| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871 |
- // Defines fileno on msys:
- #ifndef _GNU_SOURCE
- #define _GNU_SOURCE
- #include <cstdint>
- #include <cstdio>
- #endif
- #include "llama-util.h"
- #include "llama.h"
- #include "ggml.h"
- #include <array>
- #include <ctime>
- #include <cinttypes>
- #include <fstream>
- #include <random>
- #include <map>
- #include <unordered_map>
- #include <queue>
- #include <cassert>
- #include <cstring>
- #include <climits>
- #include <memory>
- #include <algorithm>
- #include <initializer_list>
- #include <thread>
- #include <atomic>
- #include <mutex>
- #include <sstream>
- #include <numeric>
- #define LLAMA_USE_SCRATCH
- #define LLAMA_MAX_SCRATCH_BUFFERS 16
- // available llama models
- enum e_model {
- MODEL_UNKNOWN,
- MODEL_7B,
- MODEL_13B,
- MODEL_30B,
- MODEL_65B,
- };
- static const size_t MB = 1024*1024;
- // computed for n_ctx == 2048
- // TODO: dynamically determine these sizes
- // needs modifications in ggml
- static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
- {
- static std::map<e_model, size_t> _MEM_REQ_SCRATCH0 = {
- { MODEL_7B, 512ull * MB },
- { MODEL_13B, 512ull * MB },
- { MODEL_30B, 512ull * MB },
- { MODEL_65B, 1024ull * MB },
- };
- return _MEM_REQ_SCRATCH0;
- }
- static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
- {
- static std::map<e_model, size_t> _MEM_REQ_SCRATCH1 = {
- { MODEL_7B, 512ull * MB },
- { MODEL_13B, 512ull * MB },
- { MODEL_30B, 512ull * MB },
- { MODEL_65B, 1024ull * MB },
- };
- return _MEM_REQ_SCRATCH1;
- }
- // 2*n_embd*n_ctx*n_layer*sizeof(float16)
- static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
- {
- static std::map<e_model, size_t> _MEM_REQ_KV_SELF = {
- { MODEL_7B, 1026ull * MB },
- { MODEL_13B, 1608ull * MB },
- { MODEL_30B, 3124ull * MB },
- { MODEL_65B, 5120ull * MB },
- };
- return _MEM_REQ_KV_SELF;
- }
- // this is mostly needed for temporary mul_mat buffers to dequantize the data
- // not actually needed if BLAS is disabled
- static const std::map<e_model, size_t> & MEM_REQ_EVAL()
- {
- static std::map<e_model, size_t> _MEM_REQ_EVAL = {
- { MODEL_7B, 768ull * MB },
- { MODEL_13B, 1024ull * MB },
- { MODEL_30B, 1280ull * MB },
- { MODEL_65B, 1536ull * MB },
- };
- return _MEM_REQ_EVAL;
- }
- // default hparams (LLaMA 7B)
- struct llama_hparams {
- uint32_t n_vocab = 32000;
- uint32_t n_ctx = 512; // this is provided as user input?
- uint32_t n_embd = 4096;
- uint32_t n_mult = 256;
- uint32_t n_head = 32;
- uint32_t n_layer = 32;
- uint32_t n_rot = 64;
- enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
- bool operator!=(const llama_hparams & other) const {
- return memcmp(this, &other, sizeof(llama_hparams));
- }
- };
- struct llama_layer {
- // normalization
- struct ggml_tensor * attention_norm;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- // normalization
- struct ggml_tensor * ffn_norm;
- // ff
- struct ggml_tensor * w1;
- struct ggml_tensor * w2;
- struct ggml_tensor * w3;
- };
- struct llama_kv_cache {
- struct ggml_tensor * k;
- struct ggml_tensor * v;
- struct ggml_context * ctx = NULL;
- llama_ctx_buffer buf;
- int n; // number of tokens currently in the cache
- ~llama_kv_cache() {
- if (ctx) {
- ggml_free(ctx);
- }
- }
- };
- struct llama_model {
- e_model type = MODEL_UNKNOWN;
- llama_hparams hparams;
- struct ggml_tensor * tok_embeddings;
- struct ggml_tensor * norm;
- struct ggml_tensor * output;
- std::vector<llama_layer> layers;
- // context
- struct ggml_context * ctx = NULL;
- // key + value cache for the self attention
- // TODO: move to llama_state
- struct llama_kv_cache kv_self;
- // the model memory buffer
- llama_ctx_buffer buf;
- // model memory mapped file
- std::unique_ptr<llama_mmap> mapping;
- // objects representing data potentially being locked in memory
- llama_mlock mlock_buf;
- llama_mlock mlock_mmap;
- // for quantize-stats only
- std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
- ~llama_model() {
- if (ctx) {
- ggml_free(ctx);
- }
- }
- };
- struct llama_vocab {
- using id = int32_t;
- using token = std::string;
- struct token_score {
- token tok;
- float score;
- };
- std::unordered_map<token, id> token_to_id;
- std::vector<token_score> id_to_token;
- };
- struct llama_context {
- std::mt19937 rng;
- int64_t t_load_us = 0;
- int64_t t_start_us = 0;
- bool has_evaluated_once = false;
- int64_t t_sample_us = 0;
- int64_t t_eval_us = 0;
- int64_t t_p_eval_us = 0;
- int32_t n_sample = 0; // number of tokens sampled
- int32_t n_eval = 0; // number of eval calls
- int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
- llama_model model;
- llama_vocab vocab;
- size_t mem_per_token = 0;
- // decode output (2-dimensional array: [n_tokens][n_vocab])
- std::vector<float> logits;
- bool logits_all = false;
- // input embedding (1-dimensional array: [n_embd])
- std::vector<float> embedding;
- // memory buffers used to evaluate the model
- // TODO: move in llama_state
- llama_ctx_buffer buf_compute;
- llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
- int buf_last = 0;
- size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
- void use_buf(struct ggml_context * ctx, int i) {
- #if defined(LLAMA_USE_SCRATCH)
- size_t last_size = 0;
- if (i == -1) {
- last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
- } else {
- auto & buf = buf_scratch[i];
- last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
- }
- if (buf_last >= 0) {
- buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
- }
- buf_last = i;
- #else
- (void) i;
- (void) ctx;
- #endif
- }
- size_t get_buf_max_mem(int i) const {
- #if defined(LLAMA_USE_SCRATCH)
- return buf_max_size[i];
- #else
- (void) i;
- return 0;
- #endif
- }
- };
- template <typename T>
- static T checked_mul(T a, T b) {
- T ret = a * b;
- if (a != 0 && ret / a != b) {
- throw format("overflow multiplying %llu * %llu",
- (unsigned long long) a, (unsigned long long) b);
- }
- return ret;
- }
- static size_t checked_div(size_t a, size_t b) {
- if (b == 0 || a % b != 0) {
- throw format("error dividing %zu / %zu", a, b);
- }
- return a / b;
- }
- static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
- char buf[256];
- snprintf(buf, sizeof(buf), "%5u", ne.at(0));
- for (size_t i = 1; i < ne.size(); i++) {
- snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
- }
- return buf;
- }
- static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
- size_t size = ggml_type_size(type);
- for (uint32_t dim : ne) {
- size = checked_mul<size_t>(size, dim);
- }
- return size / ggml_blck_size(type);
- }
- struct llama_load_tensor_shard {
- std::vector<uint32_t> ne;
- size_t size;
- enum ggml_type type;
- size_t file_idx;
- size_t file_off;
- void calc_size() {
- size = llama_calc_tensor_size(ne, type);
- }
- };
- enum llama_split_type {
- SPLIT_NONE,
- SPLIT_BY_COLUMNS,
- SPLIT_BY_ROWS
- };
- struct llama_load_tensor {
- std::vector<llama_load_tensor_shard> shards;
- std::string name;
- enum ggml_type type = GGML_TYPE_F32;
- llama_split_type split_type = SPLIT_NONE;
- std::vector<uint32_t> ne;
- size_t size;
- struct ggml_tensor * ggml_tensor = NULL;
- uint8_t * data;
- llama_load_tensor(const std::string & name) : name(name) {}
- void calc_all() {
- calc_type();
- calc_split_type();
- calc_ne();
- calc_size();
- }
- void calc_type() {
- const auto & first_shard = shards.at(0);
- for (const auto & shard : shards) {
- if (shard.type != first_shard.type) {
- throw format("inconsistent tensor shard type in '%s'", name.c_str());
- }
- }
- type = first_shard.type;
- }
- void calc_split_type() {
- if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
- shards.size() == 1) { // only one file?
- split_type = SPLIT_NONE;
- } else if (name.find("tok_embeddings.") == 0 ||
- name.find(".attention.wo.weight") != std::string::npos ||
- name.find(".feed_forward.w2.weight") != std::string::npos) {
- split_type = SPLIT_BY_COLUMNS;
- } else {
- split_type = SPLIT_BY_ROWS;
- }
- }
- void calc_ne() {
- const auto & first_shard = shards.at(0);
- for (const auto & shard : shards) {
- if (shard.ne != first_shard.ne) {
- throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
- name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str());
- }
- }
- ne = first_shard.ne;
- LLAMA_ASSERT(shards.size() <= UINT32_MAX);
- uint32_t n_shards = (uint32_t) shards.size();
- switch (split_type) {
- case SPLIT_NONE:
- ne = first_shard.ne;
- break;
- case SPLIT_BY_COLUMNS:
- ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
- first_shard.ne[1]};
- break;
- case SPLIT_BY_ROWS:
- ne = {first_shard.ne[0],
- checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
- break;
- }
- }
- void calc_size() {
- size = llama_calc_tensor_size(ne, type);
- }
- };
- struct llama_load_tensors_map {
- // tensors is kept in a separate vector to preserve file order
- std::vector<llama_load_tensor> tensors;
- std::unordered_map<std::string, size_t> name_to_idx;
- };
- enum llama_file_version {
- LLAMA_FILE_VERSION_GGML,
- LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
- LLAMA_FILE_VERSION_GGJT_V1, // added padding
- LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
- };
- struct llama_file_loader {
- llama_file file;
- llama_file_version file_version;
- llama_hparams hparams;
- llama_vocab vocab;
- llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
- : file(fname, "rb") {
- fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
- read_magic();
- read_hparams();
- read_vocab();
- read_tensor_metadata(file_idx, tensors_map);
- }
- void read_magic() {
- uint32_t magic = file.read_u32();
- uint32_t version = 0;
- if (magic != 'ggml') {
- version = file.read_u32();
- }
- if (magic == 'ggml' && version == 0) {
- file_version = LLAMA_FILE_VERSION_GGML;
- } else if (magic == 'ggmf' && version == 1) {
- file_version = LLAMA_FILE_VERSION_GGMF_V1;
- } else if (magic == 'ggjt' && version == 1) {
- file_version = LLAMA_FILE_VERSION_GGJT_V1;
- } else if (magic == 'ggjt' && version == 2) {
- file_version = LLAMA_FILE_VERSION_GGJT_V2;
- } else {
- throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
- magic, version);
- }
- }
- void read_hparams() {
- hparams.n_vocab = file.read_u32();
- hparams.n_embd = file.read_u32();
- hparams.n_mult = file.read_u32();
- hparams.n_head = file.read_u32();
- hparams.n_layer = file.read_u32();
- hparams.n_rot = file.read_u32();
- hparams.ftype = (enum llama_ftype) file.read_u32();
- }
- void read_vocab() {
- vocab.id_to_token.resize(hparams.n_vocab);
- for (uint32_t i = 0; i < hparams.n_vocab; i++) {
- uint32_t len = file.read_u32();
- std::string word = file.read_string(len);
- float score = 0.0f;
- if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
- file.read_raw(&score, sizeof(score));
- }
- vocab.token_to_id[word] = i;
- auto & tok_score = vocab.id_to_token[i];
- tok_score.tok = std::move(word);
- tok_score.score = score;
- }
- }
- void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
- while (file.tell() < file.size) {
- llama_load_tensor_shard shard;
- uint32_t n_dims = file.read_u32();
- uint32_t name_len = file.read_u32();
- shard.type = (enum ggml_type) file.read_u32();
- shard.ne.resize(n_dims);
- file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
- std::string name = file.read_string(name_len);
- if (n_dims < 1 || n_dims > 2) {
- throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
- }
- switch (shard.type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- break;
- default: {
- throw format("unrecognized tensor type %u\n", shard.type);
- }
- }
- if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
- // skip to the next multiple of 32 bytes
- file.seek(-file.tell() & 31, SEEK_CUR);
- }
- shard.file_idx = file_idx;
- shard.file_off = file.tell();
- shard.calc_size();
- file.seek(shard.size, SEEK_CUR);
- auto it = tensors_map.name_to_idx.find(name);
- size_t idx;
- if (it != tensors_map.name_to_idx.end()) {
- idx = it->second;
- } else {
- tensors_map.tensors.emplace_back(name);
- idx = tensors_map.tensors.size() - 1;
- tensors_map.name_to_idx.emplace(name, idx);
- }
- tensors_map.tensors.at(idx).shards.push_back(shard);
- }
- }
- };
- struct llama_file_saver {
- llama_file file;
- llama_file_loader * any_file_loader;
- llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
- : file(fname, "wb"), any_file_loader(any_file_loader) {
- fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
- write_magic();
- write_hparams(new_ftype);
- write_vocab();
- }
- void write_magic() {
- file.write_u32(LLAMA_FILE_MAGIC); // magic
- file.write_u32(LLAMA_FILE_VERSION); // version
- }
- void write_hparams(enum llama_ftype new_ftype) {
- const llama_hparams & hparams = any_file_loader->hparams;
- file.write_u32(hparams.n_vocab);
- file.write_u32(hparams.n_embd);
- file.write_u32(hparams.n_mult);
- file.write_u32(hparams.n_head);
- file.write_u32(hparams.n_layer);
- file.write_u32(hparams.n_rot);
- file.write_u32(new_ftype);
- }
- void write_vocab() {
- if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
- fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
- }
- uint32_t n_vocab = any_file_loader->hparams.n_vocab;
- for (uint32_t i = 0; i < n_vocab; i++) {
- const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
- file.write_u32((uint32_t) token_score.tok.size());
- file.write_raw(token_score.tok.data(), token_score.tok.size());
- file.write_raw(&token_score.score, sizeof(token_score.score));
- }
- }
- void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
- switch (new_type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- break;
- default: LLAMA_ASSERT(false);
- }
- file.write_u32((uint32_t) tensor.ne.size());
- file.write_u32((uint32_t) tensor.name.size());
- file.write_u32(new_type);
- file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
- file.write_raw(tensor.name.data(), tensor.name.size());
- file.seek(-file.tell() & 31, SEEK_CUR);
- LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
- file.write_raw(new_data, new_size);
- }
- };
- struct llama_model_loader {
- std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
- llama_load_tensors_map tensors_map;
- bool use_mmap;
- size_t num_ggml_tensors_created = 0;
- struct ggml_context * ggml_ctx = NULL;
- std::unique_ptr<llama_mmap> mapping;
- llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
- auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
- file_loaders.emplace_back(first_file);
- uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
- for (uint32_t i = 1; i < n_parts; i++) {
- std::string fname = fname_base + "." + std::to_string(i);
- auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
- file_loaders.emplace_back(ith_file);
- if (ith_file->hparams != first_file->hparams) {
- throw format("llama.cpp: hparams inconsistent between files");
- }
- }
- if (!llama_mmap::SUPPORTED) {
- use_mmap = false;
- }
- if (use_mmap && alignment_prevents_mmap()) {
- fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
- use_mmap = false;
- }
- this->use_mmap = use_mmap;
- for (llama_load_tensor & lt : tensors_map.tensors) {
- lt.calc_all();
- }
- }
- bool alignment_prevents_mmap() {
- for (const llama_load_tensor & lt : tensors_map.tensors) {
- for (const llama_load_tensor_shard & shard : lt.shards) {
- if (shard.file_off & 3) {
- return true;
- }
- }
- }
- return false;
- }
- uint32_t guess_n_parts() const {
- auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
- if (it == tensors_map.name_to_idx.end()) {
- throw std::string("missing tok_embeddings.weight");
- }
- const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
- return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
- }
- void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
- *ctx_size_p = *mmapped_size_p = 0;
- for (const llama_load_tensor & lt : tensors_map.tensors) {
- *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
- *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
- }
- }
- struct ggml_tensor * get_tensor(const std::string & name, std::vector<uint32_t> ne) {
- auto it = tensors_map.name_to_idx.find(name);
- if (it == tensors_map.name_to_idx.end()) {
- throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
- }
- llama_load_tensor & lt = tensors_map.tensors.at(it->second);
- if (lt.ne != ne) {
- throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
- name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
- }
- return get_tensor_for(lt);
- }
- struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) {
- struct ggml_tensor * tensor;
- if (lt.ne.size() == 2) {
- tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
- } else {
- LLAMA_ASSERT(lt.ne.size() == 1);
- tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
- }
- ggml_set_name(tensor, lt.name.c_str());
- LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
- lt.ggml_tensor = tensor;
- num_ggml_tensors_created++;
- return tensor;
- }
- void done_getting_tensors() {
- if (num_ggml_tensors_created != tensors_map.tensors.size()) {
- throw std::string("llama.cpp: file contained more tensors than expected");
- }
- }
- void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
- size_t data_size = 0;
- for (const llama_load_tensor & lt : tensors_map.tensors) {
- data_size += lt.size;
- }
- if (use_mmap) {
- mapping.reset(new llama_mmap(&file_loaders.at(0)->file));
- if (!lmlock) {
- // Don't call the callback since the actual loading will be lazy
- // and we can't measure it.
- progress_callback = NULL;
- }
- if (lmlock) {
- lmlock->init(mapping->addr);
- }
- }
- size_t done_size = 0;
- for (llama_load_tensor & lt : tensors_map.tensors) {
- if (progress_callback) {
- progress_callback((float) done_size / data_size, progress_callback_user_data);
- }
- LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
- lt.data = (uint8_t *) lt.ggml_tensor->data;
- load_data_for(lt);
- lt.ggml_tensor->data = lt.data;
- done_size += lt.size;
- if (use_mmap && lmlock) {
- lmlock->grow_to(done_size);
- }
- }
- if (progress_callback) {
- progress_callback(1.0f, progress_callback_user_data);
- }
- }
- void load_data_for(llama_load_tensor & lt) {
- if (use_mmap) {
- LLAMA_ASSERT(lt.shards.size() == 1);
- lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
- } else if (lt.split_type == SPLIT_NONE) {
- llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
- file.seek(lt.shards.at(0).file_off, SEEK_SET);
- file.read_raw(lt.data, lt.size);
- } else if (lt.split_type == SPLIT_BY_ROWS) {
- size_t offset = 0;
- for (llama_load_tensor_shard & shard : lt.shards) {
- llama_file & file = file_loaders.at(shard.file_idx)->file;
- file.seek(shard.file_off, SEEK_SET);
- file.read_raw(lt.data + offset, shard.size);
- offset += shard.size;
- }
- LLAMA_ASSERT(offset == lt.size);
- } else if (lt.split_type == SPLIT_BY_COLUMNS) {
- // Let's load the data into temporary buffers to ensure the OS performs large loads.
- std::vector<llama_buffer> tmp_bufs(lt.shards.size());
- for (size_t i = 0; i < lt.shards.size(); i++) {
- llama_load_tensor_shard & shard = lt.shards.at(i);
- llama_file & file = file_loaders.at(shard.file_idx)->file;
- file.seek(shard.file_off, SEEK_SET);
- tmp_bufs.at(i).resize(shard.size);
- file.read_raw(tmp_bufs.at(i).addr, shard.size);
- }
- // Then reshape.
- size_t num_rows = lt.ne.at(1);
- size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
- size_t out_offset = 0;
- for (size_t row = 0; row < num_rows; row++) {
- for (llama_buffer & tmp_buf : tmp_bufs) {
- memcpy(lt.data + out_offset,
- tmp_buf.addr + row * per_shard_row_size,
- per_shard_row_size);
- out_offset += per_shard_row_size;
- }
- }
- LLAMA_ASSERT(out_offset == lt.size);
- }
- if (0) {
- print_checksum(lt);
- }
- }
- static void print_checksum(llama_load_tensor & lt) {
- uint32_t sum = 0;
- for (size_t i = 0; i < lt.size; i++) {
- uint8_t byte = lt.data[i];
- sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
- }
- fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
- llama_format_tensor_shape(lt.ne).c_str(), lt.size);
- }
- };
- //
- // kv cache
- //
- static bool kv_cache_init(
- const struct llama_hparams & hparams,
- struct llama_kv_cache & cache,
- ggml_type wtype,
- int n_ctx) {
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int64_t n_mem = n_layer*n_ctx;
- const int64_t n_elements = n_embd*n_mem;
- cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
- struct ggml_init_params params;
- params.mem_size = cache.buf.size;
- params.mem_buffer = cache.buf.addr;
- params.no_alloc = false;
- cache.ctx = ggml_init(params);
- if (!cache.ctx) {
- fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
- return false;
- }
- cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- ggml_set_name(cache.k, "cache_k");
- ggml_set_name(cache.v, "cache_v");
- return true;
- }
- struct llama_context_params llama_context_default_params() {
- struct llama_context_params result = {
- /*.n_ctx =*/ 512,
- /*.n_parts =*/ -1,
- /*.seed =*/ -1,
- /*.f16_kv =*/ false,
- /*.logits_all =*/ false,
- /*.vocab_only =*/ false,
- /*.use_mmap =*/ true,
- /*.use_mlock =*/ false,
- /*.embedding =*/ false,
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- };
- return result;
- }
- bool llama_mmap_supported() {
- return llama_mmap::SUPPORTED;
- }
- bool llama_mlock_supported() {
- return llama_mlock::SUPPORTED;
- }
- //
- // model loading
- //
- static const char *llama_file_version_name(llama_file_version version) {
- switch (version) {
- case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
- case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
- case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
- case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (latest)";
- }
- return "unknown";
- }
- static const char *llama_ftype_name(enum llama_ftype ftype) {
- switch (ftype) {
- case LLAMA_FTYPE_ALL_F32: return "all F32";
- case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
- case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
- case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
- case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
- return "mostly Q4_1, some F16";
- case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
- case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
- case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
- default: return "unknown, may not work";
- }
- }
- static const char *llama_model_type_name(e_model type) {
- switch (type) {
- case MODEL_7B: return "7B";
- case MODEL_13B: return "13B";
- case MODEL_30B: return "30B";
- case MODEL_65B: return "65B";
- default: LLAMA_ASSERT(false);
- }
- }
- static void llama_model_load_internal(
- const std::string & fname,
- llama_context & lctx,
- int n_ctx,
- ggml_type memory_type,
- bool use_mmap,
- bool use_mlock,
- bool vocab_only,
- llama_progress_callback progress_callback,
- void * progress_callback_user_data) {
- lctx.t_start_us = ggml_time_us();
- std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
- lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
- auto & model = lctx.model;
- model.hparams = ml->file_loaders.at(0)->hparams;
- llama_file_version file_version = ml->file_loaders.at(0)->file_version;
- auto & hparams = model.hparams;
- uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
- {
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- case 60: model.type = e_model::MODEL_30B; break;
- case 80: model.type = e_model::MODEL_65B; break;
- }
- hparams.n_ctx = n_ctx;
- }
- {
- fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
- fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
- fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
- fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
- fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
- fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
- fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
- fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
- fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
- fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
- fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
- fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
- }
- if (file_version != LLAMA_FILE_VERSION_GGJT_V2) {
- if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
- hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
- hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
- throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1305)");
- }
- }
- if (vocab_only) {
- return;
- }
- auto & ctx = model.ctx;
- size_t ctx_size, mmapped_size;
- ml->calc_sizes(&ctx_size, &mmapped_size);
- fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
- // print memory requirements
- {
- const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
- // this is the total memory required to run the inference
- const size_t mem_required =
- ctx_size +
- mmapped_size +
- MEM_REQ_SCRATCH0().at(model.type) +
- MEM_REQ_SCRATCH1().at(model.type) +
- MEM_REQ_EVAL().at(model.type);
- // this is the memory required by one llama_state
- const size_t mem_required_state =
- scale*MEM_REQ_KV_SELF().at(model.type);
- fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
- mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
- }
- // create the ggml context
- {
- lctx.model.buf.resize(ctx_size);
- if (use_mlock) {
- lctx.model.mlock_buf.init(lctx.model.buf.addr);
- lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ lctx.model.buf.size,
- /*.mem_buffer =*/ lctx.model.buf.addr,
- /*.no_alloc =*/ ml->use_mmap,
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- throw format("ggml_init() failed");
- }
- }
- // prepare memory for the weights
- {
- const uint32_t n_embd = hparams.n_embd;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_vocab = hparams.n_vocab;
- ml->ggml_ctx = ctx;
- model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
- model.norm = ml->get_tensor("norm.weight", {n_embd});
- model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
- model.layers.resize(n_layer);
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model.layers[i];
- std::string layers_i = "layers." + std::to_string(i);
- layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});
- layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
- layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
- layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
- layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});
- layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});
- layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
- layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
- layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
- }
- }
- ml->done_getting_tensors();
- // populate `tensors_by_name`
- for (llama_load_tensor & lt : ml->tensors_map.tensors) {
- model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
- }
- ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
- model.mapping = std::move(ml->mapping);
- // loading time will be recalculate after the first eval, so
- // we take page faults deferred by mmap() into consideration
- lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
- }
- static bool llama_model_load(
- const std::string & fname,
- llama_context & lctx,
- int n_ctx,
- ggml_type memory_type,
- bool use_mmap,
- bool use_mlock,
- bool vocab_only,
- llama_progress_callback progress_callback,
- void *progress_callback_user_data) {
- try {
- llama_model_load_internal(fname, lctx, n_ctx, memory_type, use_mmap, use_mlock,
- vocab_only, progress_callback, progress_callback_user_data);
- return true;
- } catch (const std::string & err) {
- fprintf(stderr, "error loading model: %s\n", err.c_str());
- return false;
- }
- }
- // evaluate the transformer
- //
- // - lctx: llama context
- // - tokens: new batch of tokens to process
- // - n_past: the context size so far
- // - n_threads: number of threads to use
- //
- static bool llama_eval_internal(
- llama_context & lctx,
- const llama_token * tokens,
- const int n_tokens,
- const int n_past,
- const int n_threads) {
- // enforce that the first token is BOS
- if (n_past == 0 && tokens[0] != llama_token_bos()) {
- fprintf(stderr, "%s: first token must be BOS\n", __func__);
- return false;
- }
- const int64_t t_start_us = ggml_time_us();
- const int N = n_tokens;
- const auto & model = lctx.model;
- const auto & hparams = model.hparams;
- auto & kv_self = model.kv_self;
- LLAMA_ASSERT(!!kv_self.ctx);
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_head = hparams.n_head;
- const int n_vocab = hparams.n_vocab;
- const int n_rot = hparams.n_embd/hparams.n_head;
- auto & mem_per_token = lctx.mem_per_token;
- auto & buf_compute = lctx.buf_compute;
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute.size,
- /*.mem_buffer =*/ buf_compute.addr,
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- // for big prompts, if BLAS is enabled, it is better to use only one thread
- // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
- ggml_cgraph gf = {};
- gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
- struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- ggml_set_name(embd, "embd");
- memcpy(embd->data, tokens, N*ggml_element_size(embd));
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- struct ggml_tensor * cur;
- lctx.use_buf(ctx0, 0);
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpL);
- // cur = attention_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
- cur);
- }
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
- struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
- ggml_set_name(Qcur, "Qcur");
- ggml_set_name(Kcur, "Kcur");
- // store key and value to memory
- {
- // compute the transposed [N, n_embd] V matrix
- struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
- struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
- struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
- ( n_ctx)*ggml_element_size(kv_self.v),
- (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
- // important: storing RoPE-ed version of K in the KV cache!
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
- }
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- Qcur,
- 0, 2, 1, 3);
- ggml_set_name(Q, "Q");
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- 0, 2, 1, 3);
- ggml_set_name(K, "K");
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- ggml_set_name(KQ, "KQ");
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
- ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
- struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
- ggml_set_name(KQ_scaled, "KQ_scaled");
- // KQ_masked = mask_past(KQ_scaled)
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
- ggml_set_name(KQ_masked, "KQ_masked");
- // KQ = soft_max(KQ_masked)
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
- ggml_set_name(KQ_soft_max, "KQ_soft_max");
- // split cached V into n_head heads
- struct ggml_tensor * V =
- ggml_view_3d(ctx0, kv_self.v,
- n_past + N, n_embd/n_head, n_head,
- n_ctx*ggml_element_size(kv_self.v),
- n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
- il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
- ggml_set_name(V, "V");
- #if 1
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- ggml_set_name(KQV, "KQV");
- #else
- // make V contiguous in memory to speed up the matmul, however we waste time on the copy
- // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
- // is there a better way?
- struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
- #endif
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- ggml_set_name(KQV_merged, "KQV_merged");
- // cur = KQV_merged.contiguous().view(n_embd, N)
- cur = ggml_cpy(ctx0,
- KQV_merged,
- ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- ggml_set_name(cur, "KQV_merged_contiguous");
- // projection (no bias)
- cur = ggml_mul_mat(ctx0,
- model.layers[il].wo,
- cur);
- }
- lctx.use_buf(ctx0, 1);
- struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
- // feed-forward network
- {
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpFF);
- // cur = ffn_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
- cur);
- }
- struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
- model.layers[il].w3,
- cur);
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w1,
- cur);
- // SILU activation
- cur = ggml_silu(ctx0, cur);
- cur = ggml_mul(ctx0, cur, tmp);
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w2,
- cur);
- }
- cur = ggml_add(ctx0, cur, inpFF);
- // input for next layer
- inpL = cur;
- }
- lctx.use_buf(ctx0, 0);
- // used at the end to optionally extract the embeddings
- struct ggml_tensor * embeddings = NULL;
- // norm
- {
- inpL = ggml_rms_norm(ctx0, inpL);
- // inpL = norm*inpL
- inpL = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.norm, inpL),
- inpL);
- embeddings = inpL;
- }
- // lm_head
- inpL = ggml_mul_mat(ctx0, model.output, inpL);
- lctx.use_buf(ctx0, -1);
- // logits -> probs
- //inpL = ggml_soft_max(ctx0, inpL);
- // run the computation
- ggml_build_forward_expand(&gf, inpL);
- ggml_graph_compute (ctx0, &gf);
- #ifdef GGML_PERF
- // print timing information per ggml operation (for debugging purposes)
- // requires GGML_PERF to be defined
- ggml_graph_print(&gf);
- #endif
- // plot the computation graph in dot format (for debugging purposes)
- //if (n_past%100 == 0) {
- // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
- //}
- //embd_w.resize(n_vocab*N);
- //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
- // update kv token count
- lctx.model.kv_self.n = n_past + N;
- // extract logits
- {
- auto & logits_out = lctx.logits;
- if (lctx.logits_all) {
- logits_out.resize(n_vocab * N);
- memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
- } else {
- // return result for just the last token
- logits_out.resize(n_vocab);
- memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
- }
- }
- // extract embeddings
- if (lctx.embedding.size()) {
- auto & embedding_out = lctx.embedding;
- embedding_out.resize(n_embd);
- memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
- }
- if (mem_per_token == 0) {
- mem_per_token = ggml_used_mem(ctx0)/N;
- }
- #if 0
- printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
- ggml_used_mem(ctx0)/1024.0/1024.0,
- lctx.get_buf_max_mem(0)/1024.0/1024.0,
- lctx.get_buf_max_mem(1)/1024.0/1024.0);
- #endif
- ggml_free(ctx0);
- // measure the performance only for the single-token evals
- if (N == 1) {
- lctx.t_eval_us += ggml_time_us() - t_start_us;
- lctx.n_eval++;
- }
- else if (N > 1) {
- lctx.t_p_eval_us += ggml_time_us() - t_start_us;
- lctx.n_p_eval += N;
- }
- return true;
- }
- //
- // tokenizer
- //
- static size_t utf8_len(char src) {
- const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
- uint8_t highbits = static_cast<uint8_t>(src) >> 4;
- return lookup[highbits];
- }
- struct llama_sp_symbol {
- using index = int;
- index prev;
- index next;
- const char * text;
- size_t n;
- };
- struct llama_sp_bigram {
- struct comparator {
- bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
- return (l.score < r.score) || (l.score == r.score && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llama_sp_bigram>;
- using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
- llama_sp_symbol::index left;
- llama_sp_symbol::index right;
- float score;
- size_t size;
- };
- // original implementation:
- // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
- struct llama_tokenizer {
- llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- // split string into utf8 chars
- int index = 0;
- size_t offs = 0;
- while (offs < text.size()) {
- llama_sp_symbol sym;
- size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
- sym.text = text.c_str() + offs;
- sym.n = char_len;
- offs += char_len;
- sym.prev = index - 1;
- sym.next = offs == text.size() ? -1 : index + 1;
- index++;
- symbols_.emplace_back(std::move(sym));
- }
- // seed the work queue with all possible 2-character tokens.
- for (size_t i = 1; i < symbols_.size(); ++i) {
- try_add_bigram(i - 1, i);
- }
- // keep substituting the highest frequency pairs for as long as we can.
- while (!work_queue_.empty()) {
- auto bigram = work_queue_.top();
- work_queue_.pop();
- auto & left_sym = symbols_[bigram.left];
- auto & right_sym = symbols_[bigram.right];
- // if one of the symbols already got merged, skip it.
- if (left_sym.n == 0 || right_sym.n == 0 ||
- left_sym.n + right_sym.n != bigram.size) {
- continue;
- }
- // merge the right sym into the left one
- left_sym.n += right_sym.n;
- right_sym.n = 0;
- //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
- // remove the right sym from the chain
- left_sym.next = right_sym.next;
- if (right_sym.next >= 0) {
- symbols_[right_sym.next].prev = bigram.left;
- }
- // find more substitutions
- try_add_bigram(left_sym.prev, bigram.left);
- try_add_bigram(bigram.left, left_sym.next);
- }
- for (int i = 0; i != -1; i = symbols_[i].next) {
- auto & symbol = symbols_[i];
- auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
- if (token == vocab_.token_to_id.end()) {
- // output any symbols that did not form tokens as bytes.
- for (int j = 0; j < (int) symbol.n; ++j) {
- llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
- output.push_back(token_id);
- }
- } else {
- output.push_back((*token).second);
- }
- }
- }
- private:
- void try_add_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
- auto token = vocab_.token_to_id.find(text);
- if (token == vocab_.token_to_id.end()) {
- return;
- }
- if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
- return;
- }
- const auto &tok_score = vocab_.id_to_token[(*token).second];
- llama_sp_bigram bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.score = tok_score.score;
- bigram.size = text.size();
- work_queue_.push(bigram);
- }
- const llama_vocab & vocab_;
- std::vector<llama_sp_symbol> symbols_;
- llama_sp_bigram::queue work_queue_;
- };
- static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
- llama_tokenizer tokenizer(vocab);
- std::vector<llama_vocab::id> output;
- if (text.size() == 0) {
- return output;
- }
- if (bos) {
- output.push_back(llama_token_bos());
- }
- tokenizer.tokenize(text, output);
- return output;
- }
- //
- // sampling
- //
- void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
- assert(candidates->size > 0);
- const int64_t t_start_sample_us = ggml_time_us();
- // Sort the logits in descending order
- if (!candidates->sorted) {
- std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- candidates->sorted = true;
- }
- float max_l = candidates->data[0].logit;
- float cum_sum = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- float p = expf(candidates->data[i].logit - max_l);
- candidates->data[i].p = p;
- cum_sum += p;
- }
- for (size_t i = 0; i < candidates->size; ++i) {
- candidates->data[i].p /= cum_sum;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
- const int64_t t_start_sample_us = ggml_time_us();
- k = std::max(k, (int) min_keep);
- k = std::min(k, (int) candidates->size);
- // Sort scores in descending order
- if (!candidates->sorted) {
- auto comp = [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- };
- if (k == (int) candidates->size) {
- std::sort(candidates->data, candidates->data + candidates->size, comp);
- } else {
- std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
- }
- candidates->sorted = true;
- }
- candidates->size = k;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- if (p >= 1.0f) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- llama_sample_softmax(ctx, candidates);
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < candidates->size; ++i) {
- cum_sum += candidates->data[i].p;
- // Check if the running sum is greater than p or if we have kept at least min_keep tokens
- if (cum_sum > p && i >= min_keep) {
- last_idx = i;
- break;
- }
- }
- // Resize the output vector to keep only the top-p tokens
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
- if (z >= 1.0f || candidates->size <= 2) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- // Compute the first and second derivatives
- std::vector<float> first_derivatives(candidates->size - 1);
- std::vector<float> second_derivatives(candidates->size - 2);
- for (size_t i = 0; i < first_derivatives.size(); ++i) {
- first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
- }
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
- }
- // Calculate absolute value of second derivatives
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = abs(second_derivatives[i]);
- }
- // Normalize the second derivatives
- float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
- for (float & value : second_derivatives) {
- value /= second_derivatives_sum;
- }
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- cum_sum += second_derivatives[i];
- // Check if the running sum is greater than z or if we have kept at least min_keep tokens
- if (cum_sum > z && i >= min_keep) {
- last_idx = i;
- break;
- }
- }
- // Resize the output vector to keep only the tokens above the tail location
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- // Reference implementation:
- // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
- if (p >= 1.0f) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the softmax of logits and calculate entropy
- llama_sample_softmax(nullptr, candidates);
- float entropy = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- entropy += -candidates->data[i].p * logf(candidates->data[i].p);
- }
- // Compute the absolute difference between negative log probability and entropy for each candidate
- std::vector<float> shifted_scores;
- for (size_t i = 0; i < candidates->size; ++i) {
- float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
- shifted_scores.push_back(shifted_score);
- }
- // Sort tokens based on the shifted_scores and their corresponding indices
- std::vector<size_t> indices(candidates->size);
- std::iota(indices.begin(), indices.end(), 0);
- std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
- return shifted_scores[a] < shifted_scores[b];
- });
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = indices.size();
- for (size_t i = 0; i < indices.size(); ++i) {
- size_t idx = indices[i];
- cum_sum += candidates->data[idx].p;
- // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
- if (cum_sum > p && i >= min_keep - 1) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the locally typical tokens
- std::vector<llama_token_data> new_candidates;
- for (size_t i = 0; i < last_idx; ++i) {
- size_t idx = indices[i];
- new_candidates.push_back(candidates->data[idx]);
- }
- // Replace the data in candidates with the new_candidates data
- std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
- candidates->size = new_candidates.size();
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
- const int64_t t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].logit /= temp;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
- if (last_tokens_size == 0 || penalty == 1.0f) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < candidates->size; ++i) {
- auto token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
- if (token_iter == last_tokens + last_tokens_size) {
- continue;
- }
- // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
- // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
- if (candidates->data[i].logit <= 0) {
- candidates->data[i].logit *= penalty;
- } else {
- candidates->data[i].logit /= penalty;
- }
- }
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
- if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- // Create a frequency map to count occurrences of each token in last_tokens
- std::unordered_map<llama_token, int> token_count;
- for (size_t i = 0; i < last_tokens_size; ++i) {
- token_count[last_tokens_p[i]]++;
- }
- // Apply frequency and presence penalties to the candidates
- for (size_t i = 0; i < candidates->size; ++i) {
- auto token_iter = token_count.find(candidates->data[i].id);
- if (token_iter == token_count.end()) {
- continue;
- }
- int count = token_iter->second;
- candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
- }
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
- assert(ctx);
- auto N = float(llama_n_vocab(ctx));
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- // Estimate s_hat using the most probable m tokens
- float s_hat = 0.0;
- float sum_ti_bi = 0.0;
- float sum_ti_sq = 0.0;
- for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
- float t_i = logf(float(i + 2) / float(i + 1));
- float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
- sum_ti_bi += t_i * b_i;
- sum_ti_sq += t_i * t_i;
- }
- s_hat = sum_ti_bi / sum_ti_sq;
- // Compute k from the estimated s_hat and target surprise value
- float epsilon_hat = s_hat - 1;
- float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
- // Sample the next word X using top-k sampling
- llama_sample_top_k(nullptr, candidates, int(k), 1);
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- }
- return X;
- }
- llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
- assert(ctx);
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(ctx, candidates);
- // Truncate the words with surprise values greater than mu
- candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return -log2f(candidate.p) > *mu;
- }));
- // Normalize the probabilities of the remaining words
- llama_sample_softmax(ctx, candidates);
- // Sample the next word X from the remaining words
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- return X;
- }
- llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
- const int64_t t_start_sample_us = ggml_time_us();
- // Find max element
- auto max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit < b.logit;
- });
- llama_token result = max_iter->id;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- }
- return result;
- }
- llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
- assert(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- std::vector<float> probs;
- probs.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- probs.push_back(candidates->data[i].p);
- }
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- auto & rng = ctx->rng;
- int idx = dist(rng);
- llama_token result = candidates->data[idx].id;
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- return result;
- }
- //
- // quantization
- //
- static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype, int nthread) {
- ggml_type quantized_type;
- switch (ftype) {
- case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
- case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
- case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
- case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
- case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
- default: throw format("invalid output file type %d\n", ftype);
- };
- if (nthread <= 0) {
- nthread = std::thread::hardware_concurrency();
- }
- std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
- /*vocab_only*/ false));
- llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- std::vector<int64_t> hist_all(1 << 4, 0);
- std::vector<std::thread> workers;
- std::mutex mutex;
- size_t idx = 0;
- for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
- llama_buffer read_data;
- read_data.resize(tensor.size);
- tensor.data = read_data.addr;
- model_loader->load_data_for(tensor);
- printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
- ++idx, model_loader->tensors_map.tensors.size(),
- tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
- ggml_type_name(tensor.type));
- // This used to be a regex, but <regex> has an extreme cost to compile times.
- bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
- // quantize only 2D tensors
- quantize &= (tensor.ne.size() == 2);
- // uncomment this to keep the output layer in FP16
- //if (tensor.name == "output.weight") {
- // quantize = false;
- //}
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- llama_buffer work;
- if (!quantize) {
- new_type = tensor.type;
- new_data = tensor.data;
- new_size = tensor.size;
- printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
- } else {
- new_type = quantized_type;
- float * f32_data;
- size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
- llama_buffer f32_conv_buf;
- if (tensor.type == GGML_TYPE_F32) {
- f32_data = (float *) tensor.data;
- } else if (tensor.type == GGML_TYPE_F16) {
- f32_conv_buf.resize(nelements * sizeof(float));
- f32_data = (float *) f32_conv_buf.addr;
- auto f16_data = (const ggml_fp16_t *) tensor.data;
- for (size_t i = 0; i < nelements; i++) {
- f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
- }
- } else {
- throw format("type %s unsupported for integer quantization", ggml_type_name(tensor.type));
- }
- printf("quantizing .. ");
- fflush(stdout);
- work.resize(nelements * 4); // upper bound on size
- new_data = work.addr;
- std::vector<int64_t> hist_cur(1 << 4, 0);
- int chunk_size = 32 * 512;
- const int nchunk = (nelements + chunk_size - 1)/chunk_size;
- const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
- if (nthread_use < 2) {
- new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
- } else {
- size_t counter = 0;
- new_size = 0;
- auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
- std::vector<int64_t> local_hist;
- size_t local_size = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- size_t first = counter; counter += chunk_size;
- if (first >= nelements) {
- if (!local_hist.empty()) {
- for (int j=0; j<int(local_hist.size()); ++j) hist_cur[j] += local_hist[j];
- new_size += local_size;
- }
- break;
- }
- lock.unlock();
- size_t last = std::min(nelements, first + chunk_size);
- if (local_hist.empty()) local_hist.resize(hist_cur.size(), 0);
- local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
- }
- };
- if (int(workers.size()) < nthread_use - 1) workers.resize(nthread_use - 1);
- for (int it = 0; it < nthread_use - 1; ++it) workers[it] = std::thread(compute);
- compute();
- for (int it = 0; it < nthread_use - 1; ++it) workers[it].join();
- }
- printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
- for (size_t i = 0; i < hist_cur.size(); i++) {
- hist_all[i] += hist_cur[i];
- }
- for (size_t i = 0; i < hist_cur.size(); i++) {
- printf("%5.3f ", hist_cur[i] / float(nelements));
- }
- printf("\n");
- }
- total_size_org += tensor.size;
- total_size_new += new_size;
- file_saver.write_tensor(tensor, new_type, new_data, new_size);
- }
- printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
- printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
- {
- int64_t sum_all = 0;
- for (size_t i = 0; i < hist_all.size(); i++) {
- sum_all += hist_all[i];
- }
- printf("%s: hist: ", __func__);
- for (size_t i = 0; i < hist_all.size(); i++) {
- printf("%5.3f ", hist_all[i] / float(sum_all));
- }
- printf("\n");
- }
- }
- //
- // interface implementation
- //
- struct llama_context * llama_init_from_file(
- const char * path_model,
- struct llama_context_params params) {
- ggml_time_init();
- llama_context * ctx = new llama_context;
- if (params.seed < 0) {
- params.seed = time(NULL);
- }
- unsigned cur_percentage = 0;
- if (params.progress_callback == NULL) {
- params.progress_callback_user_data = &cur_percentage;
- params.progress_callback = [](float progress, void * ctx) {
- unsigned * cur_percentage_p = (unsigned *) ctx;
- unsigned percentage = (unsigned) (100 * progress);
- while (percentage > *cur_percentage_p) {
- ++*cur_percentage_p;
- fprintf(stderr, ".");
- fflush(stderr);
- if (percentage >= 100) {
- fprintf(stderr, "\n");
- }
- }
- };
- }
- ctx->rng = std::mt19937(params.seed);
- ctx->logits_all = params.logits_all;
- ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
- if (!llama_model_load(path_model, *ctx, params.n_ctx, memory_type,
- params.use_mmap, params.use_mlock, params.vocab_only,
- params.progress_callback, params.progress_callback_user_data)) {
- fprintf(stderr, "%s: failed to load model\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- // reserve memory for context buffers
- if (!params.vocab_only) {
- if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
- fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- {
- const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
- fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
- }
- const auto & hparams = ctx->model.hparams;
- // resized during inference
- if (params.logits_all) {
- ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
- } else {
- ctx->logits.reserve(hparams.n_vocab);
- }
- if (params.embedding){
- ctx->embedding.resize(hparams.n_embd);
- }
- ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
- ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
- ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
- }
- return ctx;
- }
- void llama_free(struct llama_context * ctx) {
- delete ctx;
- }
- int llama_model_quantize(
- const char * fname_inp,
- const char * fname_out,
- enum llama_ftype ftype,
- int nthread) {
- try {
- llama_model_quantize_internal(fname_inp, fname_out, ftype, nthread);
- return 0;
- } catch (const std::string & err) {
- fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
- return 1;
- }
- }
- int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
- fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
- auto & model = ctx->model;
- const int64_t t_start_lora_us = ggml_time_us();
- auto fin = std::ifstream(path_lora, std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
- return 1;
- }
- // verify magic and version
- {
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- if (magic != 'ggla') {
- fprintf(stderr, "%s: bad file magic\n", __func__);
- return 1;
- }
- uint32_t format_version;
- fin.read((char *) &format_version, sizeof(format_version));
- if (format_version != 1) {
- fprintf(stderr, "%s: unsupported file version\n", __func__ );
- return 1;
- }
- }
- int32_t lora_r;
- int32_t lora_alpha;
- fin.read((char *) &lora_r, sizeof(lora_r));
- fin.read((char *) &lora_alpha, sizeof(lora_alpha));
- float scaling = (float)lora_alpha / (float)lora_r;
- fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
- // create a temporary ggml context to store the lora tensors
- // todo: calculate size from biggest possible tensor
- std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
- struct ggml_init_params params;
- params.mem_size = lora_buf.size();
- params.mem_buffer = lora_buf.data();
- params.no_alloc = false;
- ggml_context * lora_ctx = ggml_init(params);
- std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
- // create a name -> tensor map of the model to accelerate lookups
- std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
- for (auto & kv: model.tensors_by_name) {
- model_tensors.insert(kv);
- }
- // load base model
- std::unique_ptr<llama_model_loader> model_loader;
- ggml_context * base_ctx = NULL;
- llama_buffer base_buf;
- if (path_base_model) {
- fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
- model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
- size_t ctx_size, mmapped_size;
- model_loader->calc_sizes(&ctx_size, &mmapped_size);
- base_buf.resize(ctx_size);
- ggml_init_params base_params;
- base_params.mem_size = base_buf.size;
- base_params.mem_buffer = base_buf.addr;
- base_params.no_alloc = model_loader->use_mmap;
- base_ctx = ggml_init(base_params);
- model_loader->ggml_ctx = base_ctx;
- // maybe this should in llama_model_loader
- if (model_loader->use_mmap) {
- model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ false));
- }
- }
- // read tensors and apply
- bool warned = false;
- int n_tensors = 0;
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
- if (fin.eof()) {
- break;
- }
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- }
- std::string name(length, 0);
- fin.read(&name[0], length);
- // check for lora suffix and get the type of tensor
- const std::string lora_suffix = ".lora";
- size_t pos = name.rfind(lora_suffix);
- if (pos == std::string::npos) {
- fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
- return 1;
- }
- std::string lora_type = name.substr(pos + lora_suffix.length());
- std::string base_name = name;
- base_name.erase(pos);
- // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
- if (model_tensors.find(base_name.data()) == model_tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
- return 1;
- }
- // create ggml tensor
- ggml_type wtype;
- switch (ftype) {
- case 0: wtype = GGML_TYPE_F32; break;
- case 1: wtype = GGML_TYPE_F16; break;
- default:
- {
- fprintf(stderr, "%s: invalid tensor data type '%d'\n",
- __func__, ftype);
- return false;
- }
- }
- ggml_tensor* lora_tensor;
- if (n_dims == 2) {
- lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
- }
- else {
- fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
- return 1;
- }
- // load tensor data
- size_t offset = fin.tellg();
- size_t tensor_data_size = ggml_nbytes(lora_tensor);
- offset = (offset + 31) & -32;
- fin.seekg(offset);
- fin.read((char*)lora_tensor->data, tensor_data_size);
- lora_tensors[name] = lora_tensor;
- // check if we have both A and B tensors and apply
- if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
- lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
- ggml_tensor * dest_t = model_tensors[base_name];
- ggml_tensor * base_t;
- if (model_loader) {
- // load from base model
- if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
- fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
- return 1;
- }
- size_t idx = model_loader->tensors_map.name_to_idx[base_name];
- llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
- base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] });
- lt.data = (uint8_t *) lt.ggml_tensor->data;
- model_loader->load_data_for(lt);
- lt.ggml_tensor->data = lt.data;
- }
- else {
- base_t = dest_t;
- }
- if (ggml_is_quantized(base_t->type)) {
- if (!warned) {
- fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
- "use a f16 or f32 base model with --lora-base\n", __func__);
- warned = true;
- }
- }
- ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
- ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
- if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
- fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
- " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
- return 1;
- }
- // w = w + BA*s
- ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
- if (scaling != 1.0f) {
- ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
- BA = ggml_scale(lora_ctx, BA, scale_tensor);
- }
- ggml_tensor * r;
- if (base_t == dest_t) {
- r = ggml_add_inplace(lora_ctx, dest_t, BA);
- }
- else {
- r = ggml_add(lora_ctx, base_t, BA);
- r = ggml_cpy(lora_ctx, r, dest_t);
- }
- struct ggml_cgraph gf = ggml_build_forward(r);
- gf.n_threads = n_threads;
- ggml_graph_compute(lora_ctx, &gf);
- // we won't need these tensors again, reset the context to save memory
- ggml_free(lora_ctx);
- lora_ctx = ggml_init(params);
- lora_tensors.clear();
- n_tensors++;
- if (n_tensors % 4 == 0)
- fprintf(stderr, ".");
- }
- }
- // TODO: this should be in a destructor, it will leak on failure
- ggml_free(lora_ctx);
- if (base_ctx) {
- ggml_free(base_ctx);
- }
- const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
- fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
- return 0;
- }
- int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
- try {
- return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
- } catch (const std::string & err) {
- fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.c_str());
- return 1;
- }
- }
- int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
- return ctx->model.kv_self.n;
- }
- #define LLAMA_MAX_RNG_STATE 64*1024
- void llama_set_rng_seed(struct llama_context * ctx, int seed) {
- if (seed < 0) {
- seed = time(NULL);
- }
- ctx->rng.seed(seed);
- }
- // Returns the *maximum* size of the state
- size_t llama_get_state_size(const struct llama_context * ctx) {
- // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
- // for reference, std::mt19937(1337) serializes to 6701 bytes.
- const size_t s_rng_size = sizeof(size_t);
- const size_t s_rng = LLAMA_MAX_RNG_STATE;
- const size_t s_logits_capacity = sizeof(size_t);
- const size_t s_logits_size = sizeof(size_t);
- const size_t s_logits = ctx->logits.capacity() * sizeof(float);
- const size_t s_embedding_size = sizeof(size_t);
- const size_t s_embedding = ctx->embedding.size() * sizeof(float);
- const size_t s_kv_size = sizeof(size_t);
- const size_t s_kv_ntok = sizeof(int);
- const size_t s_kv = ctx->model.kv_self.buf.size;
- const size_t s_total = (
- + s_rng_size
- + s_rng
- + s_logits_capacity
- + s_logits_size
- + s_logits
- + s_embedding_size
- + s_embedding
- + s_kv_size
- + s_kv_ntok
- + s_kv
- );
- return s_total;
- }
- // Copies the state to the specified destination address
- size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
- uint8_t * out = dst;
- // copy rng
- {
- std::stringstream rng_ss;
- rng_ss << ctx->rng;
- const size_t rng_size = rng_ss.str().size();
- char rng_buf[LLAMA_MAX_RNG_STATE];
- memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
- memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
- memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
- memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
- }
- // copy logits
- {
- const size_t logits_cap = ctx->logits.capacity();
- const size_t logits_size = ctx->logits.size();
- memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
- memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
- if (logits_size) {
- memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
- }
- out += logits_cap * sizeof(float);
- }
- // copy embeddings
- {
- const size_t embedding_size = ctx->embedding.size();
- memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
- if (embedding_size) {
- memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
- out += embedding_size * sizeof(float);
- }
- }
- // copy kv cache
- {
- const auto & kv_self = ctx->model.kv_self;
- const auto & hparams = ctx->model.hparams;
- const int n_layer = hparams.n_layer;
- const int n_embd = hparams.n_embd;
- const int n_ctx = hparams.n_ctx;
- const size_t kv_size = kv_self.buf.size;
- const int kv_ntok = llama_get_kv_cache_token_count(ctx);
- memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
- memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
- if (kv_size) {
- const size_t elt_size = ggml_element_size(kv_self.k);
- char buffer[4096];
- ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
- ggml_cgraph gf{};
- gf.n_threads = 1;
- ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
- kout3d->data = out;
- out += ggml_nbytes(kout3d);
- ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
- vout3d->data = out;
- out += ggml_nbytes(vout3d);
- ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
- n_embd, kv_ntok, n_layer,
- elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
- ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
- kv_ntok, n_embd, n_layer,
- elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
- ggml_graph_compute(cpy_ctx, &gf);
- ggml_free(cpy_ctx);
- }
- }
- const size_t written = out - dst;
- const size_t max_size = llama_get_state_size(ctx);
- LLAMA_ASSERT(written <= max_size);
- return written;
- }
- // Sets the state reading from the specified source address
- size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
- const uint8_t * inp = src;
- // set rng
- {
- size_t rng_size;
- char rng_buf[LLAMA_MAX_RNG_STATE];
- memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
- memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
- std::stringstream rng_ss;
- rng_ss.str(std::string(&rng_buf[0], rng_size));
- rng_ss >> ctx->rng;
- LLAMA_ASSERT(rng_ss.fail() == false);
- }
- // set logits
- {
- size_t logits_cap;
- size_t logits_size;
- memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
- memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
- LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
- if (logits_size) {
- ctx->logits.resize(logits_size);
- memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
- }
- inp += logits_cap * sizeof(float);
- }
- // set embeddings
- {
- size_t embedding_size;
- memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
- LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
- if (embedding_size) {
- memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
- inp += embedding_size * sizeof(float);
- }
- }
- // set kv cache
- {
- const auto & kv_self = ctx->model.kv_self;
- const auto & hparams = ctx->model.hparams;
- const int n_layer = hparams.n_layer;
- const int n_embd = hparams.n_embd;
- const int n_ctx = hparams.n_ctx;
- size_t kv_size;
- int kv_ntok;
- memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
- memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
- if (kv_size) {
- LLAMA_ASSERT(kv_self.buf.size == kv_size);
- const size_t elt_size = ggml_element_size(kv_self.k);
- char buffer[4096];
- ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
- ggml_cgraph gf{};
- gf.n_threads = 1;
- ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
- kin3d->data = (void *) inp;
- inp += ggml_nbytes(kin3d);
- ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
- vin3d->data = (void *) inp;
- inp += ggml_nbytes(vin3d);
- ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
- n_embd, kv_ntok, n_layer,
- elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
- ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
- kv_ntok, n_embd, n_layer,
- elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
- ggml_graph_compute(cpy_ctx, &gf);
- ggml_free(cpy_ctx);
- }
- ctx->model.kv_self.n = kv_ntok;
- }
- const size_t nread = inp - src;
- const size_t max_size = llama_get_state_size(ctx);
- LLAMA_ASSERT(nread <= max_size);
- return nread;
- }
- bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- llama_file file(path_session, "rb");
- // sanity checks
- {
- const uint32_t magic = file.read_u32();
- const uint32_t version = file.read_u32();
- if (!(magic == LLAMA_SESSION_MAGIC && version == LLAMA_SESSION_VERSION)) {
- fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
- return false;
- }
- llama_hparams session_hparams;
- file.read_raw(&session_hparams, sizeof(llama_hparams));
- if (session_hparams != ctx->model.hparams) {
- fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
- return false;
- }
- }
- // load the prompt
- {
- const uint32_t n_token_count = file.read_u32();
- if (n_token_count > n_token_capacity) {
- fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
- return false;
- }
- file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
- *n_token_count_out = n_token_count;
- }
- // restore the context state
- {
- const size_t n_state_size_cur = file.size - file.tell();
- const size_t n_state_size_max = llama_get_state_size(ctx);
- if (n_state_size_cur > n_state_size_max) {
- fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
- return false;
- }
- std::vector<uint8_t> state_data(n_state_size_max);
- file.read_raw(state_data.data(), n_state_size_cur);
- llama_set_state_data(ctx, state_data.data());
- }
- return true;
- }
- bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
- llama_file file(path_session, "wb");
- file.write_u32(LLAMA_SESSION_MAGIC);
- file.write_u32(LLAMA_SESSION_VERSION);
- file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
- // save the prompt
- file.write_u32((uint32_t) n_token_count);
- file.write_raw(tokens, sizeof(llama_token) * n_token_count);
- // save the context state
- {
- const size_t n_state_size_max = llama_get_state_size(ctx);
- std::vector<uint8_t> state_data(n_state_size_max);
- const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
- file.write_raw(state_data.data(), n_state_size_cur);
- }
- return true;
- }
- int llama_eval(
- struct llama_context * ctx,
- const llama_token * tokens,
- int n_tokens,
- int n_past,
- int n_threads) {
- if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
- fprintf(stderr, "%s: failed to eval\n", __func__);
- return 1;
- }
- // get a more accurate load time, upon first eval
- // TODO: fix this
- if (!ctx->has_evaluated_once) {
- ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
- ctx->has_evaluated_once = true;
- }
- return 0;
- }
- int llama_tokenize(
- struct llama_context * ctx,
- const char * text,
- llama_token * tokens,
- int n_max_tokens,
- bool add_bos) {
- auto res = llama_tokenize(ctx->vocab, text, add_bos);
- if (n_max_tokens < (int) res.size()) {
- fprintf(stderr, "%s: too many tokens\n", __func__);
- return -((int) res.size());
- }
- for (size_t i = 0; i < res.size(); i++) {
- tokens[i] = res[i];
- }
- return res.size();
- }
- int llama_n_vocab(const struct llama_context * ctx) {
- return ctx->vocab.id_to_token.size();
- }
- int llama_n_ctx(const struct llama_context * ctx) {
- return ctx->model.hparams.n_ctx;
- }
- int llama_n_embd(const struct llama_context * ctx) {
- return ctx->model.hparams.n_embd;
- }
- float * llama_get_logits(struct llama_context * ctx) {
- return ctx->logits.data();
- }
- float * llama_get_embeddings(struct llama_context * ctx) {
- return ctx->embedding.data();
- }
- const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
- if (token >= llama_n_vocab(ctx)) {
- return nullptr;
- }
- return ctx->vocab.id_to_token[token].tok.c_str();
- }
- llama_token llama_token_bos() {
- return 1;
- }
- llama_token llama_token_eos() {
- return 2;
- }
- llama_token llama_token_nl() {
- return 13;
- }
- void llama_print_timings(struct llama_context * ctx) {
- const int64_t t_end_us = ggml_time_us();
- const int32_t n_sample = std::max(1, ctx->n_sample);
- const int32_t n_eval = std::max(1, ctx->n_eval);
- const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
- fprintf(stderr, "\n");
- fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
- fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
- fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
- fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
- fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
- }
- void llama_reset_timings(struct llama_context * ctx) {
- ctx->t_start_us = ggml_time_us();
- ctx->t_sample_us = ctx->n_sample = 0;
- ctx->t_eval_us = ctx->n_eval = 0;
- ctx->t_p_eval_us = ctx->n_p_eval = 0;
- }
- const char * llama_print_system_info(void) {
- static std::string s;
- s = "";
- s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
- s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
- s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
- s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
- s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
- s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
- s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
- s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
- s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
- s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
- s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
- s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
- s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
- s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
- return s.c_str();
- }
- // For internal test use
- std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
- return ctx->model.tensors_by_name;
- }
|