common.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include "sampling.h"
  5. #define LOG_NO_FILE_LINE_FUNCTION
  6. #include "log.h"
  7. #include <cmath>
  8. #include <string>
  9. #include <vector>
  10. #include <random>
  11. #include <thread>
  12. #include <unordered_map>
  13. #include <tuple>
  14. #ifdef _WIN32
  15. #define DIRECTORY_SEPARATOR '\\'
  16. #else
  17. #define DIRECTORY_SEPARATOR '/'
  18. #endif // _WIN32
  19. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  20. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  21. #define print_build_info() do { \
  22. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  23. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  24. } while(0)
  25. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  26. // build info
  27. extern int LLAMA_BUILD_NUMBER;
  28. extern char const * LLAMA_COMMIT;
  29. extern char const * LLAMA_COMPILER;
  30. extern char const * LLAMA_BUILD_TARGET;
  31. struct llama_control_vector_load_info;
  32. //
  33. // CPU utils
  34. //
  35. int32_t cpu_get_num_physical_cores();
  36. int32_t cpu_get_num_math();
  37. //
  38. // CLI argument parsing
  39. //
  40. struct gpt_params {
  41. uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
  42. int32_t n_threads = cpu_get_num_math();
  43. int32_t n_threads_draft = -1;
  44. int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
  45. int32_t n_threads_batch_draft = -1;
  46. int32_t n_predict = -1; // new tokens to predict
  47. int32_t n_ctx = 0; // context size
  48. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  49. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  50. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  51. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  52. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  53. int32_t n_parallel = 1; // number of parallel sequences to decode
  54. int32_t n_sequences = 1; // number of sequences to decode
  55. float p_split = 0.1f; // speculative decoding split probability
  56. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  57. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  58. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  59. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  60. int32_t grp_attn_n = 1; // group-attention factor
  61. int32_t grp_attn_w = 512; // group-attention width
  62. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  63. float rope_freq_base = 0.0f; // RoPE base frequency
  64. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  65. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  66. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  67. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  68. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  69. int32_t yarn_orig_ctx = 0; // YaRN original context length
  70. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  71. ggml_backend_sched_eval_callback cb_eval = nullptr;
  72. void * cb_eval_user_data = nullptr;
  73. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  74. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  75. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  76. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  77. // // sampling parameters
  78. struct llama_sampling_params sparams;
  79. std::string model = ""; // model path
  80. std::string model_draft = ""; // draft model for speculative decoding
  81. std::string model_alias = "unknown"; // model alias
  82. std::string model_url = ""; // model url to download
  83. std::string hf_repo = ""; // HF repo
  84. std::string hf_file = ""; // HF file
  85. std::string prompt = "";
  86. std::string prompt_file = ""; // store the external prompt file name
  87. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  88. std::string input_prefix = ""; // string to prefix user inputs with
  89. std::string input_suffix = ""; // string to suffix user inputs with
  90. std::string logdir = ""; // directory in which to save YAML log files
  91. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
  92. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
  93. std::string logits_file = ""; // file for saving *all* logits
  94. std::string rpc_servers = ""; // comma separated list of RPC servers
  95. std::vector<std::string> in_files; // all input files
  96. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  97. std::vector<llama_model_kv_override> kv_overrides;
  98. // TODO: avoid tuple, use struct
  99. std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
  100. std::string lora_base = ""; // base model path for the lora adapter
  101. std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
  102. int32_t verbosity = 0;
  103. int32_t control_vector_layer_start = -1; // layer range for control vector
  104. int32_t control_vector_layer_end = -1; // layer range for control vector
  105. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  106. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  107. // (which is more convenient to use for plotting)
  108. //
  109. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  110. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  111. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  112. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  113. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  114. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  115. bool kl_divergence = false; // compute KL divergence
  116. bool usage = false; // print usage
  117. bool use_color = false; // use color to distinguish generations and inputs
  118. bool special = false; // enable special token output
  119. bool interactive = false; // interactive mode
  120. bool interactive_first = false; // wait for user input immediately
  121. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  122. bool prompt_cache_all = false; // save user input and generations to prompt cache
  123. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  124. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  125. bool multiline_input = false; // reverse the usage of `\`
  126. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  127. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  128. bool flash_attn = false; // flash attention
  129. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  130. bool ignore_eos = false; // ignore generated EOS tokens
  131. bool logits_all = false; // return logits for all tokens in the batch
  132. bool use_mmap = true; // use mmap for faster loads
  133. bool use_mlock = false; // use mlock to keep model in memory
  134. bool verbose_prompt = false; // print prompt tokens before generation
  135. bool display_prompt = true; // print prompt before generation
  136. bool infill = false; // use infill mode
  137. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  138. bool no_kv_offload = false; // disable KV offloading
  139. bool warmup = true; // warmup run
  140. bool check_tensors = false; // validate tensor data
  141. std::string cache_type_k = "f16"; // KV cache data type for the K
  142. std::string cache_type_v = "f16"; // KV cache data type for the V
  143. // multimodal models (see examples/llava)
  144. std::string mmproj = ""; // path to multimodal projector
  145. std::vector<std::string> image; // path to image file(s)
  146. // embedding
  147. bool embedding = false; // get only sentence embedding
  148. int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  149. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  150. std::string embd_sep = "\n"; // separator of embendings
  151. // server params
  152. int32_t port = 8080; // server listens on this network port
  153. int32_t timeout_read = 600; // http read timeout in seconds
  154. int32_t timeout_write = timeout_read; // http write timeout in seconds
  155. int32_t n_threads_http = -1; // number of threads to process HTTP requests
  156. std::string hostname = "127.0.0.1";
  157. std::string public_path = "";
  158. std::string chat_template = "";
  159. std::string system_prompt = "";
  160. std::vector<std::string> api_keys;
  161. std::string ssl_file_key = "";
  162. std::string ssl_file_cert = "";
  163. bool endpoint_slots = true;
  164. bool endpoint_metrics = false;
  165. bool log_json = false;
  166. std::string slot_save_path;
  167. float slot_prompt_similarity = 0.5f;
  168. // batched-bench params
  169. bool is_pp_shared = false;
  170. std::vector<int32_t> n_pp;
  171. std::vector<int32_t> n_tg;
  172. std::vector<int32_t> n_pl;
  173. // retrieval params
  174. std::vector<std::string> context_files; // context files to embed
  175. int32_t chunk_size = 64; // chunk size for context embedding
  176. std::string chunk_separator = "\n"; // chunk separator for context embedding
  177. // passkey params
  178. int32_t n_junk = 250; // number of times to repeat the junk text
  179. int32_t i_pos = -1; // position of the passkey in the junk text
  180. // imatrix params
  181. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  182. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  183. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  184. int32_t i_chunk = 0; // start processing from this chunk
  185. bool process_output = false; // collect data for the output tensor
  186. bool compute_ppl = true; // whether to compute perplexity
  187. // cvector-generator params
  188. int n_completions = 64;
  189. int n_pca_batch = 20;
  190. int n_pca_iterations = 1000;
  191. std::string cvector_outfile = "control_vector.gguf";
  192. std::string cvector_completions_file = "examples/cvector-generator/completions.txt";
  193. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  194. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  195. };
  196. void gpt_params_handle_model_default(gpt_params & params);
  197. bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
  198. bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
  199. bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
  200. void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
  201. std::string gpt_params_get_system_info(const gpt_params & params);
  202. //
  203. // String utils
  204. //
  205. std::vector<std::string> string_split(std::string input, char separator);
  206. std::string string_strip(const std::string & str);
  207. std::string string_get_sortable_timestamp();
  208. template<class T>
  209. static std::vector<T> string_split(const std::string & str, char delim) {
  210. std::vector<T> values;
  211. std::istringstream str_stream(str);
  212. std::string token;
  213. while (std::getline(str_stream, token, delim)) {
  214. T value;
  215. std::istringstream token_stream(token);
  216. token_stream >> value;
  217. values.push_back(value);
  218. }
  219. return values;
  220. }
  221. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  222. void string_process_escapes(std::string & input);
  223. //
  224. // Filesystem utils
  225. //
  226. bool fs_validate_filename(const std::string & filename);
  227. bool fs_create_directory_with_parents(const std::string & path);
  228. std::string fs_get_cache_directory();
  229. std::string fs_get_cache_file(const std::string & filename);
  230. //
  231. // Model utils
  232. //
  233. // TODO: avoid tuplue, use struct
  234. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
  235. struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
  236. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
  237. struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
  238. struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
  239. // Batch utils
  240. void llama_batch_clear(struct llama_batch & batch);
  241. void llama_batch_add(
  242. struct llama_batch & batch,
  243. llama_token id,
  244. llama_pos pos,
  245. const std::vector<llama_seq_id> & seq_ids,
  246. bool logits);
  247. //
  248. // Vocab utils
  249. //
  250. // tokenizes a string into a vector of tokens
  251. // should work similar to Python's `tokenizer.encode`
  252. std::vector<llama_token> llama_tokenize(
  253. const struct llama_context * ctx,
  254. const std::string & text,
  255. bool add_special,
  256. bool parse_special = false);
  257. std::vector<llama_token> llama_tokenize(
  258. const struct llama_model * model,
  259. const std::string & text,
  260. bool add_special,
  261. bool parse_special = false);
  262. // tokenizes a token into a piece, optionally renders special/control tokens
  263. // should work similar to Python's `tokenizer.id_to_piece`
  264. std::string llama_token_to_piece(
  265. const struct llama_context * ctx,
  266. llama_token token,
  267. bool special = true);
  268. // TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
  269. // that takes into account the tokenizer type and decides how to handle the leading space
  270. //
  271. // detokenizes a vector of tokens into a string
  272. // should work similar to Python's `tokenizer.decode`
  273. // removes the leading space from the first non-BOS token
  274. std::string llama_detokenize_spm(
  275. llama_context * ctx,
  276. const std::vector<llama_token> & tokens);
  277. // detokenizes a vector of tokens into a string
  278. // should work similar to Python's `tokenizer.decode`
  279. std::string llama_detokenize_bpe(
  280. llama_context * ctx,
  281. const std::vector<llama_token> & tokens);
  282. // Uses the value from the model metadata if possible, otherwise
  283. // defaults to true when model type is SPM, otherwise false.
  284. bool llama_should_add_bos_token(const llama_model * model);
  285. //
  286. // Chat template utils
  287. //
  288. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  289. bool llama_chat_verify_template(const std::string & tmpl);
  290. //
  291. // KV cache utils
  292. //
  293. // Dump the KV cache view with the number of sequences per cell.
  294. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  295. // Dump the KV cache view showing individual sequences in each cell (long output).
  296. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  297. //
  298. // Embedding utils
  299. //
  300. void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  301. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  302. //
  303. // Control vector utils
  304. //
  305. struct llama_control_vector_data {
  306. int n_embd;
  307. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  308. std::vector<float> data;
  309. };
  310. struct llama_control_vector_load_info {
  311. float strength;
  312. std::string fname;
  313. };
  314. // Load control vectors, scale each by strength, and add them together.
  315. // On error, returns {-1, empty}
  316. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
  317. //
  318. // Split utils
  319. //
  320. static const char * const LLM_KV_SPLIT_NO = "split.no";
  321. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  322. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  323. //
  324. // YAML utils
  325. //
  326. void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
  327. void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
  328. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
  329. void yaml_dump_non_result_info(
  330. FILE * stream, const gpt_params & params, const llama_context * lctx,
  331. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);