
  1314. const auto & n_gpu_layers = params.n_gpu_layers;
  1315. const auto & use_mlock = params.use_mlock;
  1316. const auto & tensor_split = params.tensor_split;
  1317. const int n_layer = hparams.n_layer;
  1318. const bool use_mmap_buffer = true;
  1319. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  1320. // build a list of buffer types for the CPU and GPU devices
  1321. pimpl->cpu_buft_list = make_cpu_buft_list(devices);
  1322. for (auto * dev : devices) {
  1323. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1324. // add CPU buffer types as a fallback
  1325. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1326. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1327. }
  1328. // calculate the split points
  1329. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1330. std::vector<float> splits(n_devices());
  1331. if (all_zero) {
  1332. // default split, by free memory
  1333. for (size_t i = 0; i < n_devices(); ++i) {
  1334. ggml_backend_dev_t dev = devices[i];
  1335. size_t total;
  1336. size_t free;
  1337. ggml_backend_dev_memory(dev, &free, &total);
  1338. splits[i] = free;
  1339. }
  1340. } else {
  1341. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1342. }
  1343. // sum and normalize the splits to get the split points
  1344. float split_sum = 0.0f;
  1345. for (size_t i = 0; i < n_devices(); ++i) {
  1346. split_sum += splits[i];
  1347. splits[i] = split_sum;
  1348. }
  1349. for (size_t i = 0; i < n_devices(); ++i) {
  1350. splits[i] /= split_sum;
  1351. }
  1352. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1353. if (cpu_dev == nullptr) {
  1354. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  1355. }
  1356. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1357. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1358. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1359. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  1360. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1361. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  1362. return {cpu_dev, &pimpl->cpu_buft_list};
  1363. }
  1364. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1365. auto * dev = devices.at(layer_gpu);
  1366. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  1367. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1368. };
  1369. // assign the input layer
  1370. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1371. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1372. // assign the repeating layers to the devices according to the splits
  1373. pimpl->dev_layer.resize(n_layer);
  1374. for (int il = 0; il < n_layer; ++il) {
  1375. pimpl->dev_layer[il] = get_layer_buft_list(il);
  1376. }
  1377. // assign the output layer
  1378. pimpl->dev_output = get_layer_buft_list(n_layer);
  1379. // one ggml context per buffer type
  1380. int max_n_tensors = ml.n_tensors;
  1381. max_n_tensors += 1; // duplicated output tensor
  1382. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  1383. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  1384. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1385. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  1386. auto it = ctx_map.find(buft);
  1387. if (it == ctx_map.end()) {
  1388. ggml_init_params params = {
  1389. /*.mem_size =*/ ctx_size,
  1390. /*.mem_buffer =*/ NULL,
  1391. /*.no_alloc =*/ true,
  1392. };
  1393. ggml_context * ctx = ggml_init(params);
  1394. if (!ctx) {
  1395. throw std::runtime_error(format("failed to create ggml context"));
  1396. }
  1397. ctx_map[buft] = ctx;
  1398. pimpl->ctxs.emplace_back(ctx);
  1399. return ctx;
  1400. }
  1401. return it->second;
  1402. };
  1403. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  1404. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  1405. // create tensors for the weights
  1406. {
  1407. // note: cast to int64_t since we will use these for the tensor dimensions
  1408. const int64_t n_head = hparams.n_head();
  1409. const int64_t n_head_kv = hparams.n_head_kv();
  1410. const int64_t n_embd = hparams.n_embd;
  1411. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1412. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1413. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  1414. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  1415. const int64_t n_ff = hparams.n_ff();
  1416. const int64_t n_embd_gqa = n_embd_v_gqa;
  1417. const int64_t n_vocab = vocab.n_tokens();
  1418. const int64_t n_token_types = vocab.n_token_types();
  1419. const int64_t n_rot = hparams.n_rot;
  1420. const int64_t n_expert = hparams.n_expert;
  1421. const int64_t n_expert_used = hparams.n_expert_used;
  1422. const int64_t n_ctx_train = hparams.n_ctx_train;
  1423. if (n_expert > 0 && hparams.n_expert_used == 0) {
  1424. throw std::runtime_error("model has expert layers but no expert layers are used");
  1425. }
  1426. int n_moved_tensors = 0;
  1427. ggml_tensor * first_moved_tensor = nullptr;
  1428. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  1429. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  1430. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  1431. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  1432. if (!t_meta) {
  1433. if (flags & TENSOR_NOT_REQUIRED) {
  1434. return nullptr;
  1435. }
  1436. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  1437. }
  1438. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  1439. // the tensor is duplicated
  1440. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  1441. llm_tensor tn_tensor = tn.tensor;
  1442. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  1443. tn_tensor = LLM_TENSOR_OUTPUT;
  1444. }
  1445. llm_tensor_info info;
  1446. try {
  1447. info = llm_tensor_info_for(tn_tensor);
  1448. } catch (const std::out_of_range & e) {
  1449. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  1450. }
  1451. // skip unused tensors
  1452. if (info.op == GGML_OP_NONE) {
  1453. const size_t nbytes = ggml_nbytes(t_meta);
  1454. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  1455. ml.size_data -= nbytes;
  1456. ml.n_created++;
  1457. return nullptr;
  1458. }
  1459. // tensors with "bias" suffix are always used with GGML_OP_ADD
  1460. ggml_op op;
  1461. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  1462. if (bias) {
  1463. op = GGML_OP_ADD;
  1464. } else {
  1465. op = info.op;
  1466. }
  1467. // sanity checks
  1468. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  1469. if (tn.bid != -1) {
  1470. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  1471. }
  1472. } else {
  1473. if (tn.bid == -1) {
  1474. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  1475. }
  1476. }
  1477. // select the buffer type for this tensor
  1478. buft_list_t * buft_list;
  1479. switch (info.layer) {
  1480. case LLM_TENSOR_LAYER_INPUT:
  1481. buft_list = pimpl->dev_input.buft_list;
  1482. break;
  1483. case LLM_TENSOR_LAYER_OUTPUT:
  1484. buft_list = pimpl->dev_output.buft_list;
  1485. break;
  1486. case LLM_TENSOR_LAYER_REPEATING:
  1487. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  1488. break;
  1489. default:
  1490. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  1491. }
  1492. ggml_backend_buffer_type_t buft = nullptr;
  1493. // check overrides
  1494. if (ml.tensor_buft_overrides) {
  1495. std::string tensor_name = tn.str();
  1496. for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
  1497. std::regex pattern(overrides->pattern);
  1498. if (std::regex_search(tensor_name, pattern)) {
  1499. buft = overrides->buft;
  1500. LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
  1501. tensor_name.c_str(),
  1502. ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
  1503. ggml_backend_buft_name(buft));
  1504. break;
  1505. }
  1506. }
  1507. }
  1508. if (!buft) {
  1509. buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  1510. if (!buft) {
  1511. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  1512. }
  1513. }
  1514. // avoid using a host buffer when using mmap
  1515. auto * buft_dev = ggml_backend_buft_get_device(buft);
  1516. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  1517. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1518. if (!cpu_dev) {
  1519. throw std::runtime_error("no CPU backend found");
  1520. }
  1521. buft = ggml_backend_dev_buffer_type(cpu_dev);
  1522. }
  1523. if (buft != buft_list->front().second) {
  1524. n_moved_tensors++;
  1525. if (!first_moved_tensor) {
  1526. first_moved_tensor = t_meta;
  1527. first_moved_from_buft = buft_list->front().second;
  1528. first_moved_to_buft = buft;
  1529. }
  1530. }
  1531. ggml_context * ctx = ctx_for_buft(buft);
  1532. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  1533. if (flags & TENSOR_DUPLICATED) {
  1534. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  1535. if (t) {
  1536. return t;
  1537. }
  1538. }
  1539. return ml.create_tensor(ctx, tn, ne, flags);
  1540. };
  1541. layers.resize(n_layer);
  1542. // TODO: move to a separate function
  1543. const auto tn = LLM_TN(arch);
  1544. switch (arch) {
  1545. case LLM_ARCH_LLAMA:
  1546. case LLM_ARCH_REFACT:
  1547. case LLM_ARCH_MINICPM:
  1548. case LLM_ARCH_GRANITE:
  1549. case LLM_ARCH_GRANITE_MOE:
  1550. {
  1551. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1552. // output
  1553. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1554. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1555. // if output is NULL, init from the input tok embed
  1556. if (output == NULL) {
  1557. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1558. }
  1559. for (int i = 0; i < n_layer; ++i) {
  1560. auto & layer = layers[i];
  1561. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1562. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1563. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1564. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1565. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1566. // optional bias tensors
  1567. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1568. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1569. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1570. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1571. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1572. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1573. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1574. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1575. }
  1576. else {
  1577. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1578. }
  1579. if (n_expert == 0) {
  1580. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1581. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1582. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1583. // optional MLP bias
  1584. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1585. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1586. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1587. } else {
  1588. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1589. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1590. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1591. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1592. // For Granite MoE Shared
  1593. if (hparams.n_ff_shexp > 0) {
  1594. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  1595. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  1596. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  1597. }
  1598. }
  1599. }
  1600. } break;
  1601. case LLM_ARCH_LLAMA4:
  1602. {
  1603. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1604. // output
  1605. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1606. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1607. // if output is NULL, init from the input tok embed
  1608. if (output == NULL) {
  1609. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1610. }
  1611. GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Llama 4 requires n_moe_layer_step > 0");
  1612. for (int i = 0; i < n_layer; ++i) {
  1613. bool is_moe_layer = (i + 1) % hparams.n_moe_layer_step == 0;
  1614. auto & layer = layers[i];
  1615. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1616. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1617. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1618. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1619. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1620. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1621. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1622. if (is_moe_layer) {
  1623. int n_ff_exp = hparams.n_ff_exp;
  1624. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1625. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1626. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  1627. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1628. // Shared expert
  1629. const int64_t n_ff_shexp = n_ff_exp;
  1630. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1631. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
  1632. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1633. } else {
  1634. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1635. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1636. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1637. }
  1638. }
  1639. } break;
  1640. case LLM_ARCH_DECI:
  1641. {
  1642. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1643. // output
  1644. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1645. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1646. // if output is NULL, init from the input tok embed
  1647. if (output == NULL) {
  1648. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1649. }
  1650. for (int i = 0; i < n_layer; ++i) {
  1651. auto & layer = layers[i];
  1652. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  1653. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  1654. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  1655. const int64_t n_ff = hparams.n_ff(i);
  1656. const int64_t n_head = hparams.n_head(i);
  1657. const int64_t n_head_kv = hparams.n_head_kv(i);
  1658. if (n_head_kv == 0 && n_head > 0) {
  1659. // linear attention for DeciLMCausalModel
  1660. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1661. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1662. }
  1663. else if (n_head_kv > 0) {
  1664. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1665. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1666. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1667. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1668. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1669. }
  1670. // optional bias tensors
  1671. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1672. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1673. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1674. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1675. if (n_ff > 0) {
  1676. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1677. }
  1678. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1679. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1680. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1681. }
  1682. else {
  1683. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1684. }
  1685. if (n_ff > 0) {
  1686. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1687. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1688. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1689. }
  1690. // optional MLP bias
  1691. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1692. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1693. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1694. }
  1695. } break;
  1696. case LLM_ARCH_MINICPM3:
  1697. {
  1698. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  1699. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  1700. const int64_t q_lora_rank = hparams.n_lora_q;
  1701. const int64_t kv_lora_rank = hparams.n_lora_kv;
  1702. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1703. // output
  1704. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1705. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1706. // if output is NULL, init from the input tok embed
  1707. if (output == NULL) {
  1708. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1709. }
  1710. for (int i = 0; i < n_layer; ++i) {
  1711. auto & layer = layers[i];
  1712. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1713. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  1714. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  1715. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  1716. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  1717. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  1718. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  1719. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  1720. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1721. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1722. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1723. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1724. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1725. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1726. }
  1727. } break;
  1728. case LLM_ARCH_GROK:
  1729. {
  1730. if (n_expert == 0) {
  1731. throw std::runtime_error("Grok model cannot have zero experts");
  1732. }
  1733. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1734. // output
  1735. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1736. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1737. // if output is NULL, init from the input tok embed
  1738. if (output == NULL) {
  1739. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1740. }
  1741. for (int i = 0; i < n_layer; ++i) {
  1742. auto & layer = layers[i];
  1743. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1744. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1745. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1746. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1747. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1748. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1749. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1750. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1751. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1752. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1753. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1754. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1755. }
  1756. } break;
  1757. case LLM_ARCH_DBRX:
  1758. {
  1759. if (n_expert == 0) {
  1760. throw std::runtime_error("DBRX model cannot have zero experts");
  1761. }
  1762. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1763. // output
  1764. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1765. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1766. for (int i = 0; i < n_layer; ++i) {
  1767. auto & layer = layers[i];
  1768. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1769. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1770. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1771. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1772. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1773. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1774. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1775. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1776. }
  1777. } break;
  1778. case LLM_ARCH_BAICHUAN:
  1779. {
  1780. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1781. {
  1782. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1783. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1784. }
  1785. for (int i = 0; i < n_layer; ++i) {
  1786. auto & layer = layers[i];
  1787. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1788. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1789. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1790. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1791. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1792. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1793. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1794. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1795. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1796. }
  1797. } break;
  1798. case LLM_ARCH_FALCON:
  1799. {
  1800. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1801. // output
  1802. {
  1803. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1804. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1805. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1806. if (!output) {
  1807. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1808. }
  1809. }
  1810. for (int i = 0; i < n_layer; ++i) {
  1811. auto & layer = layers[i];
  1812. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1813. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1814. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1815. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1816. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1817. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1818. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1819. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1820. }
  1821. } break;
  1822. case LLM_ARCH_STARCODER:
  1823. {
  1824. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1825. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1826. // output
  1827. {
  1828. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1829. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1830. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1831. if (!output) {
  1832. // needs to be on GPU
  1833. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1834. }
  1835. }
  1836. for (int i = 0; i < n_layer; ++i) {
  1837. auto & layer = layers[i];
  1838. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1839. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1840. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1841. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1842. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1843. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1844. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1845. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1846. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1847. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1848. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1849. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1850. }
  1851. } break;
  1852. case LLM_ARCH_BERT:
  1853. case LLM_ARCH_NOMIC_BERT:
  1854. case LLM_ARCH_NOMIC_BERT_MOE:
  1855. {
  1856. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1857. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
  1858. if (arch == LLM_ARCH_BERT) {
  1859. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1860. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  1861. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1862. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  1863. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  1864. }
  1865. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1866. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1867. for (int i = 0; i < n_layer; ++i) {
  1868. auto & layer = layers[i];
  1869. if (arch == LLM_ARCH_BERT) {
  1870. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1871. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1872. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1873. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1874. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1875. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1876. } else {
  1877. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1878. }
  1879. if (arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1880. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1881. }
  1882. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1883. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1884. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1885. if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
  1886. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1887. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
  1888. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1889. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1890. } else {
  1891. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1892. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1893. if (arch == LLM_ARCH_BERT || arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1894. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1895. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1896. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1897. } else {
  1898. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1899. }
  1900. }
  1901. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1902. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1903. }
  1904. } break;
  1905. case LLM_ARCH_JINA_BERT_V2:
  1906. {
  1907. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  1908. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  1909. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  1910. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  1911. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1912. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1913. for (int i = 0; i < n_layer; ++i) {
  1914. auto & layer = layers[i]; // JinaBertLayer
  1915. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1916. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1917. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1918. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1919. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1920. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1921. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1922. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1923. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1924. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1925. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  1926. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  1927. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  1928. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1929. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1930. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1931. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1932. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1933. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1934. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1935. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1936. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1937. }
  1938. } break;
  1939. case LLM_ARCH_BLOOM:
  1940. {
  1941. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1942. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1943. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1944. // output
  1945. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1946. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1947. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1948. // if output is NULL, init from the input tok embed
  1949. if (output == NULL) {
  1950. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1951. }
  1952. for (int i = 0; i < n_layer; ++i) {
  1953. auto & layer = layers[i];
  1954. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1955. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1956. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1957. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1958. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1959. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1960. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1961. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1962. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1963. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1964. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1965. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1966. }
  1967. } break;
  1968. case LLM_ARCH_MPT:
  1969. {
  1970. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1971. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  1972. // output
  1973. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1974. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1975. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1976. if (!output) {
  1977. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1978. }
  1979. for (int i = 0; i < n_layer; ++i) {
  1980. auto & layer = layers[i];
  1981. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1982. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1983. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1984. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1985. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1986. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1987. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1988. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1989. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1990. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1991. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1992. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1993. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1994. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1995. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1996. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1997. // AWQ ScaleActivation layer
  1998. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1999. }
  2000. } break;
  2001. case LLM_ARCH_STABLELM:
  2002. {
  2003. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2004. // output
  2005. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2006. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2007. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2008. for (int i = 0; i < n_layer; ++i) {
  2009. auto & layer = layers[i];
  2010. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2011. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2012. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2013. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2014. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2015. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2016. // optional bias tensors, present in Stable LM 2 1.6B
  2017. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2018. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2019. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2020. // optional q and k layernorms, present in StableLM 2 12B
  2021. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  2022. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  2023. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  2024. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2025. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2026. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2027. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2028. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2029. }
  2030. } break;
  2031. case LLM_ARCH_QWEN:
  2032. {
  2033. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2034. // output
  2035. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2036. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2037. for (int i = 0; i < n_layer; ++i) {
  2038. auto & layer = layers[i];
  2039. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2040. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  2041. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  2042. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2043. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2044. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  2045. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  2046. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  2047. }
  2048. } break;
  2049. case LLM_ARCH_QWEN2:
  2050. case LLM_ARCH_QWEN2VL:
  2051. {
  2052. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2053. // output
  2054. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2055. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2056. // if output is NULL, init from the input tok embed
  2057. if (output == NULL) {
  2058. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2059. }
  2060. for (int i = 0; i < n_layer; ++i) {
  2061. auto & layer = layers[i];
  2062. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2063. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2064. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2065. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2066. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2067. // optional bias tensors
  2068. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2069. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2070. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2071. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2072. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2073. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2074. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2075. }
  2076. } break;
  2077. case LLM_ARCH_QWEN2MOE:
  2078. {
  2079. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2080. // output
  2081. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2082. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2083. for (int i = 0; i < n_layer; ++i) {
  2084. auto & layer = layers[i];
  2085. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2086. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2087. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2088. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2089. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2090. // optional bias tensors
  2091. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2092. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2093. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2094. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2095. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2096. if (n_expert == 0) {
  2097. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  2098. }
  2099. if (n_expert_used == 0) {
  2100. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  2101. }
  2102. // MoE branch
  2103. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2104. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2105. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2106. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2107. // Shared expert branch
  2108. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  2109. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  2110. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2111. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  2112. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2113. }
  2114. } break;
  2115. case LLM_ARCH_QWEN3:
  2116. {
  2117. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2118. // output
  2119. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2120. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2121. // if output is NULL, init from the input tok embed
  2122. if (output == NULL) {
  2123. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2124. }
  2125. for (int i = 0; i < n_layer; ++i) {
  2126. auto & layer = layers[i];
  2127. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2128. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2129. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2130. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2131. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2132. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2133. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2134. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2135. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2136. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2137. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2138. }
  2139. } break;
  2140. case LLM_ARCH_QWEN3MOE:
  2141. {
  2142. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2143. // output
  2144. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2145. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2146. // if output is NULL, init from the input tok embed
  2147. if (output == NULL) {
  2148. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2149. }
  2150. for (int i = 0; i < n_layer; ++i) {
  2151. auto & layer = layers[i];
  2152. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2153. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2154. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2155. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2156. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2157. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2158. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2159. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2160. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2161. if (n_expert == 0) {
  2162. throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
  2163. }
  2164. if (n_expert_used == 0) {
  2165. throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
  2166. }
  2167. // MoE branch
  2168. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2169. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2170. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2171. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2172. }
  2173. } break;
  2174. case LLM_ARCH_PHI2:
  2175. {
  2176. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2177. // output
  2178. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2179. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2180. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2181. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  2182. for (int i = 0; i < n_layer; ++i) {
  2183. auto & layer = layers[i];
  2184. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2185. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2186. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2187. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2188. if (layer.wqkv == nullptr) {
  2189. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2190. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2191. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2192. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2193. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2194. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2195. }
  2196. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2197. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2198. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2199. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2200. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2201. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2202. }
  2203. } break;
  2204. case LLM_ARCH_PHI3:
  2205. {
  2206. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2207. // output
  2208. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2209. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2210. // if output is NULL, init from the input tok embed
  2211. if (output == NULL) {
  2212. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2213. }
  2214. for (int i = 0; i < n_layer; ++i) {
  2215. auto & layer = layers[i];
  2216. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2217. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2218. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2219. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2220. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2221. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  2222. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2223. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2224. }
  2225. } break;
  2226. case LLM_ARCH_PHIMOE:
  2227. {
  2228. const int64_t n_embd_head = n_embd / n_head;
  2229. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2230. // output
  2231. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2232. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2233. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  2234. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  2235. for (int i = 0; i < n_layer; ++i) {
  2236. auto & layer = layers[i];
  2237. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2238. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  2239. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2240. if (layer.wqkv == nullptr) {
  2241. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2242. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2243. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2244. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2245. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2246. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2247. }
  2248. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2249. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  2250. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2251. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  2252. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2253. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2254. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2255. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2256. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2257. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2258. }
  2259. } break;
  2260. case LLM_ARCH_PLAMO:
  2261. {
  2262. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2263. // output
  2264. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2265. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2266. for (int i = 0; i < n_layer; ++i) {
  2267. auto & layer = layers[i];
  2268. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2269. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2270. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2271. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2272. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2273. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2274. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2275. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2276. }
  2277. } break;
  2278. case LLM_ARCH_GPT2:
  2279. {
  2280. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2281. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2282. // output
  2283. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2284. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2285. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2286. // if output is NULL, init from the input tok embed
  2287. if (output == NULL) {
  2288. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2289. }
  2290. for (int i = 0; i < n_layer; ++i) {
  2291. auto & layer = layers[i];
  2292. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2293. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2294. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2295. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2296. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2297. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2298. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2299. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2300. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2301. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2302. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2303. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2304. }
  2305. } break;
  2306. case LLM_ARCH_CODESHELL:
  2307. {
  2308. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2309. // if tok embd is NULL, init from output
  2310. if (tok_embd == NULL) {
  2311. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2312. }
  2313. // output
  2314. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2315. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2316. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2317. for (int i = 0; i < n_layer; ++i) {
  2318. auto & layer = layers[i];
  2319. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2320. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2321. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2322. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2323. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2324. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2325. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2326. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2327. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2328. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2329. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2330. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2331. }
  2332. } break;
  2333. case LLM_ARCH_ORION:
  2334. {
  2335. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2336. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2337. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2338. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2339. for (int i = 0; i < n_layer; ++i) {
  2340. auto & layer = layers[i];
  2341. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2342. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2343. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2344. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2345. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2346. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2347. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2348. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2349. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2350. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2351. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2352. }
  2353. } break;
  2354. case LLM_ARCH_INTERNLM2:
  2355. {
  2356. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2357. // output
  2358. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2359. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2360. for (int i = 0; i < n_layer; ++i) {
  2361. auto & layer = layers[i];
  2362. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2363. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2364. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2365. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2366. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2367. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2368. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2369. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2370. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2371. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2372. }
  2373. } break;
  2374. case LLM_ARCH_GEMMA:
  2375. {
  2376. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2377. // output
  2378. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2379. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2380. for (int i = 0; i < n_layer; ++i) {
  2381. auto & layer = layers[i];
  2382. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2383. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2384. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2385. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2386. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2387. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2388. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2389. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2390. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2391. }
  2392. } break;
  2393. case LLM_ARCH_GEMMA2:
  2394. {
  2395. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2396. // output
  2397. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2398. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2399. for (int i = 0; i < n_layer; ++i) {
  2400. auto & layer = layers[i];
  2401. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2402. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2403. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2404. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2405. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2406. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2407. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2408. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2409. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2410. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2411. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2412. }
  2413. } break;
  2414. case LLM_ARCH_GEMMA3:
  2415. {
  2416. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2417. // output
  2418. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2419. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2420. // if output is NULL, init from the input tok embed
  2421. if (output == NULL) {
  2422. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2423. }
  2424. for (int i = 0; i < n_layer; ++i) {
  2425. auto & layer = layers[i];
  2426. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2427. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2428. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2429. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2430. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2431. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2432. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2433. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2434. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2435. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2436. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2437. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2438. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2439. }
  2440. } break;
  2441. case LLM_ARCH_STARCODER2:
  2442. {
  2443. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2444. // output
  2445. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2446. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2447. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2448. // if output is NULL, init from the input tok embed
  2449. if (output == NULL) {
  2450. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2451. }
  2452. for (int i = 0; i < n_layer; ++i) {
  2453. auto & layer = layers[i];
  2454. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2455. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2456. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2457. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2458. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2459. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2460. // optional bias tensors
  2461. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2462. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2463. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2464. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2465. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2466. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2467. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2468. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2469. // optional bias tensors
  2470. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2471. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  2472. }
  2473. } break;
  2474. case LLM_ARCH_MAMBA:
  2475. {
  2476. const int64_t d_conv = hparams.ssm_d_conv;
  2477. const int64_t d_inner = hparams.ssm_d_inner;
  2478. const int64_t d_state = hparams.ssm_d_state;
  2479. const int64_t dt_rank = hparams.ssm_dt_rank;
  2480. // only an expansion factor of 2 is supported for now
  2481. if (2 * n_embd != d_inner) {
  2482. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  2483. }
  2484. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2485. // output
  2486. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2487. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2488. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  2489. if (output == NULL) {
  2490. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2491. }
  2492. for (int i = 0; i < n_layer; ++i) {
  2493. auto & layer = layers[i];
  2494. // norm
  2495. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2496. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  2497. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  2498. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  2499. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  2500. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  2501. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  2502. // no "weight" suffix for these
  2503. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  2504. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  2505. // out_proj
  2506. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  2507. }
  2508. } break;
  2509. case LLM_ARCH_XVERSE:
  2510. {
  2511. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2512. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2513. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2514. for (int i = 0; i < n_layer; ++i) {
  2515. auto & layer = layers[i];
  2516. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2517. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2518. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2519. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2520. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2521. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2522. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2523. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2524. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2525. }
  2526. } break;
  2527. case LLM_ARCH_COMMAND_R:
  2528. {
  2529. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2530. // output
  2531. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2532. // init output from the input tok embed
  2533. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2534. for (int i = 0; i < n_layer; ++i) {
  2535. auto & layer = layers[i];
  2536. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2537. if (n_layer >= 64){
  2538. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2539. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2540. }
  2541. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2542. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2543. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2544. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2545. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2546. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2547. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2548. }
  2549. } break;
  2550. case LLM_ARCH_COHERE2:
  2551. {
  2552. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2553. // output
  2554. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2555. // init output from the input tok embed
  2556. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  2557. TENSOR_DUPLICATED);
  2558. for (int i = 0; i < n_layer; ++i) {
  2559. auto & layer = layers[i];
  2560. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2561. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  2562. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  2563. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  2564. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2565. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2566. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2567. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2568. }
  2569. }
  2570. break;
  2571. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  2572. {
  2573. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2574. // output
  2575. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2576. // if output is NULL, init from the input tok embed
  2577. if (output == NULL) {
  2578. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2579. }
  2580. for (int i = 0; i < n_layer; ++i) {
  2581. auto & layer = layers[i];
  2582. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2583. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2584. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2585. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2586. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2587. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2588. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2589. }
  2590. } break;
  2591. case LLM_ARCH_OLMO2:
  2592. {
  2593. const int64_t n_embd_head = n_embd / n_head;
  2594. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2595. // output
  2596. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2597. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2598. for (int i = 0; i < n_layer; ++i) {
  2599. auto & layer = layers[i];
  2600. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2601. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2602. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2603. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2604. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2605. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  2606. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2607. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2608. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2609. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2610. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2611. }
  2612. } break;
  2613. case LLM_ARCH_OLMOE:
  2614. {
  2615. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2616. // output
  2617. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2618. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2619. for (int i = 0; i < n_layer; ++i) {
  2620. auto & layer = layers[i];
  2621. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2622. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2623. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2624. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2625. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2626. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2627. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2628. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2629. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2630. if (n_expert == 0) {
  2631. throw std::runtime_error("n_expert must be > 0");
  2632. }
  2633. if (n_expert_used == 0) {
  2634. throw std::runtime_error("n_expert_used must be > 0");
  2635. }
  2636. // MoE branch
  2637. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2638. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2639. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2640. }
  2641. } break;
  2642. case LLM_ARCH_OPENELM:
  2643. {
  2644. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2645. // output
  2646. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2647. // init output from the input tok embed
  2648. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2649. for (int i = 0; i < n_layer; ++i) {
  2650. const int64_t n_head = hparams.n_head(i);
  2651. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  2652. const int64_t n_ff = hparams.n_ff(i);
  2653. auto & layer = layers[i];
  2654. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2655. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  2656. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2657. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2658. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  2659. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2660. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2661. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2662. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2663. }
  2664. } break;
  2665. case LLM_ARCH_GPTNEOX:
  2666. {
  2667. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2668. // output
  2669. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2670. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2671. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2672. for (int i = 0; i < n_layer; ++i) {
  2673. auto & layer = layers[i];
  2674. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2675. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2676. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2677. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2678. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2679. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2680. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2681. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2682. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2683. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2684. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2685. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2686. }
  2687. } break;
  2688. case LLM_ARCH_ARCTIC:
  2689. {
  2690. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2691. // output
  2692. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2693. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2694. // if output is NULL, init from the input tok embed
  2695. if (output == NULL) {
  2696. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2697. }
  2698. for (int i = 0; i < n_layer; ++i) {
  2699. auto & layer = layers[i];
  2700. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2701. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2702. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2703. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2704. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2705. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2706. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  2707. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  2708. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  2709. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2710. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  2711. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  2712. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2713. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2714. }
  2715. } break;
  2716. case LLM_ARCH_DEEPSEEK:
  2717. {
  2718. const int64_t n_ff_exp = hparams.n_ff_exp;
  2719. const int64_t n_expert_shared = hparams.n_expert_shared;
  2720. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2721. // output
  2722. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2723. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2724. for (int i = 0; i < n_layer; ++i) {
  2725. auto & layer = layers[i];
  2726. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2727. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2728. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2729. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2730. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2731. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2732. if (i < (int) hparams.n_layer_dense_lead) {
  2733. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2734. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2735. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2736. } else {
  2737. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2738. if (n_expert == 0) {
  2739. throw std::runtime_error("n_expert must be > 0");
  2740. }
  2741. if (n_expert_used == 0) {
  2742. throw std::runtime_error("n_expert_used must be > 0");
  2743. }
  2744. // MoE branch
  2745. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2746. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2747. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2748. // Shared expert branch
  2749. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2750. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2751. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2752. }
  2753. }
  2754. } break;
  2755. case LLM_ARCH_DEEPSEEK2:
  2756. {
  2757. const bool is_lite = (hparams.n_layer == 27);
  2758. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  2759. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  2760. const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  2761. const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  2762. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2763. const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
  2764. const int64_t q_lora_rank = hparams.n_lora_q;
  2765. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2766. const int64_t n_ff_exp = hparams.n_ff_exp;
  2767. const int64_t n_expert_shared = hparams.n_expert_shared;
  2768. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2769. // output
  2770. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2771. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2772. for (int i = 0; i < n_layer; ++i) {
  2773. auto & layer = layers[i];
  2774. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2775. if (!is_lite) {
  2776. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2777. }
  2778. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2779. if (!is_lite) {
  2780. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2781. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
  2782. } else {
  2783. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
  2784. }
  2785. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
  2786. // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
  2787. if (is_mla) {
  2788. layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
  2789. layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
  2790. } else {
  2791. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
  2792. }
  2793. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
  2794. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2795. if (i < (int) hparams.n_layer_dense_lead) {
  2796. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2797. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2798. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2799. } else {
  2800. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2801. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  2802. if (n_expert == 0) {
  2803. throw std::runtime_error("n_expert must be > 0");
  2804. }
  2805. if (n_expert_used == 0) {
  2806. throw std::runtime_error("n_expert_used must be > 0");
  2807. }
  2808. // MoE branch
  2809. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2810. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2811. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2812. // Shared expert branch
  2813. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2814. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2815. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2816. }
  2817. }
  2818. } break;
  2819. case LLM_ARCH_PLM:
  2820. {
  2821. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2822. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2823. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2824. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2825. // output
  2826. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2827. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2828. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2829. for (int i = 0; i < n_layer; ++i) {
  2830. auto & layer = layers[i];
  2831. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2832. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2833. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2834. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2835. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2836. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2837. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2838. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2839. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2840. }
  2841. } break;
  2842. case LLM_ARCH_BITNET:
  2843. {
  2844. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2845. // output
  2846. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2847. for (int i = 0; i < n_layer; ++i) {
  2848. auto & layer = layers[i];
  2849. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2850. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  2851. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2852. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2853. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2854. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2855. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2856. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2857. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2858. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2859. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2860. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  2861. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2862. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2863. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2864. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2865. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2866. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2867. }
  2868. } break;
  2869. case LLM_ARCH_T5:
  2870. {
  2871. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2872. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2873. // output
  2874. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2875. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2876. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2877. // if output is NULL, init from the input tok embed
  2878. if (output == NULL) {
  2879. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2880. }
  2881. for (int i = 0; i < n_layer; ++i) {
  2882. auto & layer = layers[i];
  2883. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2884. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2885. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2886. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2887. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2888. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2889. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2890. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2891. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2892. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2893. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2894. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2895. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2896. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2897. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2898. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2899. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  2900. // this tensor seems to be unused in HF transformers implementation
  2901. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2902. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2903. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2904. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2905. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2906. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  2907. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2908. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2909. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2910. }
  2911. } break;
  2912. case LLM_ARCH_T5ENCODER:
  2913. {
  2914. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2915. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2916. // output
  2917. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2918. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2919. // if output is NULL, init from the input tok embed
  2920. if (output == NULL) {
  2921. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2922. }
  2923. for (int i = 0; i < n_layer; ++i) {
  2924. auto & layer = layers[i];
  2925. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2926. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2927. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2928. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2929. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2930. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2931. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2932. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2933. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2934. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2935. }
  2936. } break;
  2937. case LLM_ARCH_JAIS:
  2938. {
  2939. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2940. // output
  2941. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2942. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2943. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2944. for (int i = 0; i < n_layer; ++i) {
  2945. auto & layer = layers[i];
  2946. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2947. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2948. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2949. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2950. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2951. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2952. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2953. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2954. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2955. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2956. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2957. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  2958. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2959. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2960. }
  2961. } break;
  2962. case LLM_ARCH_CHATGLM:
  2963. {
  2964. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2965. // output
  2966. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2967. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2968. // if output is NULL, init from the input tok embed
  2969. if (output == NULL) {
  2970. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2971. }
  2972. for (int i = 0; i < n_layer; ++i) {
  2973. auto & layer = layers[i];
  2974. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2975. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2976. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2977. if (layer.wqkv == nullptr) {
  2978. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2979. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2980. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2981. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2982. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2983. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2984. }
  2985. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2986. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2987. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2988. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2989. }
  2990. } break;
  2991. case LLM_ARCH_GLM4:
  2992. {
  2993. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2994. // output
  2995. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2996. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2997. // if output is NULL, init from the input tok embed
  2998. if (output == NULL) {
  2999. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3000. }
  3001. for (int i = 0; i < n_layer; ++i) {
  3002. auto & layer = layers[i];
  3003. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3004. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3005. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3006. if (layer.wqkv == nullptr) {
  3007. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3008. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3009. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3010. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3011. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3012. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3013. }
  3014. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3015. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3016. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3017. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3018. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  3019. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3020. }
  3021. } break;
  3022. case LLM_ARCH_NEMOTRON:
  3023. {
  3024. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3025. // output
  3026. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3027. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3028. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3029. for (int i = 0; i < n_layer; ++i) {
  3030. auto & layer = layers[i];
  3031. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3032. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3033. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3034. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3035. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3036. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3037. // optional bias tensors
  3038. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3039. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3040. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3041. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3042. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3043. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3044. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3045. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3046. // optional MLP bias
  3047. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3048. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3049. }
  3050. } break;
  3051. case LLM_ARCH_EXAONE:
  3052. {
  3053. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3054. // output
  3055. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3056. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3057. // if output is NULL, init from the input tok embed
  3058. if (output == NULL) {
  3059. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3060. }
  3061. for (int i = 0; i < n_layer; ++i) {
  3062. auto & layer = layers[i];
  3063. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3064. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3065. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3066. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3067. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3068. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3069. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3070. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3071. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3072. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3073. }
  3074. } break;
  3075. case LLM_ARCH_RWKV6:
  3076. {
  3077. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3078. // Block 0, LN0
  3079. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3080. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3081. // output
  3082. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3083. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3084. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3085. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3086. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3087. const int head_size = hparams.wkv_head_size;
  3088. const int attn_hidden_size = n_embd;
  3089. const int ffn_size = hparams.n_ff_arr[0];
  3090. for (int i = 0; i < n_layer; ++i) {
  3091. auto & layer = layers[i];
  3092. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3093. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3094. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3095. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3096. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3097. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3098. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3099. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3100. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3101. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3102. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3103. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3104. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  3105. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  3106. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  3107. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3108. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3109. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3110. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3111. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3112. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3113. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3114. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3115. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3116. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3117. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3118. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  3119. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3120. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3121. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  3122. }
  3123. } break;
  3124. case LLM_ARCH_RWKV6QWEN2:
  3125. {
  3126. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3127. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3128. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  3129. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3130. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3131. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3132. const int head_size = hparams.wkv_head_size;
  3133. const int attn_hidden_size = n_embd;
  3134. const int n_head_kv = hparams.n_head_kv();
  3135. int attn_key_value_size;
  3136. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  3137. attn_key_value_size = attn_hidden_size;
  3138. } else {
  3139. attn_key_value_size = n_head_kv * head_size;
  3140. }
  3141. for (int i = 0; i < n_layer; ++i) {
  3142. auto & layer = layers[i];
  3143. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3144. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3145. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3146. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3147. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3148. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  3149. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3150. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3151. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3152. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  3153. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  3154. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3155. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3156. // optional bias tensors
  3157. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3158. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3159. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  3160. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3161. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3162. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3163. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3164. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3165. }
  3166. } break;
  3167. case LLM_ARCH_RWKV7:
  3168. {
  3169. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3170. // Block 0, LN0
  3171. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3172. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3173. // output
  3174. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3175. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3176. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3177. const int n_lora_decay = hparams.n_lora_decay;
  3178. const int n_lora_iclr = hparams.n_lora_iclr;
  3179. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3180. const int n_lora_gate = hparams.n_lora_gate;
  3181. const int attn_hidden_size = n_embd;
  3182. const int ffn_size = hparams.n_ff_arr[0];
  3183. for (int i = 0; i < n_layer; ++i) {
  3184. auto & layer = layers[i];
  3185. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3186. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3187. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3188. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3189. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3190. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3191. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3192. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3193. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3194. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3195. if (i == 0) {
  3196. // actually not used
  3197. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3198. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3199. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3200. } else {
  3201. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3202. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3203. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3204. }
  3205. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  3206. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  3207. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3208. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3209. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3210. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3211. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3212. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3213. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3214. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3215. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3216. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3217. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3218. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3219. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3220. }
  3221. } break;
  3222. case LLM_ARCH_ARWKV7:
  3223. {
  3224. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3225. // output
  3226. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3227. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3228. const int n_lora_decay = hparams.n_lora_decay;
  3229. const int n_lora_iclr = hparams.n_lora_iclr;
  3230. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3231. const int n_lora_gate = hparams.n_lora_gate;
  3232. const int attn_hidden_size = n_embd;
  3233. for (int i = 0; i < n_layer; ++i) {
  3234. auto & layer = layers[i];
  3235. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3236. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3237. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3238. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3239. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3240. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3241. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3242. if (i == 0) {
  3243. // actually not used
  3244. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3245. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3246. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3247. } else {
  3248. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3249. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3250. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3251. }
  3252. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  3253. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  3254. try {
  3255. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3256. } catch(std::runtime_error & e) {
  3257. // ARWKV models may not have gate tensors
  3258. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3259. }
  3260. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3261. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3262. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3263. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3264. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3265. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3266. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3267. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3268. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3269. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3270. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3271. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3272. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3273. }
  3274. } break;
  3275. case LLM_ARCH_CHAMELEON:
  3276. {
  3277. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3278. // output
  3279. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3280. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3281. // if output is NULL, init from the input tok embed
  3282. if (output == NULL) {
  3283. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3284. }
  3285. for (int i = 0; i < n_layer; ++i) {
  3286. auto & layer = layers[i];
  3287. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3288. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3289. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3290. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  3291. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  3292. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3293. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3294. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3295. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3296. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3297. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3298. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3299. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3300. }
  3301. } break;
  3302. case LLM_ARCH_WAVTOKENIZER_DEC:
  3303. {
  3304. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  3305. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  3306. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  3307. // posnet
  3308. {
  3309. const int64_t n_embd = hparams.posnet.n_embd;
  3310. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  3311. auto & layer = layers[i].posnet;
  3312. // posnet:
  3313. //
  3314. // - resnet
  3315. // - resnet
  3316. // - attn
  3317. // - resnet
  3318. // - resnet
  3319. // - norm
  3320. //
  3321. switch (i) {
  3322. case 0:
  3323. case 1:
  3324. case 3:
  3325. case 4:
  3326. {
  3327. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  3328. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  3329. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  3330. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  3331. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  3332. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  3333. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  3334. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  3335. } break;
  3336. case 2:
  3337. {
  3338. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3339. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3340. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  3341. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  3342. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  3343. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  3344. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  3345. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  3346. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  3347. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  3348. } break;
  3349. case 5:
  3350. {
  3351. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3352. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3353. } break;
  3354. default: GGML_ABORT("unknown posnet layer");
  3355. };
  3356. }
  3357. }
  3358. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  3359. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  3360. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  3361. // convnext
  3362. {
  3363. const int64_t n_embd = hparams.convnext.n_embd;
  3364. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  3365. auto & layer = layers[i].convnext;
  3366. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  3367. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  3368. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  3369. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  3370. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  3371. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  3372. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  3373. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  3374. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  3375. }
  3376. // output
  3377. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3378. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3379. }
  3380. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  3381. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  3382. } break;
  3383. case LLM_ARCH_BAILINGMOE:
  3384. {
  3385. const int64_t n_ff_exp = hparams.n_ff_exp;
  3386. const int64_t n_expert_shared = hparams.n_expert_shared;
  3387. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3388. // output
  3389. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3390. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3391. for (int i = 0; i < n_layer; ++i) {
  3392. auto & layer = layers[i];
  3393. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3394. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  3395. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3396. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3397. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  3398. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3399. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3400. if (n_expert == 0) {
  3401. throw std::runtime_error("n_expert must be > 0");
  3402. }
  3403. if (n_expert_used == 0) {
  3404. throw std::runtime_error("n_expert_used must be > 0");
  3405. }
  3406. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3407. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3408. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3409. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3410. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  3411. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3412. }
  3413. } break;
  3414. default:
  3415. throw std::runtime_error("unknown architecture");
  3416. }
  3417. if (n_moved_tensors > 0) {
  3418. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  3419. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  3420. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  3421. }
  3422. }
  3423. ml.done_getting_tensors();
  3424. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  3425. pimpl->mappings.reserve(ml.mappings.size());
  3426. // create the backend buffers
  3427. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  3428. ctx_bufs.reserve(ctx_map.size());
  3429. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  3430. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  3431. pimpl->bufs.reserve(n_max_backend_buffer);
  3432. for (auto & it : ctx_map) {
  3433. ggml_backend_buffer_type_t buft = it.first;
  3434. ggml_context * ctx = it.second;
  3435. // skip contexts without tensors
  3436. if (ggml_get_first_tensor(ctx) == nullptr) {
  3437. continue;
  3438. }
  3439. llama_buf_map buf_map;
  3440. buf_map.reserve(n_max_backend_buffer);
  3441. // check if it is possible to use buffer_from_host_ptr with this buffer type
  3442. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  3443. if (!dev) {
  3444. // FIXME: workaround for CPU backend buft having a NULL device
  3445. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  3446. if (!dev) {
  3447. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  3448. }
  3449. }
  3450. ggml_backend_dev_props props;
  3451. ggml_backend_dev_get_props(dev, &props);
  3452. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  3453. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  3454. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  3455. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3456. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  3457. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  3458. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  3459. void * addr = nullptr;
  3460. size_t first, last; // NOLINT
  3461. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  3462. if (first >= last) {
  3463. continue;
  3464. }
  3465. const size_t max_size = ggml_get_max_tensor_size(ctx);
  3466. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  3467. if (buf == nullptr) {
  3468. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3469. }
  3470. pimpl->bufs.emplace_back(buf);
  3471. buf_map.emplace(idx, buf);
  3472. }
  3473. }
  3474. else {
  3475. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3476. if (buf == nullptr) {
  3477. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3478. }
  3479. pimpl->bufs.emplace_back(buf);
  3480. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  3481. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  3482. auto & mlock_buf = pimpl->mlock_bufs.back();
  3483. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  3484. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  3485. }
  3486. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3487. buf_map.emplace(idx, buf);
  3488. }
  3489. }
  3490. if (pimpl->bufs.empty()) {
  3491. throw std::runtime_error("failed to allocate buffer");
  3492. }
  3493. for (auto & buf : buf_map) {
  3494. // indicate that this buffer contains weights
  3495. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  3496. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  3497. }
  3498. ctx_bufs.emplace_back(ctx, buf_map);
  3499. }
  3500. if (llama_supports_gpu_offload()) {
  3501. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  3502. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  3503. if (n_gpu_layers > (int) hparams.n_layer) {
  3504. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  3505. }
  3506. const int max_backend_supported_layers = hparams.n_layer + 1;
  3507. const int max_offloadable_layers = hparams.n_layer + 1;
  3508. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  3509. }
  3510. // print memory requirements per buffer type
  3511. for (auto & buf : pimpl->bufs) {
  3512. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  3513. }
  3514. // populate tensors_by_name
  3515. for (auto & ctx : pimpl->ctxs) {
  3516. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  3517. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  3518. }
  3519. }
  3520. // load tensor data
  3521. for (auto & it : ctx_bufs) {
  3522. ggml_context * ctx = it.first;
  3523. auto & bufs = it.second;
  3524. if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  3525. return false;
  3526. }
  3527. }
  3528. if (use_mmap_buffer) {
  3529. for (auto & mapping : ml.mappings) {
  3530. pimpl->mappings.emplace_back(std::move(mapping));
  3531. }
  3532. }
  3533. return true;
  3534. }
  3535. std::string llama_model::arch_name() const {
  3536. return llm_arch_name(arch);
  3537. }
  3538. std::string llama_model::type_name() const {
  3539. return llm_type_name(type);
  3540. }
  3541. std::string llama_model::desc() const {
  3542. return pimpl->desc_str;
  3543. }
  3544. size_t llama_model::size() const {
  3545. return pimpl->n_bytes;
  3546. }
  3547. size_t llama_model::n_tensors() const {
  3548. return tensors_by_name.size();
  3549. }
  3550. size_t llama_model::n_devices() const {
  3551. return devices.size();
  3552. }
  3553. uint64_t llama_model::n_elements() const {
  3554. return pimpl->n_elements;
  3555. }
  3556. void llama_model::print_info() const {
  3557. const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
  3558. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  3559. bool is_var = false;
  3560. std::vector<uint32_t> v;
  3561. for (uint32_t i = 0; i < n; ++i) {
  3562. v.push_back(f(i));
  3563. if (v[i] != v[0]) {
  3564. is_var = true;
  3565. }
  3566. }
  3567. std::stringstream ss;
  3568. if (is_var) {
  3569. ss << "[";
  3570. for (uint32_t i = 0; i < n; ++i) {
  3571. ss << v[i];
  3572. if (i < n - 1) {
  3573. ss << ", ";
  3574. }
  3575. }
  3576. ss << "]";
  3577. } else {
  3578. ss << v[0];
  3579. }
  3580. return ss.str();
  3581. };
  3582. // hparams
  3583. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  3584. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  3585. if (!hparams.vocab_only) {
  3586. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3587. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3588. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3589. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  3590. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  3591. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3592. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  3593. LLAMA_LOG_INFO("%s: is_swa_any = %u\n", __func__, hparams.is_swa_any());
  3594. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3595. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3596. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  3597. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  3598. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  3599. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3600. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3601. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3602. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3603. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3604. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  3605. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  3606. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3607. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3608. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3609. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3610. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3611. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
  3612. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3613. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3614. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  3615. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3616. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3617. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3618. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3619. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3620. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  3621. }
  3622. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  3623. if (pimpl->n_elements >= 1e12) {
  3624. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  3625. } else if (pimpl->n_elements >= 1e9) {
  3626. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  3627. } else if (pimpl->n_elements >= 1e6) {
  3628. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  3629. } else {
  3630. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  3631. }
  3632. // general kv
  3633. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  3634. if (arch == LLM_ARCH_DEEPSEEK) {
  3635. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3636. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3637. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3638. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3639. }
  3640. if (arch == LLM_ARCH_DEEPSEEK2) {
  3641. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3642. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  3643. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  3644. LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
  3645. LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
  3646. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3647. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3648. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3649. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3650. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  3651. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  3652. }
  3653. if (arch == LLM_ARCH_QWEN2MOE) {
  3654. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3655. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3656. }
  3657. if (arch == LLM_ARCH_QWEN3MOE) {
  3658. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3659. }
  3660. if (arch == LLM_ARCH_MINICPM ||
  3661. arch == LLM_ARCH_GRANITE ||
  3662. arch == LLM_ARCH_GRANITE_MOE) {
  3663. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  3664. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  3665. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  3666. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3667. }
  3668. if (arch == LLM_ARCH_BAILINGMOE) {
  3669. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3670. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3671. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3672. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3673. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3674. }
  3675. vocab.print_info();
  3676. }
  3677. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  3678. return pimpl->dev_layer.at(il).dev;
  3679. }
  3680. ggml_backend_dev_t llama_model::dev_output() const {
  3681. return pimpl->dev_output.dev;
  3682. }
  3683. template<typename F>
  3684. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  3685. ggml_init_params params = {
  3686. /*.mem_size =*/ ggml_tensor_overhead()*8,
  3687. /*.mem_buffer =*/ NULL,
  3688. /*.no_alloc =*/ true,
  3689. };
  3690. ggml_context_ptr ctx { ggml_init(params) };
  3691. if (!ctx) {
  3692. throw std::runtime_error(format("failed to create ggml context"));
  3693. }
  3694. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  3695. ggml_tensor * op_tensor = fn(ctx.get());
  3696. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3697. if (op_tensor->src[i] != nullptr) {
  3698. assert(op_tensor->src[i]->buffer == nullptr);
  3699. op_tensor->src[i]->buffer = buf.get();
  3700. }
  3701. }
  3702. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  3703. return op_supported;
  3704. }
  3705. template<typename F>
  3706. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  3707. for (const auto & cur : buft_list) {
  3708. ggml_backend_dev_t cur_dev = cur.first;
  3709. ggml_backend_buffer_type_t cur_buft = cur.second;
  3710. if (buft_supported(cur_buft, cur_dev, fn)) {
  3711. return cur_buft;
  3712. }
  3713. }
  3714. throw std::runtime_error(format("no suitable buffer type found"));
  3715. }
  3716. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  3717. return ::select_buft(
  3718. *pimpl->dev_layer.at(il).buft_list,
  3719. [&](ggml_context * ctx) {
  3720. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3721. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3722. return ggml_add(ctx, cur, layer_dir);
  3723. });
  3724. }
  3725. bool llama_model::has_tensor_overrides() const {
  3726. return pimpl->has_tensor_overrides;
  3727. }
  3728. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  3729. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  3730. [name](const std::pair<std::string, ggml_tensor *> & it) {
  3731. return it.first == name;
  3732. });
  3733. if (it == tensors_by_name.end()) {
  3734. return nullptr;
  3735. }
  3736. return it->second;
  3737. }
  3738. float llama_model::get_rope_freq_base (const llama_cparams & cparams, int il) const {
  3739. return hparams.is_swa(il) ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  3740. }
  3741. float llama_model::get_rope_freq_scale(const llama_cparams & cparams, int il) const {
  3742. return hparams.is_swa(il) ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  3743. }
  3744. ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int il) const {
  3745. const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
  3746. // choose long/short freq factors based on the context size
  3747. if (layers[il].rope_freqs != nullptr) {
  3748. return layers[il].rope_freqs;
  3749. }
  3750. if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
  3751. return layers[il].rope_long;
  3752. }
  3753. return layers[il].rope_short;
  3754. }
  3755. struct llm_build_llama : public llm_graph_context {
  3756. llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3757. const int64_t n_embd_head = hparams.n_embd_head_v;
  3758. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3759. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3760. ggml_tensor * cur;
  3761. ggml_tensor * inpL;
  3762. inpL = build_inp_embd(model.tok_embd);
  3763. // inp_pos - contains the positions
  3764. ggml_tensor * inp_pos = build_inp_pos();
  3765. auto * inp_attn = build_attn_inp_kv_unified();
  3766. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3767. for (int il = 0; il < n_layer; ++il) {
  3768. ggml_tensor * inpSA = inpL;
  3769. // norm
  3770. cur = build_norm(inpL,
  3771. model.layers[il].attn_norm, NULL,
  3772. LLM_NORM_RMS, il);
  3773. cb(cur, "attn_norm", il);
  3774. // self-attention
  3775. {
  3776. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3777. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  3778. // compute Q and K and RoPE them
  3779. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3780. cb(Qcur, "Qcur", il);
  3781. if (model.layers[il].bq) {
  3782. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3783. cb(Qcur, "Qcur", il);
  3784. }
  3785. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3786. cb(Kcur, "Kcur", il);
  3787. if (model.layers[il].bk) {
  3788. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3789. cb(Kcur, "Kcur", il);
  3790. }
  3791. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3792. cb(Vcur, "Vcur", il);
  3793. if (model.layers[il].bv) {
  3794. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3795. cb(Vcur, "Vcur", il);
  3796. }
  3797. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3798. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3799. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3800. Qcur = ggml_rope_ext(
  3801. ctx0, Qcur, inp_pos, rope_factors,
  3802. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3803. ext_factor, attn_factor, beta_fast, beta_slow
  3804. );
  3805. Kcur = ggml_rope_ext(
  3806. ctx0, Kcur, inp_pos, rope_factors,
  3807. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3808. ext_factor, attn_factor, beta_fast, beta_slow
  3809. );
  3810. cb(Qcur, "Qcur", il);
  3811. cb(Kcur, "Kcur", il);
  3812. cb(Vcur, "Vcur", il);
  3813. cur = build_attn(inp_attn, gf,
  3814. model.layers[il].wo, model.layers[il].bo,
  3815. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3816. cb(cur, "attn_out", il);
  3817. }
  3818. if (il == n_layer - 1) {
  3819. // skip computing output for unused tokens
  3820. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3821. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3822. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3823. }
  3824. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3825. cb(ffn_inp, "ffn_inp", il);
  3826. // feed-forward network (non-MoE)
  3827. if (model.layers[il].ffn_gate_inp == nullptr) {
  3828. cur = build_norm(ffn_inp,
  3829. model.layers[il].ffn_norm, NULL,
  3830. LLM_NORM_RMS, il);
  3831. cb(cur, "ffn_norm", il);
  3832. cur = build_ffn(cur,
  3833. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3834. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3835. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3836. NULL,
  3837. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3838. cb(cur, "ffn_out", il);
  3839. } else {
  3840. // MoE branch
  3841. cur = build_norm(ffn_inp,
  3842. model.layers[il].ffn_norm, NULL,
  3843. LLM_NORM_RMS, il);
  3844. cb(cur, "ffn_norm", il);
  3845. cur = build_moe_ffn(cur,
  3846. model.layers[il].ffn_gate_inp,
  3847. model.layers[il].ffn_up_exps,
  3848. model.layers[il].ffn_gate_exps,
  3849. model.layers[il].ffn_down_exps,
  3850. nullptr,
  3851. n_expert, n_expert_used,
  3852. LLM_FFN_SILU, true,
  3853. false, 0.0,
  3854. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  3855. il);
  3856. cb(cur, "ffn_moe_out", il);
  3857. }
  3858. cur = ggml_add(ctx0, cur, ffn_inp);
  3859. cb(cur, "ffn_out", il);
  3860. cur = build_cvec(cur, il);
  3861. cb(cur, "l_out", il);
  3862. // input for next layer
  3863. inpL = cur;
  3864. }
  3865. cur = inpL;
  3866. cur = build_norm(cur,
  3867. model.output_norm, NULL,
  3868. LLM_NORM_RMS, -1);
  3869. cb(cur, "result_norm", -1);
  3870. res->t_embd = cur;
  3871. // lm_head
  3872. cur = build_lora_mm(model.output, cur);
  3873. cb(cur, "result_output", -1);
  3874. res->t_logits = cur;
  3875. ggml_build_forward_expand(gf, cur);
  3876. }
  3877. };
  3878. struct llm_build_llama_iswa : public llm_graph_context {
  3879. llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3880. const int64_t n_embd_head = hparams.n_embd_head_v;
  3881. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3882. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3883. ggml_tensor * cur;
  3884. ggml_tensor * inpL;
  3885. inpL = build_inp_embd(model.tok_embd);
  3886. // inp_pos - contains the positions
  3887. ggml_tensor * inp_pos = build_inp_pos();
  3888. // temperature tuning
  3889. ggml_tensor * inp_attn_scale = nullptr;
  3890. inp_attn_scale = build_inp_attn_scale();
  3891. auto * inp_attn = build_attn_inp_kv_unified_iswa();
  3892. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3893. for (int il = 0; il < n_layer; ++il) {
  3894. ggml_tensor * inpSA = inpL;
  3895. const bool use_rope = (il + 1) % hparams.n_no_rope_layer_step != 0;
  3896. // norm
  3897. cur = build_norm(inpL,
  3898. model.layers[il].attn_norm, NULL,
  3899. LLM_NORM_RMS, il);
  3900. cb(cur, "attn_norm", il);
  3901. // self-attention
  3902. {
  3903. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3904. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  3905. // compute Q and K and RoPE them
  3906. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3907. cb(Qcur, "Qcur", il);
  3908. if (model.layers[il].bq) {
  3909. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3910. cb(Qcur, "Qcur", il);
  3911. }
  3912. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3913. cb(Kcur, "Kcur", il);
  3914. if (model.layers[il].bk) {
  3915. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3916. cb(Kcur, "Kcur", il);
  3917. }
  3918. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3919. cb(Vcur, "Vcur", il);
  3920. if (model.layers[il].bv) {
  3921. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3922. cb(Vcur, "Vcur", il);
  3923. }
  3924. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3925. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3926. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3927. if (use_rope) {
  3928. Qcur = ggml_rope_ext(
  3929. ctx0, Qcur, inp_pos, rope_factors,
  3930. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3931. ext_factor, attn_factor, beta_fast, beta_slow
  3932. );
  3933. Kcur = ggml_rope_ext(
  3934. ctx0, Kcur, inp_pos, rope_factors,
  3935. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3936. ext_factor, attn_factor, beta_fast, beta_slow
  3937. );
  3938. } else if (inp_attn_scale) {
  3939. Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
  3940. }
  3941. cb(Qcur, "Qcur", il);
  3942. cb(Kcur, "Kcur", il);
  3943. cb(Vcur, "Vcur", il);
  3944. if (use_rope && hparams.use_kq_norm) {
  3945. // Llama4TextL2Norm
  3946. Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
  3947. Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
  3948. cb(Qcur, "Qcur_normed", il);
  3949. cb(Kcur, "Kcur_normed", il);
  3950. }
  3951. cur = build_attn(inp_attn, gf,
  3952. model.layers[il].wo, model.layers[il].bo,
  3953. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3954. cb(cur, "attn_out", il);
  3955. }
  3956. if (il == n_layer - 1) {
  3957. // skip computing output for unused tokens
  3958. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3959. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3960. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3961. }
  3962. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3963. cb(ffn_inp, "ffn_inp", il);
  3964. // feed-forward network (non-MoE)
  3965. if (model.layers[il].ffn_gate_inp == nullptr) {
  3966. cur = build_norm(ffn_inp,
  3967. model.layers[il].ffn_norm, NULL,
  3968. LLM_NORM_RMS, il);
  3969. cb(cur, "ffn_norm", il);
  3970. cur = build_ffn(cur,
  3971. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3972. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3973. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3974. NULL,
  3975. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3976. cb(cur, "ffn_out", il);
  3977. } else {
  3978. ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
  3979. model.layers[il].ffn_norm, NULL,
  3980. LLM_NORM_RMS, il);
  3981. cb(cur, "ffn_norm", il);
  3982. ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
  3983. model.layers[il].ffn_gate_inp,
  3984. model.layers[il].ffn_up_exps,
  3985. model.layers[il].ffn_gate_exps,
  3986. model.layers[il].ffn_down_exps,
  3987. nullptr,
  3988. n_expert, n_expert_used,
  3989. LLM_FFN_SILU, false,
  3990. false, 0.0,
  3991. LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
  3992. il);
  3993. // Shared experts
  3994. ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
  3995. model.layers[il].ffn_up_shexp, NULL, NULL,
  3996. model.layers[il].ffn_gate_shexp, NULL, NULL,
  3997. model.layers[il].ffn_down_shexp, NULL, NULL,
  3998. NULL,
  3999. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4000. cb(shexp_out, "ffn_moe_shexp", il);
  4001. cur = ggml_add(ctx0, moe_out, shexp_out);
  4002. cb(cur, "ffn_moe_out_merged", il);
  4003. }
  4004. cur = ggml_add(ctx0, cur, ffn_inp);
  4005. cb(cur, "ffn_out", il);
  4006. cur = build_cvec(cur, il);
  4007. cb(cur, "l_out", il);
  4008. // input for next layer
  4009. inpL = cur;
  4010. }
  4011. cur = inpL;
  4012. cur = build_norm(cur,
  4013. model.output_norm, NULL,
  4014. LLM_NORM_RMS, -1);
  4015. cb(cur, "result_norm", -1);
  4016. res->t_embd = cur;
  4017. // lm_head
  4018. cur = build_lora_mm(model.output, cur);
  4019. cb(cur, "result_output", -1);
  4020. res->t_logits = cur;
  4021. ggml_build_forward_expand(gf, cur);
  4022. }
  4023. };
  4024. struct llm_build_deci : public llm_graph_context {
  4025. llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4026. const int64_t n_embd_head = hparams.n_embd_head_v;
  4027. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4028. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4029. ggml_tensor * cur;
  4030. ggml_tensor * inpL;
  4031. inpL = build_inp_embd(model.tok_embd);
  4032. // inp_pos - contains the positions
  4033. ggml_tensor * inp_pos = build_inp_pos();
  4034. auto * inp_attn = build_attn_inp_kv_unified();
  4035. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  4036. for (int il = 0; il < n_layer; ++il) {
  4037. ggml_tensor * inpSA = inpL;
  4038. const int64_t n_head_kv = hparams.n_head_kv(il);
  4039. const int64_t n_head = hparams.n_head(il);
  4040. const int64_t n_ff = hparams.n_ff(il);
  4041. if (n_head == 0) {
  4042. // attention-free layer of Llama-3_1-Nemotron-51B
  4043. cur = inpL;
  4044. } else {
  4045. // norm
  4046. cur = build_norm(inpL,
  4047. model.layers[il].attn_norm, NULL,
  4048. LLM_NORM_RMS, il);
  4049. cb(cur, "attn_norm", il);
  4050. }
  4051. if (n_head > 0 && n_head_kv == 0) {
  4052. // "linear attention" of Llama-3_1-Nemotron-51B
  4053. cur = build_lora_mm(model.layers[il].wo, cur);
  4054. cb(cur, "wo", il);
  4055. } else if (n_head > 0) {
  4056. // self-attention
  4057. // rope freq factors for llama3; may return nullptr for llama2 and other models
  4058. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  4059. // compute Q and K and RoPE them
  4060. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4061. cb(Qcur, "Qcur", il);
  4062. if (model.layers[il].bq) {
  4063. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4064. cb(Qcur, "Qcur", il);
  4065. }
  4066. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4067. cb(Kcur, "Kcur", il);
  4068. if (model.layers[il].bk) {
  4069. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4070. cb(Kcur, "Kcur", il);
  4071. }
  4072. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4073. cb(Vcur, "Vcur", il);
  4074. if (model.layers[il].bv) {
  4075. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4076. cb(Vcur, "Vcur", il);
  4077. }
  4078. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4079. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4080. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4081. Qcur = ggml_rope_ext(
  4082. ctx0, Qcur, inp_pos, rope_factors,
  4083. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4084. ext_factor, attn_factor, beta_fast, beta_slow
  4085. );
  4086. Kcur = ggml_rope_ext(
  4087. ctx0, Kcur, inp_pos, rope_factors,
  4088. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4089. ext_factor, attn_factor, beta_fast, beta_slow
  4090. );
  4091. cb(Qcur, "Qcur", il);
  4092. cb(Kcur, "Kcur", il);
  4093. cb(Vcur, "Vcur", il);
  4094. cur = build_attn(inp_attn, gf,
  4095. model.layers[il].wo, model.layers[il].bo,
  4096. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  4097. }
  4098. if (il == n_layer - 1) {
  4099. // skip computing output for unused tokens
  4100. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4101. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4102. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4103. }
  4104. // FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
  4105. if (n_ff == 0) {
  4106. continue;
  4107. }
  4108. // modified to support attention-free layer of Llama-3_1-Nemotron-51B
  4109. ggml_tensor * ffn_inp = cur;
  4110. if (n_head > 0) {
  4111. ffn_inp = ggml_add(ctx0, cur, inpSA);
  4112. cb(ffn_inp, "ffn_inp", il);
  4113. }
  4114. // feed-forward network
  4115. if (model.layers[il].ffn_gate_inp == nullptr) {
  4116. cur = build_norm(ffn_inp,
  4117. model.layers[il].ffn_norm, NULL,
  4118. LLM_NORM_RMS, il);
  4119. cb(cur, "ffn_norm", il);
  4120. cur = build_ffn(cur,
  4121. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4122. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  4123. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4124. NULL,
  4125. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4126. cb(cur, "ffn_out", il);
  4127. }
  4128. cur = ggml_add(ctx0, cur, ffn_inp);
  4129. cb(cur, "ffn_out", il);
  4130. cur = build_cvec(cur, il);
  4131. cb(cur, "l_out", il);
  4132. // input for next layer
  4133. inpL = cur;
  4134. }
  4135. cur = inpL;
  4136. cur = build_norm(cur,
  4137. model.output_norm, NULL,
  4138. LLM_NORM_RMS, -1);
  4139. cb(cur, "result_norm", -1);
  4140. res->t_embd = cur;
  4141. // lm_head
  4142. cur = build_lora_mm(model.output, cur);
  4143. cb(cur, "result_output", -1);
  4144. res->t_logits = cur;
  4145. ggml_build_forward_expand(gf, cur);
  4146. }
  4147. };
  4148. struct llm_build_baichuan : public llm_graph_context {
  4149. llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4150. const int64_t n_embd_head = hparams.n_embd_head_v;
  4151. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4152. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4153. ggml_tensor * cur;
  4154. ggml_tensor * inpL;
  4155. inpL = build_inp_embd(model.tok_embd);
  4156. // inp_pos - contains the positions
  4157. ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
  4158. auto * inp_attn = build_attn_inp_kv_unified();
  4159. for (int il = 0; il < n_layer; ++il) {
  4160. ggml_tensor * inpSA = inpL;
  4161. cur = build_norm(inpL,
  4162. model.layers[il].attn_norm, NULL,
  4163. LLM_NORM_RMS, il);
  4164. cb(cur, "attn_norm", il);
  4165. // self-attention
  4166. {
  4167. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4168. cb(Qcur, "Qcur", il);
  4169. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4170. cb(Kcur, "Kcur", il);
  4171. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4172. cb(Vcur, "Vcur", il);
  4173. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4174. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4175. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4176. switch (model.type) {
  4177. case LLM_TYPE_7B:
  4178. Qcur = ggml_rope_ext(
  4179. ctx0, Qcur, inp_pos, nullptr,
  4180. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4181. ext_factor, attn_factor, beta_fast, beta_slow
  4182. );
  4183. Kcur = ggml_rope_ext(
  4184. ctx0, Kcur, inp_pos, nullptr,
  4185. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4186. ext_factor, attn_factor, beta_fast, beta_slow
  4187. );
  4188. break;
  4189. case LLM_TYPE_13B:
  4190. break;
  4191. default:
  4192. GGML_ABORT("fatal error");
  4193. }
  4194. cb(Qcur, "Qcur", il);
  4195. cb(Kcur, "Kcur", il);
  4196. cb(Vcur, "Vcur", il);
  4197. cur = build_attn(inp_attn, gf,
  4198. model.layers[il].wo, NULL,
  4199. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4200. }
  4201. if (il == n_layer - 1) {
  4202. // skip computing output for unused tokens
  4203. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4204. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4205. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4206. }
  4207. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4208. cb(ffn_inp, "ffn_inp", il);
  4209. // feed-forward network
  4210. {
  4211. cur = build_norm(ffn_inp,
  4212. model.layers[il].ffn_norm, NULL,
  4213. LLM_NORM_RMS, il);
  4214. cb(cur, "ffn_norm", il);
  4215. cur = build_ffn(cur,
  4216. model.layers[il].ffn_up, NULL, NULL,
  4217. model.layers[il].ffn_gate, NULL, NULL,
  4218. model.layers[il].ffn_down, NULL, NULL,
  4219. NULL,
  4220. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4221. cb(cur, "ffn_out", il);
  4222. }
  4223. cur = ggml_add(ctx0, cur, ffn_inp);
  4224. cur = build_cvec(cur, il);
  4225. cb(cur, "l_out", il);
  4226. // input for next layer
  4227. inpL = cur;
  4228. }
  4229. cur = inpL;
  4230. cur = build_norm(cur,
  4231. model.output_norm, NULL,
  4232. LLM_NORM_RMS, -1);
  4233. cb(cur, "result_norm", -1);
  4234. res->t_embd = cur;
  4235. // lm_head
  4236. cur = build_lora_mm(model.output, cur);
  4237. cb(cur, "result_output", -1);
  4238. res->t_logits = cur;
  4239. ggml_build_forward_expand(gf, cur);
  4240. }
  4241. };
  4242. struct llm_build_xverse : public llm_graph_context {
  4243. llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4244. const int64_t n_embd_head = hparams.n_embd_head_v;
  4245. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4246. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4247. ggml_tensor * cur;
  4248. ggml_tensor * inpL;
  4249. inpL = build_inp_embd(model.tok_embd);
  4250. // inp_pos - contains the positions
  4251. ggml_tensor * inp_pos = build_inp_pos();
  4252. auto * inp_attn = build_attn_inp_kv_unified();
  4253. for (int il = 0; il < n_layer; ++il) {
  4254. ggml_tensor * inpSA = inpL;
  4255. cur = build_norm(inpL,
  4256. model.layers[il].attn_norm, NULL,
  4257. LLM_NORM_RMS, il);
  4258. cb(cur, "attn_norm", il);
  4259. // self-attention
  4260. {
  4261. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4262. cb(Qcur, "Qcur", il);
  4263. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4264. cb(Kcur, "Kcur", il);
  4265. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4266. cb(Vcur, "Vcur", il);
  4267. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4268. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4269. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4270. Qcur = ggml_rope_ext(
  4271. ctx0, Qcur, inp_pos, nullptr,
  4272. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4273. ext_factor, attn_factor, beta_fast, beta_slow
  4274. );
  4275. Kcur = ggml_rope_ext(
  4276. ctx0, Kcur, inp_pos, nullptr,
  4277. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4278. ext_factor, attn_factor, beta_fast, beta_slow
  4279. );
  4280. cb(Qcur, "Qcur", il);
  4281. cb(Kcur, "Kcur", il);
  4282. cb(Vcur, "Vcur", il);
  4283. cur = build_attn(inp_attn, gf,
  4284. model.layers[il].wo, NULL,
  4285. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4286. }
  4287. if (il == n_layer - 1) {
  4288. // skip computing output for unused tokens
  4289. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4290. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4291. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4292. }
  4293. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4294. cb(ffn_inp, "ffn_inp", il);
  4295. // feed-forward network
  4296. {
  4297. cur = build_norm(ffn_inp,
  4298. model.layers[il].ffn_norm, NULL,
  4299. LLM_NORM_RMS, il);
  4300. cb(cur, "ffn_norm", il);
  4301. cur = build_ffn(cur,
  4302. model.layers[il].ffn_up, NULL, NULL,
  4303. model.layers[il].ffn_gate, NULL, NULL,
  4304. model.layers[il].ffn_down, NULL, NULL,
  4305. NULL,
  4306. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4307. cb(cur, "ffn_out", il);
  4308. }
  4309. cur = ggml_add(ctx0, cur, ffn_inp);
  4310. cur = build_cvec(cur, il);
  4311. cb(cur, "l_out", il);
  4312. // input for next layer
  4313. inpL = cur;
  4314. }
  4315. cur = inpL;
  4316. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  4317. cb(cur, "result_norm", -1);
  4318. res->t_embd = cur;
  4319. // lm_head
  4320. cur = build_lora_mm(model.output, cur);
  4321. cb(cur, "result_output", -1);
  4322. res->t_logits = cur;
  4323. ggml_build_forward_expand(gf, cur);
  4324. }
  4325. };
  4326. struct llm_build_falcon : public llm_graph_context {
  4327. llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4328. const int64_t n_embd_head = hparams.n_embd_head_v;
  4329. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4330. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4331. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4332. ggml_tensor * cur;
  4333. ggml_tensor * inpL;
  4334. inpL = build_inp_embd(model.tok_embd);
  4335. // inp_pos - contains the positions
  4336. ggml_tensor * inp_pos = build_inp_pos();
  4337. auto * inp_attn = build_attn_inp_kv_unified();
  4338. for (int il = 0; il < n_layer; ++il) {
  4339. ggml_tensor * attn_norm;
  4340. attn_norm = build_norm(inpL,
  4341. model.layers[il].attn_norm,
  4342. model.layers[il].attn_norm_b,
  4343. LLM_NORM, il);
  4344. cb(attn_norm, "attn_norm", il);
  4345. // self-attention
  4346. {
  4347. if (model.layers[il].attn_norm_2) {
  4348. // Falcon-40B
  4349. cur = build_norm(inpL,
  4350. model.layers[il].attn_norm_2,
  4351. model.layers[il].attn_norm_2_b,
  4352. LLM_NORM, il);
  4353. cb(cur, "attn_norm_2", il);
  4354. } else {
  4355. cur = attn_norm;
  4356. }
  4357. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4358. cb(cur, "wqkv", il);
  4359. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4360. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4361. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4362. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4363. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4364. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4365. // using mode = 2 for neox mode
  4366. Qcur = ggml_rope_ext(
  4367. ctx0, Qcur, inp_pos, nullptr,
  4368. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4369. ext_factor, attn_factor, beta_fast, beta_slow
  4370. );
  4371. Kcur = ggml_rope_ext(
  4372. ctx0, Kcur, inp_pos, nullptr,
  4373. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4374. ext_factor, attn_factor, beta_fast, beta_slow
  4375. );
  4376. cb(Qcur, "Qcur", il);
  4377. cb(Kcur, "Kcur", il);
  4378. cb(Vcur, "Vcur", il);
  4379. cur = build_attn(inp_attn, gf,
  4380. model.layers[il].wo, NULL,
  4381. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4382. }
  4383. if (il == n_layer - 1) {
  4384. // skip computing output for unused tokens
  4385. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4386. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4387. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4388. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  4389. }
  4390. ggml_tensor * ffn_inp = cur;
  4391. // feed forward
  4392. {
  4393. cur = build_ffn(attn_norm, // !! use the attn norm, not the result
  4394. model.layers[il].ffn_up, NULL, NULL,
  4395. NULL, NULL, NULL,
  4396. model.layers[il].ffn_down, NULL, NULL,
  4397. NULL,
  4398. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4399. cb(cur, "ffn_out", il);
  4400. }
  4401. cur = ggml_add(ctx0, cur, ffn_inp);
  4402. cur = ggml_add(ctx0, cur, inpL);
  4403. cur = build_cvec(cur, il);
  4404. cb(cur, "l_out", il);
  4405. // input for next layer
  4406. inpL = cur;
  4407. }
  4408. cur = inpL;
  4409. // norm
  4410. cur = build_norm(cur,
  4411. model.output_norm,
  4412. model.output_norm_b,
  4413. LLM_NORM, -1);
  4414. cb(cur, "result_norm", -1);
  4415. res->t_embd = cur;
  4416. cur = build_lora_mm(model.output, cur);
  4417. cb(cur, "result_output", -1);
  4418. res->t_logits = cur;
  4419. ggml_build_forward_expand(gf, cur);
  4420. }
  4421. };
  4422. struct llm_build_grok : public llm_graph_context {
  4423. llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4424. const int64_t n_embd_head = hparams.n_embd_head_v;
  4425. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4426. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4427. ggml_tensor * cur;
  4428. ggml_tensor * inpL;
  4429. inpL = build_inp_embd(model.tok_embd);
  4430. // multiply by embedding_multiplier_scale of 78.38367176906169
  4431. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  4432. // inp_pos - contains the positions
  4433. ggml_tensor * inp_pos = build_inp_pos();
  4434. auto * inp_attn = build_attn_inp_kv_unified();
  4435. for (int il = 0; il < n_layer; ++il) {
  4436. ggml_tensor * inpSA = inpL;
  4437. // norm
  4438. cur = build_norm(inpL,
  4439. model.layers[il].attn_norm, NULL,
  4440. LLM_NORM_RMS, il);
  4441. cb(cur, "attn_norm", il);
  4442. // self-attention
  4443. {
  4444. // compute Q and K and RoPE them
  4445. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4446. cb(Qcur, "Qcur", il);
  4447. if (model.layers[il].bq) {
  4448. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4449. cb(Qcur, "Qcur", il);
  4450. }
  4451. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4452. cb(Kcur, "Kcur", il);
  4453. if (model.layers[il].bk) {
  4454. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4455. cb(Kcur, "Kcur", il);
  4456. }
  4457. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4458. cb(Vcur, "Vcur", il);
  4459. if (model.layers[il].bv) {
  4460. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4461. cb(Vcur, "Vcur", il);
  4462. }
  4463. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4464. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4465. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4466. Qcur = ggml_rope_ext(
  4467. ctx0, Qcur, inp_pos, nullptr,
  4468. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4469. ext_factor, attn_factor, beta_fast, beta_slow
  4470. );
  4471. Kcur = ggml_rope_ext(
  4472. ctx0, Kcur, inp_pos, nullptr,
  4473. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4474. ext_factor, attn_factor, beta_fast, beta_slow
  4475. );
  4476. cb(Qcur, "Qcur", il);
  4477. cb(Kcur, "Kcur", il);
  4478. cb(Vcur, "Vcur", il);
  4479. cur = build_attn(inp_attn, gf,
  4480. model.layers[il].wo, model.layers[il].bo,
  4481. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  4482. }
  4483. if (il == n_layer - 1) {
  4484. // skip computing output for unused tokens
  4485. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4486. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4487. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4488. }
  4489. // Grok
  4490. // if attn_out_norm is present then apply it before adding the input
  4491. if (model.layers[il].attn_out_norm) {
  4492. cur = build_norm(cur,
  4493. model.layers[il].attn_out_norm, NULL,
  4494. LLM_NORM_RMS, il);
  4495. cb(cur, "attn_out_norm", il);
  4496. }
  4497. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4498. cb(ffn_inp, "ffn_inp", il);
  4499. // feed-forward network
  4500. // MoE branch
  4501. cur = build_norm(ffn_inp,
  4502. model.layers[il].ffn_norm, NULL,
  4503. LLM_NORM_RMS, il);
  4504. cb(cur, "ffn_norm", il);
  4505. cur = build_moe_ffn(cur,
  4506. model.layers[il].ffn_gate_inp,
  4507. model.layers[il].ffn_up_exps,
  4508. model.layers[il].ffn_gate_exps,
  4509. model.layers[il].ffn_down_exps,
  4510. nullptr,
  4511. n_expert, n_expert_used,
  4512. LLM_FFN_GELU, true,
  4513. false, 0.0,
  4514. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4515. il);
  4516. cb(cur, "ffn_moe_out", il);
  4517. // Grok
  4518. // if layer_out_norm is present then apply it before adding the input
  4519. // Idea: maybe ffn_out_norm is a better name
  4520. if (model.layers[il].layer_out_norm) {
  4521. cur = build_norm(cur,
  4522. model.layers[il].layer_out_norm, NULL,
  4523. LLM_NORM_RMS, il);
  4524. cb(cur, "layer_out_norm", il);
  4525. }
  4526. cur = ggml_add(ctx0, cur, ffn_inp);
  4527. cb(cur, "ffn_out", il);
  4528. cur = build_cvec(cur, il);
  4529. cb(cur, "l_out", il);
  4530. // input for next layer
  4531. inpL = cur;
  4532. }
  4533. cur = inpL;
  4534. cur = build_norm(cur,
  4535. model.output_norm, NULL,
  4536. LLM_NORM_RMS, -1);
  4537. cb(cur, "result_norm", -1);
  4538. res->t_embd = cur;
  4539. // lm_head
  4540. cur = build_lora_mm(model.output, cur);
  4541. // Grok
  4542. // multiply logits by output_multiplier_scale of 0.5773502691896257
  4543. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  4544. cb(cur, "result_output", -1);
  4545. res->t_logits = cur;
  4546. ggml_build_forward_expand(gf, cur);
  4547. }
  4548. };
  4549. struct llm_build_dbrx : public llm_graph_context {
  4550. llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4551. const int64_t n_embd_head = hparams.n_embd_head_v;
  4552. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4553. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4554. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4555. ggml_tensor * cur;
  4556. ggml_tensor * inpL;
  4557. inpL = build_inp_embd(model.tok_embd);
  4558. // inp_pos - contains the positions
  4559. ggml_tensor * inp_pos = build_inp_pos();
  4560. auto * inp_attn = build_attn_inp_kv_unified();
  4561. for (int il = 0; il < n_layer; ++il) {
  4562. ggml_tensor * inpSA = inpL;
  4563. // norm
  4564. cur = build_norm(inpL,
  4565. model.layers[il].attn_norm, NULL,
  4566. LLM_NORM, il);
  4567. cb(cur, "attn_norm", il);
  4568. // self-attention
  4569. {
  4570. ggml_tensor * Qcur = nullptr;
  4571. ggml_tensor * Kcur = nullptr;
  4572. ggml_tensor * Vcur = nullptr;
  4573. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4574. cb(cur, "wqkv", il);
  4575. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4576. cb(cur, "wqkv_clamped", il);
  4577. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4578. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4579. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4580. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4581. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4582. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4583. Qcur = ggml_rope_ext(
  4584. ctx0, Qcur, inp_pos, nullptr,
  4585. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4586. ext_factor, attn_factor, beta_fast, beta_slow
  4587. );
  4588. Kcur = ggml_rope_ext(
  4589. ctx0, Kcur, inp_pos, nullptr,
  4590. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4591. ext_factor, attn_factor, beta_fast, beta_slow
  4592. );
  4593. cb(Qcur, "Qcur", il);
  4594. cb(Kcur, "Kcur", il);
  4595. cb(Vcur, "Vcur", il);
  4596. cur = build_attn(inp_attn, gf,
  4597. model.layers[il].wo, NULL,
  4598. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4599. }
  4600. if (il == n_layer - 1) {
  4601. // skip computing output for unused tokens
  4602. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4603. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4604. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4605. }
  4606. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4607. cb(ffn_inp, "ffn_inp", il);
  4608. // feed-forward network
  4609. // MoE branch
  4610. cur = build_norm(ffn_inp,
  4611. model.layers[il].attn_out_norm, NULL,
  4612. LLM_NORM, il);
  4613. cb(cur, "attn_out_norm", il);
  4614. cur = build_moe_ffn(cur,
  4615. model.layers[il].ffn_gate_inp,
  4616. model.layers[il].ffn_up_exps,
  4617. model.layers[il].ffn_gate_exps,
  4618. model.layers[il].ffn_down_exps,
  4619. nullptr,
  4620. n_expert, n_expert_used,
  4621. LLM_FFN_SILU, true,
  4622. false, 0.0,
  4623. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4624. il);
  4625. cb(cur, "ffn_moe_out", il);
  4626. cur = ggml_add(ctx0, cur, ffn_inp);
  4627. cb(cur, "ffn_out", il);
  4628. cur = build_cvec(cur, il);
  4629. cb(cur, "l_out", il);
  4630. // input for next layer
  4631. inpL = cur;
  4632. }
  4633. cur = inpL;
  4634. cur = build_norm(cur,
  4635. model.output_norm, NULL,
  4636. LLM_NORM, -1);
  4637. cb(cur, "result_norm", -1);
  4638. res->t_embd = cur;
  4639. // lm_head
  4640. cur = build_lora_mm(model.output, cur);
  4641. cb(cur, "result_output", -1);
  4642. res->t_logits = cur;
  4643. ggml_build_forward_expand(gf, cur);
  4644. }
  4645. };
  4646. struct llm_build_starcoder : public llm_graph_context {
  4647. llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4648. const int64_t n_embd_head = hparams.n_embd_head_v;
  4649. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4650. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4651. ggml_tensor * cur;
  4652. ggml_tensor * inpL;
  4653. inpL = build_inp_embd(model.tok_embd);
  4654. // inp_pos - contains the positions
  4655. ggml_tensor * inp_pos = build_inp_pos();
  4656. auto * inp_attn = build_attn_inp_kv_unified();
  4657. ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4658. cb(pos, "pos_embd", -1);
  4659. inpL = ggml_add(ctx0, inpL, pos);
  4660. cb(inpL, "inpL", -1);
  4661. for (int il = 0; il < n_layer; ++il) {
  4662. cur = build_norm(inpL,
  4663. model.layers[il].attn_norm,
  4664. model.layers[il].attn_norm_b,
  4665. LLM_NORM, il);
  4666. cb(cur, "attn_norm", il);
  4667. // self-attention
  4668. {
  4669. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4670. cb(cur, "wqkv", il);
  4671. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4672. cb(cur, "bqkv", il);
  4673. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4674. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4675. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4676. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4677. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4678. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4679. cb(Qcur, "Qcur", il);
  4680. cb(Kcur, "Kcur", il);
  4681. cb(Vcur, "Vcur", il);
  4682. cur = build_attn(inp_attn, gf,
  4683. model.layers[il].wo, model.layers[il].bo,
  4684. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4685. }
  4686. if (il == n_layer - 1) {
  4687. // skip computing output for unused tokens
  4688. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4689. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4690. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4691. }
  4692. // add the input
  4693. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4694. cb(ffn_inp, "ffn_inp", il);
  4695. // FF
  4696. {
  4697. cur = build_norm(ffn_inp,
  4698. model.layers[il].ffn_norm,
  4699. model.layers[il].ffn_norm_b,
  4700. LLM_NORM, il);
  4701. cb(cur, "ffn_norm", il);
  4702. cur = build_ffn(cur,
  4703. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4704. NULL, NULL, NULL,
  4705. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4706. NULL,
  4707. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4708. cb(cur, "ffn_out", il);
  4709. }
  4710. cur = ggml_add(ctx0, cur, ffn_inp);
  4711. cur = build_cvec(cur, il);
  4712. cb(cur, "l_out", il);
  4713. // input for next layer
  4714. inpL = cur;
  4715. }
  4716. cur = build_norm(inpL,
  4717. model.output_norm,
  4718. model.output_norm_b,
  4719. LLM_NORM, -1);
  4720. cb(cur, "result_norm", -1);
  4721. res->t_embd = cur;
  4722. cur = build_lora_mm(model.output, cur);
  4723. cb(cur, "result_output", -1);
  4724. res->t_logits = cur;
  4725. ggml_build_forward_expand(gf, cur);
  4726. }
  4727. };
  4728. struct llm_build_refact : public llm_graph_context {
  4729. llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4730. const int64_t n_embd_head = hparams.n_embd_head_v;
  4731. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4732. ggml_tensor * cur;
  4733. ggml_tensor * inpL;
  4734. inpL = build_inp_embd(model.tok_embd);
  4735. auto * inp_attn = build_attn_inp_kv_unified();
  4736. for (int il = 0; il < n_layer; ++il) {
  4737. ggml_tensor * inpSA = inpL;
  4738. cur = build_norm(inpL,
  4739. model.layers[il].attn_norm, NULL,
  4740. LLM_NORM_RMS, il);
  4741. cb(cur, "attn_norm", il);
  4742. // self-attention
  4743. {
  4744. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4745. cb(Qcur, "Qcur", il);
  4746. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4747. cb(Kcur, "Kcur", il);
  4748. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4749. cb(Vcur, "Vcur", il);
  4750. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4751. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4752. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4753. cb(Qcur, "Qcur", il);
  4754. cb(Kcur, "Kcur", il);
  4755. cb(Vcur, "Vcur", il);
  4756. cur = build_attn(inp_attn, gf,
  4757. model.layers[il].wo, NULL,
  4758. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4759. }
  4760. if (il == n_layer - 1) {
  4761. // skip computing output for unused tokens
  4762. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4763. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4764. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4765. }
  4766. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4767. cb(ffn_inp, "ffn_inp", il);
  4768. // feed-forward network
  4769. {
  4770. cur = build_norm(ffn_inp,
  4771. model.layers[il].ffn_norm, NULL,
  4772. LLM_NORM_RMS, il);
  4773. cb(cur, "ffn_norm", il);
  4774. cur = build_ffn(cur,
  4775. model.layers[il].ffn_up, NULL, NULL,
  4776. model.layers[il].ffn_gate, NULL, NULL,
  4777. model.layers[il].ffn_down, NULL, NULL,
  4778. NULL,
  4779. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4780. cb(cur, "ffn_out", il);
  4781. }
  4782. cur = ggml_add(ctx0, cur, ffn_inp);
  4783. cur = build_cvec(cur, il);
  4784. cb(cur, "l_out", il);
  4785. // input for next layer
  4786. inpL = cur;
  4787. }
  4788. cur = inpL;
  4789. cur = build_norm(cur,
  4790. model.output_norm, NULL,
  4791. LLM_NORM_RMS, -1);
  4792. cb(cur, "result_norm", -1);
  4793. res->t_embd = cur;
  4794. // lm_head
  4795. cur = build_lora_mm(model.output, cur);
  4796. cb(cur, "result_output", -1);
  4797. res->t_logits = cur;
  4798. ggml_build_forward_expand(gf, cur);
  4799. }
  4800. };
  4801. struct llm_build_bert : public llm_graph_context {
  4802. llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4803. const int64_t n_embd_head = hparams.n_embd_head_v;
  4804. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4805. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4806. ggml_tensor * cur;
  4807. ggml_tensor * inpL;
  4808. ggml_tensor * inp_pos = nullptr;
  4809. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  4810. inp_pos = build_inp_pos();
  4811. }
  4812. // construct input embeddings (token, type, position)
  4813. inpL = build_inp_embd(model.tok_embd);
  4814. // token types are hardcoded to zero ("Sentence A")
  4815. ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  4816. inpL = ggml_add(ctx0, inpL, type_row0);
  4817. if (model.arch == LLM_ARCH_BERT) {
  4818. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  4819. }
  4820. cb(inpL, "inp_embd", -1);
  4821. // embed layer norm
  4822. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  4823. cb(inpL, "inp_norm", -1);
  4824. auto * inp_attn = build_attn_inp_no_cache();
  4825. // iterate layers
  4826. for (int il = 0; il < n_layer; ++il) {
  4827. ggml_tensor * cur = inpL;
  4828. ggml_tensor * Qcur;
  4829. ggml_tensor * Kcur;
  4830. ggml_tensor * Vcur;
  4831. // self-attention
  4832. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  4833. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
  4834. if (model.layers[il].attn_q_norm) {
  4835. Qcur = build_norm(Qcur,
  4836. model.layers[il].attn_q_norm,
  4837. model.layers[il].attn_q_norm_b,
  4838. LLM_NORM, il);
  4839. }
  4840. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
  4841. if (model.layers[il].attn_k_norm) {
  4842. Kcur = build_norm(Kcur,
  4843. model.layers[il].attn_k_norm,
  4844. model.layers[il].attn_k_norm_b,
  4845. LLM_NORM, il);
  4846. }
  4847. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
  4848. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4849. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4850. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4851. } else {
  4852. // compute Q and K and RoPE them
  4853. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4854. cb(cur, "wqkv", il);
  4855. if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4856. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4857. cb(cur, "bqkv", il);
  4858. }
  4859. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4860. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4861. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4862. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4863. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4864. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4865. Qcur = ggml_rope_ext(
  4866. ctx0, Qcur, inp_pos, nullptr,
  4867. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4868. ext_factor, attn_factor, beta_fast, beta_slow
  4869. );
  4870. Kcur = ggml_rope_ext(
  4871. ctx0, Kcur, inp_pos, nullptr,
  4872. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4873. ext_factor, attn_factor, beta_fast, beta_slow
  4874. );
  4875. }
  4876. cb(Qcur, "Qcur", il);
  4877. cb(Kcur, "Kcur", il);
  4878. cb(Vcur, "Vcur", il);
  4879. cur = build_attn(inp_attn, gf,
  4880. model.layers[il].wo, model.layers[il].bo,
  4881. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4882. cb(cur, "kqv_out", il);
  4883. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  4884. // skip computing output for unused tokens
  4885. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4886. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4887. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4888. }
  4889. // re-add the layer input
  4890. cur = ggml_add(ctx0, cur, inpL);
  4891. // attention layer norm
  4892. cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
  4893. if (model.layers[il].attn_norm_2 != nullptr) {
  4894. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  4895. cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
  4896. }
  4897. ggml_tensor * ffn_inp = cur;
  4898. cb(ffn_inp, "ffn_inp", il);
  4899. // feed-forward network
  4900. if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
  4901. // MoE branch
  4902. cur = build_moe_ffn(cur,
  4903. model.layers[il].ffn_gate_inp,
  4904. model.layers[il].ffn_up_exps,
  4905. nullptr,
  4906. model.layers[il].ffn_down_exps,
  4907. nullptr,
  4908. hparams.n_expert,
  4909. hparams.n_expert_used,
  4910. LLM_FFN_GELU,
  4911. false, false,
  4912. 0.0f,
  4913. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
  4914. cb(cur, "ffn_moe_out", il);
  4915. } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4916. cur = build_ffn(cur,
  4917. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4918. NULL, NULL, NULL,
  4919. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4920. NULL,
  4921. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4922. cb(cur, "ffn_out", il);
  4923. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  4924. cur = build_ffn(cur,
  4925. model.layers[il].ffn_up, NULL, NULL,
  4926. model.layers[il].ffn_gate, NULL, NULL,
  4927. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4928. NULL,
  4929. LLM_FFN_GELU, LLM_FFN_PAR, il);
  4930. cb(cur, "ffn_out", il);
  4931. } else {
  4932. cur = build_ffn(cur,
  4933. model.layers[il].ffn_up, NULL, NULL,
  4934. model.layers[il].ffn_gate, NULL, NULL,
  4935. model.layers[il].ffn_down, NULL, NULL,
  4936. NULL,
  4937. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4938. cb(cur, "ffn_out", il);
  4939. }
  4940. // attentions bypass the intermediate layer
  4941. cur = ggml_add(ctx0, cur, ffn_inp);
  4942. // output layer norm
  4943. cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
  4944. // input for next layer
  4945. inpL = cur;
  4946. }
  4947. cur = inpL;
  4948. cb(cur, "result_embd", -1);
  4949. res->t_embd = cur;
  4950. ggml_build_forward_expand(gf, cur);
  4951. }
  4952. };
  4953. struct llm_build_bloom : public llm_graph_context {
  4954. llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4955. const int64_t n_embd_head = hparams.n_embd_head_v;
  4956. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4957. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4958. ggml_tensor * cur;
  4959. ggml_tensor * inpL;
  4960. inpL = build_inp_embd(model.tok_embd);
  4961. auto * inp_attn = build_attn_inp_kv_unified();
  4962. inpL = build_norm(inpL,
  4963. model.tok_norm,
  4964. model.tok_norm_b,
  4965. LLM_NORM, -1);
  4966. cb(inpL, "inp_norm", -1);
  4967. for (int il = 0; il < n_layer; ++il) {
  4968. cur = build_norm(inpL,
  4969. model.layers[il].attn_norm,
  4970. model.layers[il].attn_norm_b,
  4971. LLM_NORM, il);
  4972. cb(cur, "attn_norm", il);
  4973. // self-attention
  4974. {
  4975. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4976. cb(cur, "wqkv", il);
  4977. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4978. cb(cur, "bqkv", il);
  4979. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4980. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4981. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4982. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4983. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4984. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4985. cb(Qcur, "Qcur", il);
  4986. cb(Kcur, "Kcur", il);
  4987. cb(Vcur, "Vcur", il);
  4988. cur = build_attn(inp_attn, gf,
  4989. model.layers[il].wo, model.layers[il].bo,
  4990. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4991. }
  4992. if (il == n_layer - 1) {
  4993. // skip computing output for unused tokens
  4994. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4995. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4996. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4997. }
  4998. // Add the input
  4999. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5000. cb(ffn_inp, "ffn_inp", il);
  5001. // FF
  5002. {
  5003. cur = build_norm(ffn_inp,
  5004. model.layers[il].ffn_norm,
  5005. model.layers[il].ffn_norm_b,
  5006. LLM_NORM, il);
  5007. cb(cur, "ffn_norm", il);
  5008. cur = build_ffn(cur,
  5009. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5010. NULL, NULL, NULL,
  5011. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5012. NULL,
  5013. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5014. cb(cur, "ffn_out", il);
  5015. }
  5016. cur = ggml_add(ctx0, cur, ffn_inp);
  5017. cur = build_cvec(cur, il);
  5018. cb(cur, "l_out", il);
  5019. // input for next layer
  5020. inpL = cur;
  5021. }
  5022. cur = build_norm(inpL,
  5023. model.output_norm,
  5024. model.output_norm_b,
  5025. LLM_NORM, -1);
  5026. cb(cur, "result_norm", -1);
  5027. res->t_embd = cur;
  5028. cur = build_lora_mm(model.output, cur);
  5029. cb(cur, "result_output", -1);
  5030. res->t_logits = cur;
  5031. ggml_build_forward_expand(gf, cur);
  5032. }
  5033. };
  5034. struct llm_build_mpt : public llm_graph_context {
  5035. llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5036. const int64_t n_embd_head = hparams.n_embd_head_v;
  5037. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5038. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5039. ggml_tensor * cur;
  5040. ggml_tensor * pos;
  5041. ggml_tensor * inpL;
  5042. inpL = build_inp_embd(model.tok_embd);
  5043. auto * inp_attn = build_attn_inp_kv_unified();
  5044. if (model.pos_embd) {
  5045. // inp_pos - contains the positions
  5046. ggml_tensor * inp_pos = build_inp_pos();
  5047. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  5048. cb(pos, "pos_embd", -1);
  5049. inpL = ggml_add(ctx0, inpL, pos);
  5050. cb(inpL, "inpL", -1);
  5051. }
  5052. for (int il = 0; il < n_layer; ++il) {
  5053. ggml_tensor * attn_norm;
  5054. attn_norm = build_norm(inpL,
  5055. model.layers[il].attn_norm,
  5056. model.layers[il].attn_norm_b,
  5057. LLM_NORM, il);
  5058. cb(attn_norm, "attn_norm", il);
  5059. // self-attention
  5060. {
  5061. cur = attn_norm;
  5062. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5063. cb(cur, "wqkv", il);
  5064. if (model.layers[il].bqkv){
  5065. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5066. cb(cur, "bqkv", il);
  5067. }
  5068. if (hparams.f_clamp_kqv > 0.0f) {
  5069. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  5070. cb(cur, "wqkv_clamped", il);
  5071. }
  5072. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5073. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5074. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5075. cb(Qcur, "Qcur", il);
  5076. cb(Kcur, "Kcur", il);
  5077. cb(Vcur, "Vcur", il);
  5078. // Q/K Layernorm
  5079. if (model.layers[il].attn_q_norm) {
  5080. Qcur = build_norm(Qcur,
  5081. model.layers[il].attn_q_norm,
  5082. model.layers[il].attn_q_norm_b,
  5083. LLM_NORM, il);
  5084. cb(Qcur, "Qcur", il);
  5085. Kcur = build_norm(Kcur,
  5086. model.layers[il].attn_k_norm,
  5087. model.layers[il].attn_k_norm_b,
  5088. LLM_NORM, il);
  5089. cb(Kcur, "Kcur", il);
  5090. }
  5091. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5092. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5093. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5094. cb(Qcur, "Qcur", il);
  5095. cb(Kcur, "Kcur", il);
  5096. cb(Vcur, "Vcur", il);
  5097. cur = build_attn(inp_attn, gf,
  5098. model.layers[il].wo, model.layers[il].bo,
  5099. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5100. }
  5101. if (il == n_layer - 1) {
  5102. // skip computing output for unused tokens
  5103. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5104. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5105. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5106. }
  5107. // Add the input
  5108. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5109. cb(ffn_inp, "ffn_inp", il);
  5110. // feed forward
  5111. {
  5112. cur = build_norm(ffn_inp,
  5113. model.layers[il].ffn_norm,
  5114. model.layers[il].ffn_norm_b,
  5115. LLM_NORM, il);
  5116. cb(cur, "ffn_norm", il);
  5117. cur = build_ffn(cur,
  5118. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5119. NULL, NULL, NULL,
  5120. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5121. model.layers[il].ffn_act,
  5122. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5123. cb(cur, "ffn_out", il);
  5124. }
  5125. cur = ggml_add(ctx0, cur, ffn_inp);
  5126. cur = build_cvec(cur, il);
  5127. cb(cur, "l_out", il);
  5128. // input for next layer
  5129. inpL = cur;
  5130. }
  5131. cur = inpL;
  5132. cur = build_norm(cur,
  5133. model.output_norm,
  5134. model.output_norm_b,
  5135. LLM_NORM, -1);
  5136. cb(cur, "result_norm", -1);
  5137. res->t_embd = cur;
  5138. cur = build_lora_mm(model.output, cur);
  5139. cb(cur, "result_output", -1);
  5140. res->t_logits = cur;
  5141. ggml_build_forward_expand(gf, cur);
  5142. }
  5143. };
  5144. struct llm_build_stablelm : public llm_graph_context {
  5145. llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5146. const int64_t n_embd_head = hparams.n_embd_head_v;
  5147. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5148. ggml_tensor * cur;
  5149. ggml_tensor * inpL;
  5150. inpL = build_inp_embd(model.tok_embd);
  5151. // inp_pos - contains the positions
  5152. ggml_tensor * inp_pos = build_inp_pos();
  5153. auto * inp_attn = build_attn_inp_kv_unified();
  5154. for (int il = 0; il < n_layer; ++il) {
  5155. // norm
  5156. cur = build_norm(inpL,
  5157. model.layers[il].attn_norm,
  5158. model.layers[il].attn_norm_b,
  5159. LLM_NORM, il);
  5160. cb(cur, "attn_norm", il);
  5161. ggml_tensor * inpSA = cur;
  5162. // self-attention
  5163. {
  5164. // compute Q and K and RoPE them
  5165. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5166. cb(Qcur, "Qcur", il);
  5167. if (model.layers[il].bq) {
  5168. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5169. cb(Qcur, "Qcur", il);
  5170. }
  5171. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5172. cb(Kcur, "Kcur", il);
  5173. if (model.layers[il].bk) {
  5174. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5175. cb(Kcur, "Kcur", il);
  5176. }
  5177. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5178. cb(Vcur, "Vcur", il);
  5179. if (model.layers[il].bv) {
  5180. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5181. cb(Vcur, "Vcur", il);
  5182. }
  5183. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5184. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5185. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5186. if (model.layers[il].attn_q_norm) {
  5187. Qcur = build_norm(Qcur,
  5188. model.layers[il].attn_q_norm,
  5189. NULL,
  5190. LLM_NORM, il);
  5191. cb(Qcur, "Qcur", il);
  5192. }
  5193. if (model.layers[il].attn_k_norm) {
  5194. Kcur = build_norm(Kcur,
  5195. model.layers[il].attn_k_norm,
  5196. NULL,
  5197. LLM_NORM, il);
  5198. cb(Kcur, "Kcur", il);
  5199. }
  5200. Qcur = ggml_rope_ext(
  5201. ctx0, Qcur, inp_pos, nullptr,
  5202. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5203. ext_factor, attn_factor, beta_fast, beta_slow
  5204. );
  5205. Kcur = ggml_rope_ext(
  5206. ctx0, Kcur, inp_pos, nullptr,
  5207. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5208. ext_factor, attn_factor, beta_fast, beta_slow
  5209. );
  5210. cb(Qcur, "Qcur", il);
  5211. cb(Kcur, "Kcur", il);
  5212. cb(Vcur, "Vcur", il);
  5213. cur = build_attn(inp_attn, gf,
  5214. model.layers[il].wo, NULL,
  5215. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5216. }
  5217. if (il == n_layer - 1) {
  5218. // skip computing output for unused tokens
  5219. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5220. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5221. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5222. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5223. }
  5224. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5225. cb(ffn_inp, "ffn_inp", il);
  5226. // feed-forward network
  5227. {
  5228. if (model.layers[il].ffn_norm) {
  5229. cur = build_norm(ffn_inp,
  5230. model.layers[il].ffn_norm,
  5231. model.layers[il].ffn_norm_b,
  5232. LLM_NORM, il);
  5233. cb(cur, "ffn_norm", il);
  5234. } else {
  5235. // parallel residual
  5236. cur = inpSA;
  5237. }
  5238. cur = build_ffn(cur,
  5239. model.layers[il].ffn_up, NULL, NULL,
  5240. model.layers[il].ffn_gate, NULL, NULL,
  5241. model.layers[il].ffn_down, NULL, NULL,
  5242. NULL,
  5243. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5244. cb(cur, "ffn_out", il);
  5245. }
  5246. cur = ggml_add(ctx0, cur, ffn_inp);
  5247. cur = build_cvec(cur, il);
  5248. cb(cur, "l_out", il);
  5249. // input for next layer
  5250. inpL = cur;
  5251. }
  5252. cur = inpL;
  5253. cur = build_norm(cur,
  5254. model.output_norm,
  5255. model.output_norm_b,
  5256. LLM_NORM, -1);
  5257. cb(cur, "result_norm", -1);
  5258. res->t_embd = cur;
  5259. // lm_head
  5260. cur = build_lora_mm(model.output, cur);
  5261. cb(cur, "result_output", -1);
  5262. res->t_logits = cur;
  5263. ggml_build_forward_expand(gf, cur);
  5264. }
  5265. };
  5266. struct llm_build_qwen : public llm_graph_context {
  5267. llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5268. const int64_t n_embd_head = hparams.n_embd_head_v;
  5269. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5270. ggml_tensor * cur;
  5271. ggml_tensor * inpL;
  5272. inpL = build_inp_embd(model.tok_embd);
  5273. // inp_pos - contains the positions
  5274. ggml_tensor * inp_pos = build_inp_pos();
  5275. auto * inp_attn = build_attn_inp_kv_unified();
  5276. for (int il = 0; il < n_layer; ++il) {
  5277. ggml_tensor * inpSA = inpL;
  5278. cur = build_norm(inpL,
  5279. model.layers[il].attn_norm, NULL,
  5280. LLM_NORM_RMS, il);
  5281. cb(cur, "attn_norm", il);
  5282. // self-attention
  5283. {
  5284. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5285. cb(cur, "wqkv", il);
  5286. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5287. cb(cur, "bqkv", il);
  5288. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5289. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5290. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  5291. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5292. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5293. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5294. // using mode = 2 for neox mode
  5295. Qcur = ggml_rope_ext(
  5296. ctx0, Qcur, inp_pos, nullptr,
  5297. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5298. ext_factor, attn_factor, beta_fast, beta_slow
  5299. );
  5300. Kcur = ggml_rope_ext(
  5301. ctx0, Kcur, inp_pos, nullptr,
  5302. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5303. ext_factor, attn_factor, beta_fast, beta_slow
  5304. );
  5305. cb(Qcur, "Qcur", il);
  5306. cb(Kcur, "Kcur", il);
  5307. cb(Vcur, "Vcur", il);
  5308. cur = build_attn(inp_attn, gf,
  5309. model.layers[il].wo, NULL,
  5310. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5311. }
  5312. if (il == n_layer - 1) {
  5313. // skip computing output for unused tokens
  5314. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5315. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5316. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5317. }
  5318. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5319. cb(ffn_inp, "ffn_inp", il);
  5320. // feed-forward forward
  5321. {
  5322. cur = build_norm(ffn_inp,
  5323. model.layers[il].ffn_norm, NULL,
  5324. LLM_NORM_RMS, il);
  5325. cb(cur, "ffn_norm", il);
  5326. cur = build_ffn(cur,
  5327. model.layers[il].ffn_up, NULL, NULL,
  5328. model.layers[il].ffn_gate, NULL, NULL,
  5329. model.layers[il].ffn_down, NULL, NULL,
  5330. NULL,
  5331. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5332. cb(cur, "ffn_out", il);
  5333. }
  5334. cur = ggml_add(ctx0, cur, ffn_inp);
  5335. cur = build_cvec(cur, il);
  5336. cb(cur, "l_out", il);
  5337. // input for next layer
  5338. inpL = cur;
  5339. }
  5340. cur = inpL;
  5341. cur = build_norm(cur,
  5342. model.output_norm, NULL,
  5343. LLM_NORM_RMS, -1);
  5344. cb(cur, "result_norm", -1);
  5345. res->t_embd = cur;
  5346. // lm_head
  5347. cur = build_lora_mm(model.output, cur);
  5348. cb(cur, "result_output", -1);
  5349. res->t_logits = cur;
  5350. ggml_build_forward_expand(gf, cur);
  5351. }
  5352. };
  5353. struct llm_build_qwen2 : public llm_graph_context {
  5354. llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5355. const int64_t n_embd_head = hparams.n_embd_head_v;
  5356. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5357. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5358. ggml_tensor * cur;
  5359. ggml_tensor * inpL;
  5360. inpL = build_inp_embd(model.tok_embd);
  5361. // inp_pos - contains the positions
  5362. ggml_tensor * inp_pos = build_inp_pos();
  5363. auto * inp_attn = build_attn_inp_kv_unified();
  5364. for (int il = 0; il < n_layer; ++il) {
  5365. ggml_tensor * inpSA = inpL;
  5366. // norm
  5367. cur = build_norm(inpL,
  5368. model.layers[il].attn_norm, NULL,
  5369. LLM_NORM_RMS, il);
  5370. cb(cur, "attn_norm", il);
  5371. // self-attention
  5372. {
  5373. // compute Q and K and RoPE them
  5374. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5375. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5376. cb(Qcur, "Qcur", il);
  5377. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5378. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5379. cb(Kcur, "Kcur", il);
  5380. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5381. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5382. cb(Vcur, "Vcur", il);
  5383. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5384. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5385. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5386. Qcur = ggml_rope_ext(
  5387. ctx0, Qcur, inp_pos, nullptr,
  5388. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5389. ext_factor, attn_factor, beta_fast, beta_slow
  5390. );
  5391. Kcur = ggml_rope_ext(
  5392. ctx0, Kcur, inp_pos, nullptr,
  5393. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5394. ext_factor, attn_factor, beta_fast, beta_slow
  5395. );
  5396. cb(Qcur, "Qcur", il);
  5397. cb(Kcur, "Kcur", il);
  5398. cb(Vcur, "Vcur", il);
  5399. cur = build_attn(inp_attn, gf,
  5400. model.layers[il].wo, model.layers[il].bo,
  5401. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5402. }
  5403. if (il == n_layer - 1) {
  5404. // skip computing output for unused tokens
  5405. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5406. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5407. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5408. }
  5409. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5410. cb(ffn_inp, "ffn_inp", il);
  5411. // feed-forward network
  5412. cur = build_norm(ffn_inp,
  5413. model.layers[il].ffn_norm, NULL,
  5414. LLM_NORM_RMS, il);
  5415. cb(cur, "ffn_norm", il);
  5416. cur = build_ffn(cur,
  5417. model.layers[il].ffn_up, NULL, NULL,
  5418. model.layers[il].ffn_gate, NULL, NULL,
  5419. model.layers[il].ffn_down, NULL, NULL,
  5420. NULL,
  5421. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5422. cb(cur, "ffn_out", il);
  5423. cur = ggml_add(ctx0, cur, ffn_inp);
  5424. cur = build_cvec(cur, il);
  5425. cb(cur, "l_out", il);
  5426. // input for next layer
  5427. inpL = cur;
  5428. }
  5429. cur = inpL;
  5430. cur = build_norm(cur,
  5431. model.output_norm, NULL,
  5432. LLM_NORM_RMS, -1);
  5433. cb(cur, "result_norm", -1);
  5434. res->t_embd = cur;
  5435. // lm_head
  5436. cur = build_lora_mm(model.output, cur);
  5437. cb(cur, "result_output", -1);
  5438. res->t_logits = cur;
  5439. ggml_build_forward_expand(gf, cur);
  5440. }
  5441. };
  5442. struct llm_build_qwen2vl : public llm_graph_context {
  5443. llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5444. const int64_t n_embd_head = hparams.n_embd_head_v;
  5445. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5446. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5447. ggml_tensor * cur;
  5448. ggml_tensor * inpL;
  5449. inpL = build_inp_embd(model.tok_embd);
  5450. // inp_pos - contains the positions
  5451. ggml_tensor * inp_pos = build_inp_pos();
  5452. auto * inp_attn = build_attn_inp_kv_unified();
  5453. int sections[4];
  5454. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  5455. for (int il = 0; il < n_layer; ++il) {
  5456. ggml_tensor * inpSA = inpL;
  5457. // norm
  5458. cur = build_norm(inpL,
  5459. model.layers[il].attn_norm, NULL,
  5460. LLM_NORM_RMS, il);
  5461. cb(cur, "attn_norm", il);
  5462. // self-attention
  5463. {
  5464. // compute Q and K and RoPE them
  5465. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5466. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5467. cb(Qcur, "Qcur", il);
  5468. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5469. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5470. cb(Kcur, "Kcur", il);
  5471. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5472. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5473. cb(Vcur, "Vcur", il);
  5474. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5475. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5476. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5477. Qcur = ggml_rope_multi(
  5478. ctx0, Qcur, inp_pos, nullptr,
  5479. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5480. ext_factor, attn_factor, beta_fast, beta_slow
  5481. );
  5482. Kcur = ggml_rope_multi(
  5483. ctx0, Kcur, inp_pos, nullptr,
  5484. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5485. ext_factor, attn_factor, beta_fast, beta_slow
  5486. );
  5487. cb(Qcur, "Qcur", il);
  5488. cb(Kcur, "Kcur", il);
  5489. cb(Vcur, "Vcur", il);
  5490. cur = build_attn(inp_attn, gf,
  5491. model.layers[il].wo, model.layers[il].bo,
  5492. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5493. }
  5494. if (il == n_layer - 1) {
  5495. // skip computing output for unused tokens
  5496. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5497. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5498. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5499. }
  5500. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5501. cb(ffn_inp, "ffn_inp", il);
  5502. // feed-forward network
  5503. cur = build_norm(ffn_inp,
  5504. model.layers[il].ffn_norm, NULL,
  5505. LLM_NORM_RMS, il);
  5506. cb(cur, "ffn_norm", il);
  5507. cur = build_ffn(cur,
  5508. model.layers[il].ffn_up, NULL, NULL,
  5509. model.layers[il].ffn_gate, NULL, NULL,
  5510. model.layers[il].ffn_down, NULL, NULL,
  5511. NULL,
  5512. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5513. cb(cur, "ffn_out", il);
  5514. cur = ggml_add(ctx0, cur, ffn_inp);
  5515. cur = build_cvec(cur, il);
  5516. cb(cur, "l_out", il);
  5517. // input for next layer
  5518. inpL = cur;
  5519. }
  5520. cur = inpL;
  5521. cur = build_norm(cur,
  5522. model.output_norm, NULL,
  5523. LLM_NORM_RMS, -1);
  5524. cb(cur, "result_norm", -1);
  5525. res->t_embd = cur;
  5526. // lm_head
  5527. cur = build_lora_mm(model.output, cur);
  5528. cb(cur, "result_output", -1);
  5529. res->t_logits = cur;
  5530. ggml_build_forward_expand(gf, cur);
  5531. }
  5532. };
  5533. struct llm_build_qwen2moe : public llm_graph_context {
  5534. llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5535. const int64_t n_embd_head = hparams.n_embd_head_v;
  5536. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5537. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5538. ggml_tensor * cur;
  5539. ggml_tensor * inpL;
  5540. inpL = build_inp_embd(model.tok_embd);
  5541. // inp_pos - contains the positions
  5542. ggml_tensor * inp_pos = build_inp_pos();
  5543. auto * inp_attn = build_attn_inp_kv_unified();
  5544. for (int il = 0; il < n_layer; ++il) {
  5545. ggml_tensor * inpSA = inpL;
  5546. // norm
  5547. cur = build_norm(inpL,
  5548. model.layers[il].attn_norm, NULL,
  5549. LLM_NORM_RMS, il);
  5550. cb(cur, "attn_norm", il);
  5551. // self_attention
  5552. {
  5553. // compute Q and K and RoPE them
  5554. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5555. cb(Qcur, "Qcur", il);
  5556. if (model.layers[il].bq) {
  5557. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5558. cb(Qcur, "Qcur", il);
  5559. }
  5560. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5561. cb(Kcur, "Kcur", il);
  5562. if (model.layers[il].bk) {
  5563. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5564. cb(Kcur, "Kcur", il);
  5565. }
  5566. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5567. cb(Vcur, "Vcur", il);
  5568. if (model.layers[il].bv) {
  5569. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5570. cb(Vcur, "Vcur", il);
  5571. }
  5572. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5573. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5574. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5575. Qcur = ggml_rope_ext(
  5576. ctx0, Qcur, inp_pos, nullptr,
  5577. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5578. ext_factor, attn_factor, beta_fast, beta_slow
  5579. );
  5580. Kcur = ggml_rope_ext(
  5581. ctx0, Kcur, inp_pos, nullptr,
  5582. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5583. ext_factor, attn_factor, beta_fast, beta_slow
  5584. );
  5585. cb(Qcur, "Qcur", il);
  5586. cb(Kcur, "Kcur", il);
  5587. cb(Vcur, "Vcur", il);
  5588. cur = build_attn(inp_attn, gf,
  5589. model.layers[il].wo, model.layers[il].bo,
  5590. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5591. }
  5592. if (il == n_layer - 1) {
  5593. // skip computing output for unused tokens
  5594. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5595. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5596. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5597. }
  5598. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5599. cb(ffn_inp, "ffn_inp", il);
  5600. // MoE branch
  5601. cur = build_norm(ffn_inp,
  5602. model.layers[il].ffn_norm, NULL,
  5603. LLM_NORM_RMS, il);
  5604. cb(cur, "ffn_norm", il);
  5605. ggml_tensor * moe_out =
  5606. build_moe_ffn(cur,
  5607. model.layers[il].ffn_gate_inp,
  5608. model.layers[il].ffn_up_exps,
  5609. model.layers[il].ffn_gate_exps,
  5610. model.layers[il].ffn_down_exps,
  5611. nullptr,
  5612. n_expert, n_expert_used,
  5613. LLM_FFN_SILU, false,
  5614. false, 0.0,
  5615. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5616. il);
  5617. cb(moe_out, "ffn_moe_out", il);
  5618. // FFN shared expert
  5619. {
  5620. ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
  5621. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  5622. // sigmoid
  5623. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  5624. cb(cur_gate, "ffn_shexp_gate", il);
  5625. ggml_tensor * cur_ffn = build_ffn(cur,
  5626. model.layers[il].ffn_up_shexp, NULL, NULL,
  5627. model.layers[il].ffn_gate_shexp, NULL, NULL,
  5628. model.layers[il].ffn_down_shexp, NULL, NULL,
  5629. NULL,
  5630. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5631. cb(cur_ffn, "ffn_shexp", il);
  5632. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  5633. cb(ffn_shexp_out, "ffn_shexp_out", il);
  5634. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  5635. cb(moe_out, "ffn_out", il);
  5636. cur = moe_out;
  5637. }
  5638. cur = ggml_add(ctx0, cur, ffn_inp);
  5639. cur = build_cvec(cur, il);
  5640. cb(cur, "l_out", il);
  5641. // input for next layer
  5642. inpL = cur;
  5643. }
  5644. cur = inpL;
  5645. cur = build_norm(cur,
  5646. model.output_norm, NULL,
  5647. LLM_NORM_RMS, -1);
  5648. cb(cur, "result_norm", -1);
  5649. res->t_embd = cur;
  5650. // lm_head
  5651. cur = build_lora_mm(model.output, cur);
  5652. cb(cur, "result_output", -1);
  5653. res->t_logits = cur;
  5654. ggml_build_forward_expand(gf, cur);
  5655. }
  5656. };
  5657. struct llm_build_qwen3 : public llm_graph_context {
  5658. llm_build_qwen3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5659. const int64_t n_embd_head = hparams.n_embd_head_v;
  5660. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5661. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5662. ggml_tensor * cur;
  5663. ggml_tensor * inpL;
  5664. inpL = build_inp_embd(model.tok_embd);
  5665. // inp_pos - contains the positions
  5666. ggml_tensor * inp_pos = build_inp_pos();
  5667. auto * inp_attn = build_attn_inp_kv_unified();
  5668. for (int il = 0; il < n_layer; ++il) {
  5669. ggml_tensor * inpSA = inpL;
  5670. // norm
  5671. cur = build_norm(inpL,
  5672. model.layers[il].attn_norm, NULL,
  5673. LLM_NORM_RMS, il);
  5674. cb(cur, "attn_norm", il);
  5675. // self-attention
  5676. {
  5677. // compute Q and K and RoPE them
  5678. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5679. cb(Qcur, "Qcur", il);
  5680. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5681. cb(Kcur, "Kcur", il);
  5682. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5683. cb(Vcur, "Vcur", il);
  5684. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5685. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5686. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5687. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5688. cb(Qcur, "Qcur_normed", il);
  5689. Qcur = ggml_rope_ext(
  5690. ctx0, Qcur, inp_pos, nullptr,
  5691. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5692. ext_factor, attn_factor, beta_fast, beta_slow
  5693. );
  5694. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5695. cb(Kcur, "Kcur_normed", il);
  5696. Kcur = ggml_rope_ext(
  5697. ctx0, Kcur, inp_pos, nullptr,
  5698. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5699. ext_factor, attn_factor, beta_fast, beta_slow
  5700. );
  5701. cb(Qcur, "Qcur", il);
  5702. cb(Kcur, "Kcur", il);
  5703. cb(Vcur, "Vcur", il);
  5704. cur = build_attn(inp_attn, gf,
  5705. model.layers[il].wo, model.layers[il].bo,
  5706. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5707. }
  5708. if (il == n_layer - 1) {
  5709. // skip computing output for unused tokens
  5710. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5711. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5712. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5713. }
  5714. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5715. cb(ffn_inp, "ffn_inp", il);
  5716. // feed-forward network
  5717. cur = build_norm(ffn_inp,
  5718. model.layers[il].ffn_norm, NULL,
  5719. LLM_NORM_RMS, il);
  5720. cb(cur, "ffn_norm", il);
  5721. cur = build_ffn(cur,
  5722. model.layers[il].ffn_up, NULL, NULL,
  5723. model.layers[il].ffn_gate, NULL, NULL,
  5724. model.layers[il].ffn_down, NULL, NULL,
  5725. NULL,
  5726. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5727. cb(cur, "ffn_out", il);
  5728. cur = ggml_add(ctx0, cur, ffn_inp);
  5729. cur = build_cvec(cur, il);
  5730. cb(cur, "l_out", il);
  5731. // input for next layer
  5732. inpL = cur;
  5733. }
  5734. cur = inpL;
  5735. cur = build_norm(cur,
  5736. model.output_norm, NULL,
  5737. LLM_NORM_RMS, -1);
  5738. cb(cur, "result_norm", -1);
  5739. res->t_embd = cur;
  5740. // lm_head
  5741. cur = build_lora_mm(model.output, cur);
  5742. cb(cur, "result_output", -1);
  5743. res->t_logits = cur;
  5744. ggml_build_forward_expand(gf, cur);
  5745. }
  5746. };
  5747. struct llm_build_qwen3moe : public llm_graph_context {
  5748. llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5749. const int64_t n_embd_head = hparams.n_embd_head_v;
  5750. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5751. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5752. ggml_tensor * cur;
  5753. ggml_tensor * inpL;
  5754. inpL = build_inp_embd(model.tok_embd);
  5755. // inp_pos - contains the positions
  5756. ggml_tensor * inp_pos = build_inp_pos();
  5757. auto * inp_attn = build_attn_inp_kv_unified();
  5758. for (int il = 0; il < n_layer; ++il) {
  5759. ggml_tensor * inpSA = inpL;
  5760. // norm
  5761. cur = build_norm(inpL,
  5762. model.layers[il].attn_norm, NULL,
  5763. LLM_NORM_RMS, il);
  5764. cb(cur, "attn_norm", il);
  5765. // self_attention
  5766. {
  5767. // compute Q and K and RoPE them
  5768. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5769. cb(Qcur, "Qcur", il);
  5770. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5771. cb(Kcur, "Kcur", il);
  5772. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5773. cb(Vcur, "Vcur", il);
  5774. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5775. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5776. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5777. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5778. cb(Qcur, "Qcur_normed", il);
  5779. Qcur = ggml_rope_ext(
  5780. ctx0, Qcur, inp_pos, nullptr,
  5781. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5782. ext_factor, attn_factor, beta_fast, beta_slow
  5783. );
  5784. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5785. cb(Kcur, "Kcur_normed", il);
  5786. Kcur = ggml_rope_ext(
  5787. ctx0, Kcur, inp_pos, nullptr,
  5788. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5789. ext_factor, attn_factor, beta_fast, beta_slow
  5790. );
  5791. cb(Qcur, "Qcur", il);
  5792. cb(Kcur, "Kcur", il);
  5793. cb(Vcur, "Vcur", il);
  5794. cur = build_attn(inp_attn, gf,
  5795. model.layers[il].wo, model.layers[il].bo,
  5796. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5797. }
  5798. if (il == n_layer - 1) {
  5799. // skip computing output for unused tokens
  5800. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5801. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5802. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5803. }
  5804. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5805. cb(ffn_inp, "ffn_inp", il);
  5806. // MoE branch
  5807. cur = build_norm(ffn_inp,
  5808. model.layers[il].ffn_norm, NULL,
  5809. LLM_NORM_RMS, il);
  5810. cb(cur, "ffn_norm", il);
  5811. ggml_tensor * moe_out =
  5812. build_moe_ffn(cur,
  5813. model.layers[il].ffn_gate_inp,
  5814. model.layers[il].ffn_up_exps,
  5815. model.layers[il].ffn_gate_exps,
  5816. model.layers[il].ffn_down_exps,
  5817. nullptr,
  5818. n_expert, n_expert_used,
  5819. LLM_FFN_SILU, true,
  5820. false, 0.0,
  5821. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5822. il);
  5823. cb(moe_out, "ffn_moe_out", il);
  5824. cur = moe_out;
  5825. cur = ggml_add(ctx0, cur, ffn_inp);
  5826. cur = build_cvec(cur, il);
  5827. cb(cur, "l_out", il);
  5828. // input for next layer
  5829. inpL = cur;
  5830. }
  5831. cur = inpL;
  5832. cur = build_norm(cur,
  5833. model.output_norm, NULL,
  5834. LLM_NORM_RMS, -1);
  5835. cb(cur, "result_norm", -1);
  5836. res->t_embd = cur;
  5837. // lm_head
  5838. cur = build_lora_mm(model.output, cur);
  5839. cb(cur, "result_output", -1);
  5840. res->t_logits = cur;
  5841. ggml_build_forward_expand(gf, cur);
  5842. }
  5843. };
  5844. struct llm_build_phi2 : public llm_graph_context {
  5845. llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5846. const int64_t n_embd_head = hparams.n_embd_head_v;
  5847. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5848. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5849. ggml_tensor * cur;
  5850. ggml_tensor * attn_norm_output;
  5851. ggml_tensor * ffn_output;
  5852. ggml_tensor * inpL;
  5853. inpL = build_inp_embd(model.tok_embd);
  5854. // inp_pos - contains the positions
  5855. ggml_tensor * inp_pos = build_inp_pos();
  5856. auto * inp_attn = build_attn_inp_kv_unified();
  5857. for (int il = 0; il < n_layer; ++il) {
  5858. attn_norm_output = build_norm(inpL,
  5859. model.layers[il].attn_norm,
  5860. model.layers[il].attn_norm_b,
  5861. LLM_NORM, il);
  5862. cb(attn_norm_output, "attn_norm", il);
  5863. // self-attention
  5864. {
  5865. ggml_tensor * Qcur = nullptr;
  5866. ggml_tensor * Kcur = nullptr;
  5867. ggml_tensor * Vcur = nullptr;
  5868. if (model.layers[il].wqkv) {
  5869. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5870. cb(cur, "wqkv", il);
  5871. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5872. cb(cur, "bqkv", il);
  5873. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5874. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5875. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5876. } else {
  5877. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5878. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5879. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5880. }
  5881. cb(Qcur, "Qcur", il);
  5882. cb(Kcur, "Kcur", il);
  5883. cb(Vcur, "Vcur", il);
  5884. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5885. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5886. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5887. Qcur = ggml_rope_ext(
  5888. ctx0, Qcur, inp_pos, nullptr,
  5889. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5890. ext_factor, attn_factor, beta_fast, beta_slow
  5891. );
  5892. Kcur = ggml_rope_ext(
  5893. ctx0, Kcur, inp_pos, nullptr,
  5894. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5895. ext_factor, attn_factor, beta_fast, beta_slow
  5896. );
  5897. cb(Qcur, "Qcur", il);
  5898. cb(Kcur, "Kcur", il);
  5899. cb(Vcur, "Vcur", il);
  5900. // with phi2, we scale the Q to avoid precision issues
  5901. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  5902. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  5903. cur = build_attn(inp_attn, gf,
  5904. model.layers[il].wo, model.layers[il].bo,
  5905. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5906. }
  5907. if (il == n_layer - 1) {
  5908. // skip computing output for unused tokens
  5909. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5910. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5911. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5912. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  5913. }
  5914. // FF
  5915. {
  5916. ffn_output = build_ffn(attn_norm_output,
  5917. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5918. NULL, NULL, NULL,
  5919. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5920. NULL,
  5921. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5922. cb(ffn_output, "ffn_out", il);
  5923. }
  5924. cur = ggml_add(ctx0, cur, ffn_output);
  5925. cur = ggml_add(ctx0, cur, inpL);
  5926. cur = build_cvec(cur, il);
  5927. cb(cur, "l_out", il);
  5928. // input for next layer
  5929. inpL = cur;
  5930. }
  5931. cur = build_norm(inpL,
  5932. model.output_norm,
  5933. model.output_norm_b,
  5934. LLM_NORM, -1);
  5935. cb(cur, "result_norm", -1);
  5936. res->t_embd = cur;
  5937. cur = build_lora_mm(model.output, cur);
  5938. cb(cur, "result_output_no_bias", -1);
  5939. cur = ggml_add(ctx0, cur, model.output_b);
  5940. cb(cur, "result_output", -1);
  5941. res->t_logits = cur;
  5942. ggml_build_forward_expand(gf, cur);
  5943. }
  5944. };
  5945. template<bool iswa>
  5946. struct llm_build_phi3 : public llm_graph_context {
  5947. llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5948. const int64_t n_embd_head = hparams.n_embd_head_v;
  5949. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5950. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5951. ggml_tensor * cur;
  5952. ggml_tensor * inpL;
  5953. inpL = build_inp_embd(model.tok_embd);
  5954. // inp_pos - contains the positions
  5955. ggml_tensor * inp_pos = build_inp_pos();
  5956. using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_unified_iswa, llm_graph_input_attn_kv_unified>;
  5957. inp_attn_type * inp_attn = nullptr;
  5958. if constexpr (iswa) {
  5959. inp_attn = build_attn_inp_kv_unified_iswa();
  5960. } else {
  5961. inp_attn = build_attn_inp_kv_unified();
  5962. }
  5963. for (int il = 0; il < n_layer; ++il) {
  5964. auto * residual = inpL;
  5965. // self-attention
  5966. {
  5967. // rope freq factors for 128k context
  5968. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  5969. ggml_tensor* attn_norm_output = build_norm(inpL,
  5970. model.layers[il].attn_norm,
  5971. model.layers[il].attn_norm_b,
  5972. LLM_NORM_RMS, il);
  5973. cb(attn_norm_output, "attn_norm", il);
  5974. ggml_tensor * Qcur = nullptr;
  5975. ggml_tensor * Kcur = nullptr;
  5976. ggml_tensor * Vcur = nullptr;
  5977. if (model.layers[il].wqkv) {
  5978. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5979. cb(cur, "wqkv", il);
  5980. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  5981. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  5982. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  5983. } else {
  5984. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5985. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5986. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5987. }
  5988. cb(Qcur, "Qcur", il);
  5989. cb(Kcur, "Kcur", il);
  5990. cb(Vcur, "Vcur", il);
  5991. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5992. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5993. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5994. Qcur = ggml_rope_ext(
  5995. ctx0, Qcur, inp_pos, rope_factors,
  5996. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5997. ext_factor, attn_factor, beta_fast, beta_slow
  5998. );
  5999. Kcur = ggml_rope_ext(
  6000. ctx0, Kcur, inp_pos, rope_factors,
  6001. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6002. ext_factor, attn_factor, beta_fast, beta_slow
  6003. );
  6004. cb(Qcur, "Qcur", il);
  6005. cb(Kcur, "Kcur", il);
  6006. cb(Vcur, "Vcur", il);
  6007. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6008. cb(Qcur, "Qcur", il);
  6009. cur = build_attn(inp_attn, gf,
  6010. model.layers[il].wo, model.layers[il].bo,
  6011. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6012. }
  6013. if (il == n_layer - 1) {
  6014. // skip computing output for unused tokens
  6015. ggml_tensor* inp_out_ids = build_inp_out_ids();
  6016. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6017. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6018. }
  6019. cur = ggml_add(ctx0, cur, residual);
  6020. residual = cur;
  6021. cur = build_norm(cur,
  6022. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6023. LLM_NORM_RMS, il);
  6024. cb(cur, "ffn_norm", il);
  6025. // feed-forward network
  6026. if (model.layers[il].ffn_gate_inp == nullptr) {
  6027. cur = build_ffn(cur,
  6028. model.layers[il].ffn_up, NULL, NULL,
  6029. NULL, NULL, NULL,
  6030. model.layers[il].ffn_down, NULL, NULL,
  6031. NULL,
  6032. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  6033. cb(cur, "ffn_out", il);
  6034. } else {
  6035. // MoE branch
  6036. cur = build_moe_ffn(cur,
  6037. model.layers[il].ffn_gate_inp,
  6038. model.layers[il].ffn_up_exps,
  6039. model.layers[il].ffn_gate_exps,
  6040. model.layers[il].ffn_down_exps,
  6041. nullptr,
  6042. n_expert, n_expert_used,
  6043. LLM_FFN_SILU, true,
  6044. false, 0.0,
  6045. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  6046. il);
  6047. cb(cur, "ffn_moe_out", il);
  6048. }
  6049. cur = ggml_add(ctx0, residual, cur);
  6050. cur = build_cvec(cur, il);
  6051. cb(cur, "l_out", il);
  6052. // input for next layer
  6053. inpL = cur;
  6054. }
  6055. cur = build_norm(inpL,
  6056. model.output_norm,
  6057. model.output_norm_b,
  6058. LLM_NORM_RMS, -1);
  6059. cb(cur, "result_norm", -1);
  6060. res->t_embd = cur;
  6061. cur = build_lora_mm(model.output, cur);
  6062. if (model.output_b != nullptr) {
  6063. cb(cur, "result_output_no_bias", -1);
  6064. cur = ggml_add(ctx0, cur, model.output_b);
  6065. }
  6066. cb(cur, "result_output", -1);
  6067. res->t_logits = cur;
  6068. ggml_build_forward_expand(gf, cur);
  6069. }
  6070. };
  6071. struct llm_build_plamo : public llm_graph_context {
  6072. llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6073. const int64_t n_embd_head = hparams.n_embd_head_v;
  6074. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6075. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6076. ggml_tensor * cur;
  6077. ggml_tensor * inpL;
  6078. inpL = build_inp_embd(model.tok_embd);
  6079. // inp_pos - contains the positions
  6080. ggml_tensor * inp_pos = build_inp_pos();
  6081. auto * inp_attn = build_attn_inp_kv_unified();
  6082. for (int il = 0; il < n_layer; ++il) {
  6083. // norm
  6084. cur = build_norm(inpL,
  6085. model.layers[il].attn_norm, NULL,
  6086. LLM_NORM_RMS, il);
  6087. cb(cur, "attn_norm", il);
  6088. ggml_tensor * attention_norm = cur;
  6089. // self-attention
  6090. {
  6091. // compute Q and K and RoPE them
  6092. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6093. cb(Qcur, "Qcur", il);
  6094. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6095. cb(Kcur, "Kcur", il);
  6096. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6097. cb(Vcur, "Vcur", il);
  6098. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6099. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6100. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6101. Qcur = ggml_rope_ext(
  6102. ctx0, Qcur, inp_pos, nullptr,
  6103. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  6104. ext_factor, attn_factor, beta_fast, beta_slow
  6105. );
  6106. Kcur = ggml_rope_ext(
  6107. ctx0, Kcur, inp_pos, nullptr,
  6108. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  6109. ext_factor, attn_factor, beta_fast, beta_slow
  6110. );
  6111. cb(Qcur, "Qcur", il);
  6112. cb(Kcur, "Kcur", il);
  6113. cb(Vcur, "Vcur", il);
  6114. cur = build_attn(inp_attn, gf,
  6115. model.layers[il].wo, NULL,
  6116. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6117. }
  6118. ggml_tensor * sa_out = cur;
  6119. cur = attention_norm;
  6120. if (il == n_layer - 1) {
  6121. // skip computing output for unused tokens
  6122. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6123. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6124. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  6125. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6126. }
  6127. // feed-forward network
  6128. {
  6129. cur = build_ffn(cur,
  6130. model.layers[il].ffn_up, NULL, NULL,
  6131. model.layers[il].ffn_gate, NULL, NULL,
  6132. model.layers[il].ffn_down, NULL, NULL,
  6133. NULL,
  6134. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6135. cb(cur, "ffn_out", il);
  6136. }
  6137. cur = ggml_add(ctx0, cur, sa_out);
  6138. cur = ggml_add(ctx0, cur, inpL);
  6139. cur = build_cvec(cur, il);
  6140. cb(cur, "l_out", il);
  6141. // input for next layer
  6142. inpL = cur;
  6143. }
  6144. cur = inpL;
  6145. cur = build_norm(cur,
  6146. model.output_norm, NULL,
  6147. LLM_NORM_RMS, -1);
  6148. cb(cur, "result_norm", -1);
  6149. res->t_embd = cur;
  6150. // lm_head
  6151. cur = build_lora_mm(model.output, cur);
  6152. cb(cur, "result_output", -1);
  6153. res->t_logits = cur;
  6154. ggml_build_forward_expand(gf, cur);
  6155. }
  6156. };
  6157. struct llm_build_gpt2 : public llm_graph_context {
  6158. llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6159. const int64_t n_embd_head = hparams.n_embd_head_v;
  6160. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6161. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6162. ggml_tensor * cur;
  6163. ggml_tensor * pos;
  6164. ggml_tensor * inpL;
  6165. inpL = build_inp_embd(model.tok_embd);
  6166. // inp_pos - contains the positions
  6167. ggml_tensor * inp_pos = build_inp_pos();
  6168. auto * inp_attn = build_attn_inp_kv_unified();
  6169. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6170. cb(pos, "pos_embd", -1);
  6171. inpL = ggml_add(ctx0, inpL, pos);
  6172. cb(inpL, "inpL", -1);
  6173. for (int il = 0; il < n_layer; ++il) {
  6174. cur = build_norm(inpL,
  6175. model.layers[il].attn_norm,
  6176. model.layers[il].attn_norm_b,
  6177. LLM_NORM, il);
  6178. cb(cur, "attn_norm", il);
  6179. // self-attention
  6180. {
  6181. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6182. cb(cur, "wqkv", il);
  6183. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6184. cb(cur, "bqkv", il);
  6185. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6186. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6187. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6188. cb(Qcur, "Qcur", il);
  6189. cb(Kcur, "Kcur", il);
  6190. cb(Vcur, "Vcur", il);
  6191. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6192. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6193. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6194. cur = build_attn(inp_attn, gf,
  6195. model.layers[il].wo, model.layers[il].bo,
  6196. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6197. }
  6198. if (il == n_layer - 1) {
  6199. // skip computing output for unused tokens
  6200. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6201. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6202. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6203. }
  6204. // add the input
  6205. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6206. cb(ffn_inp, "ffn_inp", il);
  6207. // FF
  6208. {
  6209. cur = build_norm(ffn_inp,
  6210. model.layers[il].ffn_norm,
  6211. model.layers[il].ffn_norm_b,
  6212. LLM_NORM, il);
  6213. cb(cur, "ffn_norm", il);
  6214. cur = build_ffn(cur,
  6215. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6216. NULL, NULL, NULL,
  6217. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6218. NULL,
  6219. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6220. cb(cur, "ffn_out", il);
  6221. }
  6222. cur = ggml_add(ctx0, cur, ffn_inp);
  6223. cur = build_cvec(cur, il);
  6224. cb(cur, "l_out", il);
  6225. // input for next layer
  6226. inpL = cur;
  6227. }
  6228. cur = build_norm(inpL,
  6229. model.output_norm,
  6230. model.output_norm_b,
  6231. LLM_NORM, -1);
  6232. cb(cur, "result_norm", -1);
  6233. res->t_embd = cur;
  6234. cur = build_lora_mm(model.output, cur);
  6235. cb(cur, "result_output", -1);
  6236. res->t_logits = cur;
  6237. ggml_build_forward_expand(gf, cur);
  6238. }
  6239. };
  6240. struct llm_build_codeshell : public llm_graph_context {
  6241. llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6242. const int64_t n_embd_head = hparams.n_embd_head_v;
  6243. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6244. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6245. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6246. ggml_tensor * cur;
  6247. ggml_tensor * inpL;
  6248. inpL = build_inp_embd(model.tok_embd);
  6249. // inp_pos - contains the positions
  6250. ggml_tensor * inp_pos = build_inp_pos();
  6251. auto * inp_attn = build_attn_inp_kv_unified();
  6252. for (int il = 0; il < n_layer; ++il) {
  6253. cur = build_norm(inpL,
  6254. model.layers[il].attn_norm,
  6255. model.layers[il].attn_norm_b,
  6256. LLM_NORM, il);
  6257. cb(cur, "attn_norm", il);
  6258. // self-attention
  6259. {
  6260. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6261. cb(cur, "wqkv", il);
  6262. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6263. cb(cur, "bqkv", il);
  6264. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6265. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6266. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6267. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6268. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6269. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6270. Qcur = ggml_rope_ext(
  6271. ctx0, Qcur, inp_pos, nullptr,
  6272. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6273. ext_factor, attn_factor, beta_fast, beta_slow
  6274. );
  6275. Kcur = ggml_rope_ext(
  6276. ctx0, Kcur, inp_pos, nullptr,
  6277. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6278. ext_factor, attn_factor, beta_fast, beta_slow
  6279. );
  6280. cb(Qcur, "Qcur", il);
  6281. cb(Kcur, "Kcur", il);
  6282. cb(Vcur, "Vcur", il);
  6283. cur = build_attn(inp_attn, gf,
  6284. model.layers[il].wo, model.layers[il].bo,
  6285. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6286. }
  6287. if (il == n_layer - 1) {
  6288. // skip computing output for unused tokens
  6289. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6290. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6291. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6292. }
  6293. // add the input
  6294. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6295. cb(ffn_inp, "ffn_inp", il);
  6296. // FF
  6297. {
  6298. cur = build_norm(ffn_inp,
  6299. model.layers[il].ffn_norm,
  6300. model.layers[il].ffn_norm_b,
  6301. LLM_NORM, il);
  6302. cb(cur, "ffn_norm", il);
  6303. cur = build_ffn(cur,
  6304. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6305. NULL, NULL, NULL,
  6306. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6307. NULL,
  6308. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6309. cb(cur, "ffn_out", il);
  6310. }
  6311. cur = ggml_add(ctx0, cur, ffn_inp);
  6312. cur = build_cvec(cur, il);
  6313. cb(cur, "l_out", il);
  6314. // input for next layer
  6315. inpL = cur;
  6316. }
  6317. cur = build_norm(inpL,
  6318. model.output_norm,
  6319. model.output_norm_b,
  6320. LLM_NORM, -1);
  6321. cb(cur, "result_norm", -1);
  6322. res->t_embd = cur;
  6323. cur = build_lora_mm(model.output, cur);
  6324. cb(cur, "result_output", -1);
  6325. res->t_logits = cur;
  6326. ggml_build_forward_expand(gf, cur);
  6327. }
  6328. };
  6329. struct llm_build_orion : public llm_graph_context {
  6330. llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6331. const int64_t n_embd_head = hparams.n_embd_head_v;
  6332. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6333. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6334. ggml_tensor * cur;
  6335. ggml_tensor * inpL;
  6336. inpL = build_inp_embd(model.tok_embd);
  6337. // inp_pos - contains the positions
  6338. ggml_tensor * inp_pos = build_inp_pos();
  6339. auto * inp_attn = build_attn_inp_kv_unified();
  6340. for (int il = 0; il < n_layer; ++il) {
  6341. ggml_tensor * inpSA = inpL;
  6342. // norm
  6343. cur = build_norm(inpL,
  6344. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6345. LLM_NORM, il);
  6346. cb(cur, "attn_norm", il);
  6347. // self-attention
  6348. {
  6349. // compute Q and K and RoPE them
  6350. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6351. cb(Qcur, "Qcur", il);
  6352. // if (model.layers[il].bq) {
  6353. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6354. // cb(Qcur, "Qcur", il);
  6355. // }
  6356. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6357. cb(Kcur, "Kcur", il);
  6358. // if (model.layers[il].bk) {
  6359. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6360. // cb(Kcur, "Kcur", il);
  6361. // }
  6362. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6363. cb(Vcur, "Vcur", il);
  6364. // if (model.layers[il].bv) {
  6365. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6366. // cb(Vcur, "Vcur", il);
  6367. // }
  6368. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6369. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6370. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6371. Qcur = ggml_rope_ext(
  6372. ctx0, Qcur, inp_pos, nullptr,
  6373. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6374. ext_factor, attn_factor, beta_fast, beta_slow
  6375. );
  6376. Kcur = ggml_rope_ext(
  6377. ctx0, Kcur, inp_pos, nullptr,
  6378. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6379. ext_factor, attn_factor, beta_fast, beta_slow
  6380. );
  6381. cb(Qcur, "Qcur", il);
  6382. cb(Kcur, "Kcur", il);
  6383. cb(Vcur, "Vcur", il);
  6384. cur = build_attn(inp_attn, gf,
  6385. model.layers[il].wo, NULL,
  6386. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6387. }
  6388. if (il == n_layer - 1) {
  6389. // skip computing output for unused tokens
  6390. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6391. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6392. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6393. }
  6394. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6395. cb(ffn_inp, "ffn_inp", il);
  6396. // feed-forward network
  6397. cur = build_norm(ffn_inp,
  6398. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6399. LLM_NORM, il);
  6400. cb(cur, "ffn_norm", il);
  6401. cur = build_ffn(cur,
  6402. model.layers[il].ffn_up, NULL, NULL,
  6403. model.layers[il].ffn_gate, NULL, NULL,
  6404. model.layers[il].ffn_down, NULL, NULL,
  6405. NULL,
  6406. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6407. cb(cur, "ffn_out", il);
  6408. cur = ggml_add(ctx0, cur, ffn_inp);
  6409. cur = build_cvec(cur, il);
  6410. cb(cur, "l_out", il);
  6411. // input for next layer
  6412. inpL = cur;
  6413. }
  6414. cur = inpL;
  6415. cur = build_norm(cur,
  6416. model.output_norm, model.output_norm_b,
  6417. LLM_NORM, -1);
  6418. cb(cur, "result_norm", -1);
  6419. res->t_embd = cur;
  6420. // lm_head
  6421. cur = build_lora_mm(model.output, cur);
  6422. cb(cur, "result_output", -1);
  6423. res->t_logits = cur;
  6424. ggml_build_forward_expand(gf, cur);
  6425. }
  6426. };
  6427. struct llm_build_internlm2 : public llm_graph_context {
  6428. llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6429. const int64_t n_embd_head = hparams.n_embd_head_v;
  6430. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6431. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6432. ggml_tensor * cur;
  6433. ggml_tensor * inpL;
  6434. inpL = build_inp_embd(model.tok_embd);
  6435. // inp_pos - contains the positions
  6436. ggml_tensor * inp_pos = build_inp_pos();
  6437. auto * inp_attn = build_attn_inp_kv_unified();
  6438. for (int il = 0; il < n_layer; ++il) {
  6439. ggml_tensor * inpSA = inpL;
  6440. // norm
  6441. cur = build_norm(inpL,
  6442. model.layers[il].attn_norm, NULL,
  6443. LLM_NORM_RMS, il);
  6444. cb(cur, "attn_norm", il);
  6445. // self-attention
  6446. {
  6447. // compute Q and K and RoPE them
  6448. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6449. cb(Qcur, "Qcur", il);
  6450. if (model.layers[il].bq) {
  6451. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6452. cb(Qcur, "Qcur", il);
  6453. }
  6454. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6455. cb(Kcur, "Kcur", il);
  6456. if (model.layers[il].bk) {
  6457. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6458. cb(Kcur, "Kcur", il);
  6459. }
  6460. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6461. cb(Vcur, "Vcur", il);
  6462. if (model.layers[il].bv) {
  6463. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6464. cb(Vcur, "Vcur", il);
  6465. }
  6466. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6467. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6468. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6469. Qcur = ggml_rope_ext(
  6470. ctx0, Qcur, inp_pos, nullptr,
  6471. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6472. ext_factor, attn_factor, beta_fast, beta_slow
  6473. );
  6474. Kcur = ggml_rope_ext(
  6475. ctx0, Kcur, inp_pos, nullptr,
  6476. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6477. ext_factor, attn_factor, beta_fast, beta_slow
  6478. );
  6479. cb(Qcur, "Qcur", il);
  6480. cb(Kcur, "Kcur", il);
  6481. cb(Vcur, "Vcur", il);
  6482. cur = build_attn(inp_attn, gf,
  6483. model.layers[il].wo, model.layers[il].bo,
  6484. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6485. }
  6486. if (il == n_layer - 1) {
  6487. // skip computing output for unused tokens
  6488. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6489. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6490. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6491. }
  6492. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6493. cb(ffn_inp, "ffn_inp", il);
  6494. // feed-forward network
  6495. cur = build_norm(ffn_inp,
  6496. model.layers[il].ffn_norm, NULL,
  6497. LLM_NORM_RMS, il);
  6498. cb(cur, "ffn_norm", il);
  6499. cur = build_ffn(cur,
  6500. model.layers[il].ffn_up, NULL, NULL,
  6501. model.layers[il].ffn_gate, NULL, NULL,
  6502. model.layers[il].ffn_down, NULL, NULL,
  6503. NULL,
  6504. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6505. cb(cur, "ffn_out", il);
  6506. cur = ggml_add(ctx0, cur, ffn_inp);
  6507. cur = build_cvec(cur, il);
  6508. cb(cur, "l_out", il);
  6509. // input for next layer
  6510. inpL = cur;
  6511. }
  6512. cur = inpL;
  6513. cur = build_norm(cur,
  6514. model.output_norm, NULL,
  6515. LLM_NORM_RMS, -1);
  6516. cb(cur, "result_norm", -1);
  6517. res->t_embd = cur;
  6518. // lm_head
  6519. cur = build_lora_mm(model.output, cur);
  6520. cb(cur, "result_output", -1);
  6521. res->t_logits = cur;
  6522. ggml_build_forward_expand(gf, cur);
  6523. }
  6524. };
  6525. struct llm_build_minicpm3 : public llm_graph_context {
  6526. llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6527. //TODO: if the model varies, these parameters need to be read from the model
  6528. const int64_t n_embd_base = 256;
  6529. const float scale_embd = 12.0f;
  6530. const float scale_depth = 1.4f;
  6531. const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
  6532. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  6533. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  6534. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  6535. ggml_tensor * cur;
  6536. ggml_tensor * inpL;
  6537. inpL = build_inp_embd(model.tok_embd);
  6538. // scale the input embeddings
  6539. inpL = ggml_scale(ctx0, inpL, scale_embd);
  6540. cb(inpL, "inp_scaled", -1);
  6541. // inp_pos - contains the positions
  6542. ggml_tensor * inp_pos = build_inp_pos();
  6543. auto * inp_attn = build_attn_inp_kv_unified();
  6544. for (int il = 0; il < n_layer; ++il) {
  6545. ggml_tensor * inpSA = inpL;
  6546. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  6547. // norm
  6548. cur = build_norm(inpL,
  6549. model.layers[il].attn_norm, NULL,
  6550. LLM_NORM_RMS, il);
  6551. cb(cur, "attn_norm", il);
  6552. // self_attention
  6553. {
  6554. ggml_tensor * q = NULL;
  6555. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  6556. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  6557. cb(q, "q", il);
  6558. q = build_norm(q,
  6559. model.layers[il].attn_q_a_norm, NULL,
  6560. LLM_NORM_RMS, il);
  6561. cb(q, "q", il);
  6562. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  6563. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  6564. cb(q, "q", il);
  6565. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6566. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  6567. ggml_row_size(q->type, hparams.n_embd_head_k),
  6568. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6569. 0);
  6570. cb(q_nope, "q_nope", il);
  6571. // and {n_head * n_embd_head_qk_rope, n_tokens}
  6572. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  6573. ggml_row_size(q->type, hparams.n_embd_head_k),
  6574. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6575. ggml_row_size(q->type, n_embd_head_qk_nope));
  6576. cb(q_pe, "q_pe", il);
  6577. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  6578. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  6579. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  6580. // split into {kv_lora_rank, n_tokens}
  6581. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  6582. kv_pe_compresseed->nb[1],
  6583. 0);
  6584. cb(kv_compressed, "kv_compressed", il);
  6585. // and {n_embd_head_qk_rope, n_tokens}
  6586. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  6587. kv_pe_compresseed->nb[1],
  6588. kv_pe_compresseed->nb[1],
  6589. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  6590. cb(k_pe, "k_pe", il);
  6591. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  6592. kv_compressed = ggml_cont(ctx0, kv_compressed);
  6593. kv_compressed = build_norm(kv_compressed,
  6594. model.layers[il].attn_kv_a_norm, NULL,
  6595. LLM_NORM_RMS, il);
  6596. cb(kv_compressed, "kv_compressed", il);
  6597. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  6598. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  6599. cb(kv, "kv", il);
  6600. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6601. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  6602. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  6603. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6604. 0);
  6605. cb(k_nope, "k_nope", il);
  6606. // and {n_head * n_embd_head_v, n_tokens}
  6607. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  6608. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6609. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  6610. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  6611. cb(v_states, "v_states", il);
  6612. v_states = ggml_cont(ctx0, v_states);
  6613. cb(v_states, "v_states", il);
  6614. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  6615. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  6616. 0);
  6617. cb(v_states, "v_states", il);
  6618. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6619. q_pe = ggml_rope_ext(
  6620. ctx0, q_pe, inp_pos, rope_factors,
  6621. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6622. ext_factor, attn_factor, beta_fast, beta_slow
  6623. );
  6624. cb(q_pe, "q_pe", il);
  6625. // shared RoPE key
  6626. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6627. k_pe = ggml_rope_ext(
  6628. ctx0, k_pe, inp_pos, rope_factors,
  6629. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6630. ext_factor, attn_factor, beta_fast, beta_slow
  6631. );
  6632. cb(k_pe, "k_pe", il);
  6633. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  6634. cb(q_states, "q_states", il);
  6635. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  6636. cb(k_states, "k_states", il);
  6637. cur = build_attn(inp_attn, gf,
  6638. model.layers[il].wo, NULL,
  6639. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  6640. }
  6641. if (il == n_layer - 1) {
  6642. // skip computing output for unused tokens
  6643. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6644. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6645. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6646. }
  6647. // scale_res - scale the hidden states for residual connection
  6648. const float scale_res = scale_depth/sqrtf(float(n_layer));
  6649. cur = ggml_scale(ctx0, cur, scale_res);
  6650. cb(cur, "hidden_scaled", il);
  6651. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6652. cb(ffn_inp, "ffn_inp", il);
  6653. // feed-forward network
  6654. {
  6655. cur = build_norm(ffn_inp,
  6656. model.layers[il].ffn_norm, NULL,
  6657. LLM_NORM_RMS, il);
  6658. cb(cur, "ffn_norm", il);
  6659. cur = build_ffn(cur,
  6660. model.layers[il].ffn_up, NULL, NULL,
  6661. model.layers[il].ffn_gate, NULL, NULL,
  6662. model.layers[il].ffn_down, NULL, NULL,
  6663. NULL,
  6664. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6665. cb(cur, "ffn_out", il);
  6666. }
  6667. // scale the hidden states for residual connection
  6668. cur = ggml_scale(ctx0, cur, scale_res);
  6669. cb(cur, "hidden_scaled_ffn", il);
  6670. cur = ggml_add(ctx0, cur, ffn_inp);
  6671. cur = build_cvec(cur, il);
  6672. cb(cur, "l_out", il);
  6673. // input for next layer
  6674. inpL = cur;
  6675. }
  6676. cur = inpL;
  6677. cur = build_norm(cur,
  6678. model.output_norm, NULL,
  6679. LLM_NORM_RMS, -1);
  6680. cb(cur, "result_norm", -1);
  6681. res->t_embd = cur;
  6682. // lm_head scaling
  6683. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  6684. cur = ggml_scale(ctx0, cur, scale_lmhead);
  6685. cb(cur, "lmhead_scaling", -1);
  6686. // lm_head
  6687. cur = build_lora_mm(model.output, cur);
  6688. cb(cur, "result_output", -1);
  6689. res->t_logits = cur;
  6690. ggml_build_forward_expand(gf, cur);
  6691. }
  6692. };
  6693. struct llm_build_gemma : public llm_graph_context {
  6694. llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6695. const int64_t n_embd_head = hparams.n_embd_head_v;
  6696. ggml_tensor * cur;
  6697. ggml_tensor * inpL;
  6698. inpL = build_inp_embd(model.tok_embd);
  6699. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6700. cb(inpL, "inp_scaled", -1);
  6701. // inp_pos - contains the positions
  6702. ggml_tensor * inp_pos = build_inp_pos();
  6703. auto * inp_attn = build_attn_inp_kv_unified();
  6704. for (int il = 0; il < n_layer; ++il) {
  6705. // norm
  6706. cur = build_norm(inpL,
  6707. model.layers[il].attn_norm, NULL,
  6708. LLM_NORM_RMS, il);
  6709. cb(cur, "attn_norm", il);
  6710. // self-attention
  6711. {
  6712. // compute Q and K and RoPE them
  6713. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6714. cb(Qcur, "Qcur", il);
  6715. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6716. cb(Kcur, "Kcur", il);
  6717. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6718. cb(Vcur, "Vcur", il);
  6719. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6720. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6721. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6722. Qcur = ggml_rope_ext(
  6723. ctx0, Qcur, inp_pos, nullptr,
  6724. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6725. ext_factor, attn_factor, beta_fast, beta_slow);
  6726. Kcur = ggml_rope_ext(
  6727. ctx0, Kcur, inp_pos, nullptr,
  6728. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6729. ext_factor, attn_factor, beta_fast, beta_slow);
  6730. cb(Qcur, "Qcur", il);
  6731. cb(Kcur, "Kcur", il);
  6732. cb(Vcur, "Vcur", il);
  6733. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6734. cb(Qcur, "Qcur_scaled", il);
  6735. cur = build_attn(inp_attn, gf,
  6736. model.layers[il].wo, NULL,
  6737. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6738. }
  6739. if (il == n_layer - 1) {
  6740. // skip computing output for unused tokens
  6741. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6742. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6743. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6744. }
  6745. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6746. cb(sa_out, "sa_out", il);
  6747. cur = build_norm(sa_out,
  6748. model.layers[il].ffn_norm, NULL,
  6749. LLM_NORM_RMS, il);
  6750. cb(cur, "ffn_norm", il);
  6751. // feed-forward network
  6752. {
  6753. cur = build_ffn(cur,
  6754. model.layers[il].ffn_up, NULL, NULL,
  6755. model.layers[il].ffn_gate, NULL, NULL,
  6756. model.layers[il].ffn_down, NULL, NULL,
  6757. NULL,
  6758. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6759. cb(cur, "ffn_out", il);
  6760. }
  6761. cur = ggml_add(ctx0, cur, sa_out);
  6762. cur = build_cvec(cur, il);
  6763. cb(cur, "l_out", il);
  6764. // input for next layer
  6765. inpL = cur;
  6766. }
  6767. cur = inpL;
  6768. cur = build_norm(cur,
  6769. model.output_norm, NULL,
  6770. LLM_NORM_RMS, -1);
  6771. cb(cur, "result_norm", -1);
  6772. res->t_embd = cur;
  6773. // lm_head
  6774. cur = build_lora_mm(model.output, cur);
  6775. cb(cur, "result_output", -1);
  6776. res->t_logits = cur;
  6777. ggml_build_forward_expand(gf, cur);
  6778. }
  6779. };
  6780. struct llm_build_gemma2_iswa : public llm_graph_context {
  6781. llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6782. const int64_t n_embd_head = hparams.n_embd_head_k;
  6783. ggml_tensor * cur;
  6784. ggml_tensor * inpL;
  6785. inpL = build_inp_embd(model.tok_embd);
  6786. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6787. cb(inpL, "inp_scaled", -1);
  6788. // inp_pos - contains the positions
  6789. ggml_tensor * inp_pos = build_inp_pos();
  6790. auto * inp_attn = build_attn_inp_kv_unified_iswa();
  6791. for (int il = 0; il < n_layer; ++il) {
  6792. // norm
  6793. cur = build_norm(inpL,
  6794. model.layers[il].attn_norm, NULL,
  6795. LLM_NORM_RMS, il);
  6796. cb(cur, "attn_norm", il);
  6797. // self-attention
  6798. {
  6799. // compute Q and K and RoPE them
  6800. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6801. cb(Qcur, "Qcur", il);
  6802. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6803. cb(Kcur, "Kcur", il);
  6804. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6805. cb(Vcur, "Vcur", il);
  6806. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6807. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6808. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6809. Qcur = ggml_rope_ext(
  6810. ctx0, Qcur, inp_pos, nullptr,
  6811. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6812. ext_factor, attn_factor, beta_fast, beta_slow);
  6813. Kcur = ggml_rope_ext(
  6814. ctx0, Kcur, inp_pos, nullptr,
  6815. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6816. ext_factor, attn_factor, beta_fast, beta_slow);
  6817. cb(Qcur, "Qcur", il);
  6818. cb(Kcur, "Kcur", il);
  6819. cb(Vcur, "Vcur", il);
  6820. // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
  6821. switch (model.type) {
  6822. case LLM_TYPE_2B:
  6823. case LLM_TYPE_9B:
  6824. case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break;
  6825. default: GGML_ABORT("fatal error");
  6826. };
  6827. cb(Qcur, "Qcur_scaled", il);
  6828. cur = build_attn(inp_attn, gf,
  6829. model.layers[il].wo, NULL,
  6830. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6831. }
  6832. cur = build_norm(cur,
  6833. model.layers[il].attn_post_norm, NULL,
  6834. LLM_NORM_RMS, il);
  6835. cb(cur, "attn_post_norm", il);
  6836. if (il == n_layer - 1) {
  6837. // skip computing output for unused tokens
  6838. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6839. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6840. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6841. }
  6842. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6843. cb(sa_out, "sa_out", il);
  6844. cur = build_norm(sa_out,
  6845. model.layers[il].ffn_norm, NULL,
  6846. LLM_NORM_RMS, il);
  6847. cb(cur, "ffn_norm", il);
  6848. // feed-forward network
  6849. {
  6850. cur = build_ffn(cur,
  6851. model.layers[il].ffn_up, NULL, NULL,
  6852. model.layers[il].ffn_gate, NULL, NULL,
  6853. model.layers[il].ffn_down, NULL, NULL,
  6854. NULL,
  6855. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6856. cb(cur, "ffn_out", il);
  6857. }
  6858. cur = build_norm(cur,
  6859. model.layers[il].ffn_post_norm, NULL,
  6860. LLM_NORM_RMS, -1);
  6861. cb(cur, "ffn_post_norm", -1);
  6862. cur = ggml_add(ctx0, cur, sa_out);
  6863. cur = build_cvec(cur, il);
  6864. cb(cur, "l_out", il);
  6865. // input for next layer
  6866. inpL = cur;
  6867. }
  6868. cur = inpL;
  6869. cur = build_norm(cur,
  6870. model.output_norm, NULL,
  6871. LLM_NORM_RMS, -1);
  6872. cb(cur, "result_norm", -1);
  6873. res->t_embd = cur;
  6874. // lm_head
  6875. cur = build_lora_mm(model.output, cur);
  6876. // final logit soft-capping
  6877. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  6878. cur = ggml_tanh(ctx0, cur);
  6879. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  6880. cb(cur, "result_output", -1);
  6881. res->t_logits = cur;
  6882. ggml_build_forward_expand(gf, cur);
  6883. }
  6884. };
  6885. struct llm_build_gemma3_iswa : public llm_graph_context {
  6886. llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6887. const int64_t n_embd_head = hparams.n_embd_head_k;
  6888. ggml_tensor * cur;
  6889. ggml_tensor * inpL;
  6890. inpL = build_inp_embd(model.tok_embd);
  6891. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  6892. if (ubatch.token) {
  6893. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6894. cb(inpL, "inp_scaled", -1);
  6895. }
  6896. // inp_pos - contains the positions
  6897. ggml_tensor * inp_pos = build_inp_pos();
  6898. // TODO: is causal == true correct? might need some changes
  6899. auto * inp_attn = build_attn_inp_kv_unified_iswa();
  6900. for (int il = 0; il < n_layer; ++il) {
  6901. const float freq_base_l = model.get_rope_freq_base (cparams, il);
  6902. const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
  6903. // norm
  6904. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  6905. cb(cur, "attn_norm", il);
  6906. // self-attention
  6907. {
  6908. // compute Q and K and RoPE them
  6909. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6910. cb(Qcur, "Qcur", il);
  6911. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6912. cb(Kcur, "Kcur", il);
  6913. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6914. cb(Vcur, "Vcur", il);
  6915. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6916. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6917. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6918. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  6919. cb(Qcur, "Qcur_normed", il);
  6920. Qcur = ggml_rope_ext(
  6921. ctx0, Qcur, inp_pos, nullptr,
  6922. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6923. ext_factor, attn_factor, beta_fast, beta_slow);
  6924. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  6925. cb(Kcur, "Kcur_normed", il);
  6926. Kcur = ggml_rope_ext(
  6927. ctx0, Kcur, inp_pos, nullptr,
  6928. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6929. ext_factor, attn_factor, beta_fast, beta_slow);
  6930. cb(Qcur, "Qcur", il);
  6931. cb(Kcur, "Kcur", il);
  6932. cb(Vcur, "Vcur", il);
  6933. cur = build_attn(inp_attn, gf,
  6934. model.layers[il].wo, NULL,
  6935. Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il);
  6936. }
  6937. cur = build_norm(cur,
  6938. model.layers[il].attn_post_norm, NULL,
  6939. LLM_NORM_RMS, il);
  6940. cb(cur, "attn_post_norm", il);
  6941. if (il == n_layer - 1) {
  6942. // skip computing output for unused tokens
  6943. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6944. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6945. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6946. }
  6947. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6948. cb(sa_out, "sa_out", il);
  6949. cur = build_norm(sa_out,
  6950. model.layers[il].ffn_norm, NULL,
  6951. LLM_NORM_RMS, il);
  6952. cb(cur, "ffn_norm", il);
  6953. // feed-forward network
  6954. {
  6955. cur = build_ffn(cur,
  6956. model.layers[il].ffn_up, NULL, NULL,
  6957. model.layers[il].ffn_gate, NULL, NULL,
  6958. model.layers[il].ffn_down, NULL, NULL,
  6959. NULL,
  6960. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6961. cb(cur, "ffn_out", il);
  6962. }
  6963. cur = build_norm(cur,
  6964. model.layers[il].ffn_post_norm, NULL,
  6965. LLM_NORM_RMS, -1);
  6966. cb(cur, "ffn_post_norm", -1);
  6967. cur = ggml_add(ctx0, cur, sa_out);
  6968. cur = build_cvec(cur, il);
  6969. cb(cur, "l_out", il);
  6970. // input for next layer
  6971. inpL = cur;
  6972. }
  6973. cur = inpL;
  6974. cur = build_norm(cur,
  6975. model.output_norm, NULL,
  6976. LLM_NORM_RMS, -1);
  6977. cb(cur, "result_norm", -1);
  6978. res->t_embd = cur;
  6979. // lm_head
  6980. cur = build_lora_mm(model.output, cur);
  6981. cb(cur, "result_output", -1);
  6982. res->t_logits = cur;
  6983. ggml_build_forward_expand(gf, cur);
  6984. }
  6985. };
  6986. // TODO: move up next to build_starcoder
  6987. struct llm_build_starcoder2 : public llm_graph_context {
  6988. llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6989. const int64_t n_embd_head = hparams.n_embd_head_v;
  6990. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6991. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6992. ggml_tensor * cur;
  6993. ggml_tensor * inpL;
  6994. inpL = build_inp_embd(model.tok_embd);
  6995. // inp_pos - contains the positions
  6996. ggml_tensor * inp_pos = build_inp_pos();
  6997. auto * inp_attn = build_attn_inp_kv_unified();
  6998. for (int il = 0; il < n_layer; ++il) {
  6999. ggml_tensor * inpSA = inpL;
  7000. // norm
  7001. cur = build_norm(inpL,
  7002. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7003. LLM_NORM, il);
  7004. cb(cur, "attn_norm", il);
  7005. // self-attention
  7006. {
  7007. // compute Q and K and RoPE them
  7008. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7009. cb(Qcur, "Qcur", il);
  7010. if (model.layers[il].bq) {
  7011. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7012. cb(Qcur, "Qcur", il);
  7013. }
  7014. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7015. cb(Kcur, "Kcur", il);
  7016. if (model.layers[il].bk) {
  7017. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7018. cb(Kcur, "Kcur", il);
  7019. }
  7020. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7021. cb(Vcur, "Vcur", il);
  7022. if (model.layers[il].bv) {
  7023. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7024. cb(Vcur, "Vcur", il);
  7025. }
  7026. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7027. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7028. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7029. Qcur = ggml_rope_ext(
  7030. ctx0, Qcur, inp_pos, nullptr,
  7031. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7032. ext_factor, attn_factor, beta_fast, beta_slow
  7033. );
  7034. Kcur = ggml_rope_ext(
  7035. ctx0, Kcur, inp_pos, nullptr,
  7036. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7037. ext_factor, attn_factor, beta_fast, beta_slow
  7038. );
  7039. cb(Qcur, "Qcur", il);
  7040. cb(Kcur, "Kcur", il);
  7041. cb(Vcur, "Vcur", il);
  7042. cur = build_attn(inp_attn, gf,
  7043. model.layers[il].wo, model.layers[il].bo,
  7044. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7045. }
  7046. if (il == n_layer - 1) {
  7047. // skip computing output for unused tokens
  7048. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7049. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7050. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7051. }
  7052. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7053. cb(ffn_inp, "ffn_inp", il);
  7054. // feed-forward network
  7055. cur = build_norm(ffn_inp,
  7056. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7057. LLM_NORM, il);
  7058. cb(cur, "ffn_norm", il);
  7059. cur = build_ffn(cur,
  7060. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7061. NULL, NULL, NULL,
  7062. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7063. NULL,
  7064. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7065. cb(cur, "ffn_out", il);
  7066. cur = ggml_add(ctx0, cur, ffn_inp);
  7067. cur = build_cvec(cur, il);
  7068. cb(cur, "l_out", il);
  7069. // input for next layer
  7070. inpL = cur;
  7071. }
  7072. cur = inpL;
  7073. cur = build_norm(cur,
  7074. model.output_norm, model.output_norm_b,
  7075. LLM_NORM, -1);
  7076. cb(cur, "result_norm", -1);
  7077. res->t_embd = cur;
  7078. // lm_head
  7079. cur = build_lora_mm(model.output, cur);
  7080. cb(cur, "result_output", -1);
  7081. res->t_logits = cur;
  7082. ggml_build_forward_expand(gf, cur);
  7083. }
  7084. };
  7085. struct llm_build_mamba : public llm_graph_context {
  7086. const llama_model & model;
  7087. llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
  7088. ggml_tensor * cur;
  7089. ggml_tensor * inpL;
  7090. // {n_embd, n_tokens}
  7091. inpL = build_inp_embd(model.tok_embd);
  7092. ggml_tensor * state_copy = build_inp_s_copy();
  7093. ggml_tensor * state_mask = build_inp_s_mask();
  7094. for (int il = 0; il < n_layer; ++il) {
  7095. // norm
  7096. cur = build_norm(inpL,
  7097. model.layers[il].attn_norm, NULL,
  7098. LLM_NORM_RMS, il);
  7099. cb(cur, "attn_norm", il);
  7100. //cur = build_mamba_layer(gf, cur, state_copy, state_mask, il);
  7101. cur = build_mamba_layer(gf, cur, state_copy, state_mask, ubatch, il);
  7102. if (il == n_layer - 1) {
  7103. // skip computing output for unused tokens
  7104. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7105. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7106. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7107. }
  7108. // residual
  7109. cur = ggml_add(ctx0, cur, inpL);
  7110. cur = build_cvec(cur, il);
  7111. cb(cur, "l_out", il);
  7112. // input for next layer
  7113. inpL = cur;
  7114. }
  7115. // final rmsnorm
  7116. cur = build_norm(inpL,
  7117. model.output_norm, NULL,
  7118. LLM_NORM_RMS, -1);
  7119. cb(cur, "result_norm", -1);
  7120. res->t_embd = cur;
  7121. // lm_head
  7122. cur = build_lora_mm(model.output, cur);
  7123. cb(cur, "result_output", -1);
  7124. res->t_logits = cur;
  7125. ggml_build_forward_expand(gf, cur);
  7126. }
  7127. // TODO: split
  7128. ggml_tensor * build_mamba_layer(
  7129. ggml_cgraph * gf,
  7130. ggml_tensor * cur,
  7131. ggml_tensor * state_copy,
  7132. ggml_tensor * state_mask,
  7133. const llama_ubatch & ubatch,
  7134. int il) const {
  7135. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  7136. const auto kv_head = kv_self->head;
  7137. const int64_t d_conv = hparams.ssm_d_conv;
  7138. const int64_t d_inner = hparams.ssm_d_inner;
  7139. const int64_t d_state = hparams.ssm_d_state;
  7140. const int64_t dt_rank = hparams.ssm_dt_rank;
  7141. const int64_t n_seqs = ubatch.n_seqs;
  7142. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  7143. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  7144. // Use the same RMS norm as the final layer norm
  7145. const float norm_rms_eps = hparams.f_norm_rms_eps;
  7146. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  7147. GGML_ASSERT(n_seqs != 0);
  7148. GGML_ASSERT(ubatch.equal_seqs);
  7149. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  7150. ggml_tensor * conv_states_all = kv_self->k_l[il];
  7151. ggml_tensor * ssm_states_all = kv_self->v_l[il];
  7152. // (ab)using the KV cache to store the states
  7153. ggml_tensor * conv = build_copy_mask_state(
  7154. gf, conv_states_all, state_copy, state_mask,
  7155. hparams.n_embd_k_s(), n_seqs);
  7156. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
  7157. ggml_tensor * ssm = build_copy_mask_state(
  7158. gf, ssm_states_all, state_copy, state_mask,
  7159. hparams.n_embd_v_s(), n_seqs);
  7160. ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
  7161. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  7162. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  7163. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  7164. ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
  7165. // split the above in two
  7166. // => {d_inner, n_seq_tokens, n_seqs}
  7167. ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  7168. ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  7169. // conv
  7170. {
  7171. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  7172. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  7173. // copy last (d_conv - 1) columns back into the state cache
  7174. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  7175. ggml_build_forward_expand(gf,
  7176. ggml_cpy(ctx0, last_conv,
  7177. ggml_view_1d(ctx0, conv_states_all,
  7178. (d_conv - 1)*(d_inner)*(n_seqs),
  7179. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  7180. // 1D convolution
  7181. // The equivalent is to make a self-overlapping view of conv_x
  7182. // over d_conv columns at each stride in the 3rd dimension,
  7183. // then element-wise multiply that with the conv1d weight,
  7184. // then sum the elements of each row,
  7185. // (the last two steps are a dot product over rows (also doable with mul_mat))
  7186. // then permute away the ne[0] dimension,
  7187. // and then you're left with the resulting x tensor.
  7188. // For simultaneous sequences, all sequences need to have the same length.
  7189. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  7190. // bias
  7191. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  7192. x = ggml_silu(ctx0, x);
  7193. }
  7194. // ssm
  7195. {
  7196. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  7197. ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
  7198. // split
  7199. ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  7200. ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  7201. ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  7202. // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
  7203. if (ssm_dt_b_c_rms) {
  7204. dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
  7205. B = ggml_rms_norm(ctx0, B, norm_rms_eps);
  7206. C = ggml_rms_norm(ctx0, C, norm_rms_eps);
  7207. }
  7208. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  7209. dt = build_lora_mm(model.layers[il].ssm_dt, dt);
  7210. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  7211. // Custom operator to optimize the parallel associative scan
  7212. // as described in the Annex D of the Mamba paper.
  7213. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  7214. ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C);
  7215. // store last states
  7216. ggml_build_forward_expand(gf,
  7217. ggml_cpy(ctx0,
  7218. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
  7219. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  7220. ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
  7221. // TODO: skip computing output earlier for unused tokens
  7222. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  7223. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  7224. y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
  7225. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  7226. cur = build_lora_mm(model.layers[il].ssm_out, y);
  7227. }
  7228. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  7229. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  7230. //cb(cur, "mamba_out", il);
  7231. return cur;
  7232. }
  7233. };
  7234. struct llm_build_command_r : public llm_graph_context {
  7235. llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7236. const int64_t n_embd_head = hparams.n_embd_head_v;
  7237. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7238. const float f_logit_scale = hparams.f_logit_scale;
  7239. ggml_tensor * cur;
  7240. ggml_tensor * inpL;
  7241. inpL = build_inp_embd(model.tok_embd);
  7242. // inp_pos - contains the positions
  7243. ggml_tensor * inp_pos = build_inp_pos();
  7244. auto * inp_attn = build_attn_inp_kv_unified();
  7245. for (int il = 0; il < n_layer; ++il) {
  7246. // norm
  7247. cur = build_norm(inpL,
  7248. model.layers[il].attn_norm, NULL,
  7249. LLM_NORM, il);
  7250. cb(cur, "attn_norm", il);
  7251. ggml_tensor * ffn_inp = cur;
  7252. // self-attention
  7253. {
  7254. // compute Q and K and RoPE them
  7255. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7256. cb(Qcur, "Qcur", il);
  7257. if (model.layers[il].bq) {
  7258. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7259. cb(Qcur, "Qcur", il);
  7260. }
  7261. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7262. cb(Kcur, "Kcur", il);
  7263. if (model.layers[il].bk) {
  7264. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7265. cb(Kcur, "Kcur", il);
  7266. }
  7267. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7268. cb(Vcur, "Vcur", il);
  7269. if (model.layers[il].bv) {
  7270. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7271. cb(Vcur, "Vcur", il);
  7272. }
  7273. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7274. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7275. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7276. if (model.layers[il].attn_q_norm) {
  7277. Qcur = build_norm(Qcur,
  7278. model.layers[il].attn_q_norm,
  7279. NULL,
  7280. LLM_NORM, il);
  7281. cb(Qcur, "Qcur", il);
  7282. }
  7283. Qcur = ggml_rope_ext(
  7284. ctx0, Qcur, inp_pos, nullptr,
  7285. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7286. ext_factor, attn_factor, beta_fast, beta_slow
  7287. );
  7288. if (model.layers[il].attn_k_norm) {
  7289. Kcur = build_norm(Kcur,
  7290. model.layers[il].attn_k_norm,
  7291. NULL,
  7292. LLM_NORM, il);
  7293. cb(Kcur, "Kcur", il);
  7294. }
  7295. Kcur = ggml_rope_ext(
  7296. ctx0, Kcur, inp_pos, nullptr,
  7297. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7298. ext_factor, attn_factor, beta_fast, beta_slow
  7299. );
  7300. cb(Qcur, "Qcur", il);
  7301. cb(Kcur, "Kcur", il);
  7302. cb(Vcur, "Vcur", il);
  7303. cur = build_attn(inp_attn, gf,
  7304. model.layers[il].wo, model.layers[il].bo,
  7305. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7306. }
  7307. if (il == n_layer - 1) {
  7308. // skip computing output for unused tokens
  7309. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7310. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7311. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7312. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7313. }
  7314. ggml_tensor * attn_out = cur;
  7315. // feed-forward network
  7316. {
  7317. cur = build_ffn(ffn_inp,
  7318. model.layers[il].ffn_up, NULL, NULL,
  7319. model.layers[il].ffn_gate, NULL, NULL,
  7320. model.layers[il].ffn_down, NULL, NULL,
  7321. NULL,
  7322. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7323. cb(cur, "ffn_out", il);
  7324. }
  7325. // add together residual + FFN + self-attention
  7326. cur = ggml_add(ctx0, cur, inpL);
  7327. cur = ggml_add(ctx0, cur, attn_out);
  7328. cur = build_cvec(cur, il);
  7329. cb(cur, "l_out", il);
  7330. // input for next layer
  7331. inpL = cur;
  7332. }
  7333. cur = inpL;
  7334. cur = build_norm(cur,
  7335. model.output_norm, NULL,
  7336. LLM_NORM, -1);
  7337. cb(cur, "result_norm", -1);
  7338. res->t_embd = cur;
  7339. // lm_head
  7340. cur = build_lora_mm(model.output, cur);
  7341. if (f_logit_scale) {
  7342. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7343. }
  7344. cb(cur, "result_output", -1);
  7345. res->t_logits = cur;
  7346. ggml_build_forward_expand(gf, cur);
  7347. }
  7348. };
  7349. struct llm_build_cohere2_iswa : public llm_graph_context {
  7350. llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7351. const int64_t n_embd_head = hparams.n_embd_head_v;
  7352. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7353. const float f_logit_scale = hparams.f_logit_scale;
  7354. ggml_tensor * cur;
  7355. ggml_tensor * inpL;
  7356. inpL = build_inp_embd(model.tok_embd);
  7357. // inp_pos - contains the positions
  7358. ggml_tensor * inp_pos = build_inp_pos();
  7359. auto * inp_attn = build_attn_inp_kv_unified_iswa();
  7360. for (int il = 0; il < n_layer; ++il) {
  7361. const bool is_swa = hparams.is_swa(il);
  7362. // norm
  7363. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  7364. cb(cur, "attn_norm", il);
  7365. ggml_tensor * ffn_inp = cur;
  7366. // self-attention
  7367. {
  7368. // rope freq factors for 128k context
  7369. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  7370. // compute Q and K and RoPE them
  7371. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7372. cb(Qcur, "Qcur", il);
  7373. if (model.layers[il].bq) {
  7374. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7375. cb(Qcur, "Qcur", il);
  7376. }
  7377. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7378. cb(Kcur, "Kcur", il);
  7379. if (model.layers[il].bk) {
  7380. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7381. cb(Kcur, "Kcur", il);
  7382. }
  7383. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7384. cb(Vcur, "Vcur", il);
  7385. if (model.layers[il].bv) {
  7386. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7387. cb(Vcur, "Vcur", il);
  7388. }
  7389. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7390. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7391. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7392. if (is_swa) {
  7393. Qcur = ggml_rope_ext(
  7394. ctx0, Qcur, inp_pos, rope_factors,
  7395. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7396. ext_factor, attn_factor, beta_fast, beta_slow
  7397. );
  7398. Kcur = ggml_rope_ext(
  7399. ctx0, Kcur, inp_pos, rope_factors,
  7400. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7401. ext_factor, attn_factor, beta_fast, beta_slow
  7402. );
  7403. }
  7404. cb(Qcur, "Qcur", il);
  7405. cb(Kcur, "Kcur", il);
  7406. cb(Vcur, "Vcur", il);
  7407. cur = build_attn(inp_attn, gf,
  7408. model.layers[il].wo, model.layers[il].bo,
  7409. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7410. }
  7411. if (il == n_layer - 1) {
  7412. // skip computing output for unused tokens
  7413. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7414. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7415. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7416. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7417. }
  7418. ggml_tensor * attn_out = cur;
  7419. // feed-forward network
  7420. {
  7421. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  7422. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  7423. il);
  7424. cb(cur, "ffn_out", il);
  7425. }
  7426. // add together residual + FFN + self-attention
  7427. cur = ggml_add(ctx0, cur, inpL);
  7428. cur = ggml_add(ctx0, cur, attn_out);
  7429. cur = build_cvec(cur, il);
  7430. cb(cur, "l_out", il);
  7431. // input for next layer
  7432. inpL = cur;
  7433. }
  7434. cur = inpL;
  7435. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  7436. cb(cur, "result_norm", -1);
  7437. res->t_embd = cur;
  7438. // lm_head
  7439. cur = build_lora_mm(model.output, cur);
  7440. if (f_logit_scale) {
  7441. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7442. }
  7443. cb(cur, "result_output", -1);
  7444. res->t_logits = cur;
  7445. ggml_build_forward_expand(gf, cur);
  7446. }
  7447. };
  7448. // ref: https://allenai.org/olmo
  7449. // based on the original build_llama() function, changes:
  7450. // * non-parametric layer norm
  7451. // * clamp qkv
  7452. // * removed bias
  7453. // * removed MoE
  7454. struct llm_build_olmo : public llm_graph_context {
  7455. llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7456. const int64_t n_embd_head = hparams.n_embd_head_v;
  7457. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7458. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7459. ggml_tensor * cur;
  7460. ggml_tensor * inpL;
  7461. inpL = build_inp_embd(model.tok_embd);
  7462. // inp_pos - contains the positions
  7463. ggml_tensor * inp_pos = build_inp_pos();
  7464. auto * inp_attn = build_attn_inp_kv_unified();
  7465. for (int il = 0; il < n_layer; ++il) {
  7466. ggml_tensor * inpSA = inpL;
  7467. // norm
  7468. cur = build_norm(inpL,
  7469. NULL, NULL,
  7470. LLM_NORM, il);
  7471. cb(cur, "attn_norm", il);
  7472. // self-attention
  7473. {
  7474. // compute Q and K and RoPE them
  7475. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7476. cb(Qcur, "Qcur", il);
  7477. if (hparams.f_clamp_kqv > 0.0f) {
  7478. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7479. cb(Qcur, "Qcur", il);
  7480. }
  7481. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7482. cb(Kcur, "Kcur", il);
  7483. if (hparams.f_clamp_kqv > 0.0f) {
  7484. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7485. cb(Kcur, "Kcur", il);
  7486. }
  7487. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7488. cb(Vcur, "Vcur", il);
  7489. if (hparams.f_clamp_kqv > 0.0f) {
  7490. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7491. cb(Vcur, "Vcur", il);
  7492. }
  7493. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7494. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7495. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7496. Qcur = ggml_rope_ext(
  7497. ctx0, Qcur, inp_pos, nullptr,
  7498. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7499. ext_factor, attn_factor, beta_fast, beta_slow
  7500. );
  7501. Kcur = ggml_rope_ext(
  7502. ctx0, Kcur, inp_pos, nullptr,
  7503. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7504. ext_factor, attn_factor, beta_fast, beta_slow
  7505. );
  7506. cb(Qcur, "Qcur", il);
  7507. cb(Kcur, "Kcur", il);
  7508. cb(Vcur, "Vcur", il);
  7509. cur = build_attn(inp_attn, gf,
  7510. model.layers[il].wo, nullptr,
  7511. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7512. }
  7513. if (il == n_layer - 1) {
  7514. // skip computing output for unused tokens
  7515. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7516. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7517. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7518. }
  7519. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7520. cb(ffn_inp, "ffn_inp", il);
  7521. // feed-forward network
  7522. cur = build_norm(ffn_inp,
  7523. NULL, NULL,
  7524. LLM_NORM, il);
  7525. cb(cur, "ffn_norm", il);
  7526. cur = build_ffn(cur,
  7527. model.layers[il].ffn_up, NULL, NULL,
  7528. model.layers[il].ffn_gate, NULL, NULL,
  7529. model.layers[il].ffn_down, NULL, NULL,
  7530. NULL,
  7531. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7532. cb(cur, "ffn_out", il);
  7533. cur = ggml_add(ctx0, cur, ffn_inp);
  7534. cb(cur, "ffn_out", il);
  7535. cur = build_cvec(cur, il);
  7536. cb(cur, "l_out", il);
  7537. // input for next layer
  7538. inpL = cur;
  7539. }
  7540. cur = inpL;
  7541. cur = build_norm(cur,
  7542. NULL, NULL,
  7543. LLM_NORM, -1);
  7544. cb(cur, "result_norm", -1);
  7545. res->t_embd = cur;
  7546. // lm_head
  7547. cur = build_lora_mm(model.output, cur);
  7548. cb(cur, "result_output", -1);
  7549. res->t_logits = cur;
  7550. ggml_build_forward_expand(gf, cur);
  7551. }
  7552. };
  7553. struct llm_build_olmo2 : public llm_graph_context {
  7554. llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7555. const int64_t n_embd_head = hparams.n_embd_head_v;
  7556. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7557. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7558. ggml_tensor * cur;
  7559. ggml_tensor * inpL;
  7560. inpL = build_inp_embd(model.tok_embd);
  7561. // inp_pos - contains the positions
  7562. ggml_tensor * inp_pos = build_inp_pos();
  7563. auto * inp_attn = build_attn_inp_kv_unified();
  7564. for (int il = 0; il < n_layer; ++il) {
  7565. ggml_tensor * inpSA = inpL;
  7566. cur = inpL;
  7567. // self_attention
  7568. {
  7569. // compute Q and K and RoPE them
  7570. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7571. cb(Qcur, "Qcur", il);
  7572. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7573. cb(Kcur, "Kcur", il);
  7574. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7575. cb(Vcur, "Vcur", il);
  7576. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7577. LLM_NORM_RMS, il);
  7578. cb(Qcur, "Qcur_normed", il);
  7579. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7580. LLM_NORM_RMS, il);
  7581. cb(Kcur, "Kcur_normed", il);
  7582. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7583. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7584. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7585. Qcur = ggml_rope_ext(
  7586. ctx0, Qcur, inp_pos, nullptr,
  7587. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7588. ext_factor, attn_factor, beta_fast, beta_slow
  7589. );
  7590. Kcur = ggml_rope_ext(
  7591. ctx0, Kcur, inp_pos, nullptr,
  7592. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7593. ext_factor, attn_factor, beta_fast, beta_slow
  7594. );
  7595. cb(Qcur, "Qcur", il);
  7596. cb(Kcur, "Kcur", il);
  7597. cb(Vcur, "Vcur", il);
  7598. cur = build_attn(inp_attn, gf,
  7599. model.layers[il].wo, NULL,
  7600. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7601. }
  7602. cur = build_norm(cur,
  7603. model.layers[il].attn_post_norm, NULL,
  7604. LLM_NORM_RMS, il);
  7605. cb(cur, "attn_post_norm", il);
  7606. if (il == n_layer - 1) {
  7607. // skip computing output for unused tokens
  7608. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7609. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7610. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7611. }
  7612. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7613. cb(ffn_inp, "ffn_inp", il);
  7614. // feed-forward network
  7615. cur = build_ffn(ffn_inp,
  7616. model.layers[il].ffn_up, NULL, NULL,
  7617. model.layers[il].ffn_gate, NULL, NULL,
  7618. model.layers[il].ffn_down, NULL, NULL,
  7619. NULL,
  7620. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7621. cb(cur, "ffn_out", il);
  7622. cur = build_norm(cur,
  7623. model.layers[il].ffn_post_norm, NULL,
  7624. LLM_NORM_RMS, -1);
  7625. cb(cur, "ffn_post_norm", -1);
  7626. cur = ggml_add(ctx0, cur, ffn_inp);
  7627. cb(cur, "ffn_out", il);
  7628. cur = build_cvec(cur, il);
  7629. cb(cur, "l_out", il);
  7630. // input for next layer
  7631. inpL = cur;
  7632. }
  7633. cur = inpL;
  7634. cur = build_norm(cur,
  7635. model.output_norm, NULL,
  7636. LLM_NORM_RMS, -1);
  7637. cb(cur, "result_norm", -1);
  7638. res->t_embd = cur;
  7639. // lm_head
  7640. cur = build_lora_mm(model.output, cur);
  7641. cb(cur, "result_output", -1);
  7642. res->t_logits = cur;
  7643. ggml_build_forward_expand(gf, cur);
  7644. }
  7645. };
  7646. // based on the build_qwen2moe() function, changes:
  7647. // * removed shared experts
  7648. // * removed bias
  7649. // * added q, k norm
  7650. struct llm_build_olmoe : public llm_graph_context {
  7651. llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7652. const int64_t n_embd_head = hparams.n_embd_head_v;
  7653. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7654. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7655. ggml_tensor * cur;
  7656. ggml_tensor * inpL;
  7657. inpL = build_inp_embd(model.tok_embd);
  7658. // inp_pos - contains the positions
  7659. ggml_tensor * inp_pos = build_inp_pos();
  7660. auto * inp_attn = build_attn_inp_kv_unified();
  7661. for (int il = 0; il < n_layer; ++il) {
  7662. ggml_tensor * inpSA = inpL;
  7663. // norm
  7664. cur = build_norm(inpL,
  7665. model.layers[il].attn_norm, NULL,
  7666. LLM_NORM_RMS, il);
  7667. cb(cur, "attn_norm", il);
  7668. // self_attention
  7669. {
  7670. // compute Q and K and RoPE them
  7671. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7672. cb(Qcur, "Qcur", il);
  7673. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7674. cb(Kcur, "Kcur", il);
  7675. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7676. cb(Vcur, "Vcur", il);
  7677. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7678. LLM_NORM_RMS, il);
  7679. cb(Qcur, "Qcur_normed", il);
  7680. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7681. LLM_NORM_RMS, il);
  7682. cb(Kcur, "Kcur_normed", il);
  7683. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7684. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7685. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7686. Qcur = ggml_rope_ext(
  7687. ctx0, Qcur, inp_pos, nullptr,
  7688. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7689. ext_factor, attn_factor, beta_fast, beta_slow
  7690. );
  7691. Kcur = ggml_rope_ext(
  7692. ctx0, Kcur, inp_pos, nullptr,
  7693. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7694. ext_factor, attn_factor, beta_fast, beta_slow
  7695. );
  7696. cb(Qcur, "Qcur", il);
  7697. cb(Kcur, "Kcur", il);
  7698. cb(Vcur, "Vcur", il);
  7699. cur = build_attn(inp_attn, gf,
  7700. model.layers[il].wo, NULL,
  7701. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7702. }
  7703. if (il == n_layer - 1) {
  7704. // skip computing output for unused tokens
  7705. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7706. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7707. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7708. }
  7709. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7710. cb(ffn_inp, "ffn_inp", il);
  7711. // MoE branch
  7712. cur = build_norm(ffn_inp,
  7713. model.layers[il].ffn_norm, NULL,
  7714. LLM_NORM_RMS, il);
  7715. cb(cur, "ffn_norm", il);
  7716. cur = build_moe_ffn(cur,
  7717. model.layers[il].ffn_gate_inp,
  7718. model.layers[il].ffn_up_exps,
  7719. model.layers[il].ffn_gate_exps,
  7720. model.layers[il].ffn_down_exps,
  7721. nullptr,
  7722. n_expert, n_expert_used,
  7723. LLM_FFN_SILU, false,
  7724. false, 0.0,
  7725. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7726. il);
  7727. cb(cur, "ffn_moe_out", il);
  7728. cur = ggml_add(ctx0, cur, ffn_inp);
  7729. cur = build_cvec(cur, il);
  7730. cb(cur, "l_out", il);
  7731. // input for next layer
  7732. inpL = cur;
  7733. }
  7734. cur = inpL;
  7735. cur = build_norm(cur,
  7736. model.output_norm, NULL,
  7737. LLM_NORM_RMS, -1);
  7738. cb(cur, "result_norm", -1);
  7739. res->t_embd = cur;
  7740. // lm_head
  7741. cur = build_lora_mm(model.output, cur);
  7742. cb(cur, "result_output", -1);
  7743. res->t_logits = cur;
  7744. ggml_build_forward_expand(gf, cur);
  7745. }
  7746. };
  7747. struct llm_build_openelm : public llm_graph_context {
  7748. llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7749. const int64_t n_embd_head = hparams.n_embd_head_v;
  7750. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7751. ggml_tensor * cur;
  7752. ggml_tensor * inpL;
  7753. inpL = build_inp_embd(model.tok_embd);
  7754. // inp_pos - contains the positions
  7755. ggml_tensor * inp_pos = build_inp_pos();
  7756. auto * inp_attn = build_attn_inp_kv_unified();
  7757. for (int il = 0; il < n_layer; ++il) {
  7758. const int64_t n_head = hparams.n_head(il);
  7759. const int64_t n_head_kv = hparams.n_head_kv(il);
  7760. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  7761. cur = inpL;
  7762. ggml_tensor * residual = cur;
  7763. // norm
  7764. cur = build_norm(inpL,
  7765. model.layers[il].attn_norm, NULL,
  7766. LLM_NORM_RMS, il);
  7767. cb(cur, "attn_norm", il);
  7768. // self-attention
  7769. {
  7770. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7771. cb(cur, "wqkv", il);
  7772. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  7773. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  7774. cb(Qcur, "Qcur", il);
  7775. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  7776. cb(Kcur, "Kcur", il);
  7777. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  7778. cb(Vcur, "Vcur", il);
  7779. Qcur = build_norm(Qcur,
  7780. model.layers[il].attn_q_norm, NULL,
  7781. LLM_NORM_RMS, il);
  7782. cb(Qcur, "Qcur", il);
  7783. Kcur = build_norm(Kcur,
  7784. model.layers[il].attn_k_norm, NULL,
  7785. LLM_NORM_RMS, il);
  7786. cb(Kcur, "Kcur", il);
  7787. Qcur = ggml_rope_ext(
  7788. ctx0, Qcur, inp_pos, NULL,
  7789. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7790. ext_factor, attn_factor, beta_fast, beta_slow
  7791. );
  7792. Kcur = ggml_rope_ext(
  7793. ctx0, Kcur, inp_pos, NULL,
  7794. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7795. ext_factor, attn_factor, beta_fast, beta_slow
  7796. );
  7797. cb(Qcur, "Qcur", il);
  7798. cb(Kcur, "Kcur", il);
  7799. cb(Qcur, "Vcur", il);
  7800. cur = build_attn(inp_attn, gf,
  7801. model.layers[il].wo, NULL,
  7802. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7803. }
  7804. if (il == n_layer - 1) {
  7805. // skip computing output for unused tokens
  7806. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7807. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7808. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7809. }
  7810. ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  7811. cb(ffn_inp, "ffn_inp", il);
  7812. // feed-forward network
  7813. {
  7814. cur = build_norm(ffn_inp,
  7815. model.layers[il].ffn_norm, NULL,
  7816. LLM_NORM_RMS, il);
  7817. cb(cur, "ffn_norm", il);
  7818. cur = build_ffn(cur,
  7819. model.layers[il].ffn_up, NULL, NULL,
  7820. model.layers[il].ffn_gate, NULL, NULL,
  7821. model.layers[il].ffn_down, NULL, NULL,
  7822. NULL,
  7823. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7824. cb(cur, "ffn_out", il);
  7825. }
  7826. cur = ggml_add(ctx0, cur, ffn_inp);
  7827. cur = build_cvec(cur, il);
  7828. cb(cur, "l_out", il);
  7829. inpL = cur;
  7830. }
  7831. cur = inpL;
  7832. // norm
  7833. cur = build_norm(cur,
  7834. model.output_norm, NULL,
  7835. LLM_NORM_RMS, -1);
  7836. cb(cur, "result_norm", -1);
  7837. res->t_embd = cur;
  7838. cur = build_lora_mm(model.output, cur);
  7839. cb(cur, "result_output", -1);
  7840. res->t_logits = cur;
  7841. ggml_build_forward_expand(gf, cur);
  7842. }
  7843. };
  7844. struct llm_build_gptneox : public llm_graph_context {
  7845. llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7846. const int64_t n_embd_head = hparams.n_embd_head_v;
  7847. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7848. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7849. ggml_tensor * cur;
  7850. ggml_tensor * inpL;
  7851. inpL = build_inp_embd(model.tok_embd);
  7852. // inp_pos - contains the positions
  7853. ggml_tensor * inp_pos = build_inp_pos();
  7854. auto * inp_attn = build_attn_inp_kv_unified();
  7855. for (int il = 0; il < n_layer; ++il) {
  7856. cur = build_norm(inpL,
  7857. model.layers[il].attn_norm,
  7858. model.layers[il].attn_norm_b,
  7859. LLM_NORM, il);
  7860. cb(cur, "attn_norm", il);
  7861. // self-attention
  7862. {
  7863. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7864. cb(cur, "wqkv", il);
  7865. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7866. cb(cur, "bqkv", il);
  7867. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7868. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7869. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7870. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7871. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7872. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7873. Qcur = ggml_rope_ext(
  7874. ctx0, Qcur, inp_pos, nullptr,
  7875. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7876. ext_factor, attn_factor, beta_fast, beta_slow
  7877. );
  7878. Kcur = ggml_rope_ext(
  7879. ctx0, Kcur, inp_pos, nullptr,
  7880. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7881. ext_factor, attn_factor, beta_fast, beta_slow
  7882. );
  7883. cb(Qcur, "Qcur", il);
  7884. cb(Kcur, "Kcur", il);
  7885. cb(Vcur, "Vcur", il);
  7886. cur = build_attn(inp_attn, gf,
  7887. model.layers[il].wo, model.layers[il].bo,
  7888. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7889. }
  7890. if (il == n_layer - 1) {
  7891. // skip computing output for unused tokens
  7892. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7893. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7894. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7895. }
  7896. // ffn
  7897. if (hparams.use_par_res) {
  7898. // attention and ffn are computed in parallel
  7899. // x = x + attn(ln1(x)) + ffn(ln2(x))
  7900. ggml_tensor * attn_out = cur;
  7901. cur = build_norm(inpL,
  7902. model.layers[il].ffn_norm,
  7903. model.layers[il].ffn_norm_b,
  7904. LLM_NORM, il);
  7905. cb(cur, "ffn_norm", il);
  7906. cur = build_ffn(cur,
  7907. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7908. NULL, NULL, NULL,
  7909. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7910. NULL,
  7911. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7912. cb(cur, "ffn_out", il);
  7913. cur = ggml_add(ctx0, cur, inpL);
  7914. cb(cur, "ffn_out", il);
  7915. cur = ggml_add(ctx0, cur, attn_out);
  7916. cur = build_cvec(cur, il);
  7917. cb(cur, "l_out", il);
  7918. // input for next layer
  7919. inpL = cur;
  7920. } else {
  7921. // attention and ffn are computed sequentially
  7922. // x = x + attn(ln1(x))
  7923. // x = x + ffn(ln2(x))
  7924. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7925. cb(ffn_inp, "ffn_inp", il);
  7926. cur = build_norm(ffn_inp,
  7927. model.layers[il].ffn_norm,
  7928. model.layers[il].ffn_norm_b,
  7929. LLM_NORM, il);
  7930. cb(cur, "ffn_norm", il);
  7931. cur = build_ffn(cur,
  7932. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7933. NULL, NULL, NULL,
  7934. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7935. NULL,
  7936. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7937. cb(cur, "ffn_out", il);
  7938. cur = ggml_add(ctx0, cur, ffn_inp);
  7939. cur = build_cvec(cur, il);
  7940. cb(cur, "l_out", il);
  7941. // input for next layer
  7942. inpL = cur;
  7943. }
  7944. }
  7945. cur = build_norm(inpL,
  7946. model.output_norm,
  7947. model.output_norm_b,
  7948. LLM_NORM, -1);
  7949. cb(cur, "result_norm", -1);
  7950. res->t_embd = cur;
  7951. cur = build_lora_mm(model.output, cur);
  7952. cb(cur, "result_output", -1);
  7953. res->t_logits = cur;
  7954. ggml_build_forward_expand(gf, cur);
  7955. }
  7956. };
  7957. struct llm_build_arctic : public llm_graph_context {
  7958. llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7959. const int64_t n_embd_head = hparams.n_embd_head_v;
  7960. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7961. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7962. ggml_tensor * cur;
  7963. ggml_tensor * inpL;
  7964. inpL = build_inp_embd(model.tok_embd);
  7965. // inp_pos - contains the positions
  7966. ggml_tensor * inp_pos = build_inp_pos();
  7967. auto * inp_attn = build_attn_inp_kv_unified();
  7968. for (int il = 0; il < n_layer; ++il) {
  7969. ggml_tensor * inpSA = inpL;
  7970. // norm
  7971. cur = build_norm(inpL,
  7972. model.layers[il].attn_norm, NULL,
  7973. LLM_NORM_RMS, il);
  7974. cb(cur, "attn_norm", il);
  7975. // self-attention
  7976. {
  7977. // compute Q and K and RoPE them
  7978. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7979. cb(Qcur, "Qcur", il);
  7980. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7981. cb(Kcur, "Kcur", il);
  7982. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7983. cb(Vcur, "Vcur", il);
  7984. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7985. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7986. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7987. Qcur = ggml_rope_ext(
  7988. ctx0, Qcur, inp_pos, nullptr,
  7989. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7990. ext_factor, attn_factor, beta_fast, beta_slow
  7991. );
  7992. Kcur = ggml_rope_ext(
  7993. ctx0, Kcur, inp_pos, nullptr,
  7994. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7995. ext_factor, attn_factor, beta_fast, beta_slow
  7996. );
  7997. cb(Qcur, "Qcur", il);
  7998. cb(Kcur, "Kcur", il);
  7999. cb(Vcur, "Vcur", il);
  8000. cur = build_attn(inp_attn, gf,
  8001. model.layers[il].wo, NULL,
  8002. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8003. }
  8004. if (il == n_layer - 1) {
  8005. // skip computing output for unused tokens
  8006. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8007. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8008. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8009. }
  8010. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8011. cb(ffn_inp, "ffn_inp", il);
  8012. // feed-forward network
  8013. cur = build_norm(ffn_inp,
  8014. model.layers[il].ffn_norm, NULL,
  8015. LLM_NORM_RMS, il);
  8016. cb(cur, "ffn_norm", il);
  8017. cur = build_ffn(cur,
  8018. model.layers[il].ffn_up, NULL, NULL,
  8019. model.layers[il].ffn_gate, NULL, NULL,
  8020. model.layers[il].ffn_down, NULL, NULL,
  8021. NULL,
  8022. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8023. cb(cur, "ffn_out", il);
  8024. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  8025. cb(ffn_out, "ffn_out", il);
  8026. // MoE
  8027. cur = build_norm(inpSA,
  8028. model.layers[il].ffn_norm_exps, NULL,
  8029. LLM_NORM_RMS, il);
  8030. cb(cur, "ffn_norm_exps", il);
  8031. cur = build_moe_ffn(cur,
  8032. model.layers[il].ffn_gate_inp,
  8033. model.layers[il].ffn_up_exps,
  8034. model.layers[il].ffn_gate_exps,
  8035. model.layers[il].ffn_down_exps,
  8036. nullptr,
  8037. n_expert, n_expert_used,
  8038. LLM_FFN_SILU, true,
  8039. false, 0.0,
  8040. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  8041. il);
  8042. cb(cur, "ffn_moe_out", il);
  8043. cur = ggml_add(ctx0, cur, ffn_out);
  8044. cb(cur, "ffn_out", il);
  8045. cur = build_cvec(cur, il);
  8046. cb(cur, "l_out", il);
  8047. // input for next layer
  8048. inpL = cur;
  8049. }
  8050. cur = inpL;
  8051. cur = build_norm(cur,
  8052. model.output_norm, NULL,
  8053. LLM_NORM_RMS, -1);
  8054. cb(cur, "result_norm", -1);
  8055. res->t_embd = cur;
  8056. // lm_head
  8057. cur = build_lora_mm(model.output, cur);
  8058. cb(cur, "result_output", -1);
  8059. res->t_logits = cur;
  8060. ggml_build_forward_expand(gf, cur);
  8061. }
  8062. };
  8063. struct llm_build_deepseek : public llm_graph_context {
  8064. llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8065. const int64_t n_embd_head = hparams.n_embd_head_v;
  8066. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8067. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8068. ggml_tensor * cur;
  8069. ggml_tensor * inpL;
  8070. inpL = build_inp_embd(model.tok_embd);
  8071. // inp_pos - contains the positions
  8072. ggml_tensor * inp_pos = build_inp_pos();
  8073. auto * inp_attn = build_attn_inp_kv_unified();
  8074. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  8075. for (int il = 0; il < n_layer; ++il) {
  8076. ggml_tensor * inpSA = inpL;
  8077. // norm
  8078. cur = build_norm(inpL,
  8079. model.layers[il].attn_norm, NULL,
  8080. LLM_NORM_RMS, il);
  8081. cb(cur, "attn_norm", il);
  8082. // self-attention
  8083. {
  8084. // rope freq factors for llama3; may return nullptr for llama2 and other models
  8085. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  8086. // compute Q and K and RoPE them
  8087. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8088. cb(Qcur, "Qcur", il);
  8089. if (model.layers[il].bq) {
  8090. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8091. cb(Qcur, "Qcur", il);
  8092. }
  8093. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8094. cb(Kcur, "Kcur", il);
  8095. if (model.layers[il].bk) {
  8096. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8097. cb(Kcur, "Kcur", il);
  8098. }
  8099. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8100. cb(Vcur, "Vcur", il);
  8101. if (model.layers[il].bv) {
  8102. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8103. cb(Vcur, "Vcur", il);
  8104. }
  8105. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8106. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8107. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8108. Qcur = ggml_rope_ext(
  8109. ctx0, Qcur, inp_pos, rope_factors,
  8110. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8111. ext_factor, attn_factor, beta_fast, beta_slow
  8112. );
  8113. Kcur = ggml_rope_ext(
  8114. ctx0, Kcur, inp_pos, rope_factors,
  8115. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8116. ext_factor, attn_factor, beta_fast, beta_slow
  8117. );
  8118. cb(Qcur, "Qcur", il);
  8119. cb(Kcur, "Kcur", il);
  8120. cb(Vcur, "Vcur", il);
  8121. cur = build_attn(inp_attn, gf,
  8122. model.layers[il].wo, model.layers[il].bo,
  8123. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8124. }
  8125. if (il == n_layer - 1) {
  8126. // skip computing output for unused tokens
  8127. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8128. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8129. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8130. }
  8131. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8132. cb(ffn_inp, "ffn_inp", il);
  8133. cur = build_norm(ffn_inp,
  8134. model.layers[il].ffn_norm, NULL,
  8135. LLM_NORM_RMS, il);
  8136. cb(cur, "ffn_norm", il);
  8137. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8138. cur = build_ffn(cur,
  8139. model.layers[il].ffn_up, NULL, NULL,
  8140. model.layers[il].ffn_gate, NULL, NULL,
  8141. model.layers[il].ffn_down, NULL, NULL,
  8142. NULL,
  8143. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8144. cb(cur, "ffn_out", il);
  8145. } else {
  8146. // MoE branch
  8147. ggml_tensor * moe_out =
  8148. build_moe_ffn(cur,
  8149. model.layers[il].ffn_gate_inp,
  8150. model.layers[il].ffn_up_exps,
  8151. model.layers[il].ffn_gate_exps,
  8152. model.layers[il].ffn_down_exps,
  8153. nullptr,
  8154. n_expert, n_expert_used,
  8155. LLM_FFN_SILU, false,
  8156. false, hparams.expert_weights_scale,
  8157. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  8158. il);
  8159. cb(moe_out, "ffn_moe_out", il);
  8160. // FFN shared expert
  8161. {
  8162. ggml_tensor * ffn_shexp = build_ffn(cur,
  8163. model.layers[il].ffn_up_shexp, NULL, NULL,
  8164. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8165. model.layers[il].ffn_down_shexp, NULL, NULL,
  8166. NULL,
  8167. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8168. cb(ffn_shexp, "ffn_shexp", il);
  8169. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8170. cb(cur, "ffn_out", il);
  8171. }
  8172. }
  8173. cur = ggml_add(ctx0, cur, ffn_inp);
  8174. cur = build_cvec(cur, il);
  8175. cb(cur, "l_out", il);
  8176. // input for next layer
  8177. inpL = cur;
  8178. }
  8179. cur = inpL;
  8180. cur = build_norm(cur,
  8181. model.output_norm, NULL,
  8182. LLM_NORM_RMS, -1);
  8183. cb(cur, "result_norm", -1);
  8184. res->t_embd = cur;
  8185. // lm_head
  8186. cur = build_lora_mm(model.output, cur);
  8187. cb(cur, "result_output", -1);
  8188. res->t_logits = cur;
  8189. ggml_build_forward_expand(gf, cur);
  8190. }
  8191. };
  8192. struct llm_build_deepseek2 : public llm_graph_context {
  8193. llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8194. bool is_lite = (hparams.n_layer == 27);
  8195. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  8196. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  8197. const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  8198. const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  8199. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  8200. const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
  8201. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  8202. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  8203. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  8204. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  8205. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k));
  8206. const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  8207. ggml_tensor * cur;
  8208. ggml_tensor * inpL;
  8209. // {n_embd, n_tokens}
  8210. inpL = build_inp_embd(model.tok_embd);
  8211. // inp_pos - contains the positions
  8212. ggml_tensor * inp_pos = build_inp_pos();
  8213. auto * inp_attn = build_attn_inp_kv_unified();
  8214. for (int il = 0; il < n_layer; ++il) {
  8215. ggml_tensor * inpSA = inpL;
  8216. // norm
  8217. cur = build_norm(inpL,
  8218. model.layers[il].attn_norm, NULL,
  8219. LLM_NORM_RMS, il);
  8220. cb(cur, "attn_norm", il);
  8221. // self_attention
  8222. {
  8223. ggml_tensor * q = NULL;
  8224. if (!is_lite) {
  8225. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  8226. cb(q, "q", il);
  8227. q = build_norm(q,
  8228. model.layers[il].attn_q_a_norm, nullptr,
  8229. LLM_NORM_RMS, il);
  8230. cb(q, "q", il);
  8231. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  8232. cb(q, "q", il);
  8233. } else {
  8234. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8235. cb(q, "q", il);
  8236. }
  8237. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8238. ggml_tensor * q_nope = ggml_view_3d(ctx0, q,
  8239. n_embd_head_qk_nope, n_head, n_tokens,
  8240. ggml_row_size(q->type, n_embd_head_k),
  8241. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8242. 0);
  8243. cb(q_nope, "q_nope", il);
  8244. // and {n_embd_head_qk_rope, n_head, n_tokens}
  8245. ggml_tensor * q_pe = ggml_view_3d(ctx0, q,
  8246. n_embd_head_qk_rope, n_head, n_tokens,
  8247. ggml_row_size(q->type, n_embd_head_k),
  8248. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8249. ggml_row_size(q->type, n_embd_head_qk_nope));
  8250. cb(q_pe, "q_pe", il);
  8251. ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  8252. cb(kv_cmpr_pe, "kv_cmpr_pe", il);
  8253. // split into {kv_lora_rank, n_tokens}
  8254. ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe,
  8255. kv_lora_rank, n_tokens,
  8256. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8257. 0);
  8258. cb(kv_cmpr, "kv_cmpr", il);
  8259. // and {n_embd_head_qk_rope, 1, n_tokens}
  8260. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe,
  8261. n_embd_head_qk_rope, 1, n_tokens,
  8262. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8263. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8264. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
  8265. cb(k_pe, "k_pe", il);
  8266. q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr,
  8267. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8268. ext_factor, attn_factor, beta_fast, beta_slow
  8269. );
  8270. cb(q_pe, "q_pe", il);
  8271. k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr,
  8272. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8273. ext_factor, attn_factor, beta_fast, beta_slow
  8274. );
  8275. cb(k_pe, "k_pe", il);
  8276. kv_cmpr = build_norm(kv_cmpr,
  8277. model.layers[il].attn_kv_a_norm, nullptr,
  8278. LLM_NORM_RMS, il);
  8279. cb(kv_cmpr, "kv_cmpr", il);
  8280. if (is_mla) {
  8281. // {n_embd_head_qk_nope, n_tokens, n_head}
  8282. q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
  8283. cb(q_nope, "q_nope_perm", il);
  8284. // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
  8285. ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
  8286. cb(q_nope_absorbed, "q_nope_absorbed", il);
  8287. // {kv_lora_rank, n_head, n_tokens}
  8288. q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
  8289. cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
  8290. // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
  8291. // note: rope must go first for in-place context shifting in build_rope_shift()
  8292. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
  8293. cb(Qcur, "Qcur", il);
  8294. kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
  8295. cb(kv_cmpr, "kv_cmpr_reshape", il);
  8296. // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
  8297. ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
  8298. cb(Kcur, "Kcur", il);
  8299. // {kv_lora_rank, 1, n_tokens}
  8300. ggml_tensor * Vcur = kv_cmpr;
  8301. cb(Vcur, "Vcur", il);
  8302. // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
  8303. cur = build_attn(inp_attn, gf,
  8304. model.layers[il].wo, NULL,
  8305. Qcur, Kcur, Vcur, nullptr, model.layers[il].wv_b, kq_scale, il);
  8306. } else {
  8307. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
  8308. cb(kv, "kv", il);
  8309. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8310. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv,
  8311. n_embd_head_qk_nope, n_head, n_tokens,
  8312. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8313. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8314. 0);
  8315. cb(k_nope, "k_nope_view", il);
  8316. // and {n_embd_head_v, n_head, n_tokens}
  8317. ggml_tensor * Vcur = ggml_view_3d(ctx0, kv,
  8318. n_embd_head_v, n_head, n_tokens,
  8319. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8320. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8321. ggml_row_size(kv->type, n_embd_head_qk_nope));
  8322. cb(Vcur, "Vcur_view", il);
  8323. Vcur = ggml_cont(ctx0, Vcur);
  8324. cb(Vcur, "Vcur_cont", il);
  8325. // note: rope must go first for in-place context shifting in build_rope_shift()
  8326. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
  8327. cb(Qcur, "Qcur", il);
  8328. ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
  8329. cb(Kcur, "Kcur", il);
  8330. // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
  8331. cur = build_attn(inp_attn, gf,
  8332. model.layers[il].wo, NULL,
  8333. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8334. }
  8335. }
  8336. if (il == n_layer - 1) {
  8337. // skip computing output for unused tokens
  8338. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8339. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8340. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8341. }
  8342. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8343. cb(ffn_inp, "ffn_inp", il);
  8344. cur = build_norm(ffn_inp,
  8345. model.layers[il].ffn_norm, NULL,
  8346. LLM_NORM_RMS, il);
  8347. cb(cur, "ffn_norm", il);
  8348. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8349. cur = build_ffn(cur,
  8350. model.layers[il].ffn_up, NULL, NULL,
  8351. model.layers[il].ffn_gate, NULL, NULL,
  8352. model.layers[il].ffn_down, NULL, NULL,
  8353. NULL,
  8354. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8355. cb(cur, "ffn_out", il);
  8356. } else {
  8357. // MoE branch
  8358. ggml_tensor * moe_out =
  8359. build_moe_ffn(cur,
  8360. model.layers[il].ffn_gate_inp,
  8361. model.layers[il].ffn_up_exps,
  8362. model.layers[il].ffn_gate_exps,
  8363. model.layers[il].ffn_down_exps,
  8364. model.layers[il].ffn_exp_probs_b,
  8365. n_expert, n_expert_used,
  8366. LLM_FFN_SILU, hparams.expert_weights_norm,
  8367. true, hparams.expert_weights_scale,
  8368. (llama_expert_gating_func_type) hparams.expert_gating_func,
  8369. il);
  8370. cb(moe_out, "ffn_moe_out", il);
  8371. // FFN shared expert
  8372. {
  8373. ggml_tensor * ffn_shexp = build_ffn(cur,
  8374. model.layers[il].ffn_up_shexp, NULL, NULL,
  8375. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8376. model.layers[il].ffn_down_shexp, NULL, NULL,
  8377. NULL,
  8378. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8379. cb(ffn_shexp, "ffn_shexp", il);
  8380. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8381. cb(cur, "ffn_out", il);
  8382. }
  8383. }
  8384. cur = ggml_add(ctx0, cur, ffn_inp);
  8385. cur = build_cvec(cur, il);
  8386. cb(cur, "l_out", il);
  8387. // input for next layer
  8388. inpL = cur;
  8389. }
  8390. cur = inpL;
  8391. cur = build_norm(cur,
  8392. model.output_norm, NULL,
  8393. LLM_NORM_RMS, -1);
  8394. cb(cur, "result_norm", -1);
  8395. res->t_embd = cur;
  8396. // lm_head
  8397. cur = ggml_mul_mat(ctx0, model.output, cur);
  8398. cb(cur, "result_output", -1);
  8399. res->t_logits = cur;
  8400. ggml_build_forward_expand(gf, cur);
  8401. }
  8402. };
  8403. struct llm_build_bitnet : public llm_graph_context {
  8404. llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8405. const int64_t n_embd_head = hparams.n_embd_head_v;
  8406. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8407. ggml_tensor * cur;
  8408. ggml_tensor * inpL;
  8409. inpL = build_inp_embd(model.tok_embd);
  8410. // inp_pos - contains the positions
  8411. ggml_tensor * inp_pos = build_inp_pos();
  8412. auto * inp_attn = build_attn_inp_kv_unified();
  8413. for (int il = 0; il < n_layer; ++il) {
  8414. ggml_tensor * inpSA = inpL;
  8415. cur = build_norm(inpL,
  8416. model.layers[il].attn_norm, NULL,
  8417. LLM_NORM_RMS, il);
  8418. cb(cur, "attn_norm", il);
  8419. // self-attention
  8420. {
  8421. // compute Q and K and RoPE them
  8422. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8423. if (model.layers[il].wq_scale) {
  8424. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  8425. }
  8426. cb(Qcur, "Qcur", il);
  8427. if (model.layers[il].bq) {
  8428. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8429. cb(Qcur, "Qcur", il);
  8430. }
  8431. // B1.K
  8432. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8433. if (model.layers[il].wk_scale) {
  8434. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  8435. }
  8436. cb(Kcur, "Kcur", il);
  8437. if (model.layers[il].bk) {
  8438. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8439. cb(Kcur, "Kcur", il);
  8440. }
  8441. // B1.V
  8442. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8443. if (model.layers[il].wv_scale) {
  8444. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  8445. }
  8446. cb(Vcur, "Vcur", il);
  8447. if (model.layers[il].bv) {
  8448. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8449. cb(Vcur, "Vcur", il);
  8450. }
  8451. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8452. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8453. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8454. Qcur = ggml_rope_ext(
  8455. ctx0, Qcur, inp_pos, nullptr,
  8456. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8457. ext_factor, attn_factor, beta_fast, beta_slow
  8458. );
  8459. Kcur = ggml_rope_ext(
  8460. ctx0, Kcur, inp_pos, nullptr,
  8461. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8462. ext_factor, attn_factor, beta_fast, beta_slow
  8463. );
  8464. cb(Qcur, "Qcur", il);
  8465. cb(Kcur, "Kcur", il);
  8466. cb(Vcur, "Vcur", il);
  8467. cur = build_attn(inp_attn, gf,
  8468. NULL, NULL,
  8469. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8470. cur = build_norm(cur,
  8471. model.layers[il].attn_sub_norm, NULL,
  8472. LLM_NORM_RMS, il);
  8473. cb(cur, "attn_sub_norm", il);
  8474. cur = build_lora_mm(model.layers[il].wo, cur);
  8475. if (model.layers[il].wo_scale) {
  8476. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  8477. }
  8478. if (model.layers[il].bo) {
  8479. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  8480. }
  8481. cb(cur, "attn_o_out", il);
  8482. }
  8483. if (il == n_layer - 1) {
  8484. // skip computing output for unused tokens
  8485. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8486. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8487. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8488. }
  8489. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8490. cb(ffn_inp, "ffn_inp", il);
  8491. // feed-forward forward
  8492. cur = build_norm(ffn_inp,
  8493. model.layers[il].ffn_norm, NULL,
  8494. LLM_NORM_RMS, il);
  8495. cb(cur, "ffn_norm", il);
  8496. cur = build_ffn(cur,
  8497. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  8498. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  8499. NULL, NULL, NULL,
  8500. NULL,
  8501. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8502. cb(cur, "ffn_sub_out", il);
  8503. cur = build_norm(cur,
  8504. model.layers[il].ffn_sub_norm, NULL,
  8505. LLM_NORM_RMS, il);
  8506. cb(cur, "ffn_sub_norm", il);
  8507. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  8508. if (model.layers[il].ffn_down_scale) {
  8509. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  8510. }
  8511. cb(cur, "ffn_down", il);
  8512. cur = ggml_add(ctx0, cur, ffn_inp);
  8513. cb(cur, "l_out", il);
  8514. // input for next layer
  8515. inpL = cur;
  8516. }
  8517. cur = inpL;
  8518. cur = build_norm(cur,
  8519. model.output_norm, NULL,
  8520. LLM_NORM_RMS, -1);
  8521. cb(cur, "result_norm", -1);
  8522. res->t_embd = cur;
  8523. // lm_head
  8524. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  8525. cur = build_lora_mm(model.tok_embd, cur);
  8526. cb(cur, "result_output", -1);
  8527. res->t_logits = cur;
  8528. ggml_build_forward_expand(gf, cur);
  8529. }
  8530. };
  8531. struct llm_build_t5_enc : public llm_graph_context {
  8532. llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8533. const int64_t n_embd_head = hparams.n_embd_head_v;
  8534. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8535. ggml_tensor * cur;
  8536. ggml_tensor * inpL;
  8537. inpL = build_inp_embd(model.tok_embd);
  8538. ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
  8539. auto * inp_attn = build_attn_inp_no_cache();
  8540. for (int il = 0; il < n_layer; ++il) {
  8541. ggml_tensor * inpSA = inpL;
  8542. // norm
  8543. cur = build_norm(inpL,
  8544. model.layers[il].attn_norm_enc, NULL,
  8545. LLM_NORM_RMS, il);
  8546. cb(cur, "attn_norm", il);
  8547. // self-attention
  8548. {
  8549. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
  8550. cb(Qcur, "Qcur", il);
  8551. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
  8552. cb(Kcur, "Kcur", il);
  8553. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
  8554. cb(Vcur, "Vcur", il);
  8555. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8556. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8557. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8558. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  8559. ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
  8560. cur = build_attn(inp_attn, gf,
  8561. model.layers[il].wo_enc, nullptr,
  8562. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8563. cb(cur, "kqv_out", il);
  8564. }
  8565. if (il == n_layer - 1) {
  8566. // skip computing output for unused tokens
  8567. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8568. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8569. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8570. }
  8571. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8572. cb(ffn_inp, "ffn_inp", il);
  8573. // feed-forward network
  8574. {
  8575. cur = build_norm(ffn_inp,
  8576. model.layers[il].ffn_norm_enc, NULL,
  8577. LLM_NORM_RMS, il);
  8578. cb(cur, "ffn_norm", il);
  8579. // T5 uses relu, flan-T5 uses gelu-gated
  8580. cur = build_ffn(cur,
  8581. model.layers[il].ffn_up_enc, NULL, NULL,
  8582. model.layers[il].ffn_gate_enc, NULL, NULL,
  8583. model.layers[il].ffn_down_enc, NULL, NULL,
  8584. NULL,
  8585. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8586. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8587. il);
  8588. cb(cur, "ffn_out", il);
  8589. }
  8590. cur = ggml_add(ctx0, cur, ffn_inp);
  8591. cb(cur, "ffn_out", il);
  8592. cur = build_cvec(cur, il);
  8593. cb(cur, "l_out", il);
  8594. // input for next layer
  8595. inpL = cur;
  8596. }
  8597. cur = inpL;
  8598. cb(cur, "result_embd", -1);
  8599. cur = build_norm(cur,
  8600. model.output_norm_enc, NULL,
  8601. LLM_NORM_RMS, -1);
  8602. cb(cur, "result_norm", -1);
  8603. res->t_embd = cur;
  8604. ggml_build_forward_expand(gf, cur);
  8605. }
  8606. };
  8607. struct llm_build_t5_dec : public llm_graph_context {
  8608. llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8609. const int64_t n_embd_head = hparams.n_embd_head_v;
  8610. //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8611. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8612. ggml_tensor * cur;
  8613. ggml_tensor * inpL;
  8614. inpL = build_inp_embd(model.tok_embd);
  8615. ggml_tensor * embd_enc = build_inp_cross_embd();
  8616. ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
  8617. const int64_t n_outputs_enc = embd_enc->ne[1];
  8618. auto * inp_attn_self = build_attn_inp_kv_unified();
  8619. auto * inp_attn_cross = build_attn_inp_cross();
  8620. for (int il = 0; il < n_layer; ++il) {
  8621. ggml_tensor * inpSA = inpL;
  8622. // norm
  8623. cur = build_norm(inpL,
  8624. model.layers[il].attn_norm, NULL,
  8625. LLM_NORM_RMS, il);
  8626. cb(cur, "attn_norm", il);
  8627. // self-attention
  8628. {
  8629. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8630. cb(Qcur, "Qcur", il);
  8631. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8632. cb(Kcur, "Kcur", il);
  8633. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8634. cb(Vcur, "Vcur", il);
  8635. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8636. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8637. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8638. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  8639. ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
  8640. cur = build_attn(inp_attn_self, gf,
  8641. model.layers[il].wo, model.layers[il].bo,
  8642. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8643. cb(cur, "kqv_out", il);
  8644. }
  8645. cur = ggml_add(ctx0, cur, inpSA);
  8646. cb(cur, "cross_inp", il);
  8647. ggml_tensor * inpCA = cur;
  8648. // norm
  8649. cur = build_norm(cur,
  8650. model.layers[il].attn_norm_cross, NULL,
  8651. LLM_NORM_RMS, il);
  8652. cb(cur, "attn_norm_cross", il);
  8653. // cross-attention
  8654. {
  8655. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
  8656. cb(Qcur, "Qcur", il);
  8657. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
  8658. cb(Kcur, "Kcur", il);
  8659. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
  8660. cb(Vcur, "Vcur", il);
  8661. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8662. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  8663. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
  8664. cur = build_attn(inp_attn_cross, gf,
  8665. model.layers[il].wo_cross, nullptr,
  8666. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  8667. cb(cur, "kqv_out", il);
  8668. //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  8669. //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  8670. //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  8671. //cb(kq, "kq", il);
  8672. //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  8673. //cb(kq, "kq_soft_max_ext", il);
  8674. //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  8675. //cb(v, "v", il);
  8676. //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  8677. //cb(kqv, "kqv", il);
  8678. //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  8679. //cb(kqv_merged, "kqv_merged", il);
  8680. //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  8681. //cb(cur, "kqv_merged_cont", il);
  8682. //ggml_build_forward_expand(gf, cur);
  8683. //cur = build_lora_mm(model.layers[il].wo_cross, cur);
  8684. //cb(cur, "kqv_out", il);
  8685. }
  8686. if (il == n_layer - 1) {
  8687. // skip computing output for unused tokens
  8688. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8689. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8690. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8691. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  8692. }
  8693. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  8694. cb(ffn_inp, "ffn_inp", il);
  8695. // feed-forward network
  8696. {
  8697. cur = build_norm(ffn_inp,
  8698. model.layers[il].ffn_norm, NULL,
  8699. LLM_NORM_RMS, il);
  8700. cb(cur, "ffn_norm", il);
  8701. // T5 uses relu, flan-T5 uses gelu-gated
  8702. cur = build_ffn(cur,
  8703. model.layers[il].ffn_up, NULL, NULL,
  8704. model.layers[il].ffn_gate, NULL, NULL,
  8705. model.layers[il].ffn_down, NULL, NULL,
  8706. NULL,
  8707. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8708. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8709. il);
  8710. cb(cur, "ffn_out", il);
  8711. }
  8712. cur = ggml_add(ctx0, cur, ffn_inp);
  8713. cb(cur, "ffn_out", il);
  8714. cur = build_cvec(cur, il);
  8715. cb(cur, "l_out", il);
  8716. // input for next layer
  8717. inpL = cur;
  8718. }
  8719. cur = inpL;
  8720. cb(cur, "result_embd", -1);
  8721. cur = build_norm(cur,
  8722. model.output_norm, NULL,
  8723. LLM_NORM_RMS, -1);
  8724. cb(cur, "result_norm", -1);
  8725. res->t_embd = cur;
  8726. // lm_head
  8727. cur = build_lora_mm(model.output, cur);
  8728. cb(cur, "result_output", -1);
  8729. res->t_logits = cur;
  8730. ggml_build_forward_expand(gf, cur);
  8731. }
  8732. };
  8733. struct llm_build_jais : public llm_graph_context {
  8734. llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8735. const int64_t n_embd_head = hparams.n_embd_head_v;
  8736. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8737. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8738. ggml_tensor * cur;
  8739. ggml_tensor * inpL;
  8740. inpL = build_inp_embd(model.tok_embd);
  8741. auto * inp_attn = build_attn_inp_kv_unified();
  8742. for (int il = 0; il < n_layer; ++il) {
  8743. cur = build_norm(inpL,
  8744. model.layers[il].attn_norm,
  8745. model.layers[il].attn_norm_b,
  8746. LLM_NORM, il);
  8747. cb(cur, "attn_norm", il);
  8748. // self-attention
  8749. {
  8750. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8751. cb(cur, "wqkv", il);
  8752. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8753. cb(cur, "bqkv", il);
  8754. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  8755. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  8756. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  8757. cb(Qcur, "Qcur", il);
  8758. cb(Kcur, "Kcur", il);
  8759. cb(Vcur, "Vcur", il);
  8760. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8761. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8762. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8763. cur = build_attn(inp_attn, gf,
  8764. model.layers[il].wo, model.layers[il].bo,
  8765. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/float(n_embd_head), il);
  8766. }
  8767. if (il == n_layer - 1) {
  8768. // skip computing output for unused tokens
  8769. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8770. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8771. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8772. }
  8773. // add the input
  8774. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8775. cb(ffn_inp, "ffn_inp", il);
  8776. // FF
  8777. {
  8778. cur = build_norm(ffn_inp,
  8779. model.layers[il].ffn_norm,
  8780. model.layers[il].ffn_norm_b,
  8781. LLM_NORM, il);
  8782. cb(cur, "ffn_norm", il);
  8783. cur = build_ffn(cur,
  8784. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8785. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  8786. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8787. NULL,
  8788. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8789. cb(cur, "ffn_out", il);
  8790. }
  8791. inpL = ggml_add(ctx0, cur, ffn_inp);
  8792. cb(inpL, "l_out", il);
  8793. }
  8794. cur = build_norm(inpL,
  8795. model.output_norm,
  8796. model.output_norm_b,
  8797. LLM_NORM, -1);
  8798. cb(cur, "result_norm", -1);
  8799. res->t_embd = cur;
  8800. cur = build_lora_mm(model.output, cur);
  8801. cb(cur, "result_output", -1);
  8802. res->t_logits = cur;
  8803. ggml_build_forward_expand(gf, cur);
  8804. }
  8805. };
  8806. struct llm_build_chatglm : public llm_graph_context {
  8807. llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8808. const int64_t n_embd_head = hparams.n_embd_head_v;
  8809. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8810. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8811. ggml_tensor * cur;
  8812. ggml_tensor * inpL;
  8813. inpL = build_inp_embd(model.tok_embd);
  8814. // inp_pos - contains the positions
  8815. ggml_tensor * inp_pos = build_inp_pos();
  8816. auto * inp_attn = build_attn_inp_kv_unified();
  8817. for (int il = 0; il < n_layer; ++il) {
  8818. ggml_tensor * inpSA = inpL;
  8819. cur = build_norm(inpL,
  8820. model.layers[il].attn_norm,
  8821. NULL,
  8822. LLM_NORM_RMS, il);
  8823. cb(cur, "attn_norm", il);
  8824. // self-attention
  8825. {
  8826. ggml_tensor * Qcur = nullptr;
  8827. ggml_tensor * Kcur = nullptr;
  8828. ggml_tensor * Vcur = nullptr;
  8829. if (model.layers[il].wqkv == nullptr) {
  8830. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8831. if (model.layers[il].bq) {
  8832. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8833. }
  8834. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8835. if (model.layers[il].bk) {
  8836. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8837. }
  8838. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8839. if (model.layers[il].bv) {
  8840. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8841. }
  8842. } else {
  8843. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8844. cb(cur, "wqkv", il);
  8845. if (model.layers[il].bqkv) {
  8846. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8847. cb(cur, "bqkv", il);
  8848. }
  8849. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8850. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8851. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8852. }
  8853. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8854. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8855. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8856. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  8857. Qcur = ggml_rope_ext(
  8858. ctx0, Qcur, inp_pos, nullptr,
  8859. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8860. ext_factor, attn_factor, beta_fast, beta_slow
  8861. );
  8862. Kcur = ggml_rope_ext(
  8863. ctx0, Kcur, inp_pos, nullptr,
  8864. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8865. ext_factor, attn_factor, beta_fast, beta_slow
  8866. );
  8867. cb(Qcur, "Qcur", il);
  8868. cb(Kcur, "Kcur", il);
  8869. cb(Vcur, "Vcur", il);
  8870. cur = build_attn(inp_attn, gf,
  8871. model.layers[il].wo, NULL,
  8872. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8873. }
  8874. if (il == n_layer - 1) {
  8875. // skip computing output for unused tokens
  8876. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8877. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8878. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8879. }
  8880. // Add the input
  8881. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8882. cb(ffn_inp, "ffn_inp", il);
  8883. // FF
  8884. {
  8885. cur = build_norm(ffn_inp,
  8886. model.layers[il].ffn_norm,
  8887. NULL,
  8888. LLM_NORM_RMS, il);
  8889. cb(cur, "ffn_norm", il);
  8890. cur = build_ffn(cur,
  8891. model.layers[il].ffn_up, NULL, NULL,
  8892. NULL, NULL, NULL,
  8893. model.layers[il].ffn_down, NULL, NULL,
  8894. NULL,
  8895. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8896. cb(cur, "ffn_out", il);
  8897. }
  8898. inpL = ggml_add(ctx0, cur, ffn_inp);
  8899. cb(inpL, "l_out", il);
  8900. }
  8901. cur = build_norm(inpL,
  8902. model.output_norm,
  8903. NULL,
  8904. LLM_NORM_RMS, -1);
  8905. cb(cur, "result_norm", -1);
  8906. res->t_embd = cur;
  8907. cur = build_lora_mm(model.output, cur);
  8908. cb(cur, "result_output", -1);
  8909. res->t_logits = cur;
  8910. ggml_build_forward_expand(gf, cur);
  8911. }
  8912. };
  8913. struct llm_build_glm4 : public llm_graph_context {
  8914. llm_build_glm4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8915. const int64_t n_embd_head = hparams.n_embd_head_v;
  8916. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8917. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8918. ggml_tensor * cur;
  8919. ggml_tensor * inpL;
  8920. inpL = build_inp_embd(model.tok_embd);
  8921. // inp_pos - contains the positions
  8922. ggml_tensor * inp_pos = build_inp_pos();
  8923. auto * inp_attn = build_attn_inp_kv_unified();
  8924. for (int il = 0; il < n_layer; ++il) {
  8925. ggml_tensor * inpSA = inpL;
  8926. // Pre-attention norm
  8927. cur = build_norm(inpL,
  8928. model.layers[il].attn_norm,
  8929. NULL,
  8930. LLM_NORM_RMS, il);
  8931. cb(cur, "attn_norm", il);
  8932. // self-attention
  8933. {
  8934. ggml_tensor * Qcur = nullptr;
  8935. ggml_tensor * Kcur = nullptr;
  8936. ggml_tensor * Vcur = nullptr;
  8937. if (model.layers[il].wqkv == nullptr) {
  8938. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8939. if (model.layers[il].bq) {
  8940. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8941. }
  8942. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8943. if (model.layers[il].bk) {
  8944. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8945. }
  8946. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8947. if (model.layers[il].bv) {
  8948. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8949. }
  8950. } else {
  8951. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8952. cb(cur, "wqkv", il);
  8953. if (model.layers[il].bqkv) {
  8954. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8955. cb(cur, "bqkv", il);
  8956. }
  8957. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8958. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8959. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8960. }
  8961. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8962. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8963. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8964. Qcur = ggml_rope_ext(
  8965. ctx0, Qcur, inp_pos, nullptr,
  8966. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8967. ext_factor, attn_factor, beta_fast, beta_slow
  8968. );
  8969. Kcur = ggml_rope_ext(
  8970. ctx0, Kcur, inp_pos, nullptr,
  8971. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8972. ext_factor, attn_factor, beta_fast, beta_slow
  8973. );
  8974. cb(Qcur, "Qcur", il);
  8975. cb(Kcur, "Kcur", il);
  8976. cb(Vcur, "Vcur", il);
  8977. cur = build_attn(inp_attn, gf,
  8978. model.layers[il].wo, NULL,
  8979. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8980. }
  8981. if (il == n_layer - 1) {
  8982. // skip computing output for unused tokens
  8983. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8984. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8985. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8986. }
  8987. // Post-attention norm (new!)
  8988. cur = build_norm(cur,
  8989. model.layers[il].attn_post_norm,
  8990. NULL,
  8991. LLM_NORM_RMS, il);
  8992. cb(cur, "post_attn_norm", il);
  8993. // Add the input (residual connection after post-attention norm)
  8994. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8995. cb(ffn_inp, "ffn_inp", il);
  8996. // FF
  8997. {
  8998. // Pre-MLP norm
  8999. cur = build_norm(ffn_inp,
  9000. model.layers[il].ffn_norm,
  9001. NULL,
  9002. LLM_NORM_RMS, il);
  9003. cb(cur, "ffn_norm", il);
  9004. // MLP
  9005. cur = build_ffn(cur,
  9006. model.layers[il].ffn_up, NULL, NULL,
  9007. NULL, NULL, NULL,
  9008. model.layers[il].ffn_down, NULL, NULL,
  9009. NULL,
  9010. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  9011. cb(cur, "ffn_out", il);
  9012. // Post-MLP norm
  9013. cur = build_norm(cur,
  9014. model.layers[il].ffn_post_norm,
  9015. NULL,
  9016. LLM_NORM_RMS, il);
  9017. cb(cur, "post_mlp_norm", il);
  9018. }
  9019. // Add residual connection after post-MLP norm
  9020. inpL = ggml_add(ctx0, cur, ffn_inp);
  9021. cb(inpL, "l_out", il);
  9022. }
  9023. // Final norm
  9024. cur = build_norm(inpL,
  9025. model.output_norm,
  9026. NULL,
  9027. LLM_NORM_RMS, -1);
  9028. cb(cur, "result_norm", -1);
  9029. res->t_embd = cur;
  9030. // Output projection
  9031. cur = build_lora_mm(model.output, cur);
  9032. cb(cur, "result_output", -1);
  9033. res->t_logits = cur;
  9034. ggml_build_forward_expand(gf, cur);
  9035. }
  9036. };
  9037. struct llm_build_nemotron : public llm_graph_context {
  9038. llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9039. const int64_t n_embd_head = hparams.n_embd_head_v;
  9040. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9041. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  9042. ggml_tensor * cur;
  9043. ggml_tensor * inpL;
  9044. inpL = build_inp_embd(model.tok_embd);
  9045. // inp_pos - contains the positions
  9046. ggml_tensor * inp_pos = build_inp_pos();
  9047. auto * inp_attn = build_attn_inp_kv_unified();
  9048. for (int il = 0; il < n_layer; ++il) {
  9049. ggml_tensor * inpSA = inpL;
  9050. // norm
  9051. cur = build_norm(inpL,
  9052. model.layers[il].attn_norm,
  9053. model.layers[il].attn_norm_b,
  9054. LLM_NORM, il);
  9055. cb(cur, "attn_norm", il);
  9056. // self-attention
  9057. {
  9058. // compute Q and K and RoPE them
  9059. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9060. cb(Qcur, "Qcur", il);
  9061. if (model.layers[il].bq) {
  9062. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9063. cb(Qcur, "Qcur", il);
  9064. }
  9065. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9066. cb(Kcur, "Kcur", il);
  9067. if (model.layers[il].bk) {
  9068. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9069. cb(Kcur, "Kcur", il);
  9070. }
  9071. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9072. cb(Vcur, "Vcur", il);
  9073. if (model.layers[il].bv) {
  9074. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9075. cb(Vcur, "Vcur", il);
  9076. }
  9077. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9078. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9079. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9080. Qcur = ggml_rope_ext(
  9081. ctx0, Qcur, inp_pos, nullptr,
  9082. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9083. ext_factor, attn_factor, beta_fast, beta_slow
  9084. );
  9085. Kcur = ggml_rope_ext(
  9086. ctx0, Kcur, inp_pos, nullptr,
  9087. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9088. ext_factor, attn_factor, beta_fast, beta_slow
  9089. );
  9090. cb(Qcur, "Qcur", il);
  9091. cb(Kcur, "Kcur", il);
  9092. cb(Vcur, "Vcur", il);
  9093. cur = build_attn(inp_attn, gf,
  9094. model.layers[il].wo, model.layers[il].bo,
  9095. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9096. }
  9097. if (il == n_layer - 1) {
  9098. // skip computing output for unused tokens
  9099. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9100. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9101. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9102. }
  9103. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9104. cb(ffn_inp, "ffn_inp", il);
  9105. // feed-forward network
  9106. cur = build_norm(ffn_inp,
  9107. model.layers[il].ffn_norm,
  9108. model.layers[il].ffn_norm_b,
  9109. LLM_NORM, il);
  9110. cb(cur, "ffn_norm", il);
  9111. cur = build_ffn(cur,
  9112. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9113. NULL, NULL, NULL,
  9114. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9115. NULL,
  9116. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  9117. cur = ggml_add(ctx0, cur, ffn_inp);
  9118. cb(cur, "ffn_out", il);
  9119. cur = build_cvec(cur, il);
  9120. cb(cur, "l_out", il);
  9121. // input for next layer
  9122. inpL = cur;
  9123. }
  9124. cur = inpL;
  9125. cur = build_norm(cur,
  9126. model.output_norm, model.output_norm_b,
  9127. LLM_NORM, -1);
  9128. cb(cur, "result_norm", -1);
  9129. res->t_embd = cur;
  9130. // lm_head
  9131. cur = build_lora_mm(model.output, cur);
  9132. cb(cur, "result_output", -1);
  9133. res->t_logits = cur;
  9134. ggml_build_forward_expand(gf, cur);
  9135. }
  9136. };
  9137. struct llm_build_exaone : public llm_graph_context {
  9138. llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9139. const int64_t n_embd_head = hparams.n_embd_head_v;
  9140. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9141. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9142. ggml_tensor * cur;
  9143. ggml_tensor * inpL;
  9144. inpL = build_inp_embd(model.tok_embd);
  9145. // inp_pos - contains the positions
  9146. ggml_tensor * inp_pos = build_inp_pos();
  9147. auto * inp_attn = build_attn_inp_kv_unified();
  9148. for (int il = 0; il < n_layer; ++il) {
  9149. ggml_tensor * inpSA = inpL;
  9150. // norm
  9151. cur = build_norm(inpL,
  9152. model.layers[il].attn_norm, NULL,
  9153. LLM_NORM_RMS, il);
  9154. cb(cur, "attn_norm", il);
  9155. // self-attention
  9156. {
  9157. // rope freq factors for llama3; may return nullptr for llama2 and other models
  9158. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  9159. // compute Q and K and RoPE them
  9160. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9161. cb(Qcur, "Qcur", il);
  9162. if (model.layers[il].bq) {
  9163. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9164. cb(Qcur, "Qcur", il);
  9165. }
  9166. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9167. cb(Kcur, "Kcur", il);
  9168. if (model.layers[il].bk) {
  9169. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9170. cb(Kcur, "Kcur", il);
  9171. }
  9172. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9173. cb(Vcur, "Vcur", il);
  9174. if (model.layers[il].bv) {
  9175. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9176. cb(Vcur, "Vcur", il);
  9177. }
  9178. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9179. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9180. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9181. Qcur = ggml_rope_ext(
  9182. ctx0, Qcur, inp_pos, rope_factors,
  9183. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9184. ext_factor, attn_factor, beta_fast, beta_slow
  9185. );
  9186. Kcur = ggml_rope_ext(
  9187. ctx0, Kcur, inp_pos, rope_factors,
  9188. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9189. ext_factor, attn_factor, beta_fast, beta_slow
  9190. );
  9191. cb(Qcur, "Qcur", il);
  9192. cb(Kcur, "Kcur", il);
  9193. cb(Vcur, "Vcur", il);
  9194. cur = build_attn(inp_attn, gf,
  9195. model.layers[il].wo, model.layers[il].bo,
  9196. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9197. }
  9198. if (il == n_layer - 1) {
  9199. // skip computing output for unused tokens
  9200. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9201. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9202. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9203. }
  9204. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9205. cb(ffn_inp, "ffn_inp", il);
  9206. // feed-forward network
  9207. cur = build_norm(ffn_inp,
  9208. model.layers[il].ffn_norm, NULL,
  9209. LLM_NORM_RMS, il);
  9210. cb(cur, "ffn_norm", il);
  9211. cur = build_ffn(cur,
  9212. model.layers[il].ffn_up, NULL, NULL,
  9213. model.layers[il].ffn_gate, NULL, NULL,
  9214. model.layers[il].ffn_down, NULL, NULL,
  9215. NULL,
  9216. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9217. cb(cur, "ffn_out", il);
  9218. cur = ggml_add(ctx0, cur, ffn_inp);
  9219. cb(cur, "ffn_out", il);
  9220. cur = build_cvec(cur, il);
  9221. cb(cur, "l_out", il);
  9222. // input for next layer
  9223. inpL = cur;
  9224. }
  9225. cur = inpL;
  9226. cur = build_norm(cur,
  9227. model.output_norm, NULL,
  9228. LLM_NORM_RMS, -1);
  9229. cb(cur, "result_norm", -1);
  9230. res->t_embd = cur;
  9231. // lm_head
  9232. cur = build_lora_mm(model.output, cur);
  9233. cb(cur, "result_output", -1);
  9234. res->t_logits = cur;
  9235. ggml_build_forward_expand(gf, cur);
  9236. }
  9237. };
  9238. struct llm_build_rwkv6_base : public llm_graph_context {
  9239. const llama_model & model;
  9240. llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9241. }
  9242. ggml_tensor * build_rwkv6_channel_mix(
  9243. const llama_layer * layer,
  9244. ggml_tensor * cur,
  9245. ggml_tensor * x_prev,
  9246. llm_arch arch) const {
  9247. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9248. switch (arch) {
  9249. case LLM_ARCH_RWKV6:
  9250. {
  9251. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9252. ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
  9253. ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
  9254. ggml_tensor * k = ggml_sqr(
  9255. ctx0,
  9256. ggml_relu(
  9257. ctx0,
  9258. build_lora_mm(layer->channel_mix_key, xk)
  9259. )
  9260. );
  9261. cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
  9262. } break;
  9263. default:
  9264. GGML_ABORT("fatal error");
  9265. }
  9266. return cur;
  9267. }
  9268. ggml_tensor * build_rwkv6_time_mix(
  9269. ggml_cgraph * gf,
  9270. ggml_tensor * cur,
  9271. ggml_tensor * x_prev,
  9272. ggml_tensor * state_copy,
  9273. ggml_tensor * state_mask,
  9274. const llama_ubatch & ubatch,
  9275. int il) const {
  9276. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  9277. const auto n_tokens = ubatch.n_tokens;
  9278. const auto n_seqs = ubatch.n_seqs;
  9279. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9280. const auto n_embd = hparams.n_embd;
  9281. const auto head_size = hparams.wkv_head_size;
  9282. const auto n_head = n_embd / head_size;
  9283. const auto n_head_kv = hparams.n_head_kv(il);
  9284. const auto kv_head = kv_self->head;
  9285. const auto & layer = model.layers[il];
  9286. bool is_qrwkv = layer.time_mix_first == nullptr;
  9287. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9288. sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
  9289. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9290. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
  9291. xxx = ggml_reshape_4d(
  9292. ctx0,
  9293. ggml_tanh(
  9294. ctx0,
  9295. ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
  9296. ),
  9297. layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  9298. );
  9299. xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
  9300. xxx = ggml_mul_mat(
  9301. ctx0,
  9302. ggml_reshape_4d(
  9303. ctx0,
  9304. layer.time_mix_w2,
  9305. layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
  9306. ),
  9307. xxx
  9308. );
  9309. ggml_tensor *xw, *xk, *xv, *xr, *xg;
  9310. if (layer.time_mix_lerp_fused) {
  9311. // fusing these weights makes some performance improvement
  9312. sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
  9313. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  9314. xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
  9315. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9316. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9317. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9318. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9319. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9320. } else {
  9321. // for backward compatibility
  9322. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9323. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9324. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9325. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9326. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9327. xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
  9328. xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
  9329. xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
  9330. xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
  9331. xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
  9332. }
  9333. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9334. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9335. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9336. if (layer.time_mix_receptance_b) {
  9337. r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
  9338. }
  9339. if (layer.time_mix_key_b) {
  9340. k = ggml_add(ctx0, k, layer.time_mix_key_b);
  9341. }
  9342. if (layer.time_mix_value_b) {
  9343. v = ggml_add(ctx0, v, layer.time_mix_value_b);
  9344. }
  9345. ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
  9346. if (is_qrwkv) {
  9347. g = ggml_sigmoid(ctx0, g);
  9348. } else {
  9349. g = ggml_silu(ctx0, g);
  9350. }
  9351. if (n_head_kv != 0 && n_head_kv != n_head) {
  9352. GGML_ASSERT(n_head % n_head_kv == 0);
  9353. k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
  9354. v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
  9355. ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
  9356. k = ggml_repeat(ctx0, k, tmp);
  9357. v = ggml_repeat(ctx0, v, tmp);
  9358. }
  9359. k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
  9360. v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
  9361. r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
  9362. ggml_tensor * w = ggml_mul_mat(
  9363. ctx0,
  9364. layer.time_mix_decay_w2,
  9365. ggml_tanh(
  9366. ctx0,
  9367. ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
  9368. )
  9369. );
  9370. w = ggml_add(ctx0, w, layer.time_mix_decay);
  9371. w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
  9372. w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
  9373. if (is_qrwkv) {
  9374. // k = k * (1 - w)
  9375. k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
  9376. }
  9377. ggml_tensor * wkv_state = build_copy_mask_state(
  9378. gf, kv_self->v_l[il], state_copy, state_mask,
  9379. hparams.n_embd_v_s(), n_seqs);
  9380. ggml_tensor * wkv_output;
  9381. if (is_qrwkv) {
  9382. wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
  9383. } else {
  9384. wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
  9385. }
  9386. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9387. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9388. ggml_build_forward_expand(
  9389. gf,
  9390. ggml_cpy(
  9391. ctx0,
  9392. wkv_state,
  9393. ggml_view_1d(
  9394. ctx0,
  9395. kv_self->v_l[il],
  9396. hparams.n_embd_v_s() * n_seqs,
  9397. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9398. )
  9399. )
  9400. );
  9401. if (!is_qrwkv) {
  9402. // group norm with head_count groups
  9403. cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
  9404. cur = ggml_norm(ctx0, cur, 64e-5f);
  9405. // Convert back to regular vectors.
  9406. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9407. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9408. } else {
  9409. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9410. }
  9411. cur = ggml_mul(ctx0, cur, g);
  9412. cur = build_lora_mm(layer.time_mix_output, cur);
  9413. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9414. }
  9415. };
  9416. struct llm_build_rwkv6 : public llm_build_rwkv6_base {
  9417. llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9418. GGML_ASSERT(hparams.token_shift_count == 2);
  9419. ggml_tensor * cur;
  9420. ggml_tensor * inpL;
  9421. inpL = build_inp_embd(model.tok_embd);
  9422. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9423. ggml_tensor * state_copy = build_inp_s_copy();
  9424. ggml_tensor * state_mask = build_inp_s_mask();
  9425. const auto n_embd = hparams.n_embd;
  9426. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9427. const auto n_seqs = ubatch.n_seqs;
  9428. for (int il = 0; il < n_layer; ++il) {
  9429. const llama_layer * layer = &model.layers[il];
  9430. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9431. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9432. gf, state_copy, state_mask, ubatch, il
  9433. );
  9434. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9435. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9436. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9437. cb(att_norm, "attn_norm", il);
  9438. ggml_tensor * x_prev = ggml_concat(
  9439. ctx0,
  9440. att_shift,
  9441. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9442. 1
  9443. );
  9444. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9445. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9446. cb(ffn_inp, "ffn_inp", il);
  9447. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9448. cb(ffn_norm, "ffn_norm", il);
  9449. x_prev = ggml_concat(
  9450. ctx0,
  9451. ffn_shift,
  9452. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9453. 1
  9454. );
  9455. token_shift = ggml_concat(ctx0,
  9456. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9457. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9458. 1
  9459. );
  9460. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9461. if (il == n_layer - 1) {
  9462. // skip computing output for unused tokens
  9463. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9464. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9465. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9466. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9467. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9468. }
  9469. cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
  9470. cur = ggml_add(ctx0, cur, ffn_inp);
  9471. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  9472. cur = ggml_scale(ctx0, cur, 0.5F);
  9473. }
  9474. cur = build_cvec(cur, il);
  9475. cb(cur, "l_out", il);
  9476. // input for next layer
  9477. inpL = cur;
  9478. }
  9479. cur = inpL;
  9480. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9481. cb(cur, "result_norm", -1);
  9482. res->t_embd = cur;
  9483. cur = build_lora_mm(model.output, cur);
  9484. cb(cur, "result_output", -1);
  9485. res->t_logits = cur;
  9486. ggml_build_forward_expand(gf, cur);
  9487. }
  9488. };
  9489. // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
  9490. struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
  9491. llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9492. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9493. ggml_tensor * cur;
  9494. ggml_tensor * inpL;
  9495. inpL = build_inp_embd(model.tok_embd);
  9496. ggml_tensor * state_copy = build_inp_s_copy();
  9497. ggml_tensor * state_mask = build_inp_s_mask();
  9498. const auto n_embd = hparams.n_embd;
  9499. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9500. const auto n_seqs = ubatch.n_seqs;
  9501. for (int il = 0; il < n_layer; ++il) {
  9502. const llama_layer * layer = &model.layers[il];
  9503. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9504. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9505. gf, state_copy, state_mask, ubatch, il
  9506. );
  9507. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9508. cb(att_norm, "attn_norm", il);
  9509. ggml_tensor * x_prev = ggml_concat(
  9510. ctx0,
  9511. token_shift,
  9512. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9513. 1
  9514. );
  9515. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  9516. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9517. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9518. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9519. cb(ffn_inp, "ffn_inp", il);
  9520. if (il == n_layer - 1) {
  9521. // skip computing output for unused tokens
  9522. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9523. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9524. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9525. }
  9526. // feed-forward network
  9527. cur = build_norm(ffn_inp,
  9528. model.layers[il].ffn_norm, NULL,
  9529. LLM_NORM_RMS, il);
  9530. cb(cur, "ffn_norm", il);
  9531. cur = build_ffn(cur,
  9532. model.layers[il].ffn_up, NULL, NULL,
  9533. model.layers[il].ffn_gate, NULL, NULL,
  9534. model.layers[il].ffn_down, NULL, NULL,
  9535. NULL,
  9536. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9537. cb(cur, "ffn_out", il);
  9538. cur = ggml_add(ctx0, cur, ffn_inp);
  9539. cur = build_cvec(cur, il);
  9540. cb(cur, "l_out", il);
  9541. // input for next layer
  9542. inpL = cur;
  9543. }
  9544. cur = inpL;
  9545. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9546. cb(cur, "result_norm", -1);
  9547. res->t_embd = cur;
  9548. cur = build_lora_mm(model.output, cur);
  9549. cb(cur, "result_output", -1);
  9550. res->t_logits = cur;
  9551. ggml_build_forward_expand(gf, cur);
  9552. }
  9553. };
  9554. struct llm_build_rwkv7_base : public llm_graph_context {
  9555. const llama_model & model;
  9556. llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9557. }
  9558. ggml_tensor * build_rwkv7_channel_mix(
  9559. const llama_layer * layer,
  9560. ggml_tensor * cur,
  9561. ggml_tensor * x_prev,
  9562. llm_arch arch) const {
  9563. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9564. switch (arch) {
  9565. case LLM_ARCH_RWKV7:
  9566. {
  9567. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9568. ggml_tensor * k = ggml_sqr(
  9569. ctx0,
  9570. ggml_relu(
  9571. ctx0,
  9572. build_lora_mm(layer->channel_mix_key, xk)
  9573. )
  9574. );
  9575. cur = build_lora_mm(layer->channel_mix_value, k);
  9576. } break;
  9577. default:
  9578. GGML_ABORT("fatal error");
  9579. }
  9580. return cur;
  9581. }
  9582. ggml_tensor * build_rwkv7_time_mix(
  9583. ggml_cgraph * gf,
  9584. ggml_tensor * cur,
  9585. ggml_tensor * x_prev,
  9586. ggml_tensor * state_copy,
  9587. ggml_tensor * state_mask,
  9588. ggml_tensor *& first_layer_value,
  9589. const llama_ubatch & ubatch,
  9590. int il) const {
  9591. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  9592. const auto n_tokens = ubatch.n_tokens;
  9593. const auto n_seqs = ubatch.n_seqs;
  9594. const auto n_embd = hparams.n_embd;
  9595. const auto head_size = hparams.wkv_head_size;
  9596. const auto head_count = n_embd / head_size;
  9597. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9598. const auto kv_head = kv_self->head;
  9599. const auto & layer = model.layers[il];
  9600. bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
  9601. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9602. ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
  9603. sx = ggml_repeat(ctx0, sx, dummy);
  9604. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
  9605. ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9606. ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9607. ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9608. ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9609. ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9610. ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
  9611. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9612. ggml_tensor * w = ggml_add(
  9613. ctx0,
  9614. ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
  9615. layer.time_mix_w0
  9616. );
  9617. w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
  9618. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9619. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9620. if (first_layer_value == nullptr) {
  9621. first_layer_value = v;
  9622. } else {
  9623. // Add the first layer value as a residual connection.
  9624. v = ggml_add(ctx0, v,
  9625. ggml_mul(ctx0,
  9626. ggml_sub(ctx0, first_layer_value, v),
  9627. ggml_sigmoid(ctx0, ggml_add(ctx0,
  9628. ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
  9629. layer.time_mix_v0
  9630. )
  9631. )
  9632. )
  9633. );
  9634. }
  9635. ggml_tensor * g = nullptr;
  9636. if (layer.time_mix_g1 && layer.time_mix_g2) {
  9637. g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
  9638. }
  9639. ggml_tensor * a = ggml_sigmoid(ctx0,
  9640. ggml_add(
  9641. ctx0,
  9642. ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
  9643. layer.time_mix_a0
  9644. )
  9645. );
  9646. ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
  9647. kk = ggml_l2_norm(ctx0, kk, 1e-12);
  9648. ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
  9649. k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
  9650. r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
  9651. w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
  9652. k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
  9653. v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
  9654. a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
  9655. ggml_tensor * wkv_state = build_copy_mask_state(
  9656. gf, kv_self->v_l[il], state_copy, state_mask,
  9657. hparams.n_embd_v_s(), n_seqs);
  9658. ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
  9659. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9660. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9661. ggml_build_forward_expand(
  9662. gf,
  9663. ggml_cpy(
  9664. ctx0,
  9665. wkv_state,
  9666. ggml_view_1d(
  9667. ctx0,
  9668. kv_self->v_l[il],
  9669. hparams.n_embd_v_s() * n_seqs,
  9670. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  9671. )
  9672. )
  9673. );
  9674. if (layer.time_mix_ln && layer.time_mix_ln_b) {
  9675. // group norm with head_count groups
  9676. cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
  9677. cur = ggml_norm(ctx0, cur, 64e-5f);
  9678. // Convert back to regular vectors.
  9679. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9680. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9681. } else {
  9682. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9683. }
  9684. ggml_tensor * rk = ggml_sum_rows(ctx0,
  9685. ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
  9686. cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
  9687. if (has_gating) {
  9688. cur = ggml_mul(ctx0, cur, g);
  9689. }
  9690. cur = build_lora_mm(layer.time_mix_output, cur);
  9691. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9692. }
  9693. };
  9694. struct llm_build_rwkv7 : public llm_build_rwkv7_base {
  9695. llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9696. GGML_ASSERT(hparams.token_shift_count == 2);
  9697. ggml_tensor * cur;
  9698. ggml_tensor * inpL;
  9699. ggml_tensor * v_first = nullptr;
  9700. inpL = build_inp_embd(model.tok_embd);
  9701. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9702. ggml_tensor * state_copy = build_inp_s_copy();
  9703. ggml_tensor * state_mask = build_inp_s_mask();
  9704. const auto n_embd = hparams.n_embd;
  9705. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9706. const auto n_seqs = ubatch.n_seqs;
  9707. for (int il = 0; il < n_layer; ++il) {
  9708. const llama_layer * layer = &model.layers[il];
  9709. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9710. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9711. gf, state_copy, state_mask, ubatch, il
  9712. );
  9713. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9714. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9715. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9716. cb(att_norm, "attn_norm", il);
  9717. ggml_tensor * x_prev = ggml_concat(
  9718. ctx0,
  9719. att_shift,
  9720. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9721. 1
  9722. );
  9723. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9724. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9725. cb(ffn_inp, "ffn_inp", il);
  9726. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9727. cb(ffn_norm, "ffn_norm", il);
  9728. x_prev = ggml_concat(
  9729. ctx0,
  9730. ffn_shift,
  9731. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9732. 1
  9733. );
  9734. token_shift = ggml_concat(ctx0,
  9735. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9736. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9737. 1
  9738. );
  9739. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9740. if (il == n_layer - 1) {
  9741. // skip computing output for unused tokens
  9742. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9743. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9744. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9745. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9746. }
  9747. cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
  9748. cur = ggml_add(ctx0, cur, ffn_inp);
  9749. cur = build_cvec(cur, il);
  9750. cb(cur, "l_out", il);
  9751. // input for next layer
  9752. inpL = cur;
  9753. }
  9754. cur = inpL;
  9755. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9756. cb(cur, "result_norm", -1);
  9757. res->t_embd = cur;
  9758. cur = build_lora_mm(model.output, cur);
  9759. cb(cur, "result_output", -1);
  9760. res->t_logits = cur;
  9761. ggml_build_forward_expand(gf, cur);
  9762. }
  9763. };
  9764. struct llm_build_arwkv7 : public llm_build_rwkv7_base {
  9765. llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9766. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9767. ggml_tensor * cur;
  9768. ggml_tensor * inpL;
  9769. ggml_tensor * v_first = nullptr;
  9770. inpL = build_inp_embd(model.tok_embd);
  9771. ggml_tensor * state_copy = build_inp_s_copy();
  9772. ggml_tensor * state_mask = build_inp_s_mask();
  9773. const auto n_embd = hparams.n_embd;
  9774. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9775. const auto n_seqs = ubatch.n_seqs;
  9776. for (int il = 0; il < n_layer; ++il) {
  9777. const llama_layer * layer = &model.layers[il];
  9778. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9779. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9780. gf, state_copy, state_mask, ubatch, il
  9781. );
  9782. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9783. cb(att_norm, "attn_norm", il);
  9784. ggml_tensor * x_prev = ggml_concat(
  9785. ctx0,
  9786. token_shift,
  9787. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9788. 1
  9789. );
  9790. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9791. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9792. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9793. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9794. cb(ffn_inp, "ffn_inp", il);
  9795. if (il == n_layer - 1) {
  9796. // skip computing output for unused tokens
  9797. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9798. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9799. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9800. }
  9801. // feed-forward network
  9802. cur = build_norm(ffn_inp,
  9803. model.layers[il].ffn_norm, NULL,
  9804. LLM_NORM_RMS, il);
  9805. cb(cur, "ffn_norm", il);
  9806. cur = build_ffn(cur,
  9807. model.layers[il].ffn_up, NULL, NULL,
  9808. model.layers[il].ffn_gate, NULL, NULL,
  9809. model.layers[il].ffn_down, NULL, NULL,
  9810. NULL,
  9811. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9812. cb(cur, "ffn_out", il);
  9813. cur = ggml_add(ctx0, cur, ffn_inp);
  9814. cur = build_cvec(cur, il);
  9815. cb(cur, "l_out", il);
  9816. // input for next layer
  9817. inpL = cur;
  9818. }
  9819. cur = inpL;
  9820. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9821. cb(cur, "result_norm", -1);
  9822. res->t_embd = cur;
  9823. cur = build_lora_mm(model.output, cur);
  9824. cb(cur, "result_output", -1);
  9825. res->t_logits = cur;
  9826. ggml_build_forward_expand(gf, cur);
  9827. }
  9828. };
  9829. struct llm_build_granite : public llm_graph_context {
  9830. llm_build_granite(
  9831. const llama_model & model,
  9832. const llm_graph_params & params,
  9833. ggml_cgraph * gf,
  9834. const bool use_rope = true)
  9835. : llm_graph_context(params) {
  9836. const int64_t n_embd_head = hparams.n_embd_head_v;
  9837. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9838. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9839. ggml_tensor * cur;
  9840. ggml_tensor * inpL;
  9841. inpL = build_inp_embd(model.tok_embd);
  9842. // inp_pos - built only if rope enabled
  9843. ggml_tensor * inp_pos = nullptr;
  9844. if (use_rope) {
  9845. inp_pos = build_inp_pos();
  9846. }
  9847. auto * inp_attn = build_attn_inp_kv_unified();
  9848. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  9849. for (int il = 0; il < n_layer; ++il) {
  9850. ggml_tensor * inpSA = inpL;
  9851. // norm
  9852. cur = build_norm(inpL,
  9853. model.layers[il].attn_norm, NULL,
  9854. LLM_NORM_RMS, il);
  9855. cb(cur, "attn_norm", il);
  9856. // self-attention
  9857. {
  9858. // compute Q and K and (optionally) RoPE them
  9859. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9860. cb(Qcur, "Qcur", il);
  9861. if (model.layers[il].bq) {
  9862. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9863. cb(Qcur, "Qcur", il);
  9864. }
  9865. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9866. cb(Kcur, "Kcur", il);
  9867. if (model.layers[il].bk) {
  9868. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9869. cb(Kcur, "Kcur", il);
  9870. }
  9871. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9872. cb(Vcur, "Vcur", il);
  9873. if (model.layers[il].bv) {
  9874. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9875. cb(Vcur, "Vcur", il);
  9876. }
  9877. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9878. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9879. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9880. if (use_rope) {
  9881. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  9882. Qcur = ggml_rope_ext(
  9883. ctx0, Qcur, inp_pos, rope_factors,
  9884. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9885. ext_factor, attn_factor, beta_fast, beta_slow
  9886. );
  9887. Kcur = ggml_rope_ext(
  9888. ctx0, Kcur, inp_pos, rope_factors,
  9889. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9890. ext_factor, attn_factor, beta_fast, beta_slow
  9891. );
  9892. }
  9893. cb(Qcur, "Qcur", il);
  9894. cb(Kcur, "Kcur", il);
  9895. cb(Vcur, "Vcur", il);
  9896. cur = build_attn(inp_attn, gf,
  9897. model.layers[il].wo, model.layers[il].bo,
  9898. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  9899. cb(cur, "attn_out", il);
  9900. }
  9901. if (il == n_layer - 1) {
  9902. // skip computing output for unused tokens
  9903. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9904. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9905. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9906. }
  9907. // For Granite architectures - scale residual
  9908. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  9909. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9910. cb(ffn_inp, "ffn_inp", il);
  9911. // feed-forward network (non-MoE)
  9912. if (model.layers[il].ffn_gate_inp == nullptr) {
  9913. cur = build_norm(ffn_inp,
  9914. model.layers[il].ffn_norm, NULL,
  9915. LLM_NORM_RMS, il);
  9916. cb(cur, "ffn_norm", il);
  9917. cur = build_ffn(cur,
  9918. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9919. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  9920. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9921. NULL,
  9922. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9923. cb(cur, "ffn_out", il);
  9924. } else {
  9925. // MoE branch
  9926. cur = build_norm(ffn_inp,
  9927. model.layers[il].ffn_norm, NULL,
  9928. LLM_NORM_RMS, il);
  9929. cb(cur, "ffn_norm", il);
  9930. ggml_tensor * moe_out = build_moe_ffn(cur,
  9931. model.layers[il].ffn_gate_inp,
  9932. model.layers[il].ffn_up_exps,
  9933. model.layers[il].ffn_gate_exps,
  9934. model.layers[il].ffn_down_exps,
  9935. nullptr,
  9936. n_expert, n_expert_used,
  9937. LLM_FFN_SILU, true,
  9938. false, 0.0,
  9939. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  9940. il);
  9941. cb(moe_out, "ffn_moe_out", il);
  9942. // For Granite MoE Shared
  9943. if (hparams.n_ff_shexp > 0) {
  9944. ggml_tensor * ffn_shexp = build_ffn(cur,
  9945. model.layers[il].ffn_up_shexp, NULL, NULL,
  9946. model.layers[il].ffn_gate_shexp, NULL, NULL,
  9947. model.layers[il].ffn_down_shexp, NULL, NULL,
  9948. NULL,
  9949. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9950. cb(ffn_shexp, "ffn_shexp", il);
  9951. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9952. cb(cur, "ffn_out", il);
  9953. } else {
  9954. cur = moe_out;
  9955. }
  9956. }
  9957. // For Granite architectures - scale residual
  9958. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  9959. cur = ggml_add(ctx0, cur, ffn_inp);
  9960. cb(cur, "ffn_out", il);
  9961. cur = build_cvec(cur, il);
  9962. cb(cur, "l_out", il);
  9963. // input for next layer
  9964. inpL = cur;
  9965. }
  9966. cur = inpL;
  9967. cur = build_norm(cur,
  9968. model.output_norm, NULL,
  9969. LLM_NORM_RMS, -1);
  9970. cb(cur, "result_norm", -1);
  9971. res->t_embd = cur;
  9972. // lm_head
  9973. cur = build_lora_mm(model.output, cur);
  9974. // For Granite architectures - scale logits
  9975. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  9976. cb(cur, "result_output", -1);
  9977. res->t_logits = cur;
  9978. ggml_build_forward_expand(gf, cur);
  9979. }
  9980. };
  9981. // ref: https://github.com/facebookresearch/chameleon
  9982. // based on the original build_llama() function, changes:
  9983. // * qk-norm
  9984. // * swin-norm
  9985. // * removed bias
  9986. // * removed MoE
  9987. struct llm_build_chameleon : public llm_graph_context {
  9988. llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9989. const int64_t n_embd_head = hparams.n_embd_head_v;
  9990. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9991. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9992. ggml_tensor * cur;
  9993. ggml_tensor * inpL;
  9994. inpL = build_inp_embd(model.tok_embd);
  9995. // inp_pos - contains the positions
  9996. ggml_tensor * inp_pos = build_inp_pos();
  9997. auto * inp_attn = build_attn_inp_kv_unified();
  9998. for (int il = 0; il < n_layer; ++il) {
  9999. ggml_tensor * inpSA = inpL;
  10000. // norm
  10001. if (hparams.swin_norm) {
  10002. cur = inpL;
  10003. } else {
  10004. cur = build_norm(inpL,
  10005. model.layers[il].attn_norm, NULL,
  10006. LLM_NORM_RMS, il);
  10007. cb(cur, "attn_norm", il);
  10008. }
  10009. // self-attention
  10010. {
  10011. // compute Q and K and RoPE them
  10012. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10013. cb(Qcur, "Qcur", il);
  10014. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10015. cb(Kcur, "Kcur", il);
  10016. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10017. cb(Vcur, "Vcur", il);
  10018. if (model.layers[il].attn_q_norm) {
  10019. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  10020. ggml_element_size(Qcur) * n_embd_head,
  10021. ggml_element_size(Qcur) * n_embd_head * n_head,
  10022. 0);
  10023. cb(Qcur, "Qcur", il);
  10024. Qcur = build_norm(Qcur,
  10025. model.layers[il].attn_q_norm,
  10026. model.layers[il].attn_q_norm_b,
  10027. LLM_NORM, il);
  10028. cb(Qcur, "Qcur", il);
  10029. }
  10030. if (model.layers[il].attn_k_norm) {
  10031. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  10032. ggml_element_size(Kcur) * n_embd_head,
  10033. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  10034. 0);
  10035. cb(Kcur, "Kcur", il);
  10036. Kcur = build_norm(Kcur,
  10037. model.layers[il].attn_k_norm,
  10038. model.layers[il].attn_k_norm_b,
  10039. LLM_NORM, il);
  10040. cb(Kcur, "Kcur", il);
  10041. }
  10042. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10043. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  10044. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  10045. Qcur = ggml_rope_ext(
  10046. ctx0, Qcur, inp_pos, nullptr,
  10047. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10048. ext_factor, attn_factor, beta_fast, beta_slow
  10049. );
  10050. Kcur = ggml_rope_ext(
  10051. ctx0, Kcur, inp_pos, nullptr,
  10052. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10053. ext_factor, attn_factor, beta_fast, beta_slow
  10054. );
  10055. cb(Qcur, "Qcur", il);
  10056. cb(Kcur, "Kcur", il);
  10057. cb(Vcur, "Vcur", il);
  10058. cur = build_attn(inp_attn, gf,
  10059. model.layers[il].wo, nullptr,
  10060. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  10061. if (hparams.swin_norm) {
  10062. cur = build_norm(cur,
  10063. model.layers[il].attn_norm, NULL,
  10064. LLM_NORM_RMS, il);
  10065. }
  10066. }
  10067. if (il == n_layer - 1) {
  10068. // skip computing output for unused tokens
  10069. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10070. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10071. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10072. }
  10073. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10074. cb(ffn_inp, "ffn_inp", il);
  10075. // feed-forward network
  10076. if (!hparams.swin_norm) {
  10077. cur = build_norm(ffn_inp,
  10078. model.layers[il].ffn_norm, NULL,
  10079. LLM_NORM_RMS, il);
  10080. cb(cur, "ffn_norm", il);
  10081. }
  10082. cur = build_ffn(cur,
  10083. model.layers[il].ffn_up, NULL, NULL,
  10084. model.layers[il].ffn_gate, NULL, NULL,
  10085. model.layers[il].ffn_down, NULL, NULL,
  10086. NULL,
  10087. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10088. cb(cur, "ffn_out", il);
  10089. if (hparams.swin_norm) {
  10090. cur = build_norm(cur,
  10091. model.layers[il].ffn_norm, NULL,
  10092. LLM_NORM_RMS, il);
  10093. cb(cur, "ffn_norm", il);
  10094. }
  10095. cur = ggml_add(ctx0, cur, ffn_inp);
  10096. cb(cur, "ffn_out", il);
  10097. cur = build_cvec(cur, il);
  10098. cb(cur, "l_out", il);
  10099. // input for next layer
  10100. inpL = cur;
  10101. }
  10102. cur = inpL;
  10103. cur = build_norm(cur,
  10104. model.output_norm, NULL,
  10105. LLM_NORM_RMS, -1);
  10106. cb(cur, "result_norm", -1);
  10107. res->t_embd = cur;
  10108. // lm_head
  10109. cur = build_lora_mm(model.output, cur);
  10110. cb(cur, "result_output_with_img_logits", -1);
  10111. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  10112. // Needs to be removed once image outputs are supported.
  10113. int img_token_end_idx = 8196;
  10114. int img_token_start_idx = 4;
  10115. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  10116. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  10117. // which ensures that text token values are always at least larger than image token values
  10118. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  10119. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  10120. cb(img_logits, "img_logits", -1);
  10121. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  10122. cb(cur, "result_output", -1);
  10123. res->t_logits = cur;
  10124. ggml_build_forward_expand(gf, cur);
  10125. }
  10126. };
  10127. struct llm_build_wavtokenizer_dec : public llm_graph_context {
  10128. llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10129. ggml_tensor * cur;
  10130. ggml_tensor * inpL;
  10131. inpL = build_inp_embd(model.tok_embd);
  10132. cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
  10133. cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
  10134. cur = ggml_add(ctx0, cur, model.conv1d_b);
  10135. // posnet
  10136. for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
  10137. const auto & layer = model.layers[il].posnet;
  10138. inpL = cur;
  10139. switch (il) {
  10140. case 0:
  10141. case 1:
  10142. case 3:
  10143. case 4:
  10144. {
  10145. cur = build_norm(cur,
  10146. layer.norm1,
  10147. layer.norm1_b,
  10148. LLM_NORM_GROUP, 0);
  10149. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  10150. cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
  10151. cur = ggml_add(ctx0, cur, layer.conv1_b);
  10152. cur = build_norm(cur,
  10153. layer.norm2,
  10154. layer.norm2_b,
  10155. LLM_NORM_GROUP, 0);
  10156. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  10157. cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
  10158. cur = ggml_add(ctx0, cur, layer.conv2_b);
  10159. cur = ggml_add(ctx0, cur, inpL);
  10160. } break;
  10161. case 2:
  10162. {
  10163. cur = build_norm(cur,
  10164. layer.attn_norm,
  10165. layer.attn_norm_b,
  10166. LLM_NORM_GROUP, 0);
  10167. ggml_tensor * q;
  10168. ggml_tensor * k;
  10169. ggml_tensor * v;
  10170. q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
  10171. k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
  10172. v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
  10173. q = ggml_add(ctx0, q, layer.attn_q_b);
  10174. k = ggml_add(ctx0, k, layer.attn_k_b);
  10175. v = ggml_add(ctx0, v, layer.attn_v_b);
  10176. q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
  10177. k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
  10178. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  10179. kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
  10180. cur = ggml_mul_mat(ctx0, kq, v);
  10181. cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
  10182. cur = ggml_add(ctx0, cur, layer.attn_o_b);
  10183. cur = ggml_add(ctx0, cur, inpL);
  10184. } break;
  10185. case 5:
  10186. {
  10187. cur = build_norm(cur,
  10188. layer.norm,
  10189. layer.norm_b,
  10190. LLM_NORM_GROUP, 0);
  10191. } break;
  10192. default: GGML_ABORT("unknown posnet layer");
  10193. };
  10194. }
  10195. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10196. cur = build_norm(cur,
  10197. model.tok_norm,
  10198. model.tok_norm_b,
  10199. LLM_NORM, -1);
  10200. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10201. inpL = cur;
  10202. // convnext
  10203. for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
  10204. const auto & layer = model.layers[il].convnext;
  10205. cur = inpL;
  10206. cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
  10207. cur = ggml_add(ctx0, cur, layer.dw_b);
  10208. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10209. cur = build_norm(cur,
  10210. layer.norm,
  10211. layer.norm_b,
  10212. LLM_NORM, -1);
  10213. cur = build_ffn(cur,
  10214. layer.pw1, layer.pw1_b, NULL,
  10215. NULL, NULL, NULL,
  10216. layer.pw2, layer.pw2_b, NULL,
  10217. NULL,
  10218. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  10219. cur = ggml_mul(ctx0, cur, layer.gamma);
  10220. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10221. inpL = ggml_add(ctx0, cur, inpL);
  10222. }
  10223. cur = inpL;
  10224. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10225. cur = build_norm(cur,
  10226. model.output_norm,
  10227. model.output_norm_b,
  10228. LLM_NORM, -1);
  10229. // lm_head
  10230. cur = build_lora_mm(model.output, cur);
  10231. cur = ggml_add(ctx0, cur, model.output_b);
  10232. cb(cur, "result_embd", -1);
  10233. res->t_embd = cur;
  10234. ggml_build_forward_expand(gf, cur);
  10235. }
  10236. };
  10237. struct llm_build_plm : public llm_graph_context {
  10238. llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10239. const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
  10240. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  10241. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  10242. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  10243. ggml_tensor * cur;
  10244. ggml_tensor * inpL;
  10245. // {n_embd, n_tokens}
  10246. inpL = build_inp_embd(model.tok_embd);
  10247. // inp_pos - contains the positions
  10248. ggml_tensor * inp_pos = build_inp_pos();
  10249. auto * inp_attn = build_attn_inp_kv_unified();
  10250. for (int il = 0; il < n_layer; ++il) {
  10251. ggml_tensor * inpSA = inpL;
  10252. // norm
  10253. cur = build_norm(inpL,
  10254. model.layers[il].attn_norm, NULL,
  10255. LLM_NORM_RMS, il);
  10256. cb(cur, "attn_norm", il);
  10257. // self_attention
  10258. {
  10259. ggml_tensor * q = NULL;
  10260. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  10261. cb(q, "q", il);
  10262. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  10263. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  10264. ggml_row_size(q->type, hparams.n_embd_head_k),
  10265. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  10266. 0);
  10267. cb(q_nope, "q_nope", il);
  10268. // and {n_head * n_embd_head_qk_rope, n_tokens}
  10269. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  10270. ggml_row_size(q->type, hparams.n_embd_head_k),
  10271. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  10272. ggml_row_size(q->type, n_embd_head_qk_nope));
  10273. cb(q_pe, "q_pe", il);
  10274. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  10275. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  10276. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  10277. // split into {kv_lora_rank, n_tokens}
  10278. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  10279. kv_pe_compresseed->nb[1],
  10280. 0);
  10281. cb(kv_compressed, "kv_compressed", il);
  10282. // and {n_embd_head_qk_rope, n_tokens}
  10283. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  10284. kv_pe_compresseed->nb[1],
  10285. kv_pe_compresseed->nb[1],
  10286. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  10287. cb(k_pe, "k_pe", il);
  10288. kv_compressed = build_norm(kv_compressed,
  10289. model.layers[il].attn_kv_a_norm, NULL,
  10290. LLM_NORM_RMS, il);
  10291. cb(kv_compressed, "kv_compressed", il);
  10292. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  10293. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  10294. cb(kv, "kv", il);
  10295. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  10296. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  10297. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  10298. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10299. 0);
  10300. cb(k_nope, "k_nope", il);
  10301. // and {n_head * n_embd_head_v, n_tokens}
  10302. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  10303. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10304. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  10305. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  10306. cb(v_states, "v_states", il);
  10307. v_states = ggml_cont(ctx0, v_states);
  10308. cb(v_states, "v_states", il);
  10309. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  10310. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  10311. 0);
  10312. cb(v_states, "v_states", il);
  10313. q_pe = ggml_rope_ext(
  10314. ctx0, q_pe, inp_pos, nullptr,
  10315. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10316. ext_factor, attn_factor, beta_fast, beta_slow
  10317. );
  10318. cb(q_pe, "q_pe", il);
  10319. // shared RoPE key
  10320. k_pe = ggml_rope_ext(
  10321. ctx0, k_pe, inp_pos, nullptr,
  10322. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10323. ext_factor, attn_factor, beta_fast, beta_slow
  10324. );
  10325. cb(k_pe, "k_pe", il);
  10326. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  10327. cb(q_states, "q_states", il);
  10328. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  10329. cb(k_states, "k_states", il);
  10330. cur = build_attn(inp_attn, gf,
  10331. model.layers[il].wo, NULL,
  10332. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  10333. }
  10334. if (il == n_layer - 1) {
  10335. // skip computing output for unused tokens
  10336. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10337. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10338. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10339. }
  10340. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10341. cb(ffn_inp, "ffn_inp", il);
  10342. cur = build_norm(ffn_inp,
  10343. model.layers[il].ffn_norm, NULL,
  10344. LLM_NORM_RMS, il);
  10345. cb(cur, "ffn_norm", il);
  10346. cur = build_ffn(cur,
  10347. model.layers[il].ffn_up, NULL, NULL,
  10348. NULL, NULL, NULL,
  10349. model.layers[il].ffn_down, NULL, NULL,
  10350. NULL,
  10351. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  10352. cb(cur, "ffn_out", il);
  10353. cur = ggml_add(ctx0, cur, ffn_inp);
  10354. cur = build_cvec(cur, il);
  10355. cb(cur, "l_out", il);
  10356. // input for next layer
  10357. inpL = cur;
  10358. }
  10359. cur = inpL;
  10360. cur = build_norm(cur,
  10361. model.output_norm, NULL,
  10362. LLM_NORM_RMS, -1);
  10363. cb(cur, "result_norm", -1);
  10364. res->t_embd = cur;
  10365. cur = build_lora_mm(model.output, cur);
  10366. cb(cur, "result_output", -1);
  10367. res->t_logits = cur;
  10368. ggml_build_forward_expand(gf, cur);
  10369. }
  10370. };
  10371. struct llm_build_bailingmoe : public llm_graph_context {
  10372. llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10373. ggml_tensor * cur;
  10374. ggml_tensor * inpL;
  10375. inpL = build_inp_embd(model.tok_embd);
  10376. // inp_pos - contains the positions
  10377. ggml_tensor * inp_pos = build_inp_pos();
  10378. auto * inp_attn = build_attn_inp_kv_unified();
  10379. for (int il = 0; il < n_layer; ++il) {
  10380. ggml_tensor * inpSA = inpL;
  10381. // norm
  10382. cur = build_norm(inpL,
  10383. model.layers[il].attn_norm, NULL,
  10384. LLM_NORM_RMS, il);
  10385. cb(cur, "attn_norm", il);
  10386. // self-attention
  10387. {
  10388. // rope freq factors for llama3; may return nullptr for llama2 and other models
  10389. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  10390. // compute Q and K and RoPE them
  10391. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10392. cb(Qcur, "Qcur", il);
  10393. if (model.layers[il].bq) {
  10394. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10395. cb(Qcur, "Qcur", il);
  10396. }
  10397. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10398. cb(Kcur, "Kcur", il);
  10399. if (model.layers[il].bk) {
  10400. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10401. cb(Kcur, "Kcur", il);
  10402. }
  10403. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10404. cb(Vcur, "Vcur", il);
  10405. if (model.layers[il].bv) {
  10406. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10407. cb(Vcur, "Vcur", il);
  10408. }
  10409. Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
  10410. Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
  10411. Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
  10412. Qcur = ggml_rope_ext(
  10413. ctx0, Qcur, inp_pos, rope_factors,
  10414. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10415. ext_factor, attn_factor, beta_fast, beta_slow
  10416. );
  10417. Kcur = ggml_rope_ext(
  10418. ctx0, Kcur, inp_pos, rope_factors,
  10419. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10420. ext_factor, attn_factor, beta_fast, beta_slow
  10421. );
  10422. cb(Qcur, "Qcur", il);
  10423. cb(Kcur, "Kcur", il);
  10424. cb(Vcur, "Vcur", il);
  10425. cur = build_attn(inp_attn, gf,
  10426. model.layers[il].wo, model.layers[il].bo,
  10427. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
  10428. }
  10429. if (il == n_layer - 1) {
  10430. // skip computing output for unused tokens
  10431. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10432. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10433. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10434. }
  10435. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10436. cb(ffn_inp, "ffn_inp", il);
  10437. cur = build_norm(ffn_inp,
  10438. model.layers[il].ffn_norm, NULL,
  10439. LLM_NORM_RMS, il);
  10440. cb(cur, "ffn_norm", il);
  10441. ggml_tensor * moe_out =
  10442. build_moe_ffn(cur,
  10443. model.layers[il].ffn_gate_inp,
  10444. model.layers[il].ffn_up_exps,
  10445. model.layers[il].ffn_gate_exps,
  10446. model.layers[il].ffn_down_exps,
  10447. nullptr,
  10448. n_expert, n_expert_used,
  10449. LLM_FFN_SILU, hparams.expert_weights_norm,
  10450. false, hparams.expert_weights_scale,
  10451. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  10452. il);
  10453. cb(moe_out, "ffn_moe_out", il);
  10454. // FFN shared expert
  10455. {
  10456. ggml_tensor * ffn_shexp = build_ffn(cur,
  10457. model.layers[il].ffn_up_shexp, NULL, NULL,
  10458. model.layers[il].ffn_gate_shexp, NULL, NULL,
  10459. model.layers[il].ffn_down_shexp, NULL, NULL,
  10460. NULL,
  10461. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10462. cb(ffn_shexp, "ffn_shexp", il);
  10463. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  10464. cb(cur, "ffn_out", il);
  10465. }
  10466. cur = ggml_add(ctx0, cur, ffn_inp);
  10467. cur = build_cvec(cur, il);
  10468. cb(cur, "l_out", il);
  10469. // input for next layer
  10470. inpL = cur;
  10471. }
  10472. cur = inpL;
  10473. cur = build_norm(cur,
  10474. model.output_norm, NULL,
  10475. LLM_NORM_RMS, -1);
  10476. cb(cur, "result_norm", -1);
  10477. res->t_embd = cur;
  10478. // lm_head
  10479. cur = build_lora_mm(model.output, cur);
  10480. cb(cur, "result_output", -1);
  10481. res->t_logits = cur;
  10482. ggml_build_forward_expand(gf, cur);
  10483. }
  10484. };
  10485. llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
  10486. llama_memory_i * res;
  10487. switch (arch) {
  10488. case LLM_ARCH_BERT:
  10489. case LLM_ARCH_JINA_BERT_V2:
  10490. case LLM_ARCH_NOMIC_BERT:
  10491. case LLM_ARCH_NOMIC_BERT_MOE:
  10492. case LLM_ARCH_WAVTOKENIZER_DEC:
  10493. {
  10494. res = nullptr;
  10495. } break;
  10496. case LLM_ARCH_MAMBA:
  10497. case LLM_ARCH_RWKV6:
  10498. case LLM_ARCH_RWKV6QWEN2:
  10499. case LLM_ARCH_RWKV7:
  10500. case LLM_ARCH_ARWKV7:
  10501. {
  10502. res = new llama_kv_cache_recurrent(
  10503. *this,
  10504. GGML_TYPE_F32,
  10505. GGML_TYPE_F32,
  10506. cparams.offload_kqv,
  10507. std::max((uint32_t) 1, cparams.n_seq_max),
  10508. cparams.n_seq_max);
  10509. } break;
  10510. default:
  10511. {
  10512. const auto padding = llama_kv_cache_unified::get_padding(cparams);
  10513. cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
  10514. LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
  10515. if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
  10516. GGML_ASSERT(hparams.is_swa_any());
  10517. res = new llama_kv_cache_unified_iswa(
  10518. *this,
  10519. params.type_k,
  10520. params.type_v,
  10521. !cparams.flash_attn,
  10522. cparams.offload_kqv,
  10523. params.swa_full,
  10524. cparams.n_ctx,
  10525. cparams.n_seq_max,
  10526. cparams.n_batch,
  10527. padding);
  10528. } else {
  10529. GGML_ASSERT(!hparams.is_swa_any());
  10530. res = new llama_kv_cache_unified(
  10531. *this,
  10532. nullptr,
  10533. params.type_k,
  10534. params.type_v,
  10535. !cparams.flash_attn,
  10536. cparams.offload_kqv,
  10537. cparams.n_ctx,
  10538. cparams.n_seq_max,
  10539. padding,
  10540. hparams.n_swa,
  10541. hparams.swa_type);
  10542. }
  10543. }
  10544. }
  10545. return res;
  10546. }
  10547. llm_graph_result_ptr llama_model::build_graph(
  10548. const llm_graph_params & params,
  10549. ggml_cgraph * gf,
  10550. llm_graph_type type) const {
  10551. std::unique_ptr<llm_graph_context> llm;
  10552. switch (arch) {
  10553. case LLM_ARCH_LLAMA:
  10554. case LLM_ARCH_MINICPM:
  10555. {
  10556. llm = std::make_unique<llm_build_llama>(*this, params, gf);
  10557. } break;
  10558. case LLM_ARCH_LLAMA4:
  10559. {
  10560. llm = std::make_unique<llm_build_llama_iswa>(*this, params, gf);
  10561. } break;
  10562. case LLM_ARCH_DECI:
  10563. {
  10564. llm = std::make_unique<llm_build_deci>(*this, params, gf);
  10565. } break;
  10566. case LLM_ARCH_BAICHUAN:
  10567. {
  10568. llm = std::make_unique<llm_build_baichuan>(*this, params, gf);
  10569. } break;
  10570. case LLM_ARCH_FALCON:
  10571. {
  10572. llm = std::make_unique<llm_build_falcon>(*this, params, gf);
  10573. } break;
  10574. case LLM_ARCH_GROK:
  10575. {
  10576. llm = std::make_unique<llm_build_grok>(*this, params, gf);
  10577. } break;
  10578. case LLM_ARCH_STARCODER:
  10579. {
  10580. llm = std::make_unique<llm_build_starcoder>(*this, params, gf);
  10581. } break;
  10582. case LLM_ARCH_REFACT:
  10583. {
  10584. llm = std::make_unique<llm_build_refact>(*this, params, gf);
  10585. } break;
  10586. case LLM_ARCH_BERT:
  10587. case LLM_ARCH_JINA_BERT_V2:
  10588. case LLM_ARCH_NOMIC_BERT:
  10589. case LLM_ARCH_NOMIC_BERT_MOE:
  10590. {
  10591. llm = std::make_unique<llm_build_bert>(*this, params, gf);
  10592. } break;
  10593. case LLM_ARCH_BLOOM:
  10594. {
  10595. llm = std::make_unique<llm_build_bloom>(*this, params, gf);
  10596. } break;
  10597. case LLM_ARCH_MPT:
  10598. {
  10599. llm = std::make_unique<llm_build_mpt>(*this, params, gf);
  10600. } break;
  10601. case LLM_ARCH_STABLELM:
  10602. {
  10603. llm = std::make_unique<llm_build_stablelm>(*this, params, gf);
  10604. } break;
  10605. case LLM_ARCH_QWEN:
  10606. {
  10607. llm = std::make_unique<llm_build_qwen>(*this, params, gf);
  10608. } break;
  10609. case LLM_ARCH_QWEN2:
  10610. {
  10611. llm = std::make_unique<llm_build_qwen2>(*this, params, gf);
  10612. } break;
  10613. case LLM_ARCH_QWEN2VL:
  10614. {
  10615. llm = std::make_unique<llm_build_qwen2vl>(*this, params, gf);
  10616. } break;
  10617. case LLM_ARCH_QWEN2MOE:
  10618. {
  10619. llm = std::make_unique<llm_build_qwen2moe>(*this, params, gf);
  10620. } break;
  10621. case LLM_ARCH_QWEN3:
  10622. {
  10623. llm = std::make_unique<llm_build_qwen3>(*this, params, gf);
  10624. } break;
  10625. case LLM_ARCH_QWEN3MOE:
  10626. {
  10627. llm = std::make_unique<llm_build_qwen3moe>(*this, params, gf);
  10628. } break;
  10629. case LLM_ARCH_PHI2:
  10630. {
  10631. llm = std::make_unique<llm_build_phi2>(*this, params, gf);
  10632. } break;
  10633. case LLM_ARCH_PHI3:
  10634. case LLM_ARCH_PHIMOE:
  10635. {
  10636. if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
  10637. llm = std::make_unique<llm_build_phi3<true>> (*this, params, gf);
  10638. } else {
  10639. llm = std::make_unique<llm_build_phi3<false>>(*this, params, gf);
  10640. }
  10641. } break;
  10642. case LLM_ARCH_PLAMO:
  10643. {
  10644. llm = std::make_unique<llm_build_plamo>(*this, params, gf);
  10645. } break;
  10646. case LLM_ARCH_GPT2:
  10647. {
  10648. llm = std::make_unique<llm_build_gpt2>(*this, params, gf);
  10649. } break;
  10650. case LLM_ARCH_CODESHELL:
  10651. {
  10652. llm = std::make_unique<llm_build_codeshell>(*this, params, gf);
  10653. } break;
  10654. case LLM_ARCH_ORION:
  10655. {
  10656. llm = std::make_unique<llm_build_orion>(*this, params, gf);
  10657. } break;
  10658. case LLM_ARCH_INTERNLM2:
  10659. {
  10660. llm = std::make_unique<llm_build_internlm2>(*this, params, gf);
  10661. } break;
  10662. case LLM_ARCH_MINICPM3:
  10663. {
  10664. llm = std::make_unique<llm_build_minicpm3>(*this, params, gf);
  10665. } break;
  10666. case LLM_ARCH_GEMMA:
  10667. {
  10668. llm = std::make_unique<llm_build_gemma>(*this, params, gf);
  10669. } break;
  10670. case LLM_ARCH_GEMMA2:
  10671. {
  10672. llm = std::make_unique<llm_build_gemma2_iswa>(*this, params, gf);
  10673. } break;
  10674. case LLM_ARCH_GEMMA3:
  10675. {
  10676. llm = std::make_unique<llm_build_gemma3_iswa>(*this, params, gf);
  10677. } break;
  10678. case LLM_ARCH_STARCODER2:
  10679. {
  10680. llm = std::make_unique<llm_build_starcoder2>(*this, params, gf);
  10681. } break;
  10682. case LLM_ARCH_MAMBA:
  10683. {
  10684. llm = std::make_unique<llm_build_mamba>(*this, params, gf);
  10685. } break;
  10686. case LLM_ARCH_XVERSE:
  10687. {
  10688. llm = std::make_unique<llm_build_xverse>(*this, params, gf);
  10689. } break;
  10690. case LLM_ARCH_COMMAND_R:
  10691. {
  10692. llm = std::make_unique<llm_build_command_r>(*this, params, gf);
  10693. } break;
  10694. case LLM_ARCH_COHERE2:
  10695. {
  10696. llm = std::make_unique<llm_build_cohere2_iswa>(*this, params, gf);
  10697. } break;
  10698. case LLM_ARCH_DBRX:
  10699. {
  10700. llm = std::make_unique<llm_build_dbrx>(*this, params, gf);
  10701. } break;
  10702. case LLM_ARCH_OLMO:
  10703. {
  10704. llm = std::make_unique<llm_build_olmo>(*this, params, gf);
  10705. } break;
  10706. case LLM_ARCH_OLMO2:
  10707. {
  10708. llm = std::make_unique<llm_build_olmo2>(*this, params, gf);
  10709. } break;
  10710. case LLM_ARCH_OLMOE:
  10711. {
  10712. llm = std::make_unique<llm_build_olmoe>(*this, params, gf);
  10713. } break;
  10714. case LLM_ARCH_OPENELM:
  10715. {
  10716. llm = std::make_unique<llm_build_openelm>(*this, params, gf);
  10717. } break;
  10718. case LLM_ARCH_GPTNEOX:
  10719. {
  10720. llm = std::make_unique<llm_build_gptneox>(*this, params, gf);
  10721. } break;
  10722. case LLM_ARCH_ARCTIC:
  10723. {
  10724. llm = std::make_unique<llm_build_arctic>(*this, params, gf);
  10725. } break;
  10726. case LLM_ARCH_DEEPSEEK:
  10727. {
  10728. llm = std::make_unique<llm_build_deepseek>(*this, params, gf);
  10729. } break;
  10730. case LLM_ARCH_DEEPSEEK2:
  10731. {
  10732. llm = std::make_unique<llm_build_deepseek2>(*this, params, gf);
  10733. } break;
  10734. case LLM_ARCH_CHATGLM:
  10735. {
  10736. llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
  10737. } break;
  10738. case LLM_ARCH_GLM4:
  10739. {
  10740. llm = std::make_unique<llm_build_glm4>(*this, params, gf);
  10741. } break;
  10742. case LLM_ARCH_BITNET:
  10743. {
  10744. llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
  10745. } break;
  10746. case LLM_ARCH_T5:
  10747. {
  10748. switch (type) {
  10749. case LLM_GRAPH_TYPE_ENCODER:
  10750. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10751. break;
  10752. case LLM_GRAPH_TYPE_DEFAULT:
  10753. case LLM_GRAPH_TYPE_DECODER:
  10754. llm = std::make_unique<llm_build_t5_dec>(*this, params, gf);
  10755. break;
  10756. default:
  10757. GGML_ABORT("invalid graph type");
  10758. };
  10759. } break;
  10760. case LLM_ARCH_T5ENCODER:
  10761. {
  10762. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10763. }
  10764. break;
  10765. case LLM_ARCH_JAIS:
  10766. {
  10767. llm = std::make_unique<llm_build_jais>(*this, params, gf);
  10768. } break;
  10769. case LLM_ARCH_NEMOTRON:
  10770. {
  10771. llm = std::make_unique<llm_build_nemotron>(*this, params, gf);
  10772. } break;
  10773. case LLM_ARCH_EXAONE:
  10774. {
  10775. llm = std::make_unique<llm_build_exaone>(*this, params, gf);
  10776. } break;
  10777. case LLM_ARCH_RWKV6:
  10778. {
  10779. llm = std::make_unique<llm_build_rwkv6>(*this, params, gf);
  10780. } break;
  10781. case LLM_ARCH_RWKV6QWEN2:
  10782. {
  10783. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params, gf);
  10784. } break;
  10785. case LLM_ARCH_RWKV7:
  10786. {
  10787. llm = std::make_unique<llm_build_rwkv7>(*this, params, gf);
  10788. } break;
  10789. case LLM_ARCH_ARWKV7:
  10790. {
  10791. llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
  10792. } break;
  10793. case LLM_ARCH_GRANITE:
  10794. case LLM_ARCH_GRANITE_MOE:
  10795. {
  10796. llm = std::make_unique<llm_build_granite>(*this, params, gf);
  10797. } break;
  10798. case LLM_ARCH_CHAMELEON:
  10799. {
  10800. llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
  10801. } break;
  10802. case LLM_ARCH_WAVTOKENIZER_DEC:
  10803. {
  10804. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
  10805. } break;
  10806. case LLM_ARCH_PLM:
  10807. {
  10808. llm = std::make_unique<llm_build_plm>(*this, params, gf);
  10809. } break;
  10810. case LLM_ARCH_BAILINGMOE:
  10811. {
  10812. llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
  10813. } break;
  10814. default:
  10815. GGML_ABORT("fatal error");
  10816. }
  10817. // add on pooling layer
  10818. llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b);
  10819. return std::move(llm->res);
  10820. }
  10821. //
  10822. // interface implementation
  10823. //
  10824. llama_model_params llama_model_default_params() {
  10825. llama_model_params result = {
  10826. /*.devices =*/ nullptr,
  10827. /*.tensor_buft_overrides =*/ nullptr,
  10828. /*.n_gpu_layers =*/ 0,
  10829. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  10830. /*.main_gpu =*/ 0,
  10831. /*.tensor_split =*/ nullptr,
  10832. /*.progress_callback =*/ nullptr,
  10833. /*.progress_callback_user_data =*/ nullptr,
  10834. /*.kv_overrides =*/ nullptr,
  10835. /*.vocab_only =*/ false,
  10836. /*.use_mmap =*/ true,
  10837. /*.use_mlock =*/ false,
  10838. /*.check_tensors =*/ false,
  10839. };
  10840. #ifdef GGML_USE_METAL
  10841. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  10842. result.n_gpu_layers = 999;
  10843. #endif
  10844. return result;
  10845. }
  10846. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  10847. return &model->vocab;
  10848. }
  10849. void llama_free_model(llama_model * model) {
  10850. llama_model_free(model);
  10851. }
  10852. void llama_model_free(llama_model * model) {
  10853. delete model;
  10854. }
  10855. int32_t llama_model_n_ctx_train(const llama_model * model) {
  10856. return model->hparams.n_ctx_train;
  10857. }
  10858. int32_t llama_model_n_embd(const llama_model * model) {
  10859. return model->hparams.n_embd;
  10860. }
  10861. int32_t llama_model_n_layer(const llama_model * model) {
  10862. return model->hparams.n_layer;
  10863. }
  10864. int32_t llama_model_n_head(const llama_model * model) {
  10865. return model->hparams.n_head();
  10866. }
  10867. int32_t llama_model_n_head_kv(const llama_model * model) {
  10868. return model->hparams.n_head_kv();
  10869. }
  10870. // deprecated
  10871. int32_t llama_n_ctx_train(const llama_model * model) {
  10872. return llama_model_n_ctx_train(model);
  10873. }
  10874. // deprecated
  10875. int32_t llama_n_embd(const llama_model * model) {
  10876. return llama_model_n_embd(model);
  10877. }
  10878. // deprecated
  10879. int32_t llama_n_layer(const llama_model * model) {
  10880. return llama_model_n_layer(model);
  10881. }
  10882. // deprecated
  10883. int32_t llama_n_head(const llama_model * model) {
  10884. return llama_model_n_head(model);
  10885. }
  10886. llama_rope_type llama_model_rope_type(const llama_model * model) {
  10887. switch (model->arch) {
  10888. // these models do not use RoPE
  10889. case LLM_ARCH_GPT2:
  10890. case LLM_ARCH_GPTJ:
  10891. case LLM_ARCH_MPT:
  10892. case LLM_ARCH_REFACT:
  10893. case LLM_ARCH_BLOOM:
  10894. case LLM_ARCH_MAMBA:
  10895. case LLM_ARCH_JINA_BERT_V2:
  10896. case LLM_ARCH_T5:
  10897. case LLM_ARCH_T5ENCODER:
  10898. case LLM_ARCH_JAIS:
  10899. case LLM_ARCH_RWKV6:
  10900. case LLM_ARCH_RWKV6QWEN2:
  10901. case LLM_ARCH_RWKV7:
  10902. case LLM_ARCH_ARWKV7:
  10903. case LLM_ARCH_WAVTOKENIZER_DEC:
  10904. return LLAMA_ROPE_TYPE_NONE;
  10905. // use what we call a normal RoPE, operating on pairs of consecutive head values
  10906. case LLM_ARCH_LLAMA:
  10907. case LLM_ARCH_LLAMA4:
  10908. case LLM_ARCH_DECI:
  10909. case LLM_ARCH_BAICHUAN:
  10910. case LLM_ARCH_STARCODER:
  10911. case LLM_ARCH_INTERNLM2:
  10912. case LLM_ARCH_MINICPM:
  10913. case LLM_ARCH_XVERSE:
  10914. case LLM_ARCH_COMMAND_R:
  10915. case LLM_ARCH_COHERE2:
  10916. case LLM_ARCH_OLMO:
  10917. case LLM_ARCH_ARCTIC:
  10918. case LLM_ARCH_DEEPSEEK:
  10919. case LLM_ARCH_DEEPSEEK2:
  10920. case LLM_ARCH_PLM:
  10921. case LLM_ARCH_CHATGLM:
  10922. case LLM_ARCH_GLM4:
  10923. case LLM_ARCH_GRANITE:
  10924. case LLM_ARCH_GRANITE_MOE:
  10925. case LLM_ARCH_CHAMELEON:
  10926. case LLM_ARCH_BAILINGMOE:
  10927. return LLAMA_ROPE_TYPE_NORM;
  10928. // the pairs of head values are offset by n_rot/2
  10929. case LLM_ARCH_FALCON:
  10930. case LLM_ARCH_GROK:
  10931. case LLM_ARCH_DBRX:
  10932. case LLM_ARCH_BERT:
  10933. case LLM_ARCH_NOMIC_BERT:
  10934. case LLM_ARCH_NOMIC_BERT_MOE:
  10935. case LLM_ARCH_STABLELM:
  10936. case LLM_ARCH_BITNET:
  10937. case LLM_ARCH_QWEN:
  10938. case LLM_ARCH_QWEN2:
  10939. case LLM_ARCH_QWEN2MOE:
  10940. case LLM_ARCH_QWEN3:
  10941. case LLM_ARCH_QWEN3MOE:
  10942. case LLM_ARCH_OLMO2:
  10943. case LLM_ARCH_OLMOE:
  10944. case LLM_ARCH_PHI2:
  10945. case LLM_ARCH_PHI3:
  10946. case LLM_ARCH_PHIMOE:
  10947. case LLM_ARCH_PLAMO:
  10948. case LLM_ARCH_GEMMA:
  10949. case LLM_ARCH_GEMMA2:
  10950. case LLM_ARCH_GEMMA3:
  10951. case LLM_ARCH_STARCODER2:
  10952. case LLM_ARCH_OPENELM:
  10953. case LLM_ARCH_GPTNEOX:
  10954. case LLM_ARCH_CODESHELL:
  10955. case LLM_ARCH_ORION:
  10956. case LLM_ARCH_NEMOTRON:
  10957. case LLM_ARCH_EXAONE:
  10958. case LLM_ARCH_MINICPM3:
  10959. return LLAMA_ROPE_TYPE_NEOX;
  10960. case LLM_ARCH_QWEN2VL:
  10961. return LLAMA_ROPE_TYPE_MROPE;
  10962. // all model arches should be listed explicitly here
  10963. case LLM_ARCH_UNKNOWN:
  10964. GGML_ABORT("unknown architecture");
  10965. }
  10966. return LLAMA_ROPE_TYPE_NONE;
  10967. }
  10968. float llama_model_rope_freq_scale_train(const llama_model * model) {
  10969. return model->hparams.rope_freq_scale_train;
  10970. }
  10971. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  10972. const auto & it = model->gguf_kv.find(key);
  10973. if (it == model->gguf_kv.end()) {
  10974. if (buf_size > 0) {
  10975. buf[0] = '\0';
  10976. }
  10977. return -1;
  10978. }
  10979. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10980. }
  10981. int32_t llama_model_meta_count(const llama_model * model) {
  10982. return (int)model->gguf_kv.size();
  10983. }
  10984. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  10985. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10986. if (buf_size > 0) {
  10987. buf[0] = '\0';
  10988. }
  10989. return -1;
  10990. }
  10991. auto it = model->gguf_kv.begin();
  10992. std::advance(it, i);
  10993. return snprintf(buf, buf_size, "%s", it->first.c_str());
  10994. }
  10995. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  10996. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10997. if (buf_size > 0) {
  10998. buf[0] = '\0';
  10999. }
  11000. return -1;
  11001. }
  11002. auto it = model->gguf_kv.begin();
  11003. std::advance(it, i);
  11004. return snprintf(buf, buf_size, "%s", it->second.c_str());
  11005. }
  11006. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  11007. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  11008. }
  11009. uint64_t llama_model_size(const llama_model * model) {
  11010. return model->size();
  11011. }
  11012. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  11013. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
  11014. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  11015. const auto & it = model->gguf_kv.find(key);
  11016. if (it == model->gguf_kv.end()) {
  11017. // one-off fix for very popular models (so we are not flooded with issues)
  11018. // do not extend this list unless absolutely necessary
  11019. // Mistral-Small-2503 does not have built-in chat template
  11020. llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
  11021. if (pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
  11022. return "mistral-v7-tekken";
  11023. }
  11024. return nullptr;
  11025. }
  11026. return it->second.c_str();
  11027. }
  11028. uint64_t llama_model_n_params(const llama_model * model) {
  11029. return model->n_elements();
  11030. }
  11031. bool llama_model_has_encoder(const llama_model * model) {
  11032. switch (model->arch) {
  11033. case LLM_ARCH_T5: return true;
  11034. case LLM_ARCH_T5ENCODER: return true;
  11035. default: return false;
  11036. }
  11037. }
  11038. bool llama_model_has_decoder(const llama_model * model) {
  11039. switch (model->arch) {
  11040. case LLM_ARCH_T5ENCODER: return false;
  11041. default: return true;
  11042. }
  11043. }
  11044. llama_token llama_model_decoder_start_token(const llama_model * model) {
  11045. return model->hparams.dec_start_token_id;
  11046. }
  11047. bool llama_model_is_recurrent(const llama_model * model) {
  11048. switch (model->arch) {
  11049. case LLM_ARCH_MAMBA: return true;
  11050. case LLM_ARCH_RWKV6: return true;
  11051. case LLM_ARCH_RWKV6QWEN2: return true;
  11052. case LLM_ARCH_RWKV7: return true;
  11053. case LLM_ARCH_ARWKV7: return true;
  11054. default: return false;
  11055. }
  11056. }
  11057. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  11058. return model->tensors_by_name;
  11059. }