ggml-quants.c 677 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752
  1. #define GGML_COMMON_IMPL_C
  2. #include "ggml-common.h"
  3. #include "ggml-quants.h"
  4. #include "ggml-impl.h"
  5. #include "ggml-cpu-impl.h"
  6. #include <math.h>
  7. #include <string.h>
  8. #include <assert.h>
  9. #include <float.h>
  10. #include <stdlib.h> // for qsort
  11. #include <stdio.h> // for GGML_ASSERT
  12. #define GROUP_MAX_EPS 1e-15f
  13. #define GROUP_MAX_EPS_IQ3_XXS 1e-8f
  14. #define GROUP_MAX_EPS_IQ2_S 1e-8f
  15. #define GROUP_MAX_EPS_IQ1_M 1e-7f
  16. #define GROUP_MAX_EPS_IQ1_S 1e-12f
  17. #if defined(_MSC_VER)
  18. // disable "possible loss of data" to avoid warnings for hundreds of casts
  19. // we should just be careful :)
  20. #pragma warning(disable: 4244 4267)
  21. #endif
  22. #define UNUSED GGML_UNUSED
  23. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  24. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  25. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  26. // multiply int8_t, add results pairwise twice
  27. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  28. // Get absolute values of x vectors
  29. const __m128i ax = _mm_sign_epi8(x, x);
  30. // Sign the values of the y vectors
  31. const __m128i sy = _mm_sign_epi8(y, x);
  32. // Perform multiplication and create 16-bit values
  33. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  34. const __m128i ones = _mm_set1_epi16(1);
  35. return _mm_madd_epi16(ones, dot);
  36. }
  37. #if __AVX__ || __AVX2__ || __AVX512F__
  38. // horizontally add 8 floats
  39. static inline float hsum_float_8(const __m256 x) {
  40. __m128 res = _mm256_extractf128_ps(x, 1);
  41. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  42. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  43. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  44. return _mm_cvtss_f32(res);
  45. }
  46. // horizontally add 8 int32_t
  47. static inline int hsum_i32_8(const __m256i a) {
  48. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  49. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  50. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  51. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  52. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  53. }
  54. // horizontally add 4 int32_t
  55. static inline int hsum_i32_4(const __m128i a) {
  56. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  57. const __m128i sum64 = _mm_add_epi32(hi64, a);
  58. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  59. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  60. }
  61. #if defined(__AVX2__) || defined(__AVX512F__)
  62. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  63. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  64. uint32_t x32;
  65. memcpy(&x32, x, sizeof(uint32_t));
  66. const __m256i shuf_mask = _mm256_set_epi64x(
  67. 0x0303030303030303, 0x0202020202020202,
  68. 0x0101010101010101, 0x0000000000000000);
  69. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  70. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  71. bytes = _mm256_or_si256(bytes, bit_mask);
  72. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  73. }
  74. // Unpack 32 4-bit fields into 32 bytes
  75. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  76. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  77. {
  78. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  79. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  80. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  81. return _mm256_and_si256(lowMask, bytes);
  82. }
  83. // add int16_t pairwise and return as float vector
  84. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  85. const __m256i ones = _mm256_set1_epi16(1);
  86. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  87. return _mm256_cvtepi32_ps(summed_pairs);
  88. }
  89. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  90. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  91. const __m256i zero = _mm256_setzero_si256();
  92. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  93. return _mm256_cvtepi32_ps(summed_pairs);
  94. #else
  95. // Perform multiplication and create 16-bit values
  96. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  97. return sum_i16_pairs_float(dot);
  98. #endif
  99. }
  100. // multiply int8_t, add results pairwise twice and return as float vector
  101. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  102. #if __AVXVNNIINT8__
  103. const __m256i zero = _mm256_setzero_si256();
  104. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  105. return _mm256_cvtepi32_ps(summed_pairs);
  106. #else
  107. // Get absolute values of x vectors
  108. const __m256i ax = _mm256_sign_epi8(x, x);
  109. // Sign the values of the y vectors
  110. const __m256i sy = _mm256_sign_epi8(y, x);
  111. return mul_sum_us8_pairs_float(ax, sy);
  112. #endif
  113. }
  114. static inline __m128i packNibbles( __m256i bytes )
  115. {
  116. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  117. #if __AVX512F__
  118. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  119. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  120. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  121. #else
  122. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  123. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  124. __m256i low = _mm256_and_si256( lowByte, bytes );
  125. high = _mm256_srli_epi16( high, 4 );
  126. bytes = _mm256_or_si256( low, high );
  127. // Compress uint16_t lanes into bytes
  128. __m128i r0 = _mm256_castsi256_si128( bytes );
  129. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  130. return _mm_packus_epi16( r0, r1 );
  131. #endif
  132. }
  133. #elif defined(__AVX__)
  134. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  135. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  136. uint32_t x32;
  137. memcpy(&x32, x, sizeof(uint32_t));
  138. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  139. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  140. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  141. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  142. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  143. bytesl = _mm_or_si128(bytesl, bit_mask);
  144. bytesh = _mm_or_si128(bytesh, bit_mask);
  145. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  146. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  147. return MM256_SET_M128I(bytesh, bytesl);
  148. }
  149. // Unpack 32 4-bit fields into 32 bytes
  150. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  151. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  152. {
  153. // Load 16 bytes from memory
  154. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  155. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  156. const __m128i lowMask = _mm_set1_epi8(0xF);
  157. tmpl = _mm_and_si128(lowMask, tmpl);
  158. tmph = _mm_and_si128(lowMask, tmph);
  159. return MM256_SET_M128I(tmph, tmpl);
  160. }
  161. // add int16_t pairwise and return as float vector
  162. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  163. const __m128i ones = _mm_set1_epi16(1);
  164. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  165. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  166. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  167. return _mm256_cvtepi32_ps(summed_pairs);
  168. }
  169. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  170. const __m128i axl = _mm256_castsi256_si128(ax);
  171. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  172. const __m128i syl = _mm256_castsi256_si128(sy);
  173. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  174. // Perform multiplication and create 16-bit values
  175. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  176. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  177. return sum_i16_pairs_float(doth, dotl);
  178. }
  179. // multiply int8_t, add results pairwise twice and return as float vector
  180. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  181. const __m128i xl = _mm256_castsi256_si128(x);
  182. const __m128i xh = _mm256_extractf128_si256(x, 1);
  183. const __m128i yl = _mm256_castsi256_si128(y);
  184. const __m128i yh = _mm256_extractf128_si256(y, 1);
  185. // Get absolute values of x vectors
  186. const __m128i axl = _mm_sign_epi8(xl, xl);
  187. const __m128i axh = _mm_sign_epi8(xh, xh);
  188. // Sign the values of the y vectors
  189. const __m128i syl = _mm_sign_epi8(yl, xl);
  190. const __m128i syh = _mm_sign_epi8(yh, xh);
  191. // Perform multiplication and create 16-bit values
  192. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  193. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  194. return sum_i16_pairs_float(doth, dotl);
  195. }
  196. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  197. {
  198. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  199. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  200. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  201. __m128i low = _mm_and_si128( lowByte, bytes1 );
  202. high = _mm_srli_epi16( high, 4 );
  203. bytes1 = _mm_or_si128( low, high );
  204. high = _mm_andnot_si128( lowByte, bytes2 );
  205. low = _mm_and_si128( lowByte, bytes2 );
  206. high = _mm_srli_epi16( high, 4 );
  207. bytes2 = _mm_or_si128( low, high );
  208. return _mm_packus_epi16( bytes1, bytes2);
  209. }
  210. static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
  211. const __m128i ax = _mm_sign_epi8(x, x);
  212. const __m128i sy = _mm_sign_epi8(y, x);
  213. return _mm_maddubs_epi16(ax, sy);
  214. }
  215. #endif
  216. #elif defined(__SSSE3__)
  217. // horizontally add 4x4 floats
  218. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  219. __m128 res_0 =_mm_hadd_ps(a, b);
  220. __m128 res_1 =_mm_hadd_ps(c, d);
  221. __m128 res =_mm_hadd_ps(res_0, res_1);
  222. res =_mm_hadd_ps(res, res);
  223. res =_mm_hadd_ps(res, res);
  224. return _mm_cvtss_f32(res);
  225. }
  226. #endif // __AVX__ || __AVX2__ || __AVX512F__
  227. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  228. #if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  229. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  230. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  231. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  232. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  233. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  234. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  235. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  236. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  237. // precomputed tables for expanding 8bits to 8 bytes:
  238. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  239. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  240. #endif
  241. #if defined(__loongarch_asx)
  242. #ifdef __clang__
  243. #define VREGS_PREFIX "$vr"
  244. #define XREGS_PREFIX "$xr"
  245. #else // GCC
  246. #define VREGS_PREFIX "$f"
  247. #define XREGS_PREFIX "$f"
  248. #endif
  249. #define __ALL_REGS "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31"
  250. // Convert __m128i to __m256i
  251. static inline __m256i ____m256i(__m128i in) {
  252. __m256i out = __lasx_xvldi(0);
  253. __asm__ volatile (
  254. ".irp i," __ALL_REGS "\n\t"
  255. " .ifc %[out], " XREGS_PREFIX"\\i \n\t"
  256. " .irp j," __ALL_REGS "\n\t"
  257. " .ifc %[in], " VREGS_PREFIX "\\j \n\t"
  258. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  259. " .endif \n\t"
  260. " .endr \n\t"
  261. " .endif \n\t"
  262. ".endr \n\t"
  263. : [out] "+f" (out) : [in] "f" (in)
  264. );
  265. return out;
  266. }
  267. // Convert two __m128i to __m256i
  268. static inline __m256i lasx_set_q(__m128i inhi, __m128i inlo) {
  269. __m256i out;
  270. __asm__ volatile (
  271. ".irp i," __ALL_REGS "\n\t"
  272. " .ifc %[hi], " VREGS_PREFIX "\\i \n\t"
  273. " .irp j," __ALL_REGS "\n\t"
  274. " .ifc %[lo], " VREGS_PREFIX "\\j \n\t"
  275. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  276. " .endif \n\t"
  277. " .endr \n\t"
  278. " .endif \n\t"
  279. ".endr \n\t"
  280. ".ifnc %[out], %[hi] \n\t"
  281. ".irp i," __ALL_REGS "\n\t"
  282. " .ifc %[out], " XREGS_PREFIX "\\i \n\t"
  283. " .irp j," __ALL_REGS "\n\t"
  284. " .ifc %[hi], " VREGS_PREFIX "\\j \n\t"
  285. " xvori.b $xr\\i, $xr\\j, 0 \n\t"
  286. " .endif \n\t"
  287. " .endr \n\t"
  288. " .endif \n\t"
  289. ".endr \n\t"
  290. ".endif \n\t"
  291. : [out] "=f" (out), [hi] "+f" (inhi)
  292. : [lo] "f" (inlo)
  293. );
  294. return out;
  295. }
  296. // Convert __m256i low part to __m128i
  297. static inline __m128i lasx_extracti128_lo(__m256i in) {
  298. __m128i out;
  299. __asm__ volatile (
  300. ".ifnc %[out], %[in] \n\t"
  301. ".irp i," __ALL_REGS "\n\t"
  302. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  303. " .irp j," __ALL_REGS "\n\t"
  304. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  305. " vori.b $vr\\i, $vr\\j, 0 \n\t"
  306. " .endif \n\t"
  307. " .endr \n\t"
  308. " .endif \n\t"
  309. ".endr \n\t"
  310. ".endif \n\t"
  311. : [out] "=f" (out) : [in] "f" (in)
  312. );
  313. return out;
  314. }
  315. // Convert __m256i high part to __m128i
  316. static inline __m128i lasx_extracti128_hi(__m256i in) {
  317. __m128i out;
  318. __asm__ volatile (
  319. ".irp i," __ALL_REGS "\n\t"
  320. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  321. " .irp j," __ALL_REGS "\n\t"
  322. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  323. " xvpermi.q $xr\\i, $xr\\j, 0x11 \n\t"
  324. " .endif \n\t"
  325. " .endr \n\t"
  326. " .endif \n\t"
  327. ".endr \n\t"
  328. : [out] "=f" (out) : [in] "f" (in)
  329. );
  330. return out;
  331. }
  332. static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0) {
  333. v8i32 __ret = {e0, e1, e2, e3, e4, e5, e6, e7};
  334. return (__m256i)__ret;
  335. }
  336. static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
  337. v4i32 __ret = {d, c, b, a};
  338. return (__m128i)__ret;
  339. }
  340. static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) {
  341. v4i64 __ret = {d, c, b, a};
  342. return (__m256i)__ret;
  343. }
  344. static __m256i lasx_insertf128( __m128i x, __m128i y) {
  345. return lasx_set_q(x, y);
  346. }
  347. static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
  348. __m128i mask_f, zero, tmp0, tmp2, mask;
  349. int f = 0x8f;
  350. mask_f = __lsx_vreplgr2vr_b(f);
  351. zero = __lsx_vldi(0);
  352. tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
  353. tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  354. mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
  355. tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
  356. return __lsx_vshuf_b(a, zero, tmp2);
  357. }
  358. static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
  359. __m256i mask_f, zero, tmp0, tmp2, mask;
  360. int f = 0x8f;
  361. mask_f = __lasx_xvreplgr2vr_b(f);
  362. zero = __lasx_xvldi(0);
  363. tmp0 = __lasx_xvand_v(b, mask_f); // get mask with low 4 bit and sign bits
  364. tmp0 = __lasx_xvori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  365. mask = __lasx_xvsle_b(zero, tmp0); // if mask >= 0, set mask
  366. tmp2 = __lasx_xvand_v(tmp0, mask); // maskout the in2 < ones
  367. return __lasx_xvshuf_b(a, zero, tmp2);
  368. }
  369. static __m256i lasx_extu8_16(__m128i a) {
  370. __m128i zero = __lsx_vldi(0);
  371. __m128i vlo = __lsx_vilvl_b(zero, a);
  372. __m128i vhi = __lsx_vilvh_b(zero, a);
  373. return lasx_set_q(vhi, vlo);
  374. }
  375. static __m256i lasx_ext8_16(__m128i a) {
  376. __m128i sign = __lsx_vslti_b(a, 0);
  377. __m128i vlo = __lsx_vilvl_b(sign, a);
  378. __m128i vhi = __lsx_vilvh_b(sign, a);
  379. return lasx_set_q(vhi, vlo);
  380. }
  381. static __m256i lasx_ext16_32(__m128i a) {
  382. __m256i tmp1;
  383. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0);
  384. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1);
  385. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2);
  386. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3);
  387. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4);
  388. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5);
  389. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6);
  390. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7);
  391. return tmp1;
  392. }
  393. static __m128i lasx_extracti128( __m256i a, int pos) {
  394. __m128i ret;
  395. if( pos == 0)
  396. {
  397. ret = lasx_extracti128_lo(a);
  398. } else {
  399. ret = lasx_extracti128_hi(a);
  400. }
  401. return ret;
  402. }
  403. static __m128 lasx_extractf128( __m256 a, int pos) {
  404. __m128 ret;
  405. if( pos == 0)
  406. {
  407. ret = (__m128)lasx_extracti128_lo((__m256i)a);
  408. } else {
  409. ret = (__m128)lasx_extracti128_hi((__m256i)a);
  410. }
  411. return ret;
  412. }
  413. static __m128i lsx_hadd_h(__m128i a, __m128i b) {
  414. __m128i tmp1 = __lsx_vpickev_h(b, a);
  415. __m128i tmp2 = __lsx_vpickod_h(b, a);
  416. return __lsx_vadd_h(tmp1, tmp2);
  417. }
  418. static __m128i lsx_hadd_w(__m128i a, __m128i b) {
  419. __m128i tmp1 = __lsx_vpickev_w(b, a);
  420. __m128i tmp2 = __lsx_vpickod_w(b, a);
  421. return __lsx_vadd_w(tmp1, tmp2);
  422. }
  423. static __m128 lsx_hadd_s(__m128 a, __m128 b) {
  424. __m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
  425. __m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
  426. return __lsx_vfadd_s(tmp1, tmp2);
  427. }
  428. static __m256i lasx_maddubs_h(__m256i a, __m256i b) {
  429. __m256i tmp1, tmp2;
  430. tmp1 = __lasx_xvmulwev_h_b(a, b);
  431. tmp2 = __lasx_xvmulwod_h_b(a, b);
  432. return __lasx_xvsadd_h(tmp1, tmp2);
  433. }
  434. static __m256i lasx_madd_h(__m256i a, __m256i b) {
  435. __m256i tmp1, tmp2;
  436. tmp1 = __lasx_xvmulwev_w_h(a, b);
  437. tmp2 = __lasx_xvmulwod_w_h(a, b);
  438. return __lasx_xvadd_w(tmp1, tmp2);
  439. }
  440. static __m256i lasx_packs_w(__m256i a, __m256i b) {
  441. __m256i tmp, tmp1;
  442. tmp = __lasx_xvsat_w(a, 15);
  443. tmp1 = __lasx_xvsat_w(b, 15);
  444. return __lasx_xvpickev_h(tmp1, tmp);
  445. }
  446. static __m256i lasx_packs_h(__m256i a, __m256i b) {
  447. __m256i tmp, tmp1;
  448. tmp = __lasx_xvsat_h(a, 7);
  449. tmp1 = __lasx_xvsat_h(b, 7);
  450. return __lasx_xvpickev_b(tmp1, tmp);
  451. }
  452. static __m128i lsx_packs_w(__m128i a, __m128i b) {
  453. __m128i tmp, tmp1;
  454. tmp = __lsx_vsat_w(a, 15);
  455. tmp1 = __lsx_vsat_w(b, 15);
  456. return __lsx_vpickev_h(tmp1, tmp);
  457. }
  458. static __m128i lsx_packs_h(__m128i a, __m128i b) {
  459. __m128i tmp, tmp1;
  460. tmp = __lsx_vsat_h(a, 7);
  461. tmp1 = __lsx_vsat_h(b, 7);
  462. return __lsx_vpickev_b(tmp1, tmp);
  463. }
  464. static __m128i lsx_packus_h(__m128i a, __m128i b) {
  465. __m128i tmp, tmp1;
  466. tmp = __lsx_vsat_hu(a, 7);
  467. tmp1 = __lsx_vsat_hu(b, 7);
  468. return __lsx_vpickev_b(tmp1, tmp);
  469. }
  470. static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
  471. __m128i tmp1, tmp2;
  472. tmp1 = __lsx_vmulwev_h_b(a, b);
  473. tmp2 = __lsx_vmulwod_h_b(a, b);
  474. return __lsx_vsadd_h(tmp1, tmp2);
  475. }
  476. static __m128i lsx_madd_h(__m128i a, __m128i b) {
  477. __m128i tmp1, tmp2;
  478. tmp1 = __lsx_vmulwev_w_h(a, b);
  479. tmp2 = __lsx_vmulwod_w_h(a, b);
  480. return __lsx_vadd_w(tmp1, tmp2);
  481. }
  482. // multiply int8_t, add results pairwise twice
  483. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  484. // Get absolute values of x vectors
  485. const __m128i ax = __lsx_vsigncov_b(x, x);
  486. // Sign the values of the y vectors
  487. const __m128i sy = __lsx_vsigncov_b(x, y);
  488. // Perform multiplication and create 16-bit values
  489. const __m128i dot = lsx_maddubs_h(ax, sy);
  490. const __m128i ones = __lsx_vreplgr2vr_h(1);
  491. return lsx_madd_h(ones, dot);
  492. }
  493. // horizontally add 8 floats
  494. static inline float hsum_float_8(const __m256 x) {
  495. __m128 res = lasx_extractf128(x, 1);
  496. ft_union tmp;
  497. res = __lsx_vfadd_s(res, lasx_extractf128(x, 0));
  498. res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res));
  499. res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0));
  500. tmp.i = __lsx_vpickve2gr_w(res, 0);
  501. return tmp.f;
  502. }
  503. // horizontally add 8 int32_t
  504. static inline int hsum_i32_8(const __m256i a) {
  505. __m256i tmp1 = __lasx_xvpermi_q(a, a, 0x11);
  506. __m256i tmp2 = __lasx_xvpermi_q(a, a, 0x00);
  507. __m128i tmp1_128 = lasx_extracti128_lo(tmp1);
  508. __m128i tmp2_128 = lasx_extracti128_lo(tmp2);
  509. __m128i sum128 = __lsx_vadd_w(tmp1_128, tmp2_128);
  510. __m128i ev = __lsx_vpickev_w(sum128, sum128);
  511. __m128i od = __lsx_vpickod_w(sum128, sum128);
  512. __m128i sum64 = __lsx_vadd_w(ev, od);
  513. int sum64_1, sum64_2;
  514. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  515. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  516. return sum64_1 + sum64_2;
  517. }
  518. // horizontally add 4 int32_t
  519. static inline int hsum_i32_4(const __m128i a) {
  520. __m128i ev = __lsx_vpickev_w(a, a);
  521. __m128i od = __lsx_vpickod_w(a, a);
  522. __m128i sum64 = __lsx_vadd_w(ev, od);
  523. int sum64_1, sum64_2;
  524. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  525. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  526. return sum64_1 + sum64_2;
  527. }
  528. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  529. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  530. uint32_t x32;
  531. memcpy(&x32, x, sizeof(uint32_t));
  532. const __m256i shuf_mask = lasx_set_d(
  533. 0x0303030303030303, 0x0202020202020202,
  534. 0x0101010101010101, 0x0000000000000000);
  535. __m256i bytes = lasx_shuffle_b(__lasx_xvreplgr2vr_w(x32), shuf_mask);
  536. const __m256i bit_mask = __lasx_xvreplgr2vr_d(0x7fbfdfeff7fbfdfe);
  537. bytes = __lasx_xvor_v(bytes, bit_mask);
  538. return __lasx_xvseq_b(bytes, __lasx_xvreplgr2vr_d(-1));
  539. }
  540. // Unpack 32 4-bit fields into 32 bytes
  541. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  542. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
  543. const __m128i lo = __lsx_vld((const __m128i *)rsi, 0);
  544. __m128i hi = __lsx_vsrli_h(lo, 4);
  545. return __lasx_xvandi_b(lasx_insertf128(hi, lo), 0xf);
  546. }
  547. // add int16_t pairwise and return as float vector
  548. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  549. __m256i v = __lasx_xvpackod_h(x, x);
  550. __m256i summed_pairs = __lasx_xvaddwev_w_h(x, v);
  551. return __lasx_xvffint_s_w(summed_pairs);
  552. }
  553. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  554. // Perform multiplication and create 16-bit values
  555. const __m256i dot = lasx_maddubs_h(ax, sy);
  556. return sum_i16_pairs_float(dot);
  557. }
  558. // multiply int8_t, add results pairwise twice and return as float vector
  559. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  560. // Get absolute values of x vectors
  561. const __m256i ax = __lasx_xvsigncov_b(x, x);
  562. // Sign the values of the y vectors
  563. const __m256i sy = __lasx_xvsigncov_b(x, y);
  564. return mul_sum_us8_pairs_float(ax, sy);
  565. }
  566. static inline __m128i packNibbles( __m256i bytes ) {
  567. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  568. const __m256i lowByte = __lasx_xvreplgr2vr_h(0xFF);
  569. __m256i high = __lasx_xvandn_v(lowByte, bytes);
  570. __m256i low = __lasx_xvand_v(lowByte, bytes);
  571. high = __lasx_xvsrli_h(high, 4);
  572. bytes = __lasx_xvor_v(low, high);
  573. // Compress uint16_t lanes into bytes
  574. __m128i *r0 = (__m128i *)&bytes;
  575. __m256i tmp_h128 = __lasx_xvpermi_q(bytes, bytes, 0x11);
  576. __m128i *r1 = (__m128i *)&tmp_h128;
  577. __m128i zero = __lsx_vldi(0);
  578. __m128i tmp, tmp2, tmp3;
  579. tmp = __lsx_vmax_h(zero, *r0);
  580. tmp2 = __lsx_vsat_hu(tmp, 7);
  581. tmp = __lsx_vmax_h(zero, *r1);
  582. tmp3 = __lsx_vsat_hu(tmp, 7);
  583. return __lsx_vpickev_b(tmp3, tmp2);
  584. }
  585. #endif //__loongarch_asx
  586. // reference implementation for deterministic creation of model files
  587. void quantize_row_q4_0_ref(const float * restrict x, block_q4_0 * restrict y, int64_t k) {
  588. static const int qk = QK4_0;
  589. assert(k % qk == 0);
  590. const int nb = k / qk;
  591. for (int i = 0; i < nb; i++) {
  592. float amax = 0.0f; // absolute max
  593. float max = 0.0f;
  594. for (int j = 0; j < qk; j++) {
  595. const float v = x[i*qk + j];
  596. if (amax < fabsf(v)) {
  597. amax = fabsf(v);
  598. max = v;
  599. }
  600. }
  601. const float d = max / -8;
  602. const float id = d ? 1.0f/d : 0.0f;
  603. y[i].d = GGML_FP32_TO_FP16(d);
  604. for (int j = 0; j < qk/2; ++j) {
  605. const float x0 = x[i*qk + 0 + j]*id;
  606. const float x1 = x[i*qk + qk/2 + j]*id;
  607. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  608. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  609. y[i].qs[j] = xi0;
  610. y[i].qs[j] |= xi1 << 4;
  611. }
  612. }
  613. }
  614. void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
  615. quantize_row_q4_0_ref(x, y, k);
  616. }
  617. void quantize_row_q4_1_ref(const float * restrict x, block_q4_1 * restrict y, int64_t k) {
  618. const int qk = QK4_1;
  619. assert(k % qk == 0);
  620. const int nb = k / qk;
  621. for (int i = 0; i < nb; i++) {
  622. float min = FLT_MAX;
  623. float max = -FLT_MAX;
  624. for (int j = 0; j < qk; j++) {
  625. const float v = x[i*qk + j];
  626. if (v < min) min = v;
  627. if (v > max) max = v;
  628. }
  629. const float d = (max - min) / ((1 << 4) - 1);
  630. const float id = d ? 1.0f/d : 0.0f;
  631. y[i].d = GGML_FP32_TO_FP16(d);
  632. y[i].m = GGML_FP32_TO_FP16(min);
  633. for (int j = 0; j < qk/2; ++j) {
  634. const float x0 = (x[i*qk + 0 + j] - min)*id;
  635. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  636. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  637. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  638. y[i].qs[j] = xi0;
  639. y[i].qs[j] |= xi1 << 4;
  640. }
  641. }
  642. }
  643. void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) {
  644. quantize_row_q4_1_ref(x, y, k);
  645. }
  646. void quantize_row_q5_0_ref(const float * restrict x, block_q5_0 * restrict y, int64_t k) {
  647. static const int qk = QK5_0;
  648. assert(k % qk == 0);
  649. const int nb = k / qk;
  650. for (int i = 0; i < nb; i++) {
  651. float amax = 0.0f; // absolute max
  652. float max = 0.0f;
  653. for (int j = 0; j < qk; j++) {
  654. const float v = x[i*qk + j];
  655. if (amax < fabsf(v)) {
  656. amax = fabsf(v);
  657. max = v;
  658. }
  659. }
  660. const float d = max / -16;
  661. const float id = d ? 1.0f/d : 0.0f;
  662. y[i].d = GGML_FP32_TO_FP16(d);
  663. uint32_t qh = 0;
  664. for (int j = 0; j < qk/2; ++j) {
  665. const float x0 = x[i*qk + 0 + j]*id;
  666. const float x1 = x[i*qk + qk/2 + j]*id;
  667. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  668. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  669. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  670. // get the 5-th bit and store it in qh at the right position
  671. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  672. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  673. }
  674. memcpy(&y[i].qh, &qh, sizeof(qh));
  675. }
  676. }
  677. void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) {
  678. quantize_row_q5_0_ref(x, y, k);
  679. }
  680. void quantize_row_q5_1_ref(const float * restrict x, block_q5_1 * restrict y, int64_t k) {
  681. const int qk = QK5_1;
  682. assert(k % qk == 0);
  683. const int nb = k / qk;
  684. for (int i = 0; i < nb; i++) {
  685. float min = FLT_MAX;
  686. float max = -FLT_MAX;
  687. for (int j = 0; j < qk; j++) {
  688. const float v = x[i*qk + j];
  689. if (v < min) min = v;
  690. if (v > max) max = v;
  691. }
  692. const float d = (max - min) / ((1 << 5) - 1);
  693. const float id = d ? 1.0f/d : 0.0f;
  694. y[i].d = GGML_FP32_TO_FP16(d);
  695. y[i].m = GGML_FP32_TO_FP16(min);
  696. uint32_t qh = 0;
  697. for (int j = 0; j < qk/2; ++j) {
  698. const float x0 = (x[i*qk + 0 + j] - min)*id;
  699. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  700. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  701. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  702. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  703. // get the 5-th bit and store it in qh at the right position
  704. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  705. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  706. }
  707. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  708. }
  709. }
  710. void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) {
  711. quantize_row_q5_1_ref(x, y, k);
  712. }
  713. // reference implementation for deterministic creation of model files
  714. void quantize_row_q8_0_ref(const float * restrict x, block_q8_0 * restrict y, int64_t k) {
  715. assert(k % QK8_0 == 0);
  716. const int nb = k / QK8_0;
  717. for (int i = 0; i < nb; i++) {
  718. float amax = 0.0f; // absolute max
  719. for (int j = 0; j < QK8_0; j++) {
  720. const float v = x[i*QK8_0 + j];
  721. amax = MAX(amax, fabsf(v));
  722. }
  723. const float d = amax / ((1 << 7) - 1);
  724. const float id = d ? 1.0f/d : 0.0f;
  725. y[i].d = GGML_FP32_TO_FP16(d);
  726. for (int j = 0; j < QK8_0; ++j) {
  727. const float x0 = x[i*QK8_0 + j]*id;
  728. y[i].qs[j] = roundf(x0);
  729. }
  730. }
  731. }
  732. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) {
  733. assert(QK8_0 == 32);
  734. assert(k % QK8_0 == 0);
  735. const int nb = k / QK8_0;
  736. block_q8_0 * restrict y = vy;
  737. #if defined(__ARM_NEON)
  738. for (int i = 0; i < nb; i++) {
  739. float32x4_t srcv [8];
  740. float32x4_t asrcv[8];
  741. float32x4_t amaxv[8];
  742. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  743. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  744. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  745. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  746. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  747. const float amax = vmaxvq_f32(amaxv[0]);
  748. const float d = amax / ((1 << 7) - 1);
  749. const float id = d ? 1.0f/d : 0.0f;
  750. y[i].d = GGML_FP32_TO_FP16(d);
  751. for (int j = 0; j < 8; j++) {
  752. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  753. const int32x4_t vi = vcvtnq_s32_f32(v);
  754. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  755. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  756. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  757. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  758. }
  759. }
  760. #elif defined(__wasm_simd128__)
  761. for (int i = 0; i < nb; i++) {
  762. v128_t srcv [8];
  763. v128_t asrcv[8];
  764. v128_t amaxv[8];
  765. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  766. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  767. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  768. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  769. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  770. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  771. wasm_f32x4_extract_lane(amaxv[0], 1)),
  772. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  773. wasm_f32x4_extract_lane(amaxv[0], 3)));
  774. const float d = amax / ((1 << 7) - 1);
  775. const float id = d ? 1.0f/d : 0.0f;
  776. y[i].d = GGML_FP32_TO_FP16(d);
  777. for (int j = 0; j < 8; j++) {
  778. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  779. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  780. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  781. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  782. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  783. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  784. }
  785. }
  786. #elif defined(__AVX2__) || defined(__AVX__)
  787. for (int i = 0; i < nb; i++) {
  788. // Load elements into 4 AVX vectors
  789. __m256 v0 = _mm256_loadu_ps( x );
  790. __m256 v1 = _mm256_loadu_ps( x + 8 );
  791. __m256 v2 = _mm256_loadu_ps( x + 16 );
  792. __m256 v3 = _mm256_loadu_ps( x + 24 );
  793. x += 32;
  794. // Compute max(abs(e)) for the block
  795. const __m256 signBit = _mm256_set1_ps( -0.0f );
  796. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  797. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  798. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  799. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  800. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  801. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  802. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  803. const float maxScalar = _mm_cvtss_f32( max4 );
  804. // Quantize these floats
  805. const float d = maxScalar / 127.f;
  806. y[i].d = GGML_FP32_TO_FP16(d);
  807. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  808. const __m256 mul = _mm256_set1_ps( id );
  809. // Apply the multiplier
  810. v0 = _mm256_mul_ps( v0, mul );
  811. v1 = _mm256_mul_ps( v1, mul );
  812. v2 = _mm256_mul_ps( v2, mul );
  813. v3 = _mm256_mul_ps( v3, mul );
  814. // Round to nearest integer
  815. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  816. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  817. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  818. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  819. // Convert floats to integers
  820. __m256i i0 = _mm256_cvtps_epi32( v0 );
  821. __m256i i1 = _mm256_cvtps_epi32( v1 );
  822. __m256i i2 = _mm256_cvtps_epi32( v2 );
  823. __m256i i3 = _mm256_cvtps_epi32( v3 );
  824. #if defined(__AVX2__)
  825. // Convert int32 to int16
  826. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  827. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  828. // Convert int16 to int8
  829. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  830. // We got our precious signed bytes, but the order is now wrong
  831. // These AVX2 pack instructions process 16-byte pieces independently
  832. // The following instruction is fixing the order
  833. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  834. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  835. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  836. #else
  837. // Since we don't have in AVX some necessary functions,
  838. // we split the registers in half and call AVX2 analogs from SSE
  839. __m128i ni0 = _mm256_castsi256_si128( i0 );
  840. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  841. __m128i ni2 = _mm256_castsi256_si128( i1 );
  842. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  843. __m128i ni4 = _mm256_castsi256_si128( i2 );
  844. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  845. __m128i ni6 = _mm256_castsi256_si128( i3 );
  846. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  847. // Convert int32 to int16
  848. ni0 = _mm_packs_epi32( ni0, ni1 );
  849. ni2 = _mm_packs_epi32( ni2, ni3 );
  850. ni4 = _mm_packs_epi32( ni4, ni5 );
  851. ni6 = _mm_packs_epi32( ni6, ni7 );
  852. // Convert int16 to int8
  853. ni0 = _mm_packs_epi16( ni0, ni2 );
  854. ni4 = _mm_packs_epi16( ni4, ni6 );
  855. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  856. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  857. #endif
  858. }
  859. #elif defined(__riscv_v_intrinsic)
  860. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  861. for (int i = 0; i < nb; i++) {
  862. // load elements
  863. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  864. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  865. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  866. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  867. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  868. const float d = amax / ((1 << 7) - 1);
  869. const float id = d ? 1.0f/d : 0.0f;
  870. y[i].d = GGML_FP32_TO_FP16(d);
  871. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  872. // convert to integer
  873. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  874. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  875. // store result
  876. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  877. }
  878. #elif defined(__POWER9_VECTOR__)
  879. for (int i = 0; i < nb; i++) {
  880. vector float srcv [8];
  881. vector float asrcv[8];
  882. vector float amaxv[8];
  883. vector signed int vi[8];
  884. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  885. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  886. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  887. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  888. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  889. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  890. vec_extract(amaxv[0], 1)),
  891. MAX(vec_extract(amaxv[0], 2),
  892. vec_extract(amaxv[0], 3)));
  893. const float d = amax / ((1 << 7) - 1);
  894. const float id = d ? 1.0f/d : 0.0f;
  895. const vector float vid = vec_splats(id);
  896. y[i].d = GGML_FP32_TO_FP16(d);
  897. for (int j = 0; j < 8; j++) {
  898. const vector float v = vec_round(vec_mul(srcv[j], vid));
  899. vi[j] = vec_cts(v, 0);
  900. }
  901. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  902. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  903. }
  904. #elif defined(__loongarch_asx)
  905. for (int i = 0; i < nb; i++) {
  906. ft_union fi;
  907. __m256 v0 = (__m256)__lasx_xvld( x , 0);
  908. __m256 v1 = (__m256)__lasx_xvld( x , 32);
  909. __m256 v2 = (__m256)__lasx_xvld( x , 64);
  910. __m256 v3 = (__m256)__lasx_xvld( x , 96);
  911. x += 32;
  912. // Compute max(abs(e)) for the block
  913. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  914. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  915. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  916. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  917. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  918. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs , 0) );
  919. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  920. __m128 tmp = max4;
  921. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 ));
  922. fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  923. const float max_scalar = fi.f;
  924. // Quantize these floats
  925. const float d = max_scalar / 127.f;
  926. y[i].d = GGML_FP32_TO_FP16(d);
  927. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  928. const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id );
  929. // Apply the multiplier
  930. v0 = __lasx_xvfmul_s( v0, mul );
  931. v1 = __lasx_xvfmul_s( v1, mul );
  932. v2 = __lasx_xvfmul_s( v2, mul );
  933. v3 = __lasx_xvfmul_s( v3, mul );
  934. // Round to nearest integer
  935. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  936. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  937. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  938. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  939. __m128i ni0 = lasx_extracti128( i0, 0 );
  940. __m128i ni1 = lasx_extracti128( i0, 1);
  941. __m128i ni2 = lasx_extracti128( i1, 0);
  942. __m128i ni3 = lasx_extracti128( i1, 1);
  943. __m128i ni4 = lasx_extracti128( i2, 0);
  944. __m128i ni5 = lasx_extracti128( i2, 1);
  945. __m128i ni6 = lasx_extracti128( i3, 0);
  946. __m128i ni7 = lasx_extracti128( i3, 1);
  947. // Convert int32 to int16
  948. ni0 = lsx_packs_w( ni0, ni1 );
  949. ni2 = lsx_packs_w( ni2, ni3 );
  950. ni4 = lsx_packs_w( ni4, ni5 );
  951. ni6 = lsx_packs_w( ni6, ni7 );
  952. // Convert int16 to int8
  953. ni0 = lsx_packs_h( ni0, ni2 );
  954. ni4 = lsx_packs_h( ni4, ni6 );
  955. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  956. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  957. }
  958. #else
  959. GGML_UNUSED(nb);
  960. // scalar
  961. quantize_row_q8_0_ref(x, y, k);
  962. #endif
  963. }
  964. // reference implementation for deterministic creation of model files
  965. void quantize_row_q8_1_ref(const float * restrict x, block_q8_1 * restrict y, int64_t k) {
  966. assert(QK8_1 == 32);
  967. assert(k % QK8_1 == 0);
  968. const int nb = k / QK8_1;
  969. for (int i = 0; i < nb; i++) {
  970. float amax = 0.0f; // absolute max
  971. for (int j = 0; j < QK8_1; j++) {
  972. const float v = x[i*QK8_1 + j];
  973. amax = MAX(amax, fabsf(v));
  974. }
  975. const float d = amax / ((1 << 7) - 1);
  976. const float id = d ? 1.0f/d : 0.0f;
  977. y[i].d = GGML_FP32_TO_FP16(d);
  978. int sum = 0;
  979. for (int j = 0; j < QK8_1/2; ++j) {
  980. const float v0 = x[i*QK8_1 + j]*id;
  981. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  982. y[i].qs[ j] = roundf(v0);
  983. y[i].qs[QK8_1/2 + j] = roundf(v1);
  984. sum += y[i].qs[ j];
  985. sum += y[i].qs[QK8_1/2 + j];
  986. }
  987. y[i].s = GGML_FP32_TO_FP16(sum*d);
  988. }
  989. }
  990. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) {
  991. assert(k % QK8_1 == 0);
  992. const int nb = k / QK8_1;
  993. block_q8_1 * restrict y = vy;
  994. #if defined(__ARM_NEON)
  995. for (int i = 0; i < nb; i++) {
  996. float32x4_t srcv [8];
  997. float32x4_t asrcv[8];
  998. float32x4_t amaxv[8];
  999. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1000. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1001. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1002. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1003. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1004. const float amax = vmaxvq_f32(amaxv[0]);
  1005. const float d = amax / ((1 << 7) - 1);
  1006. const float id = d ? 1.0f/d : 0.0f;
  1007. y[i].d = GGML_FP32_TO_FP16(d);
  1008. int32x4_t accv = vdupq_n_s32(0);
  1009. for (int j = 0; j < 8; j++) {
  1010. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1011. const int32x4_t vi = vcvtnq_s32_f32(v);
  1012. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1013. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1014. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1015. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1016. accv = vaddq_s32(accv, vi);
  1017. }
  1018. y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
  1019. }
  1020. #elif defined(__wasm_simd128__)
  1021. for (int i = 0; i < nb; i++) {
  1022. v128_t srcv [8];
  1023. v128_t asrcv[8];
  1024. v128_t amaxv[8];
  1025. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1026. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1027. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1028. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1029. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1030. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1031. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1032. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1033. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1034. const float d = amax / ((1 << 7) - 1);
  1035. const float id = d ? 1.0f/d : 0.0f;
  1036. y[i].d = GGML_FP32_TO_FP16(d);
  1037. v128_t accv = wasm_i32x4_splat(0);
  1038. for (int j = 0; j < 8; j++) {
  1039. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1040. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1041. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1042. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1043. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1044. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1045. accv = wasm_i32x4_add(accv, vi);
  1046. }
  1047. y[i].s = GGML_FP32_TO_FP16(
  1048. d * (wasm_i32x4_extract_lane(accv, 0) +
  1049. wasm_i32x4_extract_lane(accv, 1) +
  1050. wasm_i32x4_extract_lane(accv, 2) +
  1051. wasm_i32x4_extract_lane(accv, 3)));
  1052. }
  1053. #elif defined(__AVX2__) || defined(__AVX__)
  1054. for (int i = 0; i < nb; i++) {
  1055. // Load elements into 4 AVX vectors
  1056. __m256 v0 = _mm256_loadu_ps( x );
  1057. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1058. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1059. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1060. x += 32;
  1061. // Compute max(abs(e)) for the block
  1062. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1063. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1064. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1065. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1066. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1067. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1068. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1069. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1070. const float max_scalar = _mm_cvtss_f32( max4 );
  1071. // Quantize these floats
  1072. const float d = max_scalar / 127.f;
  1073. y[i].d = GGML_FP32_TO_FP16(d);
  1074. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1075. const __m256 mul = _mm256_set1_ps( id );
  1076. // Apply the multiplier
  1077. v0 = _mm256_mul_ps( v0, mul );
  1078. v1 = _mm256_mul_ps( v1, mul );
  1079. v2 = _mm256_mul_ps( v2, mul );
  1080. v3 = _mm256_mul_ps( v3, mul );
  1081. // Round to nearest integer
  1082. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1083. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1084. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1085. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1086. // Convert floats to integers
  1087. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1088. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1089. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1090. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1091. #if defined(__AVX2__)
  1092. // Compute the sum of the quants and set y[i].s
  1093. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))));
  1094. // Convert int32 to int16
  1095. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1096. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1097. // Convert int16 to int8
  1098. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1099. // We got our precious signed bytes, but the order is now wrong
  1100. // These AVX2 pack instructions process 16-byte pieces independently
  1101. // The following instruction is fixing the order
  1102. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1103. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1104. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1105. #else
  1106. // Since we don't have in AVX some necessary functions,
  1107. // we split the registers in half and call AVX2 analogs from SSE
  1108. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1109. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1110. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1111. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1112. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1113. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1114. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1115. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1116. // Compute the sum of the quants and set y[i].s
  1117. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1118. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1119. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1)));
  1120. // Convert int32 to int16
  1121. ni0 = _mm_packs_epi32( ni0, ni1 );
  1122. ni2 = _mm_packs_epi32( ni2, ni3 );
  1123. ni4 = _mm_packs_epi32( ni4, ni5 );
  1124. ni6 = _mm_packs_epi32( ni6, ni7 );
  1125. // Convert int16 to int8
  1126. ni0 = _mm_packs_epi16( ni0, ni2 );
  1127. ni4 = _mm_packs_epi16( ni4, ni6 );
  1128. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1129. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1130. #endif
  1131. }
  1132. #elif defined(__riscv_v_intrinsic)
  1133. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  1134. for (int i = 0; i < nb; i++) {
  1135. // load elements
  1136. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1137. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1138. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1139. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1140. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1141. const float d = amax / ((1 << 7) - 1);
  1142. const float id = d ? 1.0f/d : 0.0f;
  1143. y[i].d = GGML_FP32_TO_FP16(d);
  1144. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1145. // convert to integer
  1146. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1147. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1148. // store result
  1149. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1150. // compute sum for y[i].s
  1151. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1152. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1153. // set y[i].s
  1154. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1155. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1156. }
  1157. #elif defined(__POWER9_VECTOR__)
  1158. for (int i = 0; i < nb; i++) {
  1159. vector float srcv [8];
  1160. vector float asrcv[8];
  1161. vector float amaxv[8];
  1162. vector signed int vi[8];
  1163. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  1164. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  1165. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  1166. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  1167. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  1168. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  1169. vec_extract(amaxv[0], 1)),
  1170. MAX(vec_extract(amaxv[0], 2),
  1171. vec_extract(amaxv[0], 3)));
  1172. const float d = amax / ((1 << 7) - 1);
  1173. const float id = d ? 1.0f/d : 0.0f;
  1174. const vector float vid = vec_splats(id);
  1175. y[i].d = GGML_FP32_TO_FP16(d);
  1176. vector int accv = vec_splats(0);
  1177. for (int j = 0; j < 8; j++) {
  1178. const vector float v = vec_round(vec_mul(srcv[j], vid));
  1179. vi[j] = vec_cts(v, 0);
  1180. accv = vec_add(accv, vi[j]);
  1181. }
  1182. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  1183. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  1184. accv = vec_add(accv, vec_sld(accv, accv, 4));
  1185. accv = vec_add(accv, vec_sld(accv, accv, 8));
  1186. y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0));
  1187. }
  1188. #elif defined(__loongarch_asx)
  1189. for (int i = 0; i < nb; i++) {
  1190. ft_union ft;
  1191. __m256 v0 = (__m256)__lasx_xvld( x , 0 );
  1192. __m256 v1 = (__m256)__lasx_xvld( x , 32 );
  1193. __m256 v2 = (__m256)__lasx_xvld( x , 64 );
  1194. __m256 v3 = (__m256)__lasx_xvld( x , 96 );
  1195. x += 32;
  1196. // Compute max(abs(e)) for the block
  1197. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  1198. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  1199. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  1200. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  1201. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  1202. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) );
  1203. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  1204. __m128 tmp = max4;
  1205. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
  1206. ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  1207. const float max_scalar = ft.f;
  1208. // Quantize these floats
  1209. const float d = max_scalar / 127.f;
  1210. y[i].d = GGML_FP32_TO_FP16(d);
  1211. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1212. const __m256 mul = __lasx_xvreplfr2vr_s( id );
  1213. // Apply the multiplier
  1214. v0 = __lasx_xvfmul_s( v0, mul );
  1215. v1 = __lasx_xvfmul_s( v1, mul );
  1216. v2 = __lasx_xvfmul_s( v2, mul );
  1217. v3 = __lasx_xvfmul_s( v3, mul );
  1218. // Round to nearest integer
  1219. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  1220. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  1221. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  1222. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  1223. __m128i ni0 = lasx_extracti128(i0, 0);
  1224. __m128i ni1 = lasx_extracti128( i0, 1);
  1225. __m128i ni2 = lasx_extracti128( i1, 0);
  1226. __m128i ni3 = lasx_extracti128( i1, 1);
  1227. __m128i ni4 = lasx_extracti128( i2, 0 );
  1228. __m128i ni5 = lasx_extracti128( i2, 1);
  1229. __m128i ni6 = lasx_extracti128( i3, 0);
  1230. __m128i ni7 = lasx_extracti128( i3, 1);
  1231. // Compute the sum of the quants and set y[i].s
  1232. const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3));
  1233. const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7));
  1234. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
  1235. // Convert int32 to int16
  1236. ni0 = lsx_packs_w( ni0, ni1 );
  1237. ni2 = lsx_packs_w( ni2, ni3 );
  1238. ni4 = lsx_packs_w( ni4, ni5 );
  1239. ni6 = lsx_packs_w( ni6, ni7 );
  1240. // Convert int16 to int8
  1241. ni0 = lsx_packs_h( ni0, ni2 );
  1242. ni4 = lsx_packs_h( ni4, ni6 );
  1243. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  1244. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  1245. }
  1246. #else
  1247. GGML_UNUSED(nb);
  1248. // scalar
  1249. quantize_row_q8_1_ref(x, y, k);
  1250. #endif
  1251. }
  1252. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int64_t k) {
  1253. static const int qk = QK4_0;
  1254. assert(k % qk == 0);
  1255. const int nb = k / qk;
  1256. for (int i = 0; i < nb; i++) {
  1257. const float d = GGML_FP16_TO_FP32(x[i].d);
  1258. for (int j = 0; j < qk/2; ++j) {
  1259. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1260. const int x1 = (x[i].qs[j] >> 4) - 8;
  1261. y[i*qk + j + 0 ] = x0*d;
  1262. y[i*qk + j + qk/2] = x1*d;
  1263. }
  1264. }
  1265. }
  1266. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int64_t k) {
  1267. static const int qk = QK4_1;
  1268. assert(k % qk == 0);
  1269. const int nb = k / qk;
  1270. for (int i = 0; i < nb; i++) {
  1271. const float d = GGML_FP16_TO_FP32(x[i].d);
  1272. const float m = GGML_FP16_TO_FP32(x[i].m);
  1273. for (int j = 0; j < qk/2; ++j) {
  1274. const int x0 = (x[i].qs[j] & 0x0F);
  1275. const int x1 = (x[i].qs[j] >> 4);
  1276. y[i*qk + j + 0 ] = x0*d + m;
  1277. y[i*qk + j + qk/2] = x1*d + m;
  1278. }
  1279. }
  1280. }
  1281. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int64_t k) {
  1282. static const int qk = QK5_0;
  1283. assert(k % qk == 0);
  1284. const int nb = k / qk;
  1285. for (int i = 0; i < nb; i++) {
  1286. const float d = GGML_FP16_TO_FP32(x[i].d);
  1287. uint32_t qh;
  1288. memcpy(&qh, x[i].qh, sizeof(qh));
  1289. for (int j = 0; j < qk/2; ++j) {
  1290. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1291. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1292. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1293. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1294. y[i*qk + j + 0 ] = x0*d;
  1295. y[i*qk + j + qk/2] = x1*d;
  1296. }
  1297. }
  1298. }
  1299. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int64_t k) {
  1300. static const int qk = QK5_1;
  1301. assert(k % qk == 0);
  1302. const int nb = k / qk;
  1303. for (int i = 0; i < nb; i++) {
  1304. const float d = GGML_FP16_TO_FP32(x[i].d);
  1305. const float m = GGML_FP16_TO_FP32(x[i].m);
  1306. uint32_t qh;
  1307. memcpy(&qh, x[i].qh, sizeof(qh));
  1308. for (int j = 0; j < qk/2; ++j) {
  1309. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1310. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1311. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1312. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1313. y[i*qk + j + 0 ] = x0*d + m;
  1314. y[i*qk + j + qk/2] = x1*d + m;
  1315. }
  1316. }
  1317. }
  1318. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int64_t k) {
  1319. static const int qk = QK8_0;
  1320. assert(k % qk == 0);
  1321. const int nb = k / qk;
  1322. for (int i = 0; i < nb; i++) {
  1323. const float d = GGML_FP16_TO_FP32(x[i].d);
  1324. for (int j = 0; j < qk; ++j) {
  1325. y[i*qk + j] = x[i].qs[j]*d;
  1326. }
  1327. }
  1328. }
  1329. //
  1330. // 2-6 bit quantization in super-blocks
  1331. //
  1332. //
  1333. // ===================== Helper functions
  1334. //
  1335. static inline int nearest_int(float fval) {
  1336. assert(fabsf(fval) <= 4194303.f);
  1337. float val = fval + 12582912.f;
  1338. int i; memcpy(&i, &val, sizeof(int));
  1339. return (i & 0x007fffff) - 0x00400000;
  1340. }
  1341. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1342. const float * restrict qw) {
  1343. float max = 0;
  1344. float amax = 0;
  1345. for (int i = 0; i < n; ++i) {
  1346. float ax = fabsf(x[i]);
  1347. if (ax > amax) { amax = ax; max = x[i]; }
  1348. }
  1349. if (amax < GROUP_MAX_EPS) { // all zero
  1350. for (int i = 0; i < n; ++i) {
  1351. L[i] = 0;
  1352. }
  1353. return 0.f;
  1354. }
  1355. float iscale = -nmax / max;
  1356. if (rmse_type == 0) {
  1357. for (int i = 0; i < n; ++i) {
  1358. int l = nearest_int(iscale * x[i]);
  1359. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1360. }
  1361. return 1/iscale;
  1362. }
  1363. bool return_early = false;
  1364. if (rmse_type < 0) {
  1365. rmse_type = -rmse_type;
  1366. return_early = true;
  1367. }
  1368. float sumlx = 0;
  1369. float suml2 = 0;
  1370. #ifdef HAVE_BUGGY_APPLE_LINKER
  1371. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1372. for (volatile int i = 0; i < n; ++i) {
  1373. #else
  1374. for (int i = 0; i < n; ++i) {
  1375. #endif
  1376. int l = nearest_int(iscale * x[i]);
  1377. l = MAX(-nmax, MIN(nmax-1, l));
  1378. L[i] = l + nmax;
  1379. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1380. sumlx += w*x[i]*l;
  1381. suml2 += w*l*l;
  1382. }
  1383. float scale = suml2 ? sumlx/suml2 : 0.0f;
  1384. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1385. float best = scale * sumlx;
  1386. for (int is = -9; is <= 9; ++is) {
  1387. if (is == 0) {
  1388. continue;
  1389. }
  1390. iscale = -(nmax + 0.1f*is) / max;
  1391. sumlx = suml2 = 0;
  1392. for (int i = 0; i < n; ++i) {
  1393. int l = nearest_int(iscale * x[i]);
  1394. l = MAX(-nmax, MIN(nmax-1, l));
  1395. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1396. sumlx += w*x[i]*l;
  1397. suml2 += w*l*l;
  1398. }
  1399. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1400. for (int i = 0; i < n; ++i) {
  1401. int l = nearest_int(iscale * x[i]);
  1402. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1403. }
  1404. scale = sumlx/suml2; best = scale*sumlx;
  1405. }
  1406. }
  1407. return scale;
  1408. }
  1409. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1410. float max = 0;
  1411. float amax = 0;
  1412. for (int i = 0; i < n; ++i) {
  1413. float ax = fabsf(x[i]);
  1414. if (ax > amax) { amax = ax; max = x[i]; }
  1415. }
  1416. if (amax < GROUP_MAX_EPS) { // all zero
  1417. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1418. return 0.f;
  1419. }
  1420. float iscale = -nmax / max;
  1421. if (do_rmse) {
  1422. float sumlx = 0;
  1423. float suml2 = 0;
  1424. for (int i = 0; i < n; ++i) {
  1425. int l = nearest_int(iscale * x[i]);
  1426. l = MAX(-nmax, MIN(nmax-1, l));
  1427. L[i] = l;
  1428. float w = x[i]*x[i];
  1429. sumlx += w*x[i]*l;
  1430. suml2 += w*l*l;
  1431. }
  1432. for (int itry = 0; itry < 5; ++itry) {
  1433. int n_changed = 0;
  1434. for (int i = 0; i < n; ++i) {
  1435. float w = x[i]*x[i];
  1436. float slx = sumlx - w*x[i]*L[i];
  1437. if (slx > 0) {
  1438. float sl2 = suml2 - w*L[i]*L[i];
  1439. int new_l = nearest_int(x[i] * sl2 / slx);
  1440. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1441. if (new_l != L[i]) {
  1442. slx += w*x[i]*new_l;
  1443. sl2 += w*new_l*new_l;
  1444. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1445. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1446. ++n_changed;
  1447. }
  1448. }
  1449. }
  1450. }
  1451. if (!n_changed) {
  1452. break;
  1453. }
  1454. }
  1455. for (int i = 0; i < n; ++i) {
  1456. L[i] += nmax;
  1457. }
  1458. return sumlx / suml2;
  1459. }
  1460. for (int i = 0; i < n; ++i) {
  1461. int l = nearest_int(iscale * x[i]);
  1462. l = MAX(-nmax, MIN(nmax-1, l));
  1463. L[i] = l + nmax;
  1464. }
  1465. return 1/iscale;
  1466. }
  1467. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1468. int ntry, float alpha) {
  1469. float min = x[0];
  1470. float max = x[0];
  1471. for (int i = 1; i < n; ++i) {
  1472. if (x[i] < min) min = x[i];
  1473. if (x[i] > max) max = x[i];
  1474. }
  1475. if (max == min) {
  1476. for (int i = 0; i < n; ++i) L[i] = 0;
  1477. *the_min = 0;
  1478. return 0.f;
  1479. }
  1480. if (min > 0) min = 0;
  1481. float iscale = nmax/(max - min);
  1482. float scale = 1/iscale;
  1483. for (int itry = 0; itry < ntry; ++itry) {
  1484. float sumlx = 0; int suml2 = 0;
  1485. bool did_change = false;
  1486. for (int i = 0; i < n; ++i) {
  1487. int l = nearest_int(iscale*(x[i] - min));
  1488. l = MAX(0, MIN(nmax, l));
  1489. if (l != L[i]) {
  1490. L[i] = l;
  1491. did_change = true;
  1492. }
  1493. sumlx += (x[i] - min)*l;
  1494. suml2 += l*l;
  1495. }
  1496. scale = sumlx/suml2;
  1497. float sum = 0;
  1498. for (int i = 0; i < n; ++i) {
  1499. sum += x[i] - scale*L[i];
  1500. }
  1501. min = alpha*min + (1 - alpha)*sum/n;
  1502. if (min > 0) min = 0;
  1503. iscale = 1/scale;
  1504. if (!did_change) break;
  1505. }
  1506. *the_min = -min;
  1507. return scale;
  1508. }
  1509. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1510. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1511. float rmin, float rdelta, int nstep, bool use_mad) {
  1512. float min = x[0];
  1513. float max = x[0];
  1514. float sum_w = weights[0];
  1515. float sum_x = sum_w * x[0];
  1516. #ifdef HAVE_BUGGY_APPLE_LINKER
  1517. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1518. for (volatile int i = 1; i < n; ++i) {
  1519. #else
  1520. for (int i = 1; i < n; ++i) {
  1521. #endif
  1522. if (x[i] < min) min = x[i];
  1523. if (x[i] > max) max = x[i];
  1524. float w = weights[i];
  1525. sum_w += w;
  1526. sum_x += w * x[i];
  1527. }
  1528. if (min > 0) min = 0;
  1529. if (max == min) {
  1530. for (int i = 0; i < n; ++i) L[i] = 0;
  1531. *the_min = -min;
  1532. return 0.f;
  1533. }
  1534. float iscale = nmax/(max - min);
  1535. float scale = 1/iscale;
  1536. float best_mad = 0;
  1537. for (int i = 0; i < n; ++i) {
  1538. int l = nearest_int(iscale*(x[i] - min));
  1539. L[i] = MAX(0, MIN(nmax, l));
  1540. float diff = scale * L[i] + min - x[i];
  1541. diff = use_mad ? fabsf(diff) : diff * diff;
  1542. float w = weights[i];
  1543. best_mad += w * diff;
  1544. }
  1545. if (nstep < 1) {
  1546. *the_min = -min;
  1547. return scale;
  1548. }
  1549. for (int is = 0; is <= nstep; ++is) {
  1550. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1551. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1552. for (int i = 0; i < n; ++i) {
  1553. int l = nearest_int(iscale*(x[i] - min));
  1554. l = MAX(0, MIN(nmax, l));
  1555. Laux[i] = l;
  1556. float w = weights[i];
  1557. sum_l += w*l;
  1558. sum_l2 += w*l*l;
  1559. sum_xl += w*l*x[i];
  1560. }
  1561. float D = sum_w * sum_l2 - sum_l * sum_l;
  1562. if (D > 0) {
  1563. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1564. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1565. if (this_min > 0) {
  1566. this_min = 0;
  1567. this_scale = sum_xl / sum_l2;
  1568. }
  1569. float mad = 0;
  1570. for (int i = 0; i < n; ++i) {
  1571. float diff = this_scale * Laux[i] + this_min - x[i];
  1572. diff = use_mad ? fabsf(diff) : diff * diff;
  1573. float w = weights[i];
  1574. mad += w * diff;
  1575. }
  1576. if (mad < best_mad) {
  1577. for (int i = 0; i < n; ++i) {
  1578. L[i] = Laux[i];
  1579. }
  1580. best_mad = mad;
  1581. scale = this_scale;
  1582. min = this_min;
  1583. }
  1584. }
  1585. }
  1586. *the_min = -min;
  1587. return scale;
  1588. }
  1589. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1590. if (j < 4) {
  1591. *d = q[j] & 63; *m = q[j + 4] & 63;
  1592. } else {
  1593. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1594. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1595. }
  1596. }
  1597. //========================- 2-bit (de)-quantization
  1598. void quantize_row_q2_K_ref(const float * restrict x, block_q2_K * restrict y, int64_t k) {
  1599. assert(k % QK_K == 0);
  1600. const int nb = k / QK_K;
  1601. uint8_t L[QK_K];
  1602. uint8_t Laux[16];
  1603. float weights[16];
  1604. float mins[QK_K/16];
  1605. float scales[QK_K/16];
  1606. const float q4scale = 15.f;
  1607. for (int i = 0; i < nb; i++) {
  1608. float max_scale = 0; // as we are deducting the min, scales are always positive
  1609. float max_min = 0;
  1610. for (int j = 0; j < QK_K/16; ++j) {
  1611. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1612. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1613. float scale = scales[j];
  1614. if (scale > max_scale) {
  1615. max_scale = scale;
  1616. }
  1617. float min = mins[j];
  1618. if (min > max_min) {
  1619. max_min = min;
  1620. }
  1621. }
  1622. if (max_scale > 0) {
  1623. float iscale = q4scale/max_scale;
  1624. for (int j = 0; j < QK_K/16; ++j) {
  1625. int l = nearest_int(iscale*scales[j]);
  1626. y[i].scales[j] = l;
  1627. }
  1628. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1629. } else {
  1630. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1631. y[i].d = GGML_FP32_TO_FP16(0.f);
  1632. }
  1633. if (max_min > 0) {
  1634. float iscale = q4scale/max_min;
  1635. for (int j = 0; j < QK_K/16; ++j) {
  1636. int l = nearest_int(iscale*mins[j]);
  1637. y[i].scales[j] |= (l << 4);
  1638. }
  1639. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1640. } else {
  1641. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1642. }
  1643. for (int j = 0; j < QK_K/16; ++j) {
  1644. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1645. if (!d) continue;
  1646. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1647. for (int ii = 0; ii < 16; ++ii) {
  1648. int l = nearest_int((x[16*j + ii] + dm)/d);
  1649. l = MAX(0, MIN(3, l));
  1650. L[16*j + ii] = l;
  1651. }
  1652. }
  1653. for (int j = 0; j < QK_K; j += 128) {
  1654. for (int l = 0; l < 32; ++l) {
  1655. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1656. }
  1657. }
  1658. x += QK_K;
  1659. }
  1660. }
  1661. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int64_t k) {
  1662. assert(k % QK_K == 0);
  1663. const int nb = k / QK_K;
  1664. for (int i = 0; i < nb; i++) {
  1665. const float d = GGML_FP16_TO_FP32(x[i].d);
  1666. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1667. const uint8_t * q = x[i].qs;
  1668. int is = 0;
  1669. float dl, ml;
  1670. for (int n = 0; n < QK_K; n += 128) {
  1671. int shift = 0;
  1672. for (int j = 0; j < 4; ++j) {
  1673. uint8_t sc = x[i].scales[is++];
  1674. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1675. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1676. sc = x[i].scales[is++];
  1677. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1678. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1679. shift += 2;
  1680. }
  1681. q += 32;
  1682. }
  1683. }
  1684. }
  1685. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) {
  1686. quantize_row_q2_K_ref(x, vy, k);
  1687. }
  1688. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1689. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1690. float rmin, float rdelta, int nstep, bool use_mad) {
  1691. float min = x[0];
  1692. float max = x[0];
  1693. float sum_w = weights ? weights[0] : x[0]*x[0];
  1694. float sum_x = sum_w * x[0];
  1695. #ifdef HAVE_BUGGY_APPLE_LINKER
  1696. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1697. for (volatile int i = 1; i < n; ++i) {
  1698. #else
  1699. for (int i = 1; i < n; ++i) {
  1700. #endif
  1701. if (x[i] < min) min = x[i];
  1702. if (x[i] > max) max = x[i];
  1703. float w = weights ? weights[i] : x[i]*x[i];
  1704. sum_w += w;
  1705. sum_x += w * x[i];
  1706. }
  1707. if (min > 0) {
  1708. min = 0;
  1709. }
  1710. if (max <= min) {
  1711. memset(L, 0, n);
  1712. *the_min = -min;
  1713. return 0.f;
  1714. }
  1715. float iscale = nmax/(max - min);
  1716. float scale = 1/iscale;
  1717. float best_mad = 0;
  1718. for (int i = 0; i < n; ++i) {
  1719. int l = nearest_int(iscale*(x[i] - min));
  1720. L[i] = MAX(0, MIN(nmax, l));
  1721. float diff = scale * L[i] + min - x[i];
  1722. diff = use_mad ? fabsf(diff) : diff*diff;
  1723. float w = weights ? weights[i] : x[i]*x[i];
  1724. best_mad += w * diff;
  1725. }
  1726. if (nstep < 1) {
  1727. *the_min = -min;
  1728. return scale;
  1729. }
  1730. for (int is = 0; is <= nstep; ++is) {
  1731. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1732. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1733. for (int i = 0; i < n; ++i) {
  1734. int l = nearest_int(iscale*(x[i] - min));
  1735. l = MAX(0, MIN(nmax, l));
  1736. Laux[i] = l;
  1737. float w = weights ? weights[i] : x[i]*x[i];
  1738. sum_l += w*l;
  1739. sum_l2 += w*l*l;
  1740. sum_xl += w*l*x[i];
  1741. }
  1742. float D = sum_w * sum_l2 - sum_l * sum_l;
  1743. if (D > 0) {
  1744. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1745. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1746. if (this_min > 0) {
  1747. this_min = 0;
  1748. this_scale = sum_xl / sum_l2;
  1749. }
  1750. float mad = 0;
  1751. for (int i = 0; i < n; ++i) {
  1752. float diff = this_scale * Laux[i] + this_min - x[i];
  1753. diff = use_mad ? fabsf(diff) : diff*diff;
  1754. float w = weights ? weights[i] : x[i]*x[i];
  1755. mad += w * diff;
  1756. }
  1757. if (mad < best_mad) {
  1758. for (int i = 0; i < n; ++i) {
  1759. L[i] = Laux[i];
  1760. }
  1761. best_mad = mad;
  1762. scale = this_scale;
  1763. min = this_min;
  1764. }
  1765. }
  1766. }
  1767. *the_min = -min;
  1768. return scale;
  1769. }
  1770. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1771. float max = 0;
  1772. for (int i = 0; i < n; ++i) {
  1773. max = MAX(max, x[i]);
  1774. }
  1775. if (!max) { // all zero
  1776. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1777. return 0.f;
  1778. }
  1779. float iscale = nmax / max;
  1780. for (int i = 0; i < n; ++i) {
  1781. L[i] = nearest_int(iscale * x[i]);
  1782. }
  1783. float scale = 1/iscale;
  1784. float best_mse = 0;
  1785. for (int i = 0; i < n; ++i) {
  1786. float diff = x[i] - scale*L[i];
  1787. float w = quant_weights[i];
  1788. best_mse += w*diff*diff;
  1789. }
  1790. for (int is = -4; is <= 4; ++is) {
  1791. if (is == 0) continue;
  1792. float iscale_is = (0.1f*is + nmax)/max;
  1793. float scale_is = 1/iscale_is;
  1794. float mse = 0;
  1795. for (int i = 0; i < n; ++i) {
  1796. int l = nearest_int(iscale_is*x[i]);
  1797. l = MIN(nmax, l);
  1798. float diff = x[i] - scale_is*l;
  1799. float w = quant_weights[i];
  1800. mse += w*diff*diff;
  1801. }
  1802. if (mse < best_mse) {
  1803. best_mse = mse;
  1804. iscale = iscale_is;
  1805. }
  1806. }
  1807. float sumlx = 0;
  1808. float suml2 = 0;
  1809. for (int i = 0; i < n; ++i) {
  1810. int l = nearest_int(iscale * x[i]);
  1811. l = MIN(nmax, l);
  1812. L[i] = l;
  1813. float w = quant_weights[i];
  1814. sumlx += w*x[i]*l;
  1815. suml2 += w*l*l;
  1816. }
  1817. for (int itry = 0; itry < 5; ++itry) {
  1818. int n_changed = 0;
  1819. for (int i = 0; i < n; ++i) {
  1820. float w = quant_weights[i];
  1821. float slx = sumlx - w*x[i]*L[i];
  1822. float sl2 = suml2 - w*L[i]*L[i];
  1823. if (slx > 0 && sl2 > 0) {
  1824. int new_l = nearest_int(x[i] * sl2 / slx);
  1825. new_l = MIN(nmax, new_l);
  1826. if (new_l != L[i]) {
  1827. slx += w*x[i]*new_l;
  1828. sl2 += w*new_l*new_l;
  1829. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1830. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1831. ++n_changed;
  1832. }
  1833. }
  1834. }
  1835. }
  1836. if (!n_changed) {
  1837. break;
  1838. }
  1839. }
  1840. return sumlx/suml2;
  1841. }
  1842. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1843. GGML_ASSERT(quant_weights);
  1844. assert(k % QK_K == 0);
  1845. const int nb = k / QK_K;
  1846. const bool requantize = true;
  1847. uint8_t L[QK_K];
  1848. uint8_t Laux[16];
  1849. float mins[QK_K/16];
  1850. float scales[QK_K/16];
  1851. float sw[QK_K/16];
  1852. float weight[16];
  1853. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1854. for (int i = 0; i < nb; i++) {
  1855. memset(sw, 0, QK_K/16*sizeof(float));
  1856. float sumx2 = 0;
  1857. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1858. float sigma2 = sumx2/QK_K;
  1859. for (int j = 0; j < QK_K/16; ++j) {
  1860. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1861. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1862. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1863. scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1864. }
  1865. float dm, mm;
  1866. dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1867. mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1868. y[i].d = GGML_FP32_TO_FP16(dm);
  1869. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1870. dm = GGML_FP16_TO_FP32(y[i].d);
  1871. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1872. for (int j = 0; j < QK_K/16; ++j) {
  1873. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1874. }
  1875. if (requantize) {
  1876. for (int j = 0; j < QK_K/16; ++j) {
  1877. const float d = dm * (y[i].scales[j] & 0xF);
  1878. if (!d) continue;
  1879. const float m = mm * (y[i].scales[j] >> 4);
  1880. for (int ii = 0; ii < 16; ++ii) {
  1881. int l = nearest_int((x[16*j + ii] + m)/d);
  1882. l = MAX(0, MIN(3, l));
  1883. L[16*j + ii] = l;
  1884. }
  1885. }
  1886. }
  1887. for (int j = 0; j < QK_K; j += 128) {
  1888. for (int l = 0; l < 32; ++l) {
  1889. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1890. }
  1891. }
  1892. x += QK_K;
  1893. }
  1894. }
  1895. size_t quantize_q2_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  1896. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1897. if (!quant_weights) {
  1898. quantize_row_q2_K_ref(src, dst, (int64_t)nrow*n_per_row);
  1899. }
  1900. else {
  1901. char * qrow = (char *)dst;
  1902. for (int64_t row = 0; row < nrow; ++row) {
  1903. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1904. src += n_per_row;
  1905. qrow += row_size;
  1906. }
  1907. }
  1908. return nrow * row_size;
  1909. }
  1910. //========================= 3-bit (de)-quantization
  1911. void quantize_row_q3_K_ref(const float * restrict x, block_q3_K * restrict y, int64_t k) {
  1912. assert(k % QK_K == 0);
  1913. const int nb = k / QK_K;
  1914. int8_t L[QK_K];
  1915. float scales[QK_K / 16];
  1916. for (int i = 0; i < nb; i++) {
  1917. float max_scale = 0;
  1918. float amax = 0;
  1919. for (int j = 0; j < QK_K/16; ++j) {
  1920. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1921. float scale = fabsf(scales[j]);
  1922. if (scale > amax) {
  1923. amax = scale; max_scale = scales[j];
  1924. }
  1925. }
  1926. memset(y[i].scales, 0, 12);
  1927. if (max_scale) {
  1928. float iscale = -32.f/max_scale;
  1929. for (int j = 0; j < QK_K/16; ++j) {
  1930. int8_t l = nearest_int(iscale*scales[j]);
  1931. l = MAX(-32, MIN(31, l)) + 32;
  1932. if (j < 8) {
  1933. y[i].scales[j] = l & 0xF;
  1934. } else {
  1935. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1936. }
  1937. l >>= 4;
  1938. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1939. }
  1940. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1941. } else {
  1942. y[i].d = GGML_FP32_TO_FP16(0.f);
  1943. }
  1944. int8_t sc;
  1945. for (int j = 0; j < QK_K/16; ++j) {
  1946. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1947. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1948. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1949. if (!d) {
  1950. continue;
  1951. }
  1952. for (int ii = 0; ii < 16; ++ii) {
  1953. int l = nearest_int(x[16*j + ii]/d);
  1954. l = MAX(-4, MIN(3, l));
  1955. L[16*j + ii] = l + 4;
  1956. }
  1957. }
  1958. memset(y[i].hmask, 0, QK_K/8);
  1959. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1960. int m = 0;
  1961. uint8_t hm = 1;
  1962. for (int j = 0; j < QK_K; ++j) {
  1963. if (L[j] > 3) {
  1964. y[i].hmask[m] |= hm;
  1965. L[j] -= 4;
  1966. }
  1967. if (++m == QK_K/8) {
  1968. m = 0; hm <<= 1;
  1969. }
  1970. }
  1971. for (int j = 0; j < QK_K; j += 128) {
  1972. for (int l = 0; l < 32; ++l) {
  1973. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1974. }
  1975. }
  1976. x += QK_K;
  1977. }
  1978. }
  1979. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) {
  1980. assert(k % QK_K == 0);
  1981. const int nb = k / QK_K;
  1982. const uint32_t kmask1 = 0x03030303;
  1983. const uint32_t kmask2 = 0x0f0f0f0f;
  1984. uint32_t aux[4];
  1985. const int8_t * scales = (const int8_t*)aux;
  1986. for (int i = 0; i < nb; i++) {
  1987. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1988. const uint8_t * restrict q = x[i].qs;
  1989. const uint8_t * restrict hm = x[i].hmask;
  1990. uint8_t m = 1;
  1991. memcpy(aux, x[i].scales, 12);
  1992. uint32_t tmp = aux[2];
  1993. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1994. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1995. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1996. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1997. int is = 0;
  1998. float dl;
  1999. for (int n = 0; n < QK_K; n += 128) {
  2000. int shift = 0;
  2001. for (int j = 0; j < 4; ++j) {
  2002. dl = d_all * (scales[is++] - 32);
  2003. for (int l = 0; l < 16; ++l) {
  2004. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  2005. }
  2006. dl = d_all * (scales[is++] - 32);
  2007. for (int l = 0; l < 16; ++l) {
  2008. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  2009. }
  2010. shift += 2;
  2011. m <<= 1;
  2012. }
  2013. q += 32;
  2014. }
  2015. }
  2016. }
  2017. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) {
  2018. quantize_row_q3_K_ref(x, vy, k);
  2019. }
  2020. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int64_t n_per_row, const float * restrict quant_weights) {
  2021. assert(n_per_row % QK_K == 0);
  2022. const int nb = n_per_row / QK_K;
  2023. int8_t L[QK_K];
  2024. float scales[QK_K / 16];
  2025. float weight[16];
  2026. float sw[QK_K / 16];
  2027. int8_t Ls[QK_K / 16];
  2028. for (int i = 0; i < nb; i++) {
  2029. float sumx2 = 0;
  2030. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  2031. float sigma2 = 2*sumx2/QK_K;
  2032. for (int j = 0; j < QK_K/16; ++j) {
  2033. if (quant_weights) {
  2034. const float * qw = quant_weights + QK_K * i + 16*j;
  2035. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  2036. } else {
  2037. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  2038. }
  2039. float sumw = 0;
  2040. for (int l = 0; l < 16; ++l) sumw += weight[l];
  2041. sw[j] = sumw;
  2042. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  2043. }
  2044. memset(y[i].scales, 0, 12);
  2045. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  2046. for (int j = 0; j < QK_K/16; ++j) {
  2047. int l = Ls[j];
  2048. if (j < 8) {
  2049. y[i].scales[j] = l & 0xF;
  2050. } else {
  2051. y[i].scales[j-8] |= ((l & 0xF) << 4);
  2052. }
  2053. l >>= 4;
  2054. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  2055. }
  2056. y[i].d = GGML_FP32_TO_FP16(d_block);
  2057. int8_t sc;
  2058. for (int j = 0; j < QK_K/16; ++j) {
  2059. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  2060. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  2061. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2062. if (!d) {
  2063. continue;
  2064. }
  2065. for (int ii = 0; ii < 16; ++ii) {
  2066. int l = nearest_int(x[16*j + ii]/d);
  2067. l = MAX(-4, MIN(3, l));
  2068. L[16*j + ii] = l + 4;
  2069. }
  2070. }
  2071. memset(y[i].hmask, 0, QK_K/8);
  2072. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  2073. int m = 0;
  2074. uint8_t hm = 1;
  2075. for (int j = 0; j < QK_K; ++j) {
  2076. if (L[j] > 3) {
  2077. y[i].hmask[m] |= hm;
  2078. L[j] -= 4;
  2079. }
  2080. if (++m == QK_K/8) {
  2081. m = 0; hm <<= 1;
  2082. }
  2083. }
  2084. for (int j = 0; j < QK_K; j += 128) {
  2085. for (int l = 0; l < 32; ++l) {
  2086. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  2087. }
  2088. }
  2089. x += QK_K;
  2090. }
  2091. }
  2092. size_t quantize_q3_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2093. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  2094. if (!quant_weights) {
  2095. quantize_row_q3_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2096. }
  2097. else {
  2098. char * qrow = (char *)dst;
  2099. for (int64_t row = 0; row < nrow; ++row) {
  2100. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  2101. src += n_per_row;
  2102. qrow += row_size;
  2103. }
  2104. }
  2105. return nrow * row_size;
  2106. }
  2107. // ====================== 4-bit (de)-quantization
  2108. void quantize_row_q4_K_ref(const float * restrict x, block_q4_K * restrict y, int64_t k) {
  2109. assert(k % QK_K == 0);
  2110. const int nb = k / QK_K;
  2111. uint8_t L[QK_K];
  2112. uint8_t Laux[32];
  2113. float weights[32];
  2114. float mins[QK_K/32];
  2115. float scales[QK_K/32];
  2116. for (int i = 0; i < nb; i++) {
  2117. float max_scale = 0; // as we are deducting the min, scales are always positive
  2118. float max_min = 0;
  2119. for (int j = 0; j < QK_K/32; ++j) {
  2120. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2121. float sum_x2 = 0;
  2122. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2123. float av_x = sqrtf(sum_x2/32);
  2124. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2125. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  2126. float scale = scales[j];
  2127. if (scale > max_scale) {
  2128. max_scale = scale;
  2129. }
  2130. float min = mins[j];
  2131. if (min > max_min) {
  2132. max_min = min;
  2133. }
  2134. }
  2135. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2136. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2137. for (int j = 0; j < QK_K/32; ++j) {
  2138. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2139. uint8_t lm = nearest_int(inv_min*mins[j]);
  2140. ls = MIN(63, ls);
  2141. lm = MIN(63, lm);
  2142. if (j < 4) {
  2143. y[i].scales[j] = ls;
  2144. y[i].scales[j+4] = lm;
  2145. } else {
  2146. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2147. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2148. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2149. }
  2150. }
  2151. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2152. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2153. uint8_t sc, m;
  2154. for (int j = 0; j < QK_K/32; ++j) {
  2155. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2156. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2157. if (!d) continue;
  2158. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2159. for (int ii = 0; ii < 32; ++ii) {
  2160. int l = nearest_int((x[32*j + ii] + dm)/d);
  2161. l = MAX(0, MIN(15, l));
  2162. L[32*j + ii] = l;
  2163. }
  2164. }
  2165. uint8_t * q = y[i].qs;
  2166. for (int j = 0; j < QK_K; j += 64) {
  2167. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2168. q += 32;
  2169. }
  2170. x += QK_K;
  2171. }
  2172. }
  2173. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int64_t k) {
  2174. assert(k % QK_K == 0);
  2175. const int nb = k / QK_K;
  2176. for (int i = 0; i < nb; i++) {
  2177. const uint8_t * q = x[i].qs;
  2178. const float d = GGML_FP16_TO_FP32(x[i].d);
  2179. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2180. int is = 0;
  2181. uint8_t sc, m;
  2182. for (int j = 0; j < QK_K; j += 64) {
  2183. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2184. const float d1 = d * sc; const float m1 = min * m;
  2185. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2186. const float d2 = d * sc; const float m2 = min * m;
  2187. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  2188. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  2189. q += 32; is += 2;
  2190. }
  2191. }
  2192. }
  2193. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) {
  2194. assert(k % QK_K == 0);
  2195. block_q4_K * restrict y = vy;
  2196. quantize_row_q4_K_ref(x, y, k);
  2197. }
  2198. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2199. assert(n_per_row % QK_K == 0);
  2200. const int64_t nb = n_per_row / QK_K;
  2201. uint8_t L[QK_K];
  2202. uint8_t Laux[32];
  2203. uint8_t Ls[QK_K/32];
  2204. uint8_t Lm[QK_K/32];
  2205. float weights[32];
  2206. float sw[QK_K/32];
  2207. float mins[QK_K/32];
  2208. float scales[QK_K/32];
  2209. for (int i = 0; i < nb; i++) {
  2210. float sum_x2 = 0;
  2211. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2212. float sigma2 = 2*sum_x2/QK_K;
  2213. float av_x = sqrtf(sigma2);
  2214. for (int j = 0; j < QK_K/32; ++j) {
  2215. if (quant_weights) {
  2216. const float * qw = quant_weights + QK_K*i + 32*j;
  2217. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2218. } else {
  2219. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2220. }
  2221. float sumw = 0;
  2222. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2223. sw[j] = sumw;
  2224. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2225. }
  2226. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2227. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2228. for (int j = 0; j < QK_K/32; ++j) {
  2229. uint8_t ls = Ls[j];
  2230. uint8_t lm = Lm[j];
  2231. if (j < 4) {
  2232. y[i].scales[j] = ls;
  2233. y[i].scales[j+4] = lm;
  2234. } else {
  2235. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2236. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2237. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2238. }
  2239. }
  2240. y[i].d = GGML_FP32_TO_FP16(d_block);
  2241. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2242. uint8_t sc, m;
  2243. for (int j = 0; j < QK_K/32; ++j) {
  2244. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2245. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2246. if (!d) continue;
  2247. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2248. for (int ii = 0; ii < 32; ++ii) {
  2249. int l = nearest_int((x[32*j + ii] + dm)/d);
  2250. l = MAX(0, MIN(15, l));
  2251. L[32*j + ii] = l;
  2252. }
  2253. }
  2254. uint8_t * q = y[i].qs;
  2255. for (int j = 0; j < QK_K; j += 64) {
  2256. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2257. q += 32;
  2258. }
  2259. x += QK_K;
  2260. }
  2261. }
  2262. size_t quantize_q4_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2263. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2264. if (!quant_weights) {
  2265. quantize_row_q4_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2266. }
  2267. else {
  2268. char * qrow = (char *)dst;
  2269. for (int64_t row = 0; row < nrow; ++row) {
  2270. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2271. src += n_per_row;
  2272. qrow += row_size;
  2273. }
  2274. }
  2275. return nrow * row_size;
  2276. }
  2277. // ====================== 5-bit (de)-quantization
  2278. void quantize_row_q5_K_ref(const float * restrict x, block_q5_K * restrict y, int64_t k) {
  2279. assert(k % QK_K == 0);
  2280. const int64_t nb = k / QK_K;
  2281. uint8_t L[QK_K];
  2282. float mins[QK_K/32];
  2283. float scales[QK_K/32];
  2284. float weights[32];
  2285. uint8_t Laux[32];
  2286. for (int i = 0; i < nb; i++) {
  2287. float max_scale = 0; // as we are deducting the min, scales are always positive
  2288. float max_min = 0;
  2289. for (int j = 0; j < QK_K/32; ++j) {
  2290. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2291. float sum_x2 = 0;
  2292. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2293. float av_x = sqrtf(sum_x2/32);
  2294. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2295. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2296. float scale = scales[j];
  2297. if (scale > max_scale) {
  2298. max_scale = scale;
  2299. }
  2300. float min = mins[j];
  2301. if (min > max_min) {
  2302. max_min = min;
  2303. }
  2304. }
  2305. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2306. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2307. for (int j = 0; j < QK_K/32; ++j) {
  2308. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2309. uint8_t lm = nearest_int(inv_min*mins[j]);
  2310. ls = MIN(63, ls);
  2311. lm = MIN(63, lm);
  2312. if (j < 4) {
  2313. y[i].scales[j] = ls;
  2314. y[i].scales[j+4] = lm;
  2315. } else {
  2316. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2317. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2318. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2319. }
  2320. }
  2321. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2322. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2323. uint8_t sc, m;
  2324. for (int j = 0; j < QK_K/32; ++j) {
  2325. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2326. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2327. if (!d) continue;
  2328. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2329. for (int ii = 0; ii < 32; ++ii) {
  2330. int l = nearest_int((x[32*j + ii] + dm)/d);
  2331. l = MAX(0, MIN(31, l));
  2332. L[32*j + ii] = l;
  2333. }
  2334. }
  2335. uint8_t * restrict qh = y[i].qh;
  2336. uint8_t * restrict ql = y[i].qs;
  2337. memset(qh, 0, QK_K/8);
  2338. uint8_t m1 = 1, m2 = 2;
  2339. for (int n = 0; n < QK_K; n += 64) {
  2340. for (int j = 0; j < 32; ++j) {
  2341. int l1 = L[n + j];
  2342. if (l1 > 15) {
  2343. l1 -= 16; qh[j] |= m1;
  2344. }
  2345. int l2 = L[n + j + 32];
  2346. if (l2 > 15) {
  2347. l2 -= 16; qh[j] |= m2;
  2348. }
  2349. ql[j] = l1 | (l2 << 4);
  2350. }
  2351. m1 <<= 2; m2 <<= 2;
  2352. ql += 32;
  2353. }
  2354. x += QK_K;
  2355. }
  2356. }
  2357. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int64_t k) {
  2358. assert(k % QK_K == 0);
  2359. const int64_t nb = k / QK_K;
  2360. for (int i = 0; i < nb; i++) {
  2361. const uint8_t * ql = x[i].qs;
  2362. const uint8_t * qh = x[i].qh;
  2363. const float d = GGML_FP16_TO_FP32(x[i].d);
  2364. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2365. int is = 0;
  2366. uint8_t sc, m;
  2367. uint8_t u1 = 1, u2 = 2;
  2368. for (int j = 0; j < QK_K; j += 64) {
  2369. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2370. const float d1 = d * sc; const float m1 = min * m;
  2371. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2372. const float d2 = d * sc; const float m2 = min * m;
  2373. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2374. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2375. ql += 32; is += 2;
  2376. u1 <<= 2; u2 <<= 2;
  2377. }
  2378. }
  2379. }
  2380. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) {
  2381. assert(k % QK_K == 0);
  2382. block_q5_K * restrict y = vy;
  2383. quantize_row_q5_K_ref(x, y, k);
  2384. }
  2385. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2386. assert(n_per_row % QK_K == 0);
  2387. const int64_t nb = n_per_row / QK_K;
  2388. uint8_t L[QK_K];
  2389. uint8_t Laux[32];
  2390. uint8_t Ls[QK_K/32];
  2391. uint8_t Lm[QK_K/32];
  2392. float mins[QK_K/32];
  2393. float scales[QK_K/32];
  2394. float sw[QK_K/32];
  2395. float weights[32];
  2396. for (int i = 0; i < nb; i++) {
  2397. float sum_x2 = 0;
  2398. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2399. float sigma2 = 2*sum_x2/QK_K;
  2400. float av_x = sqrtf(sigma2);
  2401. for (int j = 0; j < QK_K/32; ++j) {
  2402. if (quant_weights) {
  2403. const float * qw = quant_weights + QK_K*i + 32*j;
  2404. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2405. } else {
  2406. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2407. }
  2408. float sumw = 0;
  2409. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2410. sw[j] = sumw;
  2411. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2412. }
  2413. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2414. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2415. for (int j = 0; j < QK_K/32; ++j) {
  2416. uint8_t ls = Ls[j];
  2417. uint8_t lm = Lm[j];
  2418. ls = MIN(63, ls);
  2419. lm = MIN(63, lm);
  2420. if (j < 4) {
  2421. y[i].scales[j] = ls;
  2422. y[i].scales[j+4] = lm;
  2423. } else {
  2424. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2425. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2426. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2427. }
  2428. }
  2429. y[i].d = GGML_FP32_TO_FP16(d_block);
  2430. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2431. uint8_t sc, m;
  2432. for (int j = 0; j < QK_K/32; ++j) {
  2433. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2434. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2435. if (!d) continue;
  2436. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2437. for (int ii = 0; ii < 32; ++ii) {
  2438. int l = nearest_int((x[32*j + ii] + dm)/d);
  2439. l = MAX(0, MIN(31, l));
  2440. L[32*j + ii] = l;
  2441. }
  2442. }
  2443. uint8_t * restrict qh = y[i].qh;
  2444. uint8_t * restrict ql = y[i].qs;
  2445. memset(qh, 0, QK_K/8);
  2446. uint8_t m1 = 1, m2 = 2;
  2447. for (int n = 0; n < QK_K; n += 64) {
  2448. for (int j = 0; j < 32; ++j) {
  2449. int l1 = L[n + j];
  2450. if (l1 > 15) {
  2451. l1 -= 16; qh[j] |= m1;
  2452. }
  2453. int l2 = L[n + j + 32];
  2454. if (l2 > 15) {
  2455. l2 -= 16; qh[j] |= m2;
  2456. }
  2457. ql[j] = l1 | (l2 << 4);
  2458. }
  2459. m1 <<= 2; m2 <<= 2;
  2460. ql += 32;
  2461. }
  2462. x += QK_K;
  2463. }
  2464. }
  2465. size_t quantize_q5_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2466. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2467. if (!quant_weights) {
  2468. quantize_row_q5_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2469. }
  2470. else {
  2471. char * qrow = (char *)dst;
  2472. for (int64_t row = 0; row < nrow; ++row) {
  2473. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2474. src += n_per_row;
  2475. qrow += row_size;
  2476. }
  2477. }
  2478. return nrow * row_size;
  2479. }
  2480. // ====================== 6-bit (de)-quantization
  2481. void quantize_row_q6_K_ref(const float * restrict x, block_q6_K * restrict y, int64_t k) {
  2482. assert(k % QK_K == 0);
  2483. const int64_t nb = k / QK_K;
  2484. int8_t L[QK_K];
  2485. float scales[QK_K/16];
  2486. for (int i = 0; i < nb; i++) {
  2487. float max_scale = 0;
  2488. float max_abs_scale = 0;
  2489. for (int ib = 0; ib < QK_K/16; ++ib) {
  2490. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2491. scales[ib] = scale;
  2492. const float abs_scale = fabsf(scale);
  2493. if (abs_scale > max_abs_scale) {
  2494. max_abs_scale = abs_scale;
  2495. max_scale = scale;
  2496. }
  2497. }
  2498. if (max_abs_scale < GROUP_MAX_EPS) {
  2499. memset(&y[i], 0, sizeof(block_q6_K));
  2500. y[i].d = GGML_FP32_TO_FP16(0.f);
  2501. x += QK_K;
  2502. continue;
  2503. }
  2504. float iscale = -128.f/max_scale;
  2505. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2506. for (int ib = 0; ib < QK_K/16; ++ib) {
  2507. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2508. }
  2509. for (int j = 0; j < QK_K/16; ++j) {
  2510. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2511. if (!d) {
  2512. continue;
  2513. }
  2514. for (int ii = 0; ii < 16; ++ii) {
  2515. int l = nearest_int(x[16*j + ii]/d);
  2516. l = MAX(-32, MIN(31, l));
  2517. L[16*j + ii] = l + 32;
  2518. }
  2519. }
  2520. uint8_t * restrict ql = y[i].ql;
  2521. uint8_t * restrict qh = y[i].qh;
  2522. for (int j = 0; j < QK_K; j += 128) {
  2523. for (int l = 0; l < 32; ++l) {
  2524. const uint8_t q1 = L[j + l + 0] & 0xF;
  2525. const uint8_t q2 = L[j + l + 32] & 0xF;
  2526. const uint8_t q3 = L[j + l + 64] & 0xF;
  2527. const uint8_t q4 = L[j + l + 96] & 0xF;
  2528. ql[l+ 0] = q1 | (q3 << 4);
  2529. ql[l+32] = q2 | (q4 << 4);
  2530. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2531. }
  2532. ql += 64;
  2533. qh += 32;
  2534. }
  2535. x += QK_K;
  2536. }
  2537. }
  2538. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int64_t k) {
  2539. assert(k % QK_K == 0);
  2540. const int64_t nb = k / QK_K;
  2541. for (int i = 0; i < nb; i++) {
  2542. const float d = GGML_FP16_TO_FP32(x[i].d);
  2543. const uint8_t * restrict ql = x[i].ql;
  2544. const uint8_t * restrict qh = x[i].qh;
  2545. const int8_t * restrict sc = x[i].scales;
  2546. for (int n = 0; n < QK_K; n += 128) {
  2547. for (int l = 0; l < 32; ++l) {
  2548. int is = l/16;
  2549. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2550. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2551. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2552. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2553. y[l + 0] = d * sc[is + 0] * q1;
  2554. y[l + 32] = d * sc[is + 2] * q2;
  2555. y[l + 64] = d * sc[is + 4] * q3;
  2556. y[l + 96] = d * sc[is + 6] * q4;
  2557. }
  2558. y += 128;
  2559. ql += 64;
  2560. qh += 32;
  2561. sc += 8;
  2562. }
  2563. }
  2564. }
  2565. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) {
  2566. assert(k % QK_K == 0);
  2567. block_q6_K * restrict y = vy;
  2568. quantize_row_q6_K_ref(x, y, k);
  2569. }
  2570. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2571. assert(n_per_row % QK_K == 0);
  2572. const int64_t nb = n_per_row / QK_K;
  2573. int8_t L[QK_K];
  2574. float scales[QK_K/16];
  2575. //float weights[16];
  2576. for (int i = 0; i < nb; i++) {
  2577. //float sum_x2 = 0;
  2578. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2579. //float sigma2 = sum_x2/QK_K;
  2580. float max_scale = 0;
  2581. float max_abs_scale = 0;
  2582. for (int ib = 0; ib < QK_K/16; ++ib) {
  2583. float scale;
  2584. if (quant_weights) {
  2585. const float * qw = quant_weights + QK_K*i + 16*ib;
  2586. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2587. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2588. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2589. } else {
  2590. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2591. }
  2592. scales[ib] = scale;
  2593. const float abs_scale = fabsf(scale);
  2594. if (abs_scale > max_abs_scale) {
  2595. max_abs_scale = abs_scale;
  2596. max_scale = scale;
  2597. }
  2598. }
  2599. if (max_abs_scale < GROUP_MAX_EPS) {
  2600. memset(&y[i], 0, sizeof(block_q6_K));
  2601. y[i].d = GGML_FP32_TO_FP16(0.f);
  2602. x += QK_K;
  2603. continue;
  2604. }
  2605. float iscale = -128.f/max_scale;
  2606. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2607. for (int ib = 0; ib < QK_K/16; ++ib) {
  2608. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2609. }
  2610. for (int j = 0; j < QK_K/16; ++j) {
  2611. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2612. if (!d) {
  2613. continue;
  2614. }
  2615. for (int ii = 0; ii < 16; ++ii) {
  2616. int l = nearest_int(x[16*j + ii]/d);
  2617. l = MAX(-32, MIN(31, l));
  2618. L[16*j + ii] = l + 32;
  2619. }
  2620. }
  2621. uint8_t * restrict ql = y[i].ql;
  2622. uint8_t * restrict qh = y[i].qh;
  2623. for (int j = 0; j < QK_K; j += 128) {
  2624. for (int l = 0; l < 32; ++l) {
  2625. const uint8_t q1 = L[j + l + 0] & 0xF;
  2626. const uint8_t q2 = L[j + l + 32] & 0xF;
  2627. const uint8_t q3 = L[j + l + 64] & 0xF;
  2628. const uint8_t q4 = L[j + l + 96] & 0xF;
  2629. ql[l+ 0] = q1 | (q3 << 4);
  2630. ql[l+32] = q2 | (q4 << 4);
  2631. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2632. }
  2633. ql += 64;
  2634. qh += 32;
  2635. }
  2636. x += QK_K;
  2637. }
  2638. }
  2639. size_t quantize_q6_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2640. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2641. if (!quant_weights) {
  2642. quantize_row_q6_K_ref(src, dst, (int64_t)nrow*n_per_row);
  2643. }
  2644. else {
  2645. char * qrow = (char *)dst;
  2646. for (int64_t row = 0; row < nrow; ++row) {
  2647. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2648. src += n_per_row;
  2649. qrow += row_size;
  2650. }
  2651. }
  2652. return nrow * row_size;
  2653. }
  2654. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2655. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2656. if (!quant_weights) {
  2657. quantize_row_q4_0_ref(x, y, n_per_row);
  2658. return;
  2659. }
  2660. float weight[QK4_0];
  2661. int8_t L[QK4_0];
  2662. float sum_x2 = 0;
  2663. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2664. float sigma2 = sum_x2/n_per_row;
  2665. const int64_t nb = n_per_row/QK4_0;
  2666. for (int ib = 0; ib < nb; ++ib) {
  2667. const float * xb = x + QK4_0 * ib;
  2668. const float * qw = quant_weights + QK4_0 * ib;
  2669. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2670. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2671. y[ib].d = GGML_FP32_TO_FP16(d);
  2672. for (int j = 0; j < 16; ++j) {
  2673. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2674. }
  2675. }
  2676. }
  2677. size_t quantize_q4_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2678. if (!quant_weights) {
  2679. quantize_row_q4_0_ref(src, dst, (int64_t)nrow*n_per_row);
  2680. return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2681. }
  2682. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2683. char * qrow = (char *)dst;
  2684. for (int64_t row = 0; row < nrow; ++row) {
  2685. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2686. src += n_per_row;
  2687. qrow += row_size;
  2688. }
  2689. return nrow * row_size;
  2690. }
  2691. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2692. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2693. if (!quant_weights) {
  2694. quantize_row_q4_1_ref(x, y, n_per_row);
  2695. return;
  2696. }
  2697. float weight[QK4_1];
  2698. uint8_t L[QK4_1], Laux[QK4_1];
  2699. float sum_x2 = 0;
  2700. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2701. float sigma2 = sum_x2/n_per_row;
  2702. const int64_t nb = n_per_row/QK4_1;
  2703. for (int ib = 0; ib < nb; ++ib) {
  2704. const float * xb = x + QK4_1 * ib;
  2705. const float * qw = quant_weights + QK4_1 * ib;
  2706. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2707. float min;
  2708. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2709. y[ib].d = GGML_FP32_TO_FP16(d);
  2710. y[ib].m = GGML_FP32_TO_FP16(-min);
  2711. for (int j = 0; j < 16; ++j) {
  2712. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2713. }
  2714. }
  2715. }
  2716. size_t quantize_q4_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2717. if (!quant_weights) {
  2718. quantize_row_q4_1_ref(src, dst, (int64_t)nrow*n_per_row);
  2719. return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2720. }
  2721. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2722. char * qrow = (char *)dst;
  2723. for (int64_t row = 0; row < nrow; ++row) {
  2724. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2725. src += n_per_row;
  2726. qrow += row_size;
  2727. }
  2728. return nrow * row_size;
  2729. }
  2730. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2731. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2732. if (!quant_weights) {
  2733. quantize_row_q5_0_ref(x, y, n_per_row);
  2734. return;
  2735. }
  2736. float weight[QK5_0];
  2737. int8_t L[QK5_0];
  2738. float sum_x2 = 0;
  2739. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2740. float sigma2 = sum_x2/n_per_row;
  2741. const int64_t nb = n_per_row/QK5_0;
  2742. for (int ib = 0; ib < nb; ++ib) {
  2743. const float * xb = x + QK5_0 * ib;
  2744. const float * qw = quant_weights + QK5_0 * ib;
  2745. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2746. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2747. y[ib].d = GGML_FP32_TO_FP16(d);
  2748. uint32_t qh = 0;
  2749. for (int j = 0; j < 16; ++j) {
  2750. const uint8_t xi0 = L[j];
  2751. const uint8_t xi1 = L[j+16];
  2752. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2753. // get the 5-th bit and store it in qh at the right position
  2754. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2755. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2756. }
  2757. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2758. }
  2759. }
  2760. size_t quantize_q5_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2761. if (!quant_weights) {
  2762. quantize_row_q5_0_ref(src, dst, (int64_t)nrow*n_per_row);
  2763. return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2764. }
  2765. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2766. char * qrow = (char *)dst;
  2767. for (int64_t row = 0; row < nrow; ++row) {
  2768. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2769. src += n_per_row;
  2770. qrow += row_size;
  2771. }
  2772. return nrow * row_size;
  2773. }
  2774. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2775. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2776. if (!quant_weights) {
  2777. quantize_row_q5_1_ref(x, y, n_per_row);
  2778. return;
  2779. }
  2780. float weight[QK5_1];
  2781. uint8_t L[QK5_1], Laux[QK5_1];
  2782. float sum_x2 = 0;
  2783. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2784. float sigma2 = sum_x2/n_per_row;
  2785. const int64_t nb = n_per_row/QK5_1;
  2786. for (int ib = 0; ib < nb; ++ib) {
  2787. const float * xb = x + QK5_1 * ib;
  2788. const float * qw = quant_weights + QK5_1 * ib;
  2789. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2790. float min;
  2791. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2792. y[ib].d = GGML_FP32_TO_FP16(d);
  2793. y[ib].m = GGML_FP32_TO_FP16(-min);
  2794. uint32_t qh = 0;
  2795. for (int j = 0; j < 16; ++j) {
  2796. const uint8_t xi0 = L[j];
  2797. const uint8_t xi1 = L[j+16];
  2798. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2799. // get the 5-th bit and store it in qh at the right position
  2800. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2801. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2802. }
  2803. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2804. }
  2805. }
  2806. size_t quantize_q5_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2807. if (!quant_weights) {
  2808. quantize_row_q5_1_ref(src, dst, (int64_t)nrow*n_per_row);
  2809. return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2810. }
  2811. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2812. char * qrow = (char *)dst;
  2813. for (int64_t row = 0; row < nrow; ++row) {
  2814. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2815. src += n_per_row;
  2816. qrow += row_size;
  2817. }
  2818. return nrow * row_size;
  2819. }
  2820. size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2821. (void)quant_weights; // not used
  2822. const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
  2823. quantize_row_q8_0_ref(src, dst, (int64_t)nrow*n_per_row);
  2824. return nrow * row_size;
  2825. }
  2826. // ====================== Ternary (de)-quantization (BitNet b1.58 and TriLMs)
  2827. void quantize_row_tq1_0_ref(const float * restrict x, block_tq1_0 * restrict y, int64_t k) {
  2828. assert(k % QK_K == 0);
  2829. const int64_t nb = k / QK_K;
  2830. for (int64_t i = 0; i < nb; i++) {
  2831. float amax = 0.0f; // absolute max
  2832. for (int j = 0; j < QK_K; j++) {
  2833. const float v = x[j];
  2834. amax = MAX(amax, fabsf(v));
  2835. }
  2836. const float d = amax;
  2837. const float id = d ? 1.0f/d : 0.0f;
  2838. y[i].d = GGML_FP32_TO_FP16(d);
  2839. // 5 elements per byte, along 32 bytes
  2840. for (size_t j = 0; j < sizeof(y->qs) - sizeof(y->qs) % 32; j += 32) {
  2841. for (size_t m = 0; m < 32; ++m) {
  2842. uint8_t q = 0;
  2843. for (size_t n = 0; n < 5; ++n) {
  2844. int xi = lroundf(x[m + n*32] * id) + 1; // -1, 0, 1 -> 0, 1, 2
  2845. q *= 3;
  2846. q += xi;
  2847. }
  2848. // ceiling division (243 == pow(3, 5))
  2849. q = ((uint16_t)q * 256 + (243 - 1)) / 243;
  2850. y[i].qs[j + m] = q;
  2851. }
  2852. x += 5*32;
  2853. }
  2854. // along 16 bytes
  2855. for (size_t j = sizeof(y->qs) - sizeof(y->qs) % 32; j < sizeof(y->qs); j += 16) {
  2856. for (size_t m = 0; m < 16; ++m) {
  2857. uint8_t q = 0;
  2858. for (size_t n = 0; n < 5; ++n) {
  2859. int xi = lroundf(x[m + n*16] * id) + 1; // -1, 0, 1 -> 0, 1, 2
  2860. q *= 3;
  2861. q += xi;
  2862. }
  2863. // ceiling division (243 == pow(3, 5))
  2864. q = ((uint16_t)q * 256 + (243 - 1)) / 243;
  2865. y[i].qs[j + m] = q;
  2866. }
  2867. x += 5*16;
  2868. }
  2869. // 4 elements per byte
  2870. for (size_t j = 0; j < sizeof(y->qh); ++j) {
  2871. uint8_t q = 0;
  2872. for (size_t m = 0; m < 4; ++m) {
  2873. // -1, 0, 1 -> 0, 1, 2
  2874. int xi = lroundf(x[j + m*sizeof(y->qh)] * id) + 1;
  2875. q *= 3;
  2876. q += xi;
  2877. }
  2878. // shift the first value to the most significant trit
  2879. q *= 3;
  2880. // ceiling division (243 == pow(3, 5))
  2881. q = ((uint16_t)q * 256 + (243 - 1)) / 243;
  2882. y[i].qh[j] = q;
  2883. }
  2884. x += 4*sizeof(y->qh);
  2885. }
  2886. }
  2887. void quantize_row_tq2_0_ref(const float * restrict x, block_tq2_0 * restrict y, int64_t k) {
  2888. assert(k % QK_K == 0);
  2889. const int64_t nb = k / QK_K;
  2890. for (int64_t i = 0; i < nb; i++) {
  2891. float amax = 0.0f; // absolute max
  2892. for (int j = 0; j < QK_K; j++) {
  2893. const float v = x[j];
  2894. amax = MAX(amax, fabsf(v));
  2895. }
  2896. const float d = amax;
  2897. const float id = d ? 1.0f/d : 0.0f;
  2898. y[i].d = GGML_FP32_TO_FP16(d);
  2899. for (size_t j = 0; j < sizeof(y->qs); j += 32) {
  2900. for (size_t m = 0; m < 32; ++m) {
  2901. uint8_t q = 0;
  2902. for (size_t n = 0; n < 4; ++n) {
  2903. // -1, 0, 1 -> 0, 1, 2
  2904. int xi = lroundf(x[m + n*32] * id) + 1;
  2905. q += (xi & 3) << (2*n);
  2906. }
  2907. y[i].qs[j + m] = q;
  2908. }
  2909. x += 4*32;
  2910. }
  2911. }
  2912. }
  2913. void quantize_row_tq1_0(const float * restrict x, void * restrict vy, int64_t k) {
  2914. assert(k % QK_K == 0);
  2915. block_tq1_0 * restrict y = vy;
  2916. quantize_row_tq1_0_ref(x, y, k);
  2917. }
  2918. void quantize_row_tq2_0(const float * restrict x, void * restrict vy, int64_t k) {
  2919. assert(k % QK_K == 0);
  2920. block_tq2_0 * restrict y = vy;
  2921. quantize_row_tq2_0_ref(x, y, k);
  2922. }
  2923. size_t quantize_tq1_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2924. (void)quant_weights; // not used
  2925. const size_t row_size = ggml_row_size(GGML_TYPE_TQ1_0, n_per_row);
  2926. quantize_row_tq1_0(src, dst, (int64_t)nrow*n_per_row);
  2927. return nrow * row_size;
  2928. }
  2929. size_t quantize_tq2_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2930. (void)quant_weights; // not used
  2931. const size_t row_size = ggml_row_size(GGML_TYPE_TQ2_0, n_per_row);
  2932. quantize_row_tq2_0(src, dst, (int64_t)nrow*n_per_row);
  2933. return nrow * row_size;
  2934. }
  2935. void dequantize_row_tq1_0(const block_tq1_0 * restrict x, float * restrict y, int64_t k) {
  2936. assert(k % QK_K == 0);
  2937. const int64_t nb = k / QK_K;
  2938. const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
  2939. for (int64_t i = 0; i < nb; ++i) {
  2940. const float d = GGML_FP16_TO_FP32(x[i].d);
  2941. for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
  2942. for (size_t n = 0; n < 5; ++n) {
  2943. for (size_t m = 0; m < 32; ++m) {
  2944. uint8_t q = x[i].qs[j + m] * pow3[n];
  2945. int16_t xi = ((uint16_t) q * 3) >> 8;
  2946. *y++ = (float) (xi - 1) * d;
  2947. }
  2948. }
  2949. }
  2950. for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
  2951. for (size_t n = 0; n < 5; ++n) {
  2952. for (size_t m = 0; m < 16; ++m) {
  2953. uint8_t q = x[i].qs[j + m] * pow3[n];
  2954. int16_t xi = ((uint16_t) q * 3) >> 8;
  2955. *y++ = (float) (xi - 1) * d;
  2956. }
  2957. }
  2958. }
  2959. for (size_t n = 0; n < 4; ++n) {
  2960. for (size_t j = 0; j < sizeof(x->qh); ++j) {
  2961. uint8_t q = x[i].qh[j] * pow3[n];
  2962. int16_t xi = ((uint16_t) q * 3) >> 8;
  2963. *y++ = (float) (xi - 1) * d;
  2964. }
  2965. }
  2966. }
  2967. }
  2968. void dequantize_row_tq2_0(const block_tq2_0 * restrict x, float * restrict y, int64_t k) {
  2969. assert(k % QK_K == 0);
  2970. const int64_t nb = k / QK_K;
  2971. for (int64_t i = 0; i < nb; ++i) {
  2972. const float d = GGML_FP16_TO_FP32(x[i].d);
  2973. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  2974. for (size_t l = 0; l < 4; ++l) {
  2975. for (size_t m = 0; m < 32; ++m) {
  2976. int8_t q = (x[i].qs[j + m] >> (l*2)) & 3;
  2977. *y++ = (float) (q - 1) * d;
  2978. }
  2979. }
  2980. }
  2981. }
  2982. }
  2983. // ====================== "True" 2-bit (de)-quantization
  2984. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) {
  2985. assert(k % QK_K == 0);
  2986. const int64_t nb = k / QK_K;
  2987. uint32_t aux32[2];
  2988. const uint8_t * aux8 = (const uint8_t *)aux32;
  2989. for (int i = 0; i < nb; i++) {
  2990. const float d = GGML_FP16_TO_FP32(x[i].d);
  2991. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2992. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  2993. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  2994. for (int l = 0; l < 4; ++l) {
  2995. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  2996. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  2997. for (int j = 0; j < 8; ++j) {
  2998. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2999. }
  3000. y += 8;
  3001. }
  3002. }
  3003. }
  3004. }
  3005. // ====================== 2.3125 bpw (de)-quantization
  3006. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int64_t k) {
  3007. assert(k % QK_K == 0);
  3008. const int64_t nb = k / QK_K;
  3009. float db[2];
  3010. for (int i = 0; i < nb; i++) {
  3011. const float d = GGML_FP16_TO_FP32(x[i].d);
  3012. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3013. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  3014. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  3015. for (int l = 0; l < 4; ++l) {
  3016. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  3017. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  3018. for (int j = 0; j < 8; ++j) {
  3019. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3020. }
  3021. y += 8;
  3022. }
  3023. }
  3024. }
  3025. }
  3026. // ====================== 2.5625 bpw (de)-quantization
  3027. void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int64_t k) {
  3028. assert(k % QK_K == 0);
  3029. const int64_t nb = k / QK_K;
  3030. float db[2];
  3031. for (int i = 0; i < nb; i++) {
  3032. const float d = GGML_FP16_TO_FP32(x[i].d);
  3033. const uint8_t * qs = x[i].qs;
  3034. const uint8_t * qh = x[i].qh;
  3035. const uint8_t * signs = qs + QK_K/8;
  3036. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3037. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  3038. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  3039. for (int l = 0; l < 4; ++l) {
  3040. const float dl = db[l/2];
  3041. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  3042. for (int j = 0; j < 8; ++j) {
  3043. y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
  3044. }
  3045. y += 8;
  3046. }
  3047. qs += 4;
  3048. signs += 4;
  3049. }
  3050. }
  3051. }
  3052. // ====================== 3.0625 bpw (de)-quantization
  3053. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int64_t k) {
  3054. assert(k % QK_K == 0);
  3055. const int64_t nb = k / QK_K;
  3056. uint32_t aux32;
  3057. for (int i = 0; i < nb; i++) {
  3058. const float d = GGML_FP16_TO_FP32(x[i].d);
  3059. const uint8_t * qs = x[i].qs;
  3060. const uint8_t * scales_and_signs = qs + QK_K/4;
  3061. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3062. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  3063. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  3064. for (int l = 0; l < 4; ++l) {
  3065. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  3066. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  3067. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  3068. for (int j = 0; j < 4; ++j) {
  3069. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3070. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3071. }
  3072. y += 8;
  3073. }
  3074. qs += 8;
  3075. }
  3076. }
  3077. }
  3078. // ====================== 3.3125 bpw (de)-quantization
  3079. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int64_t k) {
  3080. assert(k % QK_K == 0);
  3081. const int64_t nb = k / QK_K;
  3082. for (int i = 0; i < nb; i++) {
  3083. const float d = GGML_FP16_TO_FP32(x[i].d);
  3084. const uint8_t * qs = x[i].qs;
  3085. const uint8_t * qh = x[i].qh;
  3086. const uint8_t * signs = x[i].signs;
  3087. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  3088. const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  3089. const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4));
  3090. for (int l = 0; l < 4; ++l) {
  3091. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  3092. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  3093. for (int j = 0; j < 4; ++j) {
  3094. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3095. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3096. }
  3097. y += 8;
  3098. }
  3099. qs += 8;
  3100. signs += 4;
  3101. for (int l = 0; l < 4; ++l) {
  3102. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  3103. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  3104. for (int j = 0; j < 4; ++j) {
  3105. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3106. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3107. }
  3108. y += 8;
  3109. }
  3110. qh += 2;
  3111. qs += 8;
  3112. signs += 4;
  3113. }
  3114. }
  3115. }
  3116. // ====================== 1.5625 bpw (de)-quantization
  3117. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int64_t k) {
  3118. assert(k % QK_K == 0);
  3119. const int64_t nb = k / QK_K;
  3120. for (int i = 0; i < nb; i++) {
  3121. const float d = GGML_FP16_TO_FP32(x[i].d);
  3122. const uint8_t * qs = x[i].qs;
  3123. const uint16_t * qh = x[i].qh;
  3124. for (int ib = 0; ib < QK_K/32; ++ib) {
  3125. const float dl = d * (2*((qh[ib] >> 12) & 7) + 1);
  3126. const float delta = qh[ib] & 0x8000 ? -IQ1S_DELTA : IQ1S_DELTA;
  3127. for (int l = 0; l < 4; ++l) {
  3128. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  3129. for (int j = 0; j < 8; ++j) {
  3130. y[j] = dl * (grid[j] + delta);
  3131. }
  3132. y += 8;
  3133. }
  3134. qs += 4;
  3135. }
  3136. }
  3137. }
  3138. void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int64_t k) {
  3139. assert(k % QK_K == 0);
  3140. const int64_t nb = k / QK_K;
  3141. float delta[4];
  3142. uint16_t idx[4];
  3143. iq1m_scale_t scale;
  3144. for (int i = 0; i < nb; i++) {
  3145. const uint16_t * sc = (const uint16_t *)x[i].scales;
  3146. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  3147. const float d = GGML_FP16_TO_FP32(scale.f16);
  3148. const uint8_t * qs = x[i].qs;
  3149. const uint8_t * qh = x[i].qh;
  3150. for (int ib = 0; ib < QK_K/32; ++ib) {
  3151. const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1);
  3152. const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1);
  3153. idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
  3154. idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
  3155. idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
  3156. idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
  3157. delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  3158. delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  3159. delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  3160. delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  3161. for (int l = 0; l < 2; ++l) {
  3162. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3163. for (int j = 0; j < 8; ++j) {
  3164. y[j] = dl1 * (grid[j] + delta[l]);
  3165. }
  3166. y += 8;
  3167. }
  3168. for (int l = 2; l < 4; ++l) {
  3169. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3170. for (int j = 0; j < 8; ++j) {
  3171. y[j] = dl2 * (grid[j] + delta[l]);
  3172. }
  3173. y += 8;
  3174. }
  3175. qs += 4;
  3176. qh += 2;
  3177. }
  3178. }
  3179. }
  3180. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  3181. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int64_t k) {
  3182. assert(k % QK4_NL == 0);
  3183. const int64_t nb = k / QK4_NL;
  3184. for (int i = 0; i < nb; i++) {
  3185. const uint8_t * qs = x[i].qs;
  3186. const float d = GGML_FP16_TO_FP32(x[i].d);
  3187. for (int j = 0; j < QK4_NL/2; ++j) {
  3188. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  3189. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  3190. }
  3191. y += QK4_NL;
  3192. qs += QK4_NL/2;
  3193. }
  3194. }
  3195. void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int64_t k) {
  3196. assert(k % QK_K == 0);
  3197. const int64_t nb = k / QK_K;
  3198. for (int i = 0; i < nb; i++) {
  3199. const uint8_t * qs = x[i].qs;
  3200. const float d = GGML_FP16_TO_FP32(x[i].d);
  3201. for (int ib = 0; ib < QK_K/32; ++ib) {
  3202. const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
  3203. const float dl = d * (ls - 32);
  3204. for (int j = 0; j < 16; ++j) {
  3205. y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
  3206. y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4];
  3207. }
  3208. y += 32;
  3209. qs += 16;
  3210. }
  3211. }
  3212. }
  3213. //===================================== Q8_K ==============================================
  3214. void quantize_row_q8_K_ref(const float * restrict x, block_q8_K * restrict y, int64_t k) {
  3215. assert(k % QK_K == 0);
  3216. const int64_t nb = k / QK_K;
  3217. for (int i = 0; i < nb; i++) {
  3218. float max = 0;
  3219. float amax = 0;
  3220. for (int j = 0; j < QK_K; ++j) {
  3221. float ax = fabsf(x[j]);
  3222. if (ax > amax) {
  3223. amax = ax; max = x[j];
  3224. }
  3225. }
  3226. if (!amax) {
  3227. y[i].d = 0;
  3228. memset(y[i].qs, 0, QK_K);
  3229. x += QK_K;
  3230. continue;
  3231. }
  3232. //const float iscale = -128.f/max;
  3233. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3234. const float iscale = -127.f/max;
  3235. for (int j = 0; j < QK_K; ++j) {
  3236. int v = nearest_int(iscale*x[j]);
  3237. y[i].qs[j] = MIN(127, v);
  3238. }
  3239. for (int j = 0; j < QK_K/16; ++j) {
  3240. int sum = 0;
  3241. for (int ii = 0; ii < 16; ++ii) {
  3242. sum += y[i].qs[j*16 + ii];
  3243. }
  3244. y[i].bsums[j] = sum;
  3245. }
  3246. y[i].d = 1/iscale;
  3247. x += QK_K;
  3248. }
  3249. }
  3250. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int64_t k) {
  3251. assert(k % QK_K == 0);
  3252. const int64_t nb = k / QK_K;
  3253. for (int i = 0; i < nb; i++) {
  3254. for (int j = 0; j < QK_K; ++j) {
  3255. *y++ = x[i].d * x[i].qs[j];
  3256. }
  3257. }
  3258. }
  3259. void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) {
  3260. quantize_row_q8_K_ref(x, y, k);
  3261. }
  3262. //===================================== Dot products =================================
  3263. //
  3264. // Helper functions
  3265. //
  3266. #if __AVX__ || __AVX2__ || __AVX512F__
  3267. // shuffles to pick the required scales in dot products
  3268. static inline __m256i get_scale_shuffle_q3k(int i) {
  3269. static const uint8_t k_shuffle[128] = {
  3270. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3271. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3272. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3273. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3274. };
  3275. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3276. }
  3277. static inline __m256i get_scale_shuffle_k4(int i) {
  3278. static const uint8_t k_shuffle[256] = {
  3279. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3280. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3281. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3282. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3283. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3284. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3285. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3286. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3287. };
  3288. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3289. }
  3290. static inline __m128i get_scale_shuffle(int i) {
  3291. static const uint8_t k_shuffle[128] = {
  3292. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3293. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3294. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3295. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3296. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3297. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3298. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3299. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3300. };
  3301. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3302. }
  3303. #elif defined(__loongarch_asx)
  3304. // shuffles to pick the required scales in dot products
  3305. static inline __m256i get_scale_shuffle_q3k(int i) {
  3306. static const uint8_t k_shuffle[128] = {
  3307. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3308. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3309. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3310. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3311. };
  3312. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3313. }
  3314. static inline __m256i get_scale_shuffle_k4(int i) {
  3315. static const uint8_t k_shuffle[256] = {
  3316. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3317. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3318. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3319. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3320. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3321. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3322. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3323. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3324. };
  3325. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3326. }
  3327. static inline __m128i get_scale_shuffle(int i) {
  3328. static const uint8_t k_shuffle[128] = {
  3329. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3330. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3331. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3332. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3333. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3334. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3335. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3336. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3337. };
  3338. return __lsx_vld((const __m128i*)k_shuffle + i, 0);
  3339. }
  3340. #endif
  3341. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3342. const int qk = QK8_0;
  3343. const int nb = n / qk;
  3344. assert(n % qk == 0);
  3345. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3346. assert((nrc == 2) || (nrc == 1));
  3347. #else
  3348. assert(nrc == 1);
  3349. #endif
  3350. UNUSED(nrc);
  3351. UNUSED(bx);
  3352. UNUSED(by);
  3353. UNUSED(bs);
  3354. const block_q4_0 * restrict x = vx;
  3355. const block_q8_0 * restrict y = vy;
  3356. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3357. if (nrc == 2) {
  3358. const block_q4_0 * restrict vx0 = vx;
  3359. const block_q4_0 * restrict vx1 = (const block_q4_0 *) ((const uint8_t*)vx + bx);
  3360. const block_q8_0 * restrict vy0 = vy;
  3361. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  3362. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3363. for (int i = 0; i < nb; i++) {
  3364. const block_q4_0 * restrict b_x0 = &vx0[i];
  3365. const block_q4_0 * restrict b_x1 = &vx1[i];
  3366. const block_q8_0 * restrict b_y0 = &vy0[i];
  3367. const block_q8_0 * restrict b_y1 = &vy1[i];
  3368. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3369. const int8x16_t s8b = vdupq_n_s8(0x8);
  3370. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3371. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3372. // 4-bit -> 8-bit
  3373. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3374. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3375. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3376. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3377. // sub 8
  3378. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3379. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3380. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3381. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3382. // load y
  3383. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3384. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3385. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3386. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3387. float32_t _scale[4] = { GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3388. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3389. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3390. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3391. float32x4_t scale = vld1q_f32(_scale);
  3392. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3393. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3394. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3395. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3396. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3397. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3398. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3399. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3400. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3401. l1, r1)), l2, r2)), l3, r3))), scale);
  3402. }
  3403. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3404. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3405. vst1_f32(s, vget_low_f32(sumv2));
  3406. vst1_f32(s + bs, vget_high_f32(sumv2));
  3407. return;
  3408. }
  3409. #endif
  3410. int ib = 0;
  3411. float sumf = 0;
  3412. #if defined(__ARM_FEATURE_SVE)
  3413. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  3414. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  3415. const int vector_length = ggml_sve_cnt_b*8;
  3416. // VLA Implementation using switch case
  3417. switch (vector_length) {
  3418. case 128:
  3419. {
  3420. // predicate for activating higher lanes for 4 float32 elements
  3421. const svbool_t ph4 = svptrue_pat_b32(SV_VL4);
  3422. for (; ib + 1 < nb; ib += 2) {
  3423. const block_q4_0 * restrict x0 = &x[ib + 0];
  3424. const block_q4_0 * restrict x1 = &x[ib + 1];
  3425. const block_q8_0 * restrict y0 = &y[ib + 0];
  3426. const block_q8_0 * restrict y1 = &y[ib + 1];
  3427. // load x
  3428. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  3429. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  3430. // 4-bit -> 8-bit
  3431. const svint8_t qx0l = svreinterpret_s8_u8(svand_n_u8_m(svptrue_b8(), qx0r, 0x0F));
  3432. const svint8_t qx0h = svreinterpret_s8_u8(svlsr_n_u8_m(svptrue_b8(), qx0r, 0x04));
  3433. const svint8_t qx1l = svreinterpret_s8_u8(svand_n_u8_m(svptrue_b8(), qx1r, 0x0F));
  3434. const svint8_t qx1h = svreinterpret_s8_u8(svlsr_n_u8_m(svptrue_b8(), qx1r, 0x04));
  3435. // sub 8
  3436. const svint8_t qx0ls = svsub_n_s8_x(svptrue_b8(), qx0h, 8);
  3437. const svint8_t qx0hs = svsub_n_s8_x(svptrue_b8(), qx0l, 8);
  3438. const svint8_t qx1ls = svsub_n_s8_x(svptrue_b8(), qx1h, 8);
  3439. const svint8_t qx1hs = svsub_n_s8_x(svptrue_b8(), qx1l, 8);
  3440. // load y
  3441. const svint8_t qy0h = svld1_s8(svptrue_b8(), y0->qs);
  3442. const svint8_t qy0l = svld1_s8(svptrue_b8(), y0->qs + 16);
  3443. const svint8_t qy1h = svld1_s8(svptrue_b8(), y1->qs);
  3444. const svint8_t qy1l = svld1_s8(svptrue_b8(), y1->qs + 16);
  3445. // dot product
  3446. sumv0 = svmla_n_f32_x(ph4, sumv0, svcvt_f32_s32_x(ph4, svadd_x(ph4,
  3447. svdot_s32(svdup_n_s32(0), qx0ls, qy0l),
  3448. svdot_s32(svdup_n_s32(0), qx0hs, qy0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3449. sumv1 = svmla_n_f32_x(ph4, sumv1, svcvt_f32_s32_x(ph4, svadd_x(ph4,
  3450. svdot_s32(svdup_n_s32(0), qx1ls, qy1l),
  3451. svdot_s32(svdup_n_s32(0), qx1hs, qy1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3452. }
  3453. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  3454. } break;
  3455. case 256:
  3456. {
  3457. // predicate for activating higher lanes for 16 int8 elements
  3458. const svbool_t ph16 = svptrue_pat_b8(SV_VL16);
  3459. // predicate for activating lower lanes for 16 int8 elements
  3460. const svbool_t pl16 = svnot_b_z(svptrue_b8(), ph16);
  3461. for (; ib + 1 < nb; ib += 2) {
  3462. const block_q4_0 * restrict x0 = &x[ib + 0];
  3463. const block_q4_0 * restrict x1 = &x[ib + 1];
  3464. const block_q8_0 * restrict y0 = &y[ib + 0];
  3465. const block_q8_0 * restrict y1 = &y[ib + 1];
  3466. // load x
  3467. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  3468. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  3469. // 4-bit -> 8-bit
  3470. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx0r, 0x0F), 0x04));
  3471. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx1r, 0x0F), 0x04));
  3472. // sub 8
  3473. const svint8_t qx0s = svsub_n_s8_x(svptrue_b8(), qx0, 8);
  3474. const svint8_t qx1s = svsub_n_s8_x(svptrue_b8(), qx1, 8);
  3475. // load y
  3476. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  3477. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  3478. // dot product
  3479. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
  3480. svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3481. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
  3482. svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3483. }
  3484. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  3485. } break;
  3486. case 512:
  3487. {
  3488. // predicate for activating higher lanes for 32 int8 elements
  3489. const svbool_t ph32 = svptrue_pat_b8(SV_VL32);
  3490. // predicate for activating higher lanes for 16 int8 elements
  3491. const svbool_t ph16 = svptrue_pat_b8(SV_VL16);
  3492. // predicate for activating lower lanes for 16 int8 elements from first 32 int8 activated lanes
  3493. const svbool_t pl16 = svnot_b_z(ph32, ph16);
  3494. for (; ib + 1 < nb; ib += 2) {
  3495. const block_q4_0 * restrict x0 = &x[ib + 0];
  3496. const block_q4_0 * restrict x1 = &x[ib + 1];
  3497. const block_q8_0 * restrict y0 = &y[ib + 0];
  3498. const block_q8_0 * restrict y1 = &y[ib + 1];
  3499. // load x
  3500. const svuint8_t qx0r = svld1rq_u8(ph32, x0->qs);
  3501. const svuint8_t qx1r = svld1rq_u8(ph32, x1->qs);
  3502. // 4-bit -> 8-bit
  3503. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx0r, 0x0F), 0x04));
  3504. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx1r, 0x0F), 0x04));
  3505. // sub 8
  3506. const svint8_t qx0s = svsub_n_s8_x(ph32, qx0, 8);
  3507. const svint8_t qx1s = svsub_n_s8_x(ph32, qx1, 8);
  3508. // load y
  3509. const svint8_t qy0 = svld1_s8(ph32, y0->qs);
  3510. const svint8_t qy1 = svld1_s8(ph32, y1->qs);
  3511. // dot product
  3512. sumv0 = svmla_n_f32_x(ph32, sumv0, svcvt_f32_s32_x(ph32,
  3513. svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3514. sumv1 = svmla_n_f32_x(ph32, sumv1, svcvt_f32_s32_x(ph32,
  3515. svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3516. }
  3517. sumf = svaddv_f32(ph32, svadd_f32_x(ph32, sumv0, sumv1));
  3518. } break;
  3519. default:
  3520. assert(false && "Unsupported vector length");
  3521. break;
  3522. }
  3523. #elif defined(__ARM_NEON)
  3524. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3525. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3526. for (; ib + 1 < nb; ib += 2) {
  3527. const block_q4_0 * restrict x0 = &x[ib + 0];
  3528. const block_q4_0 * restrict x1 = &x[ib + 1];
  3529. const block_q8_0 * restrict y0 = &y[ib + 0];
  3530. const block_q8_0 * restrict y1 = &y[ib + 1];
  3531. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3532. const int8x16_t s8b = vdupq_n_s8(0x8);
  3533. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3534. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3535. // 4-bit -> 8-bit
  3536. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3537. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3538. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3539. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3540. // sub 8
  3541. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3542. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3543. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3544. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3545. // load y
  3546. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3547. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3548. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3549. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3550. // dot product into int32x4_t
  3551. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3552. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3553. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3554. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3555. }
  3556. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3557. #elif defined(__AVX2__)
  3558. // Initialize accumulator with zeros
  3559. __m256 acc = _mm256_setzero_ps();
  3560. // Main loop
  3561. for (; ib < nb; ++ib) {
  3562. /* Compute combined scale for the block */
  3563. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3564. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3565. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3566. const __m256i off = _mm256_set1_epi8( 8 );
  3567. qx = _mm256_sub_epi8( qx, off );
  3568. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  3569. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3570. /* Multiply q with scale and accumulate */
  3571. acc = _mm256_fmadd_ps( d, q, acc );
  3572. }
  3573. sumf = hsum_float_8(acc);
  3574. #elif defined(__AVX__)
  3575. const __m128i mone = _mm_set1_epi16(1);
  3576. __m256 accum1 = _mm256_setzero_ps();
  3577. __m256 accum2 = _mm256_setzero_ps();
  3578. for (; ib + 1 < nb; ib += 2) {
  3579. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
  3580. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  3581. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
  3582. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
  3583. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  3584. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  3585. const __m128i q4b_1_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_1), _mm_set1_epi8(8));
  3586. const __m128i q4b_1_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_1, 4)), _mm_set1_epi8(8));
  3587. const __m128i q4b_2_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_2), _mm_set1_epi8(8));
  3588. const __m128i q4b_2_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_2, 4)), _mm_set1_epi8(8));
  3589. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  3590. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  3591. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  3592. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  3593. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
  3594. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
  3595. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
  3596. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
  3597. accum1 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  3598. _mm256_cvtepi32_ps(MM256_SET_M128I(p_1_1, p_1_0))), accum1);
  3599. accum2 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  3600. _mm256_cvtepi32_ps(MM256_SET_M128I(p_2_1, p_2_0))), accum2);
  3601. }
  3602. sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
  3603. #elif defined(__SSSE3__)
  3604. // set constants
  3605. const __m128i lowMask = _mm_set1_epi8(0xF);
  3606. const __m128i off = _mm_set1_epi8(8);
  3607. // Initialize accumulator with zeros
  3608. __m128 acc_0 = _mm_setzero_ps();
  3609. __m128 acc_1 = _mm_setzero_ps();
  3610. __m128 acc_2 = _mm_setzero_ps();
  3611. __m128 acc_3 = _mm_setzero_ps();
  3612. for (; ib + 1 < nb; ib += 2) {
  3613. _mm_prefetch(&x[ib] + sizeof(block_q4_0), _MM_HINT_T0);
  3614. _mm_prefetch(&y[ib] + sizeof(block_q8_0), _MM_HINT_T0);
  3615. // Compute combined scale for the block 0 and 1
  3616. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3617. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[ib].qs);
  3618. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3619. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
  3620. bx_0 = _mm_sub_epi8(bx_0, off);
  3621. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3622. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3623. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[ib].qs + 16));
  3624. bx_1 = _mm_sub_epi8(bx_1, off);
  3625. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3626. _mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3627. _mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3628. // Compute combined scale for the block 2 and 3
  3629. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  3630. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  3631. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3632. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  3633. bx_2 = _mm_sub_epi8(bx_2, off);
  3634. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3635. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3636. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[ib + 1].qs + 16));
  3637. bx_3 = _mm_sub_epi8(bx_3, off);
  3638. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3639. // Convert int32_t to float
  3640. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3641. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3642. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3643. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3644. // Apply the scale
  3645. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3646. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3647. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3648. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3649. // Acummulate
  3650. acc_0 = _mm_add_ps(p0_d, acc_0);
  3651. acc_1 = _mm_add_ps(p1_d, acc_1);
  3652. acc_2 = _mm_add_ps(p2_d, acc_2);
  3653. acc_3 = _mm_add_ps(p3_d, acc_3);
  3654. }
  3655. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3656. #elif defined(__riscv_v_intrinsic)
  3657. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3658. for (; ib < nb; ++ib) {
  3659. // load elements
  3660. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  3661. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  3662. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  3663. // mask and store lower part of x, and then upper part
  3664. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3665. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3666. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3667. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3668. // subtract offset
  3669. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3670. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3671. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3672. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3673. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3674. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3675. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3676. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3677. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  3678. }
  3679. #elif defined(__POWER9_VECTOR__)
  3680. const vector signed char lowMask = vec_splats((signed char)0xF);
  3681. const vector signed int v0 = vec_splats((int32_t)0);
  3682. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3683. const vector signed char v8 = vec_splats((signed char)0x8);
  3684. vector float vsumf0 = vec_splats(0.0f);
  3685. #pragma GCC unroll 8
  3686. for (; ib < nb; ++ib) {
  3687. __builtin_prefetch(x[ib].qs, 0, 1);
  3688. __builtin_prefetch(y[ib].qs, 0, 1);
  3689. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  3690. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  3691. vector float vd = vec_mul(vxd, vyd);
  3692. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  3693. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  3694. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  3695. vector signed char q4x0 = vec_and(qxs, lowMask);
  3696. vector signed char q4x1 = vec_sr(qxs, v4);
  3697. q4x0 = vec_sub(q4x0, v8);
  3698. q4x1 = vec_sub(q4x1, v8);
  3699. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  3700. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  3701. vector signed int vsumi0 = v0;
  3702. vsumi0 = vec_sum4s(qv0, vsumi0);
  3703. vsumi0 = vec_sum4s(qv1, vsumi0);
  3704. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3705. }
  3706. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3707. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3708. sumf = vec_extract(vsumf0, 0);
  3709. #elif defined(__loongarch_asx)
  3710. // Initialize accumulator with zeros
  3711. __m256 acc = (__m256)__lasx_xvldi(0);
  3712. // Main loop
  3713. for (; ib < nb; ++ib) {
  3714. /* Compute combined scale for the block */
  3715. const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3716. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3717. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3718. const __m256i off = __lasx_xvreplgr2vr_b( 8 );
  3719. qx = __lasx_xvsub_b( qx, off );
  3720. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  3721. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3722. /* Multiply q with scale and accumulate */
  3723. acc = __lasx_xvfmadd_s( d, q, acc );
  3724. }
  3725. sumf = hsum_float_8(acc);
  3726. #elif defined(__loongarch_sx)
  3727. // set constants
  3728. const __m128i low_mask = __lsx_vreplgr2vr_b(0xF);
  3729. const __m128i off = __lsx_vreplgr2vr_b(8);
  3730. // Initialize accumulator with zeros
  3731. __m128 acc_0 = __lsx_vldi(0);
  3732. __m128 acc_1 = __lsx_vldi(0);
  3733. __m128 acc_2 = __lsx_vldi(0);
  3734. __m128 acc_3 = __lsx_vldi(0);
  3735. for (; ib + 1 < nb; ib += 2) {
  3736. // Compute combined scale for the block 0 and 1
  3737. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  3738. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[ib].qs, 0);
  3739. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  3740. __m128i by_0 = __lsx_vld((const __m128i *)y[ib].qs, 0);
  3741. bx_0 = __lsx_vsub_b(bx_0, off);
  3742. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3743. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  3744. __m128i by_1 = __lsx_vld((const __m128i *)(y[ib].qs + 16), 0);
  3745. bx_1 = __lsx_vsub_b(bx_1, off);
  3746. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3747. //_mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3748. //_mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3749. // Compute combined scale for the block 2 and 3
  3750. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  3751. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[ib + 1].qs, 0);
  3752. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  3753. __m128i by_2 = __lsx_vld((const __m128i *)y[ib + 1].qs, 0);
  3754. bx_2 = __lsx_vsub_b(bx_2, off);
  3755. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3756. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  3757. __m128i by_3 = __lsx_vld((const __m128i *)(y[ib + 1].qs + 16), 0);
  3758. bx_3 = __lsx_vsub_b(bx_3, off);
  3759. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3760. // Convert int32_t to float
  3761. __m128 p0 = __lsx_vffint_s_w(i32_0);
  3762. __m128 p1 = __lsx_vffint_s_w(i32_1);
  3763. __m128 p2 = __lsx_vffint_s_w(i32_2);
  3764. __m128 p3 = __lsx_vffint_s_w(i32_3);
  3765. // Apply the scale
  3766. __m128 p0_d = __lsx_vfmul_s( d_0_1, p0 );
  3767. __m128 p1_d = __lsx_vfmul_s( d_0_1, p1 );
  3768. __m128 p2_d = __lsx_vfmul_s( d_2_3, p2 );
  3769. __m128 p3_d = __lsx_vfmul_s( d_2_3, p3 );
  3770. // Acummulate
  3771. acc_0 = __lsx_vfadd_s(p0_d, acc_0);
  3772. acc_1 = __lsx_vfadd_s(p1_d, acc_1);
  3773. acc_2 = __lsx_vfadd_s(p2_d, acc_2);
  3774. acc_3 = __lsx_vfadd_s(p3_d, acc_3);
  3775. }
  3776. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3777. #endif
  3778. for (; ib < nb; ++ib) {
  3779. int sumi0 = 0;
  3780. int sumi1 = 0;
  3781. for (int j = 0; j < qk/2; ++j) {
  3782. const int v0 = (x[ib].qs[j] & 0x0F) - 8;
  3783. const int v1 = (x[ib].qs[j] >> 4) - 8;
  3784. sumi0 += (v0 * y[ib].qs[j]);
  3785. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  3786. }
  3787. int sumi = sumi0 + sumi1;
  3788. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  3789. }
  3790. *s = sumf;
  3791. }
  3792. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3793. const int qk = QK8_1;
  3794. const int nb = n / qk;
  3795. assert(n % qk == 0);
  3796. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3797. assert((nrc == 2) || (nrc == 1));
  3798. #else
  3799. assert(nrc == 1);
  3800. #endif
  3801. UNUSED(nrc);
  3802. UNUSED(bx);
  3803. UNUSED(by);
  3804. UNUSED(bs);
  3805. const block_q4_1 * restrict x = vx;
  3806. const block_q8_1 * restrict y = vy;
  3807. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3808. if (nrc == 2) {
  3809. const block_q4_1 * restrict vx0 = vx;
  3810. const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx);
  3811. const block_q8_1 * restrict vy0 = vy;
  3812. const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by);
  3813. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3814. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3815. for (int i = 0; i < nb; i++) {
  3816. const block_q4_1 * restrict b_x0 = &vx0[i];
  3817. const block_q4_1 * restrict b_x1 = &vx1[i];
  3818. const block_q8_1 * restrict b_y0 = &vy0[i];
  3819. const block_q8_1 * restrict b_y1 = &vy1[i];
  3820. float32_t summs_t[4] = {GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
  3821. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
  3822. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
  3823. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)};
  3824. summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
  3825. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3826. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3827. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3828. // 4-bit -> 8-bit
  3829. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3830. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3831. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3832. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3833. // load y
  3834. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3835. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3836. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3837. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3838. // mmla into int32x4_t
  3839. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d,
  3840. GGML_FP16_TO_FP32(b_x0->d)*b_y1->d,
  3841. GGML_FP16_TO_FP32(b_x1->d)*b_y0->d,
  3842. GGML_FP16_TO_FP32(b_x1->d)*b_y1->d};
  3843. float32x4_t scale = vld1q_f32(_scale);
  3844. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3845. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3846. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3847. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3848. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3849. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3850. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3851. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3852. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3853. l1, r1)), l2, r2)), l3, r3))), scale);
  3854. }
  3855. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3856. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3857. sumv2 = vaddq_f32(sumv2, summs0);
  3858. vst1_f32(s, vget_low_f32 (sumv2));
  3859. vst1_f32(s + bs, vget_high_f32(sumv2));
  3860. return;
  3861. }
  3862. #endif
  3863. int ib = 0;
  3864. float sumf = 0;
  3865. // TODO: add WASM SIMD
  3866. #if defined(__ARM_NEON)
  3867. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3868. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3869. float summs = 0;
  3870. for (; ib + 1 < nb; ib += 2) {
  3871. const block_q4_1 * restrict x0 = &x[ib + 0];
  3872. const block_q4_1 * restrict x1 = &x[ib + 1];
  3873. const block_q8_1 * restrict y0 = &y[ib + 0];
  3874. const block_q8_1 * restrict y1 = &y[ib + 1];
  3875. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  3876. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3877. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3878. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3879. // 4-bit -> 8-bit
  3880. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3881. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3882. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3883. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3884. // load y
  3885. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3886. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3887. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3888. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3889. // dot product into int32x4_t
  3890. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3891. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3892. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3893. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3894. }
  3895. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3896. #elif defined(__AVX2__) || defined(__AVX__)
  3897. // Initialize accumulator with zeros
  3898. __m256 acc = _mm256_setzero_ps();
  3899. float summs = 0;
  3900. // Main loop
  3901. for (; ib < nb; ++ib) {
  3902. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  3903. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  3904. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  3905. const __m256 d0v = _mm256_set1_ps( d0 );
  3906. const __m256 d1v = _mm256_set1_ps( d1 );
  3907. // Compute combined scales
  3908. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3909. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3910. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3911. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[ib].qs );
  3912. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3913. // Accumulate d0*d1*x*y
  3914. #if defined(__AVX2__)
  3915. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  3916. #else
  3917. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  3918. #endif
  3919. }
  3920. sumf = hsum_float_8(acc) + summs;
  3921. #elif defined(__riscv_v_intrinsic)
  3922. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3923. for (; ib < nb; ++ib) {
  3924. // load elements
  3925. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  3926. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  3927. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  3928. // mask and store lower part of x, and then upper part
  3929. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3930. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3931. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3932. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3933. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3934. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3935. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3936. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3937. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3938. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3939. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  3940. }
  3941. #elif defined(__POWER9_VECTOR__)
  3942. const vector signed char lowMask = vec_splats((signed char)0xF);
  3943. const vector signed int v0 = vec_splats((int32_t)0);
  3944. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3945. vector float vsumf0 = vec_splats(0.0f);
  3946. #pragma GCC unroll 4
  3947. for (; ib < nb; ++ib) {
  3948. __builtin_prefetch(x[ib].qs, 0, 1);
  3949. __builtin_prefetch(y[ib].qs, 0, 1);
  3950. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  3951. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  3952. vector float vd = vec_mul(vxd, vyd);
  3953. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  3954. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.0f, 0.0f, 0.0f};
  3955. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  3956. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  3957. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  3958. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  3959. vector unsigned char q4x0 = (vector unsigned char)vec_and(qxs, lowMask);
  3960. vector unsigned char q4x1 = (vector unsigned char)vec_sr(qxs, v4);
  3961. vector signed int vsumi0 = v0;
  3962. vsumi0 = vec_msum(q8y0, q4x0, vsumi0);
  3963. vsumi0 = vec_msum(q8y1, q4x1, vsumi0);
  3964. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3965. }
  3966. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3967. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3968. sumf = vec_extract(vsumf0, 0);
  3969. #elif defined(__loongarch_asx)
  3970. // Initialize accumulator with zeros
  3971. __m256 acc = (__m256)__lasx_xvldi(0);
  3972. float summs = 0;
  3973. // Main loop
  3974. for (; ib < nb; ++ib) {
  3975. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  3976. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  3977. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  3978. const __m256 d0v = __lasx_xvreplfr2vr_s( d0 );
  3979. const __m256 d1v = __lasx_xvreplfr2vr_s( d1 );
  3980. // Compute combined scales
  3981. const __m256 d0d1 = __lasx_xvfmul_s( d0v, d1v );
  3982. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3983. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  3984. const __m256i qy = __lasx_xvld( (const __m256i *)y[ib].qs, 0);
  3985. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3986. // Accumulate d0*d1*x*y
  3987. acc = __lasx_xvfmadd_s( d0d1, xy, acc );
  3988. }
  3989. sumf = hsum_float_8(acc) + summs;
  3990. #endif
  3991. for (; ib < nb; ++ib) {
  3992. int sumi0 = 0;
  3993. int sumi1 = 0;
  3994. for (int j = 0; j < qk/2; ++j) {
  3995. const int v0 = (x[ib].qs[j] & 0x0F);
  3996. const int v1 = (x[ib].qs[j] >> 4);
  3997. sumi0 += (v0 * y[ib].qs[j]);
  3998. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  3999. }
  4000. int sumi = sumi0 + sumi1;
  4001. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  4002. }
  4003. *s = sumf;
  4004. }
  4005. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4006. const int qk = QK8_0;
  4007. const int nb = n / qk;
  4008. int ib = 0;
  4009. float sumf = 0;
  4010. assert(n % qk == 0);
  4011. assert(qk == QK5_0);
  4012. assert(nrc == 1);
  4013. UNUSED(nrc);
  4014. UNUSED(bx);
  4015. UNUSED(by);
  4016. UNUSED(bs);
  4017. const block_q5_0 * restrict x = vx;
  4018. const block_q8_0 * restrict y = vy;
  4019. #if defined(__ARM_NEON)
  4020. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4021. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4022. uint32_t qh0;
  4023. uint32_t qh1;
  4024. uint64_t tmp0[4];
  4025. uint64_t tmp1[4];
  4026. for (; ib + 1 < nb; ib += 2) {
  4027. const block_q5_0 * restrict x0 = &x[ib];
  4028. const block_q5_0 * restrict x1 = &x[ib + 1];
  4029. const block_q8_0 * restrict y0 = &y[ib];
  4030. const block_q8_0 * restrict y1 = &y[ib + 1];
  4031. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4032. // extract the 5th bit via lookup table ((!b) << 4)
  4033. memcpy(&qh0, x0->qh, sizeof(qh0));
  4034. memcpy(&qh1, x1->qh, sizeof(qh1));
  4035. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  4036. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  4037. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  4038. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  4039. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  4040. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  4041. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  4042. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  4043. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4044. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4045. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4046. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4047. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4048. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4049. // 4-bit -> 8-bit
  4050. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4051. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4052. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4053. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4054. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  4055. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  4056. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  4057. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  4058. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  4059. // load y
  4060. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4061. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4062. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4063. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4064. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4065. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4066. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4067. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4068. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4069. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4070. }
  4071. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4072. #elif defined(__wasm_simd128__)
  4073. v128_t sumv = wasm_f32x4_splat(0.0f);
  4074. uint32_t qh;
  4075. uint64_t tmp[4];
  4076. // TODO: check if unrolling this is better
  4077. for (; ib < nb; ++ib) {
  4078. const block_q5_0 * restrict x0 = &x[ib];
  4079. const block_q8_0 * restrict y0 = &y[ib];
  4080. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4081. // extract the 5th bit
  4082. memcpy(&qh, x0->qh, sizeof(qh));
  4083. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  4084. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  4085. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  4086. tmp[3] = table_b2b_1[(qh >> 24) ];
  4087. const v128_t qhl = wasm_v128_load(tmp + 0);
  4088. const v128_t qhh = wasm_v128_load(tmp + 2);
  4089. const v128_t v0 = wasm_v128_load(x0->qs);
  4090. // 4-bit -> 8-bit
  4091. const v128_t v0l = wasm_v128_and (v0, m4b);
  4092. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4093. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  4094. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  4095. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  4096. // load y
  4097. const v128_t v1l = wasm_v128_load(y0->qs);
  4098. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4099. // int8x16 -> int16x8
  4100. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4101. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4102. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4103. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4104. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4105. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4106. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4107. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4108. // dot product
  4109. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  4110. wasm_i32x4_add(
  4111. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4112. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4113. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4114. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4115. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4116. }
  4117. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4118. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  4119. #elif defined(__AVX2__)
  4120. // Initialize accumulator with zeros
  4121. __m256 acc = _mm256_setzero_ps();
  4122. // Main loop
  4123. for (; ib < nb; ++ib) {
  4124. /* Compute combined scale for the block */
  4125. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  4126. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4127. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4128. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  4129. qx = _mm256_or_si256(qx, bxhi);
  4130. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4131. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4132. /* Multiply q with scale and accumulate */
  4133. acc = _mm256_fmadd_ps(d, q, acc);
  4134. }
  4135. sumf = hsum_float_8(acc);
  4136. #elif defined(__AVX__)
  4137. // Initialize accumulator with zeros
  4138. __m256 acc = _mm256_setzero_ps();
  4139. __m128i mask = _mm_set1_epi8((char)0xF0);
  4140. // Main loop
  4141. for (; ib < nb; ++ib) {
  4142. /* Compute combined scale for the block */
  4143. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  4144. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  4145. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4146. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4147. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4148. bxhil = _mm_andnot_si128(bxhil, mask);
  4149. bxhih = _mm_andnot_si128(bxhih, mask);
  4150. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4151. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4152. bxl = _mm_or_si128(bxl, bxhil);
  4153. bxh = _mm_or_si128(bxh, bxhih);
  4154. bx_0 = MM256_SET_M128I(bxh, bxl);
  4155. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4156. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  4157. /* Multiply q with scale and accumulate */
  4158. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  4159. }
  4160. sumf = hsum_float_8(acc);
  4161. #elif defined(__riscv_v_intrinsic)
  4162. uint32_t qh;
  4163. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4164. // These temporary registers are for masking and shift operations
  4165. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4166. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  4167. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  4168. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4169. for (; ib < nb; ++ib) {
  4170. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  4171. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4172. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  4173. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  4174. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4175. // ((qh & (1u << (j + 16))) >> (j + 12));
  4176. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  4177. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  4178. // narrowing
  4179. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  4180. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4181. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  4182. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4183. // load
  4184. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  4185. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  4186. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  4187. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4188. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4189. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4190. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4191. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4192. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4193. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  4194. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  4195. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4196. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4197. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4198. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4199. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4200. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4201. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  4202. }
  4203. #elif defined(__POWER9_VECTOR__)
  4204. const vector signed char lowMask = vec_splats((signed char)0xF);
  4205. const vector unsigned char v4 = vec_splats((unsigned char)4);
  4206. vector float vsumf0 = vec_splats(0.0f);
  4207. #pragma GCC unroll 4
  4208. for (; ib < nb; ++ib) {
  4209. __builtin_prefetch(x[ib].qs, 0, 1);
  4210. __builtin_prefetch(y[ib].qs, 0, 1);
  4211. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  4212. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  4213. vector float vd = vec_mul(vxd, vyd);
  4214. vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[ib].qh[0]]), (uint64_t)(table_b2b_1[x[ib].qh[1]])};
  4215. vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[ib].qh[2]]), (uint64_t)(table_b2b_1[x[ib].qh[3]])};
  4216. vector signed char qh0 = (vector signed char)aux64x2_0;
  4217. vector signed char qh1 = (vector signed char)aux64x2_1;
  4218. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  4219. vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0);
  4220. vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1);
  4221. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  4222. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  4223. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  4224. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  4225. qv0 = vec_add(qv0, qv1);
  4226. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  4227. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4228. }
  4229. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4230. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4231. sumf = vec_extract(vsumf0, 0);
  4232. #elif defined(__loongarch_asx)
  4233. // Initialize accumulator with zeros
  4234. __m256 acc = (__m256)__lasx_xvldi(0);
  4235. // Main loop
  4236. for (; ib < nb; ++ib) {
  4237. /* Compute combined scale for the block */
  4238. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d)); //FIXME
  4239. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4240. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4241. bxhi = __lasx_xvandn_v(bxhi, __lasx_xvreplgr2vr_b((char)0xF0));
  4242. qx = __lasx_xvor_v(qx, bxhi);
  4243. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  4244. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4245. /* Multiply q with scale and accumulate */
  4246. acc = __lasx_xvfmadd_s(d, q, acc);
  4247. }
  4248. sumf = hsum_float_8(acc);
  4249. #endif
  4250. for (; ib < nb; ++ib) {
  4251. uint32_t qh;
  4252. memcpy(&qh, x[ib].qh, sizeof(qh));
  4253. int sumi0 = 0;
  4254. int sumi1 = 0;
  4255. for (int j = 0; j < qk/2; ++j) {
  4256. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4257. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  4258. const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
  4259. const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
  4260. sumi0 += (x0 * y[ib].qs[j]);
  4261. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  4262. }
  4263. int sumi = sumi0 + sumi1;
  4264. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  4265. }
  4266. *s = sumf;
  4267. }
  4268. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4269. const int qk = QK8_1;
  4270. const int nb = n / qk;
  4271. int ib = 0;
  4272. float sumf = 0;
  4273. assert(n % qk == 0);
  4274. assert(qk == QK5_1);
  4275. assert(nrc == 1);
  4276. UNUSED(nrc);
  4277. UNUSED(bx);
  4278. UNUSED(by);
  4279. UNUSED(bs);
  4280. const block_q5_1 * restrict x = vx;
  4281. const block_q8_1 * restrict y = vy;
  4282. #if defined(__ARM_NEON)
  4283. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4284. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4285. float summs0 = 0.0f;
  4286. float summs1 = 0.0f;
  4287. uint32_t qh0;
  4288. uint32_t qh1;
  4289. uint64_t tmp0[4];
  4290. uint64_t tmp1[4];
  4291. for (; ib + 1 < nb; ib += 2) {
  4292. const block_q5_1 * restrict x0 = &x[ib];
  4293. const block_q5_1 * restrict x1 = &x[ib + 1];
  4294. const block_q8_1 * restrict y0 = &y[ib];
  4295. const block_q8_1 * restrict y1 = &y[ib + 1];
  4296. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4297. summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4298. summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  4299. // extract the 5th bit via lookup table ((b) << 4)
  4300. memcpy(&qh0, x0->qh, sizeof(qh0));
  4301. memcpy(&qh1, x1->qh, sizeof(qh1));
  4302. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  4303. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  4304. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  4305. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  4306. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  4307. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  4308. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  4309. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  4310. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4311. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4312. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4313. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4314. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4315. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4316. // 4-bit -> 8-bit
  4317. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4318. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4319. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4320. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4321. // add high bit
  4322. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  4323. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  4324. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  4325. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  4326. // load y
  4327. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4328. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4329. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4330. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4331. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4332. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4333. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4334. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4335. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4336. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4337. }
  4338. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  4339. #elif defined(__wasm_simd128__)
  4340. v128_t sumv = wasm_f32x4_splat(0.0f);
  4341. float summs = 0.0f;
  4342. uint32_t qh;
  4343. uint64_t tmp[4];
  4344. // TODO: check if unrolling this is better
  4345. for (; ib < nb; ++ib) {
  4346. const block_q5_1 * restrict x0 = &x[ib];
  4347. const block_q8_1 * restrict y0 = &y[ib];
  4348. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4349. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4350. // extract the 5th bit
  4351. memcpy(&qh, x0->qh, sizeof(qh));
  4352. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  4353. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  4354. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  4355. tmp[3] = table_b2b_0[(qh >> 24) ];
  4356. const v128_t qhl = wasm_v128_load(tmp + 0);
  4357. const v128_t qhh = wasm_v128_load(tmp + 2);
  4358. const v128_t v0 = wasm_v128_load(x0->qs);
  4359. // 4-bit -> 8-bit
  4360. const v128_t v0l = wasm_v128_and (v0, m4b);
  4361. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4362. // add high bit
  4363. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  4364. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  4365. // load y
  4366. const v128_t v1l = wasm_v128_load(y0->qs);
  4367. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4368. // int8x16 -> int16x8
  4369. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4370. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4371. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4372. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4373. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4374. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4375. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4376. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4377. // dot product
  4378. sumv = wasm_f32x4_add(sumv,
  4379. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  4380. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4381. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4382. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4383. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4384. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4385. }
  4386. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4387. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  4388. #elif defined(__AVX2__)
  4389. // Initialize accumulator with zeros
  4390. __m256 acc = _mm256_setzero_ps();
  4391. float summs = 0.0f;
  4392. // Main loop
  4393. for (; ib < nb; ++ib) {
  4394. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  4395. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  4396. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4397. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4398. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  4399. qx = _mm256_or_si256(qx, bxhi);
  4400. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  4401. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4402. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4403. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  4404. }
  4405. sumf = hsum_float_8(acc) + summs;
  4406. #elif defined(__AVX__)
  4407. // Initialize accumulator with zeros
  4408. __m256 acc = _mm256_setzero_ps();
  4409. __m128i mask = _mm_set1_epi8(0x10);
  4410. float summs = 0.0f;
  4411. // Main loop
  4412. for (; ib < nb; ++ib) {
  4413. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  4414. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  4415. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  4416. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4417. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4418. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4419. bxhil = _mm_and_si128(bxhil, mask);
  4420. bxhih = _mm_and_si128(bxhih, mask);
  4421. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4422. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4423. bxl = _mm_or_si128(bxl, bxhil);
  4424. bxh = _mm_or_si128(bxh, bxhih);
  4425. bx_0 = MM256_SET_M128I(bxh, bxl);
  4426. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  4427. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4428. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  4429. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  4430. }
  4431. sumf = hsum_float_8(acc) + summs;
  4432. #elif defined(__riscv_v_intrinsic)
  4433. uint32_t qh;
  4434. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4435. // temporary registers for shift operations
  4436. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4437. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4438. for (; ib < nb; ++ib) {
  4439. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  4440. // load qh
  4441. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  4442. // ((qh >> (j + 0)) << 4) & 0x10;
  4443. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  4444. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4445. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  4446. // ((qh >> (j + 12)) ) & 0x10;
  4447. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  4448. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  4449. // narrowing
  4450. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  4451. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4452. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  4453. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4454. // load
  4455. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  4456. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  4457. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  4458. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4459. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4460. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4461. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4462. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4463. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4464. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4465. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4466. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4467. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4468. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4469. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4470. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  4471. }
  4472. #elif defined(__POWER9_VECTOR__)
  4473. const vector signed char lowMask = vec_splats((signed char)0xF);
  4474. const vector signed int v0 = vec_splats((int32_t)0);
  4475. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4476. vector float vsumf0 = vec_splats(0.0f);
  4477. #pragma GCC unroll 4
  4478. for (; ib < nb; ++ib) {
  4479. __builtin_prefetch(x[ib].qs, 0, 1);
  4480. __builtin_prefetch(y[ib].qs, 0, 1);
  4481. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  4482. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  4483. vector float vd = vec_mul(vxd, vyd);
  4484. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  4485. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.f, 0.f, 0.f};
  4486. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  4487. vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[ib].qh[0]]), (uint64_t)(table_b2b_0[x[ib].qh[1]])};
  4488. vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[ib].qh[2]]), (uint64_t)(table_b2b_0[x[ib].qh[3]])};
  4489. vector signed char qh0 = (vector signed char)aux64x2_0;
  4490. vector signed char qh1 = (vector signed char)aux64x2_1;
  4491. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  4492. vector unsigned char q5x0 = (vector unsigned char)vec_or(vec_and(qxs, lowMask), qh0);
  4493. vector unsigned char q5x1 = (vector unsigned char)vec_or(vec_sr(qxs, v4), qh1);
  4494. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  4495. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  4496. vector signed int vsumi0 = v0;
  4497. vsumi0 = vec_msum(q8y0, q5x0, vsumi0);
  4498. vsumi0 = vec_msum(q8y1, q5x1, vsumi0);
  4499. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4500. }
  4501. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4502. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4503. sumf = vec_extract(vsumf0, 0);
  4504. #elif defined(__loongarch_asx)
  4505. // Initialize accumulator with zeros
  4506. __m256 acc = (__m256)__lasx_xvldi(0);
  4507. float summs = 0.0f;
  4508. // Main loop
  4509. for (; ib < nb; ++ib) {
  4510. const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d));
  4511. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  4512. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  4513. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  4514. bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10));
  4515. qx = __lasx_xvor_v(qx, bxhi);
  4516. const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib].d));
  4517. const __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  4518. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4519. acc = __lasx_xvfmadd_s(q, __lasx_xvfmul_s(dx, dy), acc);
  4520. }
  4521. sumf = hsum_float_8(acc) + summs;
  4522. #endif
  4523. for (; ib < nb; ++ib) {
  4524. uint32_t qh;
  4525. memcpy(&qh, x[ib].qh, sizeof(qh));
  4526. int sumi0 = 0;
  4527. int sumi1 = 0;
  4528. for (int j = 0; j < qk/2; ++j) {
  4529. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  4530. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  4531. const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
  4532. const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
  4533. sumi0 += (x0 * y[ib].qs[j]);
  4534. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  4535. }
  4536. int sumi = sumi0 + sumi1;
  4537. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  4538. }
  4539. *s = sumf;
  4540. }
  4541. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4542. const int qk = QK8_0;
  4543. const int nb = n / qk;
  4544. assert(n % qk == 0);
  4545. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4546. assert((nrc == 2) || (nrc == 1));
  4547. #else
  4548. assert(nrc == 1);
  4549. #endif
  4550. UNUSED(nrc);
  4551. UNUSED(bx);
  4552. UNUSED(by);
  4553. UNUSED(bs);
  4554. const block_q8_0 * restrict x = vx;
  4555. const block_q8_0 * restrict y = vy;
  4556. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4557. if (nrc == 2) {
  4558. const block_q8_0 * restrict vx0 = vx;
  4559. const block_q8_0 * restrict vx1 = (const block_q8_0 *) ((const uint8_t*)vx + bx);
  4560. const block_q8_0 * restrict vy0 = vy;
  4561. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  4562. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4563. for (int i = 0; i < nb; i++) {
  4564. const block_q8_0 * restrict b_x0 = &vx0[i];
  4565. const block_q8_0 * restrict b_y0 = &vy0[i];
  4566. const block_q8_0 * restrict b_x1 = &vx1[i];
  4567. const block_q8_0 * restrict b_y1 = &vy1[i];
  4568. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4569. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4570. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4571. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4572. // load y
  4573. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4574. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4575. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4576. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4577. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4578. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4579. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4580. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4581. float32x4_t scale = vld1q_f32(_scale);
  4582. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4583. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4584. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4585. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4586. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4587. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4588. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4589. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4590. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4591. l1, r1)), l2, r2)), l3, r3))), scale);
  4592. }
  4593. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4594. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4595. vst1_f32(s, vget_low_f32(sumv2));
  4596. vst1_f32(s + bs, vget_high_f32(sumv2));
  4597. return;
  4598. }
  4599. #endif
  4600. int ib = 0;
  4601. float sumf = 0;
  4602. #if defined(__ARM_FEATURE_SVE)
  4603. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  4604. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  4605. const int vector_length = ggml_sve_cnt_b*8;
  4606. //VLA Implemenation for SVE
  4607. switch (vector_length) {
  4608. case 128:
  4609. {
  4610. // predicate for activating lanes for 16 Int8 elements
  4611. const svbool_t ph16 = svptrue_pat_b8 (SV_VL16);
  4612. const svbool_t pl16 = svptrue_pat_b32(SV_VL4);
  4613. for (; ib + 1 < nb; ib += 2) {
  4614. const block_q8_0 * restrict x0 = &x[ib + 0];
  4615. const block_q8_0 * restrict x1 = &x[ib + 1];
  4616. const block_q8_0 * restrict y0 = &y[ib + 0];
  4617. const block_q8_0 * restrict y1 = &y[ib + 1];
  4618. // load x
  4619. const svint8_t qx0_0 = svld1_s8(ph16, x0->qs);
  4620. const svint8_t qx0_1 = svld1_s8(ph16, x0->qs+16);
  4621. const svint8_t qx1_0 = svld1_s8(ph16, x1->qs);
  4622. const svint8_t qx1_1 = svld1_s8(ph16, x1->qs+16);
  4623. // load y
  4624. const svint8_t qy0_0 = svld1_s8(ph16, y0->qs);
  4625. const svint8_t qy0_1 = svld1_s8(ph16, y0->qs+16);
  4626. const svint8_t qy1_0 = svld1_s8(ph16, y1->qs);
  4627. const svint8_t qy1_1 = svld1_s8(ph16, y1->qs+16);
  4628. sumv0 = svmla_n_f32_x(pl16, sumv0, svcvt_f32_s32_x(pl16, svadd_x(pl16,
  4629. svdot_s32(svdup_n_s32(0), qx0_0, qy0_0),
  4630. svdot_s32(svdup_n_s32(0), qx0_1, qy0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4631. sumv1 = svmla_n_f32_x(pl16, sumv1, svcvt_f32_s32_x(pl16, svadd_x(pl16,
  4632. svdot_s32(svdup_n_s32(0), qx1_0, qy1_0),
  4633. svdot_s32(svdup_n_s32(0), qx1_1, qy1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4634. }
  4635. sumf = svaddv_f32(pl16, svadd_f32_x(pl16, sumv0, sumv1));
  4636. } break;
  4637. case 256:
  4638. {
  4639. //printf("sve256");
  4640. for (; ib + 1 < nb; ib += 2) {
  4641. const block_q8_0 * restrict x0 = &x[ib + 0];
  4642. const block_q8_0 * restrict x1 = &x[ib + 1];
  4643. const block_q8_0 * restrict y0 = &y[ib + 0];
  4644. const block_q8_0 * restrict y1 = &y[ib + 1];
  4645. // load x
  4646. const svint8_t qx0 = svld1_s8(svptrue_b8(), x0->qs);
  4647. const svint8_t qx1 = svld1_s8(svptrue_b8(), x1->qs);
  4648. // load y
  4649. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  4650. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  4651. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
  4652. svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4653. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
  4654. svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4655. }
  4656. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  4657. } break;
  4658. case 512:
  4659. {
  4660. // predicate for activating high 256 bit
  4661. const svbool_t ph32 = svptrue_pat_b8(SV_VL32);
  4662. // predicate for activating low 256 bit
  4663. const svbool_t pl32 = svnot_b_z(svptrue_b8(), ph32);
  4664. // predicate for activating high lanes for 8 float32 elements
  4665. const svbool_t ph8 = svptrue_pat_b32(SV_VL8);
  4666. // predicate for activating low lanes for 8 float32 elements
  4667. const svbool_t pl8 = svnot_b_z(svptrue_b32(), ph8);
  4668. svfloat32_t sumv00 = svdup_n_f32(0.0f);
  4669. for (; ib + 1 < nb; ib += 2) {
  4670. const block_q8_0 * restrict x0 = &x[ib + 0];
  4671. const block_q8_0 * restrict x1 = &x[ib + 1];
  4672. const block_q8_0 * restrict y0 = &y[ib + 0];
  4673. const block_q8_0 * restrict y1 = &y[ib + 1];
  4674. //load 32 int8_t in first half of vector and put another 32 int8_t in second vector lower bits
  4675. // and add them to make one 64 element vector
  4676. // load x
  4677. const svint8_t qx_32 = svld1_s8(ph32, x0->qs);
  4678. svint8_t qx_64 = svld1_s8(pl32, x0->qs + 2);
  4679. qx_64 = svadd_s8_x(svptrue_b8(), qx_32, qx_64);
  4680. // load y
  4681. const svint8_t qy_32 = svld1_s8(ph32, y0->qs);
  4682. svint8_t qy_64 = svld1_s8(pl32, y0->qs + 2);
  4683. qy_64 = svadd_s8_x(svptrue_b8(), qy_32, qy_64);
  4684. // scale creation
  4685. const float32_t deq1 = GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d);
  4686. const float32_t deq2 = GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d);
  4687. // duplicate deq1 in first half of vector and deq2 in second half of vector
  4688. const svfloat32_t temp = svdup_f32_m(svdup_f32_z(ph8, deq1), pl8, deq2);
  4689. const svfloat32_t sumvt = svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx_64, qy_64));
  4690. sumv00 = svmla_f32_m(svptrue_b32(), sumv00, sumvt, temp);
  4691. }
  4692. sumf = svaddv_f32(svptrue_b32(), sumv00);
  4693. break;
  4694. }
  4695. default:
  4696. assert(false && "Unsupported vector length");
  4697. break;
  4698. }
  4699. #elif defined(__ARM_NEON)
  4700. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4701. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4702. for (; ib + 1 < nb; ib += 2) {
  4703. const block_q8_0 * restrict x0 = &x[ib + 0];
  4704. const block_q8_0 * restrict x1 = &x[ib + 1];
  4705. const block_q8_0 * restrict y0 = &y[ib + 0];
  4706. const block_q8_0 * restrict y1 = &y[ib + 1];
  4707. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4708. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4709. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4710. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4711. // load y
  4712. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4713. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4714. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4715. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4716. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4717. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4718. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4719. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4720. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4721. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4722. }
  4723. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4724. #elif defined(__AVX2__) || defined(__AVX__)
  4725. // Initialize accumulator with zeros
  4726. __m256 acc = _mm256_setzero_ps();
  4727. // Main loop
  4728. for (; ib < nb; ++ib) {
  4729. // Compute combined scale for the block
  4730. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  4731. __m256i qx = _mm256_loadu_si256((const __m256i *)x[ib].qs);
  4732. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  4733. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4734. // Multiply q with scale and accumulate
  4735. #if defined(__AVX2__)
  4736. acc = _mm256_fmadd_ps( d, q, acc );
  4737. #else
  4738. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4739. #endif
  4740. }
  4741. sumf = hsum_float_8(acc);
  4742. #elif defined(__riscv_v_intrinsic)
  4743. size_t vl = __riscv_vsetvl_e8m1(qk);
  4744. for (; ib < nb; ++ib) {
  4745. // load elements
  4746. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[ib].qs, vl);
  4747. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[ib].qs, vl);
  4748. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4749. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4750. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4751. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4752. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  4753. }
  4754. #elif defined(__POWER9_VECTOR__)
  4755. const vector signed int v0 = vec_splats((int32_t)0);
  4756. vector float vsumf0 = vec_splats(0.0f);
  4757. #pragma GCC unroll 8
  4758. for (; ib < nb; ++ib) {
  4759. __builtin_prefetch(x[ib].qs, 0, 1);
  4760. __builtin_prefetch(y[ib].qs, 0, 1);
  4761. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  4762. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  4763. vector float vd = vec_mul(vxd, vyd);
  4764. vector signed char q8x0 = vec_xl( 0, x[ib].qs);
  4765. vector signed char q8x1 = vec_xl(16, x[ib].qs);
  4766. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  4767. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  4768. vector signed short qv0 = vec_mule(q8x0, q8y0);
  4769. vector signed short qv1 = vec_mulo(q8x0, q8y0);
  4770. vector signed short qv2 = vec_mule(q8x1, q8y1);
  4771. vector signed short qv3 = vec_mulo(q8x1, q8y1);
  4772. vector signed int vsumi0 = v0;
  4773. vector signed int vsumi1 = v0;
  4774. vsumi0 = vec_sum4s(qv0, vsumi0);
  4775. vsumi1 = vec_sum4s(qv1, vsumi1);
  4776. vsumi0 = vec_sum4s(qv2, vsumi0);
  4777. vsumi1 = vec_sum4s(qv3, vsumi1);
  4778. vsumi0 = vec_add(vsumi0, vsumi1);
  4779. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4780. }
  4781. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4782. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4783. sumf = vec_extract(vsumf0, 0);
  4784. #elif defined(__loongarch_asx)
  4785. // Initialize accumulator with zeros
  4786. __m256 acc = (__m256)__lasx_xvldi(0);
  4787. // Main loop
  4788. for (; ib < nb; ++ib) {
  4789. // Compute combined scale for the block
  4790. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  4791. __m256i qx = __lasx_xvld((const __m256i *)x[ib].qs, 0);
  4792. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  4793. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4794. // Multiply q with scale and accumulate
  4795. acc = __lasx_xvfmadd_s( d, q, acc );
  4796. }
  4797. sumf = hsum_float_8(acc);
  4798. #endif
  4799. for (; ib < nb; ++ib) {
  4800. int sumi = 0;
  4801. for (int j = 0; j < qk; j++) {
  4802. sumi += x[ib].qs[j]*y[ib].qs[j];
  4803. }
  4804. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  4805. }
  4806. *s = sumf;
  4807. }
  4808. void ggml_vec_dot_tq1_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4809. assert(nrc == 1);
  4810. UNUSED(nrc);
  4811. UNUSED(bx);
  4812. UNUSED(by);
  4813. UNUSED(bs);
  4814. const block_tq1_0 * restrict x = vx;
  4815. const block_q8_K * restrict y = vy;
  4816. const int nb = n / QK_K;
  4817. #if defined(__ARM_NEON)
  4818. float sumf = 0.0f;
  4819. uint8_t k_shift[16] = {1, 1, 1, 1, 3, 3, 3, 3, 9, 9, 9, 9, 27, 27, 27, 27};
  4820. const uint8x16_t shift = vld1q_u8(k_shift);
  4821. for (int i = 0; i < nb; ++i) {
  4822. #if defined(__ARM_FEATURE_DOTPROD)
  4823. int32x4_t sumi0 = vdupq_n_s32(0);
  4824. int32x4_t sumi1 = vdupq_n_s32(0);
  4825. #else
  4826. int16x8_t sumi0 = vdupq_n_s16(0);
  4827. int16x8_t sumi1 = vdupq_n_s16(0);
  4828. #endif
  4829. // first 32 bytes of 5 elements
  4830. {
  4831. uint8x16_t qx0 = vld1q_u8(x[i].qs + 0);
  4832. uint8x16_t qx1 = vld1q_u8(x[i].qs + 16);
  4833. uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(3));
  4834. uint8x16_t qx3 = vmulq_u8(qx1, vdupq_n_u8(3));
  4835. uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(9));
  4836. uint8x16_t qx5 = vmulq_u8(qx1, vdupq_n_u8(9));
  4837. uint8x16_t qx6 = vmulq_u8(qx0, vdupq_n_u8(27));
  4838. uint8x16_t qx7 = vmulq_u8(qx1, vdupq_n_u8(27));
  4839. uint8x16_t qx8 = vmulq_u8(qx0, vdupq_n_u8(81));
  4840. uint8x16_t qx9 = vmulq_u8(qx1, vdupq_n_u8(81));
  4841. // multiply by 3 and keep the 2 bits above 8 bits
  4842. int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
  4843. int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
  4844. int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
  4845. int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
  4846. int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
  4847. int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
  4848. int8x16_t sqx6 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx6, vshrq_n_u8(qx6, 1)), 6));
  4849. int8x16_t sqx7 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx7, vshrq_n_u8(qx7, 1)), 6));
  4850. int8x16_t sqx8 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx8, vshrq_n_u8(qx8, 1)), 6));
  4851. int8x16_t sqx9 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx9, vshrq_n_u8(qx9, 1)), 6));
  4852. const int8x16_t qy0 = vld1q_s8(y[i].qs + 0);
  4853. const int8x16_t qy1 = vld1q_s8(y[i].qs + 16);
  4854. const int8x16_t qy2 = vld1q_s8(y[i].qs + 32);
  4855. const int8x16_t qy3 = vld1q_s8(y[i].qs + 48);
  4856. const int8x16_t qy4 = vld1q_s8(y[i].qs + 64);
  4857. const int8x16_t qy5 = vld1q_s8(y[i].qs + 80);
  4858. const int8x16_t qy6 = vld1q_s8(y[i].qs + 96);
  4859. const int8x16_t qy7 = vld1q_s8(y[i].qs + 112);
  4860. const int8x16_t qy8 = vld1q_s8(y[i].qs + 128);
  4861. const int8x16_t qy9 = vld1q_s8(y[i].qs + 144);
  4862. #if defined(__ARM_FEATURE_DOTPROD)
  4863. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  4864. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  4865. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  4866. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  4867. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  4868. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  4869. sumi0 = vdotq_s32(sumi0, sqx6, qy6);
  4870. sumi1 = vdotq_s32(sumi1, sqx7, qy7);
  4871. sumi0 = vdotq_s32(sumi0, sqx8, qy8);
  4872. sumi1 = vdotq_s32(sumi1, sqx9, qy9);
  4873. #else
  4874. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  4875. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  4876. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  4877. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  4878. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  4879. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  4880. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  4881. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  4882. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  4883. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  4884. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  4885. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  4886. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
  4887. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
  4888. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
  4889. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
  4890. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx8), vget_low_s8(qy8));
  4891. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx8), vget_high_s8(qy8));
  4892. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx9), vget_low_s8(qy9));
  4893. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx9), vget_high_s8(qy9));
  4894. #endif
  4895. }
  4896. // last 16 bytes of 5-element, along with the 4 bytes of 4 elements
  4897. {
  4898. uint8x16_t qx0 = vld1q_u8(x[i].qs + 32);
  4899. uint8x16_t qx1 = vmulq_u8(qx0, vdupq_n_u8(3));
  4900. uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(9));
  4901. uint8x16_t qx3 = vmulq_u8(qx0, vdupq_n_u8(27));
  4902. uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(81));
  4903. uint32_t qh;
  4904. memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
  4905. uint8x16_t qx5 = vreinterpretq_u8_u32(vdupq_n_u32(qh));
  4906. qx5 = vmulq_u8(qx5, shift);
  4907. // multiply by 3 and keep the 2 bits above 8 bits
  4908. int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
  4909. int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
  4910. int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
  4911. int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
  4912. int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
  4913. int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
  4914. const int8x16_t qy0 = vld1q_s8(y[i].qs + 160);
  4915. const int8x16_t qy1 = vld1q_s8(y[i].qs + 176);
  4916. const int8x16_t qy2 = vld1q_s8(y[i].qs + 192);
  4917. const int8x16_t qy3 = vld1q_s8(y[i].qs + 208);
  4918. const int8x16_t qy4 = vld1q_s8(y[i].qs + 224);
  4919. const int8x16_t qy5 = vld1q_s8(y[i].qs + 240);
  4920. #if defined(__ARM_FEATURE_DOTPROD)
  4921. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  4922. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  4923. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  4924. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  4925. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  4926. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  4927. #else
  4928. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  4929. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  4930. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  4931. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  4932. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  4933. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  4934. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  4935. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  4936. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  4937. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  4938. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  4939. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  4940. #endif
  4941. }
  4942. const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
  4943. const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
  4944. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4945. #if defined(__ARM_FEATURE_DOTPROD)
  4946. sumi0 = vaddq_s32(sumi0, sumi1);
  4947. sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
  4948. sumf += d * (float) vaddvq_s32(sumi0);
  4949. #else
  4950. sumi0 = vaddq_s16(sumi0, sumi1);
  4951. sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
  4952. sumf += d * (float) vaddlvq_s16(sumi0);
  4953. #endif
  4954. }
  4955. *s = sumf;
  4956. #elif defined(__AVX2__)
  4957. __m256 sumf = _mm256_setzero_ps();
  4958. for (int i = 0; i < nb; ++i) {
  4959. // 16-bit sums
  4960. __m256i sumi0 = _mm256_setzero_si256();
  4961. __m256i sumi1 = _mm256_setzero_si256();
  4962. __m256i sumi2 = _mm256_setzero_si256();
  4963. // first 32 bytes of 5 elements
  4964. {
  4965. __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs));
  4966. // 8-bit multiplies with shifts, masks and adds
  4967. __m256i qx1 = _mm256_add_epi8(qx0, _mm256_add_epi8(qx0, qx0)); // 1 * 3
  4968. __m256i qx2 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx0, 3), _mm256_set1_epi8(-8)), qx0); // 1 * 9
  4969. __m256i qx3 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx1, 3), _mm256_set1_epi8(-8)), qx1); // 3 * 9
  4970. __m256i qx4 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx2, 3), _mm256_set1_epi8(-8)), qx2); // 9 * 9
  4971. // TODO: can _mm256_mulhi_epu16 be faster even if 16-bits?
  4972. // Cancel the +1 from avg so that it behaves like a halving add
  4973. qx0 = _mm256_subs_epu8(qx0, _mm256_set1_epi8(1));
  4974. qx1 = _mm256_subs_epu8(qx1, _mm256_set1_epi8(1));
  4975. qx2 = _mm256_subs_epu8(qx2, _mm256_set1_epi8(1));
  4976. qx3 = _mm256_subs_epu8(qx3, _mm256_set1_epi8(1));
  4977. qx4 = _mm256_subs_epu8(qx4, _mm256_set1_epi8(1));
  4978. // Multiply by 3 and get the top 2 bits
  4979. qx0 = _mm256_avg_epu8(qx0, _mm256_avg_epu8(qx0, _mm256_setzero_si256()));
  4980. qx1 = _mm256_avg_epu8(qx1, _mm256_avg_epu8(qx1, _mm256_setzero_si256()));
  4981. qx2 = _mm256_avg_epu8(qx2, _mm256_avg_epu8(qx2, _mm256_setzero_si256()));
  4982. qx3 = _mm256_avg_epu8(qx3, _mm256_avg_epu8(qx3, _mm256_setzero_si256()));
  4983. qx4 = _mm256_avg_epu8(qx4, _mm256_avg_epu8(qx4, _mm256_setzero_si256()));
  4984. qx0 = _mm256_and_si256(_mm256_srli_epi16(qx0, 6), _mm256_set1_epi8(3));
  4985. qx1 = _mm256_and_si256(_mm256_srli_epi16(qx1, 6), _mm256_set1_epi8(3));
  4986. qx2 = _mm256_and_si256(_mm256_srli_epi16(qx2, 6), _mm256_set1_epi8(3));
  4987. qx3 = _mm256_and_si256(_mm256_srli_epi16(qx3, 6), _mm256_set1_epi8(3));
  4988. qx4 = _mm256_and_si256(_mm256_srli_epi16(qx4, 6), _mm256_set1_epi8(3));
  4989. const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 0));
  4990. const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 32));
  4991. const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 64));
  4992. const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 96));
  4993. const __m256i qy4 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 128));
  4994. qx0 = _mm256_maddubs_epi16(qx0, qy0);
  4995. qx1 = _mm256_maddubs_epi16(qx1, qy1);
  4996. qx2 = _mm256_maddubs_epi16(qx2, qy2);
  4997. qx3 = _mm256_maddubs_epi16(qx3, qy3);
  4998. qx4 = _mm256_maddubs_epi16(qx4, qy4);
  4999. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
  5000. sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
  5001. sumi2 = _mm256_add_epi16(sumi2, qx4);
  5002. }
  5003. // last 16 bytes of 5-element, along with the 4 bytes of 4 elements
  5004. {
  5005. __m128i qx0 = _mm_loadu_si128((const __m128i *) (x[i].qs + 32));
  5006. uint32_t qh;
  5007. memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
  5008. __m256i qx5_l = _mm256_cvtepu8_epi16(_mm_set1_epi32(qh));
  5009. __m128i qx1 = _mm_add_epi8(qx0, _mm_add_epi8(qx0, qx0)); // 1 * 3
  5010. __m128i qx2 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx0, 3), _mm_set1_epi8(-8)), qx0); // 1 * 9
  5011. __m128i qx3 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx1, 3), _mm_set1_epi8(-8)), qx1); // 3 * 9
  5012. __m128i qx4 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx2, 3), _mm_set1_epi8(-8)), qx2); // 9 * 9
  5013. __m256i qx01 = MM256_SET_M128I(qx1, qx0);
  5014. __m256i qx23 = MM256_SET_M128I(qx3, qx2);
  5015. // avx2 does not have 8-bit multiplies, so 16-bit it is.
  5016. qx5_l = _mm256_mullo_epi16(qx5_l, _mm256_set_epi16(27, 27, 27, 27, 9, 9, 9, 9, 3, 3, 3, 3, 1, 1, 1, 1));
  5017. qx5_l = _mm256_and_si256(qx5_l, _mm256_set1_epi16(0xFF));
  5018. __m128i qx5 = _mm_packus_epi16(_mm256_castsi256_si128(qx5_l), _mm256_extracti128_si256(qx5_l, 1));
  5019. __m256i qx45 = MM256_SET_M128I(qx5, qx4);
  5020. // Cancel the +1 from avg so that it behaves like a halving add
  5021. qx01 = _mm256_subs_epu8(qx01, _mm256_set1_epi8(1));
  5022. qx23 = _mm256_subs_epu8(qx23, _mm256_set1_epi8(1));
  5023. qx45 = _mm256_subs_epu8(qx45, _mm256_set1_epi8(1));
  5024. // Multiply by 3 and get the top 2 bits
  5025. qx01 = _mm256_avg_epu8(qx01, _mm256_avg_epu8(qx01, _mm256_setzero_si256()));
  5026. qx23 = _mm256_avg_epu8(qx23, _mm256_avg_epu8(qx23, _mm256_setzero_si256()));
  5027. qx45 = _mm256_avg_epu8(qx45, _mm256_avg_epu8(qx45, _mm256_setzero_si256()));
  5028. qx01 = _mm256_and_si256(_mm256_srli_epi16(qx01, 6), _mm256_set1_epi8(3));
  5029. qx23 = _mm256_and_si256(_mm256_srli_epi16(qx23, 6), _mm256_set1_epi8(3));
  5030. qx45 = _mm256_and_si256(_mm256_srli_epi16(qx45, 6), _mm256_set1_epi8(3));
  5031. const __m256i qy01 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 160));
  5032. const __m256i qy23 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 192));
  5033. const __m256i qy45 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 224));
  5034. qx01 = _mm256_maddubs_epi16(qx01, qy01);
  5035. qx23 = _mm256_maddubs_epi16(qx23, qy23);
  5036. qx45 = _mm256_maddubs_epi16(qx45, qy45);
  5037. sumi0 = _mm256_add_epi16(sumi0, qx01);
  5038. sumi1 = _mm256_add_epi16(sumi1, qx23);
  5039. sumi2 = _mm256_add_epi16(sumi2, qx45);
  5040. }
  5041. const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
  5042. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  5043. sumi0 = _mm256_sub_epi16(sumi0, ysum);
  5044. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(sumi1, sumi2));
  5045. sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
  5046. sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
  5047. }
  5048. *s = hsum_float_8(sumf);
  5049. #else
  5050. const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
  5051. float sumf = 0.0f;
  5052. for (int i = 0; i < nb; ++i) {
  5053. int sum = 0;
  5054. for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
  5055. for (size_t l = 0; l < 5; ++l) {
  5056. for (size_t m = 0; m < 32; ++m) {
  5057. uint8_t q = x[i].qs[j + m] * pow3[l];
  5058. uint16_t xi = ((uint16_t) q * 3) >> 8;
  5059. sum += (xi - 1) * y[i].qs[j*5 + l*32 + m];
  5060. }
  5061. }
  5062. }
  5063. for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
  5064. for (size_t l = 0; l < 5; ++l) {
  5065. for (size_t m = 0; m < 16; ++m) {
  5066. uint8_t q = x[i].qs[j + m] * pow3[l];
  5067. uint16_t xi = ((uint16_t) q * 3) >> 8;
  5068. sum += (xi - 1) * y[i].qs[j*5 + l*16 + m];
  5069. }
  5070. }
  5071. }
  5072. for (size_t l = 0; l < 4; ++l) {
  5073. for (size_t j = 0; j < sizeof(x->qh); ++j) {
  5074. uint8_t q = x[i].qh[j] * pow3[l];
  5075. uint16_t xi = ((uint16_t) q * 3) >> 8;
  5076. sum += (xi - 1) * y[i].qs[sizeof(x->qs)*5 + l*sizeof(x->qh) + j];
  5077. }
  5078. }
  5079. sumf += (float) sum * (GGML_FP16_TO_FP32(x[i].d) * y[i].d);
  5080. }
  5081. *s = sumf;
  5082. #endif
  5083. }
  5084. void ggml_vec_dot_tq2_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5085. assert(nrc == 1);
  5086. UNUSED(nrc);
  5087. UNUSED(bx);
  5088. UNUSED(by);
  5089. UNUSED(bs);
  5090. const block_tq2_0 * restrict x = vx;
  5091. const block_q8_K * restrict y = vy;
  5092. const int nb = n / QK_K;
  5093. #if defined(__ARM_NEON)
  5094. float sumf = 0.0f;
  5095. const uint8x16_t m3 = vdupq_n_u8(3);
  5096. for (int i = 0; i < nb; ++i) {
  5097. #if defined(__ARM_FEATURE_DOTPROD)
  5098. int32x4_t sumi0 = vdupq_n_s32(0);
  5099. int32x4_t sumi1 = vdupq_n_s32(0);
  5100. #else
  5101. int16x8_t sumi0 = vdupq_n_s16(0);
  5102. int16x8_t sumi1 = vdupq_n_s16(0);
  5103. #endif
  5104. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  5105. uint8x16_t qx0 = vld1q_u8(x[i].qs + j);
  5106. uint8x16_t qx1 = vld1q_u8(x[i].qs + j + 16);
  5107. uint8x16_t qx2 = vshrq_n_u8(qx0, 2);
  5108. uint8x16_t qx3 = vshrq_n_u8(qx1, 2);
  5109. uint8x16_t qx4 = vshrq_n_u8(qx0, 4);
  5110. uint8x16_t qx5 = vshrq_n_u8(qx1, 4);
  5111. uint8x16_t qx6 = vshrq_n_u8(qx0, 6);
  5112. uint8x16_t qx7 = vshrq_n_u8(qx1, 6);
  5113. int8x16_t sqx0 = vreinterpretq_s8_u8(vandq_u8(qx0, m3));
  5114. int8x16_t sqx1 = vreinterpretq_s8_u8(vandq_u8(qx1, m3));
  5115. int8x16_t sqx2 = vreinterpretq_s8_u8(vandq_u8(qx2, m3));
  5116. int8x16_t sqx3 = vreinterpretq_s8_u8(vandq_u8(qx3, m3));
  5117. int8x16_t sqx4 = vreinterpretq_s8_u8(vandq_u8(qx4, m3));
  5118. int8x16_t sqx5 = vreinterpretq_s8_u8(vandq_u8(qx5, m3));
  5119. int8x16_t sqx6 = vreinterpretq_s8_u8(vandq_u8(qx6, m3));
  5120. int8x16_t sqx7 = vreinterpretq_s8_u8(vandq_u8(qx7, m3));
  5121. const int8x16_t qy0 = vld1q_s8(y[i].qs + j*4 + 0);
  5122. const int8x16_t qy1 = vld1q_s8(y[i].qs + j*4 + 16);
  5123. const int8x16_t qy2 = vld1q_s8(y[i].qs + j*4 + 32);
  5124. const int8x16_t qy3 = vld1q_s8(y[i].qs + j*4 + 48);
  5125. const int8x16_t qy4 = vld1q_s8(y[i].qs + j*4 + 64);
  5126. const int8x16_t qy5 = vld1q_s8(y[i].qs + j*4 + 80);
  5127. const int8x16_t qy6 = vld1q_s8(y[i].qs + j*4 + 96);
  5128. const int8x16_t qy7 = vld1q_s8(y[i].qs + j*4 + 112);
  5129. #if defined(__ARM_FEATURE_DOTPROD)
  5130. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  5131. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  5132. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  5133. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  5134. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  5135. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  5136. sumi0 = vdotq_s32(sumi0, sqx6, qy6);
  5137. sumi1 = vdotq_s32(sumi1, sqx7, qy7);
  5138. #else
  5139. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  5140. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  5141. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  5142. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  5143. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  5144. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  5145. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  5146. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  5147. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  5148. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  5149. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  5150. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  5151. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
  5152. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
  5153. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
  5154. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
  5155. #endif
  5156. }
  5157. const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
  5158. const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
  5159. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5160. #if defined(__ARM_FEATURE_DOTPROD)
  5161. sumi0 = vaddq_s32(sumi0, sumi1);
  5162. sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
  5163. sumf += d * (float) vaddvq_s32(sumi0);
  5164. #else
  5165. sumi0 = vaddq_s16(sumi0, sumi1);
  5166. sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
  5167. sumf += d * (float) vaddlvq_s16(sumi0);
  5168. #endif
  5169. }
  5170. *s = sumf;
  5171. #elif defined(__AVX2__)
  5172. __m256 sumf = _mm256_setzero_ps();
  5173. for (int i = 0; i < nb; ++i) {
  5174. // 16-bit sums, because 256*127 still fits
  5175. __m256i sumi0 = _mm256_setzero_si256();
  5176. __m256i sumi1 = _mm256_setzero_si256();
  5177. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  5178. __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs + j));
  5179. __m256i qx1 = _mm256_srli_epi16(qx0, 2);
  5180. __m256i qx2 = _mm256_srli_epi16(qx0, 4);
  5181. __m256i qx3 = _mm256_srli_epi16(qx0, 6);
  5182. // 0, 1, 2 (should not be 3)
  5183. qx0 = _mm256_and_si256(qx0, _mm256_set1_epi8(3));
  5184. qx1 = _mm256_and_si256(qx1, _mm256_set1_epi8(3));
  5185. qx2 = _mm256_and_si256(qx2, _mm256_set1_epi8(3));
  5186. qx3 = _mm256_and_si256(qx3, _mm256_set1_epi8(3));
  5187. const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 0));
  5188. const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 32));
  5189. const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 64));
  5190. const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 96));
  5191. qx0 = _mm256_maddubs_epi16(qx0, qy0);
  5192. qx1 = _mm256_maddubs_epi16(qx1, qy1);
  5193. qx2 = _mm256_maddubs_epi16(qx2, qy2);
  5194. qx3 = _mm256_maddubs_epi16(qx3, qy3);
  5195. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
  5196. sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
  5197. }
  5198. const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
  5199. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  5200. sumi0 = _mm256_add_epi16(sumi0, sumi1);
  5201. sumi0 = _mm256_sub_epi16(sumi0, ysum);
  5202. sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
  5203. sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
  5204. }
  5205. *s = hsum_float_8(sumf);
  5206. #else
  5207. float sumf = 0.0f;
  5208. for (int i = 0; i < nb; ++i) {
  5209. int32_t sumi = 0;
  5210. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  5211. for (size_t l = 0; l < 4; ++l) {
  5212. for (size_t k = 0; k < 32; ++k) {
  5213. sumi += y[i].qs[j*4 + l*32 + k] * (((x[i].qs[j + k] >> (l*2)) & 3) - 1);
  5214. }
  5215. }
  5216. }
  5217. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5218. sumf += (float) sumi * d;
  5219. }
  5220. *s = sumf;
  5221. #endif
  5222. }
  5223. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5224. assert(nrc == 1);
  5225. UNUSED(nrc);
  5226. UNUSED(bx);
  5227. UNUSED(by);
  5228. UNUSED(bs);
  5229. const block_q2_K * restrict x = vx;
  5230. const block_q8_K * restrict y = vy;
  5231. const int nb = n / QK_K;
  5232. #ifdef __ARM_NEON
  5233. const uint8x16_t m3 = vdupq_n_u8(0x3);
  5234. const uint8x16_t m4 = vdupq_n_u8(0xF);
  5235. const int32x4_t vzero = vdupq_n_s32(0);
  5236. ggml_int8x16x2_t q2bytes;
  5237. uint8_t aux[16];
  5238. float sum = 0;
  5239. for (int i = 0; i < nb; ++i) {
  5240. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5241. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5242. const uint8_t * restrict q2 = x[i].qs;
  5243. const int8_t * restrict q8 = y[i].qs;
  5244. const uint8_t * restrict sc = x[i].scales;
  5245. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  5246. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  5247. vst1q_u8(aux, scales);
  5248. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  5249. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  5250. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  5251. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  5252. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  5253. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  5254. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  5255. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  5256. int isum = 0;
  5257. int is = 0;
  5258. // We use this macro instead of a function call because for some reason
  5259. // the code runs 2-3% slower, even if the function is declared inline
  5260. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  5261. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  5262. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  5263. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  5264. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  5265. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  5266. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  5267. MULTIPLY_ACCUM_WITH_SCALE((index));
  5268. for (int j = 0; j < QK_K/128; ++j) {
  5269. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  5270. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5271. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  5272. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  5273. MULTIPLY_ACCUM_WITH_SCALE(0);
  5274. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  5275. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  5276. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  5277. is += 8;
  5278. }
  5279. sum += d * isum;
  5280. }
  5281. *s = sum;
  5282. #elif defined __AVX2__
  5283. const __m256i m3 = _mm256_set1_epi8(3);
  5284. const __m128i m4 = _mm_set1_epi8(0xF);
  5285. __m256 acc = _mm256_setzero_ps();
  5286. for (int i = 0; i < nb; ++i) {
  5287. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5288. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5289. const uint8_t * restrict q2 = x[i].qs;
  5290. const int8_t * restrict q8 = y[i].qs;
  5291. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  5292. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  5293. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  5294. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  5295. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  5296. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  5297. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  5298. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5299. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5300. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5301. __m256i sumi = _mm256_setzero_si256();
  5302. for (int j = 0; j < QK_K/128; ++j) {
  5303. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  5304. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5305. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5306. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5307. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5308. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  5309. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  5310. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  5311. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  5312. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  5313. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  5314. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  5315. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  5316. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  5317. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  5318. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  5319. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  5320. p0 = _mm256_add_epi32(p0, p1);
  5321. p2 = _mm256_add_epi32(p2, p3);
  5322. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  5323. }
  5324. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5325. }
  5326. *s = hsum_float_8(acc);
  5327. #elif defined __AVX__
  5328. const __m128i m3 = _mm_set1_epi8(0x3);
  5329. const __m128i m4 = _mm_set1_epi8(0xF);
  5330. const __m128i m2 = _mm_set1_epi8(0x2);
  5331. __m256 acc = _mm256_setzero_ps();
  5332. for (int i = 0; i < nb; ++i) {
  5333. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5334. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5335. const uint8_t * restrict q2 = x[i].qs;
  5336. const int8_t * restrict q8 = y[i].qs;
  5337. // load mins and scales from block_q2_K.scales[QK_K/16]
  5338. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  5339. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  5340. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  5341. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  5342. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  5343. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  5344. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  5345. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  5346. // sumf += -dmin * summs in 32bits*8
  5347. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  5348. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  5349. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  5350. const __m128i scales[2] = { scales_0, scales_1 };
  5351. __m128i sumi_0 = _mm_setzero_si128();
  5352. __m128i sumi_1 = _mm_setzero_si128();
  5353. for (int j = 0; j < QK_K/128; ++j) {
  5354. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  5355. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5356. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5357. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5358. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5359. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5360. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5361. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5362. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5363. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  5364. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  5365. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  5366. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  5367. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  5368. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  5369. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  5370. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  5371. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  5372. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  5373. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  5374. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  5375. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  5376. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  5377. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  5378. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  5379. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  5380. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  5381. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  5382. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  5383. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  5384. __m128i shuffle = _mm_set1_epi16(0x0100);
  5385. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  5386. shuffle = _mm_add_epi16(shuffle, m2);
  5387. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  5388. shuffle = _mm_add_epi16(shuffle, m2);
  5389. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  5390. shuffle = _mm_add_epi16(shuffle, m2);
  5391. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  5392. shuffle = _mm_add_epi16(shuffle, m2);
  5393. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  5394. shuffle = _mm_add_epi16(shuffle, m2);
  5395. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  5396. shuffle = _mm_add_epi16(shuffle, m2);
  5397. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  5398. shuffle = _mm_add_epi16(shuffle, m2);
  5399. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  5400. p0 = _mm_add_epi32(p0, p1);
  5401. p2 = _mm_add_epi32(p2, p3);
  5402. p4 = _mm_add_epi32(p4, p5);
  5403. p6 = _mm_add_epi32(p6, p7);
  5404. // isum in 32bits*4*2
  5405. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  5406. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  5407. }
  5408. // sumf += dall * isum - dmin * summs in 32bits
  5409. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5410. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  5411. }
  5412. *s = hsum_float_8(acc);
  5413. #elif defined __riscv_v_intrinsic
  5414. float sumf = 0;
  5415. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  5416. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  5417. for (int i = 0; i < nb; ++i) {
  5418. const uint8_t * q2 = x[i].qs;
  5419. const int8_t * q8 = y[i].qs;
  5420. const uint8_t * sc = x[i].scales;
  5421. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5422. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5423. size_t vl = 16;
  5424. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  5425. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  5426. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  5427. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  5428. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  5429. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  5430. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  5431. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5432. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  5433. vl = 32;
  5434. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5435. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  5436. uint8_t is=0;
  5437. int isum=0;
  5438. for (int j = 0; j < QK_K/128; ++j) {
  5439. // load Q2
  5440. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  5441. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  5442. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  5443. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  5444. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  5445. // duplicate scale elements for product
  5446. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  5447. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  5448. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  5449. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  5450. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  5451. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  5452. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  5453. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  5454. // load Q8
  5455. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5456. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5457. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  5458. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  5459. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  5460. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  5461. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  5462. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  5463. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  5464. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  5465. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  5466. q2+=32; q8+=128; is=8;
  5467. }
  5468. sumf += dall * isum;
  5469. }
  5470. *s = sumf;
  5471. #elif defined(__POWER9_VECTOR__)
  5472. const vector signed char lowMask = vec_splats((signed char)0x3);
  5473. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  5474. const vector int v0 = vec_splats((int32_t)0);
  5475. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5476. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5477. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5478. vector float vsumf0 = vec_splats(0.0f);
  5479. vector float vsumf1 = vec_splats(0.0f);
  5480. vector float vsumf2 = vec_splats(0.0f);
  5481. vector float vsumf3 = vec_splats(0.0f);
  5482. for (int i = 0; i < nb; ++i) {
  5483. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5484. vector float vyd = vec_splats(y[i].d);
  5485. vector float vd = vec_mul(vxd, vyd);
  5486. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5487. vector float vdmin = vec_mul(vxmin, vyd);
  5488. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  5489. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  5490. vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales);
  5491. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  5492. q2xmins = vec_sr(q2xmins, v4);
  5493. vector signed short q2xmins0 = vec_unpackh(q2xmins);
  5494. vector signed short q2xmins1 = vec_unpackl(q2xmins);
  5495. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  5496. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  5497. vector signed int prod2 = vec_mule(q2xmins1, q8ysums1);
  5498. vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1);
  5499. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5500. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5501. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  5502. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  5503. vector signed int vsumi0 = v0;
  5504. vector signed int vsumi1 = v0;
  5505. vector signed int vsumi2 = v0;
  5506. vector signed int vsumi3 = v0;
  5507. vector signed int vsumi4 = v0;
  5508. vector signed int vsumi5 = v0;
  5509. vector signed int vsumi6 = v0;
  5510. vector signed int vsumi7 = v0;
  5511. const uint8_t * restrict q2 = x[i].qs;
  5512. const int8_t * restrict q8 = y[i].qs;
  5513. for (int j = 0; j < QK_K/128; ++j) {
  5514. __builtin_prefetch(q2, 0, 1);
  5515. __builtin_prefetch(q8, 0, 1);
  5516. vector signed char qxs0 = (vector signed char)vec_xl( 0, q2);
  5517. vector signed char qxs1 = (vector signed char)vec_xl(16, q2);
  5518. q2 += 32;
  5519. vector unsigned char q2x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  5520. vector unsigned char q2x01 = (vector unsigned char)vec_and(vec_sr(qxs0, v2), lowMask);
  5521. vector unsigned char q2x02 = (vector unsigned char)vec_and(vec_sr(qxs0, v4), lowMask);
  5522. vector unsigned char q2x03 = (vector unsigned char)vec_and(vec_sr(qxs0, v6), lowMask);
  5523. vector unsigned char q2x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  5524. vector unsigned char q2x11 = (vector unsigned char)vec_and(vec_sr(qxs1, v2), lowMask);
  5525. vector unsigned char q2x12 = (vector unsigned char)vec_and(vec_sr(qxs1, v4), lowMask);
  5526. vector unsigned char q2x13 = (vector unsigned char)vec_and(vec_sr(qxs1, v6), lowMask);
  5527. vector signed char q8y00 = vec_xl( 0, q8);
  5528. vector signed char q8y10 = vec_xl( 16, q8);
  5529. vector signed char q8y01 = vec_xl( 32, q8);
  5530. vector signed char q8y11 = vec_xl( 48, q8);
  5531. vector signed char q8y02 = vec_xl( 64, q8);
  5532. vector signed char q8y12 = vec_xl( 80, q8);
  5533. vector signed char q8y03 = vec_xl( 96, q8);
  5534. vector signed char q8y13 = vec_xl(112, q8);
  5535. q8 += 128;
  5536. vector signed int qv0 = vec_msum(q8y00, q2x00, v0);
  5537. vector signed int qv1 = vec_msum(q8y01, q2x01, v0);
  5538. vector signed int qv2 = vec_msum(q8y02, q2x02, v0);
  5539. vector signed int qv3 = vec_msum(q8y03, q2x03, v0);
  5540. vector signed int qv4 = vec_msum(q8y10, q2x10, v0);
  5541. vector signed int qv5 = vec_msum(q8y11, q2x11, v0);
  5542. vector signed int qv6 = vec_msum(q8y12, q2x12, v0);
  5543. vector signed int qv7 = vec_msum(q8y13, q2x13, v0);
  5544. vector signed short vscales_07 = vec_unpackh(vscales);
  5545. vector signed int vscales_03 = vec_unpackh(vscales_07);
  5546. vector signed int vscales_47 = vec_unpackl(vscales_07);
  5547. vector signed int vs0 = vec_splat(vscales_03, 0);
  5548. vector signed int vs1 = vec_splat(vscales_03, 1);
  5549. vector signed int vs2 = vec_splat(vscales_03, 2);
  5550. vector signed int vs3 = vec_splat(vscales_03, 3);
  5551. vector signed int vs4 = vec_splat(vscales_47, 0);
  5552. vector signed int vs5 = vec_splat(vscales_47, 1);
  5553. vector signed int vs6 = vec_splat(vscales_47, 2);
  5554. vector signed int vs7 = vec_splat(vscales_47, 3);
  5555. vscales = vec_sld(vscales, vscales, 8);
  5556. vsumi0 = vec_add(vec_mul(qv0, vs0), vsumi0);
  5557. vsumi1 = vec_add(vec_mul(qv1, vs2), vsumi1);
  5558. vsumi2 = vec_add(vec_mul(qv2, vs4), vsumi2);
  5559. vsumi3 = vec_add(vec_mul(qv3, vs6), vsumi3);
  5560. vsumi4 = vec_add(vec_mul(qv4, vs1), vsumi4);
  5561. vsumi5 = vec_add(vec_mul(qv5, vs3), vsumi5);
  5562. vsumi6 = vec_add(vec_mul(qv6, vs5), vsumi6);
  5563. vsumi7 = vec_add(vec_mul(qv7, vs7), vsumi7);
  5564. }
  5565. vsumi0 = vec_add(vsumi0, vsumi4);
  5566. vsumi1 = vec_add(vsumi1, vsumi5);
  5567. vsumi2 = vec_add(vsumi2, vsumi6);
  5568. vsumi3 = vec_add(vsumi3, vsumi7);
  5569. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5570. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5571. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5572. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5573. }
  5574. vsumf0 = vec_add(vsumf0, vsumf2);
  5575. vsumf1 = vec_add(vsumf1, vsumf3);
  5576. vsumf0 = vec_add(vsumf0, vsumf1);
  5577. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5578. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5579. *s = vec_extract(vsumf0, 0);
  5580. #elif defined __loongarch_asx
  5581. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  5582. const __m128i m4 = __lsx_vreplgr2vr_b(0xF);
  5583. __m256 acc = (__m256)__lasx_xvldi(0);
  5584. for (int i = 0; i < nb; ++i) {
  5585. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5586. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5587. const uint8_t * restrict q2 = x[i].qs;
  5588. const int8_t * restrict q8 = y[i].qs;
  5589. const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  5590. const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
  5591. const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
  5592. const __m256i mins = lasx_ext8_16(mins8);
  5593. const __m256i prod = lasx_madd_h(mins, __lasx_xvld((const __m256i*)y[i].bsums, 0));
  5594. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(dmin), __lasx_xvffint_s_w(prod), acc);
  5595. const __m256i all_scales = lasx_ext8_16(scales8);
  5596. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  5597. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  5598. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  5599. __m256i sumi = __lasx_xvldi(0);
  5600. for (int j = 0; j < QK_K/128; ++j) {
  5601. const __m256i q2bits = __lasx_xvld((const __m256i*)q2, 0); q2 += 32;
  5602. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5603. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5604. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5605. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5606. const __m256i q2_0 = __lasx_xvand_v(q2bits, m3);
  5607. const __m256i q2_1 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 2), m3);
  5608. const __m256i q2_2 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 4), m3);
  5609. const __m256i q2_3 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 6), m3);
  5610. __m256i p0 = lasx_maddubs_h(q2_0, q8_0);
  5611. __m256i p1 = lasx_maddubs_h(q2_1, q8_1);
  5612. __m256i p2 = lasx_maddubs_h(q2_2, q8_2);
  5613. __m256i p3 = lasx_maddubs_h(q2_3, q8_3);
  5614. p0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(0)), p0);
  5615. p1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(1)), p1);
  5616. p2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(2)), p2);
  5617. p3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(3)), p3);
  5618. p0 = __lasx_xvadd_w(p0, p1);
  5619. p2 = __lasx_xvadd_w(p2, p3);
  5620. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p0, p2));
  5621. }
  5622. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  5623. }
  5624. *s = hsum_float_8(acc);
  5625. #else
  5626. float sumf = 0;
  5627. for (int i = 0; i < nb; ++i) {
  5628. const uint8_t * q2 = x[i].qs;
  5629. const int8_t * q8 = y[i].qs;
  5630. const uint8_t * sc = x[i].scales;
  5631. int summs = 0;
  5632. for (int j = 0; j < 16; ++j) {
  5633. summs += y[i].bsums[j] * (sc[j] >> 4);
  5634. }
  5635. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5636. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5637. int isum = 0;
  5638. int is = 0;
  5639. int d;
  5640. for (int k = 0; k < QK_K/128; ++k) {
  5641. int shift = 0;
  5642. for (int j = 0; j < 4; ++j) {
  5643. d = sc[is++] & 0xF;
  5644. int isuml = 0;
  5645. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  5646. isum += d * isuml;
  5647. d = sc[is++] & 0xF;
  5648. isuml = 0;
  5649. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  5650. isum += d * isuml;
  5651. shift += 2;
  5652. q8 += 32;
  5653. }
  5654. q2 += 32;
  5655. }
  5656. sumf += dall * isum - dmin * summs;
  5657. }
  5658. *s = sumf;
  5659. #endif
  5660. }
  5661. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5662. assert(n % QK_K == 0);
  5663. assert(nrc == 1);
  5664. UNUSED(nrc);
  5665. UNUSED(bx);
  5666. UNUSED(by);
  5667. UNUSED(bs);
  5668. const uint32_t kmask1 = 0x03030303;
  5669. const uint32_t kmask2 = 0x0f0f0f0f;
  5670. const block_q3_K * restrict x = vx;
  5671. const block_q8_K * restrict y = vy;
  5672. const int nb = n / QK_K;
  5673. #ifdef __ARM_NEON
  5674. uint32_t aux[3];
  5675. uint32_t utmp[4];
  5676. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5677. const int32x4_t vzero = vdupq_n_s32(0);
  5678. const uint8x16_t m0 = vdupq_n_u8(1);
  5679. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  5680. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  5681. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  5682. const int8_t m32 = 32;
  5683. ggml_int8x16x4_t q3bytes;
  5684. float sum = 0;
  5685. for (int i = 0; i < nb; ++i) {
  5686. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5687. const uint8_t * restrict q3 = x[i].qs;
  5688. const uint8_t * restrict qh = x[i].hmask;
  5689. const int8_t * restrict q8 = y[i].qs;
  5690. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  5691. ggml_uint8x16x4_t q3h;
  5692. int32_t isum = 0;
  5693. // Set up scales
  5694. memcpy(aux, x[i].scales, 12);
  5695. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5696. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5697. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5698. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5699. int8_t * scale = (int8_t *)utmp;
  5700. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  5701. for (int j = 0; j < QK_K/128; ++j) {
  5702. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  5703. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5704. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5705. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  5706. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  5707. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  5708. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  5709. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5710. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5711. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5712. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5713. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  5714. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  5715. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  5716. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  5717. scale += 4;
  5718. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  5719. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  5720. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  5721. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  5722. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5723. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5724. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5725. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5726. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  5727. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  5728. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  5729. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  5730. scale += 4;
  5731. if (j == 0) {
  5732. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  5733. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  5734. }
  5735. }
  5736. sum += d * isum;
  5737. }
  5738. *s = sum;
  5739. #elif defined __AVX2__
  5740. const __m256i m3 = _mm256_set1_epi8(3);
  5741. const __m256i mone = _mm256_set1_epi8(1);
  5742. const __m128i m32 = _mm_set1_epi8(32);
  5743. __m256 acc = _mm256_setzero_ps();
  5744. uint32_t aux[3];
  5745. for (int i = 0; i < nb; ++i) {
  5746. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5747. const uint8_t * restrict q3 = x[i].qs;
  5748. const int8_t * restrict q8 = y[i].qs;
  5749. // Set up scales
  5750. memcpy(aux, x[i].scales, 12);
  5751. __m128i scales128 = _mm_set_epi32(
  5752. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5753. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5754. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5755. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5756. scales128 = _mm_sub_epi8(scales128, m32);
  5757. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  5758. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5759. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5760. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5761. // high bit
  5762. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  5763. // integer accumulator
  5764. __m256i sumi = _mm256_setzero_si256();
  5765. int bit = 0;
  5766. int is = 0;
  5767. for (int j = 0; j < QK_K/128; ++j) {
  5768. // load low 2 bits
  5769. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  5770. // prepare low and high bits
  5771. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  5772. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5773. ++bit;
  5774. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  5775. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5776. ++bit;
  5777. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  5778. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5779. ++bit;
  5780. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  5781. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5782. ++bit;
  5783. // load Q8 quants
  5784. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5785. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5786. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5787. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5788. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5789. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5790. // and 2 if the high bit was set)
  5791. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5792. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5793. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  5794. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  5795. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5796. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5797. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  5798. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  5799. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5800. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5801. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5802. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5803. // multiply with scales
  5804. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5805. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5806. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5807. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5808. // accumulate
  5809. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5810. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  5811. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  5812. }
  5813. // multiply with block scale and accumulate
  5814. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5815. }
  5816. *s = hsum_float_8(acc);
  5817. #elif defined __AVX__
  5818. const __m128i m3 = _mm_set1_epi8(3);
  5819. const __m128i mone = _mm_set1_epi8(1);
  5820. const __m128i m32 = _mm_set1_epi8(32);
  5821. const __m128i m2 = _mm_set1_epi8(2);
  5822. __m256 acc = _mm256_setzero_ps();
  5823. const uint32_t *aux;
  5824. for (int i = 0; i < nb; ++i) {
  5825. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5826. const uint8_t * restrict q3 = x[i].qs;
  5827. const int8_t * restrict q8 = y[i].qs;
  5828. // Set up scales
  5829. aux = (const uint32_t *)x[i].scales;
  5830. __m128i scales128 = _mm_set_epi32(
  5831. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5832. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5833. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5834. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5835. scales128 = _mm_sub_epi8(scales128, m32);
  5836. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  5837. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  5838. const __m128i scales[2] = { scales_0, scales_1 };
  5839. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  5840. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  5841. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  5842. // integer accumulator
  5843. __m128i sumi_0 = _mm_setzero_si128();
  5844. __m128i sumi_1 = _mm_setzero_si128();
  5845. for (int j = 0; j < QK_K/128; ++j) {
  5846. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  5847. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5848. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5849. // prepare low and high bits
  5850. const int bit = j << 2;
  5851. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  5852. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  5853. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5854. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5855. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5856. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5857. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5858. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5859. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5860. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5861. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5862. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5863. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5864. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5865. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5866. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5867. // load Q8 quants from block_q8_K.qs[QK_K]
  5868. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5869. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5870. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5871. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5872. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5873. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5874. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5875. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5876. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5877. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5878. // and 2 if the high bit was set)
  5879. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5880. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5881. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5882. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5883. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5884. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5885. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5886. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5887. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5888. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5889. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5890. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5891. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5892. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5893. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5894. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5895. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5896. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5897. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5898. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5899. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5900. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5901. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5902. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5903. // multiply with scales
  5904. __m128i shuffle = _mm_set1_epi16(0x0100);
  5905. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5906. shuffle = _mm_add_epi16(shuffle, m2);
  5907. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5908. shuffle = _mm_add_epi16(shuffle, m2);
  5909. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5910. shuffle = _mm_add_epi16(shuffle, m2);
  5911. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5912. shuffle = _mm_add_epi16(shuffle, m2);
  5913. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5914. shuffle = _mm_add_epi16(shuffle, m2);
  5915. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5916. shuffle = _mm_add_epi16(shuffle, m2);
  5917. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5918. shuffle = _mm_add_epi16(shuffle, m2);
  5919. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5920. // accumulate
  5921. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5922. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5923. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5924. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5925. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5926. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5927. }
  5928. // multiply with block scale and accumulate
  5929. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5930. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5931. }
  5932. *s = hsum_float_8(acc);
  5933. #elif defined __riscv_v_intrinsic
  5934. uint32_t aux[3];
  5935. uint32_t utmp[4];
  5936. float sumf = 0;
  5937. for (int i = 0; i < nb; ++i) {
  5938. const uint8_t * restrict q3 = x[i].qs;
  5939. const uint8_t * restrict qh = x[i].hmask;
  5940. const int8_t * restrict q8 = y[i].qs;
  5941. memcpy(aux, x[i].scales, 12);
  5942. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5943. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5944. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5945. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5946. int8_t * scale = (int8_t *)utmp;
  5947. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5948. size_t vl = 32;
  5949. uint8_t m = 1;
  5950. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5951. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5952. int sum_t = 0;
  5953. for (int j = 0; j < QK_K; j += 128) {
  5954. vl = 32;
  5955. // load Q3
  5956. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5957. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5958. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5959. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5960. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5961. // compute mask for subtraction
  5962. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5963. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5964. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_mu(vmask_0, q3_0, q3_0, 0x4, vl);
  5965. m <<= 1;
  5966. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5967. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5968. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_mu(vmask_1, q3_1, q3_1, 0x4, vl);
  5969. m <<= 1;
  5970. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5971. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5972. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_mu(vmask_2, q3_2, q3_2, 0x4, vl);
  5973. m <<= 1;
  5974. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5975. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  5976. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_mu(vmask_3, q3_3, q3_3, 0x4, vl);
  5977. m <<= 1;
  5978. // load Q8 and take product with Q3
  5979. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5980. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5981. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5982. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5983. vl = 16;
  5984. // retrieve lane to multiply with scale
  5985. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  5986. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  5987. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  5988. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  5989. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  5990. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  5991. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  5992. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  5993. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  5994. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  5995. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  5996. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  5997. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5998. q3 += 32; q8 += 128; scale += 8;
  5999. }
  6000. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6001. sumf += d*sum_t;
  6002. }
  6003. *s = sumf;
  6004. #elif defined(__POWER9_VECTOR__)
  6005. const vector signed char lowMask = vec_splats((signed char)0x3);
  6006. const vector signed char lowMask1 = vec_splats((int8_t)0xf);
  6007. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  6008. const vector int v0 = vec_splats((int32_t)0);
  6009. const vector signed char v1 = vec_splats((signed char)0x1);
  6010. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6011. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6012. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6013. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  6014. const vector signed char off = vec_splats((signed char)0x20);
  6015. vector float vsumf0 = vec_splats(0.0f);
  6016. vector float vsumf1 = vec_splats(0.0f);
  6017. vector float vsumf2 = vec_splats(0.0f);
  6018. vector float vsumf3 = vec_splats(0.0f);
  6019. for (int i = 0; i < nb; ++i) {
  6020. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6021. vector float vyd = vec_splats(y[i].d);
  6022. vector float vd = vec_mul(vxd, vyd);
  6023. UNUSED(kmask1);
  6024. UNUSED(kmask2);
  6025. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  6026. vector signed char u1 = vec_and(u0, lowMask1);
  6027. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  6028. vector signed char u3 = (vector signed char)vec_mergeh((vector signed int)u2, (vector signed int)vec_sr(u2, v2));
  6029. vector signed char u30 = vec_sl(vec_and(u3, lowMask), v4);
  6030. vector signed char u31 = vec_and(u3, lowMask2);
  6031. u1 = vec_or(u1, u30);
  6032. u2 = vec_or(vec_sr(u0, v4), u31);
  6033. vector signed char vscales = (vector signed char)vec_mergeh((vector signed long long)u1, (vector signed long long)u2);
  6034. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask);
  6035. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask);
  6036. vscales = vec_sub(vscales, off);
  6037. vector signed int vsumi0 = v0;
  6038. vector signed int vsumi1 = v0;
  6039. vector signed int vsumi2 = v0;
  6040. vector signed int vsumi3 = v0;
  6041. vector signed int vsumi4 = v0;
  6042. vector signed int vsumi5 = v0;
  6043. vector signed int vsumi6 = v0;
  6044. vector signed int vsumi7 = v0;
  6045. const uint8_t * restrict q3 = x[i].qs;
  6046. const int8_t * restrict q8 = y[i].qs;
  6047. for (int j = 0; j < QK_K/128; ++j) {
  6048. __builtin_prefetch(q3, 0, 1);
  6049. __builtin_prefetch(q8, 0, 1);
  6050. vector signed char qxs0 = (vector signed char)vec_xl( 0, q3);
  6051. vector signed char qxs1 = (vector signed char)vec_xl(16, q3);
  6052. q3 += 32;
  6053. //the low 2 bits
  6054. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6055. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  6056. vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask);
  6057. vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask);
  6058. vector signed char qxs10 = vec_and(qxs1, lowMask);
  6059. vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask);
  6060. vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask);
  6061. vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask);
  6062. //the 3rd bit
  6063. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  6064. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2);
  6065. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  6066. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2);
  6067. vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2);
  6068. vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2);
  6069. vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2);
  6070. vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2);
  6071. qxhs0 = vec_sr(qxhs0, v4);
  6072. qxhs1 = vec_sr(qxhs1, v4);
  6073. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  6074. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  6075. vector signed char q3x02 = vec_sub(qxs02, qxh02);
  6076. vector signed char q3x03 = vec_sub(qxs03, qxh03);
  6077. vector signed char q3x10 = vec_sub(qxs10, qxh10);
  6078. vector signed char q3x11 = vec_sub(qxs11, qxh11);
  6079. vector signed char q3x12 = vec_sub(qxs12, qxh12);
  6080. vector signed char q3x13 = vec_sub(qxs13, qxh13);
  6081. vector signed char q8y00 = vec_xl( 0, q8);
  6082. vector signed char q8y10 = vec_xl( 16, q8);
  6083. vector signed char q8y01 = vec_xl( 32, q8);
  6084. vector signed char q8y11 = vec_xl( 48, q8);
  6085. vector signed char q8y02 = vec_xl( 64, q8);
  6086. vector signed char q8y12 = vec_xl( 80, q8);
  6087. vector signed char q8y03 = vec_xl( 96, q8);
  6088. vector signed char q8y13 = vec_xl(112, q8);
  6089. q8 += 128;
  6090. vector signed short vscales_h = vec_unpackh(vscales);
  6091. vector signed short vs0 = vec_splat(vscales_h, 0);
  6092. vector signed short vs1 = vec_splat(vscales_h, 1);
  6093. vector signed short vs2 = vec_splat(vscales_h, 2);
  6094. vector signed short vs3 = vec_splat(vscales_h, 3);
  6095. vector signed short vs4 = vec_splat(vscales_h, 4);
  6096. vector signed short vs5 = vec_splat(vscales_h, 5);
  6097. vector signed short vs6 = vec_splat(vscales_h, 6);
  6098. vector signed short vs7 = vec_splat(vscales_h, 7);
  6099. vscales = vec_sld(vscales, vscales, 8);
  6100. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  6101. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  6102. vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02));
  6103. vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03));
  6104. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  6105. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  6106. vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12));
  6107. vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13));
  6108. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  6109. vsumi1 = vec_msum(qv01, vs2, vsumi1);
  6110. vsumi2 = vec_msum(qv02, vs4, vsumi2);
  6111. vsumi3 = vec_msum(qv03, vs6, vsumi3);
  6112. vsumi4 = vec_msum(qv10, vs1, vsumi4);
  6113. vsumi5 = vec_msum(qv11, vs3, vsumi5);
  6114. vsumi6 = vec_msum(qv12, vs5, vsumi6);
  6115. vsumi7 = vec_msum(qv13, vs7, vsumi7);
  6116. }
  6117. vsumi0 = vec_add(vsumi0, vsumi4);
  6118. vsumi1 = vec_add(vsumi1, vsumi5);
  6119. vsumi2 = vec_add(vsumi2, vsumi6);
  6120. vsumi3 = vec_add(vsumi3, vsumi7);
  6121. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6122. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6123. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6124. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6125. }
  6126. vsumf0 = vec_add(vsumf0, vsumf2);
  6127. vsumf1 = vec_add(vsumf1, vsumf3);
  6128. vsumf0 = vec_add(vsumf0, vsumf1);
  6129. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6130. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6131. *s = vec_extract(vsumf0, 0);
  6132. #elif defined __loongarch_asx
  6133. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  6134. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  6135. const __m128i m32 = __lsx_vreplgr2vr_b(32);
  6136. __m256 acc = (__m256)__lasx_xvldi(0);
  6137. uint32_t aux[3];
  6138. for (int i = 0; i < nb; ++i) {
  6139. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6140. const uint8_t * restrict q3 = x[i].qs;
  6141. const int8_t * restrict q8 = y[i].qs;
  6142. // Set up scales
  6143. memcpy(aux, x[i].scales, 12);
  6144. __m128i scales128 = lsx_set_w(
  6145. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  6146. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  6147. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  6148. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  6149. scales128 = __lsx_vsub_b(scales128, m32);
  6150. const __m256i all_scales = lasx_ext8_16(scales128);
  6151. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  6152. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  6153. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  6154. // high bit
  6155. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].hmask, 0);
  6156. // integer accumulator
  6157. __m256i sumi = __lasx_xvldi(0);
  6158. int bit = 0;
  6159. int is = 0;
  6160. __m256i xvbit;
  6161. for (int j = 0; j < QK_K/128; ++j) {
  6162. // load low 2 bits
  6163. const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32;
  6164. xvbit = __lasx_xvreplgr2vr_h(bit);
  6165. // prepare low and high bits
  6166. const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3);
  6167. const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  6168. ++bit;
  6169. xvbit = __lasx_xvreplgr2vr_h(bit);
  6170. const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3);
  6171. const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  6172. ++bit;
  6173. xvbit = __lasx_xvreplgr2vr_h(bit);
  6174. const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3);
  6175. const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  6176. ++bit;
  6177. xvbit = __lasx_xvreplgr2vr_h(bit);
  6178. const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3);
  6179. const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  6180. ++bit;
  6181. // load Q8 quants
  6182. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6183. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6184. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6185. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6186. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h,
  6187. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  6188. // and 2 if the high bit was set)
  6189. __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0);
  6190. __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1);
  6191. __m256i q8s_2 = lasx_maddubs_h(q3h_2, q8_2);
  6192. __m256i q8s_3 = lasx_maddubs_h(q3h_3, q8_3);
  6193. __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0);
  6194. __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1);
  6195. __m256i p16_2 = lasx_maddubs_h(q3l_2, q8_2);
  6196. __m256i p16_3 = lasx_maddubs_h(q3l_3, q8_3);
  6197. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  6198. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  6199. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  6200. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  6201. // multiply with scales
  6202. p16_0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  6203. p16_1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  6204. p16_2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  6205. p16_3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  6206. // accumulate
  6207. p16_0 = __lasx_xvadd_w(p16_0, p16_1);
  6208. p16_2 = __lasx_xvadd_w(p16_2, p16_3);
  6209. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_2));
  6210. }
  6211. // multiply with block scale and accumulate
  6212. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);//FIXME
  6213. }
  6214. *s = hsum_float_8(acc);
  6215. #else
  6216. // scalar version
  6217. // This function is written like this so the compiler can manage to vectorize most of it
  6218. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  6219. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  6220. // The ideal situation would be if we could just write the code once, and the compiler would
  6221. // automatically produce the best possible set of machine instructions, instead of us having to manually
  6222. // write vectorized versions for AVX, ARM_NEON, etc.
  6223. int8_t aux8[QK_K];
  6224. int16_t aux16[8];
  6225. float sums [8];
  6226. int32_t aux32[8];
  6227. memset(sums, 0, 8*sizeof(float));
  6228. uint32_t auxs[4];
  6229. const int8_t * scales = (const int8_t*)auxs;
  6230. float sumf = 0;
  6231. for (int i = 0; i < nb; ++i) {
  6232. const uint8_t * restrict q3 = x[i].qs;
  6233. const uint8_t * restrict hm = x[i].hmask;
  6234. const int8_t * restrict q8 = y[i].qs;
  6235. memset(aux32, 0, 8*sizeof(int32_t));
  6236. int8_t * restrict a = aux8;
  6237. uint8_t m = 1;
  6238. for (int j = 0; j < QK_K; j += 128) {
  6239. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  6240. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6241. a += 32; m <<= 1;
  6242. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  6243. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6244. a += 32; m <<= 1;
  6245. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  6246. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6247. a += 32; m <<= 1;
  6248. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  6249. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  6250. a += 32; m <<= 1;
  6251. q3 += 32;
  6252. }
  6253. a = aux8;
  6254. memcpy(auxs, x[i].scales, 12);
  6255. uint32_t tmp = auxs[2];
  6256. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  6257. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  6258. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  6259. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  6260. for (int j = 0; j < QK_K/16; ++j) {
  6261. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6262. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  6263. q8 += 8; a += 8;
  6264. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6265. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  6266. q8 += 8; a += 8;
  6267. }
  6268. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6269. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6270. }
  6271. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6272. *s = sumf;
  6273. #endif
  6274. }
  6275. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6276. assert(n % QK_K == 0);
  6277. assert(nrc == 1);
  6278. UNUSED(nrc);
  6279. UNUSED(bx);
  6280. UNUSED(by);
  6281. UNUSED(bs);
  6282. const block_q4_K * restrict x = vx;
  6283. const block_q8_K * restrict y = vy;
  6284. const int nb = n / QK_K;
  6285. static const uint32_t kmask1 = 0x3f3f3f3f;
  6286. static const uint32_t kmask2 = 0x0f0f0f0f;
  6287. static const uint32_t kmask3 = 0x03030303;
  6288. uint32_t utmp[4];
  6289. #ifdef __ARM_NEON
  6290. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6291. const int32x4_t mzero = vdupq_n_s32(0);
  6292. ggml_int8x16x2_t q4bytes;
  6293. ggml_int8x16x2_t q8bytes;
  6294. float sumf = 0;
  6295. for (int i = 0; i < nb; ++i) {
  6296. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6297. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6298. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6299. memcpy(utmp, x[i].scales, 12);
  6300. uint32x2_t mins8 = { 0 };
  6301. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  6302. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  6303. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6304. utmp[0] &= kmask1;
  6305. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  6306. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6307. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6308. sumf -= dmin * vaddvq_s32(prod);
  6309. const uint8_t * scales = (const uint8_t *)utmp;
  6310. const uint8_t * restrict q4 = x[i].qs;
  6311. const int8_t * restrict q8 = y[i].qs;
  6312. int32_t sumi1 = 0;
  6313. int32_t sumi2 = 0;
  6314. for (int j = 0; j < QK_K/64; ++j) {
  6315. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  6316. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  6317. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  6318. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  6319. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  6320. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  6321. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  6322. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  6323. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  6324. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  6325. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  6326. }
  6327. sumf += d * (sumi1 + sumi2);
  6328. }
  6329. *s = sumf;
  6330. #elif defined __AVX2__
  6331. const __m256i m4 = _mm256_set1_epi8(0xF);
  6332. __m256 acc = _mm256_setzero_ps();
  6333. __m128 acc_m = _mm_setzero_ps();
  6334. for (int i = 0; i < nb; ++i) {
  6335. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6336. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6337. memcpy(utmp, x[i].scales, 12);
  6338. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6339. const uint32_t uaux = utmp[1] & kmask1;
  6340. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6341. utmp[2] = uaux;
  6342. utmp[0] &= kmask1;
  6343. const uint8_t * restrict q4 = x[i].qs;
  6344. const int8_t * restrict q8 = y[i].qs;
  6345. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6346. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6347. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6348. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6349. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  6350. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6351. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6352. __m256i sumi = _mm256_setzero_si256();
  6353. for (int j = 0; j < QK_K/64; ++j) {
  6354. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6355. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6356. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6357. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  6358. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  6359. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6360. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  6361. p16l = _mm256_madd_epi16(scale_l, p16l);
  6362. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6363. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  6364. p16h = _mm256_madd_epi16(scale_h, p16h);
  6365. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  6366. sumi = _mm256_add_epi32(sumi, sumj);
  6367. }
  6368. __m256 vd = _mm256_set1_ps(d);
  6369. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6370. }
  6371. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  6372. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  6373. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  6374. #elif defined __AVX__
  6375. const __m128i m4 = _mm_set1_epi8(0xF);
  6376. const __m128i m2 = _mm_set1_epi8(0x2);
  6377. __m256 acc = _mm256_setzero_ps();
  6378. __m128 acc_m = _mm_setzero_ps();
  6379. for (int i = 0; i < nb; ++i) {
  6380. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6381. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6382. const uint8_t * restrict q4 = x[i].qs;
  6383. const int8_t * restrict q8 = y[i].qs;
  6384. memcpy(utmp, x[i].scales, 12);
  6385. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6386. const uint32_t uaux = utmp[1] & kmask1;
  6387. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6388. utmp[2] = uaux;
  6389. utmp[0] &= kmask1;
  6390. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6391. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6392. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6393. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6394. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6395. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6396. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6397. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  6398. __m128i sumi_0 = _mm_setzero_si128();
  6399. __m128i sumi_1 = _mm_setzero_si128();
  6400. __m128i shuffle = _mm_set1_epi16(0x0100);
  6401. for (int j = 0; j < QK_K/64; ++j) {
  6402. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  6403. shuffle = _mm_add_epi16(shuffle, m2);
  6404. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  6405. shuffle = _mm_add_epi16(shuffle, m2);
  6406. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6407. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  6408. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  6409. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6410. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  6411. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  6412. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6413. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  6414. p16l = _mm_madd_epi16(scale_l, p16l);
  6415. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  6416. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6417. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  6418. p16l = _mm_madd_epi16(scale_l, p16l);
  6419. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  6420. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6421. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  6422. p16h = _mm_madd_epi16(scale_h, p16h);
  6423. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  6424. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6425. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  6426. p16h = _mm_madd_epi16(scale_h, p16h);
  6427. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  6428. }
  6429. __m256 vd = _mm256_set1_ps(d);
  6430. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6431. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6432. }
  6433. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  6434. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  6435. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  6436. #elif defined __riscv_v_intrinsic
  6437. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6438. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6439. float sumf = 0;
  6440. for (int i = 0; i < nb; ++i) {
  6441. size_t vl = 8;
  6442. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6443. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6444. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6445. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6446. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6447. memcpy(utmp, x[i].scales, 12);
  6448. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6449. const uint32_t uaux = utmp[1] & kmask1;
  6450. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6451. utmp[2] = uaux;
  6452. utmp[0] &= kmask1;
  6453. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6454. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6455. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6456. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6457. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6458. const uint8_t * restrict q4 = x[i].qs;
  6459. const int8_t * restrict q8 = y[i].qs;
  6460. vl = 32;
  6461. int32_t sum_1 = 0;
  6462. int32_t sum_2 = 0;
  6463. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  6464. for (int j = 0; j < QK_K/64; ++j) {
  6465. // load Q4
  6466. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  6467. // load Q8 and multiply it with lower Q4 nibble
  6468. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  6469. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  6470. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  6471. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  6472. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  6473. // load Q8 and multiply it with upper Q4 nibble
  6474. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  6475. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  6476. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  6477. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  6478. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  6479. q4 += 32; q8 += 64;
  6480. }
  6481. sumf += d*(sum_1 + sum_2);
  6482. }
  6483. *s = sumf;
  6484. #elif defined(__POWER9_VECTOR__)
  6485. const vector signed char lowMask = vec_splats((signed char)0xF);
  6486. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  6487. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  6488. const vector int v0 = vec_splats((int32_t)0);
  6489. const vector unsigned char v2 = vec_splats((uint8_t)2);
  6490. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6491. vector float vsumf0 = vec_splats(0.0f);
  6492. vector float vsumf1 = vec_splats(0.0f);
  6493. vector float vsumf2 = vec_splats(0.0f);
  6494. vector float vsumf3 = vec_splats(0.0f);
  6495. for (int i = 0; i < nb; ++i) {
  6496. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6497. vector float vyd = vec_splats(y[i].d);
  6498. vector float vd = vec_mul(vxd, vyd);
  6499. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  6500. vector float vdmin = vec_mul(vxmin, vyd);
  6501. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  6502. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  6503. UNUSED(kmask1);
  6504. UNUSED(kmask2);
  6505. UNUSED(kmask3);
  6506. UNUSED(utmp);
  6507. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  6508. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  6509. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  6510. vector signed char u3 = vec_sr(u2, v4);
  6511. vector signed char u30 = u1;
  6512. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  6513. u1 = vec_and(u0, lowMask1);
  6514. u2 = vec_or(u30, u31);
  6515. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  6516. vector signed short vscales = vec_unpackh(utmps);
  6517. vector signed short q4xmins = vec_unpackl(utmps);
  6518. vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins);
  6519. vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins);
  6520. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  6521. vector signed int prod1 = vec_mule(q4xmins1, q8ysums1);
  6522. vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0);
  6523. vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1);
  6524. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  6525. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  6526. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  6527. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  6528. vector signed int vsumi0 = v0;
  6529. vector signed int vsumi1 = v0;
  6530. vector signed int vsumi2 = v0;
  6531. vector signed int vsumi3 = v0;
  6532. const uint8_t * restrict q4 = x[i].qs;
  6533. const int8_t * restrict q8 = y[i].qs;
  6534. for (int j = 0; j < QK_K/64; j+=2) {
  6535. __builtin_prefetch(q4, 0, 1);
  6536. __builtin_prefetch(q8, 0, 1);
  6537. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  6538. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  6539. vector signed char qxs2 = (vector signed char)vec_xl(32, q4);
  6540. vector signed char qxs3 = (vector signed char)vec_xl(48, q4);
  6541. q4 += 64;
  6542. vector unsigned char q4x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  6543. vector unsigned char q4x01 = (vector unsigned char)vec_sr(qxs0, v4);
  6544. vector unsigned char q4x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  6545. vector unsigned char q4x11 = (vector unsigned char)vec_sr(qxs1, v4);
  6546. vector unsigned char q4x20 = (vector unsigned char)vec_and(qxs2, lowMask);
  6547. vector unsigned char q4x21 = (vector unsigned char)vec_sr(qxs2, v4);
  6548. vector unsigned char q4x30 = (vector unsigned char)vec_and(qxs3, lowMask);
  6549. vector unsigned char q4x31 = (vector unsigned char)vec_sr(qxs3, v4);
  6550. vector signed char q8y00 = vec_xl( 0, q8);
  6551. vector signed char q8y10 = vec_xl( 16, q8);
  6552. vector signed char q8y01 = vec_xl( 32, q8);
  6553. vector signed char q8y11 = vec_xl( 48, q8);
  6554. vector signed char q8y20 = vec_xl( 64, q8);
  6555. vector signed char q8y30 = vec_xl( 80, q8);
  6556. vector signed char q8y21 = vec_xl( 96, q8);
  6557. vector signed char q8y31 = vec_xl(112, q8);
  6558. q8 += 128;
  6559. vector signed int qv00 = vec_msum(q8y00, q4x00, v0);
  6560. vector signed int qv01 = vec_msum(q8y01, q4x01, v0);
  6561. vector signed int qv10 = vec_msum(q8y10, q4x10, v0);
  6562. vector signed int qv11 = vec_msum(q8y11, q4x11, v0);
  6563. vector signed int qv20 = vec_msum(q8y20, q4x20, v0);
  6564. vector signed int qv21 = vec_msum(q8y21, q4x21, v0);
  6565. vector signed int qv30 = vec_msum(q8y30, q4x30, v0);
  6566. vector signed int qv31 = vec_msum(q8y31, q4x31, v0);
  6567. vector signed int vscales_h = vec_unpackh(vscales);
  6568. vector signed int vs0 = vec_splat(vscales_h, 0);
  6569. vector signed int vs1 = vec_splat(vscales_h, 1);
  6570. vector signed int vs2 = vec_splat(vscales_h, 2);
  6571. vector signed int vs3 = vec_splat(vscales_h, 3);
  6572. vscales = vec_sld(vscales, vscales, 8);
  6573. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  6574. vsumi1 = vec_add(vec_mul(qv01, vs1), vsumi1);
  6575. vsumi2 = vec_add(vec_mul(qv20, vs2), vsumi2);
  6576. vsumi3 = vec_add(vec_mul(qv21, vs3), vsumi3);
  6577. vsumi0 = vec_add(vec_mul(qv10, vs0), vsumi0);
  6578. vsumi1 = vec_add(vec_mul(qv11, vs1), vsumi1);
  6579. vsumi2 = vec_add(vec_mul(qv30, vs2), vsumi2);
  6580. vsumi3 = vec_add(vec_mul(qv31, vs3), vsumi3);
  6581. }
  6582. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6583. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6584. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6585. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6586. }
  6587. vsumf0 = vec_add(vsumf0, vsumf2);
  6588. vsumf1 = vec_add(vsumf1, vsumf3);
  6589. vsumf0 = vec_add(vsumf0, vsumf1);
  6590. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6591. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6592. *s = vec_extract(vsumf0, 0);
  6593. #elif defined __loongarch_asx
  6594. GGML_UNUSED(kmask1);
  6595. GGML_UNUSED(kmask2);
  6596. GGML_UNUSED(kmask3);
  6597. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  6598. __m256 acc = (__m256)__lasx_xvldi(0);
  6599. __m128 acc_m = (__m128)__lsx_vldi(0);
  6600. for (int i = 0; i < nb; ++i) {
  6601. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6602. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6603. memcpy(utmp, x[i].scales, 12);
  6604. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6605. const uint32_t uaux = utmp[1] & kmask1;
  6606. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6607. utmp[2] = uaux;
  6608. utmp[0] &= kmask1;
  6609. const uint8_t * restrict q4 = x[i].qs;
  6610. const int8_t * restrict q8 = y[i].qs;
  6611. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  6612. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  6613. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  6614. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  6615. acc_m = __lsx_vfmadd_s(__lsx_vreplfr2vr_s(dmin), __lsx_vffint_s_w(prod), acc_m);
  6616. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  6617. const __m256i scales = lasx_insertf128(sc128, sc128);
  6618. __m256i sumi = __lasx_xvldi(0);
  6619. for (int j = 0; j < QK_K/64; ++j) {
  6620. const __m256i scale_l = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  6621. const __m256i scale_h = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  6622. const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  6623. const __m256i q4l = __lasx_xvand_v(q4bits, m4);
  6624. const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4);
  6625. const __m256i q8l = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6626. __m256i p16l = lasx_maddubs_h(q4l, q8l);
  6627. p16l = lasx_madd_h(scale_l, p16l);
  6628. const __m256i q8h = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6629. __m256i p16h = lasx_maddubs_h(q4h, q8h);
  6630. p16h = lasx_madd_h(scale_h, p16h);
  6631. const __m256i sumj = __lasx_xvadd_w(p16l, p16h);
  6632. sumi = __lasx_xvadd_w(sumi, sumj);
  6633. }
  6634. __m256 vd = __lasx_xvreplfr2vr_s(d);
  6635. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  6636. }
  6637. acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
  6638. __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
  6639. acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
  6640. ft_union fi;
  6641. fi.i = __lsx_vpickve2gr_w(acc_m, 0);
  6642. *s = hsum_float_8(acc) + fi.f ;
  6643. #else
  6644. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6645. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6646. int8_t aux8[QK_K];
  6647. int16_t aux16[8];
  6648. float sums [8];
  6649. int32_t aux32[8];
  6650. memset(sums, 0, 8*sizeof(float));
  6651. float sumf = 0;
  6652. for (int i = 0; i < nb; ++i) {
  6653. const uint8_t * restrict q4 = x[i].qs;
  6654. const int8_t * restrict q8 = y[i].qs;
  6655. memset(aux32, 0, 8*sizeof(int32_t));
  6656. int8_t * restrict a = aux8;
  6657. for (int j = 0; j < QK_K/64; ++j) {
  6658. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6659. a += 32;
  6660. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6661. a += 32; q4 += 32;
  6662. }
  6663. memcpy(utmp, x[i].scales, 12);
  6664. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6665. const uint32_t uaux = utmp[1] & kmask1;
  6666. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6667. utmp[2] = uaux;
  6668. utmp[0] &= kmask1;
  6669. int sumi = 0;
  6670. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6671. a = aux8;
  6672. int is = 0;
  6673. for (int j = 0; j < QK_K/32; ++j) {
  6674. int32_t scale = scales[is++];
  6675. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6676. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6677. q8 += 8; a += 8;
  6678. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6679. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6680. q8 += 8; a += 8;
  6681. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6682. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6683. q8 += 8; a += 8;
  6684. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6685. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6686. q8 += 8; a += 8;
  6687. }
  6688. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6689. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6690. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6691. sumf -= dmin * sumi;
  6692. }
  6693. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6694. *s = sumf;
  6695. #endif
  6696. }
  6697. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6698. assert(n % QK_K == 0);
  6699. assert(nrc == 1);
  6700. UNUSED(nrc);
  6701. UNUSED(bx);
  6702. UNUSED(by);
  6703. UNUSED(bs);
  6704. const block_q5_K * restrict x = vx;
  6705. const block_q8_K * restrict y = vy;
  6706. const int nb = n / QK_K;
  6707. static const uint32_t kmask1 = 0x3f3f3f3f;
  6708. static const uint32_t kmask2 = 0x0f0f0f0f;
  6709. static const uint32_t kmask3 = 0x03030303;
  6710. uint32_t utmp[4];
  6711. #ifdef __ARM_NEON
  6712. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6713. const uint8x16_t mone = vdupq_n_u8(1);
  6714. const uint8x16_t mtwo = vdupq_n_u8(2);
  6715. const int32x4_t mzero = vdupq_n_s32(0);
  6716. ggml_int8x16x4_t q5bytes;
  6717. float sumf = 0;
  6718. for (int i = 0; i < nb; ++i) {
  6719. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6720. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6721. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6722. memcpy(utmp, x[i].scales, 12);
  6723. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6724. const uint32_t uaux = utmp[1] & kmask1;
  6725. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6726. utmp[2] = uaux;
  6727. utmp[0] &= kmask1;
  6728. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  6729. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  6730. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6731. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6732. int32_t sumi_mins = vaddvq_s32(prod);
  6733. const uint8_t * scales = (const uint8_t *)utmp;
  6734. const uint8_t * restrict q5 = x[i].qs;
  6735. const uint8_t * restrict qh = x[i].qh;
  6736. const int8_t * restrict q8 = y[i].qs;
  6737. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  6738. ggml_uint8x16x4_t q5h;
  6739. int32_t sumi = 0;
  6740. for (int j = 0; j < QK_K/64; ++j) {
  6741. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  6742. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6743. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6744. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6745. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  6746. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  6747. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  6748. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  6749. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  6750. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  6751. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  6752. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  6753. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  6754. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  6755. }
  6756. sumf += d * sumi - dmin * sumi_mins;
  6757. }
  6758. *s = sumf;
  6759. #elif defined __AVX2__
  6760. const __m256i m4 = _mm256_set1_epi8(0xF);
  6761. const __m128i mzero = _mm_setzero_si128();
  6762. const __m256i mone = _mm256_set1_epi8(1);
  6763. __m256 acc = _mm256_setzero_ps();
  6764. float summs = 0.f;
  6765. for (int i = 0; i < nb; ++i) {
  6766. const uint8_t * restrict q5 = x[i].qs;
  6767. const int8_t * restrict q8 = y[i].qs;
  6768. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6769. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6770. memcpy(utmp, x[i].scales, 12);
  6771. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6772. const uint32_t uaux = utmp[1] & kmask1;
  6773. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6774. utmp[2] = uaux;
  6775. utmp[0] &= kmask1;
  6776. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6777. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6778. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6779. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6780. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6781. summs += dmin * _mm_extract_epi32(hsum, 0);
  6782. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6783. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6784. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  6785. __m256i hmask = mone;
  6786. __m256i sumi = _mm256_setzero_si256();
  6787. int bit = 0;
  6788. for (int j = 0; j < QK_K/64; ++j) {
  6789. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6790. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6791. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  6792. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6793. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6794. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  6795. hmask = _mm256_slli_epi16(hmask, 1);
  6796. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6797. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6798. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  6799. hmask = _mm256_slli_epi16(hmask, 1);
  6800. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6801. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6802. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  6803. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  6804. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6805. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6806. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6807. }
  6808. __m256 vd = _mm256_set1_ps(d);
  6809. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6810. }
  6811. *s = hsum_float_8(acc) + summs;
  6812. #elif defined __AVX__
  6813. const __m128i m4 = _mm_set1_epi8(0xF);
  6814. const __m128i mzero = _mm_setzero_si128();
  6815. const __m128i mone = _mm_set1_epi8(1);
  6816. const __m128i m2 = _mm_set1_epi8(2);
  6817. __m256 acc = _mm256_setzero_ps();
  6818. float summs = 0.f;
  6819. for (int i = 0; i < nb; ++i) {
  6820. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6821. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6822. const uint8_t * restrict q5 = x[i].qs;
  6823. const int8_t * restrict q8 = y[i].qs;
  6824. memcpy(utmp, x[i].scales, 12);
  6825. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6826. const uint32_t uaux = utmp[1] & kmask1;
  6827. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6828. utmp[2] = uaux;
  6829. utmp[0] &= kmask1;
  6830. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6831. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6832. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6833. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6834. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6835. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6836. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6837. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6838. summs += dmin * _mm_extract_epi32(hsum, 0);
  6839. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  6840. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  6841. __m128i hmask = mone;
  6842. __m128i sumi_0 = _mm_setzero_si128();
  6843. __m128i sumi_1 = _mm_setzero_si128();
  6844. int bit = 0;
  6845. __m128i shuffle = _mm_set1_epi16(0x0100);
  6846. for (int j = 0; j < QK_K/64; ++j) {
  6847. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6848. shuffle = _mm_add_epi16(shuffle, m2);
  6849. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6850. shuffle = _mm_add_epi16(shuffle, m2);
  6851. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6852. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6853. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  6854. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  6855. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6856. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6857. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6858. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6859. hmask = _mm_slli_epi16(hmask, 1);
  6860. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6861. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6862. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  6863. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  6864. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6865. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  6866. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  6867. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  6868. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6869. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6870. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6871. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6872. hmask = _mm_slli_epi16(hmask, 1);
  6873. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6874. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6875. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  6876. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  6877. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  6878. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  6879. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6880. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6881. }
  6882. __m256 vd = _mm256_set1_ps(d);
  6883. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6884. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6885. }
  6886. *s = hsum_float_8(acc) + summs;
  6887. #elif defined __riscv_v_intrinsic
  6888. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6889. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6890. float sumf = 0;
  6891. float sums = 0.0;
  6892. size_t vl;
  6893. for (int i = 0; i < nb; ++i) {
  6894. vl = 8;
  6895. const uint8_t * restrict q5 = x[i].qs;
  6896. const uint8_t * restrict hm = x[i].qh;
  6897. const int8_t * restrict q8 = y[i].qs;
  6898. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6899. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6900. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6901. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6902. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6903. memcpy(utmp, x[i].scales, 12);
  6904. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6905. const uint32_t uaux = utmp[1] & kmask1;
  6906. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6907. utmp[2] = uaux;
  6908. utmp[0] &= kmask1;
  6909. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6910. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6911. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6912. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6913. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6914. vl = 32;
  6915. int32_t aux32 = 0;
  6916. int is = 0;
  6917. uint8_t m = 1;
  6918. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6919. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  6920. for (int j = 0; j < QK_K/64; ++j) {
  6921. // load Q5 and Q8
  6922. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  6923. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  6924. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  6925. // compute mask for addition
  6926. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  6927. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6928. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  6929. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_mu(vmask_1, q5_a, q5_a, 16, vl);
  6930. m <<= 1;
  6931. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  6932. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6933. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  6934. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_mu(vmask_2, q5_l, q5_l, 16, vl);
  6935. m <<= 1;
  6936. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  6937. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  6938. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  6939. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  6940. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  6941. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  6942. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  6943. q5 += 32; q8 += 64;
  6944. }
  6945. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  6946. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  6947. }
  6948. *s = sumf+sums;
  6949. #elif defined(__POWER9_VECTOR__)
  6950. const vector signed char lowMask = vec_splats((signed char)0xF);
  6951. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  6952. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  6953. const vector int v0 = vec_splats((int32_t)0);
  6954. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  6955. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6956. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6957. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6958. vector float vsumf0 = vec_splats(0.0f);
  6959. vector float vsumf1 = vec_splats(0.0f);
  6960. vector float vsumf2 = vec_splats(0.0f);
  6961. vector float vsumf3 = vec_splats(0.0f);
  6962. for (int i = 0; i < nb; ++i) {
  6963. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6964. vector float vyd = vec_splats(y[i].d);
  6965. vector float vd = vec_mul(vxd, vyd);
  6966. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  6967. vector float vdmin = vec_mul(vxmin, vyd);
  6968. UNUSED(kmask1);
  6969. UNUSED(kmask2);
  6970. UNUSED(kmask3);
  6971. UNUSED(utmp);
  6972. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  6973. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  6974. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  6975. vector signed char u3 = vec_sr(u2, v4);
  6976. vector signed char u30 = u1;
  6977. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  6978. u1 = vec_and(u0, lowMask1);
  6979. u2 = vec_or(u30, u31);
  6980. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  6981. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  6982. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  6983. vector signed short vscales = vec_unpackh(utmps);
  6984. vector signed short q5xmins = vec_unpackl(utmps);
  6985. vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins);
  6986. vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins);
  6987. vector signed int prod0 = vec_mule(q5xmins0, q8ysums0);
  6988. vector signed int prod1 = vec_mule(q5xmins1, q8ysums1);
  6989. vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0);
  6990. vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1);
  6991. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  6992. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  6993. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  6994. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  6995. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  6996. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh);
  6997. vector signed int vsumi0 = v0;
  6998. vector signed int vsumi1 = v0;
  6999. vector signed int vsumi2 = v0;
  7000. vector signed int vsumi3 = v0;
  7001. const uint8_t * restrict q5 = x[i].qs;
  7002. const int8_t * restrict q8 = y[i].qs;
  7003. for (int j = 0; j < QK_K/64; ++j) {
  7004. __builtin_prefetch(q5, 0, 1);
  7005. __builtin_prefetch(q8, 0, 1);
  7006. vector signed char qxs0 = (vector signed char)vec_xl( 0, q5);
  7007. vector signed char qxs1 = (vector signed char)vec_xl(16, q5);
  7008. q5 += 32;
  7009. vector signed char qxs00 = vec_and(qxs0, lowMask);
  7010. vector signed char qxs01 = vec_sr(qxs0, v4);
  7011. vector signed char qxs10 = vec_and(qxs1, lowMask);
  7012. vector signed char qxs11 = vec_sr(qxs1, v4);
  7013. vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4);
  7014. vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3);
  7015. vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4);
  7016. vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3);
  7017. qxhs0 = vec_sr(qxhs0, v2);
  7018. qxhs1 = vec_sr(qxhs1, v2);
  7019. vector unsigned char q5x00 = (vector unsigned char)vec_or(q5h00, qxs00);
  7020. vector unsigned char q5x01 = (vector unsigned char)vec_or(q5h01, qxs01);
  7021. vector unsigned char q5x10 = (vector unsigned char)vec_or(q5h10, qxs10);
  7022. vector unsigned char q5x11 = (vector unsigned char)vec_or(q5h11, qxs11);
  7023. vector signed char q8y00 = vec_xl( 0, q8);
  7024. vector signed char q8y10 = vec_xl(16, q8);
  7025. vector signed char q8y01 = vec_xl(32, q8);
  7026. vector signed char q8y11 = vec_xl(48, q8);
  7027. q8 += 64;
  7028. vector signed int qv00 = vec_msum(q8y00, q5x00, v0);
  7029. vector signed int qv01 = vec_msum(q8y01, q5x01, v0);
  7030. vector signed int qv10 = vec_msum(q8y10, q5x10, v0);
  7031. vector signed int qv11 = vec_msum(q8y11, q5x11, v0);
  7032. vector signed int vscales_h = vec_unpackh(vscales);
  7033. vector signed int vs0 = vec_splat(vscales_h, 0);
  7034. vector signed int vs1 = vec_splat(vscales_h, 1);
  7035. vscales = vec_sld(vscales, vscales, 12);
  7036. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  7037. vsumi1 = vec_add(vec_mul(qv10, vs0), vsumi1);
  7038. vsumi2 = vec_add(vec_mul(qv01, vs1), vsumi2);
  7039. vsumi3 = vec_add(vec_mul(qv11, vs1), vsumi3);
  7040. }
  7041. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7042. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7043. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7044. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7045. }
  7046. vsumf0 = vec_add(vsumf0, vsumf2);
  7047. vsumf1 = vec_add(vsumf1, vsumf3);
  7048. vsumf0 = vec_add(vsumf0, vsumf1);
  7049. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7050. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7051. *s = vec_extract(vsumf0, 0);
  7052. #elif defined __loongarch_asx
  7053. GGML_UNUSED(kmask1);
  7054. GGML_UNUSED(kmask2);
  7055. GGML_UNUSED(kmask3);
  7056. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  7057. const __m128i mzero = __lsx_vldi(0);
  7058. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  7059. __m256 acc = (__m256)__lasx_xvldi(0);
  7060. float summs = 0.f;
  7061. for (int i = 0; i < nb; ++i) {
  7062. const uint8_t * restrict q5 = x[i].qs;
  7063. const int8_t * restrict q8 = y[i].qs;
  7064. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7065. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  7066. memcpy(utmp, x[i].scales, 12);
  7067. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  7068. const uint32_t uaux = utmp[1] & kmask1;
  7069. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  7070. utmp[2] = uaux;
  7071. utmp[0] &= kmask1;
  7072. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  7073. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  7074. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  7075. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  7076. const __m128i hsum = lsx_hadd_w(lsx_hadd_w(prod, mzero), mzero);
  7077. summs += dmin * __lsx_vpickve2gr_w(hsum, 0); //TODO check
  7078. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  7079. const __m256i scales = lasx_insertf128(sc128, sc128);
  7080. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].qh, 0);
  7081. __m256i hmask = mone;
  7082. __m256i sumi = __lasx_xvldi(0);
  7083. int bit = 0;
  7084. __m256i xvbit;
  7085. for (int j = 0; j < QK_K/64; ++j) {
  7086. const __m256i scale_0 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  7087. const __m256i scale_1 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  7088. const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32;
  7089. xvbit = __lasx_xvreplgr2vr_h(bit++);
  7090. const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
  7091. const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  7092. const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0);
  7093. hmask = __lasx_xvslli_h(hmask, 1);
  7094. xvbit = __lasx_xvreplgr2vr_h(bit++);
  7095. const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
  7096. const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  7097. const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1);
  7098. hmask = __lasx_xvslli_h(hmask, 1);
  7099. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7100. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7101. __m256i p16_0 = lasx_maddubs_h(q5_0, q8_0);
  7102. __m256i p16_1 = lasx_maddubs_h(q5_1, q8_1);
  7103. p16_0 = lasx_madd_h(scale_0, p16_0);
  7104. p16_1 = lasx_madd_h(scale_1, p16_1);
  7105. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  7106. }
  7107. __m256 vd = __lasx_xvreplfr2vr_s(d);
  7108. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  7109. }
  7110. *s = hsum_float_8(acc) + summs;
  7111. #else
  7112. const uint8_t * scales = (const uint8_t*)&utmp[0];
  7113. const uint8_t * mins = (const uint8_t*)&utmp[2];
  7114. int8_t aux8[QK_K];
  7115. int16_t aux16[8];
  7116. float sums [8];
  7117. int32_t aux32[8];
  7118. memset(sums, 0, 8*sizeof(float));
  7119. float sumf = 0;
  7120. for (int i = 0; i < nb; ++i) {
  7121. const uint8_t * restrict q4 = x[i].qs;
  7122. const uint8_t * restrict hm = x[i].qh;
  7123. const int8_t * restrict q8 = y[i].qs;
  7124. memset(aux32, 0, 8*sizeof(int32_t));
  7125. int8_t * restrict a = aux8;
  7126. uint8_t m = 1;
  7127. for (int j = 0; j < QK_K/64; ++j) {
  7128. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  7129. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  7130. a += 32; m <<= 1;
  7131. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  7132. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  7133. a += 32; m <<= 1;
  7134. q4 += 32;
  7135. }
  7136. memcpy(utmp, x[i].scales, 12);
  7137. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  7138. const uint32_t uaux = utmp[1] & kmask1;
  7139. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  7140. utmp[2] = uaux;
  7141. utmp[0] &= kmask1;
  7142. int sumi = 0;
  7143. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  7144. a = aux8;
  7145. int is = 0;
  7146. for (int j = 0; j < QK_K/32; ++j) {
  7147. int32_t scale = scales[is++];
  7148. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7149. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7150. q8 += 8; a += 8;
  7151. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7152. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7153. q8 += 8; a += 8;
  7154. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7155. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7156. q8 += 8; a += 8;
  7157. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7158. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7159. q8 += 8; a += 8;
  7160. }
  7161. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7162. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7163. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  7164. sumf -= dmin * sumi;
  7165. }
  7166. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7167. *s = sumf;
  7168. #endif
  7169. }
  7170. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7171. assert(n % QK_K == 0);
  7172. assert(nrc == 1);
  7173. UNUSED(nrc);
  7174. UNUSED(bx);
  7175. UNUSED(by);
  7176. UNUSED(bs);
  7177. const block_q6_K * restrict x = vx;
  7178. const block_q8_K * restrict y = vy;
  7179. const int nb = n / QK_K;
  7180. #ifdef __ARM_NEON
  7181. float sum = 0;
  7182. const uint8x16_t m4b = vdupq_n_u8(0xF);
  7183. const int32x4_t vzero = vdupq_n_s32(0);
  7184. //const int8x16_t m32s = vdupq_n_s8(32);
  7185. const uint8x16_t mone = vdupq_n_u8(3);
  7186. ggml_int8x16x4_t q6bytes;
  7187. ggml_uint8x16x4_t q6h;
  7188. for (int i = 0; i < nb; ++i) {
  7189. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  7190. const uint8_t * restrict q6 = x[i].ql;
  7191. const uint8_t * restrict qh = x[i].qh;
  7192. const int8_t * restrict q8 = y[i].qs;
  7193. const int8_t * restrict scale = x[i].scales;
  7194. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  7195. const int8x16_t scales = vld1q_s8(scale);
  7196. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  7197. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  7198. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  7199. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  7200. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  7201. int32_t isum_mins = vaddvq_s32(prod);
  7202. int32_t isum = 0;
  7203. for (int j = 0; j < QK_K/128; ++j) {
  7204. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  7205. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  7206. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  7207. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  7208. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  7209. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  7210. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7211. shifted = vshrq_n_u8(qhbits.val[1], 2);
  7212. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7213. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  7214. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  7215. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  7216. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  7217. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  7218. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  7219. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  7220. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  7221. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  7222. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  7223. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  7224. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  7225. scale += 4;
  7226. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  7227. shifted = vshrq_n_u8(qhbits.val[0], 4);
  7228. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7229. shifted = vshrq_n_u8(qhbits.val[1], 4);
  7230. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7231. shifted = vshrq_n_u8(qhbits.val[0], 6);
  7232. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7233. shifted = vshrq_n_u8(qhbits.val[1], 6);
  7234. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7235. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  7236. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  7237. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  7238. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  7239. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  7240. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  7241. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  7242. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  7243. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  7244. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  7245. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  7246. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  7247. scale += 4;
  7248. }
  7249. //sum += isum * d_all * y[i].d;
  7250. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  7251. }
  7252. *s = sum;
  7253. #elif defined __AVX2__
  7254. const __m256i m4 = _mm256_set1_epi8(0xF);
  7255. const __m256i m2 = _mm256_set1_epi8(3);
  7256. const __m256i m32s = _mm256_set1_epi8(32);
  7257. __m256 acc = _mm256_setzero_ps();
  7258. for (int i = 0; i < nb; ++i) {
  7259. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7260. const uint8_t * restrict q4 = x[i].ql;
  7261. const uint8_t * restrict qh = x[i].qh;
  7262. const int8_t * restrict q8 = y[i].qs;
  7263. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  7264. __m256i sumi = _mm256_setzero_si256();
  7265. int is = 0;
  7266. for (int j = 0; j < QK_K/128; ++j) {
  7267. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  7268. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  7269. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  7270. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  7271. is += 4;
  7272. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  7273. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  7274. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  7275. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  7276. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  7277. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  7278. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  7279. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  7280. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  7281. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  7282. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  7283. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7284. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7285. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7286. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7287. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  7288. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  7289. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  7290. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  7291. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  7292. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  7293. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  7294. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  7295. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  7296. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  7297. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  7298. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  7299. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  7300. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  7301. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  7302. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  7303. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  7304. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  7305. }
  7306. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  7307. }
  7308. *s = hsum_float_8(acc);
  7309. #elif defined __AVX__
  7310. const __m128i m4 = _mm_set1_epi8(0xF);
  7311. const __m128i m3 = _mm_set1_epi8(3);
  7312. const __m128i m32s = _mm_set1_epi8(32);
  7313. const __m128i m2 = _mm_set1_epi8(2);
  7314. __m256 acc = _mm256_setzero_ps();
  7315. for (int i = 0; i < nb; ++i) {
  7316. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7317. const uint8_t * restrict q4 = x[i].ql;
  7318. const uint8_t * restrict qh = x[i].qh;
  7319. const int8_t * restrict q8 = y[i].qs;
  7320. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  7321. __m128i sumi_0 = _mm_setzero_si128();
  7322. __m128i sumi_1 = _mm_setzero_si128();
  7323. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  7324. for (int j = 0; j < QK_K/128; ++j) {
  7325. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  7326. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  7327. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  7328. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  7329. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  7330. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  7331. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  7332. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  7333. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  7334. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  7335. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7336. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7337. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7338. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7339. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  7340. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  7341. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  7342. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  7343. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  7344. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  7345. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  7346. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  7347. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7348. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7349. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7350. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7351. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7352. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7353. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7354. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7355. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  7356. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  7357. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  7358. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  7359. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  7360. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  7361. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  7362. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  7363. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  7364. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  7365. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  7366. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  7367. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  7368. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  7369. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  7370. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  7371. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  7372. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  7373. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  7374. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  7375. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  7376. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  7377. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  7378. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  7379. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  7380. shuffle = _mm_add_epi8(shuffle, m2);
  7381. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  7382. shuffle = _mm_add_epi8(shuffle, m2);
  7383. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  7384. shuffle = _mm_add_epi8(shuffle, m2);
  7385. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  7386. shuffle = _mm_add_epi8(shuffle, m2);
  7387. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  7388. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  7389. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  7390. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  7391. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  7392. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  7393. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  7394. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  7395. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  7396. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  7397. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  7398. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  7399. }
  7400. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  7401. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  7402. }
  7403. *s = hsum_float_8(acc);
  7404. #elif defined __riscv_v_intrinsic
  7405. float sumf = 0;
  7406. for (int i = 0; i < nb; ++i) {
  7407. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7408. const uint8_t * restrict q6 = x[i].ql;
  7409. const uint8_t * restrict qh = x[i].qh;
  7410. const int8_t * restrict q8 = y[i].qs;
  7411. const int8_t * restrict scale = x[i].scales;
  7412. size_t vl;
  7413. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  7414. int sum_t = 0;
  7415. int is = 0;
  7416. for (int j = 0; j < QK_K/128; ++j) {
  7417. vl = 32;
  7418. // load qh
  7419. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  7420. // load Q6
  7421. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  7422. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  7423. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  7424. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  7425. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  7426. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  7427. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  7428. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  7429. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  7430. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  7431. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  7432. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  7433. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  7434. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  7435. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  7436. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  7437. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  7438. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  7439. // load Q8 and take product
  7440. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  7441. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  7442. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  7443. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  7444. vl = 16;
  7445. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  7446. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  7447. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  7448. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  7449. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  7450. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  7451. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  7452. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  7453. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  7454. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  7455. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  7456. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  7457. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  7458. q6 += 64; qh += 32; q8 += 128; is=8;
  7459. }
  7460. sumf += d * sum_t;
  7461. }
  7462. *s = sumf;
  7463. #elif defined(__POWER9_VECTOR__)
  7464. const vector signed char lowMask = vec_splats((signed char)0xF);
  7465. const vector int v0 = vec_splats((int32_t)0);
  7466. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  7467. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  7468. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  7469. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  7470. const vector signed char off = vec_splats((signed char)0x20);
  7471. vector float vsumf0 = vec_splats(0.0f);
  7472. vector float vsumf1 = vec_splats(0.0f);
  7473. vector float vsumf2 = vec_splats(0.0f);
  7474. vector float vsumf3 = vec_splats(0.0f);
  7475. for (int i = 0; i < nb; ++i) {
  7476. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7477. vector float vyd = vec_splats(y[i].d);
  7478. vector float vd = vec_mul(vxd, vyd);
  7479. vector signed int vsumi0 = v0;
  7480. vector signed int vsumi1 = v0;
  7481. vector signed int vsumi2 = v0;
  7482. vector signed int vsumi3 = v0;
  7483. vector signed int vsumi4 = v0;
  7484. vector signed int vsumi5 = v0;
  7485. vector signed int vsumi6 = v0;
  7486. vector signed int vsumi7 = v0;
  7487. const uint8_t * restrict q6 = x[i].ql;
  7488. const uint8_t * restrict qh = x[i].qh;
  7489. const int8_t * restrict qs = x[i].scales;
  7490. const int8_t * restrict q8 = y[i].qs;
  7491. for (int j = 0; j < QK_K/128; ++j) {
  7492. __builtin_prefetch(q6, 0, 0);
  7493. __builtin_prefetch(qh, 0, 0);
  7494. __builtin_prefetch(q8, 0, 0);
  7495. vector signed char qxs0 = (vector signed char)vec_xl( 0, q6);
  7496. vector signed char qxs1 = (vector signed char)vec_xl(16, q6);
  7497. vector signed char qxs2 = (vector signed char)vec_xl(32, q6);
  7498. vector signed char qxs3 = (vector signed char)vec_xl(48, q6);
  7499. q6 += 64;
  7500. vector signed char qxs00 = vec_and(qxs0, lowMask);
  7501. vector signed char qxs01 = vec_sr(qxs0, v4);
  7502. vector signed char qxs10 = vec_and(qxs1, lowMask);
  7503. vector signed char qxs11 = vec_sr(qxs1, v4);
  7504. vector signed char qxs20 = vec_and(qxs2, lowMask);
  7505. vector signed char qxs21 = vec_sr(qxs2, v4);
  7506. vector signed char qxs30 = vec_and(qxs3, lowMask);
  7507. vector signed char qxs31 = vec_sr(qxs3, v4);
  7508. vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh);
  7509. vector signed char qxhs1 = (vector signed char)vec_xl(16, qh);
  7510. qh += 32;
  7511. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  7512. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  7513. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4);
  7514. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4);
  7515. vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  7516. vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  7517. vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4);
  7518. vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4);
  7519. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  7520. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  7521. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  7522. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  7523. vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off);
  7524. vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off);
  7525. vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off);
  7526. vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off);
  7527. vector signed char q8y00 = vec_xl( 0, q8);
  7528. vector signed char q8y10 = vec_xl( 16, q8);
  7529. vector signed char q8y20 = vec_xl( 32, q8);
  7530. vector signed char q8y30 = vec_xl( 48, q8);
  7531. vector signed char q8y01 = vec_xl( 64, q8);
  7532. vector signed char q8y11 = vec_xl( 80, q8);
  7533. vector signed char q8y21 = vec_xl( 96, q8);
  7534. vector signed char q8y31 = vec_xl(112, q8);
  7535. q8 += 128;
  7536. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  7537. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  7538. vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20));
  7539. vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30));
  7540. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  7541. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  7542. vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21));
  7543. vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31));
  7544. vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8));
  7545. qs += 8;
  7546. vector signed short vs0 = vec_splat(vscales, 0);
  7547. vector signed short vs1 = vec_splat(vscales, 1);
  7548. vector signed short vs2 = vec_splat(vscales, 2);
  7549. vector signed short vs3 = vec_splat(vscales, 3);
  7550. vector signed short vs4 = vec_splat(vscales, 4);
  7551. vector signed short vs5 = vec_splat(vscales, 5);
  7552. vector signed short vs6 = vec_splat(vscales, 6);
  7553. vector signed short vs7 = vec_splat(vscales, 7);
  7554. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  7555. vsumi1 = vec_msum(qv01, vs4, vsumi1);
  7556. vsumi2 = vec_msum(qv10, vs1, vsumi2);
  7557. vsumi3 = vec_msum(qv11, vs5, vsumi3);
  7558. vsumi4 = vec_msum(qv20, vs2, vsumi4);
  7559. vsumi5 = vec_msum(qv21, vs6, vsumi5);
  7560. vsumi6 = vec_msum(qv30, vs3, vsumi6);
  7561. vsumi7 = vec_msum(qv31, vs7, vsumi7);
  7562. }
  7563. vsumi0 = vec_add(vsumi0, vsumi4);
  7564. vsumi1 = vec_add(vsumi1, vsumi5);
  7565. vsumi2 = vec_add(vsumi2, vsumi6);
  7566. vsumi3 = vec_add(vsumi3, vsumi7);
  7567. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7568. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7569. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7570. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7571. }
  7572. vsumf0 = vec_add(vsumf0, vsumf2);
  7573. vsumf1 = vec_add(vsumf1, vsumf3);
  7574. vsumf0 = vec_add(vsumf0, vsumf1);
  7575. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7576. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7577. *s = vec_extract(vsumf0, 0);
  7578. #elif defined __loongarch_asx
  7579. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  7580. const __m256i m2 = __lasx_xvreplgr2vr_b(3);
  7581. const __m256i m32s = __lasx_xvreplgr2vr_b(32);
  7582. __m256 acc = (__m256)__lasx_xvldi(0);
  7583. for (int i = 0; i < nb; ++i) {
  7584. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7585. const uint8_t * restrict q4 = x[i].ql;
  7586. const uint8_t * restrict qh = x[i].qh;
  7587. const int8_t * restrict q8 = y[i].qs;
  7588. const __m128i scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  7589. __m256i sumi = __lasx_xvldi(0);
  7590. int is = 0;
  7591. for (int j = 0; j < QK_K/128; ++j) {
  7592. const __m128i scale_0 = lsx_shuffle_b(scales, get_scale_shuffle(is + 0));
  7593. const __m128i scale_1 = lsx_shuffle_b(scales, get_scale_shuffle(is + 1));
  7594. const __m128i scale_2 = lsx_shuffle_b(scales, get_scale_shuffle(is + 2));
  7595. const __m128i scale_3 = lsx_shuffle_b(scales, get_scale_shuffle(is + 3));
  7596. is += 4;
  7597. const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  7598. const __m256i q4bits2 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  7599. const __m256i q4bitsH = __lasx_xvld((const __m256i*)qh, 0); qh += 32;
  7600. const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(q4bitsH, m2), 4);
  7601. const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 2), m2), 4);
  7602. const __m256i q4h_2 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 4), m2), 4);
  7603. const __m256i q4h_3 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 6), m2), 4);
  7604. const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0);
  7605. const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(q4bits2, m4), q4h_1);
  7606. const __m256i q4_2 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_2);
  7607. const __m256i q4_3 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits2, 4), m4), q4h_3);
  7608. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7609. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7610. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7611. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7612. __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0);
  7613. __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1);
  7614. __m256i q8s_2 = lasx_maddubs_h(m32s, q8_2);
  7615. __m256i q8s_3 = lasx_maddubs_h(m32s, q8_3);
  7616. __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0);
  7617. __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1);
  7618. __m256i p16_2 = lasx_maddubs_h(q4_2, q8_2);
  7619. __m256i p16_3 = lasx_maddubs_h(q4_3, q8_3);
  7620. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  7621. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  7622. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  7623. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  7624. p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0);
  7625. p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1);
  7626. p16_2 = lasx_madd_h(lasx_ext8_16(scale_2), p16_2);
  7627. p16_3 = lasx_madd_h(lasx_ext8_16(scale_3), p16_3);
  7628. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  7629. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_2, p16_3));
  7630. }
  7631. acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  7632. }
  7633. *s = hsum_float_8(acc);
  7634. #else
  7635. int8_t aux8[QK_K];
  7636. int16_t aux16[8];
  7637. float sums [8];
  7638. int32_t aux32[8];
  7639. memset(sums, 0, 8*sizeof(float));
  7640. float sumf = 0;
  7641. for (int i = 0; i < nb; ++i) {
  7642. const uint8_t * restrict q4 = x[i].ql;
  7643. const uint8_t * restrict qh = x[i].qh;
  7644. const int8_t * restrict q8 = y[i].qs;
  7645. memset(aux32, 0, 8*sizeof(int32_t));
  7646. int8_t * restrict a = aux8;
  7647. for (int j = 0; j < QK_K; j += 128) {
  7648. for (int l = 0; l < 32; ++l) {
  7649. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  7650. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  7651. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  7652. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  7653. }
  7654. a += 128;
  7655. q4 += 64;
  7656. qh += 32;
  7657. }
  7658. a = aux8;
  7659. int is = 0;
  7660. for (int j = 0; j < QK_K/16; ++j) {
  7661. int scale = x[i].scales[is++];
  7662. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7663. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7664. q8 += 8; a += 8;
  7665. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7666. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7667. q8 += 8; a += 8;
  7668. }
  7669. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7670. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7671. }
  7672. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7673. *s = sumf;
  7674. #endif
  7675. }
  7676. #if defined (__AVX__) || defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx)
  7677. static const int8_t keven_signs_q2xs[1024] = {
  7678. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  7679. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  7680. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  7681. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  7682. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  7683. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  7684. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  7685. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  7686. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  7687. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  7688. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  7689. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  7690. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  7691. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  7692. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  7693. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  7694. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  7695. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  7696. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  7697. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  7698. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  7699. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  7700. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  7701. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  7702. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  7703. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  7704. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  7705. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  7706. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  7707. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  7708. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  7709. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  7710. };
  7711. #endif
  7712. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7713. assert(n % QK_K == 0);
  7714. assert(nrc == 1);
  7715. UNUSED(nrc);
  7716. UNUSED(bx);
  7717. UNUSED(by);
  7718. UNUSED(bs);
  7719. const block_iq2_xxs * restrict x = vx;
  7720. const block_q8_K * restrict y = vy;
  7721. const int nb = n / QK_K;
  7722. #if defined(__ARM_NEON)
  7723. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7724. uint32_t aux32[4];
  7725. const uint8_t * aux8 = (const uint8_t *)aux32;
  7726. ggml_int8x16x4_t q2u;
  7727. ggml_int8x16x4_t q2s;
  7728. ggml_int8x16x4_t q8b;
  7729. float sumf = 0;
  7730. for (int i = 0; i < nb; ++i) {
  7731. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7732. const uint16_t * restrict q2 = x[i].qs;
  7733. const int8_t * restrict q8 = y[i].qs;
  7734. float sumf1 = 0, sumf2 = 0;
  7735. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7736. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7737. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7738. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  7739. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  7740. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  7741. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  7742. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7743. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7744. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  7745. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  7746. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7747. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7748. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7749. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7750. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  7751. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  7752. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  7753. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  7754. }
  7755. sumf += d*(sumf1 + sumf2);
  7756. }
  7757. *s = 0.25f * sumf;
  7758. #elif defined(__AVX2__)
  7759. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7760. uint32_t aux32[4];
  7761. const uint8_t * aux8 = (const uint8_t *)aux32;
  7762. __m256 accumf = _mm256_setzero_ps();
  7763. for (int i = 0; i < nb; ++i) {
  7764. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7765. const uint16_t * restrict q2 = x[i].qs;
  7766. const int8_t * restrict q8 = y[i].qs;
  7767. __m256i sumi1 = _mm256_setzero_si256();
  7768. __m256i sumi2 = _mm256_setzero_si256();
  7769. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7770. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7771. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7772. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7773. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7774. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7775. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7776. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7777. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7778. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7779. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7780. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7781. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7782. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7783. const uint16_t ls1 = aux32[1] >> 28;
  7784. const uint16_t ls2 = aux32[3] >> 28;
  7785. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7786. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7787. sumi1 = _mm256_add_epi32(sumi1, p1);
  7788. sumi2 = _mm256_add_epi32(sumi2, p2);
  7789. }
  7790. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7791. }
  7792. *s = 0.125f * hsum_float_8(accumf);
  7793. #elif defined(__AVX__)
  7794. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7795. uint32_t aux32[4];
  7796. const uint8_t * aux8 = (const uint8_t *)aux32;
  7797. __m256 accumf = _mm256_setzero_ps();
  7798. for (int i = 0; i < nb; ++i) {
  7799. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7800. const uint16_t * restrict q2 = x[i].qs;
  7801. const int8_t * restrict q8 = y[i].qs;
  7802. __m128i sumi1_0 = _mm_setzero_si128();
  7803. __m128i sumi1_1 = _mm_setzero_si128();
  7804. __m128i sumi2_0 = _mm_setzero_si128();
  7805. __m128i sumi2_1 = _mm_setzero_si128();
  7806. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7807. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7808. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7809. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7810. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7811. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7812. const __m128i q2_1_0 = _mm_set_epi64x(iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7813. const __m128i q2_1_1 = _mm_set_epi64x(iq2xxs_grid[aux8[3]], iq2xxs_grid[aux8[2]]);
  7814. const __m128i q2_2_0 = _mm_set_epi64x(iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7815. const __m128i q2_2_1 = _mm_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]]);
  7816. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7817. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  7818. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7819. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127]);
  7820. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  7821. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  7822. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  7823. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  7824. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7825. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7826. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7827. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7828. const uint16_t ls1 = aux32[1] >> 28;
  7829. const uint16_t ls2 = aux32[3] >> 28;
  7830. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  7831. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  7832. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  7833. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  7834. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7835. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7836. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7837. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7838. }
  7839. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7840. }
  7841. *s = 0.125f * hsum_float_8(accumf);
  7842. #elif defined(__POWER9_VECTOR__)
  7843. const vector int v0 = vec_splats((int32_t)0);
  7844. vector float vsumf0 = vec_splats(0.0f);
  7845. vector float vsumf1 = vec_splats(0.0f);
  7846. vector float vsumf2 = vec_splats(0.0f);
  7847. vector float vsumf3 = vec_splats(0.0f);
  7848. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7849. for (int i = 0; i < nb; ++i) {
  7850. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7851. vector float vyd = vec_splats(y[i].d);
  7852. vector float vd = vec_mul(vxd, vyd);
  7853. vector signed int vsumi0 = v0;
  7854. vector signed int vsumi1 = v0;
  7855. vector signed int vsumi2 = v0;
  7856. vector signed int vsumi3 = v0;
  7857. const uint16_t * restrict q2 = x[i].qs;
  7858. const int8_t * restrict q8 = y[i].qs;
  7859. for (int j = 0; j < QK_K/32; j += 2) {
  7860. __builtin_prefetch(q2, 0, 1);
  7861. __builtin_prefetch(q8, 0, 1);
  7862. uint32_t aux32[4];
  7863. const uint8_t * aux8 = (const uint8_t *)aux32;
  7864. memcpy(aux32, q2, 4*sizeof(uint32_t));
  7865. q2 += 8;
  7866. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])};
  7867. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])};
  7868. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])};
  7869. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])};
  7870. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))};
  7871. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))};
  7872. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))};
  7873. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))};
  7874. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  7875. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  7876. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  7877. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  7878. vector signed char q8y0 = vec_xl( 0, q8);
  7879. vector signed char q8y1 = vec_xl(16, q8);
  7880. vector signed char q8y2 = vec_xl(32, q8);
  7881. vector signed char q8y3 = vec_xl(48, q8);
  7882. q8 += 64;
  7883. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7884. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7885. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7886. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7887. const uint16_t ls0 = aux32[1] >> 28;
  7888. const uint16_t ls1 = aux32[3] >> 28;
  7889. vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1));
  7890. vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1));
  7891. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7892. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7893. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7894. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7895. }
  7896. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7897. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7898. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7899. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7900. }
  7901. vsumf0 = vec_add(vsumf0, vsumf2);
  7902. vsumf1 = vec_add(vsumf1, vsumf3);
  7903. vsumf0 = vec_add(vsumf0, vsumf1);
  7904. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7905. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7906. *s = 0.125f * vec_extract(vsumf0, 0);
  7907. #elif defined(__loongarch_asx)
  7908. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7909. uint32_t aux32[4];
  7910. const uint8_t * aux8 = (const uint8_t *)aux32;
  7911. __m256 accumf = (__m256)__lasx_xvldi(0);
  7912. for (int i = 0; i < nb; ++i) {
  7913. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7914. const uint16_t * restrict q2 = x[i].qs;
  7915. const int8_t * restrict q8 = y[i].qs;
  7916. __m256i sumi1 = __lasx_xvldi(0);
  7917. __m256i sumi2 = __lasx_xvldi(0);
  7918. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7919. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7920. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7921. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7922. const __m256i q2_1 = lasx_set_d(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7923. const __m256i q2_2 = lasx_set_d(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7924. const __m256i s2_1 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7925. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7926. const __m256i s2_2 = lasx_set_d(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7927. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7928. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  7929. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  7930. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7931. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7932. const uint16_t ls1 = aux32[1] >> 28;
  7933. const uint16_t ls2 = aux32[3] >> 28;
  7934. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7935. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7936. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7937. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7938. }
  7939. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7940. }
  7941. *s = 0.125f * hsum_float_8(accumf);
  7942. #else
  7943. uint32_t aux32[2];
  7944. const uint8_t * aux8 = (const uint8_t *)aux32;
  7945. float sumf = 0.f;
  7946. for (int i = 0; i < nb; ++i) {
  7947. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7948. const uint16_t * restrict q2 = x[i].qs;
  7949. const int8_t * restrict q8 = y[i].qs;
  7950. int32_t bsum = 0;
  7951. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7952. memcpy(aux32, q2, 2*sizeof(uint32_t));
  7953. q2 += 4;
  7954. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  7955. int32_t sumi = 0;
  7956. for (int l = 0; l < 4; ++l) {
  7957. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  7958. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  7959. for (int j = 0; j < 8; ++j) {
  7960. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7961. }
  7962. q8 += 8;
  7963. }
  7964. bsum += sumi * ls;
  7965. }
  7966. sumf += d * bsum;
  7967. }
  7968. *s = 0.125f * sumf;
  7969. #endif
  7970. }
  7971. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7972. assert(n % QK_K == 0);
  7973. assert(nrc == 1);
  7974. UNUSED(nrc);
  7975. UNUSED(bx);
  7976. UNUSED(by);
  7977. UNUSED(bs);
  7978. const block_iq2_xs * restrict x = vx;
  7979. const block_q8_K * restrict y = vy;
  7980. const int nb = n / QK_K;
  7981. #if defined(__ARM_NEON)
  7982. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7983. ggml_int8x16x4_t q2u;
  7984. ggml_int8x16x4_t q2s;
  7985. ggml_int8x16x4_t q8b;
  7986. int32x4x4_t scales32;
  7987. float sumf = 0;
  7988. for (int i = 0; i < nb; ++i) {
  7989. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7990. const uint16_t * restrict q2 = x[i].qs;
  7991. const int8_t * restrict q8 = y[i].qs;
  7992. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  7993. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  7994. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  7995. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  7996. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  7997. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  7998. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  7999. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  8000. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  8001. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  8002. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  8003. int32x4_t sumi = vdupq_n_s32(0);
  8004. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  8005. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8006. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  8007. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  8008. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  8009. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  8010. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  8011. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  8012. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  8013. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  8014. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  8015. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  8016. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  8017. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  8018. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  8019. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  8020. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  8021. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  8022. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  8023. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  8024. q2 += 8;
  8025. }
  8026. sumf += d*vaddvq_s32(sumi);
  8027. }
  8028. *s = 0.125f * sumf;
  8029. #elif defined(__AVX2__)
  8030. const __m256i mone = _mm256_set1_epi8(1);
  8031. static const char block_sign_shuffle_mask_1[32] = {
  8032. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  8033. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  8034. };
  8035. static const char block_sign_shuffle_mask_2[32] = {
  8036. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  8037. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  8038. };
  8039. static const uint8_t bit_selector_mask_bytes[32] = {
  8040. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8041. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8042. };
  8043. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  8044. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  8045. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  8046. static const uint8_t k_bit_helper[32] = {
  8047. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8048. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8049. };
  8050. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  8051. const __m256i m511 = _mm256_set1_epi16(511);
  8052. const __m128i m4 = _mm_set1_epi8(0xf);
  8053. const __m128i m1 = _mm_set1_epi8(1);
  8054. uint64_t aux64;
  8055. // somewhat hacky, but gives a significant boost in performance
  8056. __m256i aux_gindex;
  8057. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  8058. __m256 accumf = _mm256_setzero_ps();
  8059. for (int i = 0; i < nb; ++i) {
  8060. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8061. const uint16_t * restrict q2 = x[i].qs;
  8062. const int8_t * restrict q8 = y[i].qs;
  8063. memcpy(&aux64, x[i].scales, 8);
  8064. __m128i stmp = _mm_set1_epi64x(aux64);
  8065. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  8066. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  8067. __m256i sumi1 = _mm256_setzero_si256();
  8068. __m256i sumi2 = _mm256_setzero_si256();
  8069. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  8070. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  8071. aux_gindex = _mm256_and_si256(q2_data, m511);
  8072. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  8073. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  8074. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  8075. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  8076. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  8077. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8078. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8079. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8080. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8081. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  8082. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  8083. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  8084. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  8085. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  8086. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  8087. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  8088. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  8089. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  8090. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  8091. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  8092. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  8093. __m256i signs;
  8094. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  8095. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8096. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  8097. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  8098. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8099. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  8100. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  8101. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8102. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  8103. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  8104. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  8105. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  8106. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8107. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8108. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  8109. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  8110. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  8111. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  8112. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  8113. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  8114. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  8115. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  8116. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  8117. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  8118. }
  8119. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8120. }
  8121. *s = 0.125f * hsum_float_8(accumf);
  8122. #elif defined(__AVX__)
  8123. const __m128i mone = _mm_set1_epi8(1);
  8124. static const char block_sign_shuffle_mask_1[32] = {
  8125. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  8126. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  8127. };
  8128. static const char block_sign_shuffle_mask_2[32] = {
  8129. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  8130. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  8131. };
  8132. static const uint8_t bit_selector_mask_bytes[32] = {
  8133. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8134. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8135. };
  8136. const __m128i bit_selector_mask_0 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes);
  8137. const __m128i bit_selector_mask_1 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes + 1);
  8138. const __m128i block_sign_shuffle_1_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1);
  8139. const __m128i block_sign_shuffle_1_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1 + 1);
  8140. const __m128i block_sign_shuffle_2_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2);
  8141. const __m128i block_sign_shuffle_2_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2 + 1);
  8142. static const uint8_t k_bit_helper[32] = {
  8143. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8144. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8145. };
  8146. const __m128i bit_helper_0 = _mm_loadu_si128((const __m128i*)k_bit_helper);
  8147. const __m128i bit_helper_1 = _mm_loadu_si128((const __m128i*)k_bit_helper + 1);
  8148. const __m128i m511 = _mm_set1_epi16(511);
  8149. const __m128i m4 = _mm_set1_epi8(0xf);
  8150. const __m128i m1 = _mm_set1_epi8(1);
  8151. uint64_t aux64;
  8152. // somewhat hacky, but gives a significant boost in performance
  8153. __m256i aux_gindex;
  8154. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  8155. __m256 accumf = _mm256_setzero_ps();
  8156. for (int i = 0; i < nb; ++i) {
  8157. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8158. const uint16_t * restrict q2 = x[i].qs;
  8159. const int8_t * restrict q8 = y[i].qs;
  8160. memcpy(&aux64, x[i].scales, 8);
  8161. __m128i stmp = _mm_set1_epi64x(aux64);
  8162. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  8163. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  8164. __m128i sumi1_0 = _mm_setzero_si128();
  8165. __m128i sumi1_1 = _mm_setzero_si128();
  8166. __m128i sumi2_0 = _mm_setzero_si128();
  8167. __m128i sumi2_1 = _mm_setzero_si128();
  8168. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  8169. const __m128i q2_data_0 = _mm_loadu_si128((const __m128i*)q2);
  8170. const __m128i q2_data_1 = _mm_loadu_si128((const __m128i*)q2 + 1); q2 += 16;
  8171. aux_gindex = MM256_SET_M128I(_mm_and_si128(q2_data_1, m511), _mm_and_si128(q2_data_0, m511));
  8172. const __m128i partial_sign_bits_0 = _mm_srli_epi16(q2_data_0, 9);
  8173. const __m128i partial_sign_bits_1 = _mm_srli_epi16(q2_data_1, 9);
  8174. const __m128i partial_sign_bits_upper_0 = _mm_srli_epi16(q2_data_0, 13);
  8175. const __m128i partial_sign_bits_upper_1 = _mm_srli_epi16(q2_data_1, 13);
  8176. const __m128i partial_sign_bits_for_counting_0 = _mm_xor_si128(partial_sign_bits_0, partial_sign_bits_upper_0);
  8177. const __m128i partial_sign_bits_for_counting_1 = _mm_xor_si128(partial_sign_bits_1, partial_sign_bits_upper_1);
  8178. const __m128i odd_bits_0 = _mm_shuffle_epi8(bit_helper_0, partial_sign_bits_for_counting_0);
  8179. const __m128i odd_bits_1 = _mm_shuffle_epi8(bit_helper_1, partial_sign_bits_for_counting_1);
  8180. const __m128i full_sign_bits_0 = _mm_or_si128(partial_sign_bits_0, odd_bits_0);
  8181. const __m128i full_sign_bits_1 = _mm_or_si128(partial_sign_bits_1, odd_bits_1);
  8182. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8183. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8184. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8185. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8186. const __m128i q8_3_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8187. const __m128i q8_3_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8188. const __m128i q8_4_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8189. const __m128i q8_4_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8190. const __m128i q2_1_0 = _mm_set_epi64x(iq2xs_grid[gindex[1]], iq2xs_grid[gindex[0]]);
  8191. const __m128i q2_1_1 = _mm_set_epi64x(iq2xs_grid[gindex[3]], iq2xs_grid[gindex[2]]);
  8192. const __m128i q2_2_0 = _mm_set_epi64x(iq2xs_grid[gindex[5]], iq2xs_grid[gindex[4]]);
  8193. const __m128i q2_2_1 = _mm_set_epi64x(iq2xs_grid[gindex[7]], iq2xs_grid[gindex[6]]);
  8194. const __m128i q2_3_0 = _mm_set_epi64x(iq2xs_grid[gindex[9]], iq2xs_grid[gindex[8]]);
  8195. const __m128i q2_3_1 = _mm_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]]);
  8196. const __m128i q2_4_0 = _mm_set_epi64x(iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  8197. const __m128i q2_4_1 = _mm_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]]);
  8198. // AVX2 full_signs_1 is full_sign_bits_0 here
  8199. // AVX2 full_signs_2 is full_sign_bits_1 here
  8200. __m128i signs_0, signs_1;
  8201. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_0);
  8202. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_1);
  8203. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  8204. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  8205. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, _mm_or_si128(signs_0, mone));
  8206. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, _mm_or_si128(signs_1, mone));
  8207. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_0);
  8208. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_1);
  8209. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  8210. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  8211. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, _mm_or_si128(signs_0, mone));
  8212. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, _mm_or_si128(signs_1, mone));
  8213. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_0);
  8214. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_1);
  8215. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  8216. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  8217. const __m128i q8s_3_0 = _mm_sign_epi8(q8_3_0, _mm_or_si128(signs_0, mone));
  8218. const __m128i q8s_3_1 = _mm_sign_epi8(q8_3_1, _mm_or_si128(signs_1, mone));
  8219. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_0);
  8220. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_1);
  8221. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  8222. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  8223. const __m128i q8s_4_0 = _mm_sign_epi8(q8_4_0, _mm_or_si128(signs_0, mone));
  8224. const __m128i q8s_4_1 = _mm_sign_epi8(q8_4_1, _mm_or_si128(signs_1, mone));
  8225. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  8226. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  8227. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  8228. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  8229. const __m128i dot3_0 = _mm_maddubs_epi16(q2_3_0, q8s_3_0);
  8230. const __m128i dot3_1 = _mm_maddubs_epi16(q2_3_1, q8s_3_1);
  8231. const __m128i dot4_0 = _mm_maddubs_epi16(q2_4_0, q8s_4_0);
  8232. const __m128i dot4_1 = _mm_maddubs_epi16(q2_4_1, q8s_4_1);
  8233. __m128i sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0));
  8234. const __m128i sc1_0 = _mm_cvtepi8_epi16(sc_tmp);
  8235. const __m128i sc1_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  8236. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1));
  8237. const __m128i sc2_0 = _mm_cvtepi8_epi16(sc_tmp);
  8238. const __m128i sc2_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  8239. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2));
  8240. const __m128i sc3_0 = _mm_cvtepi8_epi16(sc_tmp);
  8241. const __m128i sc3_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  8242. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3));
  8243. const __m128i sc4_0 = _mm_cvtepi8_epi16(sc_tmp);
  8244. const __m128i sc4_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  8245. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot1_0, sc1_0));
  8246. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot1_1, sc1_1));
  8247. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot2_0, sc2_0));
  8248. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot2_1, sc2_1));
  8249. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot3_0, sc3_0));
  8250. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot3_1, sc3_1));
  8251. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot4_0, sc4_0));
  8252. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot4_1, sc4_1));
  8253. }
  8254. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  8255. }
  8256. *s = 0.125f * hsum_float_8(accumf);
  8257. #elif defined(__loongarch_asx)
  8258. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  8259. static const char block_sign_shuffle_mask_1[32] = {
  8260. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  8261. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  8262. };
  8263. static const char block_sign_shuffle_mask_2[32] = {
  8264. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  8265. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  8266. };
  8267. static const uint8_t bit_selector_mask_bytes[32] = {
  8268. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8269. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8270. };
  8271. const __m256i bit_selector_mask = __lasx_xvld((const __m256i*)bit_selector_mask_bytes, 0);
  8272. const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0);
  8273. const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0);
  8274. static const uint8_t k_bit_helper[32] = {
  8275. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8276. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  8277. };
  8278. const __m256i bit_helper = __lasx_xvld((const __m256i*)k_bit_helper, 0);
  8279. const __m256i m511 = __lasx_xvreplgr2vr_h(511);
  8280. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  8281. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  8282. uint64_t aux64;
  8283. // somewhat hacky, but gives a significant boost in performance
  8284. __m256i aux_gindex;
  8285. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  8286. __m256 accumf = (__m256)__lasx_xvldi(0);
  8287. for (int i = 0; i < nb; ++i) {
  8288. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8289. const uint16_t * restrict q2 = x[i].qs;
  8290. const int8_t * restrict q8 = y[i].qs;
  8291. memcpy(&aux64, x[i].scales, 8);
  8292. __m128i stmp = __lsx_vreplgr2vr_d(aux64);
  8293. stmp = __lsx_vilvl_b( __lsx_vand_v(__lsx_vsrli_h(stmp, 4), m4), __lsx_vand_v(stmp, m4));
  8294. const __m128i scales = __lsx_vadd_b(__lsx_vslli_h(stmp, 1), m1);
  8295. __m256i sumi1 = __lasx_xvldi(0);
  8296. __m256i sumi2 = __lasx_xvldi(0);
  8297. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  8298. const __m256i q2_data = __lasx_xvld((const __m256i*)q2, 0); q2 += 16;
  8299. aux_gindex = __lasx_xvand_v(q2_data, m511);
  8300. const __m256i partial_sign_bits = __lasx_xvsrli_h(q2_data, 9);
  8301. const __m256i partial_sign_bits_upper = __lasx_xvsrli_h(q2_data, 13);
  8302. const __m256i partial_sign_bits_for_counting = __lasx_xvxor_v(partial_sign_bits, partial_sign_bits_upper);
  8303. const __m256i odd_bits = lasx_shuffle_b(bit_helper, partial_sign_bits_for_counting);
  8304. const __m256i full_sign_bits = __lasx_xvor_v(partial_sign_bits, odd_bits);
  8305. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8306. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8307. const __m256i q8_3 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8308. const __m256i q8_4 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8309. const __m256i q2_1 = lasx_set_d(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  8310. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  8311. const __m256i q2_2 = lasx_set_d(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  8312. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  8313. const __m256i q2_3 = lasx_set_d(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  8314. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  8315. const __m256i q2_4 = lasx_set_d(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  8316. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  8317. const __m128i full_signs_l = lasx_extracti128(full_sign_bits, 0);
  8318. const __m128i full_signs_h = lasx_extracti128(full_sign_bits, 1);
  8319. const __m256i full_signs_1 = lasx_insertf128(full_signs_l, full_signs_l);
  8320. const __m256i full_signs_2 = lasx_insertf128(full_signs_h, full_signs_h);
  8321. __m256i signs;
  8322. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_1);
  8323. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  8324. const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1);
  8325. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_2);
  8326. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  8327. const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2);
  8328. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_1);
  8329. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  8330. const __m256i q8s_3 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_3);
  8331. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_2);
  8332. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  8333. const __m256i q8s_4 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_4);
  8334. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  8335. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  8336. const __m256i dot3 = lasx_maddubs_h(q2_3, q8s_3);
  8337. const __m256i dot4 = lasx_maddubs_h(q2_4, q8s_4);
  8338. const __m256i sc1 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+0)));
  8339. const __m256i sc2 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+1)));
  8340. const __m256i sc3 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+2)));
  8341. const __m256i sc4 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+3)));
  8342. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot1, sc1));
  8343. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot2, sc2));
  8344. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot3, sc3));
  8345. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot4, sc4));
  8346. }
  8347. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8348. }
  8349. *s = 0.125f * hsum_float_8(accumf);
  8350. #elif defined(__POWER9_VECTOR__)
  8351. const vector int v0 = vec_splats((int32_t)0);
  8352. vector float vsumf0 = vec_splats(0.0f);
  8353. vector float vsumf1 = vec_splats(0.0f);
  8354. vector float vsumf2 = vec_splats(0.0f);
  8355. vector float vsumf3 = vec_splats(0.0f);
  8356. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8357. for (int i = 0; i < nb; ++i) {
  8358. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8359. vector float vyd = vec_splats(y[i].d);
  8360. vector float vd = vec_mul(vxd, vyd);
  8361. vector signed int vsumi0 = v0;
  8362. vector signed int vsumi1 = v0;
  8363. vector signed int vsumi2 = v0;
  8364. vector signed int vsumi3 = v0;
  8365. const uint16_t * restrict q2 = x[i].qs;
  8366. const uint8_t * restrict sc = x[i].scales;
  8367. const int8_t * restrict q8 = y[i].qs;
  8368. for (int j = 0; j < QK_K/64; ++j) {
  8369. __builtin_prefetch(q2, 0, 1);
  8370. __builtin_prefetch(q8, 0, 1);
  8371. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))};
  8372. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))};
  8373. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))};
  8374. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))};
  8375. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))};
  8376. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))};
  8377. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))};
  8378. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))};
  8379. q2 += 8;
  8380. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  8381. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  8382. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  8383. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  8384. vector signed char q8y0 = vec_xl( 0, q8);
  8385. vector signed char q8y1 = vec_xl(16, q8);
  8386. vector signed char q8y2 = vec_xl(32, q8);
  8387. vector signed char q8y3 = vec_xl(48, q8);
  8388. q8 += 64;
  8389. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  8390. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  8391. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  8392. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  8393. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8394. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8395. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  8396. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  8397. sc += 2;
  8398. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  8399. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  8400. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  8401. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  8402. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  8403. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  8404. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  8405. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  8406. }
  8407. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8408. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8409. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8410. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8411. }
  8412. vsumf0 = vec_add(vsumf0, vsumf2);
  8413. vsumf1 = vec_add(vsumf1, vsumf3);
  8414. vsumf0 = vec_add(vsumf0, vsumf1);
  8415. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8416. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8417. *s = 0.125f * vec_extract(vsumf0, 0);
  8418. #else
  8419. float sumf = 0.f;
  8420. for (int i = 0; i < nb; ++i) {
  8421. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8422. const uint16_t * restrict q2 = x[i].qs;
  8423. const uint8_t * restrict sc = x[i].scales;
  8424. const int8_t * restrict q8 = y[i].qs;
  8425. int32_t bsum = 0;
  8426. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8427. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  8428. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  8429. int32_t sumi = 0;
  8430. for (int l = 0; l < 2; ++l) {
  8431. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  8432. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  8433. for (int j = 0; j < 8; ++j) {
  8434. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  8435. }
  8436. q8 += 8;
  8437. }
  8438. bsum += sumi * ls1;
  8439. sumi = 0;
  8440. for (int l = 2; l < 4; ++l) {
  8441. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  8442. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  8443. for (int j = 0; j < 8; ++j) {
  8444. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  8445. }
  8446. q8 += 8;
  8447. }
  8448. bsum += sumi * ls2;
  8449. q2 += 4;
  8450. }
  8451. sumf += d * bsum;
  8452. }
  8453. *s = 0.125f * sumf;
  8454. #endif
  8455. }
  8456. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8457. assert(n % QK_K == 0);
  8458. assert(nrc == 1);
  8459. UNUSED(nrc);
  8460. UNUSED(bx);
  8461. UNUSED(by);
  8462. UNUSED(bs);
  8463. const block_iq2_s * restrict x = vx;
  8464. const block_q8_K * restrict y = vy;
  8465. const int nb = n / QK_K;
  8466. #if defined(__ARM_NEON)
  8467. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8468. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8469. };
  8470. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8471. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  8472. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  8473. const uint8x16_t m1 = vdupq_n_u8(1);
  8474. const int32x4_t vzero = vdupq_n_s32(0);
  8475. uint8x16x2_t vs;
  8476. ggml_int8x16x4_t q2s;
  8477. ggml_int8x16x4_t q8b;
  8478. float sumf = 0;
  8479. for (int i = 0; i < nb; ++i) {
  8480. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8481. const uint8_t * restrict qs = x[i].qs;
  8482. const uint8_t * restrict qh = x[i].qh;
  8483. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8484. const int8_t * restrict q8 = y[i].qs;
  8485. int sumi1 = 0, sumi2 = 0;
  8486. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8487. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8488. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  8489. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  8490. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  8491. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  8492. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  8493. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  8494. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  8495. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  8496. qs += 8;
  8497. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  8498. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8499. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8500. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  8501. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  8502. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  8503. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  8504. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  8505. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8506. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8507. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  8508. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  8509. signs += 4;
  8510. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  8511. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  8512. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  8513. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  8514. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  8515. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  8516. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  8517. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  8518. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  8519. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  8520. }
  8521. sumf += d*(sumi1 + sumi2);
  8522. }
  8523. *s = 0.125f * sumf;
  8524. #elif defined(__AVX2__)
  8525. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8526. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8527. };
  8528. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8529. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8530. };
  8531. const __m128i m4 = _mm_set1_epi8(0xf);
  8532. const __m128i m1 = _mm_set1_epi8(1);
  8533. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  8534. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  8535. uint64_t aux64;
  8536. __m256 accumf = _mm256_setzero_ps();
  8537. for (int i = 0; i < nb; ++i) {
  8538. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8539. const uint8_t * restrict qs = x[i].qs;
  8540. const uint8_t * restrict qh = x[i].qh;
  8541. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8542. const int8_t * restrict q8 = y[i].qs;
  8543. memcpy(&aux64, x[i].scales, 8);
  8544. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  8545. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  8546. __m256i sumi1 = _mm256_setzero_si256();
  8547. __m256i sumi2 = _mm256_setzero_si256();
  8548. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8549. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8550. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8551. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  8552. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  8553. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  8554. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  8555. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  8556. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  8557. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  8558. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  8559. qs += 8;
  8560. __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  8561. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8562. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  8563. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  8564. aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  8565. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8566. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  8567. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  8568. signs += 4;
  8569. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  8570. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  8571. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  8572. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  8573. sumi1 = _mm256_add_epi32(sumi1, p1);
  8574. sumi2 = _mm256_add_epi32(sumi2, p2);
  8575. }
  8576. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8577. }
  8578. *s = 0.125f * hsum_float_8(accumf);
  8579. #elif defined(__AVX__)
  8580. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8581. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8582. };
  8583. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8584. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8585. };
  8586. const __m128i m4 = _mm_set1_epi8(0xf);
  8587. const __m128i m1 = _mm_set1_epi8(1);
  8588. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  8589. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  8590. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  8591. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  8592. uint64_t aux64;
  8593. __m256 accumf = _mm256_setzero_ps();
  8594. for (int i = 0; i < nb; ++i) {
  8595. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8596. const uint8_t * restrict qs = x[i].qs;
  8597. const uint8_t * restrict qh = x[i].qh;
  8598. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8599. const int8_t * restrict q8 = y[i].qs;
  8600. memcpy(&aux64, x[i].scales, 8);
  8601. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  8602. const __m128i scales16_0 = _mm_cvtepi8_epi16(scales8);
  8603. const __m128i scales16_1 = _mm_cvtepi8_epi16(_mm_srli_si128(scales8, 8));
  8604. __m128i sumi1_0 = _mm_setzero_si128();
  8605. __m128i sumi1_1 = _mm_setzero_si128();
  8606. __m128i sumi2_0 = _mm_setzero_si128();
  8607. __m128i sumi2_1 = _mm_setzero_si128();
  8608. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8609. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8610. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8611. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8612. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8613. const __m128i q2_1_0 = _mm_set_epi64x(iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  8614. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  8615. const __m128i q2_1_1 = _mm_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  8616. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)]);
  8617. const __m128i q2_2_0 = _mm_set_epi64x(iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  8618. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  8619. const __m128i q2_2_1 = _mm_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  8620. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)]);
  8621. qs += 8;
  8622. __m128i aux128_0 = _mm_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  8623. __m128i aux128_1 = aux128_0;
  8624. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  8625. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  8626. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  8627. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  8628. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  8629. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  8630. aux128_0 = _mm_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  8631. aux128_1 = aux128_0;
  8632. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  8633. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  8634. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  8635. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  8636. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  8637. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  8638. signs += 4;
  8639. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  8640. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  8641. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  8642. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  8643. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 0)));
  8644. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 1)));
  8645. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 0)));
  8646. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 1)));
  8647. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  8648. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  8649. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  8650. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  8651. }
  8652. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  8653. }
  8654. *s = 0.125f * hsum_float_8(accumf);
  8655. #elif defined(__POWER9_VECTOR__)
  8656. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8657. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8658. };
  8659. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8660. const vector int v0 = vec_splats((int32_t)0);
  8661. vector float vsumf0 = vec_splats(0.0f);
  8662. vector float vsumf1 = vec_splats(0.0f);
  8663. vector float vsumf2 = vec_splats(0.0f);
  8664. vector float vsumf3 = vec_splats(0.0f);
  8665. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  8666. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  8667. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  8668. for (int i = 0; i < nb; ++i) {
  8669. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8670. vector float vyd = vec_splats(y[i].d);
  8671. vector float vd = vec_mul(vxd, vyd);
  8672. vector signed int vsumi0 = v0;
  8673. vector signed int vsumi1 = v0;
  8674. vector signed int vsumi2 = v0;
  8675. vector signed int vsumi3 = v0;
  8676. const uint8_t * restrict q2 = x[i].qs;
  8677. const uint8_t * restrict qh = x[i].qh;
  8678. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8679. const uint8_t * restrict sc = x[i].scales;
  8680. const int8_t * restrict q8 = y[i].qs;
  8681. for (int j = 0; j < QK_K/32; j += 2) {
  8682. __builtin_prefetch(q2, 0, 1);
  8683. __builtin_prefetch(q8, 0, 1);
  8684. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))};
  8685. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))};
  8686. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))};
  8687. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))};
  8688. q2 += 8;
  8689. qh += 2;
  8690. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  8691. vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  8692. signs += 4;
  8693. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  8694. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  8695. vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0);
  8696. vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1);
  8697. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  8698. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  8699. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  8700. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  8701. vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0);
  8702. vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1);
  8703. vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2);
  8704. vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3);
  8705. vector signed char q8y0 = vec_xl( 0, q8);
  8706. vector signed char q8y1 = vec_xl(16, q8);
  8707. vector signed char q8y2 = vec_xl(32, q8);
  8708. vector signed char q8y3 = vec_xl(48, q8);
  8709. q8 += 64;
  8710. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  8711. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  8712. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  8713. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  8714. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8715. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8716. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  8717. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  8718. sc += 2;
  8719. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  8720. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  8721. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  8722. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  8723. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  8724. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  8725. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  8726. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  8727. }
  8728. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8729. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8730. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8731. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8732. }
  8733. vsumf0 = vec_add(vsumf0, vsumf2);
  8734. vsumf1 = vec_add(vsumf1, vsumf3);
  8735. vsumf0 = vec_add(vsumf0, vsumf1);
  8736. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8737. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8738. *s = 0.125f * vec_extract(vsumf0, 0);
  8739. #elif defined(__loongarch_asx)
  8740. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8741. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8742. };
  8743. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8744. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8745. };
  8746. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  8747. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  8748. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  8749. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  8750. uint64_t aux64;
  8751. __m256 accumf = (__m256)__lasx_xvldi(0);
  8752. for (int i = 0; i < nb; ++i) {
  8753. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8754. const uint8_t * restrict qs = x[i].qs;
  8755. const uint8_t * restrict qh = x[i].qh;
  8756. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8757. const int8_t * restrict q8 = y[i].qs;
  8758. __m128i tmp1;
  8759. memcpy(&aux64, x[i].scales, 8);
  8760. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64, 0);
  8761. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64 >> 4, 1);
  8762. const __m128i scales8 = __lsx_vadd_b(__lsx_vslli_h(__lsx_vand_v(tmp1, m4), 1), m1);
  8763. const __m256i scales16 = lasx_ext8_16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  8764. __m256i sumi1 = __lasx_xvldi(0);
  8765. __m256i sumi2 = __lasx_xvldi(0);
  8766. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8767. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8768. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8769. const __m256i q2_1 = lasx_set_d(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  8770. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  8771. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  8772. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  8773. const __m256i q2_2 = lasx_set_d(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  8774. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  8775. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  8776. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  8777. qs += 8;
  8778. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | ((uint32_t) signs[1] << 16));
  8779. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8780. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  8781. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  8782. aux256 = __lasx_xvreplgr2vr_w(signs[2] | ((uint32_t) signs[3] << 16));
  8783. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8784. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  8785. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  8786. signs += 4;
  8787. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  8788. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  8789. const __m256i p1 = lasx_madd_h(dot1, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+0)));
  8790. const __m256i p2 = lasx_madd_h(dot2, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+1)));
  8791. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8792. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8793. }
  8794. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8795. }
  8796. *s = 0.125f * hsum_float_8(accumf);
  8797. #else
  8798. float sumf = 0;
  8799. for (int i = 0; i < nb; i++) {
  8800. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8801. const int8_t * q8 = y[i].qs;
  8802. const uint8_t * qs = x[i].qs;
  8803. const uint8_t * qh = x[i].qh;
  8804. const uint8_t * signs = qs + QK_K/8;
  8805. int bsum = 0;
  8806. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8807. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  8808. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  8809. int sumi1 = 0, sumi2 = 0;
  8810. for (int l = 0; l < 2; ++l) {
  8811. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  8812. for (int j = 0; j < 8; ++j) {
  8813. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  8814. }
  8815. q8 += 8;
  8816. }
  8817. for (int l = 2; l < 4; ++l) {
  8818. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  8819. for (int j = 0; j < 8; ++j) {
  8820. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  8821. }
  8822. q8 += 8;
  8823. }
  8824. bsum += ls1 * sumi1 + ls2 * sumi2;
  8825. qs += 4;
  8826. signs += 4;
  8827. }
  8828. sumf += d * bsum;
  8829. }
  8830. *s = 0.125f * sumf;
  8831. #endif
  8832. }
  8833. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8834. assert(n % QK_K == 0);
  8835. assert(nrc == 1);
  8836. UNUSED(nrc);
  8837. UNUSED(bx);
  8838. UNUSED(by);
  8839. UNUSED(bs);
  8840. const block_iq3_xxs * restrict x = vx;
  8841. const block_q8_K * restrict y = vy;
  8842. const int nb = n / QK_K;
  8843. #if defined(__ARM_NEON)
  8844. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8845. uint32_t aux32[2];
  8846. ggml_int8x16x4_t q3s;
  8847. ggml_int8x16x4_t q8b;
  8848. float sumf = 0;
  8849. for (int i = 0; i < nb; ++i) {
  8850. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8851. const uint8_t * restrict q3 = x[i].qs;
  8852. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8853. const int8_t * restrict q8 = y[i].qs;
  8854. float sumf1 = 0, sumf2 = 0;
  8855. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8856. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8857. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  8858. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  8859. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  8860. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  8861. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  8862. q3 += 16;
  8863. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  8864. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  8865. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  8866. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  8867. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  8868. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  8869. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  8870. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  8871. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  8872. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  8873. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  8874. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  8875. }
  8876. sumf += d*(sumf1 + sumf2);
  8877. }
  8878. *s = 0.5f * sumf;
  8879. #elif defined(__AVX2__)
  8880. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8881. uint32_t aux32[2];
  8882. __m256 accumf = _mm256_setzero_ps();
  8883. for (int i = 0; i < nb; ++i) {
  8884. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8885. const uint8_t * restrict q3 = x[i].qs;
  8886. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8887. const int8_t * restrict q8 = y[i].qs;
  8888. __m256i sumi1 = _mm256_setzero_si256();
  8889. __m256i sumi2 = _mm256_setzero_si256();
  8890. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8891. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8892. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8893. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8894. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8895. q3 += 8;
  8896. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8897. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8898. q3 += 8;
  8899. memcpy(aux32, gas, 8); gas += 8;
  8900. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  8901. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8902. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8903. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8904. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  8905. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  8906. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8907. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8908. const uint16_t ls1 = aux32[0] >> 28;
  8909. const uint16_t ls2 = aux32[1] >> 28;
  8910. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8911. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8912. sumi1 = _mm256_add_epi32(sumi1, p1);
  8913. sumi2 = _mm256_add_epi32(sumi2, p2);
  8914. }
  8915. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8916. }
  8917. *s = 0.25f * hsum_float_8(accumf);
  8918. #elif defined(__AVX__)
  8919. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8920. uint32_t aux32[2];
  8921. __m256 accumf = _mm256_setzero_ps();
  8922. for (int i = 0; i < nb; ++i) {
  8923. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8924. const uint8_t * restrict q3 = x[i].qs;
  8925. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8926. const int8_t * restrict q8 = y[i].qs;
  8927. __m128i sumi1_0 = _mm_setzero_si128();
  8928. __m128i sumi1_1 = _mm_setzero_si128();
  8929. __m128i sumi2_0 = _mm_setzero_si128();
  8930. __m128i sumi2_1 = _mm_setzero_si128();
  8931. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8932. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8933. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8934. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8935. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8936. const __m128i q2_1_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8937. const __m128i q2_1_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  8938. q3 += 8;
  8939. const __m128i q2_2_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8940. const __m128i q2_2_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  8941. q3 += 8;
  8942. memcpy(aux32, gas, 8); gas += 8;
  8943. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8944. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127]);
  8945. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8946. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  8947. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  8948. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  8949. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  8950. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  8951. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  8952. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  8953. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  8954. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  8955. const uint16_t ls1 = aux32[0] >> 28;
  8956. const uint16_t ls2 = aux32[1] >> 28;
  8957. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  8958. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  8959. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  8960. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  8961. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  8962. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  8963. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  8964. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  8965. }
  8966. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  8967. }
  8968. *s = 0.25f * hsum_float_8(accumf);
  8969. #elif defined(__POWER9_VECTOR__)
  8970. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8971. const vector int v0 = vec_splats((int32_t)0);
  8972. vector float vsumf0 = vec_splats(0.0f);
  8973. vector float vsumf1 = vec_splats(0.0f);
  8974. vector float vsumf2 = vec_splats(0.0f);
  8975. vector float vsumf3 = vec_splats(0.0f);
  8976. for (int i = 0; i < nb; ++i) {
  8977. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8978. vector float vyd = vec_splats(y[i].d);
  8979. vector float vd = vec_mul(vxd, vyd);
  8980. vector signed int vsumi0 = v0;
  8981. vector signed int vsumi1 = v0;
  8982. vector signed int vsumi2 = v0;
  8983. vector signed int vsumi3 = v0;
  8984. const uint8_t * restrict q3 = x[i].qs;
  8985. const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4);
  8986. const int8_t * restrict q8 = y[i].qs;
  8987. #pragma GCC unroll 1
  8988. for (int j = 0; j < QK_K/32; j += 2) {
  8989. __builtin_prefetch(q3, 0, 1);
  8990. __builtin_prefetch(q8, 0, 1);
  8991. vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
  8992. vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
  8993. vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
  8994. vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
  8995. q3 += 16;
  8996. vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])};
  8997. vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])};
  8998. vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])};
  8999. vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])};
  9000. vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0);
  9001. vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1);
  9002. vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2);
  9003. vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3);
  9004. vector signed char q8y0 = vec_xl( 0, q8);
  9005. vector signed char q8y1 = vec_xl(16, q8);
  9006. vector signed char q8y2 = vec_xl(32, q8);
  9007. vector signed char q8y3 = vec_xl(48, q8);
  9008. q8 += 64;
  9009. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  9010. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  9011. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  9012. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  9013. const uint16_t ls0 = (uint16_t)(signs[0] >> 28);
  9014. const uint16_t ls1 = (uint16_t)(signs[1] >> 28);
  9015. signs += 2;
  9016. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  9017. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  9018. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  9019. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  9020. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  9021. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  9022. }
  9023. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9024. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9025. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9026. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9027. }
  9028. vsumf0 = vec_add(vsumf0, vsumf2);
  9029. vsumf1 = vec_add(vsumf1, vsumf3);
  9030. vsumf0 = vec_add(vsumf0, vsumf1);
  9031. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9032. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9033. *s = 0.25f * vec_extract(vsumf0, 0);
  9034. #elif defined(__loongarch_asx)
  9035. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  9036. uint32_t aux32[2];
  9037. __m256 accumf = (__m256)__lasx_xvldi(0);
  9038. for (int i = 0; i < nb; ++i) {
  9039. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9040. const uint8_t * restrict q3 = x[i].qs;
  9041. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  9042. const int8_t * restrict q8 = y[i].qs;
  9043. __m256i sumi1 = __lasx_xvldi(0);
  9044. __m256i sumi2 = __lasx_xvldi(0);
  9045. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9046. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9047. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9048. const __m256i q2_1 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  9049. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  9050. q3 += 8;
  9051. const __m256i q2_2 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  9052. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  9053. q3 += 8;
  9054. memcpy(aux32, gas, 8); gas += 8;
  9055. const __m256i s2_1 = lasx_set_d(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  9056. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  9057. const __m256i s2_2 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  9058. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  9059. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  9060. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  9061. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  9062. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  9063. const uint16_t ls1 = aux32[0] >> 28;
  9064. const uint16_t ls2 = aux32[1] >> 28;
  9065. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  9066. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  9067. sumi1 = __lasx_xvadd_w(sumi1, p1);
  9068. sumi2 = __lasx_xvadd_w(sumi2, p2);
  9069. }
  9070. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  9071. }
  9072. *s = 0.25f * hsum_float_8(accumf);
  9073. #else
  9074. uint32_t aux32;
  9075. float sumf = 0.f;
  9076. for (int i = 0; i < nb; ++i) {
  9077. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9078. const uint8_t * restrict q3 = x[i].qs;
  9079. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  9080. const int8_t * restrict q8 = y[i].qs;
  9081. int32_t bsum = 0;
  9082. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  9083. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  9084. const uint32_t ls = 2*(aux32 >> 28) + 1;
  9085. int32_t sumi = 0;
  9086. for (int l = 0; l < 4; ++l) {
  9087. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  9088. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  9089. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  9090. for (int j = 0; j < 4; ++j) {
  9091. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  9092. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  9093. }
  9094. q8 += 8;
  9095. }
  9096. q3 += 8;
  9097. bsum += sumi * ls;
  9098. }
  9099. sumf += d * bsum;
  9100. }
  9101. *s = 0.25f * sumf;
  9102. #endif
  9103. }
  9104. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9105. assert(n % QK_K == 0);
  9106. assert(nrc == 1);
  9107. UNUSED(nrc);
  9108. UNUSED(bx);
  9109. UNUSED(by);
  9110. UNUSED(bs);
  9111. const block_iq3_s * restrict x = vx;
  9112. const block_q8_K * restrict y = vy;
  9113. const int nb = n / QK_K;
  9114. #if defined(__ARM_NEON)
  9115. typedef union {
  9116. uint16x8_t vec_index;
  9117. uint16_t index[8];
  9118. } vec_index_t;
  9119. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9120. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9121. };
  9122. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  9123. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  9124. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  9125. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  9126. const int16x8_t hshift = vld1q_s16(k_shift);
  9127. const uint16x8_t m256 = vdupq_n_u16(256);
  9128. const uint8x16_t m1 = vdupq_n_u8(1);
  9129. uint8x16x2_t vs;
  9130. ggml_int8x16x4_t q3s;
  9131. ggml_int8x16x4_t q8b;
  9132. vec_index_t idx;
  9133. uint32_t scales32[2];
  9134. const uint8_t * scales8 = (const uint8_t *)scales32;
  9135. float sumf = 0;
  9136. for (int i = 0; i < nb; ++i) {
  9137. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9138. const uint8_t * restrict qs = x[i].qs;
  9139. const uint8_t * restrict qh = x[i].qh;
  9140. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  9141. const int8_t * restrict q8 = y[i].qs;
  9142. memcpy(scales32, x[i].scales, 4);
  9143. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  9144. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  9145. int sumi1 = 0, sumi2 = 0;
  9146. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9147. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9148. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  9149. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  9150. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  9151. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  9152. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  9153. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  9154. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  9155. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  9156. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  9157. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  9158. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  9159. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  9160. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  9161. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  9162. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  9163. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  9164. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  9165. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  9166. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  9167. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  9168. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  9169. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  9170. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  9171. signs += 4;
  9172. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  9173. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  9174. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  9175. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  9176. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  9177. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  9178. }
  9179. sumf += d*(sumi1 + sumi2);
  9180. }
  9181. *s = sumf;
  9182. #elif defined(__AVX2__)
  9183. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9184. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9185. };
  9186. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9187. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9188. };
  9189. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  9190. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  9191. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  9192. const __m256i idx_mask = _mm256_set1_epi32(256);
  9193. typedef union {
  9194. __m256i vec[2];
  9195. uint32_t index[16];
  9196. } index_t;
  9197. index_t idx;
  9198. __m256 accumf = _mm256_setzero_ps();
  9199. for (int i = 0; i < nb; ++i) {
  9200. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9201. const uint8_t * restrict qs = x[i].qs;
  9202. const uint8_t * restrict qh = x[i].qh;
  9203. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  9204. const int8_t * restrict q8 = y[i].qs;
  9205. __m256i sumi1 = _mm256_setzero_si256();
  9206. __m256i sumi2 = _mm256_setzero_si256();
  9207. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9208. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9209. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9210. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  9211. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  9212. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  9213. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  9214. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  9215. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  9216. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  9217. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  9218. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  9219. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  9220. const __m256i q2_1 = _mm256_set_epi32(
  9221. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  9222. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  9223. );
  9224. const __m256i q2_2 = _mm256_set_epi32(
  9225. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  9226. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  9227. );
  9228. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  9229. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  9230. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  9231. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  9232. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  9233. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  9234. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  9235. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  9236. signs += 4;
  9237. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  9238. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  9239. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  9240. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  9241. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  9242. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  9243. sumi1 = _mm256_add_epi32(sumi1, p1);
  9244. sumi2 = _mm256_add_epi32(sumi2, p2);
  9245. }
  9246. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  9247. }
  9248. *s = hsum_float_8(accumf);
  9249. #elif defined(__AVX__)
  9250. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9251. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9252. };
  9253. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9254. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9255. };
  9256. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  9257. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  9258. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  9259. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  9260. const __m128i idx_mul_0 = _mm_set_epi32(32, 64, 128, 256);
  9261. const __m128i idx_mul_1 = _mm_set_epi32(2, 4, 8, 16);
  9262. const __m128i idx_mask = _mm_set1_epi32(256);
  9263. typedef union {
  9264. __m128i vec[4];
  9265. uint32_t index[16];
  9266. } index_t;
  9267. index_t idx;
  9268. __m256 accumf = _mm256_setzero_ps();
  9269. for (int i = 0; i < nb; ++i) {
  9270. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9271. const uint8_t * restrict qs = x[i].qs;
  9272. const uint8_t * restrict qh = x[i].qh;
  9273. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  9274. const int8_t * restrict q8 = y[i].qs;
  9275. __m128i sumi1_0 = _mm_setzero_si128();
  9276. __m128i sumi1_1 = _mm_setzero_si128();
  9277. __m128i sumi2_0 = _mm_setzero_si128();
  9278. __m128i sumi2_1 = _mm_setzero_si128();
  9279. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9280. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9281. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9282. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9283. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9284. const __m128i qs_tmp = _mm_loadu_si128((const __m128i *)qs);
  9285. const __m128i idx_l_0 = _mm_cvtepu8_epi16(qs_tmp);
  9286. const __m128i idx_l_1 = _mm_cvtepu8_epi16(_mm_srli_si128(qs_tmp, 8)); qs += 16;
  9287. idx.vec[0] = _mm_set1_epi32(qh[ib32+0]);
  9288. idx.vec[1] = idx.vec[0];
  9289. idx.vec[2] = _mm_set1_epi32(qh[ib32+1]);
  9290. idx.vec[3] = idx.vec[2];
  9291. idx.vec[0] = _mm_and_si128(_mm_mullo_epi32(idx.vec[0], idx_mul_0), idx_mask);
  9292. idx.vec[1] = _mm_and_si128(_mm_mullo_epi32(idx.vec[1], idx_mul_1), idx_mask);
  9293. idx.vec[2] = _mm_and_si128(_mm_mullo_epi32(idx.vec[2], idx_mul_0), idx_mask);
  9294. idx.vec[3] = _mm_and_si128(_mm_mullo_epi32(idx.vec[3], idx_mul_1), idx_mask);
  9295. idx.vec[0] = _mm_or_si128(idx.vec[0], _mm_cvtepi16_epi32(idx_l_0));
  9296. idx.vec[1] = _mm_or_si128(idx.vec[1], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_0, 8)));
  9297. idx.vec[2] = _mm_or_si128(idx.vec[2], _mm_cvtepi16_epi32(idx_l_1));
  9298. idx.vec[3] = _mm_or_si128(idx.vec[3], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_1, 8)));
  9299. const __m128i q2_1_0 = _mm_set_epi32(iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]);
  9300. const __m128i q2_1_1 = _mm_set_epi32(iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]]);
  9301. const __m128i q2_2_0 = _mm_set_epi32(iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[9]], iq3s_grid[idx.index[8]]);
  9302. const __m128i q2_2_1 = _mm_set_epi32(iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]]);
  9303. __m128i aux128_0 = _mm_set1_epi32(signs[0] | (signs[1] << 16));
  9304. __m128i aux128_1 = aux128_0;
  9305. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  9306. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  9307. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  9308. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  9309. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  9310. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  9311. aux128_0 = _mm_set1_epi32(signs[2] | (signs[3] << 16));
  9312. aux128_1 = aux128_0;
  9313. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  9314. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  9315. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  9316. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  9317. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  9318. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  9319. signs += 4;
  9320. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  9321. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  9322. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  9323. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  9324. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  9325. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  9326. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  9327. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  9328. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  9329. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  9330. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  9331. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  9332. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  9333. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  9334. }
  9335. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  9336. }
  9337. *s = hsum_float_8(accumf);
  9338. #elif defined(__POWER9_VECTOR__)
  9339. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9340. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9341. };
  9342. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  9343. const vector int v0 = vec_splats((int32_t)0);
  9344. vector float vsumf0 = vec_splats(0.0f);
  9345. vector float vsumf1 = vec_splats(0.0f);
  9346. vector float vsumf2 = vec_splats(0.0f);
  9347. vector float vsumf3 = vec_splats(0.0f);
  9348. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  9349. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  9350. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  9351. for (int i = 0; i < nb; ++i) {
  9352. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  9353. vector float vyd = vec_splats(y[i].d);
  9354. vector float vd = vec_mul(vxd, vyd);
  9355. const uint8_t * restrict q3 = x[i].qs;
  9356. const uint8_t * restrict qh = x[i].qh;
  9357. const uint16_t * restrict signs = (const uint16_t *)(x[i].signs);
  9358. const uint8_t * restrict sc = x[i].scales;
  9359. const int8_t * restrict q8 = y[i].qs;
  9360. vector signed int vsumi0 = v0;
  9361. vector signed int vsumi1 = v0;
  9362. vector signed int vsumi2 = v0;
  9363. vector signed int vsumi3 = v0;
  9364. for (int j = 0; j < QK_K/32; j += 2) {
  9365. __builtin_prefetch(q3, 0, 1);
  9366. __builtin_prefetch(q8, 0, 1);
  9367. vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)],
  9368. iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]};
  9369. vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)],
  9370. iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]};
  9371. vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)],
  9372. iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]};
  9373. vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)],
  9374. iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]};
  9375. q3 += 16;
  9376. qh += 2;
  9377. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  9378. vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  9379. signs += 4;
  9380. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  9381. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  9382. vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0);
  9383. vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1);
  9384. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  9385. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  9386. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  9387. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  9388. vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0);
  9389. vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1);
  9390. vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2);
  9391. vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3);
  9392. vector signed char q8y0 = vec_xl( 0, q8);
  9393. vector signed char q8y1 = vec_xl(16, q8);
  9394. vector signed char q8y2 = vec_xl(32, q8);
  9395. vector signed char q8y3 = vec_xl(48, q8);
  9396. q8 += 64;
  9397. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  9398. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  9399. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  9400. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  9401. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  9402. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  9403. sc ++;
  9404. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  9405. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  9406. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  9407. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  9408. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  9409. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  9410. }
  9411. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9412. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9413. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9414. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9415. }
  9416. vsumf0 = vec_add(vsumf0, vsumf2);
  9417. vsumf1 = vec_add(vsumf1, vsumf3);
  9418. vsumf0 = vec_add(vsumf0, vsumf1);
  9419. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9420. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9421. *s = vec_extract(vsumf0, 0);
  9422. #elif defined(__loongarch_asx)
  9423. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  9424. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  9425. };
  9426. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9427. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  9428. };
  9429. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  9430. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  9431. __m256i idx_shift = lasx_set_w(1, 2, 3, 4, 5, 6, 7, 8);
  9432. const __m256i idx_mask = __lasx_xvreplgr2vr_w(256);
  9433. typedef union {
  9434. __m256i vec[2];
  9435. uint32_t index[16];
  9436. } index_t;
  9437. index_t idx;
  9438. __m256 accumf = (__m256)__lasx_xvldi(0);
  9439. for (int i = 0; i < nb; ++i) {
  9440. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9441. const uint8_t * restrict qs = x[i].qs;
  9442. const uint8_t * restrict qh = x[i].qh;
  9443. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  9444. const int8_t * restrict q8 = y[i].qs;
  9445. __m256i sumi1 = __lasx_xvldi(0);
  9446. __m256i sumi2 = __lasx_xvldi(0);
  9447. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9448. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9449. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9450. const __m256i idx_l = lasx_extu8_16(__lsx_vld(qs, 0)); qs += 16;
  9451. idx.vec[0] = __lasx_xvreplgr2vr_w(qh[ib32+0]);
  9452. idx.vec[1] = __lasx_xvreplgr2vr_w(qh[ib32+1]);
  9453. idx.vec[0] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[0], idx_shift), idx_mask);
  9454. idx.vec[1] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[1], idx_shift), idx_mask);
  9455. idx.vec[0] = __lasx_xvor_v(idx.vec[0], lasx_ext16_32(lasx_extracti128(idx_l, 0)));
  9456. idx.vec[1] = __lasx_xvor_v(idx.vec[1], lasx_ext16_32(lasx_extracti128(idx_l, 1)));
  9457. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  9458. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  9459. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  9460. const __m256i q2_1 = lasx_set_w(
  9461. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  9462. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  9463. );
  9464. const __m256i q2_2 = lasx_set_w(
  9465. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  9466. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  9467. );
  9468. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | (signs[1] << 16));
  9469. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  9470. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  9471. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  9472. aux256 = __lasx_xvreplgr2vr_w(signs[2] | (signs[3] << 16));
  9473. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  9474. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  9475. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  9476. signs += 4;
  9477. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  9478. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  9479. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  9480. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  9481. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  9482. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  9483. sumi1 = __lasx_xvadd_w(sumi1, p1);
  9484. sumi2 = __lasx_xvadd_w(sumi2, p2);
  9485. }
  9486. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  9487. }
  9488. *s = hsum_float_8(accumf);
  9489. #else
  9490. float sumf = 0.f;
  9491. for (int i = 0; i < nb; ++i) {
  9492. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  9493. const uint8_t * restrict qs = x[i].qs;
  9494. const uint8_t * restrict qh = x[i].qh;
  9495. const uint8_t * restrict signs = x[i].signs;
  9496. const int8_t * restrict q8 = y[i].qs;
  9497. int32_t bsum = 0;
  9498. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  9499. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  9500. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  9501. int32_t sumi = 0;
  9502. for (int l = 0; l < 4; ++l) {
  9503. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  9504. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  9505. for (int j = 0; j < 4; ++j) {
  9506. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  9507. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  9508. }
  9509. q8 += 8;
  9510. }
  9511. qs += 8;
  9512. signs += 4;
  9513. bsum += sumi * ls1;
  9514. sumi = 0;
  9515. for (int l = 0; l < 4; ++l) {
  9516. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  9517. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  9518. for (int j = 0; j < 4; ++j) {
  9519. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  9520. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  9521. }
  9522. q8 += 8;
  9523. }
  9524. qs += 8;
  9525. signs += 4;
  9526. bsum += sumi * ls2;
  9527. }
  9528. sumf += d * bsum;
  9529. }
  9530. *s = sumf;
  9531. #endif
  9532. }
  9533. #if defined(__AVX2__)
  9534. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  9535. const __m256i ax = _mm256_sign_epi8(x, x);
  9536. const __m256i sy = _mm256_sign_epi8(y, x);
  9537. return _mm256_maddubs_epi16(ax, sy);
  9538. }
  9539. #elif defined(__loongarch_asx)
  9540. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  9541. const __m256i ax = __lasx_xvsigncov_b(x, x);
  9542. const __m256i sy = __lasx_xvsigncov_b(x, y);
  9543. __m256i tmp1, tmp2, tmp3;
  9544. tmp1 = __lasx_xvmulwev_h_bu_b(ax, sy);
  9545. tmp2 = __lasx_xvmulwod_h_bu_b(ax, sy);
  9546. tmp3 = __lasx_xvadd_h(tmp1, tmp2);
  9547. return __lasx_xvsat_h(tmp3, 15);
  9548. }
  9549. #endif
  9550. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9551. assert(n % QK_K == 0);
  9552. assert(nrc == 1);
  9553. UNUSED(nrc);
  9554. UNUSED(bx);
  9555. UNUSED(by);
  9556. UNUSED(bs);
  9557. const block_iq1_s * restrict x = vx;
  9558. const block_q8_K * restrict y = vy;
  9559. const int nb = n / QK_K;
  9560. #if defined __ARM_NEON
  9561. ggml_int8x16x4_t q1b;
  9562. ggml_int8x16x4_t q8b;
  9563. float sumf = 0;
  9564. for (int i = 0; i < nb; ++i) {
  9565. const int8_t * q8 = y[i].qs;
  9566. const uint8_t * qs = x[i].qs;
  9567. const uint16_t * qh = x[i].qh;
  9568. int sumi1 = 0, sumi2 = 0, sumi3 = 0;
  9569. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9570. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
  9571. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
  9572. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
  9573. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
  9574. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
  9575. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
  9576. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
  9577. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
  9578. qs += 8;
  9579. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9580. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
  9581. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
  9582. const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9583. const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9584. sumi1 += vaddvq_s32(p1) * ls1;
  9585. sumi2 += vaddvq_s32(p2) * ls2;
  9586. sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
  9587. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
  9588. }
  9589. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
  9590. }
  9591. *s = sumf;
  9592. #elif defined __AVX2__
  9593. __m256 accum = _mm256_setzero_ps();
  9594. float accum1 = 0;
  9595. for (int i = 0; i < nb; ++i) {
  9596. const int8_t * q8 = y[i].qs;
  9597. const uint8_t * qs = x[i].qs;
  9598. const uint16_t * qh = x[i].qh;
  9599. __m256i sumi = _mm256_setzero_si256();
  9600. int sumi1 = 0;
  9601. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9602. const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
  9603. iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  9604. const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
  9605. iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  9606. qs += 8;
  9607. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9608. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9609. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9610. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9611. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9612. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9613. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
  9614. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
  9615. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
  9616. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  9617. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  9618. }
  9619. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  9620. accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
  9621. accum1 += d * sumi1;
  9622. }
  9623. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  9624. #elif defined __AVX__
  9625. __m256 accum = _mm256_setzero_ps();
  9626. float accum1 = 0;
  9627. for (int i = 0; i < nb; ++i) {
  9628. const int8_t * q8 = y[i].qs;
  9629. const uint8_t * qs = x[i].qs;
  9630. const uint16_t * qh = x[i].qh;
  9631. __m128i sumi1_0 = _mm_setzero_si128();
  9632. __m128i sumi1_1 = _mm_setzero_si128();
  9633. int sumi1 = 0;
  9634. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9635. const __m128i q1b_1_0 = _mm_set_epi64x(iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  9636. const __m128i q1b_1_1 = _mm_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)]);
  9637. const __m128i q1b_2_0 = _mm_set_epi64x(iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  9638. const __m128i q1b_2_1 = _mm_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)]);
  9639. qs += 8;
  9640. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9641. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9642. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9643. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9644. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  9645. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  9646. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  9647. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  9648. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9649. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9650. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(ls1));
  9651. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(ls1));
  9652. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(ls2));
  9653. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(ls2));
  9654. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  9655. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  9656. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  9657. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  9658. }
  9659. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  9660. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum);
  9661. accum1 += d * sumi1;
  9662. }
  9663. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  9664. #elif defined(__POWER9_VECTOR__)
  9665. const vector unsigned char v0 = vec_splats((unsigned char)0x0);
  9666. const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
  9667. vector float vsumf0 = vec_splats(0.0f);
  9668. vector float vsumf1 = vec_splats(0.0f);
  9669. vector float vsumf2 = vec_splats(0.0f);
  9670. vector float vsumf3 = vec_splats(0.0f);
  9671. for (int i = 0; i < nb; ++i) {
  9672. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  9673. vector float vyd = vec_splats(y[i].d);
  9674. vector float vd = vec_mul(vxd, vyd);
  9675. vector signed int vsumi0 = vec_splats((int32_t)0);
  9676. vector signed int vsumi1 = vec_splats((int32_t)0);
  9677. vector signed int vsumi2 = vec_splats((int32_t)0);
  9678. vector signed int vsumi3 = vec_splats((int32_t)0);
  9679. vector signed int vsumi8 = vec_splats((int32_t)0);
  9680. const uint8_t * restrict q1 = x[i].qs;
  9681. const uint16_t * restrict qh = x[i].qh;
  9682. const int8_t * restrict q8 = y[i].qs;
  9683. const int16_t * restrict qs = y[i].bsums;
  9684. for (int j = 0; j < QK_K/32; j += 2) {
  9685. __builtin_prefetch(q1, 0, 1);
  9686. __builtin_prefetch(qh, 0, 1);
  9687. __builtin_prefetch(q8, 0, 1);
  9688. vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))};
  9689. vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))};
  9690. vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))};
  9691. vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))};
  9692. q1 += 8;
  9693. vector signed char q1x0 = (vector signed char)aux64x2_0;
  9694. vector signed char q1x1 = (vector signed char)aux64x2_1;
  9695. vector signed char q1x2 = (vector signed char)aux64x2_2;
  9696. vector signed char q1x3 = (vector signed char)aux64x2_3;
  9697. vector signed char q8y0 = vec_xl( 0, q8);
  9698. vector signed char q8y1 = vec_xl(16, q8);
  9699. vector signed char q8y2 = vec_xl(32, q8);
  9700. vector signed char q8y3 = vec_xl(48, q8);
  9701. q8 += 64;
  9702. vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0));
  9703. vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1));
  9704. vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2));
  9705. vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3));
  9706. const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7);
  9707. const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7);
  9708. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  9709. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  9710. vector signed short vscales = vec_sld(vscales23, vscales01, 8);
  9711. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  9712. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  9713. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  9714. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  9715. vector signed short q8ysums = vec_xl_len(qs, 8);
  9716. qs += 4;
  9717. q8ysums = vec_mergeh(q8ysums, (vector signed short)v0);
  9718. vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8);
  9719. qh += 2;
  9720. vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0);
  9721. vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel);
  9722. vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8);
  9723. }
  9724. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9725. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9726. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9727. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9728. vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0);
  9729. }
  9730. vsumf0 = vec_add(vsumf0, vsumf2);
  9731. vsumf1 = vec_add(vsumf1, vsumf3);
  9732. vsumf0 = vec_add(vsumf0, vsumf1);
  9733. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9734. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9735. *s = vec_extract(vsumf0, 0);
  9736. #elif defined(__loongarch_asx)
  9737. __m256 accum = (__m256)__lasx_xvldi(0);
  9738. float accum1 = 0;
  9739. for (int i = 0; i < nb; ++i) {
  9740. const int8_t * q8 = y[i].qs;
  9741. const uint8_t * qs = x[i].qs;
  9742. const uint16_t * qh = x[i].qh;
  9743. __m256i sumi = __lasx_xvldi(0);
  9744. int sumi1 = 0;
  9745. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9746. __m256i q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)], 0);
  9747. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], 1);
  9748. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], 2);
  9749. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], 3);
  9750. __m256i q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)], 0);
  9751. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], 1);
  9752. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], 2);
  9753. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], 3);
  9754. qs += 8;
  9755. const __m256i q8b_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  9756. const __m256i q8b_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  9757. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9758. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9759. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9760. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9761. __m256i tmp1, tmp5, tmp6;
  9762. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  9763. tmp5 = __lasx_xvmulwev_w_h(dot1, tmp1);
  9764. tmp6 = __lasx_xvmulwod_w_h(dot1, tmp1);
  9765. const __m256i p1 = __lasx_xvadd_w(tmp5, tmp6);
  9766. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  9767. tmp5 = __lasx_xvmulwev_w_h(dot2, tmp1);
  9768. tmp6 = __lasx_xvmulwod_w_h(dot2, tmp1);
  9769. const __m256i p2 = __lasx_xvadd_w(tmp5, tmp6);
  9770. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p1, p2));
  9771. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  9772. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  9773. }
  9774. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  9775. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum);
  9776. accum1 += d * sumi1;
  9777. }
  9778. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  9779. #else
  9780. float sumf = 0;
  9781. for (int i = 0; i < nb; i++) {
  9782. const int8_t * q8 = y[i].qs;
  9783. const uint8_t * qs = x[i].qs;
  9784. const uint16_t * qh = x[i].qh;
  9785. int sumi = 0, sumi1 = 0;
  9786. for (int ib = 0; ib < QK_K/32; ++ib) {
  9787. const int ls = 2*((qh[ib] >> 12) & 7) + 1;
  9788. const int delta = qh[ib] & 0x8000 ? -1 : 1;
  9789. int lsum = 0;
  9790. for (int l = 0; l < 4; ++l) {
  9791. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  9792. for (int j = 0; j < 8; ++j) {
  9793. lsum += q8[j] * grid[j];
  9794. }
  9795. q8 += 8;
  9796. }
  9797. sumi += ls * lsum;
  9798. sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
  9799. qs += 4;
  9800. }
  9801. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
  9802. }
  9803. *s = sumf;
  9804. #endif
  9805. }
  9806. void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9807. assert(n % QK_K == 0);
  9808. assert(nrc == 1);
  9809. UNUSED(nrc);
  9810. UNUSED(bx);
  9811. UNUSED(by);
  9812. UNUSED(bs);
  9813. const block_iq1_m * restrict x = vx;
  9814. const block_q8_K * restrict y = vy;
  9815. const int nb = n / QK_K;
  9816. iq1m_scale_t scale;
  9817. #if defined __ARM_NEON
  9818. const int32x4_t mask = vdupq_n_s32(0x7);
  9819. const int32x4_t mone = vdupq_n_s32(1);
  9820. const int32x4_t mzero = vdupq_n_s32(0);
  9821. ggml_int8x16x4_t deltas;
  9822. deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
  9823. deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
  9824. deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
  9825. deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
  9826. ggml_int8x16x4_t q1b;
  9827. ggml_int8x16x4_t q8b;
  9828. uint32_t aux32;
  9829. const uint8_t * aux8 = (const uint8_t *)&aux32;
  9830. float sumf = 0;
  9831. for (int i = 0; i < nb; ++i) {
  9832. const int8_t * q8 = y[i].qs;
  9833. const uint8_t * qs = x[i].qs;
  9834. const uint8_t * qh = x[i].qh;
  9835. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9836. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9837. int32x4_t sumi1 = mzero;
  9838. int32x4_t sumi2 = mzero;
  9839. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9840. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
  9841. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
  9842. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
  9843. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
  9844. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
  9845. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
  9846. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
  9847. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
  9848. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9849. const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
  9850. const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
  9851. const int32x4_t p12 = vpaddq_s32(p1, p2);
  9852. const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
  9853. aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
  9854. const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
  9855. const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
  9856. const int32x4_t p34 = vpaddq_s32(p3, p4);
  9857. int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
  9858. scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
  9859. sumi1 = vmlaq_s32(sumi1, scales_4, p12);
  9860. sumi2 = vmlaq_s32(sumi2, scales_4, p34);
  9861. qs += 8; qh += 4;
  9862. }
  9863. sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  9864. }
  9865. *s = sumf;
  9866. #elif defined __AVX2__
  9867. const __m256i mask = _mm256_set1_epi16(0x7);
  9868. const __m256i mone = _mm256_set1_epi16(1);
  9869. __m256 accum1 = _mm256_setzero_ps();
  9870. __m256 accum2 = _mm256_setzero_ps();
  9871. for (int i = 0; i < nb; ++i) {
  9872. const int8_t * q8 = y[i].qs;
  9873. const uint8_t * qs = x[i].qs;
  9874. const uint8_t * qh = x[i].qh;
  9875. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9876. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9877. __m256i sumi1 = _mm256_setzero_si256();
  9878. __m256i sumi2 = _mm256_setzero_si256();
  9879. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9880. const __m256i q1b_1 = _mm256_set_epi64x(
  9881. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
  9882. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
  9883. );
  9884. const __m256i q1b_2 = _mm256_set_epi64x(
  9885. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
  9886. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
  9887. );
  9888. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9889. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9890. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9891. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9892. const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9893. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  9894. qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9895. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9896. const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9897. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  9898. qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9899. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9900. const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
  9901. const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
  9902. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
  9903. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
  9904. scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
  9905. scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
  9906. const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
  9907. const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
  9908. const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
  9909. const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
  9910. sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
  9911. sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
  9912. qs += 8; qh += 4;
  9913. }
  9914. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  9915. accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
  9916. accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
  9917. }
  9918. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  9919. #elif defined __AVX__
  9920. const __m128i mask = _mm_set1_epi16(0x7);
  9921. const __m128i mone = _mm_set1_epi16(1);
  9922. __m256 accum1 = _mm256_setzero_ps();
  9923. __m256 accum2 = _mm256_setzero_ps();
  9924. for (int i = 0; i < nb; ++i) {
  9925. const int8_t * q8 = y[i].qs;
  9926. const uint8_t * qs = x[i].qs;
  9927. const uint8_t * qh = x[i].qh;
  9928. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9929. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9930. __m128i sumi1_0 = _mm_setzero_si128();
  9931. __m128i sumi1_1 = _mm_setzero_si128();
  9932. __m128i sumi2_0 = _mm_setzero_si128();
  9933. __m128i sumi2_1 = _mm_setzero_si128();
  9934. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9935. const __m128i q1b_1_0 = _mm_set_epi64x(
  9936. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]);
  9937. const __m128i q1b_1_1 = _mm_set_epi64x(
  9938. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)]);
  9939. const __m128i q1b_2_0 = _mm_set_epi64x(
  9940. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]);
  9941. const __m128i q1b_2_1 = _mm_set_epi64x(
  9942. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)]);
  9943. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9944. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9945. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9946. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9947. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  9948. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  9949. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  9950. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  9951. const __m128i delta1_0 = _mm_set_epi64x(qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9952. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9953. const __m128i delta1_1 = _mm_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9954. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9955. const __m128i delta2_0 = _mm_set_epi64x(qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9956. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9957. const __m128i delta2_1 = _mm_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9958. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9959. const __m128i dot3_0 = mul_add_epi8_sse(delta1_0, q8b_1_0);
  9960. const __m128i dot3_1 = mul_add_epi8_sse(delta1_1, q8b_1_1);
  9961. const __m128i dot4_0 = mul_add_epi8_sse(delta2_0, q8b_2_0);
  9962. const __m128i dot4_1 = mul_add_epi8_sse(delta2_1, q8b_2_1);
  9963. __m128i scale1_0 = _mm_set1_epi16(sc[ib/2] >> 0);
  9964. __m128i scale1_1 = _mm_set1_epi16(sc[ib/2] >> 3);
  9965. __m128i scale2_0 = _mm_set1_epi16(sc[ib/2] >> 6);
  9966. __m128i scale2_1 = _mm_set1_epi16(sc[ib/2] >> 9);
  9967. scale1_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_0, mask), 1), mone);
  9968. scale1_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_1, mask), 1), mone);
  9969. scale2_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_0, mask), 1), mone);
  9970. scale2_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_1, mask), 1), mone);
  9971. const __m128i p1_0 = _mm_madd_epi16(dot1_0, scale1_0);
  9972. const __m128i p1_1 = _mm_madd_epi16(dot1_1, scale1_1);
  9973. const __m128i p2_0 = _mm_madd_epi16(dot2_0, scale2_0);
  9974. const __m128i p2_1 = _mm_madd_epi16(dot2_1, scale2_1);
  9975. const __m128i p3_0 = _mm_madd_epi16(dot3_0, scale1_0);
  9976. const __m128i p3_1 = _mm_madd_epi16(dot3_1, scale1_1);
  9977. const __m128i p4_0 = _mm_madd_epi16(dot4_0, scale2_0);
  9978. const __m128i p4_1 = _mm_madd_epi16(dot4_1, scale2_1);
  9979. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  9980. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  9981. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_add_epi32(p3_0, p4_0));
  9982. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_add_epi32(p3_1, p4_1));
  9983. qs += 8; qh += 4;
  9984. }
  9985. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  9986. accum1 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum1);
  9987. accum2 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi2_1, sumi2_0))), accum2);
  9988. }
  9989. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  9990. #else
  9991. int sum1[2], sum2[2], delta[4];
  9992. float sumf = 0;
  9993. for (int i = 0; i < nb; i++) {
  9994. const int8_t * q8 = y[i].qs;
  9995. const uint8_t * qs = x[i].qs;
  9996. const uint8_t * qh = x[i].qh;
  9997. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9998. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9999. int sumi1 = 0, sumi2 = 0;
  10000. for (int ib = 0; ib < QK_K/32; ++ib) {
  10001. delta[0] = qh[0] & 0x08 ? -1 : 1;
  10002. delta[1] = qh[0] & 0x80 ? -1 : 1;
  10003. delta[2] = qh[1] & 0x08 ? -1 : 1;
  10004. delta[3] = qh[1] & 0x80 ? -1 : 1;
  10005. sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
  10006. for (int l = 0; l < 4; ++l) {
  10007. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
  10008. int lsum1 = 0, lsum2 = 0;
  10009. for (int j = 0; j < 8; ++j) {
  10010. lsum1 += q8[j] * grid[j];
  10011. lsum2 += q8[j];
  10012. }
  10013. q8 += 8;
  10014. sum1[l/2] += lsum1;
  10015. sum2[l/2] += lsum2*delta[l];
  10016. }
  10017. const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
  10018. const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
  10019. sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
  10020. sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
  10021. qs += 4;
  10022. qh += 2;
  10023. }
  10024. sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  10025. }
  10026. *s = sumf;
  10027. #endif
  10028. }
  10029. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  10030. assert(nrc == 1);
  10031. UNUSED(nrc);
  10032. UNUSED(bx);
  10033. UNUSED(by);
  10034. UNUSED(bs);
  10035. assert(n % QK4_NL == 0);
  10036. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  10037. const block_iq4_nl * restrict x = vx;
  10038. const block_q8_0 * restrict y = vy;
  10039. const int nb = n / QK4_NL;
  10040. int ib = 0;
  10041. float sumf = 0;
  10042. #if defined __ARM_NEON
  10043. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  10044. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  10045. uint8x16x2_t q4bits;
  10046. int8x16x4_t q4b;
  10047. int8x16x4_t q8b;
  10048. int32x4_t prod_1, prod_2;
  10049. for (; ib + 1 < nb; ib += 2) {
  10050. q4bits.val[0] = vld1q_u8(x[ib + 0].qs);
  10051. q4bits.val[1] = vld1q_u8(x[ib + 1].qs);
  10052. q8b.val[0] = vld1q_s8(y[ib + 0].qs);
  10053. q8b.val[1] = vld1q_s8(y[ib + 0].qs + 16);
  10054. q8b.val[2] = vld1q_s8(y[ib + 1].qs);
  10055. q8b.val[3] = vld1q_s8(y[ib + 1].qs + 16);
  10056. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  10057. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  10058. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  10059. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  10060. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  10061. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  10062. sumf +=
  10063. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib + 0].d) * vaddvq_s32(prod_1) +
  10064. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) * vaddvq_s32(prod_2);
  10065. }
  10066. #elif defined __AVX2__
  10067. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  10068. const __m128i m4b = _mm_set1_epi8(0x0f);
  10069. const __m256i mone = _mm256_set1_epi16(1);
  10070. __m256 accum1 = _mm256_setzero_ps();
  10071. __m256 accum2 = _mm256_setzero_ps();
  10072. for (; ib + 1 < nb; ib += 2) {
  10073. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
  10074. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
  10075. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[ib + 0].qs);
  10076. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[ib + 1].qs);
  10077. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  10078. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  10079. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  10080. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  10081. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  10082. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  10083. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  10084. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  10085. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  10086. _mm256_cvtepi32_ps(p_1), accum1);
  10087. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  10088. _mm256_cvtepi32_ps(p_2), accum2);
  10089. }
  10090. sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
  10091. #elif defined __AVX__
  10092. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  10093. const __m128i m4b = _mm_set1_epi8(0x0f);
  10094. const __m128i mone = _mm_set1_epi16(1);
  10095. __m256 accum1 = _mm256_setzero_ps();
  10096. __m256 accum2 = _mm256_setzero_ps();
  10097. for (; ib + 1 < nb; ib += 2) {
  10098. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
  10099. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  10100. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
  10101. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
  10102. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  10103. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  10104. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  10105. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  10106. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  10107. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  10108. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  10109. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  10110. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  10111. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  10112. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
  10113. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
  10114. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
  10115. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
  10116. accum1 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  10117. _mm256_cvtepi32_ps(MM256_SET_M128I(p_1_1, p_1_0))), accum1);
  10118. accum2 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  10119. _mm256_cvtepi32_ps(MM256_SET_M128I(p_2_1, p_2_0))), accum2);
  10120. }
  10121. sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
  10122. #elif defined(__POWER9_VECTOR__)
  10123. const vector signed char lowMask = vec_splats((signed char)0xF);
  10124. const vector signed int v0 = vec_splats((int32_t)0);
  10125. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  10126. vector float vsumf0 = vec_splats(0.0f);
  10127. vector float vsumf1 = vec_splats(0.0f);
  10128. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  10129. #pragma GCC unroll 4
  10130. for (; ib < nb; ++ib) {
  10131. __builtin_prefetch(x[ib].qs, 0, 1);
  10132. __builtin_prefetch(y[ib].qs, 0, 1);
  10133. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  10134. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  10135. vector float vd = vec_mul(vxd, vyd);
  10136. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  10137. vector signed char q4x0 = vec_and(qxs, lowMask);
  10138. vector signed char q4x1 = vec_sr(qxs, v4);
  10139. q4x0 = vec_perm(values, values, (vector unsigned char)q4x0);
  10140. q4x1 = vec_perm(values, values, (vector unsigned char)q4x1);
  10141. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  10142. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  10143. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  10144. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  10145. vector signed int vsumi0 = v0;
  10146. vector signed int vsumi1 = v0;
  10147. vsumi0 = vec_sum4s(qv0, vsumi0);
  10148. vsumi1 = vec_sum4s(qv1, vsumi1);
  10149. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  10150. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  10151. }
  10152. vsumf0 = vec_add(vsumf0, vsumf1);
  10153. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  10154. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  10155. sumf = vec_extract(vsumf0, 0);
  10156. #elif defined (__loongarch_asx)
  10157. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  10158. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  10159. const __m256i mone = __lasx_xvreplgr2vr_h(1);
  10160. __m256 accum1 = (__m256)__lasx_xvldi(0);
  10161. __m256 accum2 = (__m256)__lasx_xvldi(0);
  10162. for (; ib + 1 < nb; ib += 2) {
  10163. const __m128i q4bits_1 = __lsx_vld((const __m128i*)x[ib + 0].qs, 0);
  10164. const __m128i q4bits_2 = __lsx_vld((const __m128i*)x[ib + 1].qs, 0);
  10165. const __m256i q8b_1 = __lasx_xvld((const __m256i *)y[ib + 0].qs, 0);
  10166. const __m256i q8b_2 = __lasx_xvld((const __m256i *)y[ib + 1].qs, 0);
  10167. const __m256i q4b_1 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b)),
  10168. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_1, m4b)));
  10169. const __m256i q4b_2 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b)),
  10170. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_2, m4b)));
  10171. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  10172. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  10173. const __m256i p_1 = lasx_madd_h(p16_1, mone);
  10174. const __m256i p_2 = lasx_madd_h(p16_2, mone);
  10175. accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  10176. __lasx_xvffint_s_w(p_1), accum1);
  10177. accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  10178. __lasx_xvffint_s_w(p_2), accum2);
  10179. }
  10180. sumf = hsum_float_8(__lasx_xvfadd_s(accum1, accum2));
  10181. #endif
  10182. for (; ib < nb; ++ib) {
  10183. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  10184. int sumi1 = 0, sumi2 = 0;
  10185. for (int j = 0; j < QK4_NL/2; ++j) {
  10186. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  10187. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  10188. }
  10189. sumf += d * (sumi1 + sumi2);
  10190. }
  10191. *s = sumf;
  10192. }
  10193. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  10194. assert(nrc == 1);
  10195. UNUSED(nrc);
  10196. UNUSED(bx);
  10197. UNUSED(by);
  10198. UNUSED(bs);
  10199. assert(n % QK_K == 0);
  10200. const block_iq4_xs * restrict x = vx;
  10201. const block_q8_K * restrict y = vy;
  10202. const int nb = n / QK_K;
  10203. #if defined __ARM_NEON
  10204. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  10205. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  10206. ggml_uint8x16x2_t q4bits;
  10207. ggml_int8x16x4_t q4b;
  10208. ggml_int8x16x4_t q8b;
  10209. int32x4_t prod_1, prod_2;
  10210. float sumf = 0;
  10211. for (int ibl = 0; ibl < nb; ++ibl) {
  10212. const int8_t * q8 = y[ibl].qs;
  10213. const uint8_t * q4 = x[ibl].qs;
  10214. uint16_t h = x[ibl].scales_h;
  10215. int sumi1 = 0, sumi2 = 0;
  10216. for (int ib = 0; ib < QK_K/64; ++ib) {
  10217. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  10218. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  10219. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  10220. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  10221. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  10222. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  10223. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  10224. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  10225. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  10226. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  10227. h >>= 4;
  10228. sumi1 += vaddvq_s32(prod_1) * ls1;
  10229. sumi2 += vaddvq_s32(prod_2) * ls2;
  10230. }
  10231. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  10232. }
  10233. *s = sumf;
  10234. #elif defined __AVX2__
  10235. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  10236. const __m128i m4b = _mm_set1_epi8(0x0f);
  10237. __m256 accum = _mm256_setzero_ps();
  10238. for (int ibl = 0; ibl < nb; ++ibl) {
  10239. const uint8_t * qs = x[ibl].qs;
  10240. const int8_t * q8 = y[ibl].qs;
  10241. uint16_t sh = x[ibl].scales_h;
  10242. __m256i sumi1 = _mm256_setzero_si256();
  10243. __m256i sumi2 = _mm256_setzero_si256();
  10244. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10245. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  10246. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  10247. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  10248. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  10249. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  10250. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  10251. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  10252. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  10253. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  10254. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  10255. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  10256. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  10257. sh >>= 4;
  10258. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  10259. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  10260. sumi1 = _mm256_add_epi32(p_1, sumi1);
  10261. sumi2 = _mm256_add_epi32(p_2, sumi2);
  10262. }
  10263. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  10264. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  10265. }
  10266. *s = hsum_float_8(accum);
  10267. #elif defined __AVX__
  10268. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  10269. const __m128i m4b = _mm_set1_epi8(0x0f);
  10270. __m256 accum = _mm256_setzero_ps();
  10271. for (int ibl = 0; ibl < nb; ++ibl) {
  10272. const uint8_t * qs = x[ibl].qs;
  10273. const int8_t * q8 = y[ibl].qs;
  10274. uint16_t sh = x[ibl].scales_h;
  10275. __m128i sumi1_0 = _mm_setzero_si128();
  10276. __m128i sumi1_1 = _mm_setzero_si128();
  10277. __m128i sumi2_0 = _mm_setzero_si128();
  10278. __m128i sumi2_1 = _mm_setzero_si128();
  10279. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10280. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  10281. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  10282. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  10283. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  10284. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  10285. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  10286. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  10287. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  10288. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  10289. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  10290. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  10291. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  10292. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  10293. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  10294. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  10295. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  10296. sh >>= 4;
  10297. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, _mm_set1_epi16(ls1));
  10298. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, _mm_set1_epi16(ls1));
  10299. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, _mm_set1_epi16(ls2));
  10300. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, _mm_set1_epi16(ls2));
  10301. sumi1_0 = _mm_add_epi32(p_1_0, sumi1_0);
  10302. sumi1_1 = _mm_add_epi32(p_1_1, sumi1_1);
  10303. sumi2_0 = _mm_add_epi32(p_2_0, sumi2_0);
  10304. sumi2_1 = _mm_add_epi32(p_2_1, sumi2_1);
  10305. }
  10306. __m128i sumi12_0 = _mm_add_epi32(sumi1_0, sumi2_0);
  10307. __m128i sumi12_1 = _mm_add_epi32(sumi1_1, sumi2_1);
  10308. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  10309. _mm256_cvtepi32_ps(MM256_SET_M128I(sumi12_1, sumi12_0))), accum);
  10310. }
  10311. *s = hsum_float_8(accum);
  10312. #elif defined(__POWER9_VECTOR__)
  10313. const vector signed char lowMask = vec_splats((signed char)0xF);
  10314. const vector int v0 = vec_splats((int32_t)0);
  10315. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  10316. vector float vsumf0 = vec_splats(0.0f);
  10317. vector float vsumf1 = vec_splats(0.0f);
  10318. vector float vsumf2 = vec_splats(0.0f);
  10319. vector float vsumf3 = vec_splats(0.0f);
  10320. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  10321. for (int ibl = 0; ibl < nb; ++ibl) {
  10322. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d));
  10323. vector float vyd = vec_splats(y[ibl].d);
  10324. vector float vd = vec_mul(vxd, vyd);
  10325. vector signed int vsumi0 = v0;
  10326. vector signed int vsumi1 = v0;
  10327. vector signed int vsumi2 = v0;
  10328. vector signed int vsumi3 = v0;
  10329. uint16_t h = x[ibl].scales_h;
  10330. const uint8_t * restrict q4 = x[ibl].qs;
  10331. const uint8_t * restrict sc = x[ibl].scales_l;
  10332. const int8_t * restrict q8 = y[ibl].qs;
  10333. for (int ib = 0; ib < QK_K/64; ib ++ ) {
  10334. __builtin_prefetch(q4, 0, 1);
  10335. __builtin_prefetch(q8, 0, 1);
  10336. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  10337. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  10338. q4 += 32;
  10339. vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask);
  10340. vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4);
  10341. vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask);
  10342. vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4);
  10343. q4x00 = vec_perm(values, values, (vector unsigned char)q4x00);
  10344. q4x01 = vec_perm(values, values, (vector unsigned char)q4x01);
  10345. q4x10 = vec_perm(values, values, (vector unsigned char)q4x10);
  10346. q4x11 = vec_perm(values, values, (vector unsigned char)q4x11);
  10347. vector signed char q8y0 = vec_xl( 0, q8);
  10348. vector signed char q8y1 = vec_xl(16, q8);
  10349. vector signed char q8y2 = vec_xl(32, q8);
  10350. vector signed char q8y3 = vec_xl(48, q8);
  10351. q8 += 64;
  10352. vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0));
  10353. vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1));
  10354. vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2));
  10355. vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3));
  10356. const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32);
  10357. const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32);
  10358. h >>= 4;
  10359. sc ++;
  10360. vector signed short vscales01 = vec_splats((int16_t)ls0);
  10361. vector signed short vscales23 = vec_splats((int16_t)ls1);
  10362. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  10363. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  10364. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  10365. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  10366. }
  10367. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  10368. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  10369. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  10370. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  10371. }
  10372. vsumf0 = vec_add(vsumf0, vsumf2);
  10373. vsumf1 = vec_add(vsumf1, vsumf3);
  10374. vsumf0 = vec_add(vsumf0, vsumf1);
  10375. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  10376. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  10377. *s = vec_extract(vsumf0, 0);
  10378. #elif defined(__loongarch_asx)
  10379. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  10380. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  10381. __m256 accum = (__m256)__lasx_xvldi(0);
  10382. __m256i tmp1;
  10383. __m128i tmp0, tmp2, tmp3, tmp4, mask_8f, mask;
  10384. mask_8f = __lsx_vreplgr2vr_b(0x8f);
  10385. for (int ibl = 0; ibl < nb; ++ibl) {
  10386. const uint8_t * qs = x[ibl].qs;
  10387. const int8_t * q8 = y[ibl].qs;
  10388. uint16_t sh = x[ibl].scales_h;
  10389. __m256i sumi1 = __lasx_xvldi(0);
  10390. __m256i sumi2 = __lasx_xvldi(0);
  10391. __m128i zero = __lsx_vldi(0);
  10392. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10393. const __m128i q4bits_1 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  10394. const __m128i q4bits_2 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  10395. const __m256i q8b_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  10396. const __m256i q8b_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  10397. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b), mask_8f);
  10398. tmp0 = __lsx_vori_b(tmp2, 0x10);
  10399. mask = __lsx_vsle_b(zero, tmp2);
  10400. tmp3 = __lsx_vand_v(tmp0, mask);
  10401. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  10402. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_1, m4b), mask_8f);
  10403. tmp0 = __lsx_vori_b(tmp2, 0x10);
  10404. mask = __lsx_vsle_b(zero, tmp2);
  10405. tmp4 = __lsx_vand_v(tmp0, mask);
  10406. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  10407. const __m256i q4b_1 = lasx_insertf128(tmp3, tmp4);
  10408. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b), mask_8f);
  10409. tmp0 = __lsx_vori_b(tmp2, 0x10);
  10410. mask = __lsx_vsle_b(zero, tmp2);
  10411. tmp3 = __lsx_vand_v(tmp0, mask);
  10412. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  10413. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_2, m4b), mask_8f);
  10414. tmp0 = __lsx_vori_b(tmp2, 0x10);
  10415. mask = __lsx_vsle_b(zero, tmp2);
  10416. tmp4 = __lsx_vand_v(tmp0, mask);
  10417. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  10418. const __m256i q4b_2 = lasx_insertf128(tmp3, tmp4);
  10419. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  10420. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  10421. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  10422. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  10423. sh >>= 4;
  10424. __m256i tmp5, tmp6;
  10425. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  10426. tmp5 = __lasx_xvmulwev_w_h(p16_1, tmp1);
  10427. tmp6 = __lasx_xvmulwod_w_h(p16_1, tmp1);
  10428. const __m256i p_1 = __lasx_xvadd_w(tmp5, tmp6);
  10429. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  10430. tmp5 = __lasx_xvmulwev_w_h(p16_2, tmp1);
  10431. tmp6 = __lasx_xvmulwod_w_h(p16_2, tmp1);
  10432. const __m256i p_2 = __lasx_xvadd_w(tmp5, tmp6);
  10433. sumi1 = __lasx_xvadd_w(p_1, sumi1);
  10434. sumi2 = __lasx_xvadd_w(p_2, sumi2);
  10435. }
  10436. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  10437. __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum);
  10438. }
  10439. *s = hsum_float_8(accum);
  10440. #else
  10441. float sumf = 0;
  10442. for (int ibl = 0; ibl < nb; ++ibl) {
  10443. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  10444. uint16_t h = x[ibl].scales_h;
  10445. const uint8_t * qs = x[ibl].qs;
  10446. const int8_t * q8 = y[ibl].qs;
  10447. for (int ib = 0; ib < QK_K/32; ib += 2) {
  10448. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  10449. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  10450. h >>= 4;
  10451. const float d1 = d4d8*(ls1 - 32);
  10452. const float d2 = d4d8*(ls2 - 32);
  10453. int sumi1 = 0, sumi2 = 0;
  10454. for (int j = 0; j < 16; ++j) {
  10455. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  10456. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  10457. }
  10458. sumf += d1 * (sumi1 + sumi2);
  10459. qs += 16;
  10460. q8 += 32;
  10461. sumi1 = sumi2 = 0;
  10462. for (int j = 0; j < 16; ++j) {
  10463. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  10464. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  10465. }
  10466. sumf += d2 * (sumi1 + sumi2);
  10467. qs += 16;
  10468. q8 += 32;
  10469. }
  10470. }
  10471. *s = sumf;
  10472. #endif
  10473. }
  10474. // ================================ IQ2 quantization =============================================
  10475. typedef struct {
  10476. uint64_t * grid;
  10477. int * map;
  10478. uint16_t * neighbours;
  10479. } iq2_entry_t;
  10480. static iq2_entry_t iq2_data[4] = {
  10481. {NULL, NULL, NULL},
  10482. {NULL, NULL, NULL},
  10483. {NULL, NULL, NULL},
  10484. {NULL, NULL, NULL},
  10485. };
  10486. static inline int iq2_data_index(enum ggml_type type) {
  10487. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  10488. return type == GGML_TYPE_IQ2_XXS ? 0 :
  10489. type == GGML_TYPE_IQ2_XS ? 1 :
  10490. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
  10491. }
  10492. static inline int iq2_grid_size(enum ggml_type type) {
  10493. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  10494. return type == GGML_TYPE_IQ2_XXS ? 256 :
  10495. type == GGML_TYPE_IQ2_XS ? 512 :
  10496. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
  10497. }
  10498. static int iq2_compare_func(const void * left, const void * right) {
  10499. const int * l = (const int *)left;
  10500. const int * r = (const int *)right;
  10501. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  10502. }
  10503. void iq2xs_init_impl(enum ggml_type type) {
  10504. const int gindex = iq2_data_index(type);
  10505. const int grid_size = iq2_grid_size(type);
  10506. if (iq2_data[gindex].grid) {
  10507. return;
  10508. }
  10509. static const uint16_t kgrid_2bit_256[256] = {
  10510. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  10511. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  10512. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  10513. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  10514. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  10515. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  10516. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  10517. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  10518. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  10519. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  10520. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  10521. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  10522. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  10523. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  10524. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  10525. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  10526. };
  10527. static const uint16_t kgrid_2bit_512[512] = {
  10528. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  10529. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  10530. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  10531. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  10532. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  10533. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  10534. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  10535. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  10536. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  10537. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  10538. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  10539. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  10540. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  10541. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  10542. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  10543. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  10544. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  10545. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  10546. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  10547. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  10548. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  10549. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  10550. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  10551. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  10552. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  10553. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  10554. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  10555. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  10556. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  10557. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  10558. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  10559. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  10560. };
  10561. static const uint16_t kgrid_1bit_2048[NGRID_IQ1S] = {
  10562. 0, 2, 5, 8, 10, 17, 21, 32, 34, 40, 42, 69, 81, 84, 86, 101,
  10563. 128, 130, 136, 138, 149, 160, 162, 168, 170, 260, 261, 273, 276, 278, 281, 282,
  10564. 293, 321, 326, 329, 338, 341, 346, 353, 356, 358, 360, 389, 401, 404, 406, 421,
  10565. 512, 514, 520, 522, 533, 544, 546, 552, 554, 581, 593, 601, 612, 617, 640, 642,
  10566. 648, 650, 657, 661, 665, 672, 674, 680, 682, 1041, 1044, 1046, 1061, 1089, 1097, 1109,
  10567. 1114, 1124, 1125, 1169, 1177, 1189, 1281, 1284, 1285, 1286, 1301, 1304, 1306, 1321, 1344, 1349,
  10568. 1354, 1360, 1361, 1364, 1365, 1366, 1369, 1376, 1378, 1381, 1384, 1386, 1409, 1425, 1429, 1432,
  10569. 1434, 1441, 1444, 1445, 1446, 1449, 1556, 1561, 1601, 1604, 1616, 1618, 1621, 1624, 1632, 1633,
  10570. 1638, 1641, 1669, 1681, 1684, 1689, 2048, 2050, 2056, 2058, 2069, 2080, 2082, 2088, 2090, 2117,
  10571. 2129, 2134, 2149, 2176, 2178, 2184, 2186, 2197, 2208, 2210, 2216, 2218, 2309, 2321, 2324, 2329,
  10572. 2340, 2341, 2369, 2384, 2385, 2389, 2401, 2404, 2409, 2449, 2452, 2454, 2457, 2469, 2560, 2562,
  10573. 2568, 2570, 2581, 2592, 2594, 2600, 2602, 2629, 2641, 2649, 2657, 2661, 2688, 2690, 2693, 2696,
  10574. 2698, 2709, 2720, 2722, 2728, 2730, 4112, 4113, 4116, 4121, 4132, 4133, 4161, 4164, 4176, 4181,
  10575. 4184, 4193, 4196, 4197, 4201, 4241, 4244, 4246, 4257, 4261, 4353, 4356, 4358, 4361, 4368, 4370,
  10576. 4373, 4376, 4385, 4388, 4393, 4421, 4426, 4432, 4433, 4434, 4436, 4437, 4438, 4441, 4448, 4453,
  10577. 4484, 4498, 4501, 4513, 4516, 4625, 4628, 4630, 4645, 4672, 4678, 4681, 4690, 4693, 4696, 4698,
  10578. 4708, 4710, 4741, 4753, 4756, 4758, 4773, 5121, 5126, 5129, 5140, 5141, 5144, 5145, 5153, 5158,
  10579. 5185, 5189, 5190, 5192, 5194, 5201, 5204, 5205, 5206, 5209, 5218, 5221, 5224, 5252, 5257, 5264,
  10580. 5268, 5269, 5272, 5273, 5274, 5281, 5284, 5285, 5289, 5378, 5381, 5386, 5393, 5396, 5397, 5398,
  10581. 5401, 5408, 5410, 5413, 5416, 5418, 5441, 5444, 5445, 5446, 5457, 5458, 5460, 5461, 5462, 5465,
  10582. 5466, 5473, 5476, 5477, 5478, 5481, 5504, 5506, 5508, 5509, 5512, 5514, 5520, 5521, 5524, 5525,
  10583. 5526, 5529, 5530, 5536, 5538, 5541, 5633, 5636, 5637, 5638, 5653, 5654, 5656, 5658, 5665, 5670,
  10584. 5696, 5698, 5700, 5701, 5704, 5706, 5713, 5717, 5718, 5720, 5721, 5729, 5732, 5733, 5736, 5737,
  10585. 5738, 5766, 5770, 5778, 5781, 5796, 5801, 6161, 6166, 6181, 6209, 6212, 6214, 6217, 6224, 6229,
  10586. 6232, 6234, 6240, 6241, 6244, 6246, 6249, 6277, 6289, 6292, 6309, 6416, 6418, 6421, 6426, 6433,
  10587. 6437, 6466, 6468, 6469, 6472, 6481, 6484, 6485, 6486, 6489, 6490, 6496, 6501, 6506, 6537, 6545,
  10588. 6546, 6549, 6552, 6561, 6566, 6569, 6665, 6678, 6692, 6694, 6724, 6726, 6729, 6736, 6738, 6741,
  10589. 6744, 6753, 6758, 6761, 6789, 6801, 6806, 6810, 8192, 8194, 8200, 8202, 8213, 8224, 8226, 8229,
  10590. 8232, 8234, 8261, 8273, 8281, 8289, 8293, 8320, 8322, 8328, 8330, 8341, 8352, 8354, 8357, 8360,
  10591. 8362, 8453, 8465, 8468, 8473, 8485, 8514, 8516, 8521, 8533, 8536, 8538, 8545, 8548, 8549, 8550,
  10592. 8581, 8592, 8598, 8601, 8613, 8705, 8712, 8714, 8721, 8725, 8736, 8738, 8744, 8746, 8773, 8785,
  10593. 8790, 8793, 8805, 8833, 8840, 8842, 8849, 8853, 8864, 8866, 8872, 8874, 9221, 9236, 9238, 9241,
  10594. 9253, 9284, 9285, 9286, 9289, 9298, 9301, 9304, 9306, 9318, 9349, 9361, 9364, 9369, 9377, 9381,
  10595. 9481, 9493, 9505, 9513, 9536, 9541, 9544, 9553, 9556, 9557, 9561, 9570, 9573, 9576, 9609, 9616,
  10596. 9620, 9621, 9624, 9626, 9633, 9636, 9638, 9641, 9733, 9744, 9746, 9753, 9765, 9793, 9801, 9813,
  10597. 9824, 9825, 9833, 9860, 9862, 9872, 9882, 10240, 10242, 10248, 10250, 10261, 10272, 10274, 10280, 10282,
  10598. 10309, 10321, 10324, 10341, 10368, 10370, 10376, 10378, 10400, 10402, 10408, 10410, 10505, 10513, 10516, 10521,
  10599. 10533, 10566, 10569, 10578, 10581, 10593, 10596, 10598, 10601, 10629, 10640, 10646, 10649, 10660, 10661, 10752,
  10600. 10754, 10760, 10762, 10784, 10786, 10792, 10794, 10821, 10833, 10838, 10841, 10853, 10880, 10882, 10888, 10890,
  10601. 10901, 10912, 10914, 10920, 10922, 16389, 16401, 16406, 16421, 16457, 16466, 16469, 16472, 16474, 16481, 16484,
  10602. 16486, 16532, 16537, 16545, 16550, 16640, 16641, 16644, 16646, 16649, 16658, 16661, 16662, 16664, 16666, 16673,
  10603. 16678, 16681, 16709, 16712, 16714, 16721, 16724, 16725, 16726, 16729, 16730, 16741, 16744, 16746, 16769, 16772,
  10604. 16774, 16784, 16786, 16789, 16800, 16801, 16802, 16901, 16913, 16916, 16918, 16933, 16961, 16978, 16981, 16986,
  10605. 16996, 17001, 17033, 17044, 17061, 17409, 17429, 17433, 17449, 17477, 17480, 17482, 17489, 17492, 17493, 17494,
  10606. 17505, 17506, 17509, 17512, 17514, 17537, 17542, 17545, 17552, 17554, 17557, 17568, 17569, 17577, 17665, 17666,
  10607. 17669, 17674, 17681, 17684, 17685, 17686, 17689, 17696, 17701, 17706, 17729, 17732, 17733, 17734, 17737, 17744,
  10608. 17745, 17748, 17749, 17750, 17752, 17753, 17761, 17764, 17765, 17766, 17769, 17794, 17796, 17797, 17800, 17809,
  10609. 17812, 17813, 17814, 17817, 17818, 17829, 17832, 17834, 17921, 17925, 17929, 17940, 17941, 17944, 17946, 17953,
  10610. 17956, 17961, 17984, 17986, 17989, 17992, 18000, 18001, 18002, 18005, 18006, 18009, 18018, 18021, 18024, 18049,
  10611. 18053, 18058, 18068, 18069, 18081, 18084, 18086, 18437, 18449, 18453, 18458, 18469, 18498, 18505, 18512, 18517,
  10612. 18520, 18529, 18532, 18534, 18537, 18565, 18577, 18580, 18582, 18585, 18597, 18689, 18693, 18694, 18698, 18704,
  10613. 18708, 18709, 18712, 18721, 18724, 18726, 18752, 18757, 18762, 18769, 18770, 18772, 18773, 18774, 18777, 18784,
  10614. 18786, 18789, 18790, 18794, 18822, 18825, 18834, 18837, 18838, 18840, 18849, 18852, 18854, 18857, 18966, 19012,
  10615. 19014, 19017, 19029, 19032, 19034, 19044, 19049, 19092, 19109, 20481, 20484, 20485, 20486, 20489, 20498, 20501,
  10616. 20506, 20513, 20516, 20521, 20544, 20549, 20552, 20561, 20564, 20565, 20566, 20569, 20581, 20584, 20614, 20617,
  10617. 20629, 20632, 20640, 20641, 20646, 20649, 20741, 20744, 20745, 20746, 20753, 20756, 20757, 20758, 20760, 20761,
  10618. 20768, 20773, 20774, 20776, 20778, 20801, 20804, 20805, 20806, 20809, 20816, 20817, 20818, 20820, 20821, 20822,
  10619. 20824, 20825, 20826, 20833, 20836, 20837, 20838, 20841, 20866, 20869, 20881, 20884, 20885, 20886, 20889, 20896,
  10620. 20901, 20906, 20993, 20998, 21010, 21013, 21018, 21025, 21028, 21058, 21061, 21066, 21073, 21076, 21077, 21078,
  10621. 21081, 21090, 21093, 21125, 21136, 21138, 21141, 21145, 21146, 21156, 21508, 21509, 21521, 21524, 21525, 21526,
  10622. 21528, 21529, 21537, 21541, 21544, 21546, 21569, 21572, 21573, 21574, 21577, 21578, 21584, 21585, 21588, 21589,
  10623. 21590, 21592, 21593, 21594, 21601, 21602, 21604, 21605, 21606, 21609, 21632, 21640, 21642, 21649, 21652, 21653,
  10624. 21654, 21657, 21665, 21668, 21669, 21674, 21761, 21762, 21764, 21765, 21766, 21769, 21776, 21777, 21778, 21780,
  10625. 21781, 21782, 21785, 21786, 21793, 21796, 21797, 21798, 21801, 21824, 21825, 21826, 21828, 21829, 21830, 21832,
  10626. 21833, 21840, 21841, 21842, 21844, 21845, 21846, 21848, 21849, 21850, 21856, 21857, 21860, 21861, 21862, 21864,
  10627. 21865, 21866, 21889, 21892, 21893, 21897, 21898, 21904, 21905, 21908, 21909, 21910, 21912, 21913, 21921, 21924,
  10628. 21925, 21926, 21929, 22016, 22017, 22018, 22020, 22022, 22024, 22025, 22033, 22036, 22037, 22040, 22041, 22048,
  10629. 22049, 22050, 22052, 22053, 22054, 22056, 22057, 22081, 22085, 22086, 22088, 22089, 22090, 22096, 22097, 22098,
  10630. 22100, 22101, 22102, 22104, 22105, 22106, 22113, 22116, 22117, 22121, 22146, 22149, 22150, 22152, 22153, 22154,
  10631. 22161, 22165, 22170, 22178, 22181, 22182, 22184, 22185, 22532, 22533, 22534, 22537, 22544, 22549, 22552, 22561,
  10632. 22570, 22597, 22600, 22602, 22609, 22612, 22613, 22614, 22616, 22617, 22624, 22626, 22628, 22629, 22658, 22665,
  10633. 22672, 22674, 22677, 22680, 22689, 22697, 22785, 22786, 22789, 22794, 22801, 22804, 22805, 22806, 22809, 22821,
  10634. 22849, 22852, 22853, 22854, 22857, 22864, 22865, 22866, 22868, 22869, 22870, 22872, 22873, 22874, 22881, 22884,
  10635. 22885, 22886, 22889, 22913, 22917, 22921, 22929, 22932, 22933, 22934, 22936, 22937, 22949, 23044, 23048, 23061,
  10636. 23066, 23072, 23077, 23078, 23081, 23109, 23112, 23113, 23121, 23125, 23126, 23128, 23129, 23138, 23141, 23144,
  10637. 23146, 23169, 23178, 23186, 23189, 23190, 23192, 23194, 23201, 24581, 24596, 24598, 24601, 24613, 24644, 24656,
  10638. 24661, 24662, 24664, 24666, 24673, 24676, 24678, 24681, 24705, 24726, 24741, 24833, 24836, 24838, 24841, 24850,
  10639. 24853, 24865, 24866, 24870, 24873, 24901, 24905, 24913, 24917, 24918, 24921, 24933, 24934, 24938, 24964, 24970,
  10640. 24978, 24981, 24993, 24998, 25001, 25105, 25110, 25113, 25152, 25153, 25158, 25173, 25174, 25176, 25184, 25221,
  10641. 25233, 25238, 25253, 25617, 25618, 25621, 25622, 25626, 25633, 25638, 25641, 25664, 25666, 25669, 25672, 25674,
  10642. 25681, 25684, 25685, 25686, 25689, 25690, 25696, 25698, 25701, 25732, 25733, 25737, 25744, 25746, 25748, 25749,
  10643. 25750, 25752, 25754, 25761, 25764, 25769, 25861, 25864, 25866, 25873, 25877, 25878, 25881, 25924, 25925, 25926,
  10644. 25929, 25936, 25937, 25940, 25941, 25942, 25945, 25953, 25956, 25957, 25958, 25961, 25990, 25993, 25994, 26001,
  10645. 26005, 26006, 26009, 26010, 26018, 26021, 26022, 26024, 26114, 26121, 26133, 26144, 26150, 26152, 26153, 26176,
  10646. 26181, 26184, 26186, 26193, 26196, 26197, 26198, 26200, 26202, 26208, 26213, 26216, 26240, 26242, 26245, 26250,
  10647. 26260, 26262, 26264, 26265, 26272, 26276, 26278, 26282, 26646, 26649, 26661, 26689, 26706, 26709, 26714, 26721,
  10648. 26729, 26757, 26769, 26776, 26790, 26881, 26884, 26896, 26901, 26913, 26916, 26918, 26921, 26944, 26945, 26949,
  10649. 26950, 26952, 26961, 26964, 26965, 26966, 26969, 26976, 26981, 26986, 27010, 27012, 27018, 27029, 27041, 27044,
  10650. 27045, 27049, 27153, 27158, 27160, 27201, 27204, 27209, 27216, 27221, 27224, 27226, 27236, 27237, 27241, 27270,
  10651. 27284, 27288, 27290, 27302, 32768, 32770, 32776, 32778, 32800, 32802, 32808, 32810, 32837, 32848, 32849, 32852,
  10652. 32854, 32857, 32869, 32896, 32898, 32904, 32906, 32917, 32928, 32930, 32936, 32938, 33029, 33041, 33044, 33046,
  10653. 33049, 33061, 33089, 33092, 33097, 33104, 33106, 33109, 33110, 33112, 33113, 33124, 33126, 33129, 33157, 33161,
  10654. 33172, 33174, 33177, 33189, 33280, 33282, 33288, 33290, 33301, 33312, 33314, 33320, 33322, 33361, 33364, 33369,
  10655. 33381, 33408, 33410, 33416, 33418, 33429, 33440, 33442, 33448, 33450, 33812, 33817, 33857, 33860, 33873, 33877,
  10656. 33882, 33889, 33892, 33897, 33940, 33945, 34049, 34057, 34066, 34069, 34074, 34086, 34089, 34112, 34113, 34117,
  10657. 34120, 34129, 34132, 34133, 34134, 34137, 34138, 34149, 34150, 34152, 34154, 34177, 34180, 34182, 34185, 34192,
  10658. 34194, 34197, 34200, 34214, 34321, 34326, 34329, 34341, 34369, 34372, 34377, 34378, 34384, 34389, 34393, 34394,
  10659. 34401, 34406, 34410, 34437, 34449, 34458, 34468, 34816, 34818, 34824, 34826, 34837, 34848, 34850, 34856, 34858,
  10660. 34881, 34885, 34897, 34900, 34905, 34917, 34921, 34944, 34946, 34952, 34954, 34965, 34976, 34978, 34984, 34986,
  10661. 35077, 35078, 35089, 35092, 35094, 35109, 35137, 35140, 35142, 35145, 35152, 35154, 35157, 35162, 35169, 35172,
  10662. 35205, 35222, 35225, 35237, 35328, 35330, 35336, 35338, 35349, 35360, 35362, 35368, 35370, 35397, 35409, 35412,
  10663. 35414, 35456, 35458, 35464, 35466, 35477, 35488, 35490, 35496, 35498, 36869, 36881, 36886, 36888, 36889, 36901,
  10664. 36929, 36934, 36937, 36949, 36952, 36954, 36969, 36970, 36997, 37009, 37012, 37014, 37017, 37029, 37121, 37124,
  10665. 37126, 37129, 37136, 37141, 37144, 37146, 37153, 37156, 37158, 37161, 37184, 37189, 37200, 37201, 37204, 37205,
  10666. 37206, 37209, 37218, 37221, 37252, 37254, 37266, 37269, 37272, 37281, 37284, 37286, 37289, 37381, 37393, 37396,
  10667. 37401, 37413, 37444, 37446, 37449, 37456, 37458, 37461, 37464, 37478, 37481, 37509, 37524, 37526, 37545, 37889,
  10668. 37892, 37894, 37904, 37909, 37912, 37926, 37952, 37962, 37969, 37972, 37973, 37974, 37976, 37977, 37984, 37985,
  10669. 37986, 37989, 38020, 38022, 38034, 38036, 38037, 38040, 38049, 38057, 38144, 38149, 38152, 38154, 38160, 38161,
  10670. 38164, 38165, 38166, 38169, 38177, 38181, 38185, 38186, 38209, 38212, 38213, 38214, 38217, 38224, 38225, 38226,
  10671. 38228, 38229, 38230, 38232, 38233, 38234, 38241, 38244, 38245, 38246, 38249, 38273, 38277, 38280, 38289, 38290,
  10672. 38292, 38293, 38294, 38297, 38298, 38304, 38306, 38309, 38312, 38314, 38401, 38404, 38416, 38421, 38425, 38432,
  10673. 38438, 38441, 38469, 38472, 38473, 38481, 38482, 38485, 38486, 38489, 38501, 38504, 38530, 38532, 38537, 38538,
  10674. 38546, 38548, 38549, 38564, 38566, 38569, 38917, 38934, 38937, 38949, 38977, 38982, 38992, 38994, 38997, 38998,
  10675. 39002, 39012, 39013, 39045, 39057, 39062, 39065, 39077, 39172, 39174, 39177, 39184, 39186, 39189, 39192, 39194,
  10676. 39200, 39201, 39204, 39206, 39232, 39234, 39237, 39240, 39242, 39249, 39252, 39253, 39254, 39257, 39266, 39269,
  10677. 39270, 39274, 39297, 39300, 39312, 39314, 39317, 39322, 39329, 39334, 39429, 39445, 39461, 39492, 39494, 39497,
  10678. 39504, 39509, 39512, 39521, 39557, 39569, 39572, 39573, 39574, 40960, 40962, 40968, 40970, 40981, 40992, 40994,
  10679. 41000, 41002, 41029, 41041, 41044, 41046, 41049, 41088, 41090, 41096, 41098, 41109, 41120, 41122, 41128, 41130,
  10680. 41221, 41225, 41233, 41236, 41238, 41241, 41242, 41286, 41289, 41297, 41301, 41304, 41306, 41313, 41316, 41349,
  10681. 41360, 41362, 41366, 41369, 41474, 41480, 41482, 41488, 41497, 41506, 41512, 41514, 41541, 41553, 41558, 41561,
  10682. 41573, 41600, 41602, 41608, 41610, 41621, 41632, 41634, 41640, 41642, 42009, 42021, 42049, 42052, 42064, 42068,
  10683. 42069, 42072, 42074, 42081, 42085, 42086, 42088, 42089, 42117, 42246, 42249, 42256, 42258, 42261, 42264, 42278,
  10684. 42281, 42306, 42309, 42321, 42324, 42325, 42326, 42329, 42341, 42346, 42369, 42372, 42373, 42374, 42377, 42386,
  10685. 42389, 42392, 42501, 42513, 42518, 42522, 42529, 42533, 42564, 42566, 42570, 42578, 42581, 42582, 42584, 42592,
  10686. 42594, 42630, 42640, 42645, 42646, 42649, 42657, 42660, 42662, 43008, 43010, 43016, 43018, 43040, 43042, 43048,
  10687. 43050, 43089, 43092, 43094, 43097, 43136, 43138, 43144, 43146, 43157, 43168, 43170, 43176, 43178, 43269, 43284,
  10688. 43289, 43297, 43301, 43329, 43344, 43349, 43354, 43361, 43366, 43369, 43408, 43414, 43520, 43522, 43528, 43530,
  10689. 43552, 43554, 43560, 43562, 43601, 43604, 43606, 43648, 43650, 43656, 43658, 43669, 43680, 43682, 43688, 43690,
  10690. };
  10691. static const uint16_t kgrid_2bit_1024[1024] = {
  10692. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  10693. 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160,
  10694. 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328,
  10695. 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514,
  10696. 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660,
  10697. 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093,
  10698. 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176,
  10699. 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348,
  10700. 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537,
  10701. 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050,
  10702. 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133,
  10703. 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373,
  10704. 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100,
  10705. 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182,
  10706. 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357,
  10707. 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434,
  10708. 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641,
  10709. 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145,
  10710. 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253,
  10711. 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442,
  10712. 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700,
  10713. 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225,
  10714. 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562,
  10715. 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257,
  10716. 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512,
  10717. 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840,
  10718. 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297,
  10719. 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600,
  10720. 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
  10721. 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
  10722. 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
  10723. 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
  10724. 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
  10725. 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
  10726. 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
  10727. 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
  10728. 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
  10729. 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
  10730. 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
  10731. 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
  10732. 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
  10733. 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
  10734. 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
  10735. 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
  10736. 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
  10737. 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
  10738. 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
  10739. 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
  10740. 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
  10741. 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
  10742. 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
  10743. 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
  10744. 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
  10745. 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
  10746. 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
  10747. 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
  10748. 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
  10749. 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
  10750. 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
  10751. 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
  10752. 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
  10753. 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
  10754. 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
  10755. 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
  10756. };
  10757. const int kmap_size = 43692;
  10758. //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  10759. const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
  10760. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  10761. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
  10762. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
  10763. uint64_t * kgrid_q2xs;
  10764. int * kmap_q2xs;
  10765. uint16_t * kneighbors_q2xs;
  10766. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  10767. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  10768. for (int k = 0; k < grid_size; ++k) {
  10769. int8_t * pos = (int8_t *)(the_grid + k);
  10770. for (int i = 0; i < 8; ++i) {
  10771. int l = (kgrid[k] >> 2*i) & 0x3;
  10772. pos[i] = 2*l + 1;
  10773. }
  10774. }
  10775. kgrid_q2xs = the_grid;
  10776. iq2_data[gindex].grid = the_grid;
  10777. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  10778. iq2_data[gindex].map = kmap_q2xs;
  10779. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  10780. uint64_t aux64;
  10781. uint8_t * aux8 = (uint8_t *)&aux64;
  10782. for (int i = 0; i < grid_size; ++i) {
  10783. aux64 = kgrid_q2xs[i];
  10784. uint16_t index = 0;
  10785. for (int k=0; k<8; ++k) {
  10786. uint16_t q = (aux8[k] - 1)/2;
  10787. index |= (q << 2*k);
  10788. }
  10789. kmap_q2xs[index] = i;
  10790. }
  10791. int8_t pos[8];
  10792. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  10793. int num_neighbors = 0, num_not_in_map = 0;
  10794. for (int i = 0; i < kmap_size; ++i) {
  10795. if (kmap_q2xs[i] >= 0) continue;
  10796. ++num_not_in_map;
  10797. for (int k = 0; k < 8; ++k) {
  10798. int l = (i >> 2*k) & 0x3;
  10799. pos[k] = 2*l + 1;
  10800. }
  10801. for (int j = 0; j < grid_size; ++j) {
  10802. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  10803. int d2 = 0;
  10804. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10805. dist2[2*j+0] = d2;
  10806. dist2[2*j+1] = j;
  10807. }
  10808. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  10809. int n = 0; int d2 = dist2[0];
  10810. int nhave = 1;
  10811. for (int j = 0; j < grid_size; ++j) {
  10812. if (dist2[2*j] > d2) {
  10813. if (nhave == nwant) break;
  10814. d2 = dist2[2*j];
  10815. ++nhave;
  10816. }
  10817. ++n;
  10818. }
  10819. num_neighbors += n;
  10820. }
  10821. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  10822. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  10823. iq2_data[gindex].neighbours = kneighbors_q2xs;
  10824. int counter = 0;
  10825. for (int i = 0; i < kmap_size; ++i) {
  10826. if (kmap_q2xs[i] >= 0) continue;
  10827. for (int k = 0; k < 8; ++k) {
  10828. int l = (i >> 2*k) & 0x3;
  10829. pos[k] = 2*l + 1;
  10830. }
  10831. for (int j = 0; j < grid_size; ++j) {
  10832. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  10833. int d2 = 0;
  10834. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10835. dist2[2*j+0] = d2;
  10836. dist2[2*j+1] = j;
  10837. }
  10838. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  10839. kmap_q2xs[i] = -(counter + 1);
  10840. int d2 = dist2[0];
  10841. uint16_t * start = &kneighbors_q2xs[counter++];
  10842. int n = 0, nhave = 1;
  10843. for (int j = 0; j < grid_size; ++j) {
  10844. if (dist2[2*j] > d2) {
  10845. if (nhave == nwant) break;
  10846. d2 = dist2[2*j];
  10847. ++nhave;
  10848. }
  10849. kneighbors_q2xs[counter++] = dist2[2*j+1];
  10850. ++n;
  10851. }
  10852. *start = n;
  10853. }
  10854. free(dist2);
  10855. }
  10856. void iq2xs_free_impl(enum ggml_type type) {
  10857. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  10858. const int gindex = iq2_data_index(type);
  10859. if (iq2_data[gindex].grid) {
  10860. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  10861. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  10862. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  10863. }
  10864. }
  10865. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  10866. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  10867. int num_neighbors = neighbours[0];
  10868. GGML_ASSERT(num_neighbors > 0);
  10869. float best_d2 = FLT_MAX;
  10870. int grid_index = -1;
  10871. for (int j = 1; j <= num_neighbors; ++j) {
  10872. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10873. float d2 = 0;
  10874. for (int i = 0; i < 8; ++i) {
  10875. float q = pg[i];
  10876. float diff = scale*q - xval[i];
  10877. d2 += weight[i]*diff*diff;
  10878. }
  10879. if (d2 < best_d2) {
  10880. best_d2 = d2; grid_index = neighbours[j];
  10881. }
  10882. }
  10883. GGML_ASSERT(grid_index >= 0);
  10884. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10885. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  10886. return grid_index;
  10887. }
  10888. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  10889. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  10890. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10891. const int * kmap_q2xs = iq2_data[gindex].map;
  10892. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10893. GGML_ASSERT(quant_weights && "missing quantization weights");
  10894. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10895. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10896. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10897. GGML_ASSERT(n%QK_K == 0);
  10898. const int kMaxQ = 3;
  10899. const int64_t nbl = n/QK_K;
  10900. block_iq2_xxs * y = vy;
  10901. float scales[QK_K/32];
  10902. float weight[32];
  10903. float xval[32];
  10904. int8_t L[32];
  10905. int8_t Laux[32];
  10906. float waux[32];
  10907. uint8_t block_signs[4];
  10908. uint32_t q2[2*(QK_K/32)];
  10909. for (int ibl = 0; ibl < nbl; ++ibl) {
  10910. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10911. memset(q2, 0, QK_K/4);
  10912. float max_scale = 0;
  10913. const float * xbl = x + QK_K*ibl;
  10914. float sumx2 = 0;
  10915. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10916. float sigma2 = sumx2/QK_K;
  10917. for (int ib = 0; ib < QK_K/32; ++ib) {
  10918. const float * xb = xbl + 32*ib;
  10919. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  10920. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10921. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  10922. for (int k = 0; k < 4; ++k) {
  10923. int nflip = 0;
  10924. uint8_t s = 0;
  10925. for (int i = 0; i < 8; ++i) {
  10926. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10927. else {
  10928. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10929. }
  10930. }
  10931. if (nflip%2) {
  10932. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10933. for (int i = 1; i < 8; ++i) {
  10934. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10935. if (ax < min) {
  10936. min = ax; imin = i;
  10937. }
  10938. }
  10939. xval[8*k+imin] = -xval[8*k+imin];
  10940. s ^= (1 << imin);
  10941. }
  10942. block_signs[k] = s & 127;
  10943. }
  10944. float max = xval[0];
  10945. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  10946. if (max < GROUP_MAX_EPS) {
  10947. scales[ib] = 0;
  10948. memset(L, 0, 32);
  10949. continue;
  10950. }
  10951. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  10952. float eff_max = scale*kMaxQ;
  10953. float best = 0;
  10954. for (int is = -6; is <= 6; ++is) {
  10955. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  10956. float this_scale = 1/id;
  10957. for (int k = 0; k < 4; ++k) {
  10958. for (int i = 0; i < 8; ++i) {
  10959. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10960. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10961. }
  10962. uint16_t u = 0;
  10963. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  10964. int grid_index = kmap_q2xs[u];
  10965. if (grid_index < 0) {
  10966. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10967. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  10968. }
  10969. }
  10970. float sumqx = 0, sumq2 = 0;
  10971. for (int i = 0; i < 32; ++i) {
  10972. float w = weight[i];
  10973. float q = 2*Laux[i] + 1;
  10974. sumqx += w*xval[i]*q;
  10975. sumq2 += w*q*q;
  10976. }
  10977. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10978. scale = sumqx/sumq2; best = scale*sumqx;
  10979. memcpy(L, Laux, 32);
  10980. }
  10981. }
  10982. if (scale > 0) {
  10983. float id = 1/scale;
  10984. for (int k = 0; k < 4; ++k) {
  10985. uint16_t u = 0;
  10986. for (int i = 0; i < 8; ++i) {
  10987. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10988. l = MAX(0, MIN(kMaxQ-1, l));
  10989. u |= (l << 2*i);
  10990. }
  10991. int grid_index = kmap_q2xs[u];
  10992. if (grid_index < 0) {
  10993. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10994. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  10995. }
  10996. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  10997. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  10998. }
  10999. float sumqx = 0, sumq2 = 0;
  11000. for (int i = 0; i < 32; ++i) {
  11001. float w = weight[i];
  11002. float q = 2*L[i] + 1;
  11003. sumqx += w*xval[i]*q;
  11004. sumq2 += w*q*q;
  11005. }
  11006. if (sumq2 > 0) scale = sumqx/sumq2;
  11007. }
  11008. if (scale < 0) {
  11009. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  11010. // and correspondingly flip quant signs.
  11011. scale = -scale;
  11012. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  11013. }
  11014. for (int k = 0; k < 4; ++k) {
  11015. uint16_t u = 0;
  11016. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  11017. int grid_index = kmap_q2xs[u];
  11018. if (grid_index < 0) {
  11019. printf("Oops: found point %u not on grid:", u);
  11020. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  11021. printf("\n");
  11022. GGML_ABORT("fatal error");
  11023. }
  11024. q2[2*ib+0] |= ((uint32_t) grid_index << 8*k);
  11025. q2[2*ib+1] |= (block_signs[k] << 7*k);
  11026. }
  11027. GGML_ASSERT(scale >= 0);
  11028. scales[ib] = scale;
  11029. max_scale = MAX(max_scale, scale);
  11030. }
  11031. if (!max_scale) {
  11032. memset(y[ibl].qs, 0, QK_K/4);
  11033. continue;
  11034. }
  11035. float d = max_scale/31;
  11036. y[ibl].d = GGML_FP32_TO_FP16(d);
  11037. float id = 1/d;
  11038. for (int ib = 0; ib < QK_K/32; ++ib) {
  11039. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11040. l = MAX(0, MIN(15, l));
  11041. q2[2*ib+1] |= ((uint32_t)l << 28);
  11042. }
  11043. memcpy(y[ibl].qs, q2, QK_K/4);
  11044. }
  11045. }
  11046. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  11047. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  11048. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11049. const int * kmap_q2xs = iq2_data[gindex].map;
  11050. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11051. GGML_ASSERT(quant_weights && "missing quantization weights");
  11052. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11053. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11054. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11055. GGML_ASSERT(n%QK_K == 0);
  11056. const int kMaxQ = 3;
  11057. const int64_t nbl = n/QK_K;
  11058. block_iq2_xs * y = vy;
  11059. float scales[QK_K/16];
  11060. float weight[16];
  11061. float xval[16];
  11062. int8_t L[16];
  11063. int8_t Laux[16];
  11064. float waux[16];
  11065. bool is_on_grid[2];
  11066. bool is_on_grid_aux[2];
  11067. uint8_t block_signs[2];
  11068. uint16_t q2[2*(QK_K/16)];
  11069. for (int ibl = 0; ibl < nbl; ++ibl) {
  11070. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11071. memset(q2, 0, QK_K/4);
  11072. memset(y[ibl].scales, 0, QK_K/32);
  11073. float max_scale = 0;
  11074. const float * xbl = x + QK_K*ibl;
  11075. float sumx2 = 0;
  11076. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11077. float sigma2 = sumx2/QK_K;
  11078. for (int ib = 0; ib < QK_K/16; ++ib) {
  11079. const float * xb = xbl + 16*ib;
  11080. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  11081. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11082. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  11083. for (int k = 0; k < 2; ++k) {
  11084. int nflip = 0;
  11085. uint8_t s = 0;
  11086. for (int i = 0; i < 8; ++i) {
  11087. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11088. else {
  11089. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  11090. }
  11091. }
  11092. if (nflip%2) {
  11093. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  11094. for (int i = 1; i < 8; ++i) {
  11095. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  11096. if (ax < min) {
  11097. min = ax; imin = i;
  11098. }
  11099. }
  11100. xval[8*k+imin] = -xval[8*k+imin];
  11101. s ^= (1 << imin);
  11102. }
  11103. block_signs[k] = s & 127;
  11104. }
  11105. float max = xval[0];
  11106. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  11107. if (max < GROUP_MAX_EPS) {
  11108. scales[ib] = 0;
  11109. memset(L, 0, 16);
  11110. continue;
  11111. }
  11112. float best = 0;
  11113. float scale = max/(2*kMaxQ-1);
  11114. is_on_grid[0] = is_on_grid[1] = true;
  11115. for (int is = -9; is <= 9; ++is) {
  11116. float id = (2*kMaxQ-1+is*0.1f)/max;
  11117. float this_scale = 1/id;
  11118. for (int k = 0; k < 2; ++k) {
  11119. for (int i = 0; i < 8; ++i) {
  11120. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11121. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11122. }
  11123. uint16_t u = 0;
  11124. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  11125. int grid_index = kmap_q2xs[u];
  11126. is_on_grid_aux[k] = true;
  11127. if (grid_index < 0) {
  11128. is_on_grid_aux[k] = false;
  11129. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11130. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  11131. }
  11132. }
  11133. float sumqx = 0, sumq2 = 0;
  11134. for (int i = 0; i < 16; ++i) {
  11135. float w = weight[i];
  11136. float q = 2*Laux[i] + 1;
  11137. sumqx += w*xval[i]*q;
  11138. sumq2 += w*q*q;
  11139. }
  11140. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11141. scale = sumqx/sumq2; best = scale*sumqx;
  11142. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  11143. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11144. }
  11145. }
  11146. int n_not_ongrid = 0;
  11147. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11148. if (n_not_ongrid > 0 && scale > 0) {
  11149. float id = 1/scale;
  11150. for (int k = 0; k < 2; ++k) {
  11151. if (is_on_grid[k]) continue;
  11152. uint16_t u = 0;
  11153. for (int i = 0; i < 8; ++i) {
  11154. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11155. l = MAX(0, MIN(kMaxQ-1, l));
  11156. u |= (l << 2*i);
  11157. L[8*k + i] = l;
  11158. }
  11159. int grid_index = kmap_q2xs[u];
  11160. if (grid_index < 0) {
  11161. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11162. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  11163. }
  11164. }
  11165. float sumqx = 0, sumq2 = 0;
  11166. for (int i = 0; i < 16; ++i) {
  11167. float w = weight[i];
  11168. float q = 2*L[i] + 1;
  11169. sumqx += w*xval[i]*q;
  11170. sumq2 += w*q*q;
  11171. }
  11172. if (sumq2 > 0) scale = sumqx/sumq2;
  11173. }
  11174. if (scale < 0) {
  11175. scale = -scale;
  11176. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  11177. }
  11178. for (int k = 0; k < 2; ++k) {
  11179. uint16_t u = 0;
  11180. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  11181. int grid_index = kmap_q2xs[u];
  11182. if (grid_index < 0) {
  11183. printf("Oops: found point %u not on grid:", u);
  11184. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  11185. printf("\n");
  11186. GGML_ABORT("fatal error");
  11187. }
  11188. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  11189. }
  11190. GGML_ASSERT(scale >= 0);
  11191. scales[ib] = scale;
  11192. max_scale = MAX(max_scale, scale);
  11193. }
  11194. if (!max_scale) {
  11195. memset(y[ibl].qs, 0, QK_K/4);
  11196. continue;
  11197. }
  11198. float d = max_scale/31;
  11199. y[ibl].d = GGML_FP32_TO_FP16(d);
  11200. float id = 1/d;
  11201. for (int ib = 0; ib < QK_K/16; ++ib) {
  11202. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11203. l = MAX(0, MIN(15, l));
  11204. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  11205. else y[ibl].scales[ib/2] |= (l << 4);
  11206. }
  11207. memcpy(y[ibl].qs, q2, QK_K/4);
  11208. }
  11209. }
  11210. size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11211. GGML_ASSERT(n_per_row%QK_K == 0);
  11212. int64_t nblock = n_per_row/QK_K;
  11213. char * qrow = (char *)dst;
  11214. for (int64_t row = 0; row < nrow; ++row) {
  11215. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  11216. src += n_per_row;
  11217. qrow += nblock*sizeof(block_iq2_xxs);
  11218. }
  11219. return nrow * nblock * sizeof(block_iq2_xxs);
  11220. }
  11221. size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11222. GGML_ASSERT(n_per_row%QK_K == 0);
  11223. int64_t nblock = n_per_row/QK_K;
  11224. char * qrow = (char *)dst;
  11225. for (int64_t row = 0; row < nrow; ++row) {
  11226. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  11227. src += n_per_row;
  11228. qrow += nblock*sizeof(block_iq2_xs);
  11229. }
  11230. return nrow * nblock * sizeof(block_iq2_xs);
  11231. }
  11232. //
  11233. // ============================================= 3-bit using D4 lattice
  11234. //
  11235. typedef struct {
  11236. uint32_t * grid;
  11237. int * map;
  11238. uint16_t * neighbours;
  11239. } iq3_entry_t;
  11240. static iq3_entry_t iq3_data[2] = {
  11241. {NULL, NULL, NULL},
  11242. {NULL, NULL, NULL},
  11243. };
  11244. static inline int iq3_data_index(int grid_size) {
  11245. (void)grid_size;
  11246. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  11247. return grid_size == 256 ? 0 : 1;
  11248. }
  11249. static int iq3_compare_func(const void * left, const void * right) {
  11250. const int * l = (const int *)left;
  11251. const int * r = (const int *)right;
  11252. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  11253. }
  11254. void iq3xs_init_impl(int grid_size) {
  11255. const int gindex = iq3_data_index(grid_size);
  11256. if (iq3_data[gindex].grid) {
  11257. return;
  11258. }
  11259. static const uint16_t kgrid_256[256] = {
  11260. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  11261. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  11262. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  11263. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  11264. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  11265. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  11266. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  11267. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  11268. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  11269. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  11270. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  11271. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  11272. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  11273. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  11274. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  11275. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  11276. };
  11277. static const uint16_t kgrid_512[512] = {
  11278. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  11279. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  11280. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  11281. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  11282. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  11283. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  11284. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  11285. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  11286. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  11287. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  11288. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  11289. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  11290. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  11291. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  11292. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  11293. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  11294. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  11295. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  11296. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  11297. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  11298. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  11299. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  11300. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  11301. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  11302. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  11303. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  11304. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  11305. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  11306. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  11307. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  11308. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  11309. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  11310. };
  11311. const int kmap_size = 4096;
  11312. const int nwant = grid_size == 256 ? 2 : 3;
  11313. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  11314. uint32_t * kgrid_q3xs;
  11315. int * kmap_q3xs;
  11316. uint16_t * kneighbors_q3xs;
  11317. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  11318. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  11319. for (int k = 0; k < grid_size; ++k) {
  11320. int8_t * pos = (int8_t *)(the_grid + k);
  11321. for (int i = 0; i < 4; ++i) {
  11322. int l = (kgrid[k] >> 3*i) & 0x7;
  11323. pos[i] = 2*l + 1;
  11324. }
  11325. }
  11326. kgrid_q3xs = the_grid;
  11327. iq3_data[gindex].grid = the_grid;
  11328. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  11329. iq3_data[gindex].map = kmap_q3xs;
  11330. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  11331. uint32_t aux32;
  11332. uint8_t * aux8 = (uint8_t *)&aux32;
  11333. for (int i = 0; i < grid_size; ++i) {
  11334. aux32 = kgrid_q3xs[i];
  11335. uint16_t index = 0;
  11336. for (int k=0; k<4; ++k) {
  11337. uint16_t q = (aux8[k] - 1)/2;
  11338. index |= (q << 3*k);
  11339. }
  11340. kmap_q3xs[index] = i;
  11341. }
  11342. int8_t pos[4];
  11343. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  11344. int num_neighbors = 0, num_not_in_map = 0;
  11345. for (int i = 0; i < kmap_size; ++i) {
  11346. if (kmap_q3xs[i] >= 0) continue;
  11347. ++num_not_in_map;
  11348. for (int k = 0; k < 4; ++k) {
  11349. int l = (i >> 3*k) & 0x7;
  11350. pos[k] = 2*l + 1;
  11351. }
  11352. for (int j = 0; j < grid_size; ++j) {
  11353. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  11354. int d2 = 0;
  11355. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  11356. dist2[2*j+0] = d2;
  11357. dist2[2*j+1] = j;
  11358. }
  11359. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  11360. int n = 0; int d2 = dist2[0];
  11361. int nhave = 1;
  11362. for (int j = 0; j < grid_size; ++j) {
  11363. if (dist2[2*j] > d2) {
  11364. if (nhave == nwant) break;
  11365. d2 = dist2[2*j];
  11366. ++nhave;
  11367. }
  11368. ++n;
  11369. }
  11370. num_neighbors += n;
  11371. }
  11372. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  11373. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  11374. iq3_data[gindex].neighbours = kneighbors_q3xs;
  11375. int counter = 0;
  11376. for (int i = 0; i < kmap_size; ++i) {
  11377. if (kmap_q3xs[i] >= 0) continue;
  11378. for (int k = 0; k < 4; ++k) {
  11379. int l = (i >> 3*k) & 0x7;
  11380. pos[k] = 2*l + 1;
  11381. }
  11382. for (int j = 0; j < grid_size; ++j) {
  11383. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  11384. int d2 = 0;
  11385. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  11386. dist2[2*j+0] = d2;
  11387. dist2[2*j+1] = j;
  11388. }
  11389. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  11390. kmap_q3xs[i] = -(counter + 1);
  11391. int d2 = dist2[0];
  11392. uint16_t * start = &kneighbors_q3xs[counter++];
  11393. int n = 0, nhave = 1;
  11394. for (int j = 0; j < grid_size; ++j) {
  11395. if (dist2[2*j] > d2) {
  11396. if (nhave == nwant) break;
  11397. d2 = dist2[2*j];
  11398. ++nhave;
  11399. }
  11400. kneighbors_q3xs[counter++] = dist2[2*j+1];
  11401. ++n;
  11402. }
  11403. *start = n;
  11404. }
  11405. free(dist2);
  11406. }
  11407. void iq3xs_free_impl(int grid_size) {
  11408. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  11409. const int gindex = iq3_data_index(grid_size);
  11410. if (iq3_data[gindex].grid) {
  11411. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  11412. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  11413. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  11414. }
  11415. }
  11416. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  11417. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  11418. int num_neighbors = neighbours[0];
  11419. GGML_ASSERT(num_neighbors > 0);
  11420. float best_d2 = FLT_MAX;
  11421. int grid_index = -1;
  11422. for (int j = 1; j <= num_neighbors; ++j) {
  11423. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11424. float d2 = 0;
  11425. for (int i = 0; i < 4; ++i) {
  11426. float q = pg[i];
  11427. float diff = scale*q - xval[i];
  11428. d2 += weight[i]*diff*diff;
  11429. }
  11430. if (d2 < best_d2) {
  11431. best_d2 = d2; grid_index = neighbours[j];
  11432. }
  11433. }
  11434. GGML_ASSERT(grid_index >= 0);
  11435. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11436. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  11437. return grid_index;
  11438. }
  11439. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int64_t n,
  11440. const float * restrict quant_weights) {
  11441. const int gindex = iq3_data_index(grid_size);
  11442. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  11443. const int * kmap_q3xs = iq3_data[gindex].map;
  11444. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  11445. //GGML_ASSERT(quant_weights && "missing quantization weights");
  11446. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  11447. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  11448. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  11449. GGML_ASSERT(n%QK_K == 0);
  11450. const int kMaxQ = 8;
  11451. const int64_t nbl = n/QK_K;
  11452. ggml_fp16_t * dh;
  11453. uint8_t * qs;
  11454. int block_size;
  11455. if (grid_size == 256) {
  11456. block_iq3_xxs * y = vy;
  11457. dh = &y->d;
  11458. qs = y->qs;
  11459. block_size = sizeof(block_iq3_xxs);
  11460. } else {
  11461. block_iq3_s * y = vy;
  11462. dh = &y->d;
  11463. qs = y->qs;
  11464. block_size = sizeof(block_iq3_s);
  11465. }
  11466. int quant_size = block_size - sizeof(ggml_fp16_t);
  11467. float scales[QK_K/32];
  11468. float weight[32];
  11469. float xval[32];
  11470. int8_t L[32];
  11471. int8_t Laux[32];
  11472. float waux[32];
  11473. bool is_on_grid[8];
  11474. bool is_on_grid_aux[8];
  11475. uint8_t block_signs[8];
  11476. uint8_t q3[3*(QK_K/8)+QK_K/32];
  11477. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  11478. uint8_t * qh = q3 + 3*(QK_K/8);
  11479. for (int ibl = 0; ibl < nbl; ++ibl) {
  11480. dh[0] = GGML_FP32_TO_FP16(0.f);
  11481. memset(q3, 0, 3*QK_K/8+QK_K/32);
  11482. float max_scale = 0;
  11483. const float * xbl = x + QK_K*ibl;
  11484. float sumx2 = 0;
  11485. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11486. float sigma2 = 2*sumx2/QK_K;
  11487. for (int ib = 0; ib < QK_K/32; ++ib) {
  11488. const float * xb = xbl + 32*ib;
  11489. if (quant_weights) {
  11490. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  11491. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11492. } else {
  11493. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  11494. }
  11495. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  11496. for (int k = 0; k < 4; ++k) {
  11497. int nflip = 0;
  11498. uint8_t s = 0;
  11499. for (int i = 0; i < 8; ++i) {
  11500. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11501. else {
  11502. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  11503. }
  11504. }
  11505. if (nflip%2) {
  11506. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  11507. for (int i = 1; i < 8; ++i) {
  11508. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  11509. if (ax < min) {
  11510. min = ax; imin = i;
  11511. }
  11512. }
  11513. xval[8*k+imin] = -xval[8*k+imin];
  11514. s ^= (1 << imin);
  11515. }
  11516. block_signs[k] = s & 127;
  11517. }
  11518. float max = xval[0];
  11519. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  11520. if (max < GROUP_MAX_EPS_IQ3_XXS) {
  11521. scales[ib] = 0;
  11522. memset(L, 0, 32);
  11523. continue;
  11524. }
  11525. float best = 0;
  11526. float scale = max/(2*kMaxQ-1);
  11527. for (int is = -15; is <= 15; ++is) {
  11528. float id = (2*kMaxQ-1+is*0.2f)/max;
  11529. float this_scale = 1/id;
  11530. for (int k = 0; k < 8; ++k) {
  11531. for (int i = 0; i < 4; ++i) {
  11532. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11533. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11534. }
  11535. uint16_t u = 0;
  11536. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  11537. int grid_index = kmap_q3xs[u];
  11538. is_on_grid_aux[k] = true;
  11539. if (grid_index < 0) {
  11540. is_on_grid_aux[k] = false;
  11541. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11542. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  11543. }
  11544. }
  11545. float sumqx = 0, sumq2 = 0;
  11546. for (int i = 0; i < 32; ++i) {
  11547. float w = weight[i];
  11548. float q = 2*Laux[i] + 1;
  11549. sumqx += w*xval[i]*q;
  11550. sumq2 += w*q*q;
  11551. }
  11552. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11553. scale = sumqx/sumq2; best = scale*sumqx;
  11554. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  11555. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11556. }
  11557. }
  11558. int n_not_ongrid = 0;
  11559. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11560. if (n_not_ongrid > 0 && scale > 0) {
  11561. float id = 1/scale;
  11562. for (int k = 0; k < 8; ++k) {
  11563. if (is_on_grid[k]) continue;
  11564. uint16_t u = 0;
  11565. for (int i = 0; i < 4; ++i) {
  11566. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11567. l = MAX(0, MIN(kMaxQ-1, l));
  11568. u |= (l << 3*i);
  11569. }
  11570. int grid_index = kmap_q3xs[u];
  11571. if (grid_index < 0) {
  11572. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11573. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  11574. }
  11575. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  11576. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  11577. }
  11578. float sumqx = 0, sumq2 = 0;
  11579. for (int i = 0; i < 32; ++i) {
  11580. float w = weight[i];
  11581. float q = 2*L[i] + 1;
  11582. sumqx += w*xval[i]*q;
  11583. sumq2 += w*q*q;
  11584. }
  11585. if (sumq2 > 0) scale = sumqx/sumq2;
  11586. }
  11587. if (scale < 0) {
  11588. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  11589. // and correspondingly flip quant signs.
  11590. scale = -scale;
  11591. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  11592. }
  11593. for (int k = 0; k < 8; ++k) {
  11594. uint16_t u = 0;
  11595. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  11596. int grid_index = kmap_q3xs[u];
  11597. if (grid_index < 0) {
  11598. printf("Oops: found point %u not on grid:", u);
  11599. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  11600. printf("\n");
  11601. GGML_ABORT("fatal error");
  11602. }
  11603. if (grid_size == 256) {
  11604. q3[8*ib+k] = grid_index;
  11605. } else {
  11606. q3[8*ib+k] = grid_index & 255;
  11607. qh[ib] |= ((grid_index >> 8) << k);
  11608. }
  11609. }
  11610. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  11611. GGML_ASSERT(scale >= 0);
  11612. scales[ib] = scale;
  11613. max_scale = MAX(max_scale, scale);
  11614. }
  11615. if (!max_scale) {
  11616. memset(qs, 0, quant_size);
  11617. dh += block_size/sizeof(ggml_fp16_t);
  11618. qs += block_size;
  11619. continue;
  11620. }
  11621. float d = max_scale/31;
  11622. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  11623. float id = 1/d;
  11624. for (int ib = 0; ib < QK_K/32; ++ib) {
  11625. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11626. l = MAX(0, MIN(15, l));
  11627. scales_and_signs[ib] |= ((uint32_t)l << 28);
  11628. }
  11629. memcpy(qs, q3, quant_size);
  11630. dh += block_size/sizeof(ggml_fp16_t);
  11631. qs += block_size;
  11632. }
  11633. }
  11634. size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11635. GGML_ASSERT(n_per_row%QK_K == 0);
  11636. int64_t nblock = n_per_row/QK_K;
  11637. char * qrow = (char *)dst;
  11638. for (int64_t row = 0; row < nrow; ++row) {
  11639. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  11640. src += n_per_row;
  11641. qrow += nblock*sizeof(block_iq3_xxs);
  11642. }
  11643. return nrow * nblock * sizeof(block_iq3_xxs);
  11644. }
  11645. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int64_t k) {
  11646. assert(k % QK_K == 0);
  11647. block_iq3_xxs * restrict y = vy;
  11648. quantize_row_iq3_xxs_ref(x, y, k);
  11649. }
  11650. void quantize_row_iq3_xxs_ref(const float * restrict x, block_iq3_xxs * restrict y, int64_t k) {
  11651. assert(k % QK_K == 0);
  11652. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  11653. }
  11654. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  11655. const float * restrict quant_weights,
  11656. float * scales,
  11657. float * weight,
  11658. float * xval,
  11659. int8_t * L,
  11660. int8_t * Laux,
  11661. float * waux,
  11662. bool * is_on_grid,
  11663. bool * is_on_grid_aux,
  11664. uint8_t * block_signs) {
  11665. const int gindex = iq3_data_index(512);
  11666. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  11667. const int * kmap_q3xs = iq3_data[gindex].map;
  11668. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  11669. //GGML_ASSERT(quant_weights && "missing quantization weights");
  11670. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  11671. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  11672. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  11673. GGML_ASSERT(n%QK_K == 0);
  11674. const int kMaxQ = 8;
  11675. const int64_t nbl = n/QK_K;
  11676. block_iq3_s * y = vy;
  11677. const int bs4 = block_size/4;
  11678. const int bs8 = block_size/8;
  11679. for (int ibl = 0; ibl < nbl; ++ibl) {
  11680. memset(&y[ibl], 0, sizeof(block_iq3_s));
  11681. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11682. uint8_t * qs = y[ibl].qs;
  11683. uint8_t * qh = y[ibl].qh;
  11684. uint8_t * signs = y[ibl].signs;
  11685. float max_scale = 0;
  11686. const float * xbl = x + QK_K*ibl;
  11687. float sumx2 = 0;
  11688. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11689. float sigma2 = 2*sumx2/QK_K;
  11690. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11691. const float * xb = xbl + block_size*ib;
  11692. if (quant_weights) {
  11693. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11694. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11695. } else {
  11696. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11697. }
  11698. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  11699. for (int k = 0; k < bs8; ++k) {
  11700. uint8_t s = 0;
  11701. for (int i = 0; i < 8; ++i) {
  11702. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11703. else {
  11704. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  11705. }
  11706. }
  11707. block_signs[k] = s;
  11708. }
  11709. float max = xval[0];
  11710. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  11711. if (!max) {
  11712. scales[ib] = 0;
  11713. continue;
  11714. }
  11715. float best = 0;
  11716. float scale = max/(2*kMaxQ-1);
  11717. for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
  11718. for (int is = -9; is <= 9; ++is) {
  11719. float id = (2*kMaxQ-1+is*0.2f)/max;
  11720. float this_scale = 1/id;
  11721. for (int k = 0; k < bs4; ++k) {
  11722. for (int i = 0; i < 4; ++i) {
  11723. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11724. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11725. }
  11726. uint16_t u = 0;
  11727. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  11728. int grid_index = kmap_q3xs[u];
  11729. is_on_grid_aux[k] = true;
  11730. if (grid_index < 0) {
  11731. is_on_grid_aux[k] = false;
  11732. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11733. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  11734. }
  11735. }
  11736. float sumqx = 0, sumq2 = 0;
  11737. for (int i = 0; i < block_size; ++i) {
  11738. float w = weight[i];
  11739. float q = 2*Laux[i] + 1;
  11740. sumqx += w*xval[i]*q;
  11741. sumq2 += w*q*q;
  11742. }
  11743. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11744. scale = sumqx/sumq2; best = scale*sumqx;
  11745. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  11746. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11747. }
  11748. }
  11749. int n_not_ongrid = 0;
  11750. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11751. if (n_not_ongrid > 0 && scale > 0) {
  11752. float id = 1/scale;
  11753. for (int k = 0; k < bs4; ++k) {
  11754. //if (is_on_grid[k]) continue;
  11755. uint16_t u = 0;
  11756. for (int i = 0; i < 4; ++i) {
  11757. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11758. l = MAX(0, MIN(kMaxQ-1, l));
  11759. u |= (l << 3*i);
  11760. }
  11761. int grid_index = kmap_q3xs[u];
  11762. if (grid_index < 0) {
  11763. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11764. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  11765. }
  11766. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  11767. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  11768. }
  11769. float sumqx = 0, sumq2 = 0;
  11770. for (int i = 0; i < block_size; ++i) {
  11771. float w = weight[i];
  11772. float q = 2*L[i] + 1;
  11773. sumqx += w*xval[i]*q;
  11774. sumq2 += w*q*q;
  11775. }
  11776. if (sumq2 > 0) scale = sumqx/sumq2;
  11777. }
  11778. if (scale < 0) {
  11779. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  11780. // and correspondingly flip quant signs.
  11781. scale = -scale;
  11782. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  11783. }
  11784. for (int k = 0; k < bs4; ++k) {
  11785. uint16_t u = 0;
  11786. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  11787. int grid_index = kmap_q3xs[u];
  11788. if (grid_index < 0) {
  11789. printf("Oops: found point %u not on grid:", u);
  11790. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  11791. printf("\n");
  11792. GGML_ABORT("fatal error");
  11793. }
  11794. qs[k] = grid_index & 255;
  11795. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  11796. }
  11797. qs += bs4;
  11798. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  11799. signs += bs8;
  11800. GGML_ASSERT(scale >= 0);
  11801. scales[ib] = scale;
  11802. max_scale = MAX(max_scale, scale);
  11803. }
  11804. if (!max_scale) {
  11805. continue;
  11806. }
  11807. float d = max_scale/31;
  11808. y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
  11809. float id = 1/d;
  11810. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  11811. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  11812. l1 = MAX(0, MIN(15, l1));
  11813. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  11814. l2 = MAX(0, MIN(15, l2));
  11815. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  11816. }
  11817. }
  11818. }
  11819. #define IQ3S_BLOCK_SIZE 32
  11820. size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11821. GGML_ASSERT(n_per_row%QK_K == 0);
  11822. int64_t nblock = n_per_row/QK_K;
  11823. float scales[QK_K/IQ3S_BLOCK_SIZE];
  11824. float weight[IQ3S_BLOCK_SIZE];
  11825. float xval[IQ3S_BLOCK_SIZE];
  11826. int8_t L[IQ3S_BLOCK_SIZE];
  11827. int8_t Laux[IQ3S_BLOCK_SIZE];
  11828. float waux[IQ3S_BLOCK_SIZE];
  11829. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  11830. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  11831. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  11832. char * qrow = (char *)dst;
  11833. for (int64_t row = 0; row < nrow; ++row) {
  11834. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  11835. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  11836. src += n_per_row;
  11837. qrow += nblock*sizeof(block_iq3_s);
  11838. }
  11839. return nrow * nblock * sizeof(block_iq3_s);
  11840. }
  11841. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int64_t k) {
  11842. assert(k % QK_K == 0);
  11843. block_iq3_s * restrict y = vy;
  11844. quantize_row_iq3_s_ref(x, y, k);
  11845. }
  11846. void quantize_row_iq3_s_ref(const float * restrict x, block_iq3_s * restrict y, int64_t k) {
  11847. assert(k % QK_K == 0);
  11848. quantize_iq3_s(x, y, 1, k, NULL);
  11849. }
  11850. // =================================== 1.5 bpw ===================================================
  11851. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  11852. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  11853. int num_neighbors = neighbours[0];
  11854. GGML_ASSERT(num_neighbors > 0);
  11855. float best_score = -FLT_MAX;
  11856. int grid_index = -1;
  11857. for (int j = 1; j <= num_neighbors; ++j) {
  11858. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11859. float sumqx = 0, sumq2 = 0;
  11860. for (int i = 0; i < 8; ++i) {
  11861. float q = (pg[i] - 3)/2;
  11862. float w = weight[i];
  11863. sumqx += w*q*xval[i];
  11864. sumq2 += w*q*q;
  11865. }
  11866. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11867. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  11868. grid_index = neighbours[j];
  11869. }
  11870. }
  11871. if (grid_index < 0) {
  11872. for (int i = 0; i < ngrid; ++i) {
  11873. const int8_t * grid_i = (const int8_t *)(grid + i);
  11874. float sumqx = 0, sumq2 = 0;
  11875. for (int j = 0; j < 8; ++j) {
  11876. float w = weight[j];
  11877. float q = (grid_i[j] - 3)/2;
  11878. sumqx += w*q*xval[j];
  11879. sumq2 += w*q*q;
  11880. }
  11881. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11882. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  11883. grid_index = i;
  11884. }
  11885. }
  11886. }
  11887. if (grid_index < 0) {
  11888. printf("Oops, did not find grid point\n");
  11889. printf("Have %d neighbours\n", num_neighbors);
  11890. for (int j = 1; j <= num_neighbors; ++j) {
  11891. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11892. float sumqx = 0, sumq2 = 0;
  11893. for (int i = 0; i < 8; ++i) {
  11894. float q = (pg[i] - 3)/2;
  11895. float w = weight[i];
  11896. sumqx += w*q*xval[i];
  11897. sumq2 += w*q*q;
  11898. }
  11899. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  11900. }
  11901. }
  11902. GGML_ASSERT(grid_index >= 0);
  11903. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  11904. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  11905. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  11906. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11907. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  11908. return grid_index;
  11909. }
  11910. static int iq1_find_best_neighbour2(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  11911. const float * restrict xval, const float * restrict weight, float scale, const float * restrict xg, int8_t * restrict L, int ngrid) {
  11912. int num_neighbors = neighbours[0];
  11913. GGML_ASSERT(num_neighbors > 0);
  11914. float best_score = FLT_MAX;
  11915. int grid_index = -1;
  11916. for (int j = 1; j <= num_neighbors; ++j) {
  11917. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11918. float d2 = 0;
  11919. for (int i = 0; i < 8; ++i) {
  11920. float q = xg[(pg[i] - 1)/2];
  11921. float w = weight[i];
  11922. float diff = scale*q - xval[i];
  11923. d2 += w*diff*diff;
  11924. }
  11925. if (d2 < best_score) {
  11926. best_score = d2;
  11927. grid_index = neighbours[j];
  11928. }
  11929. }
  11930. if (grid_index < 0) {
  11931. for (int i = 0; i < ngrid; ++i) {
  11932. const int8_t * grid_i = (const int8_t *)(grid + i);
  11933. float d2 = 0;
  11934. for (int j = 0; j < 8; ++j) {
  11935. float w = weight[j];
  11936. float q = xg[(grid_i[j] - 1)/2];
  11937. float diff = scale*q - xval[i];
  11938. d2 += w*diff*diff;
  11939. }
  11940. if (d2 < best_score) {
  11941. best_score = d2;
  11942. grid_index = i;
  11943. }
  11944. }
  11945. }
  11946. if (grid_index < 0) {
  11947. printf("Oops, did not find grid point\n");
  11948. printf("Have %d neighbours\n", num_neighbors);
  11949. for (int j = 1; j <= num_neighbors; ++j) {
  11950. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11951. float sumqx = 0, sumq2 = 0;
  11952. for (int i = 0; i < 8; ++i) {
  11953. float q = xg[(pg[i] - 1)/2];
  11954. float w = weight[i];
  11955. sumqx += w*q*xval[i];
  11956. sumq2 += w*q*q;
  11957. }
  11958. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  11959. }
  11960. }
  11961. GGML_ASSERT(grid_index >= 0);
  11962. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11963. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  11964. return grid_index;
  11965. }
  11966. static int iq1_sort_helper(const void * left, const void * right) {
  11967. const float * l = left;
  11968. const float * r = right;
  11969. return *l < *r ? -1 : *l > *r ? 1 : 0;
  11970. }
  11971. #define IQ1S_BLOCK_SIZE 32
  11972. #define IQ1M_BLOCK_SIZE 16
  11973. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  11974. float * scales,
  11975. float * weight,
  11976. float * sumx,
  11977. float * sumw,
  11978. float * pairs,
  11979. int8_t * L,
  11980. uint16_t * index,
  11981. int8_t * shifts) {
  11982. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  11983. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11984. const int * kmap_q2xs = iq2_data[gindex].map;
  11985. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11986. GGML_ASSERT(quant_weights && "missing quantization weights");
  11987. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11988. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11989. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11990. GGML_ASSERT(n%QK_K == 0);
  11991. block_iq1_s * y = vy;
  11992. const int64_t nbl = n/QK_K;
  11993. const int block_size = IQ1S_BLOCK_SIZE;
  11994. const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
  11995. const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
  11996. int * idx = (int *)(pairs + 1);
  11997. for (int ibl = 0; ibl < nbl; ++ibl) {
  11998. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11999. memset(y[ibl].qs, 0, QK_K/8);
  12000. memset(y[ibl].qh, 0, QK_K/16);
  12001. float max_scale = 0;
  12002. const float * xbl = x + QK_K*ibl;
  12003. float sumx2 = 0;
  12004. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  12005. float sigma2 = 2*sumx2/QK_K;
  12006. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12007. const float * xb = xbl + block_size*ib;
  12008. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  12009. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12010. float max = fabsf(xb[0]);
  12011. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  12012. if (max < GROUP_MAX_EPS_IQ1_S) {
  12013. scales[ib] = 0;
  12014. memset(L, 1, block_size);
  12015. continue;
  12016. }
  12017. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  12018. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  12019. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  12020. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  12021. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  12022. // for each possible and score for each split.
  12023. for (int j = 0; j < block_size; ++j) {
  12024. pairs[2*j] = xb[j];
  12025. idx[2*j] = j;
  12026. }
  12027. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  12028. {
  12029. sumx[0] = sumw[0] = 0;
  12030. for (int j = 0; j < block_size; ++j) {
  12031. int i = idx[2*j];
  12032. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  12033. sumw[j+1] = sumw[j] + weight[i];
  12034. }
  12035. }
  12036. float best_score = -FLT_MIN, scale = max;
  12037. int besti1 = -1, besti2 = -1, best_shift = 0;
  12038. for (int i1 = 0; i1 <= block_size; ++i1) {
  12039. for (int i2 = i1; i2 <= block_size; ++i2) {
  12040. float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
  12041. float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
  12042. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  12043. scale = sumqx/sumq2; best_score = scale*sumqx;
  12044. besti1 = i1; besti2 = i2; best_shift = 1;
  12045. }
  12046. sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
  12047. sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
  12048. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  12049. scale = sumqx/sumq2; best_score = scale*sumqx;
  12050. besti1 = i1; besti2 = i2; best_shift = -1;
  12051. }
  12052. }
  12053. }
  12054. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
  12055. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  12056. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  12057. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  12058. if (scale < 0) {
  12059. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  12060. scale = -scale; best_shift = -best_shift;
  12061. }
  12062. bool all_on_grid = true;
  12063. const float * xx = best_shift == 1 ? x_p : x_m;
  12064. for (int k = 0; k < block_size/8; ++k) {
  12065. uint16_t u = 0;
  12066. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  12067. int grid_index = kmap_q2xs[u];
  12068. if (grid_index < 0) {
  12069. all_on_grid = false;
  12070. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  12071. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  12072. GGML_ASSERT(grid_index >= 0);
  12073. }
  12074. index[k] = grid_index;
  12075. }
  12076. if (!all_on_grid) {
  12077. float sumqx = 0, sumq2 = 0;
  12078. for (int k = 0; k < block_size/8; ++k) {
  12079. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  12080. for (int j = 0; j < 8; ++j) {
  12081. float w = weight[8*k + j];
  12082. float q = xx[(pg[j] - 1)/2];
  12083. sumqx += w*q*xb[8*k+j];
  12084. sumq2 += w*q*q;
  12085. }
  12086. }
  12087. if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
  12088. }
  12089. uint16_t h = 0;
  12090. for (int k = 0; k < block_size/8; ++k) {
  12091. y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
  12092. h |= (index[k] >> 8) << 3*k;
  12093. }
  12094. y[ibl].qh[ib] = h;
  12095. GGML_ASSERT(scale >= 0);
  12096. scales[ib] = scale;
  12097. shifts[ib] = best_shift;
  12098. max_scale = MAX(max_scale, scale);
  12099. }
  12100. if (!max_scale) {
  12101. continue;
  12102. }
  12103. float d = max_scale/15;
  12104. y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
  12105. float id = 1/d;
  12106. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12107. int l = nearest_int(0.5f*(id*scales[ib]-1));
  12108. l = MAX(0, MIN(7, l));
  12109. if (shifts[ib] == -1) l |= 8;
  12110. y[ibl].qh[ib] |= (l << 12);
  12111. }
  12112. }
  12113. }
  12114. size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12115. GGML_ASSERT(n_per_row%QK_K == 0);
  12116. float scales[QK_K/IQ1S_BLOCK_SIZE];
  12117. float weight[IQ1S_BLOCK_SIZE];
  12118. int8_t L[IQ1S_BLOCK_SIZE];
  12119. float sumx[IQ1S_BLOCK_SIZE+1];
  12120. float sumw[IQ1S_BLOCK_SIZE+1];
  12121. float pairs[2*IQ1S_BLOCK_SIZE];
  12122. uint16_t index[IQ1S_BLOCK_SIZE/8];
  12123. int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
  12124. int64_t nblock = n_per_row/QK_K;
  12125. char * qrow = (char *)dst;
  12126. for (int64_t row = 0; row < nrow; ++row) {
  12127. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
  12128. src += n_per_row;
  12129. qrow += nblock*sizeof(block_iq1_s);
  12130. }
  12131. return nrow * nblock * sizeof(block_iq1_s);
  12132. }
  12133. static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  12134. float * scales,
  12135. float * weight,
  12136. float * pairs,
  12137. int8_t * L,
  12138. uint16_t * index,
  12139. int8_t * shifts) {
  12140. const int gindex = iq2_data_index(GGML_TYPE_IQ1_M);
  12141. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  12142. const int * kmap_q2xs = iq2_data[gindex].map;
  12143. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  12144. //GGML_ASSERT(quant_weights && "missing quantization weights");
  12145. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  12146. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  12147. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  12148. GGML_ASSERT(n%QK_K == 0);
  12149. block_iq1_m * y = vy;
  12150. const int64_t nbl = n/QK_K;
  12151. const int block_size = IQ1M_BLOCK_SIZE;
  12152. const float x_p[3] = {-1 + IQ1M_DELTA, IQ1M_DELTA, 1 + IQ1M_DELTA};
  12153. const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA};
  12154. const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88};
  12155. int * idx = (int *)(pairs + 1);
  12156. float sumqx[4], sumq2[4];
  12157. iq1m_scale_t s;
  12158. const float * xx;
  12159. for (int ibl = 0; ibl < nbl; ++ibl) {
  12160. memset(y[ibl].qs, 0, QK_K/8);
  12161. memset(y[ibl].qh, 0, QK_K/16);
  12162. memset(y[ibl].scales, 0, QK_K/32);
  12163. float max_scale = 0;
  12164. const float * xbl = x + QK_K*ibl;
  12165. float sumx2 = 0;
  12166. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  12167. float sigma2 = 2*sumx2/QK_K;
  12168. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12169. const float * xb = xbl + block_size*ib;
  12170. if (quant_weights) {
  12171. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  12172. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12173. } else {
  12174. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  12175. }
  12176. float max = fabsf(xb[0]);
  12177. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  12178. if (max < GROUP_MAX_EPS_IQ1_M) {
  12179. scales[ib] = 0;
  12180. memset(L, 1, block_size);
  12181. continue;
  12182. }
  12183. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  12184. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  12185. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  12186. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  12187. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  12188. // for each possible and score for each split.
  12189. for (int j = 0; j < block_size; ++j) {
  12190. pairs[2*j] = xb[j];
  12191. idx[2*j] = j;
  12192. }
  12193. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  12194. float best_score = -FLT_MIN, scale = max;
  12195. int besti1 = -1, besti2 = -1, best_k = -1;
  12196. // 0: +, +
  12197. // 1: +, -
  12198. // 2: -, +
  12199. // 3: -, -
  12200. for (int i1 = 0; i1 <= block_size; ++i1) {
  12201. for (int i2 = i1; i2 <= block_size; ++i2) {
  12202. memset(sumqx, 0, 4*sizeof(float));
  12203. memset(sumq2, 0, 4*sizeof(float));
  12204. for (int j = 0; j < i1; ++j) {
  12205. int i = idx[2*j];
  12206. if (i < block_size/2) {
  12207. sumqx[0] += weight[i]*x_p[0]*xb[i];
  12208. sumqx[1] += weight[i]*x_p[0]*xb[i];
  12209. sumqx[2] += weight[i]*x_m[0]*xb[i];
  12210. sumqx[3] += weight[i]*x_m[0]*xb[i];
  12211. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  12212. sumq2[1] += weight[i]*x_p[0]*x_p[0];
  12213. sumq2[2] += weight[i]*x_m[0]*x_m[0];
  12214. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  12215. } else {
  12216. sumqx[0] += weight[i]*x_p[0]*xb[i];
  12217. sumqx[2] += weight[i]*x_p[0]*xb[i];
  12218. sumqx[1] += weight[i]*x_m[0]*xb[i];
  12219. sumqx[3] += weight[i]*x_m[0]*xb[i];
  12220. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  12221. sumq2[2] += weight[i]*x_p[0]*x_p[0];
  12222. sumq2[1] += weight[i]*x_m[0]*x_m[0];
  12223. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  12224. }
  12225. }
  12226. for (int j = i1; j < i2; ++j) {
  12227. int i = idx[2*j];
  12228. if (i < block_size/2) {
  12229. sumqx[0] += weight[i]*x_p[1]*xb[i];
  12230. sumqx[1] += weight[i]*x_p[1]*xb[i];
  12231. sumqx[2] += weight[i]*x_m[1]*xb[i];
  12232. sumqx[3] += weight[i]*x_m[1]*xb[i];
  12233. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  12234. sumq2[1] += weight[i]*x_p[1]*x_p[1];
  12235. sumq2[2] += weight[i]*x_m[1]*x_m[1];
  12236. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  12237. } else {
  12238. sumqx[0] += weight[i]*x_p[1]*xb[i];
  12239. sumqx[2] += weight[i]*x_p[1]*xb[i];
  12240. sumqx[1] += weight[i]*x_m[1]*xb[i];
  12241. sumqx[3] += weight[i]*x_m[1]*xb[i];
  12242. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  12243. sumq2[2] += weight[i]*x_p[1]*x_p[1];
  12244. sumq2[1] += weight[i]*x_m[1]*x_m[1];
  12245. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  12246. }
  12247. }
  12248. for (int j = i2; j < block_size; ++j) {
  12249. int i = idx[2*j];
  12250. if (i < block_size/2) {
  12251. sumqx[0] += weight[i]*x_p[2]*xb[i];
  12252. sumqx[1] += weight[i]*x_p[2]*xb[i];
  12253. sumqx[2] += weight[i]*x_m[2]*xb[i];
  12254. sumqx[3] += weight[i]*x_m[2]*xb[i];
  12255. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  12256. sumq2[1] += weight[i]*x_p[2]*x_p[2];
  12257. sumq2[2] += weight[i]*x_m[2]*x_m[2];
  12258. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  12259. } else {
  12260. sumqx[0] += weight[i]*x_p[2]*xb[i];
  12261. sumqx[2] += weight[i]*x_p[2]*xb[i];
  12262. sumqx[1] += weight[i]*x_m[2]*xb[i];
  12263. sumqx[3] += weight[i]*x_m[2]*xb[i];
  12264. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  12265. sumq2[2] += weight[i]*x_p[2]*x_p[2];
  12266. sumq2[1] += weight[i]*x_m[2]*x_m[2];
  12267. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  12268. }
  12269. }
  12270. for (int k = 0; k < 4; ++k) {
  12271. if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) {
  12272. scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k];
  12273. besti1 = i1; besti2 = i2; best_k = k;
  12274. }
  12275. }
  12276. }
  12277. }
  12278. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0);
  12279. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  12280. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  12281. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  12282. if (scale < 0) {
  12283. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  12284. scale = -scale;
  12285. best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0;
  12286. }
  12287. bool all_on_grid = true;
  12288. for (int k = 0; k < block_size/8; ++k) {
  12289. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  12290. else xx = best_k%2 == 0 ? x_p : x_m;
  12291. uint16_t u = 0;
  12292. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  12293. int grid_index = kmap_q2xs[u];
  12294. if (grid_index < 0) {
  12295. all_on_grid = false;
  12296. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  12297. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  12298. GGML_ASSERT(grid_index >= 0);
  12299. }
  12300. index[k] = grid_index;
  12301. }
  12302. if (!all_on_grid) {
  12303. float sumqx_f = 0, sumq2_f = 0;
  12304. for (int k = 0; k < block_size/8; ++k) {
  12305. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  12306. else xx = best_k%2 == 0 ? x_p : x_m;
  12307. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  12308. for (int j = 0; j < 8; ++j) {
  12309. float w = weight[8*k + j];
  12310. float q = xx[(pg[j] - 1)/2];
  12311. sumqx_f += w*q*xb[8*k+j];
  12312. sumq2_f += w*q*q;
  12313. }
  12314. }
  12315. if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f;
  12316. }
  12317. y[ibl].qs[2*ib + 0] = index[0] & 255;
  12318. y[ibl].qs[2*ib + 1] = index[1] & 255;
  12319. y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
  12320. GGML_ASSERT(scale >= 0);
  12321. scales[ib] = scale;
  12322. shifts[ib] = best_k;
  12323. max_scale = MAX(max_scale, scale);
  12324. }
  12325. if (!max_scale) {
  12326. continue;
  12327. }
  12328. uint16_t * sc = (uint16_t *)y[ibl].scales;
  12329. float d = max_scale/15;
  12330. float id = 1/d;
  12331. float sumqx_f = 0, sumq2_f = 0;
  12332. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  12333. int l = nearest_int(0.5f*(id*scales[ib+0]-1));
  12334. l = MAX(0, MIN(7, l));
  12335. sc[ib/4] |= (l << 3*(ib%4));
  12336. y[ibl].qh[ib] |= masks[shifts[ib]];
  12337. const float * xb = xbl + block_size*ib;
  12338. if (quant_weights) {
  12339. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  12340. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12341. } else {
  12342. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  12343. }
  12344. for (int k = 0; k < block_size/8; ++k) {
  12345. if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m;
  12346. else xx = shifts[ib]%2 == 0 ? x_p : x_m;
  12347. const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700));
  12348. for (int j = 0; j < 8; ++j) {
  12349. float w = weight[8*k + j];
  12350. float q = xx[(pg[j] - 1)/2]*(2*l+1);
  12351. sumqx_f += w*q*xb[8*k+j];
  12352. sumq2_f += w*q*q;
  12353. }
  12354. }
  12355. }
  12356. if (sumq2_f > 0) d = sumqx_f/sumq2_f;
  12357. s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed.
  12358. sc[0] |= ((s.u16 & 0x000f) << 12);
  12359. sc[1] |= ((s.u16 & 0x00f0) << 8);
  12360. sc[2] |= ((s.u16 & 0x0f00) << 4);
  12361. sc[3] |= ((s.u16 & 0xf000) << 0);
  12362. }
  12363. }
  12364. size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12365. GGML_ASSERT(n_per_row%QK_K == 0);
  12366. float scales[QK_K/IQ1M_BLOCK_SIZE];
  12367. float weight[IQ1M_BLOCK_SIZE];
  12368. int8_t L[IQ1M_BLOCK_SIZE];
  12369. float pairs[2*IQ1M_BLOCK_SIZE];
  12370. uint16_t index[IQ1M_BLOCK_SIZE/8];
  12371. int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
  12372. int64_t nblock = n_per_row/QK_K;
  12373. char * qrow = (char *)dst;
  12374. for (int64_t row = 0; row < nrow; ++row) {
  12375. quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts);
  12376. src += n_per_row;
  12377. qrow += nblock*sizeof(block_iq1_m);
  12378. }
  12379. return nrow * nblock * sizeof(block_iq1_m);
  12380. }
  12381. // ============================ 4-bit non-linear quants
  12382. static inline int best_index_int8(int n, const int8_t * val, float x) {
  12383. if (x <= val[0]) return 0;
  12384. if (x >= val[n-1]) return n-1;
  12385. int ml = 0, mu = n-1;
  12386. while (mu-ml > 1) {
  12387. int mav = (ml+mu)/2;
  12388. if (x < val[mav]) mu = mav; else ml = mav;
  12389. }
  12390. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  12391. }
  12392. static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
  12393. ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
  12394. float * scales, float * weight, uint8_t * L,
  12395. const int8_t * values,
  12396. const float * quant_weights,
  12397. const int ntry) {
  12398. float sigma2 = 0;
  12399. for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
  12400. sigma2 *= 2.f/super_block_size;
  12401. memset(q4, 0, super_block_size/2);
  12402. dh[0] = GGML_FP32_TO_FP16(0.f);
  12403. float max_scale = 0, amax_scale = 0;
  12404. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  12405. const float * xb = x + ib*block_size;
  12406. uint8_t * Lb = L + ib*block_size;
  12407. if (quant_weights) {
  12408. const float * qw = quant_weights + ib*block_size;
  12409. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  12410. } else {
  12411. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  12412. }
  12413. float amax = 0, max = 0;
  12414. for (int j = 0; j < block_size; ++j) {
  12415. float ax = fabsf(xb[j]);
  12416. if (ax > amax) {
  12417. amax = ax; max = xb[j];
  12418. }
  12419. }
  12420. if (amax < GROUP_MAX_EPS) {
  12421. scales[ib] = 0;
  12422. continue;
  12423. }
  12424. float d = ntry > 0 ? -max/values[0] : max/values[0];
  12425. float id = 1/d;
  12426. float sumqx = 0, sumq2 = 0;
  12427. for (int j = 0; j < block_size; ++j) {
  12428. float al = id*xb[j];
  12429. int l = best_index_int8(16, values, al);
  12430. Lb[j] = l;
  12431. float q = values[l];
  12432. float w = weight[j];
  12433. sumqx += w*q*xb[j];
  12434. sumq2 += w*q*q;
  12435. }
  12436. d = sumqx/sumq2;
  12437. float best = d*sumqx;
  12438. for (int itry = -ntry; itry <= ntry; ++itry) {
  12439. id = (itry + values[0])/max;
  12440. sumqx = sumq2 = 0;
  12441. for (int j = 0; j < block_size; ++j) {
  12442. float al = id*xb[j];
  12443. int l = best_index_int8(16, values, al);
  12444. float q = values[l];
  12445. float w = weight[j];
  12446. sumqx += w*q*xb[j];
  12447. sumq2 += w*q*q;
  12448. }
  12449. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  12450. d = sumqx/sumq2; best = d * sumqx;
  12451. }
  12452. }
  12453. scales[ib] = d;
  12454. float abs_d = fabsf(d);
  12455. if (abs_d > amax_scale) {
  12456. amax_scale = abs_d; max_scale = d;
  12457. }
  12458. }
  12459. if (super_block_size/block_size > 1) {
  12460. int nb = super_block_size/block_size;
  12461. memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
  12462. float d = -max_scale/32;
  12463. dh[0] = GGML_FP32_TO_FP16(d);
  12464. float id = d ? 1/d : 0.f;
  12465. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  12466. int l = nearest_int(id*scales[ib]);
  12467. l = MAX(-32, MIN(31, l));
  12468. float dl = d * l;
  12469. float idl = dl ? 1/dl : 0.f;
  12470. uint8_t * Lb = L + ib*block_size;
  12471. const float * xb = x + ib*block_size;
  12472. for (int j = 0; j < block_size; ++j) {
  12473. Lb[j] = best_index_int8(16, values, idl*xb[j]);
  12474. }
  12475. l += 32;
  12476. uint8_t l_l = l & 0xf;
  12477. uint8_t l_h = l >> 4;
  12478. if (ib%2 == 0) scales_l[ib/2] = l_l;
  12479. else scales_l[ib/2] |= (l_l << 4);
  12480. scales_h[ib/8] |= (l_h << 2*(ib%8));
  12481. }
  12482. } else {
  12483. dh[0] = GGML_FP32_TO_FP16(scales[0]);
  12484. if (ntry > 0) {
  12485. float id = scales[0] ? 1/scales[0] : 0;
  12486. for (int j = 0; j < super_block_size; ++j) {
  12487. L[j] = best_index_int8(16, values, id*x[j]);
  12488. }
  12489. }
  12490. }
  12491. for (int i = 0; i < super_block_size/32; ++i) {
  12492. for (int j = 0; j < 16; ++j) {
  12493. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  12494. }
  12495. }
  12496. }
  12497. size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12498. GGML_ASSERT(n_per_row%QK4_NL == 0);
  12499. int64_t nblock = n_per_row/QK4_NL;
  12500. char * qrow = (char *)dst;
  12501. uint8_t L[QK4_NL];
  12502. float weight[QK4_NL];
  12503. uint16_t unused_h;
  12504. uint8_t * unused_l = NULL;
  12505. float scale;
  12506. for (int64_t row = 0; row < nrow; ++row) {
  12507. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  12508. for (int ibl = 0; ibl < nblock; ++ibl) {
  12509. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  12510. quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  12511. &scale, weight, L, kvalues_iq4nl, qw, 7);
  12512. }
  12513. src += n_per_row;
  12514. qrow += nblock*sizeof(block_iq4_nl);
  12515. }
  12516. return nrow * nblock * sizeof(block_iq4_nl);
  12517. }
  12518. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int64_t k) {
  12519. GGML_ASSERT(k%QK4_NL == 0);
  12520. int64_t nblock = k/QK4_NL;
  12521. uint8_t L[QK4_NL];
  12522. float weight[QK4_NL];
  12523. uint16_t unused_h;
  12524. uint8_t * unused_l = NULL;
  12525. float scale;
  12526. block_iq4_nl * iq4 = (block_iq4_nl *)vy;
  12527. for (int ibl = 0; ibl < nblock; ++ibl) {
  12528. quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  12529. &scale, weight, L, kvalues_iq4nl, NULL, -1);
  12530. }
  12531. }
  12532. void quantize_row_iq4_nl_ref(const float * restrict x, block_iq4_nl * restrict y, int64_t k) {
  12533. assert(k % QK4_NL == 0);
  12534. quantize_row_iq4_nl(x, y, k);
  12535. }
  12536. size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12537. GGML_ASSERT(n_per_row%QK_K == 0);
  12538. int64_t nblock = n_per_row/QK_K;
  12539. char * qrow = (char *)dst;
  12540. uint8_t L[QK_K];
  12541. float weight[32];
  12542. float scales[QK_K/32];
  12543. for (int64_t row = 0; row < nrow; ++row) {
  12544. block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
  12545. for (int ibl = 0; ibl < nblock; ++ibl) {
  12546. const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
  12547. quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
  12548. scales, weight, L, kvalues_iq4nl, qw, 7);
  12549. }
  12550. src += n_per_row;
  12551. qrow += nblock*sizeof(block_iq4_xs);
  12552. }
  12553. return nrow * nblock * sizeof(block_iq4_xs);
  12554. }
  12555. void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int64_t k) {
  12556. assert(k % QK_K == 0);
  12557. block_iq4_xs * restrict y = vy;
  12558. quantize_row_iq4_xs_ref(x, y, k);
  12559. }
  12560. void quantize_row_iq4_xs_ref(const float * restrict x, block_iq4_xs * restrict y, int64_t k) {
  12561. assert(k % QK_K == 0);
  12562. quantize_iq4_xs(x, y, 1, k, NULL);
  12563. }
  12564. // =============================== 2.5625 bpw
  12565. static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  12566. const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
  12567. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  12568. const int * kmap_q2xs = iq2_data[gindex].map;
  12569. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  12570. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  12571. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  12572. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  12573. GGML_ASSERT(n%QK_K == 0);
  12574. const int kMaxQ = 3;
  12575. const int64_t nbl = n/QK_K;
  12576. block_iq2_s * y = vy;
  12577. float scales[QK_K/16];
  12578. float weight[16];
  12579. float xval[16];
  12580. int8_t L[16];
  12581. int8_t Laux[16];
  12582. float waux[16];
  12583. bool is_on_grid[2];
  12584. bool is_on_grid_aux[2];
  12585. uint8_t block_signs[2];
  12586. for (int ibl = 0; ibl < nbl; ++ibl) {
  12587. memset(&y[ibl], 0, sizeof(block_iq2_s));
  12588. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  12589. float max_scale = 0;
  12590. const float * xbl = x + QK_K*ibl;
  12591. float sumx2 = 0;
  12592. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  12593. float sigma2 = 2*sumx2/QK_K;
  12594. for (int ib = 0; ib < QK_K/16; ++ib) {
  12595. const float * xb = xbl + 16*ib;
  12596. if (quant_weights) {
  12597. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  12598. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  12599. } else {
  12600. for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
  12601. }
  12602. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  12603. for (int k = 0; k < 2; ++k) {
  12604. uint8_t s = 0;
  12605. for (int i = 0; i < 8; ++i) {
  12606. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  12607. else {
  12608. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  12609. }
  12610. }
  12611. block_signs[k] = s;
  12612. }
  12613. float max = xval[0];
  12614. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  12615. if (max < GROUP_MAX_EPS_IQ2_S) {
  12616. scales[ib] = 0;
  12617. continue;
  12618. }
  12619. float best = 0;
  12620. float scale = max/(2*kMaxQ-1);
  12621. is_on_grid[0] = is_on_grid[1] = true;
  12622. for (int is = -9; is <= 9; ++is) {
  12623. float id = (2*kMaxQ-1+is*0.1f)/max;
  12624. float this_scale = 1/id;
  12625. for (int k = 0; k < 2; ++k) {
  12626. for (int i = 0; i < 8; ++i) {
  12627. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  12628. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  12629. }
  12630. uint16_t u = 0;
  12631. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  12632. int grid_index = kmap_q2xs[u];
  12633. is_on_grid_aux[k] = true;
  12634. if (grid_index < 0) {
  12635. is_on_grid_aux[k] = false;
  12636. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  12637. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  12638. }
  12639. }
  12640. float sumqx = 0, sumq2 = 0;
  12641. for (int i = 0; i < 16; ++i) {
  12642. float w = weight[i];
  12643. float q = 2*Laux[i] + 1;
  12644. sumqx += w*xval[i]*q;
  12645. sumq2 += w*q*q;
  12646. }
  12647. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  12648. scale = sumqx/sumq2; best = scale*sumqx;
  12649. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  12650. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  12651. }
  12652. }
  12653. int n_not_ongrid = 0;
  12654. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  12655. if (n_not_ongrid > 0 && scale > 0) {
  12656. float id = 1/scale;
  12657. for (int k = 0; k < 2; ++k) {
  12658. if (is_on_grid[k]) continue;
  12659. uint16_t u = 0;
  12660. for (int i = 0; i < 8; ++i) {
  12661. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  12662. l = MAX(0, MIN(kMaxQ-1, l));
  12663. u |= (l << 2*i);
  12664. L[8*k + i] = l;
  12665. }
  12666. int grid_index = kmap_q2xs[u];
  12667. if (grid_index < 0) {
  12668. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  12669. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  12670. }
  12671. }
  12672. float sumqx = 0, sumq2 = 0;
  12673. for (int i = 0; i < 16; ++i) {
  12674. float w = weight[i];
  12675. float q = 2*L[i] + 1;
  12676. sumqx += w*xval[i]*q;
  12677. sumq2 += w*q*q;
  12678. }
  12679. if (sumq2 > 0) scale = sumqx/sumq2;
  12680. }
  12681. if (scale < 0) {
  12682. scale = -scale;
  12683. for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
  12684. }
  12685. for (int k = 0; k < 2; ++k) {
  12686. uint16_t u = 0;
  12687. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  12688. int grid_index = kmap_q2xs[u];
  12689. if (grid_index < 0) {
  12690. printf("Oops: found point %u not on grid:", u);
  12691. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  12692. printf("\n");
  12693. GGML_ABORT("fatal error");
  12694. }
  12695. const int i8 = 2*ib + k;
  12696. y[ibl].qs[i8] = grid_index & 255;
  12697. y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
  12698. y[ibl].qs[QK_K/8 + i8] = block_signs[k];
  12699. }
  12700. GGML_ASSERT(scale >= 0);
  12701. scales[ib] = scale;
  12702. max_scale = MAX(max_scale, scale);
  12703. }
  12704. if (!max_scale) {
  12705. continue;
  12706. }
  12707. float d = max_scale/31;
  12708. y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
  12709. float id = 1/d;
  12710. for (int ib = 0; ib < QK_K/16; ++ib) {
  12711. int l = nearest_int(0.5f*(id*scales[ib]-1));
  12712. l = MAX(0, MIN(15, l));
  12713. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  12714. else y[ibl].scales[ib/2] |= (l << 4);
  12715. }
  12716. }
  12717. }
  12718. size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12719. GGML_ASSERT(n_per_row%QK_K == 0);
  12720. int64_t nblock = n_per_row/QK_K;
  12721. char * qrow = (char *)dst;
  12722. for (int64_t row = 0; row < nrow; ++row) {
  12723. quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
  12724. src += n_per_row;
  12725. qrow += nblock*sizeof(block_iq2_s);
  12726. }
  12727. return nrow * nblock * sizeof(block_iq2_s);
  12728. }
  12729. void quantize_row_iq2_s_ref(const float * restrict x, block_iq2_s * restrict y, int64_t k) {
  12730. assert(k % QK_K == 0);
  12731. quantize_iq2_s(x, y, 1, k, NULL);
  12732. }
  12733. void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k) {
  12734. assert(k % QK_K == 0);
  12735. block_iq2_s * restrict y = vy;
  12736. quantize_row_iq2_s_ref(x, y, k);
  12737. }
  12738. static bool validate_float(float f, size_t i) {
  12739. if (isinf(f)) {
  12740. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  12741. return false;
  12742. }
  12743. if (isnan(f)) {
  12744. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  12745. return false;
  12746. }
  12747. return true;
  12748. }
  12749. static bool isinf_fp16(ggml_fp16_t f) {
  12750. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
  12751. }
  12752. static bool isnan_fp16(ggml_fp16_t f) {
  12753. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
  12754. }
  12755. static bool validate_fp16(ggml_fp16_t f, size_t i) {
  12756. if (isinf_fp16(f)) {
  12757. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  12758. return false;
  12759. }
  12760. if (isnan_fp16(f)) {
  12761. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  12762. return false;
  12763. }
  12764. return true;
  12765. }
  12766. #define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
  12767. const type * q = (const type *) (data); \
  12768. for (size_t i = 0; i < (nb); ++i) { \
  12769. if (!validate_fp16(q[i].d, i)) { \
  12770. return false; \
  12771. } \
  12772. }
  12773. #define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
  12774. const type * q = (const type *) (data); \
  12775. for (size_t i = 0; i < (nb); ++i) { \
  12776. if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
  12777. return false; \
  12778. } \
  12779. }
  12780. #define VALIDATE_ROW_DATA_DVEC_F16_IMPL(type, data, nb, nr) \
  12781. const type * q = (const type *) (data); \
  12782. for (size_t i = 0; i < (nb); ++i) { \
  12783. for (size_t j = 0; j < (nr); ++j) { \
  12784. if (!validate_fp16(q[i].d[j], i)) { \
  12785. return false; \
  12786. } \
  12787. } \
  12788. }
  12789. bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
  12790. if (type < 0 || type >= GGML_TYPE_COUNT) {
  12791. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  12792. return false;
  12793. }
  12794. if (nbytes % ggml_type_size(type) != 0) {
  12795. fprintf(stderr, "%s: invalid size %zu for type %s (type size = %zu)\n", __func__, nbytes, ggml_type_name(type), ggml_type_size(type));
  12796. return false;
  12797. }
  12798. const size_t nb = nbytes/ggml_type_size(type);
  12799. switch (type) {
  12800. case GGML_TYPE_BF16:
  12801. {
  12802. int nans = 0;
  12803. int infs = 0;
  12804. const unsigned short * f = (const unsigned short *) data;
  12805. for (size_t i = 0; i < nb; ++i) {
  12806. nans += (f[i] & 0x7fff) > 0x7f80;
  12807. infs += (f[i] & 0x7fff) == 0x7f80;
  12808. }
  12809. if (nans) {
  12810. fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb);
  12811. return false;
  12812. }
  12813. if (infs) {
  12814. fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb);
  12815. return false;
  12816. }
  12817. } break;
  12818. case GGML_TYPE_F16:
  12819. {
  12820. const ggml_fp16_t * f = (const ggml_fp16_t *) data;
  12821. size_t i = 0;
  12822. #if defined(__AVX2__)
  12823. for (; i + 15 < nb; i += 16) {
  12824. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  12825. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
  12826. __m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
  12827. int mask = _mm256_movemask_epi8(cmp);
  12828. if (mask) {
  12829. for (size_t j = 0; j < 16; ++j) {
  12830. if (!validate_fp16(f[i + j], i + j)) {
  12831. return false;
  12832. }
  12833. }
  12834. GGML_UNREACHABLE();
  12835. }
  12836. }
  12837. #elif defined(__ARM_NEON)
  12838. for (; i + 7 < nb; i += 8) {
  12839. uint16x8_t v = vld1q_u16(f + i);
  12840. uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
  12841. uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
  12842. uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
  12843. if (mask) {
  12844. for (size_t j = 0; j < 8; ++j) {
  12845. if (!validate_fp16(f[i + j], i + j)) {
  12846. return false;
  12847. }
  12848. }
  12849. GGML_UNREACHABLE();
  12850. }
  12851. }
  12852. #endif
  12853. for (; i < nb; ++i) {
  12854. if (!validate_fp16(f[i], i)) {
  12855. return false;
  12856. }
  12857. }
  12858. } break;
  12859. case GGML_TYPE_F32:
  12860. {
  12861. const float * f = (const float *) data;
  12862. size_t i = 0;
  12863. #if defined(__AVX2__)
  12864. for (; i + 7 < nb; i += 8) {
  12865. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  12866. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
  12867. __m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
  12868. int mask = _mm256_movemask_epi8(cmp);
  12869. if (mask) {
  12870. for (size_t j = 0; j < 8; ++j) {
  12871. if (!validate_float(f[i + j], i + j)) {
  12872. return false;
  12873. }
  12874. }
  12875. GGML_UNREACHABLE();
  12876. }
  12877. }
  12878. #elif defined(__ARM_NEON)
  12879. for (; i + 3 < nb; i += 4) {
  12880. uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
  12881. uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
  12882. uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
  12883. uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
  12884. if (mask) {
  12885. for (size_t j = 0; j < 4; ++j) {
  12886. if (!validate_float(f[i + j], i + j)) {
  12887. return false;
  12888. }
  12889. }
  12890. GGML_UNREACHABLE();
  12891. }
  12892. }
  12893. #endif
  12894. for (; i < nb; ++i) {
  12895. if (!validate_float(f[i], i)) {
  12896. return false;
  12897. }
  12898. }
  12899. } break;
  12900. case GGML_TYPE_F64:
  12901. {
  12902. const double * f = (const double *) data;
  12903. for (size_t i = 0; i < nb; ++i) {
  12904. if (!validate_float(f[i], i)) {
  12905. return false;
  12906. }
  12907. }
  12908. } break;
  12909. case GGML_TYPE_Q4_0:
  12910. {
  12911. VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
  12912. } break;
  12913. case GGML_TYPE_Q4_1:
  12914. {
  12915. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
  12916. } break;
  12917. case GGML_TYPE_Q5_0:
  12918. {
  12919. VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
  12920. } break;
  12921. case GGML_TYPE_Q5_1:
  12922. {
  12923. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
  12924. } break;
  12925. case GGML_TYPE_Q8_0:
  12926. {
  12927. VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
  12928. } break;
  12929. case GGML_TYPE_Q2_K:
  12930. {
  12931. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
  12932. } break;
  12933. case GGML_TYPE_Q3_K:
  12934. {
  12935. VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
  12936. } break;
  12937. case GGML_TYPE_Q4_K:
  12938. {
  12939. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
  12940. } break;
  12941. case GGML_TYPE_Q5_K:
  12942. {
  12943. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
  12944. } break;
  12945. case GGML_TYPE_Q6_K:
  12946. {
  12947. VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
  12948. } break;
  12949. case GGML_TYPE_Q8_K:
  12950. {
  12951. const block_q8_K * q = (const block_q8_K *) data;
  12952. for (size_t i = 0; i < nb; ++i) {
  12953. if (!validate_float(q[i].d, i)) {
  12954. return false;
  12955. }
  12956. }
  12957. } break;
  12958. case GGML_TYPE_TQ1_0:
  12959. {
  12960. VALIDATE_ROW_DATA_D_F16_IMPL(block_tq1_0, data, nb);
  12961. } break;
  12962. case GGML_TYPE_TQ2_0:
  12963. {
  12964. VALIDATE_ROW_DATA_D_F16_IMPL(block_tq2_0, data, nb);
  12965. } break;
  12966. case GGML_TYPE_IQ1_S:
  12967. {
  12968. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
  12969. } break;
  12970. case GGML_TYPE_IQ1_M:
  12971. {
  12972. const block_iq1_m * q = (const block_iq1_m *) data;
  12973. for (size_t i = 0; i < nb; ++i) {
  12974. iq1m_scale_t scale;
  12975. const uint16_t * sc = (const uint16_t *)q[i].scales;
  12976. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  12977. if (!validate_fp16(scale.f16, i)) {
  12978. return false;
  12979. }
  12980. }
  12981. } break;
  12982. case GGML_TYPE_IQ2_XXS:
  12983. {
  12984. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
  12985. } break;
  12986. case GGML_TYPE_IQ2_XS:
  12987. {
  12988. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
  12989. } break;
  12990. case GGML_TYPE_IQ2_S:
  12991. {
  12992. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
  12993. } break;
  12994. case GGML_TYPE_IQ3_XXS:
  12995. {
  12996. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
  12997. } break;
  12998. case GGML_TYPE_IQ3_S:
  12999. {
  13000. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
  13001. } break;
  13002. case GGML_TYPE_IQ4_XS:
  13003. {
  13004. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
  13005. } break;
  13006. case GGML_TYPE_IQ4_NL:
  13007. {
  13008. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
  13009. } break;
  13010. case GGML_TYPE_Q4_0_4_4:
  13011. case GGML_TYPE_Q4_0_4_8:
  13012. {
  13013. VALIDATE_ROW_DATA_DVEC_F16_IMPL(block_q4_0x4, data, nbytes / sizeof(block_q4_0x4), 4);
  13014. } break;
  13015. case GGML_TYPE_Q4_0_8_8:
  13016. {
  13017. VALIDATE_ROW_DATA_DVEC_F16_IMPL(block_q4_0x8, data, nbytes / sizeof(block_q4_0x8), 8);
  13018. } break;
  13019. case GGML_TYPE_I8:
  13020. case GGML_TYPE_I16:
  13021. case GGML_TYPE_I32:
  13022. case GGML_TYPE_I64:
  13023. // nothing to validate
  13024. break;
  13025. default:
  13026. {
  13027. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  13028. return false;
  13029. }
  13030. }
  13031. return true;
  13032. }