| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921 |
- #pragma once
- #include "common.h"
- #include "log.h"
- #include "llama.h"
- #include "common/base64.hpp"
- // increase max payload length to allow use of larger context size
- #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
- #include "httplib.h"
- // Change JSON_ASSERT from assert() to GGML_ASSERT:
- #define JSON_ASSERT GGML_ASSERT
- #include "json.hpp"
- #include "minja.hpp"
- #include "chat.hpp"
- #include "chat-template.hpp"
- #include <random>
- #include <sstream>
- #include <string>
- #include <vector>
- #include <memory>
- #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"
- using json = nlohmann::ordered_json;
- #define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
- #define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
- #define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
- #define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
- #define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- #define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
- template <typename T>
- static T json_value(const json & body, const std::string & key, const T & default_value) {
- // Fallback null to default value
- if (body.contains(key) && !body.at(key).is_null()) {
- try {
- return body.at(key);
- } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) {
- LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name());
- return default_value;
- }
- } else {
- return default_value;
- }
- }
- const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
- //
- // tokenizer and input processing utils
- //
- static bool json_is_array_of_numbers(const json & data) {
- if (data.is_array()) {
- for (const auto & e : data) {
- if (!e.is_number_integer()) {
- return false;
- }
- }
- return true;
- }
- return false;
- }
- // is array having BOTH numbers & strings?
- static bool json_is_array_of_mixed_numbers_strings(const json & data) {
- bool seen_string = false;
- bool seen_number = false;
- if (data.is_array()) {
- for (const auto & e : data) {
- seen_string |= e.is_string();
- seen_number |= e.is_number_integer();
- if (seen_number && seen_string) {
- return true;
- }
- }
- }
- return false;
- }
- // get value by path(key1 / key2)
- static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
- json result = json::object();
- for (const std::string & path : paths) {
- json current = js;
- const auto keys = string_split<std::string>(path, /*separator*/ '/');
- bool valid_path = true;
- for (const std::string & k : keys) {
- if (valid_path && current.is_object() && current.contains(k)) {
- current = current[k];
- } else {
- valid_path = false;
- }
- }
- if (valid_path) {
- result[path] = current;
- }
- }
- return result;
- }
- /**
- * this handles 2 cases:
- * - only string, example: "string"
- * - mixed string and tokens, example: [12, 34, "string", 56, 78]
- */
- static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
- // If `add_bos` is true, we only add BOS, when json_prompt is a string,
- // or the first element of the json_prompt array is a string.
- llama_tokens prompt_tokens;
- if (json_prompt.is_array()) {
- bool first = true;
- for (const auto & p : json_prompt) {
- if (p.is_string()) {
- auto s = p.template get<std::string>();
- llama_tokens p;
- if (first) {
- p = common_tokenize(vocab, s, add_special, parse_special);
- first = false;
- } else {
- p = common_tokenize(vocab, s, false, parse_special);
- }
- prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
- } else {
- if (first) {
- first = false;
- }
- prompt_tokens.push_back(p.template get<llama_token>());
- }
- }
- } else {
- auto s = json_prompt.template get<std::string>();
- prompt_tokens = common_tokenize(vocab, s, add_special, parse_special);
- }
- return prompt_tokens;
- }
- /**
- * break the input "prompt" object into multiple prompt if needed, then tokenize them
- * this supports these cases:
- * - "prompt": "string"
- * - "prompt": [12, 34, 56]
- * - "prompt": [12, 34, "string", 56, 78]
- * and multiple prompts (multi-tasks):
- * - "prompt": ["string1", "string2"]
- * - "prompt": ["string1", [12, 34, 56]]
- * - "prompt": [[12, 34, 56], [78, 90, 12]]
- * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
- */
- static std::vector<llama_tokens> tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
- std::vector<llama_tokens> result;
- if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
- // string or mixed
- result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special));
- } else if (json_is_array_of_numbers(json_prompt)) {
- // array of tokens
- result.push_back(json_prompt.get<llama_tokens>());
- } else if (json_prompt.is_array()) {
- // array of prompts
- result.reserve(json_prompt.size());
- for (const auto & p : json_prompt) {
- if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
- result.push_back(tokenize_mixed(vocab, p, add_special, parse_special));
- } else if (json_is_array_of_numbers(p)) {
- // array of tokens
- result.push_back(p.get<llama_tokens>());
- } else {
- throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens");
- }
- }
- } else {
- throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts");
- }
- if (result.empty()) {
- throw std::runtime_error("\"prompt\" must not be empty");
- }
- return result;
- }
- // return the last index of character that can form a valid string
- // if the last character is potentially cut in half, return the index before the cut
- // if validate_utf8(text) == text.size(), then the whole text is valid utf8
- static size_t validate_utf8(const std::string& text) {
- size_t len = text.size();
- if (len == 0) return 0;
- // Check the last few bytes to see if a multi-byte character is cut off
- for (size_t i = 1; i <= 4 && i <= len; ++i) {
- unsigned char c = text[len - i];
- // Check for start of a multi-byte sequence from the end
- if ((c & 0xE0) == 0xC0) {
- // 2-byte character start: 110xxxxx
- // Needs at least 2 bytes
- if (i < 2) return len - i;
- } else if ((c & 0xF0) == 0xE0) {
- // 3-byte character start: 1110xxxx
- // Needs at least 3 bytes
- if (i < 3) return len - i;
- } else if ((c & 0xF8) == 0xF0) {
- // 4-byte character start: 11110xxx
- // Needs at least 4 bytes
- if (i < 4) return len - i;
- }
- }
- // If no cut-off multi-byte character is found, return full length
- return len;
- }
- //
- // template utils
- //
- // format rerank task: [BOS]query[EOS][SEP]doc[EOS]
- static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) {
- llama_tokens result;
- result.reserve(doc.size() + query.size() + 4);
- result.push_back(llama_vocab_bos(vocab));
- result.insert(result.end(), query.begin(), query.end());
- result.push_back(llama_vocab_eos(vocab));
- result.push_back(llama_vocab_sep(vocab));
- result.insert(result.end(), doc.begin(), doc.end());
- result.push_back(llama_vocab_eos(vocab));
- return result;
- }
- // format infill task
- static llama_tokens format_infill(
- const llama_vocab * vocab,
- const json & input_prefix,
- const json & input_suffix,
- const json & input_extra,
- const int n_batch,
- const int n_predict,
- const int n_ctx,
- const bool spm_infill,
- const llama_tokens & tokens_prompt
- ) {
- // TODO: optimize this block by reducing memory allocations and movement
- // use FIM repo-level pattern:
- // ref: https://arxiv.org/pdf/2409.12186
- //
- // [FIM_REP]myproject
- // [FIM_SEP]filename0
- // extra chunk 0
- // [FIM_SEP]filename1
- // extra chunk 1
- // ...
- // [FIM_SEP]filename
- // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
- //
- llama_tokens extra_tokens;
- extra_tokens.reserve(n_ctx);
- auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false);
- auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false);
- if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) {
- // TODO: make project name an input
- static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false);
- extra_tokens.push_back(llama_vocab_fim_rep(vocab));
- extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
- }
- for (const auto & chunk : input_extra) {
- // { "text": string, "filename": string }
- const std::string text = json_value(chunk, "text", std::string());
- const std::string filename = json_value(chunk, "filename", std::string("tmp"));
- if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
- const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false);
- extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
- extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
- } else {
- // chunk separator in binary form to avoid confusing the AI
- static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
- static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false);
- extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
- }
- const auto chunk_tokens = common_tokenize(vocab, text, false, false);
- extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
- }
- if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
- // TODO: current filename
- static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false);
- extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
- extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
- }
- // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
- const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4));
- const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size())));
- SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take));
- // fill the rest of the context with extra chunks
- const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size());
- tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
- tokens_suffix.resize(n_suffix_take);
- tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab));
- tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
- tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab));
- auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
- auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;
- if (llama_vocab_get_add_bos(vocab)) {
- embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
- }
- SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());
- // put the extra context before the FIM prefix
- embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());
- embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
- embd_inp.push_back(llama_vocab_fim_mid(vocab));
- return embd_inp;
- }
- // Format given chat. If tmpl is empty, we take the template from model metadata
- inline std::string format_chat(const common_chat_template & tmpl, const std::vector<json> & messages) {
- std::vector<common_chat_msg> chat;
- for (size_t i = 0; i < messages.size(); ++i) {
- const auto & curr_msg = messages[i];
- std::string role = json_value(curr_msg, "role", std::string(""));
- std::string content;
- if (curr_msg.contains("content")) {
- if (curr_msg["content"].is_string()) {
- content = curr_msg["content"].get<std::string>();
- } else if (curr_msg["content"].is_array()) {
- for (const auto & part : curr_msg["content"]) {
- if (part.contains("text")) {
- content += "\n" + part["text"].get<std::string>();
- }
- }
- } else {
- throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
- }
- } else {
- throw std::runtime_error("Missing 'content' (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
- }
- chat.push_back({role, content, /* tool_calls= */ {}});
- }
- const auto formatted_chat = common_chat_apply_template(tmpl, chat, true, /* use_jinja= */ false);
- LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
- return formatted_chat;
- }
- //
- // base64 utils (TODO: move to common in the future)
- //
- static const std::string base64_chars =
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "abcdefghijklmnopqrstuvwxyz"
- "0123456789+/";
- static inline bool is_base64(uint8_t c) {
- return (isalnum(c) || (c == '+') || (c == '/'));
- }
- static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
- int i = 0;
- int j = 0;
- int in_ = 0;
- int in_len = encoded_string.size();
- uint8_t char_array_4[4];
- uint8_t char_array_3[3];
- std::vector<uint8_t> ret;
- while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
- char_array_4[i++] = encoded_string[in_]; in_++;
- if (i == 4) {
- for (i = 0; i < 4; i++) {
- char_array_4[i] = base64_chars.find(char_array_4[i]);
- }
- char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
- char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
- char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
- for (i = 0; (i < 3); i++) {
- ret.push_back(char_array_3[i]);
- }
- i = 0;
- }
- }
- if (i) {
- for (j = i; j < 4; j++) {
- char_array_4[j] = 0;
- }
- for (j = 0; j < 4; j++) {
- char_array_4[j] = base64_chars.find(char_array_4[j]);
- }
- char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
- char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
- char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
- for (j = 0; j < i - 1; j++) {
- ret.push_back(char_array_3[j]);
- }
- }
- return ret;
- }
- //
- // random string / id
- //
- static std::string random_string() {
- static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
- std::random_device rd;
- std::mt19937 generator(rd());
- std::string result(32, ' ');
- for (int i = 0; i < 32; ++i) {
- result[i] = str[generator() % str.size()];
- }
- return result;
- }
- static std::string gen_chatcmplid() {
- return "chatcmpl-" + random_string();
- }
- //
- // other common utils
- //
- static bool ends_with(const std::string & str, const std::string & suffix) {
- return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
- }
- static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
- if (!text.empty() && !stop.empty()) {
- const char text_last_char = text.back();
- for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
- if (stop[char_index] == text_last_char) {
- const std::string current_partial = stop.substr(0, char_index + 1);
- if (ends_with(text, current_partial)) {
- return text.size() - char_index - 1;
- }
- }
- }
- }
- return std::string::npos;
- }
- // TODO: reuse llama_detokenize
- template <class Iter>
- static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
- std::string ret;
- for (; begin != end; ++begin) {
- ret += common_token_to_piece(ctx, *begin);
- }
- return ret;
- }
- // format incomplete utf-8 multibyte character for output
- static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
- std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token);
- // if the size is 1 and first bit is 1, meaning it's a partial character
- // (size > 1 meaning it's already a known token)
- if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
- std::stringstream ss;
- ss << std::hex << (out[0] & 0xff);
- std::string res(ss.str());
- out = "byte: \\x" + res;
- }
- return out;
- }
- static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) {
- const std::string str =
- std::string(event) + ": " +
- data.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).
- LOG_DBG("data stream, to_send: %s", str.c_str());
- return sink.write(str.c_str(), str.size());
- }
- //
- // OAI utils
- //
- static json oaicompat_completion_params_parse(const json & body) {
- json llama_params;
- if (!body.contains("prompt")) {
- throw std::runtime_error("\"prompt\" is required");
- }
- // Handle "stop" field
- if (body.contains("stop") && body.at("stop").is_string()) {
- llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
- } else {
- llama_params["stop"] = json_value(body, "stop", json::array());
- }
- // Handle "n" field
- int n_choices = json_value(body, "n", 1);
- if (n_choices != 1) {
- throw std::runtime_error("Only one completion choice is allowed");
- }
- // Params supported by OAI but unsupported by llama.cpp
- static const std::vector<std::string> unsupported_params { "best_of", "echo", "suffix" };
- for (const auto & param : unsupported_params) {
- if (body.contains(param)) {
- throw std::runtime_error("Unsupported param: " + param);
- }
- }
- // Copy remaining properties to llama_params
- for (const auto & item : body.items()) {
- // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
- if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
- llama_params[item.key()] = item.value();
- }
- }
- return llama_params;
- }
- static json oaicompat_completion_params_parse(
- const json & body, /* openai api json semantics */
- bool use_jinja,
- common_reasoning_format reasoning_format,
- const common_chat_templates & chat_templates)
- {
- json llama_params;
- const auto & tmpl = body.contains("tools") && chat_templates.template_tool_use
- ? *chat_templates.template_tool_use
- : *chat_templates.template_default;
- auto tools = json_value(body, "tools", json());
- auto stream = json_value(body, "stream", false);
- if (tools.is_array() && !tools.empty()) {
- if (stream) {
- throw std::runtime_error("Cannot use tools with stream");
- }
- if (!use_jinja) {
- throw std::runtime_error("tools param requires --jinja flag");
- }
- }
- if (!use_jinja) {
- if (body.contains("tool_choice") && !body.at("tool_choice").is_null()) {
- throw std::runtime_error("Unsupported param: tool_choice");
- }
- }
- // Handle "stop" field
- if (body.contains("stop") && body.at("stop").is_string()) {
- llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
- } else {
- llama_params["stop"] = json_value(body, "stop", json::array());
- }
- // Handle "response_format" field
- if (body.contains("response_format")) {
- json response_format = json_value(body, "response_format", json::object());
- std::string response_type = json_value(response_format, "type", std::string());
- if (response_type == "json_object") {
- llama_params["json_schema"] = json_value(response_format, "schema", json::object());
- } else if (response_type == "json_schema") {
- json json_schema = json_value(response_format, "json_schema", json::object());
- llama_params["json_schema"] = json_value(json_schema, "schema", json::object());
- } else if (!response_type.empty() && response_type != "text") {
- throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
- }
- }
- // Apply chat template to the list of messages
- if (use_jinja) {
- auto tool_choice = json_value(body, "tool_choice", std::string("auto"));
- if (tool_choice != "none" && tool_choice != "auto" && tool_choice != "required") {
- throw std::runtime_error("Invalid tool_choice: " + tool_choice);
- }
- if (tool_choice != "none" && llama_params.contains("grammar")) {
- throw std::runtime_error("Cannot use custom grammar constraints with tools.");
- }
- common_chat_inputs inputs;
- inputs.extract_reasoning = reasoning_format != COMMON_REASONING_FORMAT_NONE;
- inputs.messages = body.at("messages");
- inputs.tools = tools;
- inputs.tool_choice = tool_choice;
- inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
- if (inputs.parallel_tool_calls && !tmpl.original_caps().supports_parallel_tool_calls) {
- LOG_DBG("Disabling parallel_tool_calls because the template does not support it\n");
- inputs.parallel_tool_calls = false;
- }
- inputs.stream = stream;
- // TODO: support mixing schema w/ tools beyond generic format.
- inputs.json_schema = json_value(llama_params, "json_schema", json());
- auto chat_params = common_chat_params_init(tmpl, inputs);
- llama_params["chat_format"] = static_cast<int>(chat_params.format);
- llama_params["prompt"] = chat_params.prompt;
- llama_params["grammar"] = chat_params.grammar;
- llama_params["grammar_lazy"] = chat_params.grammar_lazy;
- auto grammar_triggers = json::array();
- for (const auto & trigger : chat_params.grammar_triggers) {
- grammar_triggers.push_back({
- {"word", trigger.word},
- {"at_start", trigger.at_start},
- });
- }
- llama_params["grammar_triggers"] = grammar_triggers;
- llama_params["preserved_tokens"] = chat_params.preserved_tokens;
- for (const auto & stop : chat_params.additional_stops) {
- llama_params["stop"].push_back(stop);
- }
- } else {
- llama_params["prompt"] = format_chat(tmpl, body.at("messages"));
- }
- // Handle "n" field
- int n_choices = json_value(body, "n", 1);
- if (n_choices != 1) {
- throw std::runtime_error("Only one completion choice is allowed");
- }
- // Handle "logprobs" field
- // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
- if (json_value(body, "logprobs", false)) {
- llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
- } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
- throw std::runtime_error("top_logprobs requires logprobs to be set to true");
- }
- // Copy remaining properties to llama_params
- // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
- // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
- for (const auto & item : body.items()) {
- // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
- if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
- llama_params[item.key()] = item.value();
- }
- }
- return llama_params;
- }
- static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) {
- json data = json::array();
- int32_t n_tokens = 0;
- int i = 0;
- for (const auto & elem : embeddings) {
- json embedding_obj;
- if (use_base64) {
- const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>();
- const char* data_ptr = reinterpret_cast<const char*>(vec.data());
- size_t data_size = vec.size() * sizeof(float);
- embedding_obj = {
- {"embedding", base64::encode(data_ptr, data_size)},
- {"index", i++},
- {"object", "embedding"},
- {"encoding_format", "base64"}
- };
- } else {
- embedding_obj = {
- {"embedding", json_value(elem, "embedding", json::array())},
- {"index", i++},
- {"object", "embedding"}
- };
- }
- data.push_back(embedding_obj);
- n_tokens += json_value(elem, "tokens_evaluated", 0);
- }
- json res = json {
- {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
- {"object", "list"},
- {"usage", json {
- {"prompt_tokens", n_tokens},
- {"total_tokens", n_tokens}
- }},
- {"data", data}
- };
- return res;
- }
- static json format_response_rerank(
- const json & request,
- const json & ranks,
- bool is_tei_format,
- std::vector<std::string> & texts) {
- json res;
- if (is_tei_format) {
- // TEI response format
- res = json::array();
- bool return_text = json_value(request, "return_text", false);
- for (const auto & rank : ranks) {
- int index = json_value(rank, "index", 0);
- json elem = json{
- {"index", index},
- {"score", json_value(rank, "score", 0.0)},
- };
- if (return_text) {
- elem["text"] = std::move(texts[index]);
- }
- res.push_back(elem);
- }
- } else {
- // Jina response format
- json results = json::array();
- int32_t n_tokens = 0;
- for (const auto & rank : ranks) {
- results.push_back(json{
- {"index", json_value(rank, "index", 0)},
- {"relevance_score", json_value(rank, "score", 0.0)},
- });
- n_tokens += json_value(rank, "tokens_evaluated", 0);
- }
- res = json{
- {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
- {"object", "list"},
- {"usage", json{
- {"prompt_tokens", n_tokens},
- {"total_tokens", n_tokens}
- }},
- {"results", results}
- };
- }
- return res;
- }
- static bool is_valid_utf8(const std::string & str) {
- const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
- const unsigned char* end = bytes + str.length();
- while (bytes < end) {
- if (*bytes <= 0x7F) {
- // 1-byte sequence (0xxxxxxx)
- bytes++;
- } else if ((*bytes & 0xE0) == 0xC0) {
- // 2-byte sequence (110xxxxx 10xxxxxx)
- if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
- return false;
- bytes += 2;
- } else if ((*bytes & 0xF0) == 0xE0) {
- // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
- if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
- return false;
- bytes += 3;
- } else if ((*bytes & 0xF8) == 0xF0) {
- // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
- if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
- (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
- return false;
- bytes += 4;
- } else {
- // Invalid UTF-8 lead byte
- return false;
- }
- }
- return true;
- }
- static json format_tokenizer_response(const json & tokens) {
- return json {
- {"tokens", tokens}
- };
- }
- static json format_detokenized_response(const std::string & content) {
- return json {
- {"content", content}
- };
- }
- static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) {
- json data = json::array();
- for (const auto & lb : logit_bias) {
- data.push_back(json{
- {"bias", lb.bias},
- {"token", lb.token},
- });
- }
- return data;
- }
- static std::string safe_json_to_str(const json & data) {
- return data.dump(-1, ' ', false, json::error_handler_t::replace);
- }
- static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
- std::vector<llama_token_data> cur;
- const auto * logits = llama_get_logits_ith(ctx, idx);
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const int n_vocab = llama_vocab_n_tokens(vocab);
- cur.resize(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
- }
- // sort tokens by logits
- std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- // apply softmax
- float max_l = cur[0].logit;
- float cum_sum = 0.0f;
- for (size_t i = 0; i < cur.size(); ++i) {
- float p = expf(cur[i].logit - max_l);
- cur[i].p = p;
- cum_sum += p;
- }
- for (size_t i = 0; i < cur.size(); ++i) {
- cur[i].p /= cum_sum;
- }
- return cur;
- }
- static bool are_lora_equal(
- const std::vector<common_adapter_lora_info> & l1,
- const std::vector<common_adapter_lora_info> & l2) {
- if (l1.size() != l2.size()) {
- return false;
- }
- for (size_t i = 0; i < l1.size(); ++i) {
- // we don't check lora.path to reduce the time complexity
- if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) {
- return false;
- }
- }
- return true;
- }
- // parse lora config from JSON request, returned a copy of lora_base with updated scale
- static std::vector<common_adapter_lora_info> parse_lora_request(
- const std::vector<common_adapter_lora_info> & lora_base,
- const json & data) {
- std::vector<common_adapter_lora_info> lora(lora_base);
- int max_idx = lora.size();
- // clear existing value
- for (auto & entry : lora) {
- entry.scale = 0.0f;
- }
- // set value
- for (const auto & entry : data) {
- int id = json_value(entry, "id", -1);
- float scale = json_value(entry, "scale", 0.0f);
- if (0 <= id && id < max_idx) {
- lora[id].scale = scale;
- } else {
- throw std::runtime_error("invalid adapter id");
- }
- }
- return lora;
- }
|