server.cpp 176 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. struct slot_params {
  79. bool stream = true;
  80. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  81. bool return_tokens = false;
  82. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  83. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  84. int32_t n_predict = -1; // new tokens to predict
  85. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  86. int64_t t_max_prompt_ms = -1; // TODO: implement
  87. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  88. std::vector<common_adapter_lora_info> lora;
  89. std::vector<std::string> antiprompt;
  90. std::vector<std::string> response_fields;
  91. bool timings_per_token = false;
  92. bool post_sampling_probs = false;
  93. bool ignore_eos = false;
  94. struct common_params_sampling sampling;
  95. struct common_params_speculative speculative;
  96. // OAI-compat fields
  97. bool verbose = false;
  98. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  99. std::string oaicompat_model;
  100. std::string oaicompat_cmpl_id;
  101. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  102. json to_json() const {
  103. std::vector<std::string> samplers;
  104. samplers.reserve(sampling.samplers.size());
  105. for (const auto & sampler : sampling.samplers) {
  106. samplers.emplace_back(common_sampler_type_to_str(sampler));
  107. }
  108. json lora = json::array();
  109. for (size_t i = 0; i < this->lora.size(); ++i) {
  110. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  111. }
  112. std::vector<std::string> grammar_trigger_words;
  113. for (const auto & trigger : sampling.grammar_trigger_words) {
  114. grammar_trigger_words.push_back(trigger.word);
  115. }
  116. return json {
  117. {"n_predict", n_predict}, // Server configured n_predict
  118. {"seed", sampling.seed},
  119. {"temperature", sampling.temp},
  120. {"dynatemp_range", sampling.dynatemp_range},
  121. {"dynatemp_exponent", sampling.dynatemp_exponent},
  122. {"top_k", sampling.top_k},
  123. {"top_p", sampling.top_p},
  124. {"min_p", sampling.min_p},
  125. {"xtc_probability", sampling.xtc_probability},
  126. {"xtc_threshold", sampling.xtc_threshold},
  127. {"typical_p", sampling.typ_p},
  128. {"repeat_last_n", sampling.penalty_last_n},
  129. {"repeat_penalty", sampling.penalty_repeat},
  130. {"presence_penalty", sampling.penalty_present},
  131. {"frequency_penalty", sampling.penalty_freq},
  132. {"dry_multiplier", sampling.dry_multiplier},
  133. {"dry_base", sampling.dry_base},
  134. {"dry_allowed_length", sampling.dry_allowed_length},
  135. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  136. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  137. {"mirostat", sampling.mirostat},
  138. {"mirostat_tau", sampling.mirostat_tau},
  139. {"mirostat_eta", sampling.mirostat_eta},
  140. {"stop", antiprompt},
  141. {"max_tokens", n_predict}, // User configured n_predict
  142. {"n_keep", n_keep},
  143. {"n_discard", n_discard},
  144. {"ignore_eos", sampling.ignore_eos},
  145. {"stream", stream},
  146. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  147. {"n_probs", sampling.n_probs},
  148. {"min_keep", sampling.min_keep},
  149. {"grammar", sampling.grammar},
  150. {"grammar_trigger_words", grammar_trigger_words},
  151. {"grammar_trigger_tokens", sampling.grammar_trigger_tokens},
  152. {"preserved_tokens", sampling.preserved_tokens},
  153. {"chat_format", common_chat_format_name(oaicompat_chat_format)},
  154. {"samplers", samplers},
  155. {"speculative.n_max", speculative.n_max},
  156. {"speculative.n_min", speculative.n_min},
  157. {"speculative.p_min", speculative.p_min},
  158. {"timings_per_token", timings_per_token},
  159. {"post_sampling_probs", post_sampling_probs},
  160. {"lora", lora},
  161. };
  162. }
  163. };
  164. struct server_task {
  165. int id = -1; // to be filled by server_queue
  166. int index = -1; // used when there are multiple prompts (batch request)
  167. server_task_type type;
  168. // used by SERVER_TASK_TYPE_CANCEL
  169. int id_target = -1;
  170. // used by SERVER_TASK_TYPE_INFERENCE
  171. slot_params params;
  172. llama_tokens prompt_tokens;
  173. int id_selected_slot = -1;
  174. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  175. struct slot_action {
  176. int slot_id;
  177. std::string filename;
  178. std::string filepath;
  179. };
  180. slot_action slot_action;
  181. // used by SERVER_TASK_TYPE_METRICS
  182. bool metrics_reset_bucket = false;
  183. // used by SERVER_TASK_TYPE_SET_LORA
  184. std::vector<common_adapter_lora_info> set_lora;
  185. server_task(server_task_type type) : type(type) {}
  186. static slot_params params_from_json_cmpl(
  187. const llama_context * ctx,
  188. const common_params & params_base,
  189. const json & data) {
  190. const llama_model * model = llama_get_model(ctx);
  191. const llama_vocab * vocab = llama_model_get_vocab(model);
  192. slot_params params;
  193. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  194. slot_params defaults;
  195. defaults.sampling = params_base.sampling;
  196. defaults.speculative = params_base.speculative;
  197. // enabling this will output extra debug information in the HTTP responses from the server
  198. params.verbose = params_base.verbosity > 9;
  199. params.timings_per_token = json_value(data, "timings_per_token", false);
  200. params.stream = json_value(data, "stream", false);
  201. params.cache_prompt = json_value(data, "cache_prompt", true);
  202. params.return_tokens = json_value(data, "return_tokens", false);
  203. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  204. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  205. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  206. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  207. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  208. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  209. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  210. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  211. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  212. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  213. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  214. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  215. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  216. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  217. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  218. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  219. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  220. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  221. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  222. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  223. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  224. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  225. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  226. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  227. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  228. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  229. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  230. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  231. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  232. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  233. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  234. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  235. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  236. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  237. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  238. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  239. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  240. // Use OpenAI API logprobs only if n_probs wasn't provided
  241. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  242. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  243. }
  244. if (data.contains("lora")) {
  245. if (data.at("lora").is_array()) {
  246. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  247. } else {
  248. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  249. }
  250. } else {
  251. params.lora = params_base.lora_adapters;
  252. }
  253. // TODO: add more sanity checks for the input parameters
  254. if (params.sampling.penalty_last_n < -1) {
  255. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  256. }
  257. if (params.sampling.dry_penalty_last_n < -1) {
  258. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  259. }
  260. if (params.sampling.penalty_last_n == -1) {
  261. // note: should be the slot's context and not the full context, but it's ok
  262. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  263. }
  264. if (params.sampling.dry_penalty_last_n == -1) {
  265. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  266. }
  267. if (params.sampling.dry_base < 1.0f) {
  268. params.sampling.dry_base = defaults.sampling.dry_base;
  269. }
  270. // sequence breakers for DRY
  271. {
  272. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  273. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  274. if (data.contains("dry_sequence_breakers")) {
  275. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  276. if (params.sampling.dry_sequence_breakers.empty()) {
  277. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  278. }
  279. }
  280. }
  281. // process "json_schema" and "grammar"
  282. if (data.contains("json_schema") && !data.contains("grammar")) {
  283. try {
  284. auto schema = json_value(data, "json_schema", json::object());
  285. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  286. params.sampling.grammar = json_schema_to_grammar(schema);
  287. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  288. } catch (const std::exception & e) {
  289. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  290. }
  291. } else {
  292. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  293. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  294. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  295. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  296. }
  297. {
  298. auto it = data.find("chat_format");
  299. if (it != data.end()) {
  300. params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
  301. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
  302. } else {
  303. params.oaicompat_chat_format = defaults.oaicompat_chat_format;
  304. }
  305. }
  306. {
  307. const auto grammar_triggers = data.find("grammar_triggers");
  308. if (grammar_triggers != data.end()) {
  309. for (const auto & t : *grammar_triggers) {
  310. common_grammar_trigger trigger;
  311. trigger.word = t.at("word");
  312. trigger.at_start = t.at("at_start");
  313. auto ids = common_tokenize(vocab, trigger.word, /* add_special= */ false, /* parse_special= */ true);
  314. if (ids.size() == 1) {
  315. SRV_DBG("Grammar trigger token: %d (`%s`)\n", ids[0], trigger.word.c_str());
  316. params.sampling.grammar_trigger_tokens.push_back(ids[0]);
  317. params.sampling.preserved_tokens.insert(ids[0]);
  318. continue;
  319. }
  320. SRV_DBG("Grammar trigger word: `%s`\n", trigger.word.c_str());
  321. params.sampling.grammar_trigger_words.push_back(trigger);
  322. }
  323. }
  324. const auto preserved_tokens = data.find("preserved_tokens");
  325. if (preserved_tokens != data.end()) {
  326. for (const auto & t : *preserved_tokens) {
  327. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  328. if (ids.size() == 1) {
  329. SRV_DBG("Preserved token: %d\n", ids[0]);
  330. params.sampling.preserved_tokens.insert(ids[0]);
  331. } else {
  332. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  333. SRV_WRN("Not preserved because more than 1 token (wrong chat template override?): %s\n", t.get<std::string>().c_str());
  334. }
  335. }
  336. }
  337. if (params.sampling.grammar_lazy) {
  338. GGML_ASSERT(params.sampling.grammar_trigger_tokens.size() > 0 || params.sampling.grammar_trigger_words.size() > 0);
  339. }
  340. }
  341. {
  342. params.sampling.logit_bias.clear();
  343. params.ignore_eos = json_value(data, "ignore_eos", false);
  344. const auto & logit_bias = data.find("logit_bias");
  345. if (logit_bias != data.end() && logit_bias->is_array()) {
  346. const int n_vocab = llama_vocab_n_tokens(vocab);
  347. for (const auto & el : *logit_bias) {
  348. // TODO: we may want to throw errors here, in case "el" is incorrect
  349. if (el.is_array() && el.size() == 2) {
  350. float bias;
  351. if (el[1].is_number()) {
  352. bias = el[1].get<float>();
  353. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  354. bias = -INFINITY;
  355. } else {
  356. continue;
  357. }
  358. if (el[0].is_number_integer()) {
  359. llama_token tok = el[0].get<llama_token>();
  360. if (tok >= 0 && tok < n_vocab) {
  361. params.sampling.logit_bias.push_back({tok, bias});
  362. }
  363. } else if (el[0].is_string()) {
  364. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  365. for (auto tok : toks) {
  366. params.sampling.logit_bias.push_back({tok, bias});
  367. }
  368. }
  369. }
  370. }
  371. }
  372. }
  373. {
  374. params.antiprompt.clear();
  375. const auto & stop = data.find("stop");
  376. if (stop != data.end() && stop->is_array()) {
  377. for (const auto & word : *stop) {
  378. if (!word.empty()) {
  379. params.antiprompt.push_back(word);
  380. }
  381. }
  382. }
  383. }
  384. {
  385. const auto samplers = data.find("samplers");
  386. if (samplers != data.end()) {
  387. if (samplers->is_array()) {
  388. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  389. } else if (samplers->is_string()){
  390. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  391. }
  392. } else {
  393. params.sampling.samplers = defaults.sampling.samplers;
  394. }
  395. }
  396. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  397. params.oaicompat_model = json_value(data, "model", model_name);
  398. return params;
  399. }
  400. // utility function
  401. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  402. std::unordered_set<int> ids(tasks.size());
  403. for (size_t i = 0; i < tasks.size(); i++) {
  404. ids.insert(tasks[i].id);
  405. }
  406. return ids;
  407. }
  408. };
  409. struct result_timings {
  410. int32_t prompt_n = -1;
  411. double prompt_ms;
  412. double prompt_per_token_ms;
  413. double prompt_per_second;
  414. int32_t predicted_n = -1;
  415. double predicted_ms;
  416. double predicted_per_token_ms;
  417. double predicted_per_second;
  418. json to_json() const {
  419. return {
  420. {"prompt_n", prompt_n},
  421. {"prompt_ms", prompt_ms},
  422. {"prompt_per_token_ms", prompt_per_token_ms},
  423. {"prompt_per_second", prompt_per_second},
  424. {"predicted_n", predicted_n},
  425. {"predicted_ms", predicted_ms},
  426. {"predicted_per_token_ms", predicted_per_token_ms},
  427. {"predicted_per_second", predicted_per_second},
  428. };
  429. }
  430. };
  431. struct server_task_result {
  432. int id = -1;
  433. int id_slot = -1;
  434. virtual bool is_error() {
  435. // only used by server_task_result_error
  436. return false;
  437. }
  438. virtual bool is_stop() {
  439. // only used by server_task_result_cmpl_*
  440. return false;
  441. }
  442. virtual int get_index() {
  443. return -1;
  444. }
  445. virtual json to_json() = 0;
  446. virtual ~server_task_result() = default;
  447. };
  448. // using shared_ptr for polymorphism of server_task_result
  449. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  450. inline std::string stop_type_to_str(stop_type type) {
  451. switch (type) {
  452. case STOP_TYPE_EOS: return "eos";
  453. case STOP_TYPE_WORD: return "word";
  454. case STOP_TYPE_LIMIT: return "limit";
  455. default: return "none";
  456. }
  457. }
  458. struct completion_token_output {
  459. llama_token tok;
  460. float prob;
  461. std::string text_to_send;
  462. struct prob_info {
  463. llama_token tok;
  464. std::string txt;
  465. float prob;
  466. };
  467. std::vector<prob_info> probs;
  468. json to_json(bool post_sampling_probs) const {
  469. json probs_for_token = json::array();
  470. for (const auto & p : probs) {
  471. std::string txt(p.txt);
  472. txt.resize(validate_utf8(txt));
  473. probs_for_token.push_back(json {
  474. {"id", p.tok},
  475. {"token", txt},
  476. {"bytes", str_to_bytes(p.txt)},
  477. {
  478. post_sampling_probs ? "prob" : "logprob",
  479. post_sampling_probs ? p.prob : logarithm(p.prob)
  480. },
  481. });
  482. }
  483. return probs_for_token;
  484. }
  485. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  486. json out = json::array();
  487. for (const auto & p : probs) {
  488. std::string txt(p.text_to_send);
  489. txt.resize(validate_utf8(txt));
  490. out.push_back(json {
  491. {"id", p.tok},
  492. {"token", txt},
  493. {"bytes", str_to_bytes(p.text_to_send)},
  494. {
  495. post_sampling_probs ? "prob" : "logprob",
  496. post_sampling_probs ? p.prob : logarithm(p.prob)
  497. },
  498. {
  499. post_sampling_probs ? "top_probs" : "top_logprobs",
  500. p.to_json(post_sampling_probs)
  501. },
  502. });
  503. }
  504. return out;
  505. }
  506. static float logarithm(float x) {
  507. // nlohmann::json converts -inf to null, so we need to prevent that
  508. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  509. }
  510. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  511. std::vector<unsigned char> bytes;
  512. for (unsigned char c : str) {
  513. bytes.push_back(c);
  514. }
  515. return bytes;
  516. }
  517. };
  518. struct server_task_result_cmpl_final : server_task_result {
  519. int index = 0;
  520. std::string content;
  521. llama_tokens tokens;
  522. bool stream;
  523. result_timings timings;
  524. std::string prompt;
  525. bool truncated;
  526. int32_t n_decoded;
  527. int32_t n_prompt_tokens;
  528. int32_t n_tokens_cached;
  529. bool has_new_line;
  530. std::string stopping_word;
  531. stop_type stop = STOP_TYPE_NONE;
  532. bool post_sampling_probs;
  533. std::vector<completion_token_output> probs_output;
  534. std::vector<std::string> response_fields;
  535. slot_params generation_params;
  536. // OAI-compat fields
  537. bool verbose = false;
  538. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  539. std::string oaicompat_model;
  540. std::string oaicompat_cmpl_id;
  541. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  542. virtual int get_index() override {
  543. return index;
  544. }
  545. virtual bool is_stop() override {
  546. return true; // in stream mode, final responses are considered stop
  547. }
  548. virtual json to_json() override {
  549. switch (oaicompat) {
  550. case OAICOMPAT_TYPE_NONE:
  551. return to_json_non_oaicompat();
  552. case OAICOMPAT_TYPE_COMPLETION:
  553. return to_json_oaicompat();
  554. case OAICOMPAT_TYPE_CHAT:
  555. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  556. default:
  557. GGML_ASSERT(false && "Invalid oaicompat_type");
  558. }
  559. }
  560. json to_json_non_oaicompat() {
  561. json res = json {
  562. {"index", index},
  563. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  564. {"tokens", stream ? llama_tokens {} : tokens},
  565. {"id_slot", id_slot},
  566. {"stop", true},
  567. {"model", oaicompat_model},
  568. {"tokens_predicted", n_decoded},
  569. {"tokens_evaluated", n_prompt_tokens},
  570. {"generation_settings", generation_params.to_json()},
  571. {"prompt", prompt},
  572. {"has_new_line", has_new_line},
  573. {"truncated", truncated},
  574. {"stop_type", stop_type_to_str(stop)},
  575. {"stopping_word", stopping_word},
  576. {"tokens_cached", n_tokens_cached},
  577. {"timings", timings.to_json()},
  578. };
  579. if (!stream && !probs_output.empty()) {
  580. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  581. }
  582. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  583. }
  584. json to_json_oaicompat() {
  585. std::time_t t = std::time(0);
  586. json logprobs = json(nullptr); // OAI default to null
  587. if (!stream && probs_output.size() > 0) {
  588. logprobs = json{
  589. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  590. };
  591. }
  592. json finish_reason = "length";
  593. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  594. finish_reason = "stop";
  595. }
  596. json res = json {
  597. {"choices", json::array({
  598. json{
  599. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  600. {"index", index},
  601. {"logprobs", logprobs},
  602. {"finish_reason", finish_reason},
  603. }
  604. })},
  605. {"created", t},
  606. {"model", oaicompat_model},
  607. {"system_fingerprint", build_info},
  608. {"object", "text_completion"},
  609. {"usage", json {
  610. {"completion_tokens", n_decoded},
  611. {"prompt_tokens", n_prompt_tokens},
  612. {"total_tokens", n_decoded + n_prompt_tokens}
  613. }},
  614. {"id", oaicompat_cmpl_id}
  615. };
  616. // extra fields for debugging purposes
  617. if (verbose) {
  618. res["__verbose"] = to_json_non_oaicompat();
  619. }
  620. if (timings.prompt_n >= 0) {
  621. res.push_back({"timings", timings.to_json()});
  622. }
  623. return res;
  624. }
  625. json to_json_oaicompat_chat() {
  626. std::string finish_reason = "length";
  627. common_chat_msg msg;
  628. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  629. SRV_DBG("Parsing chat message: %s\n", content.c_str());
  630. msg = common_chat_parse(content, oaicompat_chat_format);
  631. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  632. } else {
  633. msg.content = content;
  634. }
  635. json message {
  636. {"role", "assistant"},
  637. };
  638. if (!msg.reasoning_content.empty()) {
  639. message["reasoning_content"] = msg.reasoning_content;
  640. }
  641. if (msg.content.empty() && !msg.tool_calls.empty()) {
  642. message["content"] = json();
  643. } else {
  644. message["content"] = msg.content;
  645. }
  646. if (!msg.tool_calls.empty()) {
  647. auto tool_calls = json::array();
  648. for (const auto & tc : msg.tool_calls) {
  649. tool_calls.push_back({
  650. {"type", "function"},
  651. {"function", {
  652. {"name", tc.name},
  653. {"arguments", tc.arguments},
  654. }},
  655. {"id", tc.id},
  656. });
  657. }
  658. message["tool_calls"] = tool_calls;
  659. }
  660. json choice {
  661. {"finish_reason", finish_reason},
  662. {"index", 0},
  663. {"message", message},
  664. };
  665. if (!stream && probs_output.size() > 0) {
  666. choice["logprobs"] = json{
  667. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  668. };
  669. }
  670. std::time_t t = std::time(0);
  671. json res = json {
  672. {"choices", json::array({choice})},
  673. {"created", t},
  674. {"model", oaicompat_model},
  675. {"system_fingerprint", build_info},
  676. {"object", "chat.completion"},
  677. {"usage", json {
  678. {"completion_tokens", n_decoded},
  679. {"prompt_tokens", n_prompt_tokens},
  680. {"total_tokens", n_decoded + n_prompt_tokens}
  681. }},
  682. {"id", oaicompat_cmpl_id}
  683. };
  684. // extra fields for debugging purposes
  685. if (verbose) {
  686. res["__verbose"] = to_json_non_oaicompat();
  687. }
  688. if (timings.prompt_n >= 0) {
  689. res.push_back({"timings", timings.to_json()});
  690. }
  691. return res;
  692. }
  693. json to_json_oaicompat_chat_stream() {
  694. std::time_t t = std::time(0);
  695. std::string finish_reason = "length";
  696. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  697. finish_reason = "stop";
  698. }
  699. json choice = json {
  700. {"finish_reason", finish_reason},
  701. {"index", 0},
  702. {"delta", json::object()}
  703. };
  704. json ret = json {
  705. {"choices", json::array({choice})},
  706. {"created", t},
  707. {"id", oaicompat_cmpl_id},
  708. {"model", oaicompat_model},
  709. {"system_fingerprint", build_info},
  710. {"object", "chat.completion.chunk"},
  711. {"usage", json {
  712. {"completion_tokens", n_decoded},
  713. {"prompt_tokens", n_prompt_tokens},
  714. {"total_tokens", n_decoded + n_prompt_tokens},
  715. }},
  716. };
  717. if (timings.prompt_n >= 0) {
  718. ret.push_back({"timings", timings.to_json()});
  719. }
  720. return ret;
  721. }
  722. };
  723. struct server_task_result_cmpl_partial : server_task_result {
  724. int index = 0;
  725. std::string content;
  726. llama_tokens tokens;
  727. int32_t n_decoded;
  728. int32_t n_prompt_tokens;
  729. bool post_sampling_probs;
  730. completion_token_output prob_output;
  731. result_timings timings;
  732. // OAI-compat fields
  733. bool verbose = false;
  734. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  735. std::string oaicompat_model;
  736. std::string oaicompat_cmpl_id;
  737. virtual int get_index() override {
  738. return index;
  739. }
  740. virtual bool is_stop() override {
  741. return false; // in stream mode, partial responses are not considered stop
  742. }
  743. virtual json to_json() override {
  744. switch (oaicompat) {
  745. case OAICOMPAT_TYPE_NONE:
  746. return to_json_non_oaicompat();
  747. case OAICOMPAT_TYPE_COMPLETION:
  748. return to_json_oaicompat();
  749. case OAICOMPAT_TYPE_CHAT:
  750. return to_json_oaicompat_chat();
  751. default:
  752. GGML_ASSERT(false && "Invalid oaicompat_type");
  753. }
  754. }
  755. json to_json_non_oaicompat() {
  756. // non-OAI-compat JSON
  757. json res = json {
  758. {"index", index},
  759. {"content", content},
  760. {"tokens", tokens},
  761. {"stop", false},
  762. {"id_slot", id_slot},
  763. {"tokens_predicted", n_decoded},
  764. {"tokens_evaluated", n_prompt_tokens},
  765. };
  766. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  767. if (timings.prompt_n > 0) {
  768. res.push_back({"timings", timings.to_json()});
  769. }
  770. if (!prob_output.probs.empty()) {
  771. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  772. }
  773. return res;
  774. }
  775. json to_json_oaicompat() {
  776. std::time_t t = std::time(0);
  777. json logprobs = json(nullptr); // OAI default to null
  778. if (prob_output.probs.size() > 0) {
  779. logprobs = json{
  780. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  781. };
  782. }
  783. json res = json {
  784. {"choices", json::array({
  785. json{
  786. {"text", content},
  787. {"index", index},
  788. {"logprobs", logprobs},
  789. {"finish_reason", nullptr},
  790. }
  791. })},
  792. {"created", t},
  793. {"model", oaicompat_model},
  794. {"system_fingerprint", build_info},
  795. {"object", "text_completion"},
  796. {"id", oaicompat_cmpl_id}
  797. };
  798. // extra fields for debugging purposes
  799. if (verbose) {
  800. res["__verbose"] = to_json_non_oaicompat();
  801. }
  802. if (timings.prompt_n >= 0) {
  803. res.push_back({"timings", timings.to_json()});
  804. }
  805. return res;
  806. }
  807. json to_json_oaicompat_chat() {
  808. bool first = n_decoded == 0;
  809. std::time_t t = std::time(0);
  810. json choices;
  811. if (first) {
  812. if (content.empty()) {
  813. choices = json::array({json{{"finish_reason", nullptr},
  814. {"index", 0},
  815. {"delta", json{{"role", "assistant"}}}}});
  816. } else {
  817. // We have to send this as two updates to conform to openai behavior
  818. json initial_ret = json{{"choices", json::array({json{
  819. {"finish_reason", nullptr},
  820. {"index", 0},
  821. {"delta", json{
  822. {"role", "assistant"}
  823. }}}})},
  824. {"created", t},
  825. {"id", oaicompat_cmpl_id},
  826. {"model", oaicompat_model},
  827. {"object", "chat.completion.chunk"}};
  828. json second_ret = json{
  829. {"choices", json::array({json{{"finish_reason", nullptr},
  830. {"index", 0},
  831. {"delta", json {
  832. {"content", content}}}
  833. }})},
  834. {"created", t},
  835. {"id", oaicompat_cmpl_id},
  836. {"model", oaicompat_model},
  837. {"object", "chat.completion.chunk"}};
  838. return std::vector<json>({initial_ret, second_ret});
  839. }
  840. } else {
  841. choices = json::array({json{
  842. {"finish_reason", nullptr},
  843. {"index", 0},
  844. {"delta",
  845. json {
  846. {"content", content},
  847. }},
  848. }});
  849. }
  850. GGML_ASSERT(choices.size() >= 1);
  851. if (prob_output.probs.size() > 0) {
  852. choices[0]["logprobs"] = json{
  853. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  854. };
  855. }
  856. json ret = json {
  857. {"choices", choices},
  858. {"created", t},
  859. {"id", oaicompat_cmpl_id},
  860. {"model", oaicompat_model},
  861. {"system_fingerprint", build_info},
  862. {"object", "chat.completion.chunk"}
  863. };
  864. if (timings.prompt_n >= 0) {
  865. ret.push_back({"timings", timings.to_json()});
  866. }
  867. return std::vector<json>({ret});
  868. }
  869. };
  870. struct server_task_result_embd : server_task_result {
  871. int index = 0;
  872. std::vector<std::vector<float>> embedding;
  873. int32_t n_tokens;
  874. // OAI-compat fields
  875. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  876. virtual int get_index() override {
  877. return index;
  878. }
  879. virtual json to_json() override {
  880. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  881. ? to_json_oaicompat()
  882. : to_json_non_oaicompat();
  883. }
  884. json to_json_non_oaicompat() {
  885. return json {
  886. {"index", index},
  887. {"embedding", embedding},
  888. };
  889. }
  890. json to_json_oaicompat() {
  891. return json {
  892. {"index", index},
  893. {"embedding", embedding[0]},
  894. {"tokens_evaluated", n_tokens},
  895. };
  896. }
  897. };
  898. struct server_task_result_rerank : server_task_result {
  899. int index = 0;
  900. float score = -1e6;
  901. int32_t n_tokens;
  902. virtual int get_index() override {
  903. return index;
  904. }
  905. virtual json to_json() override {
  906. return json {
  907. {"index", index},
  908. {"score", score},
  909. {"tokens_evaluated", n_tokens},
  910. };
  911. }
  912. };
  913. // this function maybe used outside of server_task_result_error
  914. static json format_error_response(const std::string & message, const enum error_type type) {
  915. std::string type_str;
  916. int code = 500;
  917. switch (type) {
  918. case ERROR_TYPE_INVALID_REQUEST:
  919. type_str = "invalid_request_error";
  920. code = 400;
  921. break;
  922. case ERROR_TYPE_AUTHENTICATION:
  923. type_str = "authentication_error";
  924. code = 401;
  925. break;
  926. case ERROR_TYPE_NOT_FOUND:
  927. type_str = "not_found_error";
  928. code = 404;
  929. break;
  930. case ERROR_TYPE_SERVER:
  931. type_str = "server_error";
  932. code = 500;
  933. break;
  934. case ERROR_TYPE_PERMISSION:
  935. type_str = "permission_error";
  936. code = 403;
  937. break;
  938. case ERROR_TYPE_NOT_SUPPORTED:
  939. type_str = "not_supported_error";
  940. code = 501;
  941. break;
  942. case ERROR_TYPE_UNAVAILABLE:
  943. type_str = "unavailable_error";
  944. code = 503;
  945. break;
  946. }
  947. return json {
  948. {"code", code},
  949. {"message", message},
  950. {"type", type_str},
  951. };
  952. }
  953. struct server_task_result_error : server_task_result {
  954. int index = 0;
  955. error_type err_type = ERROR_TYPE_SERVER;
  956. std::string err_msg;
  957. virtual bool is_error() override {
  958. return true;
  959. }
  960. virtual json to_json() override {
  961. return format_error_response(err_msg, err_type);
  962. }
  963. };
  964. struct server_task_result_metrics : server_task_result {
  965. int n_idle_slots;
  966. int n_processing_slots;
  967. int n_tasks_deferred;
  968. int64_t t_start;
  969. int32_t kv_cache_tokens_count;
  970. int32_t kv_cache_used_cells;
  971. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  972. uint64_t n_prompt_tokens_processed_total = 0;
  973. uint64_t t_prompt_processing_total = 0;
  974. uint64_t n_tokens_predicted_total = 0;
  975. uint64_t t_tokens_generation_total = 0;
  976. uint64_t n_prompt_tokens_processed = 0;
  977. uint64_t t_prompt_processing = 0;
  978. uint64_t n_tokens_predicted = 0;
  979. uint64_t t_tokens_generation = 0;
  980. uint64_t n_decode_total = 0;
  981. uint64_t n_busy_slots_total = 0;
  982. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  983. // therefore, we use json to temporarily store the slot.to_json() result
  984. json slots_data = json::array();
  985. virtual json to_json() override {
  986. return json {
  987. { "idle", n_idle_slots },
  988. { "processing", n_processing_slots },
  989. { "deferred", n_tasks_deferred },
  990. { "t_start", t_start },
  991. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  992. { "t_tokens_generation_total", t_tokens_generation_total },
  993. { "n_tokens_predicted_total", n_tokens_predicted_total },
  994. { "t_prompt_processing_total", t_prompt_processing_total },
  995. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  996. { "t_prompt_processing", t_prompt_processing },
  997. { "n_tokens_predicted", n_tokens_predicted },
  998. { "t_tokens_generation", t_tokens_generation },
  999. { "n_decode_total", n_decode_total },
  1000. { "n_busy_slots_total", n_busy_slots_total },
  1001. { "kv_cache_tokens_count", kv_cache_tokens_count },
  1002. { "kv_cache_used_cells", kv_cache_used_cells },
  1003. { "slots", slots_data },
  1004. };
  1005. }
  1006. };
  1007. struct server_task_result_slot_save_load : server_task_result {
  1008. std::string filename;
  1009. bool is_save; // true = save, false = load
  1010. size_t n_tokens;
  1011. size_t n_bytes;
  1012. double t_ms;
  1013. virtual json to_json() override {
  1014. if (is_save) {
  1015. return json {
  1016. { "id_slot", id_slot },
  1017. { "filename", filename },
  1018. { "n_saved", n_tokens },
  1019. { "n_written", n_bytes },
  1020. { "timings", {
  1021. { "save_ms", t_ms }
  1022. }},
  1023. };
  1024. } else {
  1025. return json {
  1026. { "id_slot", id_slot },
  1027. { "filename", filename },
  1028. { "n_restored", n_tokens },
  1029. { "n_read", n_bytes },
  1030. { "timings", {
  1031. { "restore_ms", t_ms }
  1032. }},
  1033. };
  1034. }
  1035. }
  1036. };
  1037. struct server_task_result_slot_erase : server_task_result {
  1038. size_t n_erased;
  1039. virtual json to_json() override {
  1040. return json {
  1041. { "id_slot", id_slot },
  1042. { "n_erased", n_erased },
  1043. };
  1044. }
  1045. };
  1046. struct server_task_result_apply_lora : server_task_result {
  1047. virtual json to_json() override {
  1048. return json {{ "success", true }};
  1049. }
  1050. };
  1051. struct server_slot {
  1052. int id;
  1053. int id_task = -1;
  1054. // only used for completion/embedding/infill/rerank
  1055. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1056. llama_batch batch_spec = {};
  1057. llama_context * ctx = nullptr;
  1058. llama_context * ctx_dft = nullptr;
  1059. common_speculative * spec = nullptr;
  1060. std::vector<common_adapter_lora_info> lora;
  1061. // the index relative to completion multi-task request
  1062. size_t index = 0;
  1063. struct slot_params params;
  1064. slot_state state = SLOT_STATE_IDLE;
  1065. // used to determine the slot that has been used the longest
  1066. int64_t t_last_used = -1;
  1067. // generation props
  1068. int32_t n_ctx = 0; // context size per slot
  1069. int32_t n_past = 0;
  1070. int32_t n_decoded = 0;
  1071. int32_t n_remaining = -1;
  1072. int32_t i_batch = -1;
  1073. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1074. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1075. int32_t n_prompt_tokens = 0;
  1076. int32_t n_prompt_tokens_processed = 0;
  1077. // input prompt tokens
  1078. llama_tokens prompt_tokens;
  1079. size_t last_nl_pos = 0;
  1080. std::string generated_text;
  1081. llama_tokens generated_tokens;
  1082. llama_tokens cache_tokens;
  1083. std::vector<completion_token_output> generated_token_probs;
  1084. bool has_next_token = true;
  1085. bool has_new_line = false;
  1086. bool truncated = false;
  1087. stop_type stop;
  1088. std::string stopping_word;
  1089. // sampling
  1090. json json_schema;
  1091. struct common_sampler * smpl = nullptr;
  1092. llama_token sampled;
  1093. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1094. // stats
  1095. size_t n_sent_text = 0; // number of sent text character
  1096. int64_t t_start_process_prompt;
  1097. int64_t t_start_generation;
  1098. double t_prompt_processing; // ms
  1099. double t_token_generation; // ms
  1100. std::function<void(int)> callback_on_release;
  1101. void reset() {
  1102. SLT_DBG(*this, "%s", "\n");
  1103. n_prompt_tokens = 0;
  1104. last_nl_pos = 0;
  1105. generated_text = "";
  1106. has_new_line = false;
  1107. truncated = false;
  1108. stop = STOP_TYPE_NONE;
  1109. stopping_word = "";
  1110. n_past = 0;
  1111. n_sent_text = 0;
  1112. task_type = SERVER_TASK_TYPE_COMPLETION;
  1113. generated_tokens.clear();
  1114. generated_token_probs.clear();
  1115. }
  1116. bool is_non_causal() const {
  1117. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1118. }
  1119. bool can_batch_with(server_slot & other_slot) {
  1120. return is_non_causal() == other_slot.is_non_causal()
  1121. && are_lora_equal(lora, other_slot.lora);
  1122. }
  1123. bool has_budget(const common_params & global_params) {
  1124. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1125. return true; // limitless
  1126. }
  1127. n_remaining = -1;
  1128. if (params.n_predict != -1) {
  1129. n_remaining = params.n_predict - n_decoded;
  1130. } else if (global_params.n_predict != -1) {
  1131. n_remaining = global_params.n_predict - n_decoded;
  1132. }
  1133. return n_remaining > 0; // no budget
  1134. }
  1135. bool is_processing() const {
  1136. return state != SLOT_STATE_IDLE;
  1137. }
  1138. bool can_speculate() const {
  1139. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1140. }
  1141. void add_token(const completion_token_output & token) {
  1142. if (!is_processing()) {
  1143. SLT_WRN(*this, "%s", "slot is not processing\n");
  1144. return;
  1145. }
  1146. generated_token_probs.push_back(token);
  1147. }
  1148. void release() {
  1149. if (is_processing()) {
  1150. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1151. t_last_used = ggml_time_us();
  1152. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1153. state = SLOT_STATE_IDLE;
  1154. callback_on_release(id);
  1155. }
  1156. }
  1157. result_timings get_timings() const {
  1158. result_timings timings;
  1159. timings.prompt_n = n_prompt_tokens_processed;
  1160. timings.prompt_ms = t_prompt_processing;
  1161. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1162. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1163. timings.predicted_n = n_decoded;
  1164. timings.predicted_ms = t_token_generation;
  1165. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1166. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1167. return timings;
  1168. }
  1169. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1170. size_t stop_pos = std::string::npos;
  1171. for (const std::string & word : params.antiprompt) {
  1172. size_t pos;
  1173. if (is_full_stop) {
  1174. const size_t tmp = word.size() + last_token_size;
  1175. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1176. pos = text.find(word, from_pos);
  1177. } else {
  1178. // otherwise, partial stop
  1179. pos = find_partial_stop_string(word, text);
  1180. }
  1181. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1182. if (is_full_stop) {
  1183. stop = STOP_TYPE_WORD;
  1184. stopping_word = word;
  1185. has_next_token = false;
  1186. }
  1187. stop_pos = pos;
  1188. }
  1189. }
  1190. return stop_pos;
  1191. }
  1192. void print_timings() const {
  1193. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1194. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1195. const double t_gen = t_token_generation / n_decoded;
  1196. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1197. SLT_INF(*this,
  1198. "\n"
  1199. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1200. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1201. " total time = %10.2f ms / %5d tokens\n",
  1202. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1203. t_token_generation, n_decoded, t_gen, n_gen_second,
  1204. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1205. }
  1206. json to_json() const {
  1207. return json {
  1208. {"id", id},
  1209. {"id_task", id_task},
  1210. {"n_ctx", n_ctx},
  1211. {"speculative", can_speculate()},
  1212. {"is_processing", is_processing()},
  1213. {"non_causal", is_non_causal()},
  1214. {"params", params.to_json()},
  1215. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1216. {"next_token",
  1217. {
  1218. {"has_next_token", has_next_token},
  1219. {"has_new_line", has_new_line},
  1220. {"n_remain", n_remaining},
  1221. {"n_decoded", n_decoded},
  1222. {"stopping_word", stopping_word},
  1223. }
  1224. },
  1225. };
  1226. }
  1227. };
  1228. struct server_metrics {
  1229. int64_t t_start = 0;
  1230. uint64_t n_prompt_tokens_processed_total = 0;
  1231. uint64_t t_prompt_processing_total = 0;
  1232. uint64_t n_tokens_predicted_total = 0;
  1233. uint64_t t_tokens_generation_total = 0;
  1234. uint64_t n_prompt_tokens_processed = 0;
  1235. uint64_t t_prompt_processing = 0;
  1236. uint64_t n_tokens_predicted = 0;
  1237. uint64_t t_tokens_generation = 0;
  1238. uint64_t n_decode_total = 0;
  1239. uint64_t n_busy_slots_total = 0;
  1240. void init() {
  1241. t_start = ggml_time_us();
  1242. }
  1243. void on_prompt_eval(const server_slot & slot) {
  1244. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1245. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1246. t_prompt_processing += slot.t_prompt_processing;
  1247. t_prompt_processing_total += slot.t_prompt_processing;
  1248. }
  1249. void on_prediction(const server_slot & slot) {
  1250. n_tokens_predicted_total += slot.n_decoded;
  1251. n_tokens_predicted += slot.n_decoded;
  1252. t_tokens_generation += slot.t_token_generation;
  1253. t_tokens_generation_total += slot.t_token_generation;
  1254. }
  1255. void on_decoded(const std::vector<server_slot> & slots) {
  1256. n_decode_total++;
  1257. for (const auto & slot : slots) {
  1258. if (slot.is_processing()) {
  1259. n_busy_slots_total++;
  1260. }
  1261. }
  1262. }
  1263. void reset_bucket() {
  1264. n_prompt_tokens_processed = 0;
  1265. t_prompt_processing = 0;
  1266. n_tokens_predicted = 0;
  1267. t_tokens_generation = 0;
  1268. }
  1269. };
  1270. struct server_queue {
  1271. int id = 0;
  1272. bool running;
  1273. // queues
  1274. std::deque<server_task> queue_tasks;
  1275. std::deque<server_task> queue_tasks_deferred;
  1276. std::mutex mutex_tasks;
  1277. std::condition_variable condition_tasks;
  1278. // callback functions
  1279. std::function<void(server_task)> callback_new_task;
  1280. std::function<void(void)> callback_update_slots;
  1281. // Add a new task to the end of the queue
  1282. int post(server_task task, bool front = false) {
  1283. std::unique_lock<std::mutex> lock(mutex_tasks);
  1284. GGML_ASSERT(task.id != -1);
  1285. // if this is cancel task make sure to clean up pending tasks
  1286. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1287. cleanup_pending_task(task.id_target);
  1288. }
  1289. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1290. if (front) {
  1291. queue_tasks.push_front(std::move(task));
  1292. } else {
  1293. queue_tasks.push_back(std::move(task));
  1294. }
  1295. condition_tasks.notify_one();
  1296. return task.id;
  1297. }
  1298. // multi-task version of post()
  1299. int post(std::vector<server_task> & tasks, bool front = false) {
  1300. std::unique_lock<std::mutex> lock(mutex_tasks);
  1301. for (auto & task : tasks) {
  1302. if (task.id == -1) {
  1303. task.id = id++;
  1304. }
  1305. // if this is cancel task make sure to clean up pending tasks
  1306. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1307. cleanup_pending_task(task.id_target);
  1308. }
  1309. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1310. if (front) {
  1311. queue_tasks.push_front(std::move(task));
  1312. } else {
  1313. queue_tasks.push_back(std::move(task));
  1314. }
  1315. }
  1316. condition_tasks.notify_one();
  1317. return 0;
  1318. }
  1319. // Add a new task, but defer until one slot is available
  1320. void defer(server_task task) {
  1321. std::unique_lock<std::mutex> lock(mutex_tasks);
  1322. QUE_DBG("defer task, id = %d\n", task.id);
  1323. queue_tasks_deferred.push_back(std::move(task));
  1324. condition_tasks.notify_one();
  1325. }
  1326. // Get the next id for creating a new task
  1327. int get_new_id() {
  1328. std::unique_lock<std::mutex> lock(mutex_tasks);
  1329. int new_id = id++;
  1330. return new_id;
  1331. }
  1332. // Register function to process a new task
  1333. void on_new_task(std::function<void(server_task)> callback) {
  1334. callback_new_task = std::move(callback);
  1335. }
  1336. // Register the function to be called when all slots data is ready to be processed
  1337. void on_update_slots(std::function<void(void)> callback) {
  1338. callback_update_slots = std::move(callback);
  1339. }
  1340. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1341. void pop_deferred_task() {
  1342. std::unique_lock<std::mutex> lock(mutex_tasks);
  1343. if (!queue_tasks_deferred.empty()) {
  1344. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1345. queue_tasks_deferred.pop_front();
  1346. }
  1347. condition_tasks.notify_one();
  1348. }
  1349. // end the start_loop routine
  1350. void terminate() {
  1351. std::unique_lock<std::mutex> lock(mutex_tasks);
  1352. running = false;
  1353. condition_tasks.notify_all();
  1354. }
  1355. /**
  1356. * Main loop consists of these steps:
  1357. * - Wait until a new task arrives
  1358. * - Process the task (i.e. maybe copy data into slot)
  1359. * - Check if multitask is finished
  1360. * - Update all slots
  1361. */
  1362. void start_loop() {
  1363. running = true;
  1364. while (true) {
  1365. QUE_DBG("%s", "processing new tasks\n");
  1366. while (true) {
  1367. std::unique_lock<std::mutex> lock(mutex_tasks);
  1368. if (!running) {
  1369. QUE_DBG("%s", "terminate\n");
  1370. return;
  1371. }
  1372. if (queue_tasks.empty()) {
  1373. lock.unlock();
  1374. break;
  1375. }
  1376. server_task task = queue_tasks.front();
  1377. queue_tasks.pop_front();
  1378. lock.unlock();
  1379. QUE_DBG("processing task, id = %d\n", task.id);
  1380. callback_new_task(std::move(task));
  1381. }
  1382. // all tasks in the current loop is processed, slots data is now ready
  1383. QUE_DBG("%s", "update slots\n");
  1384. callback_update_slots();
  1385. QUE_DBG("%s", "waiting for new tasks\n");
  1386. {
  1387. std::unique_lock<std::mutex> lock(mutex_tasks);
  1388. if (!running) {
  1389. QUE_DBG("%s", "terminate\n");
  1390. return;
  1391. }
  1392. if (queue_tasks.empty()) {
  1393. condition_tasks.wait(lock, [&]{
  1394. return (!queue_tasks.empty() || !running);
  1395. });
  1396. }
  1397. }
  1398. }
  1399. }
  1400. private:
  1401. void cleanup_pending_task(int id_target) {
  1402. // no need lock because this is called exclusively by post()
  1403. auto rm_func = [id_target](const server_task & task) {
  1404. return task.id_target == id_target;
  1405. };
  1406. queue_tasks.erase(
  1407. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1408. queue_tasks.end());
  1409. queue_tasks_deferred.erase(
  1410. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1411. queue_tasks_deferred.end());
  1412. }
  1413. };
  1414. struct server_response {
  1415. // for keeping track of all tasks waiting for the result
  1416. std::unordered_set<int> waiting_task_ids;
  1417. // the main result queue (using ptr for polymorphism)
  1418. std::vector<server_task_result_ptr> queue_results;
  1419. std::mutex mutex_results;
  1420. std::condition_variable condition_results;
  1421. // add the id_task to the list of tasks waiting for response
  1422. void add_waiting_task_id(int id_task) {
  1423. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1424. std::unique_lock<std::mutex> lock(mutex_results);
  1425. waiting_task_ids.insert(id_task);
  1426. }
  1427. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1428. std::unique_lock<std::mutex> lock(mutex_results);
  1429. for (const auto & task : tasks) {
  1430. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1431. waiting_task_ids.insert(task.id);
  1432. }
  1433. }
  1434. // when the request is finished, we can remove task associated with it
  1435. void remove_waiting_task_id(int id_task) {
  1436. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1437. std::unique_lock<std::mutex> lock(mutex_results);
  1438. waiting_task_ids.erase(id_task);
  1439. // make sure to clean up all pending results
  1440. queue_results.erase(
  1441. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1442. return res->id == id_task;
  1443. }),
  1444. queue_results.end());
  1445. }
  1446. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1447. std::unique_lock<std::mutex> lock(mutex_results);
  1448. for (const auto & id_task : id_tasks) {
  1449. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1450. waiting_task_ids.erase(id_task);
  1451. }
  1452. }
  1453. // This function blocks the thread until there is a response for one of the id_tasks
  1454. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1455. while (true) {
  1456. std::unique_lock<std::mutex> lock(mutex_results);
  1457. condition_results.wait(lock, [&]{
  1458. return !queue_results.empty();
  1459. });
  1460. for (size_t i = 0; i < queue_results.size(); i++) {
  1461. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1462. server_task_result_ptr res = std::move(queue_results[i]);
  1463. queue_results.erase(queue_results.begin() + i);
  1464. return res;
  1465. }
  1466. }
  1467. }
  1468. // should never reach here
  1469. }
  1470. // same as recv(), but have timeout in seconds
  1471. // if timeout is reached, nullptr is returned
  1472. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1473. while (true) {
  1474. std::unique_lock<std::mutex> lock(mutex_results);
  1475. for (int i = 0; i < (int) queue_results.size(); i++) {
  1476. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1477. server_task_result_ptr res = std::move(queue_results[i]);
  1478. queue_results.erase(queue_results.begin() + i);
  1479. return res;
  1480. }
  1481. }
  1482. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1483. if (cr_res == std::cv_status::timeout) {
  1484. return nullptr;
  1485. }
  1486. }
  1487. // should never reach here
  1488. }
  1489. // single-task version of recv()
  1490. server_task_result_ptr recv(int id_task) {
  1491. std::unordered_set<int> id_tasks = {id_task};
  1492. return recv(id_tasks);
  1493. }
  1494. // Send a new result to a waiting id_task
  1495. void send(server_task_result_ptr && result) {
  1496. SRV_DBG("sending result for task id = %d\n", result->id);
  1497. std::unique_lock<std::mutex> lock(mutex_results);
  1498. for (const auto & id_task : waiting_task_ids) {
  1499. if (result->id == id_task) {
  1500. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1501. queue_results.emplace_back(std::move(result));
  1502. condition_results.notify_all();
  1503. return;
  1504. }
  1505. }
  1506. }
  1507. };
  1508. struct server_context {
  1509. common_params params_base;
  1510. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1511. common_init_result llama_init;
  1512. common_init_result llama_init_dft;
  1513. llama_model * model = nullptr;
  1514. llama_context * ctx = nullptr;
  1515. const llama_vocab * vocab = nullptr;
  1516. llama_model * model_dft = nullptr;
  1517. llama_context_params cparams_dft;
  1518. llama_batch batch = {};
  1519. bool clean_kv_cache = true;
  1520. bool add_bos_token = true;
  1521. bool has_eos_token = false;
  1522. int32_t n_ctx; // total context for all clients / slots
  1523. // slots / clients
  1524. std::vector<server_slot> slots;
  1525. json default_generation_settings_for_props;
  1526. server_queue queue_tasks;
  1527. server_response queue_results;
  1528. server_metrics metrics;
  1529. // Necessary similarity of prompt for slot selection
  1530. float slot_prompt_similarity = 0.0f;
  1531. common_chat_templates_ptr chat_templates;
  1532. ~server_context() {
  1533. // Clear any sampling context
  1534. for (server_slot & slot : slots) {
  1535. common_sampler_free(slot.smpl);
  1536. slot.smpl = nullptr;
  1537. llama_free(slot.ctx_dft);
  1538. slot.ctx_dft = nullptr;
  1539. common_speculative_free(slot.spec);
  1540. slot.spec = nullptr;
  1541. llama_batch_free(slot.batch_spec);
  1542. }
  1543. llama_batch_free(batch);
  1544. }
  1545. bool load_model(const common_params & params) {
  1546. SRV_INF("loading model '%s'\n", params.model.c_str());
  1547. params_base = params;
  1548. llama_init = common_init_from_params(params_base);
  1549. model = llama_init.model.get();
  1550. ctx = llama_init.context.get();
  1551. if (model == nullptr) {
  1552. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1553. return false;
  1554. }
  1555. vocab = llama_model_get_vocab(model);
  1556. n_ctx = llama_n_ctx(ctx);
  1557. add_bos_token = llama_vocab_get_add_bos(vocab);
  1558. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1559. if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
  1560. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1561. auto params_dft = params_base;
  1562. params_dft.devices = params_base.speculative.devices;
  1563. params_dft.hf_file = params_base.speculative.hf_file;
  1564. params_dft.hf_repo = params_base.speculative.hf_repo;
  1565. params_dft.model = params_base.speculative.model;
  1566. params_dft.model_url = params_base.speculative.model_url;
  1567. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1568. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1569. params_dft.n_parallel = 1;
  1570. llama_init_dft = common_init_from_params(params_dft);
  1571. model_dft = llama_init_dft.model.get();
  1572. if (model_dft == nullptr) {
  1573. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1574. return false;
  1575. }
  1576. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1577. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1578. return false;
  1579. }
  1580. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1581. cparams_dft = common_context_params_to_llama(params_dft);
  1582. cparams_dft.n_batch = n_ctx_dft;
  1583. // force F16 KV cache for the draft model for extra performance
  1584. cparams_dft.type_k = GGML_TYPE_F16;
  1585. cparams_dft.type_v = GGML_TYPE_F16;
  1586. // the context is not needed - we will create one for each slot
  1587. llama_init_dft.context.reset();
  1588. }
  1589. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1590. try {
  1591. common_chat_format_example(chat_templates.get(), params.use_jinja);
  1592. } catch (const std::exception & e) {
  1593. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1594. chat_templates = common_chat_templates_init(model, "chatml");
  1595. }
  1596. return true;
  1597. }
  1598. void init() {
  1599. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1600. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1601. for (int i = 0; i < params_base.n_parallel; i++) {
  1602. server_slot slot;
  1603. slot.id = i;
  1604. slot.ctx = ctx;
  1605. slot.n_ctx = n_ctx_slot;
  1606. slot.n_predict = params_base.n_predict;
  1607. if (model_dft) {
  1608. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1609. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1610. if (slot.ctx_dft == nullptr) {
  1611. SRV_ERR("%s", "failed to create draft context\n");
  1612. return;
  1613. }
  1614. slot.spec = common_speculative_init(slot.ctx_dft);
  1615. if (slot.spec == nullptr) {
  1616. SRV_ERR("%s", "failed to create speculator\n");
  1617. return;
  1618. }
  1619. }
  1620. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1621. slot.params.sampling = params_base.sampling;
  1622. slot.callback_on_release = [this](int) {
  1623. queue_tasks.pop_deferred_task();
  1624. };
  1625. slot.reset();
  1626. slots.push_back(slot);
  1627. }
  1628. default_generation_settings_for_props = slots[0].to_json();
  1629. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1630. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1631. {
  1632. const int32_t n_batch = llama_n_batch(ctx);
  1633. // only a single seq_id per token is needed
  1634. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1635. }
  1636. metrics.init();
  1637. }
  1638. server_slot * get_slot_by_id(int id) {
  1639. for (server_slot & slot : slots) {
  1640. if (slot.id == id) {
  1641. return &slot;
  1642. }
  1643. }
  1644. return nullptr;
  1645. }
  1646. server_slot * get_available_slot(const server_task & task) {
  1647. server_slot * ret = nullptr;
  1648. // find the slot that has at least n% prompt similarity
  1649. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1650. int lcs_len = 0;
  1651. float similarity = 0;
  1652. for (server_slot & slot : slots) {
  1653. // skip the slot if it is not available
  1654. if (slot.is_processing()) {
  1655. continue;
  1656. }
  1657. // skip the slot if it does not contains cached tokens
  1658. if (slot.cache_tokens.empty()) {
  1659. continue;
  1660. }
  1661. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1662. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1663. // fraction of the common subsequence length compared to the current slot's prompt length
  1664. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1665. // select the current slot if the criteria match
  1666. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1667. lcs_len = cur_lcs_len;
  1668. similarity = cur_similarity;
  1669. ret = &slot;
  1670. }
  1671. }
  1672. if (ret != nullptr) {
  1673. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1674. }
  1675. }
  1676. // find the slot that has been least recently used
  1677. if (ret == nullptr) {
  1678. int64_t t_last = ggml_time_us();
  1679. for (server_slot & slot : slots) {
  1680. // skip the slot if it is not available
  1681. if (slot.is_processing()) {
  1682. continue;
  1683. }
  1684. // select the current slot if the criteria match
  1685. if (slot.t_last_used < t_last) {
  1686. t_last = slot.t_last_used;
  1687. ret = &slot;
  1688. }
  1689. }
  1690. if (ret != nullptr) {
  1691. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1692. }
  1693. }
  1694. return ret;
  1695. }
  1696. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1697. slot.reset();
  1698. slot.id_task = task.id;
  1699. slot.index = task.index;
  1700. slot.task_type = task.type;
  1701. slot.params = std::move(task.params);
  1702. slot.prompt_tokens = std::move(task.prompt_tokens);
  1703. if (!are_lora_equal(task.params.lora, slot.lora)) {
  1704. // if lora is changed, we cannot reuse cached tokens
  1705. slot.cache_tokens.clear();
  1706. slot.lora = task.params.lora;
  1707. }
  1708. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1709. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1710. // Might be better to reject the request with a 400 ?
  1711. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.params.n_predict, slot.n_predict);
  1712. slot.params.n_predict = slot.n_predict;
  1713. }
  1714. if (slot.params.ignore_eos && has_eos_token) {
  1715. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1716. }
  1717. {
  1718. if (slot.smpl != nullptr) {
  1719. common_sampler_free(slot.smpl);
  1720. }
  1721. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1722. if (slot.smpl == nullptr) {
  1723. // for now, the only error that may happen here is invalid grammar
  1724. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1725. return false;
  1726. }
  1727. }
  1728. if (slot.ctx_dft) {
  1729. llama_batch_free(slot.batch_spec);
  1730. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1731. }
  1732. slot.state = SLOT_STATE_STARTED;
  1733. SLT_INF(slot, "%s", "processing task\n");
  1734. return true;
  1735. }
  1736. void kv_cache_clear() {
  1737. SRV_DBG("%s", "clearing KV cache\n");
  1738. // clear the entire KV cache
  1739. llama_kv_cache_clear(ctx);
  1740. clean_kv_cache = false;
  1741. }
  1742. bool process_token(completion_token_output & result, server_slot & slot) {
  1743. // remember which tokens were sampled - used for repetition penalties during sampling
  1744. const std::string token_str = result.text_to_send;
  1745. slot.sampled = result.tok;
  1746. slot.generated_text += token_str;
  1747. if (slot.params.return_tokens) {
  1748. slot.generated_tokens.push_back(result.tok);
  1749. }
  1750. slot.has_next_token = true;
  1751. // check if there is incomplete UTF-8 character at the end
  1752. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1753. // search stop word and delete it
  1754. if (!incomplete) {
  1755. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1756. const std::string str_test = slot.generated_text.substr(pos);
  1757. bool send_text = true;
  1758. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1759. if (stop_pos != std::string::npos) {
  1760. slot.generated_text.erase(
  1761. slot.generated_text.begin() + pos + stop_pos,
  1762. slot.generated_text.end());
  1763. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1764. } else if (slot.has_next_token) {
  1765. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1766. send_text = stop_pos == std::string::npos;
  1767. }
  1768. // check if there is any token to predict
  1769. if (send_text) {
  1770. // no send the stop word in the response
  1771. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1772. slot.n_sent_text += result.text_to_send.size();
  1773. // add the token to slot queue and cache
  1774. } else {
  1775. result.text_to_send = "";
  1776. }
  1777. slot.add_token(result);
  1778. if (slot.params.stream) {
  1779. send_partial_response(slot, result);
  1780. }
  1781. }
  1782. if (incomplete) {
  1783. slot.has_next_token = true;
  1784. }
  1785. // check the limits
  1786. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1787. slot.stop = STOP_TYPE_LIMIT;
  1788. slot.has_next_token = false;
  1789. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1790. }
  1791. if (slot.has_new_line) {
  1792. // if we have already seen a new line, we stop after a certain time limit
  1793. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1794. slot.stop = STOP_TYPE_LIMIT;
  1795. slot.has_next_token = false;
  1796. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1797. }
  1798. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1799. if (slot.params.n_indent > 0) {
  1800. // check the current indentation
  1801. // TODO: improve by not doing it more than once for each new line
  1802. if (slot.last_nl_pos > 0) {
  1803. size_t pos = slot.last_nl_pos;
  1804. int n_indent = 0;
  1805. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1806. n_indent++;
  1807. pos++;
  1808. }
  1809. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1810. slot.stop = STOP_TYPE_LIMIT;
  1811. slot.has_next_token = false;
  1812. // cut the last line
  1813. slot.generated_text.erase(pos, std::string::npos);
  1814. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1815. }
  1816. }
  1817. // find the next new line
  1818. {
  1819. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1820. if (pos != std::string::npos) {
  1821. slot.last_nl_pos = pos + 1;
  1822. }
  1823. }
  1824. }
  1825. }
  1826. // check if there is a new line in the generated text
  1827. if (result.text_to_send.find('\n') != std::string::npos) {
  1828. slot.has_new_line = true;
  1829. }
  1830. // if context shift is disabled, we stop when it reaches the context limit
  1831. if (slot.n_past >= slot.n_ctx) {
  1832. slot.truncated = true;
  1833. slot.stop = STOP_TYPE_LIMIT;
  1834. slot.has_next_token = false;
  1835. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1836. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1837. }
  1838. if (llama_vocab_is_eog(vocab, result.tok)) {
  1839. slot.stop = STOP_TYPE_EOS;
  1840. slot.has_next_token = false;
  1841. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1842. }
  1843. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1844. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1845. slot.truncated = true;
  1846. slot.stop = STOP_TYPE_LIMIT;
  1847. slot.has_next_token = false; // stop prediction
  1848. SLT_WRN(slot,
  1849. "n_predict (%d) is set for infinite generation. "
  1850. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1851. slot.params.n_predict, n_ctx_train);
  1852. }
  1853. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1854. return slot.has_next_token; // continue
  1855. }
  1856. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1857. size_t n_probs = slot.params.sampling.n_probs;
  1858. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1859. if (post_sampling) {
  1860. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1861. const size_t max_probs = cur_p->size;
  1862. // set probability for sampled token
  1863. for (size_t i = 0; i < max_probs; i++) {
  1864. if (cur_p->data[i].id == result.tok) {
  1865. result.prob = cur_p->data[i].p;
  1866. break;
  1867. }
  1868. }
  1869. // set probability for top n_probs tokens
  1870. result.probs.reserve(max_probs);
  1871. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1872. result.probs.push_back({
  1873. cur_p->data[i].id,
  1874. common_token_to_piece(ctx, cur_p->data[i].id, special),
  1875. cur_p->data[i].p
  1876. });
  1877. }
  1878. } else {
  1879. // TODO: optimize this with min-p optimization
  1880. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1881. // set probability for sampled token
  1882. for (size_t i = 0; i < n_vocab; i++) {
  1883. // set probability for sampled token
  1884. if (cur[i].id == result.tok) {
  1885. result.prob = cur[i].p;
  1886. break;
  1887. }
  1888. }
  1889. // set probability for top n_probs tokens
  1890. result.probs.reserve(n_probs);
  1891. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1892. result.probs.push_back({
  1893. cur[i].id,
  1894. common_token_to_piece(ctx, cur[i].id, special),
  1895. cur[i].p
  1896. });
  1897. }
  1898. }
  1899. }
  1900. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1901. send_error(task.id, error, type);
  1902. }
  1903. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1904. send_error(slot.id_task, error, type);
  1905. }
  1906. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1907. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1908. auto res = std::make_unique<server_task_result_error>();
  1909. res->id = id_task;
  1910. res->err_type = type;
  1911. res->err_msg = error;
  1912. queue_results.send(std::move(res));
  1913. }
  1914. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1915. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1916. res->id = slot.id_task;
  1917. res->index = slot.index;
  1918. res->content = tkn.text_to_send;
  1919. res->tokens = { tkn.tok };
  1920. res->n_decoded = slot.n_decoded;
  1921. res->n_prompt_tokens = slot.n_prompt_tokens;
  1922. res->post_sampling_probs = slot.params.post_sampling_probs;
  1923. res->verbose = slot.params.verbose;
  1924. res->oaicompat = slot.params.oaicompat;
  1925. res->oaicompat_model = slot.params.oaicompat_model;
  1926. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1927. // populate res.probs_output
  1928. if (slot.params.sampling.n_probs > 0) {
  1929. res->prob_output = tkn; // copy the token probs
  1930. }
  1931. // populate timings if this is final response or timings_per_token is enabled
  1932. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1933. res->timings = slot.get_timings();
  1934. }
  1935. queue_results.send(std::move(res));
  1936. }
  1937. void send_final_response(server_slot & slot) {
  1938. auto res = std::make_unique<server_task_result_cmpl_final>();
  1939. res->id = slot.id_task;
  1940. res->id_slot = slot.id;
  1941. res->index = slot.index;
  1942. res->content = std::move(slot.generated_text);
  1943. res->tokens = std::move(slot.generated_tokens);
  1944. res->timings = slot.get_timings();
  1945. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1946. res->response_fields = std::move(slot.params.response_fields);
  1947. res->truncated = slot.truncated;
  1948. res->n_decoded = slot.n_decoded;
  1949. res->n_prompt_tokens = slot.n_prompt_tokens;
  1950. res->n_tokens_cached = slot.n_past;
  1951. res->has_new_line = slot.has_new_line;
  1952. res->stopping_word = slot.stopping_word;
  1953. res->stop = slot.stop;
  1954. res->post_sampling_probs = slot.params.post_sampling_probs;
  1955. res->verbose = slot.params.verbose;
  1956. res->stream = slot.params.stream;
  1957. res->oaicompat = slot.params.oaicompat;
  1958. res->oaicompat_model = slot.params.oaicompat_model;
  1959. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1960. res->oaicompat_chat_format = slot.params.oaicompat_chat_format;
  1961. // populate res.probs_output
  1962. if (slot.params.sampling.n_probs > 0) {
  1963. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1964. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1965. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1966. res->probs_output = std::vector<completion_token_output>(
  1967. slot.generated_token_probs.begin(),
  1968. slot.generated_token_probs.end() - safe_offset);
  1969. } else {
  1970. res->probs_output = std::vector<completion_token_output>(
  1971. slot.generated_token_probs.begin(),
  1972. slot.generated_token_probs.end());
  1973. }
  1974. }
  1975. res->generation_params = slot.params; // copy the parameters
  1976. queue_results.send(std::move(res));
  1977. }
  1978. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1979. auto res = std::make_unique<server_task_result_embd>();
  1980. res->id = slot.id_task;
  1981. res->index = slot.index;
  1982. res->n_tokens = slot.n_prompt_tokens;
  1983. res->oaicompat = slot.params.oaicompat;
  1984. const int n_embd = llama_model_n_embd(model);
  1985. std::vector<float> embd_res(n_embd, 0.0f);
  1986. for (int i = 0; i < batch.n_tokens; ++i) {
  1987. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1988. continue;
  1989. }
  1990. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1991. if (embd == NULL) {
  1992. embd = llama_get_embeddings_ith(ctx, i);
  1993. }
  1994. if (embd == NULL) {
  1995. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1996. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  1997. continue;
  1998. }
  1999. // normalize only when there is pooling
  2000. // TODO: configurable
  2001. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2002. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  2003. res->embedding.push_back(embd_res);
  2004. } else {
  2005. res->embedding.push_back({ embd, embd + n_embd });
  2006. }
  2007. }
  2008. SLT_DBG(slot, "%s", "sending embeddings\n");
  2009. queue_results.send(std::move(res));
  2010. }
  2011. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2012. auto res = std::make_unique<server_task_result_rerank>();
  2013. res->id = slot.id_task;
  2014. res->index = slot.index;
  2015. res->n_tokens = slot.n_prompt_tokens;
  2016. for (int i = 0; i < batch.n_tokens; ++i) {
  2017. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2018. continue;
  2019. }
  2020. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2021. if (embd == NULL) {
  2022. embd = llama_get_embeddings_ith(ctx, i);
  2023. }
  2024. if (embd == NULL) {
  2025. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2026. res->score = -1e6;
  2027. continue;
  2028. }
  2029. res->score = embd[0];
  2030. }
  2031. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2032. queue_results.send(std::move(res));
  2033. }
  2034. //
  2035. // Functions to create new task(s) and receive result(s)
  2036. //
  2037. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2038. std::vector<server_task> cancel_tasks;
  2039. cancel_tasks.reserve(id_tasks.size());
  2040. for (const auto & id_task : id_tasks) {
  2041. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2042. server_task task(SERVER_TASK_TYPE_CANCEL);
  2043. task.id_target = id_task;
  2044. queue_results.remove_waiting_task_id(id_task);
  2045. cancel_tasks.push_back(task);
  2046. }
  2047. // push to beginning of the queue, so it has highest priority
  2048. queue_tasks.post(cancel_tasks, true);
  2049. }
  2050. // receive the results from task(s)
  2051. void receive_multi_results(
  2052. const std::unordered_set<int> & id_tasks,
  2053. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2054. const std::function<void(json)> & error_handler,
  2055. const std::function<bool()> & is_connection_closed) {
  2056. std::vector<server_task_result_ptr> results(id_tasks.size());
  2057. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2058. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2059. if (is_connection_closed()) {
  2060. cancel_tasks(id_tasks);
  2061. return;
  2062. }
  2063. if (result == nullptr) {
  2064. i--; // retry
  2065. continue;
  2066. }
  2067. if (result->is_error()) {
  2068. error_handler(result->to_json());
  2069. cancel_tasks(id_tasks);
  2070. return;
  2071. }
  2072. GGML_ASSERT(
  2073. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2074. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2075. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2076. );
  2077. const size_t idx = result->get_index();
  2078. GGML_ASSERT(idx < results.size() && "index out of range");
  2079. results[idx] = std::move(result);
  2080. }
  2081. result_handler(results);
  2082. }
  2083. // receive the results from task(s), in stream mode
  2084. void receive_cmpl_results_stream(
  2085. const std::unordered_set<int> & id_tasks,
  2086. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2087. const std::function<void(json)> & error_handler,
  2088. const std::function<bool()> & is_connection_closed) {
  2089. size_t n_finished = 0;
  2090. while (true) {
  2091. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2092. if (is_connection_closed()) {
  2093. cancel_tasks(id_tasks);
  2094. return;
  2095. }
  2096. if (result == nullptr) {
  2097. continue; // retry
  2098. }
  2099. if (result->is_error()) {
  2100. error_handler(result->to_json());
  2101. cancel_tasks(id_tasks);
  2102. return;
  2103. }
  2104. GGML_ASSERT(
  2105. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2106. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2107. );
  2108. if (!result_handler(result)) {
  2109. cancel_tasks(id_tasks);
  2110. break;
  2111. }
  2112. if (result->is_stop()) {
  2113. if (++n_finished == id_tasks.size()) {
  2114. break;
  2115. }
  2116. }
  2117. }
  2118. }
  2119. //
  2120. // Functions to process the task
  2121. //
  2122. void process_single_task(server_task task) {
  2123. switch (task.type) {
  2124. case SERVER_TASK_TYPE_COMPLETION:
  2125. case SERVER_TASK_TYPE_INFILL:
  2126. case SERVER_TASK_TYPE_EMBEDDING:
  2127. case SERVER_TASK_TYPE_RERANK:
  2128. {
  2129. const int id_slot = task.id_selected_slot;
  2130. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2131. if (slot == nullptr) {
  2132. // if no slot is available, we defer this task for processing later
  2133. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2134. queue_tasks.defer(task);
  2135. break;
  2136. }
  2137. if (slot->is_processing()) {
  2138. // if requested slot is unavailable, we defer this task for processing later
  2139. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2140. queue_tasks.defer(task);
  2141. break;
  2142. }
  2143. if (!launch_slot_with_task(*slot, task)) {
  2144. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2145. break;
  2146. }
  2147. } break;
  2148. case SERVER_TASK_TYPE_CANCEL:
  2149. {
  2150. // release slot linked with the task id
  2151. for (auto & slot : slots) {
  2152. if (slot.id_task == task.id_target) {
  2153. slot.release();
  2154. break;
  2155. }
  2156. }
  2157. } break;
  2158. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2159. {
  2160. // do nothing
  2161. } break;
  2162. case SERVER_TASK_TYPE_METRICS:
  2163. {
  2164. json slots_data = json::array();
  2165. int n_idle_slots = 0;
  2166. int n_processing_slots = 0;
  2167. for (server_slot & slot : slots) {
  2168. json slot_data = slot.to_json();
  2169. if (slot.is_processing()) {
  2170. n_processing_slots++;
  2171. } else {
  2172. n_idle_slots++;
  2173. }
  2174. slots_data.push_back(slot_data);
  2175. }
  2176. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2177. auto res = std::make_unique<server_task_result_metrics>();
  2178. res->id = task.id;
  2179. res->slots_data = std::move(slots_data);
  2180. res->n_idle_slots = n_idle_slots;
  2181. res->n_processing_slots = n_processing_slots;
  2182. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2183. res->t_start = metrics.t_start;
  2184. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  2185. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  2186. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2187. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2188. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2189. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2190. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2191. res->t_prompt_processing = metrics.t_prompt_processing;
  2192. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2193. res->t_tokens_generation = metrics.t_tokens_generation;
  2194. res->n_decode_total = metrics.n_decode_total;
  2195. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2196. if (task.metrics_reset_bucket) {
  2197. metrics.reset_bucket();
  2198. }
  2199. queue_results.send(std::move(res));
  2200. } break;
  2201. case SERVER_TASK_TYPE_SLOT_SAVE:
  2202. {
  2203. int id_slot = task.slot_action.slot_id;
  2204. server_slot * slot = get_slot_by_id(id_slot);
  2205. if (slot == nullptr) {
  2206. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2207. break;
  2208. }
  2209. if (slot->is_processing()) {
  2210. // if requested slot is unavailable, we defer this task for processing later
  2211. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2212. queue_tasks.defer(task);
  2213. break;
  2214. }
  2215. const size_t token_count = slot->cache_tokens.size();
  2216. const int64_t t_start = ggml_time_us();
  2217. std::string filename = task.slot_action.filename;
  2218. std::string filepath = task.slot_action.filepath;
  2219. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2220. const int64_t t_end = ggml_time_us();
  2221. const double t_save_ms = (t_end - t_start) / 1000.0;
  2222. auto res = std::make_unique<server_task_result_slot_save_load>();
  2223. res->id = task.id;
  2224. res->id_slot = id_slot;
  2225. res->filename = filename;
  2226. res->is_save = true;
  2227. res->n_tokens = token_count;
  2228. res->n_bytes = nwrite;
  2229. res->t_ms = t_save_ms;
  2230. queue_results.send(std::move(res));
  2231. } break;
  2232. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2233. {
  2234. int id_slot = task.slot_action.slot_id;
  2235. server_slot * slot = get_slot_by_id(id_slot);
  2236. if (slot == nullptr) {
  2237. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2238. break;
  2239. }
  2240. if (slot->is_processing()) {
  2241. // if requested slot is unavailable, we defer this task for processing later
  2242. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2243. queue_tasks.defer(task);
  2244. break;
  2245. }
  2246. const int64_t t_start = ggml_time_us();
  2247. std::string filename = task.slot_action.filename;
  2248. std::string filepath = task.slot_action.filepath;
  2249. slot->cache_tokens.resize(slot->n_ctx);
  2250. size_t token_count = 0;
  2251. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2252. if (nread == 0) {
  2253. slot->cache_tokens.resize(0);
  2254. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2255. break;
  2256. }
  2257. slot->cache_tokens.resize(token_count);
  2258. const int64_t t_end = ggml_time_us();
  2259. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2260. auto res = std::make_unique<server_task_result_slot_save_load>();
  2261. res->id = task.id;
  2262. res->id_slot = id_slot;
  2263. res->filename = filename;
  2264. res->is_save = false;
  2265. res->n_tokens = token_count;
  2266. res->n_bytes = nread;
  2267. res->t_ms = t_restore_ms;
  2268. queue_results.send(std::move(res));
  2269. } break;
  2270. case SERVER_TASK_TYPE_SLOT_ERASE:
  2271. {
  2272. int id_slot = task.slot_action.slot_id;
  2273. server_slot * slot = get_slot_by_id(id_slot);
  2274. if (slot == nullptr) {
  2275. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2276. break;
  2277. }
  2278. if (slot->is_processing()) {
  2279. // if requested slot is unavailable, we defer this task for processing later
  2280. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2281. queue_tasks.defer(task);
  2282. break;
  2283. }
  2284. // Erase token cache
  2285. const size_t n_erased = slot->cache_tokens.size();
  2286. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  2287. slot->cache_tokens.clear();
  2288. auto res = std::make_unique<server_task_result_slot_erase>();
  2289. res->id = task.id;
  2290. res->id_slot = id_slot;
  2291. res->n_erased = n_erased;
  2292. queue_results.send(std::move(res));
  2293. } break;
  2294. case SERVER_TASK_TYPE_SET_LORA:
  2295. {
  2296. params_base.lora_adapters = std::move(task.set_lora);
  2297. auto res = std::make_unique<server_task_result_apply_lora>();
  2298. res->id = task.id;
  2299. queue_results.send(std::move(res));
  2300. } break;
  2301. }
  2302. }
  2303. void update_slots() {
  2304. // check if all slots are idle
  2305. {
  2306. bool all_idle = true;
  2307. for (auto & slot : slots) {
  2308. if (slot.is_processing()) {
  2309. all_idle = false;
  2310. break;
  2311. }
  2312. }
  2313. if (all_idle) {
  2314. SRV_INF("%s", "all slots are idle\n");
  2315. if (clean_kv_cache) {
  2316. kv_cache_clear();
  2317. }
  2318. return;
  2319. }
  2320. }
  2321. {
  2322. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2323. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2324. task.id = queue_tasks.get_new_id();
  2325. queue_tasks.post(task);
  2326. }
  2327. // apply context-shift if needed
  2328. // TODO: simplify and improve
  2329. for (server_slot & slot : slots) {
  2330. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2331. if (!params_base.ctx_shift) {
  2332. // this check is redundant (for good)
  2333. // we should never get here, because generation should already stopped in process_token()
  2334. slot.release();
  2335. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2336. continue;
  2337. }
  2338. // Shift context
  2339. const int n_keep = slot.params.n_keep + add_bos_token;
  2340. const int n_left = slot.n_past - n_keep;
  2341. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2342. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2343. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2344. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2345. if (slot.params.cache_prompt) {
  2346. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2347. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2348. }
  2349. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2350. }
  2351. slot.n_past -= n_discard;
  2352. slot.truncated = true;
  2353. }
  2354. }
  2355. // start populating the batch for this iteration
  2356. common_batch_clear(batch);
  2357. // track if given slot can be batched with slots already in the batch
  2358. server_slot * slot_batched = nullptr;
  2359. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2360. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2361. };
  2362. // frist, add sampled tokens from any ongoing sequences
  2363. for (auto & slot : slots) {
  2364. if (slot.state != SLOT_STATE_GENERATING) {
  2365. continue;
  2366. }
  2367. // check if we can batch this slot with the previous one
  2368. if (!slot_batched) {
  2369. slot_batched = &slot;
  2370. } else if (!slot_batched->can_batch_with(slot)) {
  2371. continue;
  2372. }
  2373. slot.i_batch = batch.n_tokens;
  2374. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2375. slot.n_past += 1;
  2376. if (slot.params.cache_prompt) {
  2377. slot.cache_tokens.push_back(slot.sampled);
  2378. }
  2379. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2380. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2381. }
  2382. // process in chunks of params.n_batch
  2383. int32_t n_batch = llama_n_batch(ctx);
  2384. int32_t n_ubatch = llama_n_ubatch(ctx);
  2385. // next, batch any pending prompts without exceeding n_batch
  2386. if (params_base.cont_batching || batch.n_tokens == 0) {
  2387. for (auto & slot : slots) {
  2388. // check if we can batch this slot with the previous one
  2389. if (slot.is_processing()) {
  2390. if (!slot_batched) {
  2391. slot_batched = &slot;
  2392. } else if (!slot_batched->can_batch_with(slot)) {
  2393. continue;
  2394. }
  2395. }
  2396. // this slot still has a prompt to be processed
  2397. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2398. auto & prompt_tokens = slot.prompt_tokens;
  2399. // TODO: maybe move branch to outside of this loop in the future
  2400. if (slot.state == SLOT_STATE_STARTED) {
  2401. slot.t_start_process_prompt = ggml_time_us();
  2402. slot.t_start_generation = 0;
  2403. slot.n_past = 0;
  2404. slot.n_prompt_tokens = prompt_tokens.size();
  2405. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2406. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2407. // print prompt tokens (for debugging)
  2408. if (1) {
  2409. // first 16 tokens (avoid flooding logs)
  2410. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2411. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2412. }
  2413. } else {
  2414. // all
  2415. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2416. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2417. }
  2418. }
  2419. // empty prompt passed -> release the slot and send empty response
  2420. if (prompt_tokens.empty()) {
  2421. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2422. slot.release();
  2423. slot.print_timings();
  2424. send_final_response(slot);
  2425. continue;
  2426. }
  2427. if (slot.is_non_causal()) {
  2428. if (slot.n_prompt_tokens > n_ubatch) {
  2429. slot.release();
  2430. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2431. continue;
  2432. }
  2433. if (slot.n_prompt_tokens > slot.n_ctx) {
  2434. slot.release();
  2435. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2436. continue;
  2437. }
  2438. } else {
  2439. if (!params_base.ctx_shift) {
  2440. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2441. // TODO: there should be a separate parameter that control prompt truncation
  2442. // context shift should be applied only during the generation phase
  2443. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2444. slot.release();
  2445. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2446. continue;
  2447. }
  2448. }
  2449. if (slot.params.n_keep < 0) {
  2450. slot.params.n_keep = slot.n_prompt_tokens;
  2451. }
  2452. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2453. // if input prompt is too big, truncate it
  2454. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2455. const int n_left = slot.n_ctx - slot.params.n_keep;
  2456. const int n_block_size = n_left / 2;
  2457. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2458. llama_tokens new_tokens(
  2459. prompt_tokens.begin(),
  2460. prompt_tokens.begin() + slot.params.n_keep);
  2461. new_tokens.insert(
  2462. new_tokens.end(),
  2463. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2464. prompt_tokens.end());
  2465. prompt_tokens = std::move(new_tokens);
  2466. slot.truncated = true;
  2467. slot.n_prompt_tokens = prompt_tokens.size();
  2468. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2469. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2470. }
  2471. if (slot.params.cache_prompt) {
  2472. // reuse any previously computed tokens that are common with the new prompt
  2473. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2474. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2475. if (params_base.n_cache_reuse > 0) {
  2476. size_t head_c = slot.n_past; // cache
  2477. size_t head_p = slot.n_past; // current prompt
  2478. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2479. while (head_c < slot.cache_tokens.size() &&
  2480. head_p < prompt_tokens.size()) {
  2481. size_t n_match = 0;
  2482. while (head_c + n_match < slot.cache_tokens.size() &&
  2483. head_p + n_match < prompt_tokens.size() &&
  2484. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2485. n_match++;
  2486. }
  2487. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2488. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2489. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2490. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2491. //}
  2492. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2493. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2494. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2495. for (size_t i = 0; i < n_match; i++) {
  2496. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2497. slot.n_past++;
  2498. }
  2499. head_c += n_match;
  2500. head_p += n_match;
  2501. } else {
  2502. head_c += 1;
  2503. }
  2504. }
  2505. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2506. }
  2507. }
  2508. }
  2509. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2510. // we have to evaluate at least 1 token to generate logits.
  2511. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2512. slot.n_past--;
  2513. }
  2514. slot.n_prompt_tokens_processed = 0;
  2515. }
  2516. // non-causal tasks require to fit the entire prompt in the physical batch
  2517. if (slot.is_non_causal()) {
  2518. // cannot fit the prompt in the current batch - will try next iter
  2519. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2520. continue;
  2521. }
  2522. }
  2523. // keep only the common part
  2524. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2525. // could not partially delete (likely using a non-Transformer model)
  2526. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2527. // there is no common part left
  2528. slot.n_past = 0;
  2529. }
  2530. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2531. // remove the non-common part from the cache
  2532. slot.cache_tokens.resize(slot.n_past);
  2533. // add prompt tokens for processing in the current batch
  2534. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2535. // without pooling, we want to output the embeddings for all the tokens in the batch
  2536. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2537. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2538. if (slot.params.cache_prompt) {
  2539. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2540. }
  2541. slot.n_prompt_tokens_processed++;
  2542. slot.n_past++;
  2543. }
  2544. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2545. // entire prompt has been processed
  2546. if (slot.n_past == slot.n_prompt_tokens) {
  2547. slot.state = SLOT_STATE_DONE_PROMPT;
  2548. GGML_ASSERT(batch.n_tokens > 0);
  2549. common_sampler_reset(slot.smpl);
  2550. // Process all prompt tokens through sampler system
  2551. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2552. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2553. }
  2554. // extract the logits only for the last token
  2555. batch.logits[batch.n_tokens - 1] = true;
  2556. slot.n_decoded = 0;
  2557. slot.i_batch = batch.n_tokens - 1;
  2558. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2559. }
  2560. }
  2561. if (batch.n_tokens >= n_batch) {
  2562. break;
  2563. }
  2564. }
  2565. }
  2566. if (batch.n_tokens == 0) {
  2567. SRV_WRN("%s", "no tokens to decode\n");
  2568. return;
  2569. }
  2570. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2571. if (slot_batched) {
  2572. // make sure we're in the right embedding mode
  2573. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2574. // apply lora, only need to do it once per batch
  2575. common_set_adapter_lora(ctx, slot_batched->lora);
  2576. }
  2577. // process the created batch of tokens
  2578. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2579. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2580. llama_batch batch_view = {
  2581. n_tokens,
  2582. batch.token + i,
  2583. nullptr,
  2584. batch.pos + i,
  2585. batch.n_seq_id + i,
  2586. batch.seq_id + i,
  2587. batch.logits + i,
  2588. };
  2589. const int ret = llama_decode(ctx, batch_view);
  2590. metrics.on_decoded(slots);
  2591. if (ret != 0) {
  2592. if (n_batch == 1 || ret < 0) {
  2593. // if you get here, it means the KV cache is full - try increasing it via the context size
  2594. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2595. for (auto & slot : slots) {
  2596. slot.release();
  2597. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2598. }
  2599. break; // break loop of n_batch
  2600. }
  2601. // retry with half the batch size to try to find a free slot in the KV cache
  2602. n_batch /= 2;
  2603. i -= n_batch;
  2604. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2605. continue; // continue loop of n_batch
  2606. }
  2607. for (auto & slot : slots) {
  2608. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2609. continue; // continue loop of slots
  2610. }
  2611. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2612. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2613. // prompt evaluated for embedding
  2614. send_embedding(slot, batch_view);
  2615. slot.release();
  2616. slot.i_batch = -1;
  2617. continue; // continue loop of slots
  2618. }
  2619. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2620. send_rerank(slot, batch_view);
  2621. slot.release();
  2622. slot.i_batch = -1;
  2623. continue; // continue loop of slots
  2624. }
  2625. // prompt evaluated for next-token prediction
  2626. slot.state = SLOT_STATE_GENERATING;
  2627. } else if (slot.state != SLOT_STATE_GENERATING) {
  2628. continue; // continue loop of slots
  2629. }
  2630. const int tok_idx = slot.i_batch - i;
  2631. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2632. slot.i_batch = -1;
  2633. common_sampler_accept(slot.smpl, id, true);
  2634. slot.n_decoded += 1;
  2635. const int64_t t_current = ggml_time_us();
  2636. if (slot.n_decoded == 1) {
  2637. slot.t_start_generation = t_current;
  2638. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2639. metrics.on_prompt_eval(slot);
  2640. }
  2641. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2642. completion_token_output result;
  2643. result.tok = id;
  2644. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2645. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2646. if (slot.params.sampling.n_probs > 0) {
  2647. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2648. }
  2649. if (!process_token(result, slot)) {
  2650. // release slot because of stop condition
  2651. slot.release();
  2652. slot.print_timings();
  2653. send_final_response(slot);
  2654. metrics.on_prediction(slot);
  2655. continue;
  2656. }
  2657. }
  2658. // do speculative decoding
  2659. for (auto & slot : slots) {
  2660. if (!slot.is_processing() || !slot.can_speculate()) {
  2661. continue;
  2662. }
  2663. if (slot.state != SLOT_STATE_GENERATING) {
  2664. continue;
  2665. }
  2666. // determine the max draft that fits the current slot state
  2667. int n_draft_max = slot.params.speculative.n_max;
  2668. // note: n_past is not yet increased for the `id` token sampled above
  2669. // also, need to leave space for 1 extra token to allow context shifts
  2670. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2671. if (slot.n_remaining > 0) {
  2672. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2673. }
  2674. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2675. if (n_draft_max < slot.params.speculative.n_min) {
  2676. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2677. continue;
  2678. }
  2679. llama_token id = slot.sampled;
  2680. struct common_speculative_params params_spec;
  2681. params_spec.n_draft = n_draft_max;
  2682. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2683. params_spec.p_min = slot.params.speculative.p_min;
  2684. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2685. // ignore small drafts
  2686. if (slot.params.speculative.n_min > (int) draft.size()) {
  2687. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2688. continue;
  2689. }
  2690. // construct the speculation batch
  2691. common_batch_clear(slot.batch_spec);
  2692. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2693. for (size_t i = 0; i < draft.size(); ++i) {
  2694. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2695. }
  2696. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2697. llama_decode(ctx, slot.batch_spec);
  2698. // the accepted tokens from the speculation
  2699. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2700. slot.n_past += ids.size();
  2701. slot.n_decoded += ids.size();
  2702. slot.cache_tokens.push_back(id);
  2703. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2704. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2705. for (size_t i = 0; i < ids.size(); ++i) {
  2706. completion_token_output result;
  2707. result.tok = ids[i];
  2708. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2709. result.prob = 1.0f; // set later
  2710. // TODO: set result.probs
  2711. if (!process_token(result, slot)) {
  2712. // release slot because of stop condition
  2713. slot.release();
  2714. slot.print_timings();
  2715. send_final_response(slot);
  2716. metrics.on_prediction(slot);
  2717. break;
  2718. }
  2719. }
  2720. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2721. }
  2722. }
  2723. SRV_DBG("%s", "run slots completed\n");
  2724. }
  2725. json model_meta() const {
  2726. return json {
  2727. {"vocab_type", llama_vocab_type (vocab)},
  2728. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2729. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2730. {"n_embd", llama_model_n_embd (model)},
  2731. {"n_params", llama_model_n_params (model)},
  2732. {"size", llama_model_size (model)},
  2733. };
  2734. }
  2735. };
  2736. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2737. // skip GH copilot requests when using default port
  2738. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2739. return;
  2740. }
  2741. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  2742. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2743. SRV_DBG("request: %s\n", req.body.c_str());
  2744. SRV_DBG("response: %s\n", res.body.c_str());
  2745. }
  2746. std::function<void(int)> shutdown_handler;
  2747. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2748. inline void signal_handler(int signal) {
  2749. if (is_terminating.test_and_set()) {
  2750. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2751. // this is for better developer experience, we can remove when the server is stable enough
  2752. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2753. exit(1);
  2754. }
  2755. shutdown_handler(signal);
  2756. }
  2757. int main(int argc, char ** argv) {
  2758. // own arguments required by this example
  2759. common_params params;
  2760. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2761. return 1;
  2762. }
  2763. common_init();
  2764. // struct that contains llama context and inference
  2765. server_context ctx_server;
  2766. llama_backend_init();
  2767. llama_numa_init(params.numa);
  2768. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2769. LOG_INF("\n");
  2770. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2771. LOG_INF("\n");
  2772. std::unique_ptr<httplib::Server> svr;
  2773. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2774. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2775. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2776. svr.reset(
  2777. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2778. );
  2779. } else {
  2780. LOG_INF("Running without SSL\n");
  2781. svr.reset(new httplib::Server());
  2782. }
  2783. #else
  2784. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2785. LOG_ERR("Server is built without SSL support\n");
  2786. return 1;
  2787. }
  2788. svr.reset(new httplib::Server());
  2789. #endif
  2790. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2791. svr->set_default_headers({{"Server", "llama.cpp"}});
  2792. svr->set_logger(log_server_request);
  2793. auto res_error = [](httplib::Response & res, const json & error_data) {
  2794. json final_response {{"error", error_data}};
  2795. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2796. res.status = json_value(error_data, "code", 500);
  2797. };
  2798. auto res_ok = [](httplib::Response & res, const json & data) {
  2799. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2800. res.status = 200;
  2801. };
  2802. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2803. std::string message;
  2804. try {
  2805. std::rethrow_exception(ep);
  2806. } catch (const std::exception & e) {
  2807. message = e.what();
  2808. } catch (...) {
  2809. message = "Unknown Exception";
  2810. }
  2811. try {
  2812. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2813. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2814. res_error(res, formatted_error);
  2815. } catch (const std::exception & e) {
  2816. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  2817. }
  2818. });
  2819. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2820. if (res.status == 404) {
  2821. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2822. }
  2823. // for other error codes, we skip processing here because it's already done by res_error()
  2824. });
  2825. // set timeouts and change hostname and port
  2826. svr->set_read_timeout (params.timeout_read);
  2827. svr->set_write_timeout(params.timeout_write);
  2828. std::unordered_map<std::string, std::string> log_data;
  2829. log_data["hostname"] = params.hostname;
  2830. log_data["port"] = std::to_string(params.port);
  2831. if (params.api_keys.size() == 1) {
  2832. auto key = params.api_keys[0];
  2833. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2834. } else if (params.api_keys.size() > 1) {
  2835. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2836. }
  2837. // Necessary similarity of prompt for slot selection
  2838. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2839. //
  2840. // Middlewares
  2841. //
  2842. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2843. static const std::unordered_set<std::string> public_endpoints = {
  2844. "/health",
  2845. "/models",
  2846. "/v1/models",
  2847. };
  2848. // If API key is not set, skip validation
  2849. if (params.api_keys.empty()) {
  2850. return true;
  2851. }
  2852. // If path is public or is static file, skip validation
  2853. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2854. return true;
  2855. }
  2856. // Check for API key in the header
  2857. auto auth_header = req.get_header_value("Authorization");
  2858. std::string prefix = "Bearer ";
  2859. if (auth_header.substr(0, prefix.size()) == prefix) {
  2860. std::string received_api_key = auth_header.substr(prefix.size());
  2861. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2862. return true; // API key is valid
  2863. }
  2864. }
  2865. // API key is invalid or not provided
  2866. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2867. LOG_WRN("Unauthorized: Invalid API Key\n");
  2868. return false;
  2869. };
  2870. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2871. server_state current_state = state.load();
  2872. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2873. auto tmp = string_split<std::string>(req.path, '.');
  2874. if (req.path == "/" || tmp.back() == "html") {
  2875. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2876. res.status = 503;
  2877. } else {
  2878. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2879. }
  2880. return false;
  2881. }
  2882. return true;
  2883. };
  2884. // register server middlewares
  2885. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2886. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2887. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2888. if (req.method == "OPTIONS") {
  2889. res.set_header("Access-Control-Allow-Credentials", "true");
  2890. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2891. res.set_header("Access-Control-Allow-Headers", "*");
  2892. res.set_content("", "text/html"); // blank response, no data
  2893. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2894. }
  2895. if (!middleware_server_state(req, res)) {
  2896. return httplib::Server::HandlerResponse::Handled;
  2897. }
  2898. if (!middleware_validate_api_key(req, res)) {
  2899. return httplib::Server::HandlerResponse::Handled;
  2900. }
  2901. return httplib::Server::HandlerResponse::Unhandled;
  2902. });
  2903. //
  2904. // Route handlers (or controllers)
  2905. //
  2906. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2907. // error and loading states are handled by middleware
  2908. json health = {{"status", "ok"}};
  2909. res_ok(res, health);
  2910. };
  2911. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2912. if (!params.endpoint_slots) {
  2913. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2914. return;
  2915. }
  2916. // request slots data using task queue
  2917. server_task task(SERVER_TASK_TYPE_METRICS);
  2918. task.id = ctx_server.queue_tasks.get_new_id();
  2919. ctx_server.queue_results.add_waiting_task_id(task.id);
  2920. ctx_server.queue_tasks.post(task, true); // high-priority task
  2921. // get the result
  2922. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2923. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2924. if (result->is_error()) {
  2925. res_error(res, result->to_json());
  2926. return;
  2927. }
  2928. // TODO: get rid of this dynamic_cast
  2929. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2930. GGML_ASSERT(res_metrics != nullptr);
  2931. // optionally return "fail_on_no_slot" error
  2932. if (req.has_param("fail_on_no_slot")) {
  2933. if (res_metrics->n_idle_slots == 0) {
  2934. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2935. return;
  2936. }
  2937. }
  2938. res_ok(res, res_metrics->slots_data);
  2939. };
  2940. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2941. if (!params.endpoint_metrics) {
  2942. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2943. return;
  2944. }
  2945. // request slots data using task queue
  2946. server_task task(SERVER_TASK_TYPE_METRICS);
  2947. task.id = ctx_server.queue_tasks.get_new_id();
  2948. task.metrics_reset_bucket = true;
  2949. ctx_server.queue_results.add_waiting_task_id(task.id);
  2950. ctx_server.queue_tasks.post(task, true); // high-priority task
  2951. // get the result
  2952. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2953. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2954. if (result->is_error()) {
  2955. res_error(res, result->to_json());
  2956. return;
  2957. }
  2958. // TODO: get rid of this dynamic_cast
  2959. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2960. GGML_ASSERT(res_metrics != nullptr);
  2961. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2962. json all_metrics_def = json {
  2963. {"counter", {{
  2964. {"name", "prompt_tokens_total"},
  2965. {"help", "Number of prompt tokens processed."},
  2966. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2967. }, {
  2968. {"name", "prompt_seconds_total"},
  2969. {"help", "Prompt process time"},
  2970. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2971. }, {
  2972. {"name", "tokens_predicted_total"},
  2973. {"help", "Number of generation tokens processed."},
  2974. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2975. }, {
  2976. {"name", "tokens_predicted_seconds_total"},
  2977. {"help", "Predict process time"},
  2978. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2979. }, {
  2980. {"name", "n_decode_total"},
  2981. {"help", "Total number of llama_decode() calls"},
  2982. {"value", res_metrics->n_decode_total}
  2983. }, {
  2984. {"name", "n_busy_slots_per_decode"},
  2985. {"help", "Average number of busy slots per llama_decode() call"},
  2986. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  2987. }}},
  2988. {"gauge", {{
  2989. {"name", "prompt_tokens_seconds"},
  2990. {"help", "Average prompt throughput in tokens/s."},
  2991. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2992. },{
  2993. {"name", "predicted_tokens_seconds"},
  2994. {"help", "Average generation throughput in tokens/s."},
  2995. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2996. },{
  2997. {"name", "kv_cache_usage_ratio"},
  2998. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2999. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  3000. },{
  3001. {"name", "kv_cache_tokens"},
  3002. {"help", "KV-cache tokens."},
  3003. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  3004. },{
  3005. {"name", "requests_processing"},
  3006. {"help", "Number of requests processing."},
  3007. {"value", (uint64_t) res_metrics->n_processing_slots}
  3008. },{
  3009. {"name", "requests_deferred"},
  3010. {"help", "Number of requests deferred."},
  3011. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3012. }}}
  3013. };
  3014. std::stringstream prometheus;
  3015. for (const auto & el : all_metrics_def.items()) {
  3016. const auto & type = el.key();
  3017. const auto & metrics_def = el.value();
  3018. for (const auto & metric_def : metrics_def) {
  3019. const std::string name = metric_def.at("name");
  3020. const std::string help = metric_def.at("help");
  3021. auto value = json_value(metric_def, "value", 0.);
  3022. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3023. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3024. << "llamacpp:" << name << " " << value << "\n";
  3025. }
  3026. }
  3027. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3028. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3029. res.status = 200; // HTTP OK
  3030. };
  3031. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3032. json request_data = json::parse(req.body);
  3033. std::string filename = request_data.at("filename");
  3034. if (!fs_validate_filename(filename)) {
  3035. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3036. return;
  3037. }
  3038. std::string filepath = params.slot_save_path + filename;
  3039. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3040. task.id = ctx_server.queue_tasks.get_new_id();
  3041. task.slot_action.slot_id = id_slot;
  3042. task.slot_action.filename = filename;
  3043. task.slot_action.filepath = filepath;
  3044. ctx_server.queue_results.add_waiting_task_id(task.id);
  3045. ctx_server.queue_tasks.post(task);
  3046. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3047. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3048. if (result->is_error()) {
  3049. res_error(res, result->to_json());
  3050. return;
  3051. }
  3052. res_ok(res, result->to_json());
  3053. };
  3054. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3055. json request_data = json::parse(req.body);
  3056. std::string filename = request_data.at("filename");
  3057. if (!fs_validate_filename(filename)) {
  3058. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3059. return;
  3060. }
  3061. std::string filepath = params.slot_save_path + filename;
  3062. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3063. task.id = ctx_server.queue_tasks.get_new_id();
  3064. task.slot_action.slot_id = id_slot;
  3065. task.slot_action.filename = filename;
  3066. task.slot_action.filepath = filepath;
  3067. ctx_server.queue_results.add_waiting_task_id(task.id);
  3068. ctx_server.queue_tasks.post(task);
  3069. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3070. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3071. if (result->is_error()) {
  3072. res_error(res, result->to_json());
  3073. return;
  3074. }
  3075. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3076. res_ok(res, result->to_json());
  3077. };
  3078. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3079. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3080. task.id = ctx_server.queue_tasks.get_new_id();
  3081. task.slot_action.slot_id = id_slot;
  3082. ctx_server.queue_results.add_waiting_task_id(task.id);
  3083. ctx_server.queue_tasks.post(task);
  3084. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3085. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3086. if (result->is_error()) {
  3087. res_error(res, result->to_json());
  3088. return;
  3089. }
  3090. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3091. res_ok(res, result->to_json());
  3092. };
  3093. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3094. if (params.slot_save_path.empty()) {
  3095. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3096. return;
  3097. }
  3098. std::string id_slot_str = req.path_params.at("id_slot");
  3099. int id_slot;
  3100. try {
  3101. id_slot = std::stoi(id_slot_str);
  3102. } catch (const std::exception &) {
  3103. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3104. return;
  3105. }
  3106. std::string action = req.get_param_value("action");
  3107. if (action == "save") {
  3108. handle_slots_save(req, res, id_slot);
  3109. } else if (action == "restore") {
  3110. handle_slots_restore(req, res, id_slot);
  3111. } else if (action == "erase") {
  3112. handle_slots_erase(req, res, id_slot);
  3113. } else {
  3114. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3115. }
  3116. };
  3117. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3118. // this endpoint is publicly available, please only return what is safe to be exposed
  3119. json data = {
  3120. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3121. { "total_slots", ctx_server.params_base.n_parallel },
  3122. { "model_path", ctx_server.params_base.model },
  3123. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3124. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3125. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3126. { "build_info", build_info },
  3127. };
  3128. if (ctx_server.params_base.use_jinja) {
  3129. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3130. data["chat_template_tool_use"] = tool_use_src;
  3131. }
  3132. }
  3133. res_ok(res, data);
  3134. };
  3135. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3136. if (!ctx_server.params_base.endpoint_props) {
  3137. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3138. return;
  3139. }
  3140. json data = json::parse(req.body);
  3141. // update any props here
  3142. res_ok(res, {{ "success", true }});
  3143. };
  3144. // handle completion-like requests (completion, chat, infill)
  3145. // we can optionally provide a custom format for partial results and final results
  3146. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3147. server_task_type type,
  3148. json & data,
  3149. std::function<bool()> is_connection_closed,
  3150. httplib::Response & res,
  3151. oaicompat_type oaicompat) {
  3152. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3153. if (ctx_server.params_base.embedding) {
  3154. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3155. return;
  3156. }
  3157. auto completion_id = gen_chatcmplid();
  3158. std::vector<server_task> tasks;
  3159. try {
  3160. const auto & prompt = data.at("prompt");
  3161. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3162. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3163. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3164. tasks.reserve(tokenized_prompts.size());
  3165. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3166. server_task task = server_task(type);
  3167. task.id = ctx_server.queue_tasks.get_new_id();
  3168. task.index = i;
  3169. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3170. task.params = server_task::params_from_json_cmpl(
  3171. ctx_server.ctx,
  3172. ctx_server.params_base,
  3173. data);
  3174. task.id_selected_slot = json_value(data, "id_slot", -1);
  3175. // OAI-compat
  3176. task.params.oaicompat = oaicompat;
  3177. task.params.oaicompat_cmpl_id = completion_id;
  3178. // oaicompat_model is already populated by params_from_json_cmpl
  3179. tasks.push_back(task);
  3180. }
  3181. } catch (const std::exception & e) {
  3182. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3183. return;
  3184. }
  3185. ctx_server.queue_results.add_waiting_tasks(tasks);
  3186. ctx_server.queue_tasks.post(tasks);
  3187. bool stream = json_value(data, "stream", false);
  3188. const auto task_ids = server_task::get_list_id(tasks);
  3189. if (!stream) {
  3190. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3191. if (results.size() == 1) {
  3192. // single result
  3193. res_ok(res, results[0]->to_json());
  3194. } else {
  3195. // multiple results (multitask)
  3196. json arr = json::array();
  3197. for (auto & res : results) {
  3198. arr.push_back(res->to_json());
  3199. }
  3200. res_ok(res, arr);
  3201. }
  3202. }, [&](const json & error_data) {
  3203. res_error(res, error_data);
  3204. }, is_connection_closed);
  3205. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3206. } else {
  3207. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3208. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3209. json res_json = result->to_json();
  3210. if (res_json.is_array()) {
  3211. for (const auto & res : res_json) {
  3212. if (!server_sent_event(sink, "data", res)) {
  3213. // sending failed (HTTP connection closed), cancel the generation
  3214. return false;
  3215. }
  3216. }
  3217. return true;
  3218. } else {
  3219. return server_sent_event(sink, "data", res_json);
  3220. }
  3221. }, [&](const json & error_data) {
  3222. server_sent_event(sink, "error", error_data);
  3223. }, [&sink]() {
  3224. // note: do not use req.is_connection_closed here because req is already destroyed
  3225. return !sink.is_writable();
  3226. });
  3227. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3228. static const std::string ev_done = "data: [DONE]\n\n";
  3229. sink.write(ev_done.data(), ev_done.size());
  3230. }
  3231. sink.done();
  3232. return false;
  3233. };
  3234. auto on_complete = [task_ids, &ctx_server] (bool) {
  3235. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3236. };
  3237. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3238. }
  3239. };
  3240. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3241. json data = json::parse(req.body);
  3242. return handle_completions_impl(
  3243. SERVER_TASK_TYPE_COMPLETION,
  3244. data,
  3245. req.is_connection_closed,
  3246. res,
  3247. OAICOMPAT_TYPE_NONE);
  3248. };
  3249. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3250. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3251. return handle_completions_impl(
  3252. SERVER_TASK_TYPE_COMPLETION,
  3253. data,
  3254. req.is_connection_closed,
  3255. res,
  3256. OAICOMPAT_TYPE_COMPLETION);
  3257. };
  3258. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3259. // check model compatibility
  3260. std::string err;
  3261. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3262. err += "prefix token is missing. ";
  3263. }
  3264. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3265. err += "suffix token is missing. ";
  3266. }
  3267. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3268. err += "middle token is missing. ";
  3269. }
  3270. if (!err.empty()) {
  3271. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3272. return;
  3273. }
  3274. json data = json::parse(req.body);
  3275. // validate input
  3276. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3277. // prompt is optional
  3278. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3279. }
  3280. if (!data.contains("input_prefix")) {
  3281. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3282. }
  3283. if (!data.contains("input_suffix")) {
  3284. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3285. }
  3286. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3287. // input_extra is optional
  3288. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3289. return;
  3290. }
  3291. json input_extra = json_value(data, "input_extra", json::array());
  3292. for (const auto & chunk : input_extra) {
  3293. // { "text": string, "filename": string }
  3294. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3295. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3296. return;
  3297. }
  3298. // filename is optional
  3299. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3300. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3301. return;
  3302. }
  3303. }
  3304. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3305. std::string prompt = json_value(data, "prompt", std::string());
  3306. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3307. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3308. data["prompt"] = format_infill(
  3309. ctx_server.vocab,
  3310. data.at("input_prefix"),
  3311. data.at("input_suffix"),
  3312. data.at("input_extra"),
  3313. ctx_server.params_base.n_batch,
  3314. ctx_server.params_base.n_predict,
  3315. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3316. ctx_server.params_base.spm_infill,
  3317. tokenized_prompts[0]
  3318. );
  3319. return handle_completions_impl(
  3320. SERVER_TASK_TYPE_INFILL,
  3321. data,
  3322. req.is_connection_closed,
  3323. res,
  3324. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3325. };
  3326. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3327. LOG_DBG("request: %s\n", req.body.c_str());
  3328. if (ctx_server.params_base.embedding) {
  3329. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3330. return;
  3331. }
  3332. auto body = json::parse(req.body);
  3333. json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
  3334. return handle_completions_impl(
  3335. SERVER_TASK_TYPE_COMPLETION,
  3336. data,
  3337. req.is_connection_closed,
  3338. res,
  3339. OAICOMPAT_TYPE_CHAT);
  3340. };
  3341. // same with handle_chat_completions, but without inference part
  3342. const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3343. auto body = json::parse(req.body);
  3344. json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
  3345. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3346. };
  3347. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3348. json models = {
  3349. {"object", "list"},
  3350. {"data", {
  3351. {
  3352. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3353. {"object", "model"},
  3354. {"created", std::time(0)},
  3355. {"owned_by", "llamacpp"},
  3356. {"meta", ctx_server.model_meta()}
  3357. },
  3358. }}
  3359. };
  3360. res_ok(res, models);
  3361. };
  3362. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3363. const json body = json::parse(req.body);
  3364. json tokens_response = json::array();
  3365. if (body.count("content") != 0) {
  3366. const bool add_special = json_value(body, "add_special", false);
  3367. const bool with_pieces = json_value(body, "with_pieces", false);
  3368. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3369. if (with_pieces) {
  3370. for (const auto& token : tokens) {
  3371. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3372. json piece_json;
  3373. // Check if the piece is valid UTF-8
  3374. if (is_valid_utf8(piece)) {
  3375. piece_json = piece;
  3376. } else {
  3377. // If not valid UTF-8, store as array of byte values
  3378. piece_json = json::array();
  3379. for (unsigned char c : piece) {
  3380. piece_json.push_back(static_cast<int>(c));
  3381. }
  3382. }
  3383. tokens_response.push_back({
  3384. {"id", token},
  3385. {"piece", piece_json}
  3386. });
  3387. }
  3388. } else {
  3389. tokens_response = tokens;
  3390. }
  3391. }
  3392. const json data = format_tokenizer_response(tokens_response);
  3393. res_ok(res, data);
  3394. };
  3395. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3396. const json body = json::parse(req.body);
  3397. std::string content;
  3398. if (body.count("tokens") != 0) {
  3399. const llama_tokens tokens = body.at("tokens");
  3400. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3401. }
  3402. const json data = format_detokenized_response(content);
  3403. res_ok(res, data);
  3404. };
  3405. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3406. const json body = json::parse(req.body);
  3407. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3408. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3409. return;
  3410. }
  3411. // for the shape of input/content, see tokenize_input_prompts()
  3412. json prompt;
  3413. if (body.count("input") != 0) {
  3414. prompt = body.at("input");
  3415. } else if (body.contains("content")) {
  3416. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3417. prompt = body.at("content");
  3418. } else {
  3419. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3420. return;
  3421. }
  3422. bool use_base64 = false;
  3423. if (body.count("encoding_format") != 0) {
  3424. const std::string& format = body.at("encoding_format");
  3425. if (format == "base64") {
  3426. use_base64 = true;
  3427. } else if (format != "float") {
  3428. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3429. return;
  3430. }
  3431. }
  3432. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3433. for (const auto & tokens : tokenized_prompts) {
  3434. // this check is necessary for models that do not add BOS token to the input
  3435. if (tokens.empty()) {
  3436. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3437. return;
  3438. }
  3439. }
  3440. // create and queue the task
  3441. json responses = json::array();
  3442. bool error = false;
  3443. {
  3444. std::vector<server_task> tasks;
  3445. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3446. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3447. task.id = ctx_server.queue_tasks.get_new_id();
  3448. task.index = i;
  3449. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3450. // OAI-compat
  3451. task.params.oaicompat = oaicompat;
  3452. tasks.push_back(task);
  3453. }
  3454. ctx_server.queue_results.add_waiting_tasks(tasks);
  3455. ctx_server.queue_tasks.post(tasks);
  3456. // get the result
  3457. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3458. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3459. for (auto & res : results) {
  3460. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3461. responses.push_back(res->to_json());
  3462. }
  3463. }, [&](const json & error_data) {
  3464. res_error(res, error_data);
  3465. error = true;
  3466. }, req.is_connection_closed);
  3467. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3468. }
  3469. if (error) {
  3470. return;
  3471. }
  3472. // write JSON response
  3473. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3474. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3475. : json(responses);
  3476. res_ok(res, root);
  3477. };
  3478. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3479. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3480. };
  3481. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3482. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3483. };
  3484. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3485. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3486. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3487. return;
  3488. }
  3489. const json body = json::parse(req.body);
  3490. // TODO: implement
  3491. //int top_n = 1;
  3492. //if (body.count("top_n") != 1) {
  3493. // top_n = body.at("top_n");
  3494. //} else {
  3495. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3496. // return;
  3497. //}
  3498. // if true, use TEI API format, otherwise use Jina API format
  3499. // Jina: https://jina.ai/reranker/
  3500. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  3501. bool is_tei_format = body.contains("texts");
  3502. json query;
  3503. if (body.count("query") == 1) {
  3504. query = body.at("query");
  3505. if (!query.is_string()) {
  3506. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3507. return;
  3508. }
  3509. } else {
  3510. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3511. return;
  3512. }
  3513. std::vector<std::string> documents = json_value(body, "documents",
  3514. json_value(body, "texts", std::vector<std::string>()));
  3515. if (documents.empty()) {
  3516. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3517. return;
  3518. }
  3519. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3520. // create and queue the task
  3521. json responses = json::array();
  3522. bool error = false;
  3523. {
  3524. std::vector<server_task> tasks;
  3525. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3526. tasks.reserve(tokenized_docs.size());
  3527. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3528. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3529. task.id = ctx_server.queue_tasks.get_new_id();
  3530. task.index = i;
  3531. task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3532. tasks.push_back(task);
  3533. }
  3534. ctx_server.queue_results.add_waiting_tasks(tasks);
  3535. ctx_server.queue_tasks.post(tasks);
  3536. // get the result
  3537. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3538. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3539. for (auto & res : results) {
  3540. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3541. responses.push_back(res->to_json());
  3542. }
  3543. }, [&](const json & error_data) {
  3544. res_error(res, error_data);
  3545. error = true;
  3546. }, req.is_connection_closed);
  3547. }
  3548. if (error) {
  3549. return;
  3550. }
  3551. // write JSON response
  3552. json root = format_response_rerank(
  3553. body,
  3554. responses,
  3555. is_tei_format,
  3556. documents);
  3557. res_ok(res, root);
  3558. };
  3559. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3560. json result = json::array();
  3561. const auto & loras = ctx_server.params_base.lora_adapters;
  3562. for (size_t i = 0; i < loras.size(); ++i) {
  3563. auto & lora = loras[i];
  3564. result.push_back({
  3565. {"id", i},
  3566. {"path", lora.path},
  3567. {"scale", lora.scale},
  3568. });
  3569. }
  3570. res_ok(res, result);
  3571. res.status = 200; // HTTP OK
  3572. };
  3573. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3574. const json body = json::parse(req.body);
  3575. if (!body.is_array()) {
  3576. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3577. return;
  3578. }
  3579. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3580. task.id = ctx_server.queue_tasks.get_new_id();
  3581. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3582. ctx_server.queue_results.add_waiting_task_id(task.id);
  3583. ctx_server.queue_tasks.post(task);
  3584. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3585. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3586. if (result->is_error()) {
  3587. res_error(res, result->to_json());
  3588. return;
  3589. }
  3590. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3591. res_ok(res, result->to_json());
  3592. };
  3593. //
  3594. // Router
  3595. //
  3596. if (!params.webui) {
  3597. LOG_INF("Web UI is disabled\n");
  3598. } else {
  3599. // register static assets routes
  3600. if (!params.public_path.empty()) {
  3601. // Set the base directory for serving static files
  3602. bool is_found = svr->set_mount_point("/", params.public_path);
  3603. if (!is_found) {
  3604. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3605. return 1;
  3606. }
  3607. } else {
  3608. // using embedded static index.html
  3609. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3610. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3611. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3612. } else {
  3613. res.set_header("Content-Encoding", "gzip");
  3614. // COEP and COOP headers, required by pyodide (python interpreter)
  3615. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  3616. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  3617. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3618. }
  3619. return false;
  3620. });
  3621. }
  3622. }
  3623. // register API routes
  3624. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3625. svr->Get ("/metrics", handle_metrics);
  3626. svr->Get ("/props", handle_props);
  3627. svr->Post("/props", handle_props_change);
  3628. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3629. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3630. svr->Post("/completion", handle_completions); // legacy
  3631. svr->Post("/completions", handle_completions);
  3632. svr->Post("/v1/completions", handle_completions_oai);
  3633. svr->Post("/chat/completions", handle_chat_completions);
  3634. svr->Post("/v1/chat/completions", handle_chat_completions);
  3635. svr->Post("/infill", handle_infill);
  3636. svr->Post("/embedding", handle_embeddings); // legacy
  3637. svr->Post("/embeddings", handle_embeddings);
  3638. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3639. svr->Post("/rerank", handle_rerank);
  3640. svr->Post("/reranking", handle_rerank);
  3641. svr->Post("/v1/rerank", handle_rerank);
  3642. svr->Post("/v1/reranking", handle_rerank);
  3643. svr->Post("/tokenize", handle_tokenize);
  3644. svr->Post("/detokenize", handle_detokenize);
  3645. svr->Post("/apply-template", handle_apply_template);
  3646. // LoRA adapters hotswap
  3647. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3648. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3649. // Save & load slots
  3650. svr->Get ("/slots", handle_slots);
  3651. svr->Post("/slots/:id_slot", handle_slots_action);
  3652. //
  3653. // Start the server
  3654. //
  3655. if (params.n_threads_http < 1) {
  3656. // +2 threads for monitoring endpoints
  3657. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3658. }
  3659. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3660. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3661. // clean up function, to be called before exit
  3662. auto clean_up = [&svr]() {
  3663. SRV_INF("%s: cleaning up before exit...\n", __func__);
  3664. svr->stop();
  3665. llama_backend_free();
  3666. };
  3667. // bind HTTP listen port
  3668. bool was_bound = false;
  3669. if (params.port == 0) {
  3670. int bound_port = svr->bind_to_any_port(params.hostname);
  3671. if ((was_bound = (bound_port >= 0))) {
  3672. params.port = bound_port;
  3673. }
  3674. } else {
  3675. was_bound = svr->bind_to_port(params.hostname, params.port);
  3676. }
  3677. if (!was_bound) {
  3678. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3679. clean_up();
  3680. return 1;
  3681. }
  3682. // run the HTTP server in a thread
  3683. std::thread t([&]() { svr->listen_after_bind(); });
  3684. svr->wait_until_ready();
  3685. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3686. // load the model
  3687. LOG_INF("%s: loading model\n", __func__);
  3688. if (!ctx_server.load_model(params)) {
  3689. clean_up();
  3690. // t.join(); // FIXME: see below
  3691. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3692. return 1;
  3693. }
  3694. ctx_server.init();
  3695. state.store(SERVER_STATE_READY);
  3696. LOG_INF("%s: model loaded\n", __func__);
  3697. // print sample chat example to make it clear which template is used
  3698. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3699. common_chat_templates_source(ctx_server.chat_templates.get()),
  3700. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
  3701. ctx_server.queue_tasks.on_new_task([&ctx_server](const server_task & task) {
  3702. ctx_server.process_single_task(task);
  3703. });
  3704. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  3705. ctx_server.update_slots();
  3706. });
  3707. shutdown_handler = [&](int) {
  3708. // this will unblock start_loop()
  3709. ctx_server.queue_tasks.terminate();
  3710. };
  3711. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3712. struct sigaction sigint_action;
  3713. sigint_action.sa_handler = signal_handler;
  3714. sigemptyset (&sigint_action.sa_mask);
  3715. sigint_action.sa_flags = 0;
  3716. sigaction(SIGINT, &sigint_action, NULL);
  3717. sigaction(SIGTERM, &sigint_action, NULL);
  3718. #elif defined (_WIN32)
  3719. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3720. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3721. };
  3722. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3723. #endif
  3724. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3725. // this call blocks the main thread until queue_tasks.terminate() is called
  3726. ctx_server.queue_tasks.start_loop();
  3727. clean_up();
  3728. // t.join(); // FIXME: http thread may stuck if there is an on-going request. we don't need to care about this for now as the HTTP connection will already be closed at this point, but it's better to fix this
  3729. return 0;
  3730. }