ggml.c 640 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_IQ2_XXS] = {
  513. .type_name = "iq2_xxs",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_iq2_xxs),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  518. .from_float = quantize_row_iq2_xxs,
  519. .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xxs_reference,
  520. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. },
  523. [GGML_TYPE_Q8_K] = {
  524. .type_name = "q8_K",
  525. .blck_size = QK_K,
  526. .type_size = sizeof(block_q8_K),
  527. .is_quantized = true,
  528. .from_float = quantize_row_q8_K,
  529. }
  530. };
  531. // For internal test use
  532. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  533. GGML_ASSERT(type < GGML_TYPE_COUNT);
  534. return type_traits[type];
  535. }
  536. //
  537. // simd mappings
  538. //
  539. #if defined(__ARM_NEON)
  540. #if !defined(__aarch64__)
  541. // 64-bit compatibility
  542. inline static float vaddvq_f32(float32x4_t v) {
  543. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  544. }
  545. #endif
  546. #endif
  547. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  548. // we then implement the fundamental computation operations below using only these macros
  549. // adding support for new architectures requires to define the corresponding SIMD macros
  550. //
  551. // GGML_F32_STEP / GGML_F16_STEP
  552. // number of elements to process in a single step
  553. //
  554. // GGML_F32_EPR / GGML_F16_EPR
  555. // number of elements to fit in a single register
  556. //
  557. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  558. #define GGML_SIMD
  559. // F32 NEON
  560. #define GGML_F32_STEP 16
  561. #define GGML_F32_EPR 4
  562. #define GGML_F32x4 float32x4_t
  563. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  564. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  565. #define GGML_F32x4_LOAD vld1q_f32
  566. #define GGML_F32x4_STORE vst1q_f32
  567. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  568. #define GGML_F32x4_ADD vaddq_f32
  569. #define GGML_F32x4_MUL vmulq_f32
  570. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  571. #define GGML_F32x4_REDUCE(res, x) \
  572. { \
  573. int offset = GGML_F32_ARR >> 1; \
  574. for (int i = 0; i < offset; ++i) { \
  575. x[i] = vaddq_f32(x[i], x[offset+i]); \
  576. } \
  577. offset >>= 1; \
  578. for (int i = 0; i < offset; ++i) { \
  579. x[i] = vaddq_f32(x[i], x[offset+i]); \
  580. } \
  581. offset >>= 1; \
  582. for (int i = 0; i < offset; ++i) { \
  583. x[i] = vaddq_f32(x[i], x[offset+i]); \
  584. } \
  585. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  586. }
  587. #define GGML_F32_VEC GGML_F32x4
  588. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  589. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  590. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  591. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  592. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  593. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  594. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  595. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  596. // F16 NEON
  597. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  598. #define GGML_F16_STEP 32
  599. #define GGML_F16_EPR 8
  600. #define GGML_F16x8 float16x8_t
  601. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  602. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  603. #define GGML_F16x8_LOAD vld1q_f16
  604. #define GGML_F16x8_STORE vst1q_f16
  605. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  606. #define GGML_F16x8_ADD vaddq_f16
  607. #define GGML_F16x8_MUL vmulq_f16
  608. #define GGML_F16x8_REDUCE(res, x) \
  609. do { \
  610. int offset = GGML_F16_ARR >> 1; \
  611. for (int i = 0; i < offset; ++i) { \
  612. x[i] = vaddq_f16(x[i], x[offset+i]); \
  613. } \
  614. offset >>= 1; \
  615. for (int i = 0; i < offset; ++i) { \
  616. x[i] = vaddq_f16(x[i], x[offset+i]); \
  617. } \
  618. offset >>= 1; \
  619. for (int i = 0; i < offset; ++i) { \
  620. x[i] = vaddq_f16(x[i], x[offset+i]); \
  621. } \
  622. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  623. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  624. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  625. } while (0)
  626. #define GGML_F16_VEC GGML_F16x8
  627. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  628. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  629. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  630. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  631. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  632. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  633. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  634. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  635. #else
  636. // if FP16 vector arithmetic is not supported, we use FP32 instead
  637. // and take advantage of the vcvt_ functions to convert to/from FP16
  638. #define GGML_F16_STEP 16
  639. #define GGML_F16_EPR 4
  640. #define GGML_F32Cx4 float32x4_t
  641. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  642. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  643. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  644. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  645. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  646. #define GGML_F32Cx4_ADD vaddq_f32
  647. #define GGML_F32Cx4_MUL vmulq_f32
  648. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  649. #define GGML_F16_VEC GGML_F32Cx4
  650. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  651. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  652. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  653. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  654. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  655. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  656. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  657. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  658. #endif
  659. #elif defined(__AVX__)
  660. #define GGML_SIMD
  661. // F32 AVX
  662. #define GGML_F32_STEP 32
  663. #define GGML_F32_EPR 8
  664. #define GGML_F32x8 __m256
  665. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  666. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  667. #define GGML_F32x8_LOAD _mm256_loadu_ps
  668. #define GGML_F32x8_STORE _mm256_storeu_ps
  669. #if defined(__FMA__)
  670. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  671. #else
  672. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  673. #endif
  674. #define GGML_F32x8_ADD _mm256_add_ps
  675. #define GGML_F32x8_MUL _mm256_mul_ps
  676. #define GGML_F32x8_REDUCE(res, x) \
  677. do { \
  678. int offset = GGML_F32_ARR >> 1; \
  679. for (int i = 0; i < offset; ++i) { \
  680. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  681. } \
  682. offset >>= 1; \
  683. for (int i = 0; i < offset; ++i) { \
  684. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  685. } \
  686. offset >>= 1; \
  687. for (int i = 0; i < offset; ++i) { \
  688. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  689. } \
  690. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  691. _mm256_extractf128_ps(x[0], 1)); \
  692. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  693. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  694. } while (0)
  695. // TODO: is this optimal ?
  696. #define GGML_F32_VEC GGML_F32x8
  697. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  698. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  699. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  700. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  701. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  702. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  703. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  704. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  705. // F16 AVX
  706. #define GGML_F16_STEP 32
  707. #define GGML_F16_EPR 8
  708. // F16 arithmetic is not supported by AVX, so we use F32 instead
  709. #define GGML_F32Cx8 __m256
  710. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  711. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  712. #if defined(__F16C__)
  713. // the _mm256_cvt intrinsics require F16C
  714. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  715. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  716. #else
  717. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  718. float tmp[8];
  719. for (int i = 0; i < 8; i++) {
  720. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  721. }
  722. return _mm256_loadu_ps(tmp);
  723. }
  724. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  725. float arr[8];
  726. _mm256_storeu_ps(arr, y);
  727. for (int i = 0; i < 8; i++)
  728. x[i] = GGML_FP32_TO_FP16(arr[i]);
  729. }
  730. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  731. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  732. #endif
  733. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  734. #define GGML_F32Cx8_ADD _mm256_add_ps
  735. #define GGML_F32Cx8_MUL _mm256_mul_ps
  736. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  737. #define GGML_F16_VEC GGML_F32Cx8
  738. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  739. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  740. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  741. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  742. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  743. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  744. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  745. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  746. #elif defined(__POWER9_VECTOR__)
  747. #define GGML_SIMD
  748. // F32 POWER9
  749. #define GGML_F32_STEP 32
  750. #define GGML_F32_EPR 4
  751. #define GGML_F32x4 vector float
  752. #define GGML_F32x4_ZERO 0.0f
  753. #define GGML_F32x4_SET1 vec_splats
  754. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  755. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  756. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  757. #define GGML_F32x4_ADD vec_add
  758. #define GGML_F32x4_MUL vec_mul
  759. #define GGML_F32x4_REDUCE(res, x) \
  760. { \
  761. int offset = GGML_F32_ARR >> 1; \
  762. for (int i = 0; i < offset; ++i) { \
  763. x[i] = vec_add(x[i], x[offset+i]); \
  764. } \
  765. offset >>= 1; \
  766. for (int i = 0; i < offset; ++i) { \
  767. x[i] = vec_add(x[i], x[offset+i]); \
  768. } \
  769. offset >>= 1; \
  770. for (int i = 0; i < offset; ++i) { \
  771. x[i] = vec_add(x[i], x[offset+i]); \
  772. } \
  773. res = vec_extract(x[0], 0) + \
  774. vec_extract(x[0], 1) + \
  775. vec_extract(x[0], 2) + \
  776. vec_extract(x[0], 3); \
  777. }
  778. #define GGML_F32_VEC GGML_F32x4
  779. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  780. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  781. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  782. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  783. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  784. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  785. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  786. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  787. // F16 POWER9
  788. #define GGML_F16_STEP GGML_F32_STEP
  789. #define GGML_F16_EPR GGML_F32_EPR
  790. #define GGML_F16_VEC GGML_F32x4
  791. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  792. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  793. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  794. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  795. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  796. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  797. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  798. vec_extract_fp32_from_shortl(vec_xl(0, p))
  799. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  800. #define GGML_F16_VEC_STORE(p, r, i) \
  801. if (i & 0x1) \
  802. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  803. r[i - GGML_ENDIAN_BYTE(0)]), \
  804. 0, p - GGML_F16_EPR)
  805. #elif defined(__wasm_simd128__)
  806. #define GGML_SIMD
  807. // F32 WASM
  808. #define GGML_F32_STEP 16
  809. #define GGML_F32_EPR 4
  810. #define GGML_F32x4 v128_t
  811. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  812. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  813. #define GGML_F32x4_LOAD wasm_v128_load
  814. #define GGML_F32x4_STORE wasm_v128_store
  815. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  816. #define GGML_F32x4_ADD wasm_f32x4_add
  817. #define GGML_F32x4_MUL wasm_f32x4_mul
  818. #define GGML_F32x4_REDUCE(res, x) \
  819. { \
  820. int offset = GGML_F32_ARR >> 1; \
  821. for (int i = 0; i < offset; ++i) { \
  822. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  823. } \
  824. offset >>= 1; \
  825. for (int i = 0; i < offset; ++i) { \
  826. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  827. } \
  828. offset >>= 1; \
  829. for (int i = 0; i < offset; ++i) { \
  830. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  831. } \
  832. res = wasm_f32x4_extract_lane(x[0], 0) + \
  833. wasm_f32x4_extract_lane(x[0], 1) + \
  834. wasm_f32x4_extract_lane(x[0], 2) + \
  835. wasm_f32x4_extract_lane(x[0], 3); \
  836. }
  837. #define GGML_F32_VEC GGML_F32x4
  838. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  839. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  840. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  841. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  842. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  843. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  844. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  845. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  846. // F16 WASM
  847. #define GGML_F16_STEP 16
  848. #define GGML_F16_EPR 4
  849. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  850. float tmp[4];
  851. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  852. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  853. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  854. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  855. return wasm_v128_load(tmp);
  856. }
  857. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  858. float tmp[4];
  859. wasm_v128_store(tmp, x);
  860. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  861. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  862. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  863. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  864. }
  865. #define GGML_F16x4 v128_t
  866. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  867. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  868. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  869. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  870. #define GGML_F16x4_FMA GGML_F32x4_FMA
  871. #define GGML_F16x4_ADD wasm_f32x4_add
  872. #define GGML_F16x4_MUL wasm_f32x4_mul
  873. #define GGML_F16x4_REDUCE(res, x) \
  874. { \
  875. int offset = GGML_F16_ARR >> 1; \
  876. for (int i = 0; i < offset; ++i) { \
  877. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  878. } \
  879. offset >>= 1; \
  880. for (int i = 0; i < offset; ++i) { \
  881. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  882. } \
  883. offset >>= 1; \
  884. for (int i = 0; i < offset; ++i) { \
  885. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  886. } \
  887. res = wasm_f32x4_extract_lane(x[0], 0) + \
  888. wasm_f32x4_extract_lane(x[0], 1) + \
  889. wasm_f32x4_extract_lane(x[0], 2) + \
  890. wasm_f32x4_extract_lane(x[0], 3); \
  891. }
  892. #define GGML_F16_VEC GGML_F16x4
  893. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  894. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  895. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  896. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  897. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  898. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  899. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  900. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  901. #elif defined(__SSE3__)
  902. #define GGML_SIMD
  903. // F32 SSE
  904. #define GGML_F32_STEP 32
  905. #define GGML_F32_EPR 4
  906. #define GGML_F32x4 __m128
  907. #define GGML_F32x4_ZERO _mm_setzero_ps()
  908. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  909. #define GGML_F32x4_LOAD _mm_loadu_ps
  910. #define GGML_F32x4_STORE _mm_storeu_ps
  911. #if defined(__FMA__)
  912. // TODO: Does this work?
  913. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  914. #else
  915. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  916. #endif
  917. #define GGML_F32x4_ADD _mm_add_ps
  918. #define GGML_F32x4_MUL _mm_mul_ps
  919. #define GGML_F32x4_REDUCE(res, x) \
  920. { \
  921. int offset = GGML_F32_ARR >> 1; \
  922. for (int i = 0; i < offset; ++i) { \
  923. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  924. } \
  925. offset >>= 1; \
  926. for (int i = 0; i < offset; ++i) { \
  927. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  928. } \
  929. offset >>= 1; \
  930. for (int i = 0; i < offset; ++i) { \
  931. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  932. } \
  933. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  934. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  935. }
  936. // TODO: is this optimal ?
  937. #define GGML_F32_VEC GGML_F32x4
  938. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  939. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  940. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  941. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  942. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  943. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  944. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  945. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  946. // F16 SSE
  947. #define GGML_F16_STEP 32
  948. #define GGML_F16_EPR 4
  949. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  950. float tmp[4];
  951. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  952. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  953. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  954. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  955. return _mm_loadu_ps(tmp);
  956. }
  957. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  958. float arr[4];
  959. _mm_storeu_ps(arr, y);
  960. x[0] = GGML_FP32_TO_FP16(arr[0]);
  961. x[1] = GGML_FP32_TO_FP16(arr[1]);
  962. x[2] = GGML_FP32_TO_FP16(arr[2]);
  963. x[3] = GGML_FP32_TO_FP16(arr[3]);
  964. }
  965. #define GGML_F32Cx4 __m128
  966. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  967. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  968. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  969. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  970. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  971. #define GGML_F32Cx4_ADD _mm_add_ps
  972. #define GGML_F32Cx4_MUL _mm_mul_ps
  973. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  974. #define GGML_F16_VEC GGML_F32Cx4
  975. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  976. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  977. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  978. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  979. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  980. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  981. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  982. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  983. #endif
  984. // GGML_F32_ARR / GGML_F16_ARR
  985. // number of registers to use per step
  986. #ifdef GGML_SIMD
  987. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  988. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  989. #endif
  990. //
  991. // fundamental operations
  992. //
  993. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  994. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  995. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  996. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  997. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  998. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  999. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1000. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1001. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1002. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1003. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1004. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1005. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1006. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1007. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1008. #ifdef GGML_SIMD
  1009. float sumf = 0.0f;
  1010. const int np = (n & ~(GGML_F32_STEP - 1));
  1011. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1012. GGML_F32_VEC ax[GGML_F32_ARR];
  1013. GGML_F32_VEC ay[GGML_F32_ARR];
  1014. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1015. for (int j = 0; j < GGML_F32_ARR; j++) {
  1016. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1017. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1018. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1019. }
  1020. }
  1021. // reduce sum0..sum3 to sum0
  1022. GGML_F32_VEC_REDUCE(sumf, sum);
  1023. // leftovers
  1024. for (int i = np; i < n; ++i) {
  1025. sumf += x[i]*y[i];
  1026. }
  1027. #else
  1028. // scalar
  1029. ggml_float sumf = 0.0;
  1030. for (int i = 0; i < n; ++i) {
  1031. sumf += (ggml_float)(x[i]*y[i]);
  1032. }
  1033. #endif
  1034. *s = sumf;
  1035. }
  1036. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1037. ggml_float sumf = 0.0;
  1038. #if defined(GGML_SIMD)
  1039. const int np = (n & ~(GGML_F16_STEP - 1));
  1040. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1041. GGML_F16_VEC ax[GGML_F16_ARR];
  1042. GGML_F16_VEC ay[GGML_F16_ARR];
  1043. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1044. for (int j = 0; j < GGML_F16_ARR; j++) {
  1045. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1046. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1047. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1048. }
  1049. }
  1050. // reduce sum0..sum3 to sum0
  1051. GGML_F16_VEC_REDUCE(sumf, sum);
  1052. // leftovers
  1053. for (int i = np; i < n; ++i) {
  1054. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1055. }
  1056. #else
  1057. for (int i = 0; i < n; ++i) {
  1058. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1059. }
  1060. #endif
  1061. *s = sumf;
  1062. }
  1063. // compute GGML_VEC_DOT_UNROLL dot products at once
  1064. // xs - x row stride in bytes
  1065. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1066. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1067. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1068. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1069. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1070. }
  1071. #if defined(GGML_SIMD)
  1072. const int np = (n & ~(GGML_F16_STEP - 1));
  1073. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1074. GGML_F16_VEC ax[GGML_F16_ARR];
  1075. GGML_F16_VEC ay[GGML_F16_ARR];
  1076. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1077. for (int j = 0; j < GGML_F16_ARR; j++) {
  1078. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1079. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1080. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1081. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1082. }
  1083. }
  1084. }
  1085. // reduce sum0..sum3 to sum0
  1086. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1087. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1088. }
  1089. // leftovers
  1090. for (int i = np; i < n; ++i) {
  1091. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1092. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1093. }
  1094. }
  1095. #else
  1096. for (int i = 0; i < n; ++i) {
  1097. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1098. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1099. }
  1100. }
  1101. #endif
  1102. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1103. s[i] = sumf[i];
  1104. }
  1105. }
  1106. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1107. #if defined(GGML_SIMD)
  1108. const int np = (n & ~(GGML_F32_STEP - 1));
  1109. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1110. GGML_F32_VEC ax[GGML_F32_ARR];
  1111. GGML_F32_VEC ay[GGML_F32_ARR];
  1112. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1113. for (int j = 0; j < GGML_F32_ARR; j++) {
  1114. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1115. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1116. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1117. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1118. }
  1119. }
  1120. // leftovers
  1121. for (int i = np; i < n; ++i) {
  1122. y[i] += x[i]*v;
  1123. }
  1124. #else
  1125. // scalar
  1126. for (int i = 0; i < n; ++i) {
  1127. y[i] += x[i]*v;
  1128. }
  1129. #endif
  1130. }
  1131. // xs and vs are byte strides of x and v
  1132. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1133. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1134. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1135. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1136. x[i] = (const float *) ((const char *) xv + i*xs);
  1137. v[i] = (const float *) ((const char *) vv + i*vs);
  1138. }
  1139. #if defined(GGML_SIMD)
  1140. const int np = (n & ~(GGML_F32_STEP - 1));
  1141. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1142. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1143. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1144. }
  1145. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1146. GGML_F32_VEC ay[GGML_F32_ARR];
  1147. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1148. for (int j = 0; j < GGML_F32_ARR; j++) {
  1149. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1150. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1151. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1152. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1153. }
  1154. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1155. }
  1156. }
  1157. // leftovers
  1158. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1159. for (int i = np; i < n; ++i) {
  1160. y[i] += x[k][i]*v[k][0];
  1161. }
  1162. }
  1163. #else
  1164. // scalar
  1165. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1166. for (int i = 0; i < n; ++i) {
  1167. y[i] += x[k][i]*v[k][0];
  1168. }
  1169. }
  1170. #endif
  1171. }
  1172. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1173. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1174. #if defined(GGML_USE_ACCELERATE)
  1175. vDSP_vsmul(y, 1, &v, y, 1, n);
  1176. #elif defined(GGML_SIMD)
  1177. const int np = (n & ~(GGML_F32_STEP - 1));
  1178. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1179. GGML_F32_VEC ay[GGML_F32_ARR];
  1180. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1181. for (int j = 0; j < GGML_F32_ARR; j++) {
  1182. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1183. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1184. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1185. }
  1186. }
  1187. // leftovers
  1188. for (int i = np; i < n; ++i) {
  1189. y[i] *= v;
  1190. }
  1191. #else
  1192. // scalar
  1193. for (int i = 0; i < n; ++i) {
  1194. y[i] *= v;
  1195. }
  1196. #endif
  1197. }
  1198. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1199. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1200. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1201. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1202. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1203. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1204. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1205. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1206. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1207. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1208. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1209. static const float GELU_COEF_A = 0.044715f;
  1210. static const float GELU_QUICK_COEF = -1.702f;
  1211. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1212. inline static float ggml_gelu_f32(float x) {
  1213. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1214. }
  1215. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1216. const uint16_t * i16 = (const uint16_t *) x;
  1217. for (int i = 0; i < n; ++i) {
  1218. y[i] = ggml_table_gelu_f16[i16[i]];
  1219. }
  1220. }
  1221. #ifdef GGML_GELU_FP16
  1222. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1223. uint16_t t;
  1224. for (int i = 0; i < n; ++i) {
  1225. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1226. memcpy(&t, &fp16, sizeof(uint16_t));
  1227. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1228. }
  1229. }
  1230. #else
  1231. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1232. for (int i = 0; i < n; ++i) {
  1233. y[i] = ggml_gelu_f32(x[i]);
  1234. }
  1235. }
  1236. #endif
  1237. inline static float ggml_gelu_quick_f32(float x) {
  1238. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1239. }
  1240. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1241. // const uint16_t * i16 = (const uint16_t *) x;
  1242. // for (int i = 0; i < n; ++i) {
  1243. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1244. // }
  1245. //}
  1246. #ifdef GGML_GELU_QUICK_FP16
  1247. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1248. uint16_t t;
  1249. for (int i = 0; i < n; ++i) {
  1250. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1251. memcpy(&t, &fp16, sizeof(uint16_t));
  1252. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1253. }
  1254. }
  1255. #else
  1256. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1257. for (int i = 0; i < n; ++i) {
  1258. y[i] = ggml_gelu_quick_f32(x[i]);
  1259. }
  1260. }
  1261. #endif
  1262. // Sigmoid Linear Unit (SiLU) function
  1263. inline static float ggml_silu_f32(float x) {
  1264. return x/(1.0f + expf(-x));
  1265. }
  1266. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1267. // const uint16_t * i16 = (const uint16_t *) x;
  1268. // for (int i = 0; i < n; ++i) {
  1269. // y[i] = ggml_table_silu_f16[i16[i]];
  1270. // }
  1271. //}
  1272. #ifdef GGML_SILU_FP16
  1273. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1274. uint16_t t;
  1275. for (int i = 0; i < n; ++i) {
  1276. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1277. memcpy(&t, &fp16, sizeof(uint16_t));
  1278. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1279. }
  1280. }
  1281. #else
  1282. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1283. for (int i = 0; i < n; ++i) {
  1284. y[i] = ggml_silu_f32(x[i]);
  1285. }
  1286. }
  1287. #endif
  1288. inline static float ggml_silu_backward_f32(float x, float dy) {
  1289. const float s = 1.0f/(1.0f + expf(-x));
  1290. return dy*s*(1.0f + x*(1.0f - s));
  1291. }
  1292. #ifdef GGML_SILU_FP16
  1293. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1294. for (int i = 0; i < n; ++i) {
  1295. // we did not use x[i] to compute forward silu but its f16 equivalent
  1296. // take derivative at f16 of x[i]:
  1297. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1298. float usedx = GGML_FP16_TO_FP32(fp16);
  1299. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1300. }
  1301. }
  1302. #else
  1303. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1304. for (int i = 0; i < n; ++i) {
  1305. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1306. }
  1307. }
  1308. #endif
  1309. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1310. #ifndef GGML_USE_ACCELERATE
  1311. ggml_float sum = 0.0;
  1312. for (int i = 0; i < n; ++i) {
  1313. sum += (ggml_float)x[i];
  1314. }
  1315. *s = sum;
  1316. #else
  1317. vDSP_sve(x, 1, s, n);
  1318. #endif
  1319. }
  1320. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1321. ggml_float sum = 0.0;
  1322. for (int i = 0; i < n; ++i) {
  1323. sum += (ggml_float)x[i];
  1324. }
  1325. *s = sum;
  1326. }
  1327. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1328. float sum = 0.0f;
  1329. for (int i = 0; i < n; ++i) {
  1330. sum += GGML_FP16_TO_FP32(x[i]);
  1331. }
  1332. *s = sum;
  1333. }
  1334. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1335. #ifndef GGML_USE_ACCELERATE
  1336. float max = -INFINITY;
  1337. for (int i = 0; i < n; ++i) {
  1338. max = MAX(max, x[i]);
  1339. }
  1340. *s = max;
  1341. #else
  1342. vDSP_maxv(x, 1, s, n);
  1343. #endif
  1344. }
  1345. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1346. ggml_vec_norm_f32(n, s, x);
  1347. *s = 1.f/(*s);
  1348. }
  1349. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1350. float max = -INFINITY;
  1351. int idx = 0;
  1352. for (int i = 0; i < n; ++i) {
  1353. max = MAX(max, x[i]);
  1354. if (max == x[i]) { idx = i; }
  1355. }
  1356. *s = idx;
  1357. }
  1358. //
  1359. // data types
  1360. //
  1361. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1362. "NONE",
  1363. "DUP",
  1364. "ADD",
  1365. "ADD1",
  1366. "ACC",
  1367. "SUB",
  1368. "MUL",
  1369. "DIV",
  1370. "SQR",
  1371. "SQRT",
  1372. "LOG",
  1373. "SUM",
  1374. "SUM_ROWS",
  1375. "MEAN",
  1376. "ARGMAX",
  1377. "REPEAT",
  1378. "REPEAT_BACK",
  1379. "CONCAT",
  1380. "SILU_BACK",
  1381. "NORM",
  1382. "RMS_NORM",
  1383. "RMS_NORM_BACK",
  1384. "GROUP_NORM",
  1385. "MUL_MAT",
  1386. "MUL_MAT_ID",
  1387. "OUT_PROD",
  1388. "SCALE",
  1389. "SET",
  1390. "CPY",
  1391. "CONT",
  1392. "RESHAPE",
  1393. "VIEW",
  1394. "PERMUTE",
  1395. "TRANSPOSE",
  1396. "GET_ROWS",
  1397. "GET_ROWS_BACK",
  1398. "DIAG",
  1399. "DIAG_MASK_INF",
  1400. "DIAG_MASK_ZERO",
  1401. "SOFT_MAX",
  1402. "SOFT_MAX_BACK",
  1403. "ROPE",
  1404. "ROPE_BACK",
  1405. "ALIBI",
  1406. "CLAMP",
  1407. "CONV_TRANSPOSE_1D",
  1408. "IM2COL",
  1409. "CONV_TRANSPOSE_2D",
  1410. "POOL_1D",
  1411. "POOL_2D",
  1412. "UPSCALE",
  1413. "PAD",
  1414. "ARGSORT",
  1415. "LEAKY_RELU",
  1416. "FLASH_ATTN",
  1417. "FLASH_FF",
  1418. "FLASH_ATTN_BACK",
  1419. "WIN_PART",
  1420. "WIN_UNPART",
  1421. "GET_REL_POS",
  1422. "ADD_REL_POS",
  1423. "UNARY",
  1424. "MAP_UNARY",
  1425. "MAP_BINARY",
  1426. "MAP_CUSTOM1_F32",
  1427. "MAP_CUSTOM2_F32",
  1428. "MAP_CUSTOM3_F32",
  1429. "MAP_CUSTOM1",
  1430. "MAP_CUSTOM2",
  1431. "MAP_CUSTOM3",
  1432. "CROSS_ENTROPY_LOSS",
  1433. "CROSS_ENTROPY_LOSS_BACK",
  1434. };
  1435. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1436. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1437. "none",
  1438. "x",
  1439. "x+y",
  1440. "x+y",
  1441. "view(x,nb,offset)+=y->x",
  1442. "x-y",
  1443. "x*y",
  1444. "x/y",
  1445. "x^2",
  1446. "√x",
  1447. "log(x)",
  1448. "Σx",
  1449. "Σx_k",
  1450. "Σx/n",
  1451. "argmax(x)",
  1452. "repeat(x)",
  1453. "repeat_back(x)",
  1454. "concat(x, y)",
  1455. "silu_back(x)",
  1456. "norm(x)",
  1457. "rms_norm(x)",
  1458. "rms_norm_back(x)",
  1459. "group_norm(x)",
  1460. "X*Y",
  1461. "X[i]*Y",
  1462. "X*Y",
  1463. "x*v",
  1464. "y-\\>view(x)",
  1465. "x-\\>y",
  1466. "cont(x)",
  1467. "reshape(x)",
  1468. "view(x)",
  1469. "permute(x)",
  1470. "transpose(x)",
  1471. "get_rows(x)",
  1472. "get_rows_back(x)",
  1473. "diag(x)",
  1474. "diag_mask_inf(x)",
  1475. "diag_mask_zero(x)",
  1476. "soft_max(x)",
  1477. "soft_max_back(x)",
  1478. "rope(x)",
  1479. "rope_back(x)",
  1480. "alibi(x)",
  1481. "clamp(x)",
  1482. "conv_transpose_1d(x)",
  1483. "im2col(x)",
  1484. "conv_transpose_2d(x)",
  1485. "pool_1d(x)",
  1486. "pool_2d(x)",
  1487. "upscale(x)",
  1488. "pad(x)",
  1489. "argsort(x)",
  1490. "leaky_relu(x)",
  1491. "flash_attn(x)",
  1492. "flash_ff(x)",
  1493. "flash_attn_back(x)",
  1494. "win_part(x)",
  1495. "win_unpart(x)",
  1496. "get_rel_pos(x)",
  1497. "add_rel_pos(x)",
  1498. "unary(x)",
  1499. "f(x)",
  1500. "f(x,y)",
  1501. "custom_f32(x)",
  1502. "custom_f32(x,y)",
  1503. "custom_f32(x,y,z)",
  1504. "custom(x)",
  1505. "custom(x,y)",
  1506. "custom(x,y,z)",
  1507. "cross_entropy_loss(x,y)",
  1508. "cross_entropy_loss_back(x,y)",
  1509. };
  1510. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1511. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1512. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1513. "ABS",
  1514. "SGN",
  1515. "NEG",
  1516. "STEP",
  1517. "TANH",
  1518. "ELU",
  1519. "RELU",
  1520. "GELU",
  1521. "GELU_QUICK",
  1522. "SILU",
  1523. };
  1524. static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
  1525. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1526. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1527. // WARN:
  1528. // Mis-configuration can lead to problem that's hard to reason about:
  1529. // * At best it crash or talks nosense.
  1530. // * At worst it talks slightly difference but hard to perceive.
  1531. //
  1532. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1533. // Take care about compile options (e.g., GGML_USE_xxx).
  1534. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1535. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1536. static void ggml_setup_op_has_task_pass(void) {
  1537. { // INIT
  1538. bool * p = GGML_OP_HAS_INIT;
  1539. p[GGML_OP_ACC ] = true;
  1540. p[GGML_OP_MUL_MAT ] = true;
  1541. p[GGML_OP_MUL_MAT_ID ] = true;
  1542. p[GGML_OP_OUT_PROD ] = true;
  1543. p[GGML_OP_SET ] = true;
  1544. p[GGML_OP_GET_ROWS_BACK ] = true;
  1545. p[GGML_OP_DIAG_MASK_INF ] = true;
  1546. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1547. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1548. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1549. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1550. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1551. p[GGML_OP_ADD_REL_POS ] = true;
  1552. }
  1553. { // FINALIZE
  1554. bool * p = GGML_OP_HAS_FINALIZE;
  1555. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1556. }
  1557. }
  1558. //
  1559. // ggml context
  1560. //
  1561. struct ggml_context {
  1562. size_t mem_size;
  1563. void * mem_buffer;
  1564. bool mem_buffer_owned;
  1565. bool no_alloc;
  1566. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1567. int n_objects;
  1568. struct ggml_object * objects_begin;
  1569. struct ggml_object * objects_end;
  1570. struct ggml_scratch scratch;
  1571. struct ggml_scratch scratch_save;
  1572. };
  1573. struct ggml_context_container {
  1574. bool used;
  1575. struct ggml_context context;
  1576. };
  1577. //
  1578. // NUMA support
  1579. //
  1580. #define GGML_NUMA_MAX_NODES 8
  1581. #define GGML_NUMA_MAX_CPUS 512
  1582. struct ggml_numa_node {
  1583. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1584. uint32_t n_cpus;
  1585. };
  1586. struct ggml_numa_nodes {
  1587. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1588. uint32_t n_nodes;
  1589. uint32_t total_cpus; // hardware threads on system
  1590. };
  1591. //
  1592. // ggml state
  1593. //
  1594. struct ggml_state {
  1595. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1596. struct ggml_numa_nodes numa;
  1597. };
  1598. // global state
  1599. static struct ggml_state g_state;
  1600. static atomic_int g_state_barrier = 0;
  1601. // barrier via spin lock
  1602. inline static void ggml_critical_section_start(void) {
  1603. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1604. while (processing > 0) {
  1605. // wait for other threads to finish
  1606. atomic_fetch_sub(&g_state_barrier, 1);
  1607. sched_yield(); // TODO: reconsider this
  1608. processing = atomic_fetch_add(&g_state_barrier, 1);
  1609. }
  1610. }
  1611. // TODO: make this somehow automatically executed
  1612. // some sort of "sentry" mechanism
  1613. inline static void ggml_critical_section_end(void) {
  1614. atomic_fetch_sub(&g_state_barrier, 1);
  1615. }
  1616. void ggml_numa_init(void) {
  1617. if (g_state.numa.n_nodes > 0) {
  1618. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1619. return;
  1620. }
  1621. #ifdef __linux__
  1622. struct stat st;
  1623. char path[256];
  1624. int rv;
  1625. // enumerate nodes
  1626. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1627. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1628. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1629. if (stat(path, &st) != 0) { break; }
  1630. ++g_state.numa.n_nodes;
  1631. }
  1632. // enumerate CPUs
  1633. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1634. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1635. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1636. if (stat(path, &st) != 0) { break; }
  1637. ++g_state.numa.total_cpus;
  1638. }
  1639. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1640. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1641. g_state.numa.n_nodes = 0;
  1642. return;
  1643. }
  1644. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1645. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1646. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1647. node->n_cpus = 0;
  1648. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1649. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1650. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1651. if (stat(path, &st) == 0) {
  1652. node->cpus[node->n_cpus++] = c;
  1653. GGML_PRINT_DEBUG(" %u", c);
  1654. }
  1655. }
  1656. GGML_PRINT_DEBUG("\n");
  1657. }
  1658. if (ggml_is_numa()) {
  1659. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1660. if (fptr != NULL) {
  1661. char buf[42];
  1662. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1663. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1664. }
  1665. fclose(fptr);
  1666. }
  1667. }
  1668. #else
  1669. // TODO
  1670. #endif
  1671. }
  1672. bool ggml_is_numa(void) {
  1673. return g_state.numa.n_nodes > 1;
  1674. }
  1675. ////////////////////////////////////////////////////////////////////////////////
  1676. void ggml_print_object(const struct ggml_object * obj) {
  1677. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1678. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1679. }
  1680. void ggml_print_objects(const struct ggml_context * ctx) {
  1681. struct ggml_object * obj = ctx->objects_begin;
  1682. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1683. while (obj != NULL) {
  1684. ggml_print_object(obj);
  1685. obj = obj->next;
  1686. }
  1687. GGML_PRINT("%s: --- end ---\n", __func__);
  1688. }
  1689. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1690. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1691. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1692. }
  1693. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1694. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1695. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1696. }
  1697. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1698. size_t nbytes;
  1699. size_t blck_size = ggml_blck_size(tensor->type);
  1700. if (blck_size == 1) {
  1701. nbytes = ggml_type_size(tensor->type);
  1702. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1703. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1704. }
  1705. }
  1706. else {
  1707. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1708. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1709. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1710. }
  1711. }
  1712. return nbytes;
  1713. }
  1714. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1715. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1716. }
  1717. int ggml_blck_size(enum ggml_type type) {
  1718. return type_traits[type].blck_size;
  1719. }
  1720. size_t ggml_type_size(enum ggml_type type) {
  1721. return type_traits[type].type_size;
  1722. }
  1723. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1724. assert(ne % ggml_blck_size(type) == 0);
  1725. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1726. }
  1727. double ggml_type_sizef(enum ggml_type type) {
  1728. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1729. }
  1730. const char * ggml_type_name(enum ggml_type type) {
  1731. return type_traits[type].type_name;
  1732. }
  1733. bool ggml_is_quantized(enum ggml_type type) {
  1734. return type_traits[type].is_quantized;
  1735. }
  1736. const char * ggml_op_name(enum ggml_op op) {
  1737. return GGML_OP_NAME[op];
  1738. }
  1739. const char * ggml_op_symbol(enum ggml_op op) {
  1740. return GGML_OP_SYMBOL[op];
  1741. }
  1742. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1743. return GGML_UNARY_OP_NAME[op];
  1744. }
  1745. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1746. if (t->op == GGML_OP_UNARY) {
  1747. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1748. return ggml_unary_op_name(uop);
  1749. }
  1750. else {
  1751. return ggml_op_name(t->op);
  1752. }
  1753. }
  1754. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1755. return ggml_type_size(tensor->type);
  1756. }
  1757. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1758. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1759. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1760. }
  1761. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1762. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1763. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1764. }
  1765. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1766. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1767. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1768. }
  1769. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1770. return tensor->ne[3] == 1;
  1771. }
  1772. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1773. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1774. if (tensor->ne[i] > 1) {
  1775. return i + 1;
  1776. }
  1777. }
  1778. return 1;
  1779. }
  1780. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1781. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1782. return (t0->ne[0] == t1->ne[0]) &&
  1783. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1784. (t1->ne[3]%t0->ne[3] == 0);
  1785. }
  1786. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1787. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1788. return (t0->ne[1] == t1->ne[1]) &&
  1789. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1790. (t1->ne[3]%t0->ne[3] == 0);
  1791. }
  1792. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1793. enum ggml_type wtype = GGML_TYPE_COUNT;
  1794. switch (ftype) {
  1795. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1796. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1797. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1798. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1799. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1800. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1801. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1802. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1803. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1804. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1805. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1806. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1807. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1808. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1809. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1810. }
  1811. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1812. return wtype;
  1813. }
  1814. size_t ggml_tensor_overhead(void) {
  1815. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1816. }
  1817. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1818. return tensor->nb[0] > tensor->nb[1];
  1819. }
  1820. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1822. return
  1823. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1824. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1825. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1826. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1827. }
  1828. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1829. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1830. return
  1831. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1832. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1833. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1834. }
  1835. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1836. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1837. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1838. }
  1839. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1840. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1841. return
  1842. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1843. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1844. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1845. }
  1846. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1847. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1848. return
  1849. (t0->ne[0] == t1->ne[0] ) &&
  1850. (t0->ne[1] == t1->ne[1] ) &&
  1851. (t0->ne[2] == t1->ne[2] ) &&
  1852. (t0->ne[3] == t1->ne[3] );
  1853. }
  1854. // check if t1 can be represented as a repeatition of t0
  1855. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1856. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1857. return
  1858. (t1->ne[0]%t0->ne[0] == 0) &&
  1859. (t1->ne[1]%t0->ne[1] == 0) &&
  1860. (t1->ne[2]%t0->ne[2] == 0) &&
  1861. (t1->ne[3]%t0->ne[3] == 0);
  1862. }
  1863. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1864. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1865. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1866. }
  1867. static inline int ggml_up32(int n) {
  1868. return (n + 31) & ~31;
  1869. }
  1870. //static inline int ggml_up64(int n) {
  1871. // return (n + 63) & ~63;
  1872. //}
  1873. static inline int ggml_up(int n, int m) {
  1874. // assert m is a power of 2
  1875. GGML_ASSERT((m & (m - 1)) == 0);
  1876. return (n + m - 1) & ~(m - 1);
  1877. }
  1878. // assert that pointer is aligned to GGML_MEM_ALIGN
  1879. #define ggml_assert_aligned(ptr) \
  1880. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1881. ////////////////////////////////////////////////////////////////////////////////
  1882. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1883. // make this function thread safe
  1884. ggml_critical_section_start();
  1885. static bool is_first_call = true;
  1886. if (is_first_call) {
  1887. // initialize time system (required on Windows)
  1888. ggml_time_init();
  1889. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1890. {
  1891. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1892. ggml_fp16_t ii;
  1893. for (int i = 0; i < (1 << 16); ++i) {
  1894. uint16_t ui = i;
  1895. memcpy(&ii, &ui, sizeof(ii));
  1896. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1897. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1898. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1899. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1900. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1901. }
  1902. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1903. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1904. }
  1905. // initialize g_state
  1906. {
  1907. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1908. g_state = (struct ggml_state) {
  1909. /*.contexts =*/ { { 0 } },
  1910. /*.numa =*/ {
  1911. .n_nodes = 0,
  1912. .total_cpus = 0,
  1913. },
  1914. };
  1915. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1916. g_state.contexts[i].used = false;
  1917. }
  1918. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1919. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1920. }
  1921. #if defined(GGML_USE_CUBLAS)
  1922. ggml_init_cublas();
  1923. #elif defined(GGML_USE_CLBLAST)
  1924. ggml_cl_init();
  1925. #endif
  1926. ggml_setup_op_has_task_pass();
  1927. is_first_call = false;
  1928. }
  1929. // find non-used context in g_state
  1930. struct ggml_context * ctx = NULL;
  1931. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1932. if (!g_state.contexts[i].used) {
  1933. g_state.contexts[i].used = true;
  1934. ctx = &g_state.contexts[i].context;
  1935. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1936. break;
  1937. }
  1938. }
  1939. if (ctx == NULL) {
  1940. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1941. ggml_critical_section_end();
  1942. return NULL;
  1943. }
  1944. // allow to call ggml_init with 0 size
  1945. if (params.mem_size == 0) {
  1946. params.mem_size = GGML_MEM_ALIGN;
  1947. }
  1948. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1949. *ctx = (struct ggml_context) {
  1950. /*.mem_size =*/ mem_size,
  1951. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1952. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1953. /*.no_alloc =*/ params.no_alloc,
  1954. /*.no_alloc_save =*/ params.no_alloc,
  1955. /*.n_objects =*/ 0,
  1956. /*.objects_begin =*/ NULL,
  1957. /*.objects_end =*/ NULL,
  1958. /*.scratch =*/ { 0, 0, NULL, },
  1959. /*.scratch_save =*/ { 0, 0, NULL, },
  1960. };
  1961. GGML_ASSERT(ctx->mem_buffer != NULL);
  1962. ggml_assert_aligned(ctx->mem_buffer);
  1963. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1964. ggml_critical_section_end();
  1965. return ctx;
  1966. }
  1967. void ggml_free(struct ggml_context * ctx) {
  1968. // make this function thread safe
  1969. ggml_critical_section_start();
  1970. bool found = false;
  1971. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1972. if (&g_state.contexts[i].context == ctx) {
  1973. g_state.contexts[i].used = false;
  1974. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1975. __func__, i, ggml_used_mem(ctx));
  1976. if (ctx->mem_buffer_owned) {
  1977. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1978. }
  1979. found = true;
  1980. break;
  1981. }
  1982. }
  1983. if (!found) {
  1984. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1985. }
  1986. ggml_critical_section_end();
  1987. }
  1988. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1989. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1990. }
  1991. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1992. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1993. ctx->scratch = scratch;
  1994. return result;
  1995. }
  1996. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1997. return ctx->no_alloc;
  1998. }
  1999. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2000. ctx->no_alloc = no_alloc;
  2001. }
  2002. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2003. return ctx->mem_buffer;
  2004. }
  2005. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2006. return ctx->mem_size;
  2007. }
  2008. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2009. size_t max_size = 0;
  2010. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2011. max_size = MAX(max_size, ggml_nbytes(tensor));
  2012. }
  2013. return max_size;
  2014. }
  2015. // IMPORTANT:
  2016. // when creating "opt" tensors, always save and load the scratch buffer
  2017. // this is an error prone process, but it is necessary to support inplace
  2018. // operators when using scratch buffers
  2019. // TODO: implement a better way
  2020. static void ggml_scratch_save(struct ggml_context * ctx) {
  2021. // this is needed to allow opt tensors to store their data
  2022. // TODO: again, need to find a better way
  2023. ctx->no_alloc_save = ctx->no_alloc;
  2024. ctx->no_alloc = false;
  2025. ctx->scratch_save = ctx->scratch;
  2026. ctx->scratch.data = NULL;
  2027. }
  2028. static void ggml_scratch_load(struct ggml_context * ctx) {
  2029. ctx->no_alloc = ctx->no_alloc_save;
  2030. ctx->scratch = ctx->scratch_save;
  2031. }
  2032. ////////////////////////////////////////////////////////////////////////////////
  2033. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2034. // always insert objects at the end of the context's memory pool
  2035. struct ggml_object * obj_cur = ctx->objects_end;
  2036. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2037. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2038. const size_t cur_end = cur_offs + cur_size;
  2039. // align to GGML_MEM_ALIGN
  2040. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2041. char * const mem_buffer = ctx->mem_buffer;
  2042. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2043. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2044. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2045. __func__, cur_end + size_needed, ctx->mem_size);
  2046. assert(false);
  2047. return NULL;
  2048. }
  2049. *obj_new = (struct ggml_object) {
  2050. .offs = cur_end + GGML_OBJECT_SIZE,
  2051. .size = size_needed,
  2052. .next = NULL,
  2053. .type = type,
  2054. };
  2055. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2056. if (obj_cur != NULL) {
  2057. obj_cur->next = obj_new;
  2058. } else {
  2059. // this is the first object in this context
  2060. ctx->objects_begin = obj_new;
  2061. }
  2062. ctx->objects_end = obj_new;
  2063. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2064. return obj_new;
  2065. }
  2066. static struct ggml_tensor * ggml_new_tensor_impl(
  2067. struct ggml_context * ctx,
  2068. enum ggml_type type,
  2069. int n_dims,
  2070. const int64_t * ne,
  2071. struct ggml_tensor * view_src,
  2072. size_t view_offs) {
  2073. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2074. // find the base tensor and absolute offset
  2075. if (view_src != NULL && view_src->view_src != NULL) {
  2076. view_offs += view_src->view_offs;
  2077. view_src = view_src->view_src;
  2078. }
  2079. size_t data_size = ggml_row_size(type, ne[0]);
  2080. for (int i = 1; i < n_dims; i++) {
  2081. data_size *= ne[i];
  2082. }
  2083. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2084. void * data = view_src != NULL ? view_src->data : NULL;
  2085. if (data != NULL) {
  2086. data = (char *) data + view_offs;
  2087. }
  2088. size_t obj_alloc_size = 0;
  2089. if (view_src == NULL && !ctx->no_alloc) {
  2090. if (ctx->scratch.data != NULL) {
  2091. // allocate tensor data in the scratch buffer
  2092. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2093. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2094. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2095. assert(false);
  2096. return NULL;
  2097. }
  2098. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2099. ctx->scratch.offs += data_size;
  2100. } else {
  2101. // allocate tensor data in the context's memory pool
  2102. obj_alloc_size = data_size;
  2103. }
  2104. }
  2105. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2106. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2107. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2108. *result = (struct ggml_tensor) {
  2109. /*.type =*/ type,
  2110. /*.backend =*/ GGML_BACKEND_CPU,
  2111. /*.buffer =*/ NULL,
  2112. /*.ne =*/ { 1, 1, 1, 1 },
  2113. /*.nb =*/ { 0, 0, 0, 0 },
  2114. /*.op =*/ GGML_OP_NONE,
  2115. /*.op_params =*/ { 0 },
  2116. /*.is_param =*/ false,
  2117. /*.grad =*/ NULL,
  2118. /*.src =*/ { NULL },
  2119. /*.perf_runs =*/ 0,
  2120. /*.perf_cycles =*/ 0,
  2121. /*.perf_time_us =*/ 0,
  2122. /*.view_src =*/ view_src,
  2123. /*.view_offs =*/ view_offs,
  2124. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2125. /*.name =*/ { 0 },
  2126. /*.extra =*/ NULL,
  2127. /*.padding =*/ { 0 },
  2128. };
  2129. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2130. //ggml_assert_aligned(result->data);
  2131. for (int i = 0; i < n_dims; i++) {
  2132. result->ne[i] = ne[i];
  2133. }
  2134. result->nb[0] = ggml_type_size(type);
  2135. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2136. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2137. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2138. }
  2139. ctx->n_objects++;
  2140. return result;
  2141. }
  2142. struct ggml_tensor * ggml_new_tensor(
  2143. struct ggml_context * ctx,
  2144. enum ggml_type type,
  2145. int n_dims,
  2146. const int64_t * ne) {
  2147. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2148. }
  2149. struct ggml_tensor * ggml_new_tensor_1d(
  2150. struct ggml_context * ctx,
  2151. enum ggml_type type,
  2152. int64_t ne0) {
  2153. return ggml_new_tensor(ctx, type, 1, &ne0);
  2154. }
  2155. struct ggml_tensor * ggml_new_tensor_2d(
  2156. struct ggml_context * ctx,
  2157. enum ggml_type type,
  2158. int64_t ne0,
  2159. int64_t ne1) {
  2160. const int64_t ne[2] = { ne0, ne1 };
  2161. return ggml_new_tensor(ctx, type, 2, ne);
  2162. }
  2163. struct ggml_tensor * ggml_new_tensor_3d(
  2164. struct ggml_context * ctx,
  2165. enum ggml_type type,
  2166. int64_t ne0,
  2167. int64_t ne1,
  2168. int64_t ne2) {
  2169. const int64_t ne[3] = { ne0, ne1, ne2 };
  2170. return ggml_new_tensor(ctx, type, 3, ne);
  2171. }
  2172. struct ggml_tensor * ggml_new_tensor_4d(
  2173. struct ggml_context * ctx,
  2174. enum ggml_type type,
  2175. int64_t ne0,
  2176. int64_t ne1,
  2177. int64_t ne2,
  2178. int64_t ne3) {
  2179. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2180. return ggml_new_tensor(ctx, type, 4, ne);
  2181. }
  2182. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2183. ggml_scratch_save(ctx);
  2184. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2185. ggml_scratch_load(ctx);
  2186. ggml_set_i32(result, value);
  2187. return result;
  2188. }
  2189. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2190. ggml_scratch_save(ctx);
  2191. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2192. ggml_scratch_load(ctx);
  2193. ggml_set_f32(result, value);
  2194. return result;
  2195. }
  2196. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2197. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2198. }
  2199. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2200. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2201. assert(params_size <= GGML_MAX_OP_PARAMS);
  2202. memcpy(tensor->op_params, params, params_size);
  2203. }
  2204. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2205. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2206. return ((const int32_t *)(tensor->op_params))[i];
  2207. }
  2208. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2209. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2210. ((int32_t *)(tensor->op_params))[i] = value;
  2211. }
  2212. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2213. memset(tensor->data, 0, ggml_nbytes(tensor));
  2214. return tensor;
  2215. }
  2216. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2217. const int n = ggml_nrows(tensor);
  2218. const int nc = tensor->ne[0];
  2219. const size_t n1 = tensor->nb[1];
  2220. char * const data = tensor->data;
  2221. switch (tensor->type) {
  2222. case GGML_TYPE_I8:
  2223. {
  2224. assert(tensor->nb[0] == sizeof(int8_t));
  2225. for (int i = 0; i < n; i++) {
  2226. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2227. }
  2228. } break;
  2229. case GGML_TYPE_I16:
  2230. {
  2231. assert(tensor->nb[0] == sizeof(int16_t));
  2232. for (int i = 0; i < n; i++) {
  2233. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2234. }
  2235. } break;
  2236. case GGML_TYPE_I32:
  2237. {
  2238. assert(tensor->nb[0] == sizeof(int32_t));
  2239. for (int i = 0; i < n; i++) {
  2240. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2241. }
  2242. } break;
  2243. case GGML_TYPE_F16:
  2244. {
  2245. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2246. for (int i = 0; i < n; i++) {
  2247. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2248. }
  2249. } break;
  2250. case GGML_TYPE_F32:
  2251. {
  2252. assert(tensor->nb[0] == sizeof(float));
  2253. for (int i = 0; i < n; i++) {
  2254. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2255. }
  2256. } break;
  2257. default:
  2258. {
  2259. GGML_ASSERT(false);
  2260. } break;
  2261. }
  2262. return tensor;
  2263. }
  2264. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2265. const int n = ggml_nrows(tensor);
  2266. const int nc = tensor->ne[0];
  2267. const size_t n1 = tensor->nb[1];
  2268. char * const data = tensor->data;
  2269. switch (tensor->type) {
  2270. case GGML_TYPE_I8:
  2271. {
  2272. assert(tensor->nb[0] == sizeof(int8_t));
  2273. for (int i = 0; i < n; i++) {
  2274. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2275. }
  2276. } break;
  2277. case GGML_TYPE_I16:
  2278. {
  2279. assert(tensor->nb[0] == sizeof(int16_t));
  2280. for (int i = 0; i < n; i++) {
  2281. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2282. }
  2283. } break;
  2284. case GGML_TYPE_I32:
  2285. {
  2286. assert(tensor->nb[0] == sizeof(int32_t));
  2287. for (int i = 0; i < n; i++) {
  2288. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2289. }
  2290. } break;
  2291. case GGML_TYPE_F16:
  2292. {
  2293. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2294. for (int i = 0; i < n; i++) {
  2295. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2296. }
  2297. } break;
  2298. case GGML_TYPE_F32:
  2299. {
  2300. assert(tensor->nb[0] == sizeof(float));
  2301. for (int i = 0; i < n; i++) {
  2302. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2303. }
  2304. } break;
  2305. default:
  2306. {
  2307. GGML_ASSERT(false);
  2308. } break;
  2309. }
  2310. return tensor;
  2311. }
  2312. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2313. const int64_t ne2 = tensor->ne[2];
  2314. const int64_t ne1 = tensor->ne[1];
  2315. const int64_t ne0 = tensor->ne[0];
  2316. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2317. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2318. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2319. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2320. if (i0) {
  2321. * i0 = i0_;
  2322. }
  2323. if (i1) {
  2324. * i1 = i1_;
  2325. }
  2326. if (i2) {
  2327. * i2 = i2_;
  2328. }
  2329. if (i3) {
  2330. * i3 = i3_;
  2331. }
  2332. }
  2333. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2334. if (!ggml_is_contiguous(tensor)) {
  2335. int64_t id[4] = { 0, 0, 0, 0 };
  2336. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2337. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2338. }
  2339. switch (tensor->type) {
  2340. case GGML_TYPE_I8:
  2341. {
  2342. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2343. return ((int8_t *)(tensor->data))[i];
  2344. }
  2345. case GGML_TYPE_I16:
  2346. {
  2347. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2348. return ((int16_t *)(tensor->data))[i];
  2349. }
  2350. case GGML_TYPE_I32:
  2351. {
  2352. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2353. return ((int32_t *)(tensor->data))[i];
  2354. }
  2355. case GGML_TYPE_F16:
  2356. {
  2357. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2358. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2359. }
  2360. case GGML_TYPE_F32:
  2361. {
  2362. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2363. return ((float *)(tensor->data))[i];
  2364. }
  2365. default:
  2366. {
  2367. GGML_ASSERT(false);
  2368. }
  2369. }
  2370. return 0.0f;
  2371. }
  2372. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2373. if (!ggml_is_contiguous(tensor)) {
  2374. int64_t id[4] = { 0, 0, 0, 0 };
  2375. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2376. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2377. return;
  2378. }
  2379. switch (tensor->type) {
  2380. case GGML_TYPE_I8:
  2381. {
  2382. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2383. ((int8_t *)(tensor->data))[i] = value;
  2384. } break;
  2385. case GGML_TYPE_I16:
  2386. {
  2387. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2388. ((int16_t *)(tensor->data))[i] = value;
  2389. } break;
  2390. case GGML_TYPE_I32:
  2391. {
  2392. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2393. ((int32_t *)(tensor->data))[i] = value;
  2394. } break;
  2395. case GGML_TYPE_F16:
  2396. {
  2397. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2398. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2399. } break;
  2400. case GGML_TYPE_F32:
  2401. {
  2402. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2403. ((float *)(tensor->data))[i] = value;
  2404. } break;
  2405. default:
  2406. {
  2407. GGML_ASSERT(false);
  2408. } break;
  2409. }
  2410. }
  2411. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2412. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2413. switch (tensor->type) {
  2414. case GGML_TYPE_I8:
  2415. return ((int8_t *) data)[0];
  2416. case GGML_TYPE_I16:
  2417. return ((int16_t *) data)[0];
  2418. case GGML_TYPE_I32:
  2419. return ((int32_t *) data)[0];
  2420. case GGML_TYPE_F16:
  2421. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2422. case GGML_TYPE_F32:
  2423. return ((float *) data)[0];
  2424. default:
  2425. GGML_ASSERT(false);
  2426. }
  2427. return 0.0f;
  2428. }
  2429. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2430. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2431. switch (tensor->type) {
  2432. case GGML_TYPE_I8:
  2433. {
  2434. ((int8_t *)(data))[0] = value;
  2435. } break;
  2436. case GGML_TYPE_I16:
  2437. {
  2438. ((int16_t *)(data))[0] = value;
  2439. } break;
  2440. case GGML_TYPE_I32:
  2441. {
  2442. ((int32_t *)(data))[0] = value;
  2443. } break;
  2444. case GGML_TYPE_F16:
  2445. {
  2446. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2447. } break;
  2448. case GGML_TYPE_F32:
  2449. {
  2450. ((float *)(data))[0] = value;
  2451. } break;
  2452. default:
  2453. {
  2454. GGML_ASSERT(false);
  2455. } break;
  2456. }
  2457. }
  2458. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2459. if (!ggml_is_contiguous(tensor)) {
  2460. int64_t id[4] = { 0, 0, 0, 0 };
  2461. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2462. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2463. }
  2464. switch (tensor->type) {
  2465. case GGML_TYPE_I8:
  2466. {
  2467. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2468. return ((int8_t *)(tensor->data))[i];
  2469. }
  2470. case GGML_TYPE_I16:
  2471. {
  2472. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2473. return ((int16_t *)(tensor->data))[i];
  2474. }
  2475. case GGML_TYPE_I32:
  2476. {
  2477. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2478. return ((int32_t *)(tensor->data))[i];
  2479. }
  2480. case GGML_TYPE_F16:
  2481. {
  2482. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2483. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2484. }
  2485. case GGML_TYPE_F32:
  2486. {
  2487. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2488. return ((float *)(tensor->data))[i];
  2489. }
  2490. default:
  2491. {
  2492. GGML_ASSERT(false);
  2493. }
  2494. }
  2495. return 0.0f;
  2496. }
  2497. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2498. if (!ggml_is_contiguous(tensor)) {
  2499. int64_t id[4] = { 0, 0, 0, 0 };
  2500. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2501. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2502. return;
  2503. }
  2504. switch (tensor->type) {
  2505. case GGML_TYPE_I8:
  2506. {
  2507. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2508. ((int8_t *)(tensor->data))[i] = value;
  2509. } break;
  2510. case GGML_TYPE_I16:
  2511. {
  2512. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2513. ((int16_t *)(tensor->data))[i] = value;
  2514. } break;
  2515. case GGML_TYPE_I32:
  2516. {
  2517. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2518. ((int32_t *)(tensor->data))[i] = value;
  2519. } break;
  2520. case GGML_TYPE_F16:
  2521. {
  2522. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2523. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2524. } break;
  2525. case GGML_TYPE_F32:
  2526. {
  2527. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2528. ((float *)(tensor->data))[i] = value;
  2529. } break;
  2530. default:
  2531. {
  2532. GGML_ASSERT(false);
  2533. } break;
  2534. }
  2535. }
  2536. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2537. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2538. switch (tensor->type) {
  2539. case GGML_TYPE_I8:
  2540. return ((int8_t *) data)[0];
  2541. case GGML_TYPE_I16:
  2542. return ((int16_t *) data)[0];
  2543. case GGML_TYPE_I32:
  2544. return ((int32_t *) data)[0];
  2545. case GGML_TYPE_F16:
  2546. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2547. case GGML_TYPE_F32:
  2548. return ((float *) data)[0];
  2549. default:
  2550. GGML_ASSERT(false);
  2551. }
  2552. return 0.0f;
  2553. }
  2554. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2555. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2556. switch (tensor->type) {
  2557. case GGML_TYPE_I8:
  2558. {
  2559. ((int8_t *)(data))[0] = value;
  2560. } break;
  2561. case GGML_TYPE_I16:
  2562. {
  2563. ((int16_t *)(data))[0] = value;
  2564. } break;
  2565. case GGML_TYPE_I32:
  2566. {
  2567. ((int32_t *)(data))[0] = value;
  2568. } break;
  2569. case GGML_TYPE_F16:
  2570. {
  2571. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2572. } break;
  2573. case GGML_TYPE_F32:
  2574. {
  2575. ((float *)(data))[0] = value;
  2576. } break;
  2577. default:
  2578. {
  2579. GGML_ASSERT(false);
  2580. } break;
  2581. }
  2582. }
  2583. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2584. return tensor->data;
  2585. }
  2586. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2587. assert(tensor->type == GGML_TYPE_F32);
  2588. return (float *)(tensor->data);
  2589. }
  2590. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2591. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2592. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2593. }
  2594. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2595. return tensor->name;
  2596. }
  2597. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2598. strncpy(tensor->name, name, sizeof(tensor->name));
  2599. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2600. return tensor;
  2601. }
  2602. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2603. va_list args;
  2604. va_start(args, fmt);
  2605. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2606. va_end(args);
  2607. return tensor;
  2608. }
  2609. struct ggml_tensor * ggml_view_tensor(
  2610. struct ggml_context * ctx,
  2611. struct ggml_tensor * src) {
  2612. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2613. ggml_format_name(result, "%s (view)", src->name);
  2614. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2615. result->nb[i] = src->nb[i];
  2616. }
  2617. return result;
  2618. }
  2619. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2620. struct ggml_object * obj = ctx->objects_begin;
  2621. char * const mem_buffer = ctx->mem_buffer;
  2622. while (obj != NULL) {
  2623. if (obj->type == GGML_OBJECT_TENSOR) {
  2624. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2625. }
  2626. obj = obj->next;
  2627. }
  2628. return NULL;
  2629. }
  2630. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2631. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2632. obj = obj->next;
  2633. char * const mem_buffer = ctx->mem_buffer;
  2634. while (obj != NULL) {
  2635. if (obj->type == GGML_OBJECT_TENSOR) {
  2636. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2637. }
  2638. obj = obj->next;
  2639. }
  2640. return NULL;
  2641. }
  2642. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2643. struct ggml_object * obj = ctx->objects_begin;
  2644. char * const mem_buffer = ctx->mem_buffer;
  2645. while (obj != NULL) {
  2646. if (obj->type == GGML_OBJECT_TENSOR) {
  2647. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2648. if (strcmp(cur->name, name) == 0) {
  2649. return cur;
  2650. }
  2651. }
  2652. obj = obj->next;
  2653. }
  2654. return NULL;
  2655. }
  2656. ////////////////////////////////////////////////////////////////////////////////
  2657. // ggml_dup
  2658. static struct ggml_tensor * ggml_dup_impl(
  2659. struct ggml_context * ctx,
  2660. struct ggml_tensor * a,
  2661. bool inplace) {
  2662. bool is_node = false;
  2663. if (!inplace && (a->grad)) {
  2664. is_node = true;
  2665. }
  2666. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2667. result->op = GGML_OP_DUP;
  2668. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2669. result->src[0] = a;
  2670. return result;
  2671. }
  2672. struct ggml_tensor * ggml_dup(
  2673. struct ggml_context * ctx,
  2674. struct ggml_tensor * a) {
  2675. return ggml_dup_impl(ctx, a, false);
  2676. }
  2677. struct ggml_tensor * ggml_dup_inplace(
  2678. struct ggml_context * ctx,
  2679. struct ggml_tensor * a) {
  2680. return ggml_dup_impl(ctx, a, true);
  2681. }
  2682. // ggml_add
  2683. static struct ggml_tensor * ggml_add_impl(
  2684. struct ggml_context * ctx,
  2685. struct ggml_tensor * a,
  2686. struct ggml_tensor * b,
  2687. bool inplace) {
  2688. GGML_ASSERT(ggml_can_repeat(b, a));
  2689. bool is_node = false;
  2690. if (!inplace && (a->grad || b->grad)) {
  2691. // TODO: support backward pass for broadcasting
  2692. GGML_ASSERT(ggml_are_same_shape(a, b));
  2693. is_node = true;
  2694. }
  2695. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2696. result->op = GGML_OP_ADD;
  2697. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2698. result->src[0] = a;
  2699. result->src[1] = b;
  2700. return result;
  2701. }
  2702. struct ggml_tensor * ggml_add(
  2703. struct ggml_context * ctx,
  2704. struct ggml_tensor * a,
  2705. struct ggml_tensor * b) {
  2706. return ggml_add_impl(ctx, a, b, false);
  2707. }
  2708. struct ggml_tensor * ggml_add_inplace(
  2709. struct ggml_context * ctx,
  2710. struct ggml_tensor * a,
  2711. struct ggml_tensor * b) {
  2712. return ggml_add_impl(ctx, a, b, true);
  2713. }
  2714. // ggml_add_cast
  2715. static struct ggml_tensor * ggml_add_cast_impl(
  2716. struct ggml_context * ctx,
  2717. struct ggml_tensor * a,
  2718. struct ggml_tensor * b,
  2719. enum ggml_type type) {
  2720. // TODO: support less-strict constraint
  2721. // GGML_ASSERT(ggml_can_repeat(b, a));
  2722. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2723. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2724. bool is_node = false;
  2725. if (a->grad || b->grad) {
  2726. // TODO: support backward pass for broadcasting
  2727. GGML_ASSERT(ggml_are_same_shape(a, b));
  2728. is_node = true;
  2729. }
  2730. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2731. result->op = GGML_OP_ADD;
  2732. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2733. result->src[0] = a;
  2734. result->src[1] = b;
  2735. return result;
  2736. }
  2737. struct ggml_tensor * ggml_add_cast(
  2738. struct ggml_context * ctx,
  2739. struct ggml_tensor * a,
  2740. struct ggml_tensor * b,
  2741. enum ggml_type type) {
  2742. return ggml_add_cast_impl(ctx, a, b, type);
  2743. }
  2744. // ggml_add1
  2745. static struct ggml_tensor * ggml_add1_impl(
  2746. struct ggml_context * ctx,
  2747. struct ggml_tensor * a,
  2748. struct ggml_tensor * b,
  2749. bool inplace) {
  2750. GGML_ASSERT(ggml_is_scalar(b));
  2751. GGML_ASSERT(ggml_is_padded_1d(a));
  2752. bool is_node = false;
  2753. if (a->grad || b->grad) {
  2754. is_node = true;
  2755. }
  2756. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2757. result->op = GGML_OP_ADD1;
  2758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2759. result->src[0] = a;
  2760. result->src[1] = b;
  2761. return result;
  2762. }
  2763. struct ggml_tensor * ggml_add1(
  2764. struct ggml_context * ctx,
  2765. struct ggml_tensor * a,
  2766. struct ggml_tensor * b) {
  2767. return ggml_add1_impl(ctx, a, b, false);
  2768. }
  2769. struct ggml_tensor * ggml_add1_inplace(
  2770. struct ggml_context * ctx,
  2771. struct ggml_tensor * a,
  2772. struct ggml_tensor * b) {
  2773. return ggml_add1_impl(ctx, a, b, true);
  2774. }
  2775. // ggml_acc
  2776. static struct ggml_tensor * ggml_acc_impl(
  2777. struct ggml_context * ctx,
  2778. struct ggml_tensor * a,
  2779. struct ggml_tensor * b,
  2780. size_t nb1,
  2781. size_t nb2,
  2782. size_t nb3,
  2783. size_t offset,
  2784. bool inplace) {
  2785. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2786. GGML_ASSERT(ggml_is_contiguous(a));
  2787. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2788. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2789. bool is_node = false;
  2790. if (!inplace && (a->grad || b->grad)) {
  2791. is_node = true;
  2792. }
  2793. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2794. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2795. ggml_set_op_params(result, params, sizeof(params));
  2796. result->op = GGML_OP_ACC;
  2797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2798. result->src[0] = a;
  2799. result->src[1] = b;
  2800. return result;
  2801. }
  2802. struct ggml_tensor * ggml_acc(
  2803. struct ggml_context * ctx,
  2804. struct ggml_tensor * a,
  2805. struct ggml_tensor * b,
  2806. size_t nb1,
  2807. size_t nb2,
  2808. size_t nb3,
  2809. size_t offset) {
  2810. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2811. }
  2812. struct ggml_tensor * ggml_acc_inplace(
  2813. struct ggml_context * ctx,
  2814. struct ggml_tensor * a,
  2815. struct ggml_tensor * b,
  2816. size_t nb1,
  2817. size_t nb2,
  2818. size_t nb3,
  2819. size_t offset) {
  2820. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2821. }
  2822. // ggml_sub
  2823. static struct ggml_tensor * ggml_sub_impl(
  2824. struct ggml_context * ctx,
  2825. struct ggml_tensor * a,
  2826. struct ggml_tensor * b,
  2827. bool inplace) {
  2828. GGML_ASSERT(ggml_are_same_shape(a, b));
  2829. bool is_node = false;
  2830. if (!inplace && (a->grad || b->grad)) {
  2831. is_node = true;
  2832. }
  2833. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2834. result->op = GGML_OP_SUB;
  2835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2836. result->src[0] = a;
  2837. result->src[1] = b;
  2838. return result;
  2839. }
  2840. struct ggml_tensor * ggml_sub(
  2841. struct ggml_context * ctx,
  2842. struct ggml_tensor * a,
  2843. struct ggml_tensor * b) {
  2844. return ggml_sub_impl(ctx, a, b, false);
  2845. }
  2846. struct ggml_tensor * ggml_sub_inplace(
  2847. struct ggml_context * ctx,
  2848. struct ggml_tensor * a,
  2849. struct ggml_tensor * b) {
  2850. return ggml_sub_impl(ctx, a, b, true);
  2851. }
  2852. // ggml_mul
  2853. static struct ggml_tensor * ggml_mul_impl(
  2854. struct ggml_context * ctx,
  2855. struct ggml_tensor * a,
  2856. struct ggml_tensor * b,
  2857. bool inplace) {
  2858. GGML_ASSERT(ggml_can_repeat(b, a));
  2859. bool is_node = false;
  2860. if (!inplace && (a->grad || b->grad)) {
  2861. // TODO: support backward pass for broadcasting
  2862. GGML_ASSERT(ggml_are_same_shape(a, b));
  2863. is_node = true;
  2864. }
  2865. if (inplace) {
  2866. GGML_ASSERT(!is_node);
  2867. }
  2868. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2869. result->op = GGML_OP_MUL;
  2870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2871. result->src[0] = a;
  2872. result->src[1] = b;
  2873. return result;
  2874. }
  2875. struct ggml_tensor * ggml_mul(
  2876. struct ggml_context * ctx,
  2877. struct ggml_tensor * a,
  2878. struct ggml_tensor * b) {
  2879. return ggml_mul_impl(ctx, a, b, false);
  2880. }
  2881. struct ggml_tensor * ggml_mul_inplace(
  2882. struct ggml_context * ctx,
  2883. struct ggml_tensor * a,
  2884. struct ggml_tensor * b) {
  2885. return ggml_mul_impl(ctx, a, b, true);
  2886. }
  2887. // ggml_div
  2888. static struct ggml_tensor * ggml_div_impl(
  2889. struct ggml_context * ctx,
  2890. struct ggml_tensor * a,
  2891. struct ggml_tensor * b,
  2892. bool inplace) {
  2893. GGML_ASSERT(ggml_can_repeat(b, a));
  2894. bool is_node = false;
  2895. if (!inplace && (a->grad || b->grad)) {
  2896. is_node = true;
  2897. }
  2898. if (inplace) {
  2899. GGML_ASSERT(!is_node);
  2900. }
  2901. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2902. result->op = GGML_OP_DIV;
  2903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2904. result->src[0] = a;
  2905. result->src[1] = b;
  2906. return result;
  2907. }
  2908. struct ggml_tensor * ggml_div(
  2909. struct ggml_context * ctx,
  2910. struct ggml_tensor * a,
  2911. struct ggml_tensor * b) {
  2912. return ggml_div_impl(ctx, a, b, false);
  2913. }
  2914. struct ggml_tensor * ggml_div_inplace(
  2915. struct ggml_context * ctx,
  2916. struct ggml_tensor * a,
  2917. struct ggml_tensor * b) {
  2918. return ggml_div_impl(ctx, a, b, true);
  2919. }
  2920. // ggml_sqr
  2921. static struct ggml_tensor * ggml_sqr_impl(
  2922. struct ggml_context * ctx,
  2923. struct ggml_tensor * a,
  2924. bool inplace) {
  2925. bool is_node = false;
  2926. if (!inplace && (a->grad)) {
  2927. is_node = true;
  2928. }
  2929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2930. result->op = GGML_OP_SQR;
  2931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2932. result->src[0] = a;
  2933. return result;
  2934. }
  2935. struct ggml_tensor * ggml_sqr(
  2936. struct ggml_context * ctx,
  2937. struct ggml_tensor * a) {
  2938. return ggml_sqr_impl(ctx, a, false);
  2939. }
  2940. struct ggml_tensor * ggml_sqr_inplace(
  2941. struct ggml_context * ctx,
  2942. struct ggml_tensor * a) {
  2943. return ggml_sqr_impl(ctx, a, true);
  2944. }
  2945. // ggml_sqrt
  2946. static struct ggml_tensor * ggml_sqrt_impl(
  2947. struct ggml_context * ctx,
  2948. struct ggml_tensor * a,
  2949. bool inplace) {
  2950. bool is_node = false;
  2951. if (!inplace && (a->grad)) {
  2952. is_node = true;
  2953. }
  2954. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2955. result->op = GGML_OP_SQRT;
  2956. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2957. result->src[0] = a;
  2958. return result;
  2959. }
  2960. struct ggml_tensor * ggml_sqrt(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a) {
  2963. return ggml_sqrt_impl(ctx, a, false);
  2964. }
  2965. struct ggml_tensor * ggml_sqrt_inplace(
  2966. struct ggml_context * ctx,
  2967. struct ggml_tensor * a) {
  2968. return ggml_sqrt_impl(ctx, a, true);
  2969. }
  2970. // ggml_log
  2971. static struct ggml_tensor * ggml_log_impl(
  2972. struct ggml_context * ctx,
  2973. struct ggml_tensor * a,
  2974. bool inplace) {
  2975. bool is_node = false;
  2976. if (!inplace && (a->grad)) {
  2977. is_node = true;
  2978. }
  2979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2980. result->op = GGML_OP_LOG;
  2981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2982. result->src[0] = a;
  2983. return result;
  2984. }
  2985. struct ggml_tensor * ggml_log(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a) {
  2988. return ggml_log_impl(ctx, a, false);
  2989. }
  2990. struct ggml_tensor * ggml_log_inplace(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a) {
  2993. return ggml_log_impl(ctx, a, true);
  2994. }
  2995. // ggml_sum
  2996. struct ggml_tensor * ggml_sum(
  2997. struct ggml_context * ctx,
  2998. struct ggml_tensor * a) {
  2999. bool is_node = false;
  3000. if (a->grad) {
  3001. is_node = true;
  3002. }
  3003. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3004. result->op = GGML_OP_SUM;
  3005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3006. result->src[0] = a;
  3007. return result;
  3008. }
  3009. // ggml_sum_rows
  3010. struct ggml_tensor * ggml_sum_rows(
  3011. struct ggml_context * ctx,
  3012. struct ggml_tensor * a) {
  3013. bool is_node = false;
  3014. if (a->grad) {
  3015. is_node = true;
  3016. }
  3017. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3018. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3019. ne[i] = a->ne[i];
  3020. }
  3021. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3022. result->op = GGML_OP_SUM_ROWS;
  3023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3024. result->src[0] = a;
  3025. return result;
  3026. }
  3027. // ggml_mean
  3028. struct ggml_tensor * ggml_mean(
  3029. struct ggml_context * ctx,
  3030. struct ggml_tensor * a) {
  3031. bool is_node = false;
  3032. if (a->grad) {
  3033. GGML_ASSERT(false); // TODO: implement
  3034. is_node = true;
  3035. }
  3036. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3037. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3038. result->op = GGML_OP_MEAN;
  3039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3040. result->src[0] = a;
  3041. return result;
  3042. }
  3043. // ggml_argmax
  3044. struct ggml_tensor * ggml_argmax(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a) {
  3047. GGML_ASSERT(ggml_is_matrix(a));
  3048. bool is_node = false;
  3049. if (a->grad) {
  3050. GGML_ASSERT(false);
  3051. is_node = true;
  3052. }
  3053. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3054. result->op = GGML_OP_ARGMAX;
  3055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3056. result->src[0] = a;
  3057. return result;
  3058. }
  3059. // ggml_repeat
  3060. struct ggml_tensor * ggml_repeat(
  3061. struct ggml_context * ctx,
  3062. struct ggml_tensor * a,
  3063. struct ggml_tensor * b) {
  3064. GGML_ASSERT(ggml_can_repeat(a, b));
  3065. bool is_node = false;
  3066. if (a->grad) {
  3067. is_node = true;
  3068. }
  3069. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3070. result->op = GGML_OP_REPEAT;
  3071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3072. result->src[0] = a;
  3073. return result;
  3074. }
  3075. // ggml_repeat_back
  3076. struct ggml_tensor * ggml_repeat_back(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a,
  3079. struct ggml_tensor * b) {
  3080. GGML_ASSERT(ggml_can_repeat(b, a));
  3081. bool is_node = false;
  3082. if (a->grad) {
  3083. is_node = true;
  3084. }
  3085. if (ggml_are_same_shape(a, b) && !is_node) {
  3086. return a;
  3087. }
  3088. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3089. result->op = GGML_OP_REPEAT_BACK;
  3090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3091. result->src[0] = a;
  3092. return result;
  3093. }
  3094. // ggml_concat
  3095. struct ggml_tensor * ggml_concat(
  3096. struct ggml_context* ctx,
  3097. struct ggml_tensor* a,
  3098. struct ggml_tensor* b) {
  3099. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3100. bool is_node = false;
  3101. if (a->grad || b->grad) {
  3102. is_node = true;
  3103. }
  3104. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3105. result->op = GGML_OP_CONCAT;
  3106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3107. result->src[0] = a;
  3108. result->src[1] = b;
  3109. return result;
  3110. }
  3111. // ggml_abs
  3112. struct ggml_tensor * ggml_abs(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a) {
  3115. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3116. }
  3117. struct ggml_tensor * ggml_abs_inplace(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a) {
  3120. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3121. }
  3122. // ggml_sgn
  3123. struct ggml_tensor * ggml_sgn(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a) {
  3126. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3127. }
  3128. struct ggml_tensor * ggml_sgn_inplace(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a) {
  3131. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3132. }
  3133. // ggml_neg
  3134. struct ggml_tensor * ggml_neg(
  3135. struct ggml_context * ctx,
  3136. struct ggml_tensor * a) {
  3137. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3138. }
  3139. struct ggml_tensor * ggml_neg_inplace(
  3140. struct ggml_context * ctx,
  3141. struct ggml_tensor * a) {
  3142. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3143. }
  3144. // ggml_step
  3145. struct ggml_tensor * ggml_step(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a) {
  3148. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3149. }
  3150. struct ggml_tensor * ggml_step_inplace(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3154. }
  3155. // ggml_tanh
  3156. struct ggml_tensor * ggml_tanh(
  3157. struct ggml_context * ctx,
  3158. struct ggml_tensor * a) {
  3159. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3160. }
  3161. struct ggml_tensor * ggml_tanh_inplace(
  3162. struct ggml_context * ctx,
  3163. struct ggml_tensor * a) {
  3164. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3165. }
  3166. // ggml_elu
  3167. struct ggml_tensor * ggml_elu(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a) {
  3170. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3171. }
  3172. struct ggml_tensor * ggml_elu_inplace(
  3173. struct ggml_context * ctx,
  3174. struct ggml_tensor * a) {
  3175. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3176. }
  3177. // ggml_relu
  3178. struct ggml_tensor * ggml_relu(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a) {
  3181. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3182. }
  3183. struct ggml_tensor * ggml_relu_inplace(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a) {
  3186. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3187. }
  3188. // ggml_leaky_relu
  3189. struct ggml_tensor * ggml_leaky_relu(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3192. bool is_node = false;
  3193. if (!inplace && (a->grad)) {
  3194. is_node = true;
  3195. }
  3196. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3197. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3198. result->op = GGML_OP_LEAKY_RELU;
  3199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3200. result->src[0] = a;
  3201. return result;
  3202. }
  3203. // ggml_gelu
  3204. struct ggml_tensor * ggml_gelu(
  3205. struct ggml_context * ctx,
  3206. struct ggml_tensor * a) {
  3207. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3208. }
  3209. struct ggml_tensor * ggml_gelu_inplace(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a) {
  3212. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3213. }
  3214. // ggml_gelu_quick
  3215. struct ggml_tensor * ggml_gelu_quick(
  3216. struct ggml_context * ctx,
  3217. struct ggml_tensor * a) {
  3218. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3219. }
  3220. struct ggml_tensor * ggml_gelu_quick_inplace(
  3221. struct ggml_context * ctx,
  3222. struct ggml_tensor * a) {
  3223. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3224. }
  3225. // ggml_silu
  3226. struct ggml_tensor * ggml_silu(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a) {
  3229. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3230. }
  3231. struct ggml_tensor * ggml_silu_inplace(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a) {
  3234. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3235. }
  3236. // ggml_silu_back
  3237. struct ggml_tensor * ggml_silu_back(
  3238. struct ggml_context * ctx,
  3239. struct ggml_tensor * a,
  3240. struct ggml_tensor * b) {
  3241. bool is_node = false;
  3242. if (a->grad || b->grad) {
  3243. // TODO: implement backward
  3244. is_node = true;
  3245. }
  3246. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3247. result->op = GGML_OP_SILU_BACK;
  3248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3249. result->src[0] = a;
  3250. result->src[1] = b;
  3251. return result;
  3252. }
  3253. // ggml_norm
  3254. static struct ggml_tensor * ggml_norm_impl(
  3255. struct ggml_context * ctx,
  3256. struct ggml_tensor * a,
  3257. float eps,
  3258. bool inplace) {
  3259. bool is_node = false;
  3260. if (!inplace && (a->grad)) {
  3261. GGML_ASSERT(false); // TODO: implement backward
  3262. is_node = true;
  3263. }
  3264. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3265. ggml_set_op_params(result, &eps, sizeof(eps));
  3266. result->op = GGML_OP_NORM;
  3267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3268. result->src[0] = a;
  3269. return result;
  3270. }
  3271. struct ggml_tensor * ggml_norm(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a,
  3274. float eps) {
  3275. return ggml_norm_impl(ctx, a, eps, false);
  3276. }
  3277. struct ggml_tensor * ggml_norm_inplace(
  3278. struct ggml_context * ctx,
  3279. struct ggml_tensor * a,
  3280. float eps) {
  3281. return ggml_norm_impl(ctx, a, eps, true);
  3282. }
  3283. // ggml_rms_norm
  3284. static struct ggml_tensor * ggml_rms_norm_impl(
  3285. struct ggml_context * ctx,
  3286. struct ggml_tensor * a,
  3287. float eps,
  3288. bool inplace) {
  3289. bool is_node = false;
  3290. if (!inplace && (a->grad)) {
  3291. is_node = true;
  3292. }
  3293. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3294. ggml_set_op_params(result, &eps, sizeof(eps));
  3295. result->op = GGML_OP_RMS_NORM;
  3296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3297. result->src[0] = a;
  3298. return result;
  3299. }
  3300. struct ggml_tensor * ggml_rms_norm(
  3301. struct ggml_context * ctx,
  3302. struct ggml_tensor * a,
  3303. float eps) {
  3304. return ggml_rms_norm_impl(ctx, a, eps, false);
  3305. }
  3306. struct ggml_tensor * ggml_rms_norm_inplace(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a,
  3309. float eps) {
  3310. return ggml_rms_norm_impl(ctx, a, eps, true);
  3311. }
  3312. // ggml_rms_norm_back
  3313. struct ggml_tensor * ggml_rms_norm_back(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a,
  3316. struct ggml_tensor * b,
  3317. float eps) {
  3318. bool is_node = false;
  3319. if (a->grad) {
  3320. // TODO: implement backward
  3321. is_node = true;
  3322. }
  3323. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3324. ggml_set_op_params(result, &eps, sizeof(eps));
  3325. result->op = GGML_OP_RMS_NORM_BACK;
  3326. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3327. result->src[0] = a;
  3328. result->src[1] = b;
  3329. return result;
  3330. }
  3331. // ggml_group_norm
  3332. static struct ggml_tensor * ggml_group_norm_impl(
  3333. struct ggml_context * ctx,
  3334. struct ggml_tensor * a,
  3335. int n_groups,
  3336. bool inplace) {
  3337. bool is_node = false;
  3338. if (!inplace && (a->grad)) {
  3339. GGML_ASSERT(false); // TODO: implement backward
  3340. is_node = true;
  3341. }
  3342. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3343. result->op_params[0] = n_groups;
  3344. result->op = GGML_OP_GROUP_NORM;
  3345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3346. result->src[0] = a;
  3347. return result;
  3348. }
  3349. struct ggml_tensor * ggml_group_norm(
  3350. struct ggml_context * ctx,
  3351. struct ggml_tensor * a,
  3352. int n_groups) {
  3353. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3354. }
  3355. struct ggml_tensor * ggml_group_norm_inplace(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a,
  3358. int n_groups) {
  3359. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3360. }
  3361. // ggml_mul_mat
  3362. struct ggml_tensor * ggml_mul_mat(
  3363. struct ggml_context * ctx,
  3364. struct ggml_tensor * a,
  3365. struct ggml_tensor * b) {
  3366. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3367. GGML_ASSERT(!ggml_is_transposed(a));
  3368. bool is_node = false;
  3369. if (a->grad || b->grad) {
  3370. is_node = true;
  3371. }
  3372. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3373. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3374. result->op = GGML_OP_MUL_MAT;
  3375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3376. result->src[0] = a;
  3377. result->src[1] = b;
  3378. return result;
  3379. }
  3380. void ggml_mul_mat_set_prec(
  3381. struct ggml_tensor * a,
  3382. enum ggml_prec prec) {
  3383. const int32_t prec_i32 = (int32_t) prec;
  3384. ggml_set_op_params_i32(a, 0, prec_i32);
  3385. }
  3386. // ggml_mul_mat_id
  3387. struct ggml_tensor * ggml_mul_mat_id(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * const as[],
  3390. int n_as,
  3391. struct ggml_tensor * ids,
  3392. int id,
  3393. struct ggml_tensor * b) {
  3394. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3395. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3396. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3397. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3398. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3399. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3400. bool is_node = false;
  3401. if (as[0]->grad || b->grad) {
  3402. is_node = true;
  3403. }
  3404. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3405. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3406. ggml_set_op_params_i32(result, 0, id);
  3407. ggml_set_op_params_i32(result, 1, n_as);
  3408. result->op = GGML_OP_MUL_MAT_ID;
  3409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3410. result->src[0] = ids;
  3411. result->src[1] = b;
  3412. for (int i = 0; i < n_as; i++) {
  3413. struct ggml_tensor * a = as[i];
  3414. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3415. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3416. GGML_ASSERT(!ggml_is_transposed(a));
  3417. result->src[i + 2] = a;
  3418. }
  3419. return result;
  3420. }
  3421. // ggml_out_prod
  3422. struct ggml_tensor * ggml_out_prod(
  3423. struct ggml_context * ctx,
  3424. struct ggml_tensor * a,
  3425. struct ggml_tensor * b) {
  3426. GGML_ASSERT(ggml_can_out_prod(a, b));
  3427. GGML_ASSERT(!ggml_is_transposed(a));
  3428. bool is_node = false;
  3429. if (a->grad || b->grad) {
  3430. is_node = true;
  3431. }
  3432. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3433. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3434. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3435. result->op = GGML_OP_OUT_PROD;
  3436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3437. result->src[0] = a;
  3438. result->src[1] = b;
  3439. return result;
  3440. }
  3441. // ggml_scale
  3442. static struct ggml_tensor * ggml_scale_impl(
  3443. struct ggml_context * ctx,
  3444. struct ggml_tensor * a,
  3445. float s,
  3446. bool inplace) {
  3447. GGML_ASSERT(ggml_is_padded_1d(a));
  3448. bool is_node = false;
  3449. if (a->grad) {
  3450. is_node = true;
  3451. }
  3452. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3453. ggml_set_op_params(result, &s, sizeof(s));
  3454. result->op = GGML_OP_SCALE;
  3455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3456. result->src[0] = a;
  3457. return result;
  3458. }
  3459. struct ggml_tensor * ggml_scale(
  3460. struct ggml_context * ctx,
  3461. struct ggml_tensor * a,
  3462. float s) {
  3463. return ggml_scale_impl(ctx, a, s, false);
  3464. }
  3465. struct ggml_tensor * ggml_scale_inplace(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a,
  3468. float s) {
  3469. return ggml_scale_impl(ctx, a, s, true);
  3470. }
  3471. // ggml_set
  3472. static struct ggml_tensor * ggml_set_impl(
  3473. struct ggml_context * ctx,
  3474. struct ggml_tensor * a,
  3475. struct ggml_tensor * b,
  3476. size_t nb1,
  3477. size_t nb2,
  3478. size_t nb3,
  3479. size_t offset,
  3480. bool inplace) {
  3481. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3482. bool is_node = false;
  3483. if (a->grad || b->grad) {
  3484. is_node = true;
  3485. }
  3486. // make a view of the destination
  3487. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3488. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3489. ggml_set_op_params(result, params, sizeof(params));
  3490. result->op = GGML_OP_SET;
  3491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3492. result->src[0] = a;
  3493. result->src[1] = b;
  3494. return result;
  3495. }
  3496. struct ggml_tensor * ggml_set(
  3497. struct ggml_context * ctx,
  3498. struct ggml_tensor * a,
  3499. struct ggml_tensor * b,
  3500. size_t nb1,
  3501. size_t nb2,
  3502. size_t nb3,
  3503. size_t offset) {
  3504. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3505. }
  3506. struct ggml_tensor * ggml_set_inplace(
  3507. struct ggml_context * ctx,
  3508. struct ggml_tensor * a,
  3509. struct ggml_tensor * b,
  3510. size_t nb1,
  3511. size_t nb2,
  3512. size_t nb3,
  3513. size_t offset) {
  3514. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3515. }
  3516. struct ggml_tensor * ggml_set_1d(
  3517. struct ggml_context * ctx,
  3518. struct ggml_tensor * a,
  3519. struct ggml_tensor * b,
  3520. size_t offset) {
  3521. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3522. }
  3523. struct ggml_tensor * ggml_set_1d_inplace(
  3524. struct ggml_context * ctx,
  3525. struct ggml_tensor * a,
  3526. struct ggml_tensor * b,
  3527. size_t offset) {
  3528. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3529. }
  3530. struct ggml_tensor * ggml_set_2d(
  3531. struct ggml_context * ctx,
  3532. struct ggml_tensor * a,
  3533. struct ggml_tensor * b,
  3534. size_t nb1,
  3535. size_t offset) {
  3536. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3537. }
  3538. struct ggml_tensor * ggml_set_2d_inplace(
  3539. struct ggml_context * ctx,
  3540. struct ggml_tensor * a,
  3541. struct ggml_tensor * b,
  3542. size_t nb1,
  3543. size_t offset) {
  3544. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3545. }
  3546. // ggml_cpy
  3547. static struct ggml_tensor * ggml_cpy_impl(
  3548. struct ggml_context * ctx,
  3549. struct ggml_tensor * a,
  3550. struct ggml_tensor * b) {
  3551. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3552. bool is_node = false;
  3553. if (a->grad || b->grad) {
  3554. // inplace is false and either one have a grad
  3555. is_node = true;
  3556. }
  3557. // make a view of the destination
  3558. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3559. if (strlen(b->name) > 0) {
  3560. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3561. } else {
  3562. ggml_format_name(result, "%s (copy)", a->name);
  3563. }
  3564. result->op = GGML_OP_CPY;
  3565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3566. result->src[0] = a;
  3567. result->src[1] = b;
  3568. return result;
  3569. }
  3570. struct ggml_tensor * ggml_cpy(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a,
  3573. struct ggml_tensor * b) {
  3574. return ggml_cpy_impl(ctx, a, b);
  3575. }
  3576. // ggml_cont
  3577. static struct ggml_tensor * ggml_cont_impl(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a) {
  3580. bool is_node = false;
  3581. if (a->grad) {
  3582. is_node = true;
  3583. }
  3584. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3585. ggml_format_name(result, "%s (cont)", a->name);
  3586. result->op = GGML_OP_CONT;
  3587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3588. result->src[0] = a;
  3589. return result;
  3590. }
  3591. struct ggml_tensor * ggml_cont(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a) {
  3594. return ggml_cont_impl(ctx, a);
  3595. }
  3596. // make contiguous, with new shape
  3597. GGML_API struct ggml_tensor * ggml_cont_1d(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * a,
  3600. int64_t ne0) {
  3601. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3602. }
  3603. GGML_API struct ggml_tensor * ggml_cont_2d(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a,
  3606. int64_t ne0,
  3607. int64_t ne1) {
  3608. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3609. }
  3610. GGML_API struct ggml_tensor * ggml_cont_3d(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a,
  3613. int64_t ne0,
  3614. int64_t ne1,
  3615. int64_t ne2) {
  3616. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3617. }
  3618. struct ggml_tensor * ggml_cont_4d(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a,
  3621. int64_t ne0,
  3622. int64_t ne1,
  3623. int64_t ne2,
  3624. int64_t ne3) {
  3625. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3626. bool is_node = false;
  3627. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3628. ggml_format_name(result, "%s (cont)", a->name);
  3629. result->op = GGML_OP_CONT;
  3630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3631. result->src[0] = a;
  3632. return result;
  3633. }
  3634. // ggml_reshape
  3635. struct ggml_tensor * ggml_reshape(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. struct ggml_tensor * b) {
  3639. GGML_ASSERT(ggml_is_contiguous(a));
  3640. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3641. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3642. bool is_node = false;
  3643. if (a->grad) {
  3644. is_node = true;
  3645. }
  3646. if (b->grad) {
  3647. // gradient propagation is not supported
  3648. //GGML_ASSERT(false);
  3649. }
  3650. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3651. ggml_format_name(result, "%s (reshaped)", a->name);
  3652. result->op = GGML_OP_RESHAPE;
  3653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3654. result->src[0] = a;
  3655. return result;
  3656. }
  3657. struct ggml_tensor * ggml_reshape_1d(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a,
  3660. int64_t ne0) {
  3661. GGML_ASSERT(ggml_is_contiguous(a));
  3662. GGML_ASSERT(ggml_nelements(a) == ne0);
  3663. bool is_node = false;
  3664. if (a->grad) {
  3665. is_node = true;
  3666. }
  3667. const int64_t ne[1] = { ne0 };
  3668. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3669. ggml_format_name(result, "%s (reshaped)", a->name);
  3670. result->op = GGML_OP_RESHAPE;
  3671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3672. result->src[0] = a;
  3673. return result;
  3674. }
  3675. struct ggml_tensor * ggml_reshape_2d(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. int64_t ne0,
  3679. int64_t ne1) {
  3680. GGML_ASSERT(ggml_is_contiguous(a));
  3681. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3682. bool is_node = false;
  3683. if (a->grad) {
  3684. is_node = true;
  3685. }
  3686. const int64_t ne[2] = { ne0, ne1 };
  3687. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3688. ggml_format_name(result, "%s (reshaped)", a->name);
  3689. result->op = GGML_OP_RESHAPE;
  3690. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3691. result->src[0] = a;
  3692. return result;
  3693. }
  3694. struct ggml_tensor * ggml_reshape_3d(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. int64_t ne0,
  3698. int64_t ne1,
  3699. int64_t ne2) {
  3700. GGML_ASSERT(ggml_is_contiguous(a));
  3701. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3702. bool is_node = false;
  3703. if (a->grad) {
  3704. is_node = true;
  3705. }
  3706. const int64_t ne[3] = { ne0, ne1, ne2 };
  3707. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3708. ggml_format_name(result, "%s (reshaped)", a->name);
  3709. result->op = GGML_OP_RESHAPE;
  3710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3711. result->src[0] = a;
  3712. return result;
  3713. }
  3714. struct ggml_tensor * ggml_reshape_4d(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. int64_t ne0,
  3718. int64_t ne1,
  3719. int64_t ne2,
  3720. int64_t ne3) {
  3721. GGML_ASSERT(ggml_is_contiguous(a));
  3722. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3723. bool is_node = false;
  3724. if (a->grad) {
  3725. is_node = true;
  3726. }
  3727. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3728. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3729. ggml_format_name(result, "%s (reshaped)", a->name);
  3730. result->op = GGML_OP_RESHAPE;
  3731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3732. result->src[0] = a;
  3733. return result;
  3734. }
  3735. static struct ggml_tensor * ggml_view_impl(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a,
  3738. int n_dims,
  3739. const int64_t * ne,
  3740. size_t offset) {
  3741. bool is_node = false;
  3742. if (a->grad) {
  3743. is_node = true;
  3744. }
  3745. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3746. ggml_format_name(result, "%s (view)", a->name);
  3747. ggml_set_op_params(result, &offset, sizeof(offset));
  3748. result->op = GGML_OP_VIEW;
  3749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3750. result->src[0] = a;
  3751. return result;
  3752. }
  3753. // ggml_view_1d
  3754. struct ggml_tensor * ggml_view_1d(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a,
  3757. int64_t ne0,
  3758. size_t offset) {
  3759. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3760. return result;
  3761. }
  3762. // ggml_view_2d
  3763. struct ggml_tensor * ggml_view_2d(
  3764. struct ggml_context * ctx,
  3765. struct ggml_tensor * a,
  3766. int64_t ne0,
  3767. int64_t ne1,
  3768. size_t nb1,
  3769. size_t offset) {
  3770. const int64_t ne[2] = { ne0, ne1 };
  3771. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3772. result->nb[1] = nb1;
  3773. result->nb[2] = result->nb[1]*ne1;
  3774. result->nb[3] = result->nb[2];
  3775. return result;
  3776. }
  3777. // ggml_view_3d
  3778. struct ggml_tensor * ggml_view_3d(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a,
  3781. int64_t ne0,
  3782. int64_t ne1,
  3783. int64_t ne2,
  3784. size_t nb1,
  3785. size_t nb2,
  3786. size_t offset) {
  3787. const int64_t ne[3] = { ne0, ne1, ne2 };
  3788. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3789. result->nb[1] = nb1;
  3790. result->nb[2] = nb2;
  3791. result->nb[3] = result->nb[2]*ne2;
  3792. return result;
  3793. }
  3794. // ggml_view_4d
  3795. struct ggml_tensor * ggml_view_4d(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a,
  3798. int64_t ne0,
  3799. int64_t ne1,
  3800. int64_t ne2,
  3801. int64_t ne3,
  3802. size_t nb1,
  3803. size_t nb2,
  3804. size_t nb3,
  3805. size_t offset) {
  3806. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3807. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3808. result->nb[1] = nb1;
  3809. result->nb[2] = nb2;
  3810. result->nb[3] = nb3;
  3811. return result;
  3812. }
  3813. // ggml_permute
  3814. struct ggml_tensor * ggml_permute(
  3815. struct ggml_context * ctx,
  3816. struct ggml_tensor * a,
  3817. int axis0,
  3818. int axis1,
  3819. int axis2,
  3820. int axis3) {
  3821. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3822. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3823. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3824. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3825. GGML_ASSERT(axis0 != axis1);
  3826. GGML_ASSERT(axis0 != axis2);
  3827. GGML_ASSERT(axis0 != axis3);
  3828. GGML_ASSERT(axis1 != axis2);
  3829. GGML_ASSERT(axis1 != axis3);
  3830. GGML_ASSERT(axis2 != axis3);
  3831. bool is_node = false;
  3832. if (a->grad) {
  3833. is_node = true;
  3834. }
  3835. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3836. ggml_format_name(result, "%s (permuted)", a->name);
  3837. int ne[GGML_MAX_DIMS];
  3838. int nb[GGML_MAX_DIMS];
  3839. ne[axis0] = a->ne[0];
  3840. ne[axis1] = a->ne[1];
  3841. ne[axis2] = a->ne[2];
  3842. ne[axis3] = a->ne[3];
  3843. nb[axis0] = a->nb[0];
  3844. nb[axis1] = a->nb[1];
  3845. nb[axis2] = a->nb[2];
  3846. nb[axis3] = a->nb[3];
  3847. result->ne[0] = ne[0];
  3848. result->ne[1] = ne[1];
  3849. result->ne[2] = ne[2];
  3850. result->ne[3] = ne[3];
  3851. result->nb[0] = nb[0];
  3852. result->nb[1] = nb[1];
  3853. result->nb[2] = nb[2];
  3854. result->nb[3] = nb[3];
  3855. result->op = GGML_OP_PERMUTE;
  3856. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3857. result->src[0] = a;
  3858. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3859. ggml_set_op_params(result, params, sizeof(params));
  3860. return result;
  3861. }
  3862. // ggml_transpose
  3863. struct ggml_tensor * ggml_transpose(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a) {
  3866. bool is_node = false;
  3867. if (a->grad) {
  3868. is_node = true;
  3869. }
  3870. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3871. ggml_format_name(result, "%s (transposed)", a->name);
  3872. result->ne[0] = a->ne[1];
  3873. result->ne[1] = a->ne[0];
  3874. result->nb[0] = a->nb[1];
  3875. result->nb[1] = a->nb[0];
  3876. result->op = GGML_OP_TRANSPOSE;
  3877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3878. result->src[0] = a;
  3879. return result;
  3880. }
  3881. // ggml_get_rows
  3882. struct ggml_tensor * ggml_get_rows(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b) {
  3886. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3887. GGML_ASSERT(b->ne[3] == 1);
  3888. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3889. bool is_node = false;
  3890. if (a->grad || b->grad) {
  3891. is_node = true;
  3892. }
  3893. // TODO: implement non F32 return
  3894. enum ggml_type type = GGML_TYPE_F32;
  3895. if (a->type == GGML_TYPE_I32) {
  3896. type = a->type;
  3897. }
  3898. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3899. result->op = GGML_OP_GET_ROWS;
  3900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3901. result->src[0] = a;
  3902. result->src[1] = b;
  3903. return result;
  3904. }
  3905. // ggml_get_rows_back
  3906. struct ggml_tensor * ggml_get_rows_back(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a,
  3909. struct ggml_tensor * b,
  3910. struct ggml_tensor * c) {
  3911. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3912. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3913. bool is_node = false;
  3914. if (a->grad || b->grad) {
  3915. is_node = true;
  3916. }
  3917. // TODO: implement non F32 return
  3918. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3919. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3920. result->op = GGML_OP_GET_ROWS_BACK;
  3921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3922. result->src[0] = a;
  3923. result->src[1] = b;
  3924. return result;
  3925. }
  3926. // ggml_diag
  3927. struct ggml_tensor * ggml_diag(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a) {
  3930. GGML_ASSERT(a->ne[1] == 1);
  3931. bool is_node = false;
  3932. if (a->grad) {
  3933. is_node = true;
  3934. }
  3935. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3936. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3937. result->op = GGML_OP_DIAG;
  3938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3939. result->src[0] = a;
  3940. return result;
  3941. }
  3942. // ggml_diag_mask_inf
  3943. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. int n_past,
  3947. bool inplace) {
  3948. bool is_node = false;
  3949. if (a->grad) {
  3950. is_node = true;
  3951. }
  3952. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3953. int32_t params[] = { n_past };
  3954. ggml_set_op_params(result, params, sizeof(params));
  3955. result->op = GGML_OP_DIAG_MASK_INF;
  3956. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3957. result->src[0] = a;
  3958. return result;
  3959. }
  3960. struct ggml_tensor * ggml_diag_mask_inf(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a,
  3963. int n_past) {
  3964. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3965. }
  3966. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3967. struct ggml_context * ctx,
  3968. struct ggml_tensor * a,
  3969. int n_past) {
  3970. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3971. }
  3972. // ggml_diag_mask_zero
  3973. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a,
  3976. int n_past,
  3977. bool inplace) {
  3978. bool is_node = false;
  3979. if (a->grad) {
  3980. is_node = true;
  3981. }
  3982. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3983. int32_t params[] = { n_past };
  3984. ggml_set_op_params(result, params, sizeof(params));
  3985. result->op = GGML_OP_DIAG_MASK_ZERO;
  3986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3987. result->src[0] = a;
  3988. return result;
  3989. }
  3990. struct ggml_tensor * ggml_diag_mask_zero(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a,
  3993. int n_past) {
  3994. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3995. }
  3996. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a,
  3999. int n_past) {
  4000. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4001. }
  4002. // ggml_soft_max
  4003. static struct ggml_tensor * ggml_soft_max_impl(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. struct ggml_tensor * mask,
  4007. float scale,
  4008. bool inplace) {
  4009. GGML_ASSERT(ggml_is_contiguous(a));
  4010. if (mask) {
  4011. GGML_ASSERT(ggml_is_contiguous(mask));
  4012. GGML_ASSERT(mask->ne[2] == 1);
  4013. GGML_ASSERT(mask->ne[3] == 1);
  4014. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4015. }
  4016. bool is_node = false;
  4017. if (a->grad) {
  4018. is_node = true;
  4019. }
  4020. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4021. float params[] = { scale };
  4022. ggml_set_op_params(result, params, sizeof(params));
  4023. result->op = GGML_OP_SOFT_MAX;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src[0] = a;
  4026. result->src[1] = mask;
  4027. return result;
  4028. }
  4029. struct ggml_tensor * ggml_soft_max(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a) {
  4032. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4033. }
  4034. struct ggml_tensor * ggml_soft_max_inplace(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a) {
  4037. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4038. }
  4039. struct ggml_tensor * ggml_soft_max_ext(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. struct ggml_tensor * mask,
  4043. float scale) {
  4044. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4045. }
  4046. // ggml_soft_max_back
  4047. static struct ggml_tensor * ggml_soft_max_back_impl(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. struct ggml_tensor * b,
  4051. bool inplace) {
  4052. bool is_node = false;
  4053. if (a->grad || b->grad) {
  4054. is_node = true; // TODO : implement backward pass
  4055. }
  4056. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4057. result->op = GGML_OP_SOFT_MAX_BACK;
  4058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4059. result->src[0] = a;
  4060. result->src[1] = b;
  4061. return result;
  4062. }
  4063. struct ggml_tensor * ggml_soft_max_back(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a,
  4066. struct ggml_tensor * b) {
  4067. return ggml_soft_max_back_impl(ctx, a, b, false);
  4068. }
  4069. struct ggml_tensor * ggml_soft_max_back_inplace(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a,
  4072. struct ggml_tensor * b) {
  4073. return ggml_soft_max_back_impl(ctx, a, b, true);
  4074. }
  4075. // ggml_rope
  4076. static struct ggml_tensor * ggml_rope_impl(
  4077. struct ggml_context * ctx,
  4078. struct ggml_tensor * a,
  4079. struct ggml_tensor * b,
  4080. int n_dims,
  4081. int mode,
  4082. int n_ctx,
  4083. int n_orig_ctx,
  4084. float freq_base,
  4085. float freq_scale,
  4086. float ext_factor,
  4087. float attn_factor,
  4088. float beta_fast,
  4089. float beta_slow,
  4090. float xpos_base,
  4091. bool xpos_down,
  4092. bool inplace) {
  4093. GGML_ASSERT(ggml_is_vector(b));
  4094. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4095. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4096. bool is_node = false;
  4097. if (a->grad) {
  4098. is_node = true;
  4099. }
  4100. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4101. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4102. memcpy(params + 5, &freq_base, sizeof(float));
  4103. memcpy(params + 6, &freq_scale, sizeof(float));
  4104. memcpy(params + 7, &ext_factor, sizeof(float));
  4105. memcpy(params + 8, &attn_factor, sizeof(float));
  4106. memcpy(params + 9, &beta_fast, sizeof(float));
  4107. memcpy(params + 10, &beta_slow, sizeof(float));
  4108. memcpy(params + 11, &xpos_base, sizeof(float));
  4109. memcpy(params + 12, &xpos_down, sizeof(bool));
  4110. ggml_set_op_params(result, params, sizeof(params));
  4111. result->op = GGML_OP_ROPE;
  4112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4113. result->src[0] = a;
  4114. result->src[1] = b;
  4115. return result;
  4116. }
  4117. struct ggml_tensor * ggml_rope(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a,
  4120. struct ggml_tensor * b,
  4121. int n_dims,
  4122. int mode,
  4123. int n_ctx) {
  4124. return ggml_rope_impl(
  4125. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4126. );
  4127. }
  4128. struct ggml_tensor * ggml_rope_inplace(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a,
  4131. struct ggml_tensor * b,
  4132. int n_dims,
  4133. int mode,
  4134. int n_ctx) {
  4135. return ggml_rope_impl(
  4136. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4137. );
  4138. }
  4139. struct ggml_tensor * ggml_rope_custom(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a,
  4142. struct ggml_tensor * b,
  4143. int n_dims,
  4144. int mode,
  4145. int n_ctx,
  4146. int n_orig_ctx,
  4147. float freq_base,
  4148. float freq_scale,
  4149. float ext_factor,
  4150. float attn_factor,
  4151. float beta_fast,
  4152. float beta_slow) {
  4153. return ggml_rope_impl(
  4154. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4155. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4156. );
  4157. }
  4158. struct ggml_tensor * ggml_rope_custom_inplace(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a,
  4161. struct ggml_tensor * b,
  4162. int n_dims,
  4163. int mode,
  4164. int n_ctx,
  4165. int n_orig_ctx,
  4166. float freq_base,
  4167. float freq_scale,
  4168. float ext_factor,
  4169. float attn_factor,
  4170. float beta_fast,
  4171. float beta_slow) {
  4172. return ggml_rope_impl(
  4173. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4174. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4175. );
  4176. }
  4177. struct ggml_tensor * ggml_rope_xpos_inplace(
  4178. struct ggml_context * ctx,
  4179. struct ggml_tensor * a,
  4180. struct ggml_tensor * b,
  4181. int n_dims,
  4182. float base,
  4183. bool down) {
  4184. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4185. }
  4186. // ggml_rope_back
  4187. struct ggml_tensor * ggml_rope_back(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a,
  4190. struct ggml_tensor * b,
  4191. int n_dims,
  4192. int mode,
  4193. int n_ctx,
  4194. int n_orig_ctx,
  4195. float freq_base,
  4196. float freq_scale,
  4197. float ext_factor,
  4198. float attn_factor,
  4199. float beta_fast,
  4200. float beta_slow,
  4201. float xpos_base,
  4202. bool xpos_down) {
  4203. GGML_ASSERT(ggml_is_vector(b));
  4204. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4205. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4206. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4207. bool is_node = false;
  4208. if (a->grad) {
  4209. is_node = false; // TODO: implement backward
  4210. }
  4211. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4212. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4213. memcpy(params + 5, &freq_base, sizeof(float));
  4214. memcpy(params + 6, &freq_scale, sizeof(float));
  4215. memcpy(params + 7, &ext_factor, sizeof(float));
  4216. memcpy(params + 8, &attn_factor, sizeof(float));
  4217. memcpy(params + 9, &beta_fast, sizeof(float));
  4218. memcpy(params + 10, &beta_slow, sizeof(float));
  4219. memcpy(params + 11, &xpos_base, sizeof(float));
  4220. memcpy(params + 12, &xpos_down, sizeof(bool));
  4221. ggml_set_op_params(result, params, sizeof(params));
  4222. result->op = GGML_OP_ROPE_BACK;
  4223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4224. result->src[0] = a;
  4225. result->src[1] = b;
  4226. return result;
  4227. }
  4228. // ggml_alibi
  4229. struct ggml_tensor * ggml_alibi(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a,
  4232. int n_past,
  4233. int n_head,
  4234. float bias_max) {
  4235. GGML_ASSERT(n_past >= 0);
  4236. bool is_node = false;
  4237. if (a->grad) {
  4238. GGML_ASSERT(false); // TODO: implement backward
  4239. is_node = true;
  4240. }
  4241. // TODO: when implement backward, fix this:
  4242. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4243. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4244. int32_t op_params[3] = { n_past, n_head };
  4245. memcpy(op_params + 2, &bias_max, sizeof(float));
  4246. ggml_set_op_params(result, op_params, sizeof(op_params));
  4247. result->op = GGML_OP_ALIBI;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src[0] = a;
  4250. return result;
  4251. }
  4252. // ggml_clamp
  4253. struct ggml_tensor * ggml_clamp(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. float min,
  4257. float max) {
  4258. bool is_node = false;
  4259. if (a->grad) {
  4260. GGML_ASSERT(false); // TODO: implement backward
  4261. is_node = true;
  4262. }
  4263. // TODO: when implement backward, fix this:
  4264. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4265. float params[] = { min, max };
  4266. ggml_set_op_params(result, params, sizeof(params));
  4267. result->op = GGML_OP_CLAMP;
  4268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4269. result->src[0] = a;
  4270. return result;
  4271. }
  4272. // ggml_conv_1d
  4273. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4274. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4275. }
  4276. GGML_API struct ggml_tensor * ggml_conv_1d(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a,
  4279. struct ggml_tensor * b,
  4280. int s0,
  4281. int p0,
  4282. int d0) {
  4283. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4284. struct ggml_tensor * result =
  4285. ggml_mul_mat(ctx,
  4286. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4287. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4288. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4289. return result;
  4290. }
  4291. // ggml_conv_1d_ph
  4292. struct ggml_tensor* ggml_conv_1d_ph(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. struct ggml_tensor * b,
  4296. int s,
  4297. int d) {
  4298. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4299. }
  4300. // ggml_conv_transpose_1d
  4301. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4302. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4303. }
  4304. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b,
  4308. int s0,
  4309. int p0,
  4310. int d0) {
  4311. GGML_ASSERT(ggml_is_matrix(b));
  4312. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4313. GGML_ASSERT(a->ne[3] == 1);
  4314. GGML_ASSERT(p0 == 0);
  4315. GGML_ASSERT(d0 == 1);
  4316. bool is_node = false;
  4317. if (a->grad || b->grad) {
  4318. GGML_ASSERT(false); // TODO: implement backward
  4319. is_node = true;
  4320. }
  4321. const int64_t ne[4] = {
  4322. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4323. a->ne[1], b->ne[2], 1,
  4324. };
  4325. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4326. int32_t params[] = { s0, p0, d0 };
  4327. ggml_set_op_params(result, params, sizeof(params));
  4328. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4330. result->src[0] = a;
  4331. result->src[1] = b;
  4332. return result;
  4333. }
  4334. // ggml_conv_2d
  4335. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4336. // a: [OC,IC, KH, KW]
  4337. // b: [N, IC, IH, IW]
  4338. // result: [N, OH, OW, IC*KH*KW]
  4339. struct ggml_tensor * ggml_im2col(
  4340. struct ggml_context * ctx,
  4341. struct ggml_tensor * a,
  4342. struct ggml_tensor * b,
  4343. int s0,
  4344. int s1,
  4345. int p0,
  4346. int p1,
  4347. int d0,
  4348. int d1,
  4349. bool is_2D) {
  4350. if(is_2D) {
  4351. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4352. } else {
  4353. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4354. }
  4355. bool is_node = false;
  4356. if (a->grad || b->grad) {
  4357. GGML_ASSERT(false); // TODO: implement backward
  4358. is_node = true;
  4359. }
  4360. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4361. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4362. const int64_t ne[4] = {
  4363. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4364. OW,
  4365. is_2D ? OH : b->ne[2],
  4366. is_2D ? b->ne[3] : 1,
  4367. };
  4368. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4369. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4370. ggml_set_op_params(result, params, sizeof(params));
  4371. result->op = GGML_OP_IM2COL;
  4372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4373. result->src[0] = a;
  4374. result->src[1] = b;
  4375. return result;
  4376. }
  4377. // a: [OC,IC, KH, KW]
  4378. // b: [N, IC, IH, IW]
  4379. // result: [N, OC, OH, OW]
  4380. struct ggml_tensor * ggml_conv_2d(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a,
  4383. struct ggml_tensor * b,
  4384. int s0,
  4385. int s1,
  4386. int p0,
  4387. int p1,
  4388. int d0,
  4389. int d1) {
  4390. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4391. struct ggml_tensor * result =
  4392. ggml_mul_mat(ctx,
  4393. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4394. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4395. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4396. return result;
  4397. }
  4398. // ggml_conv_2d_sk_p0
  4399. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4400. struct ggml_context * ctx,
  4401. struct ggml_tensor * a,
  4402. struct ggml_tensor * b) {
  4403. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4404. }
  4405. // ggml_conv_2d_s1_ph
  4406. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. struct ggml_tensor * b) {
  4410. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4411. }
  4412. // ggml_conv_transpose_2d_p0
  4413. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4414. return (ins - 1) * s - 2 * p + ks;
  4415. }
  4416. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a,
  4419. struct ggml_tensor * b,
  4420. int stride) {
  4421. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4422. bool is_node = false;
  4423. if (a->grad || b->grad) {
  4424. GGML_ASSERT(false); // TODO: implement backward
  4425. is_node = true;
  4426. }
  4427. const int64_t ne[4] = {
  4428. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4429. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4430. a->ne[2], b->ne[3],
  4431. };
  4432. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4433. ggml_set_op_params_i32(result, 0, stride);
  4434. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4436. result->src[0] = a;
  4437. result->src[1] = b;
  4438. return result;
  4439. }
  4440. // ggml_pool_*
  4441. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4442. return (ins + 2 * p - ks) / s + 1;
  4443. }
  4444. // ggml_pool_1d
  4445. struct ggml_tensor * ggml_pool_1d(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a,
  4448. enum ggml_op_pool op,
  4449. int k0,
  4450. int s0,
  4451. int p0) {
  4452. bool is_node = false;
  4453. if (a->grad) {
  4454. GGML_ASSERT(false); // TODO: implement backward
  4455. is_node = true;
  4456. }
  4457. const int64_t ne[2] = {
  4458. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4459. a->ne[1],
  4460. };
  4461. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4462. int32_t params[] = { op, k0, s0, p0 };
  4463. ggml_set_op_params(result, params, sizeof(params));
  4464. result->op = GGML_OP_POOL_1D;
  4465. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4466. result->src[0] = a;
  4467. return result;
  4468. }
  4469. // ggml_pool_2d
  4470. struct ggml_tensor * ggml_pool_2d(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a,
  4473. enum ggml_op_pool op,
  4474. int k0,
  4475. int k1,
  4476. int s0,
  4477. int s1,
  4478. float p0,
  4479. float p1) {
  4480. bool is_node = false;
  4481. if (a->grad) {
  4482. GGML_ASSERT(false); // TODO: implement backward
  4483. is_node = true;
  4484. }
  4485. const int64_t ne[3] = {
  4486. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4487. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4488. a->ne[2],
  4489. };
  4490. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4491. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4492. ggml_set_op_params(result, params, sizeof(params));
  4493. result->op = GGML_OP_POOL_2D;
  4494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4495. result->src[0] = a;
  4496. return result;
  4497. }
  4498. // ggml_upscale
  4499. static struct ggml_tensor * ggml_upscale_impl(
  4500. struct ggml_context * ctx,
  4501. struct ggml_tensor * a,
  4502. int scale_factor) {
  4503. bool is_node = false;
  4504. if (a->grad) {
  4505. GGML_ASSERT(false); // TODO: implement backward
  4506. is_node = true;
  4507. }
  4508. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4509. a->ne[0] * scale_factor,
  4510. a->ne[1] * scale_factor,
  4511. a->ne[2], a->ne[3]);
  4512. result->op = GGML_OP_UPSCALE;
  4513. result->op_params[0] = scale_factor;
  4514. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4515. result->src[0] = a;
  4516. return result;
  4517. }
  4518. struct ggml_tensor * ggml_pad(
  4519. struct ggml_context * ctx,
  4520. struct ggml_tensor * a,
  4521. int p0, int p1, int p2, int p3) {
  4522. bool is_node = false;
  4523. if (a->grad) {
  4524. GGML_ASSERT(false); // TODO: implement backward
  4525. is_node = true;
  4526. }
  4527. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4528. a->ne[0] + p0,
  4529. a->ne[1] + p1,
  4530. a->ne[2] + p2,
  4531. a->ne[3] + p3);
  4532. result->op = GGML_OP_PAD;
  4533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4534. result->src[0] = a;
  4535. return result;
  4536. }
  4537. struct ggml_tensor * ggml_upscale(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. int scale_factor) {
  4541. return ggml_upscale_impl(ctx, a, scale_factor);
  4542. }
  4543. // ggml_argsort
  4544. struct ggml_tensor * ggml_argsort(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a,
  4547. enum ggml_sort_order order) {
  4548. bool is_node = false;
  4549. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4550. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4551. result->op = GGML_OP_ARGSORT;
  4552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4553. result->src[0] = a;
  4554. return result;
  4555. }
  4556. // ggml_top_k
  4557. struct ggml_tensor * ggml_top_k(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a,
  4560. int k) {
  4561. GGML_ASSERT(a->ne[0] >= k);
  4562. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4563. result = ggml_view_4d(ctx, result,
  4564. k, result->ne[1], result->ne[2], result->ne[3],
  4565. result->nb[1], result->nb[2], result->nb[3],
  4566. 0);
  4567. return result;
  4568. }
  4569. // ggml_flash_attn
  4570. struct ggml_tensor * ggml_flash_attn(
  4571. struct ggml_context * ctx,
  4572. struct ggml_tensor * q,
  4573. struct ggml_tensor * k,
  4574. struct ggml_tensor * v,
  4575. bool masked) {
  4576. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4577. // TODO: check if vT can be multiplied by (k*qT)
  4578. bool is_node = false;
  4579. if (q->grad || k->grad || v->grad) {
  4580. is_node = true;
  4581. }
  4582. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4583. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4584. int32_t t = masked ? 1 : 0;
  4585. ggml_set_op_params(result, &t, sizeof(t));
  4586. result->op = GGML_OP_FLASH_ATTN;
  4587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4588. result->src[0] = q;
  4589. result->src[1] = k;
  4590. result->src[2] = v;
  4591. return result;
  4592. }
  4593. // ggml_flash_ff
  4594. struct ggml_tensor * ggml_flash_ff(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a,
  4597. struct ggml_tensor * b0,
  4598. struct ggml_tensor * b1,
  4599. struct ggml_tensor * c0,
  4600. struct ggml_tensor * c1) {
  4601. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4602. // TODO: more checks
  4603. bool is_node = false;
  4604. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4605. is_node = true;
  4606. }
  4607. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4608. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4609. result->op = GGML_OP_FLASH_FF;
  4610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4611. result->src[0] = a;
  4612. result->src[1] = b0;
  4613. result->src[2] = b1;
  4614. result->src[3] = c0;
  4615. result->src[4] = c1;
  4616. return result;
  4617. }
  4618. // ggml_flash_attn_back
  4619. struct ggml_tensor * ggml_flash_attn_back(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * q,
  4622. struct ggml_tensor * k,
  4623. struct ggml_tensor * v,
  4624. struct ggml_tensor * d,
  4625. bool masked) {
  4626. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4627. // TODO: check if vT can be multiplied by (k*qT)
  4628. // d shape [D,N,ne2,ne3]
  4629. // q shape [D,N,ne2,ne3]
  4630. // k shape [D,M,kvne2,ne3]
  4631. // v shape [M,D,kvne2,ne3]
  4632. const int64_t D = q->ne[0];
  4633. const int64_t N = q->ne[1];
  4634. const int64_t M = k->ne[1];
  4635. const int64_t ne2 = q->ne[2];
  4636. const int64_t ne3 = q->ne[3];
  4637. const int64_t kvne2 = k->ne[2];
  4638. GGML_ASSERT(k->ne[0] == D);
  4639. GGML_ASSERT(v->ne[0] == M);
  4640. GGML_ASSERT(v->ne[1] == D);
  4641. GGML_ASSERT(d->ne[0] == D);
  4642. GGML_ASSERT(d->ne[1] == N);
  4643. GGML_ASSERT(k->ne[2] == kvne2);
  4644. GGML_ASSERT(k->ne[3] == ne3);
  4645. GGML_ASSERT(v->ne[2] == kvne2);
  4646. GGML_ASSERT(v->ne[3] == ne3);
  4647. GGML_ASSERT(d->ne[2] == ne2);
  4648. GGML_ASSERT(d->ne[3] == ne3);
  4649. GGML_ASSERT(ne2 % kvne2 == 0);
  4650. bool is_node = false;
  4651. if (q->grad || k->grad || v->grad) {
  4652. // when using this operation (in backwards pass) these grads are set.
  4653. // we don't want to create (big) grad of our result, so is_node is false.
  4654. is_node = false;
  4655. }
  4656. // store gradients of q, k and v as continuous tensors concatenated in result.
  4657. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4658. const int64_t elem_q = ggml_nelements(q);
  4659. const int64_t elem_k = ggml_nelements(k);
  4660. const int64_t elem_v = ggml_nelements(v);
  4661. enum ggml_type result_type = GGML_TYPE_F32;
  4662. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4663. const size_t tsize = ggml_type_size(result_type);
  4664. const size_t offs_q = 0;
  4665. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4666. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4667. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4668. const size_t nelements = (end + tsize - 1)/tsize;
  4669. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4670. int32_t masked_i = masked ? 1 : 0;
  4671. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4672. result->op = GGML_OP_FLASH_ATTN_BACK;
  4673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4674. result->src[0] = q;
  4675. result->src[1] = k;
  4676. result->src[2] = v;
  4677. result->src[3] = d;
  4678. return result;
  4679. }
  4680. // ggml_win_part
  4681. struct ggml_tensor * ggml_win_part(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. int w) {
  4685. GGML_ASSERT(a->ne[3] == 1);
  4686. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4687. bool is_node = false;
  4688. if (a->grad) {
  4689. GGML_ASSERT(false); // TODO: implement backward
  4690. is_node = true;
  4691. }
  4692. // padding
  4693. const int px = (w - a->ne[1]%w)%w;
  4694. const int py = (w - a->ne[2]%w)%w;
  4695. const int npx = (px + a->ne[1])/w;
  4696. const int npy = (py + a->ne[2])/w;
  4697. const int np = npx*npy;
  4698. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4699. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4700. int32_t params[] = { npx, npy, w };
  4701. ggml_set_op_params(result, params, sizeof(params));
  4702. result->op = GGML_OP_WIN_PART;
  4703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4704. result->src[0] = a;
  4705. return result;
  4706. }
  4707. // ggml_win_unpart
  4708. struct ggml_tensor * ggml_win_unpart(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. int w0,
  4712. int h0,
  4713. int w) {
  4714. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4715. bool is_node = false;
  4716. if (a->grad) {
  4717. GGML_ASSERT(false); // TODO: implement backward
  4718. is_node = true;
  4719. }
  4720. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4721. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4722. int32_t params[] = { w };
  4723. ggml_set_op_params(result, params, sizeof(params));
  4724. result->op = GGML_OP_WIN_UNPART;
  4725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4726. result->src[0] = a;
  4727. return result;
  4728. }
  4729. // ggml_get_rel_pos
  4730. struct ggml_tensor * ggml_get_rel_pos(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a,
  4733. int qh,
  4734. int kh) {
  4735. GGML_ASSERT(qh == kh);
  4736. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4737. bool is_node = false;
  4738. if (a->grad) {
  4739. GGML_ASSERT(false); // TODO: implement backward
  4740. is_node = true;
  4741. }
  4742. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4743. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4744. result->op = GGML_OP_GET_REL_POS;
  4745. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4746. result->src[0] = a;
  4747. return result;
  4748. }
  4749. // ggml_add_rel_pos
  4750. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. struct ggml_tensor * pw,
  4754. struct ggml_tensor * ph,
  4755. bool inplace) {
  4756. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4757. GGML_ASSERT(ggml_is_contiguous(a));
  4758. GGML_ASSERT(ggml_is_contiguous(pw));
  4759. GGML_ASSERT(ggml_is_contiguous(ph));
  4760. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4761. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4762. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4763. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4764. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4765. bool is_node = false;
  4766. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4767. is_node = true;
  4768. }
  4769. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4770. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4771. result->op = GGML_OP_ADD_REL_POS;
  4772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4773. result->src[0] = a;
  4774. result->src[1] = pw;
  4775. result->src[2] = ph;
  4776. return result;
  4777. }
  4778. struct ggml_tensor * ggml_add_rel_pos(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. struct ggml_tensor * pw,
  4782. struct ggml_tensor * ph) {
  4783. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4784. }
  4785. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. struct ggml_tensor * pw,
  4789. struct ggml_tensor * ph) {
  4790. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4791. }
  4792. // gmml_unary
  4793. static struct ggml_tensor * ggml_unary_impl(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a,
  4796. enum ggml_unary_op op,
  4797. bool inplace) {
  4798. bool is_node = false;
  4799. if (!inplace && (a->grad)) {
  4800. is_node = true;
  4801. }
  4802. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4803. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4804. result->op = GGML_OP_UNARY;
  4805. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4806. result->src[0] = a;
  4807. return result;
  4808. }
  4809. struct ggml_tensor * ggml_unary(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. enum ggml_unary_op op) {
  4813. return ggml_unary_impl(ctx, a, op, false);
  4814. }
  4815. struct ggml_tensor * ggml_unary_inplace(
  4816. struct ggml_context * ctx,
  4817. struct ggml_tensor * a,
  4818. enum ggml_unary_op op) {
  4819. return ggml_unary_impl(ctx, a, op, true);
  4820. }
  4821. // ggml_map_unary
  4822. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4823. struct ggml_context * ctx,
  4824. struct ggml_tensor * a,
  4825. const ggml_unary_op_f32_t fun,
  4826. bool inplace) {
  4827. bool is_node = false;
  4828. if (!inplace && a->grad) {
  4829. is_node = true;
  4830. }
  4831. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4832. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4833. result->op = GGML_OP_MAP_UNARY;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src[0] = a;
  4836. return result;
  4837. }
  4838. struct ggml_tensor * ggml_map_unary_f32(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a,
  4841. const ggml_unary_op_f32_t fun) {
  4842. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4843. }
  4844. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. const ggml_unary_op_f32_t fun) {
  4848. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4849. }
  4850. // ggml_map_binary
  4851. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * a,
  4854. struct ggml_tensor * b,
  4855. const ggml_binary_op_f32_t fun,
  4856. bool inplace) {
  4857. GGML_ASSERT(ggml_are_same_shape(a, b));
  4858. bool is_node = false;
  4859. if (!inplace && (a->grad || b->grad)) {
  4860. is_node = true;
  4861. }
  4862. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4863. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4864. result->op = GGML_OP_MAP_BINARY;
  4865. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4866. result->src[0] = a;
  4867. result->src[1] = b;
  4868. return result;
  4869. }
  4870. struct ggml_tensor * ggml_map_binary_f32(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. struct ggml_tensor * b,
  4874. const ggml_binary_op_f32_t fun) {
  4875. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4876. }
  4877. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. struct ggml_tensor * b,
  4881. const ggml_binary_op_f32_t fun) {
  4882. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4883. }
  4884. // ggml_map_custom1_f32
  4885. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a,
  4888. const ggml_custom1_op_f32_t fun,
  4889. bool inplace) {
  4890. bool is_node = false;
  4891. if (!inplace && a->grad) {
  4892. is_node = true;
  4893. }
  4894. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4895. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4896. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4898. result->src[0] = a;
  4899. return result;
  4900. }
  4901. struct ggml_tensor * ggml_map_custom1_f32(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * a,
  4904. const ggml_custom1_op_f32_t fun) {
  4905. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4906. }
  4907. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4908. struct ggml_context * ctx,
  4909. struct ggml_tensor * a,
  4910. const ggml_custom1_op_f32_t fun) {
  4911. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4912. }
  4913. // ggml_map_custom2_f32
  4914. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. struct ggml_tensor * b,
  4918. const ggml_custom2_op_f32_t fun,
  4919. bool inplace) {
  4920. bool is_node = false;
  4921. if (!inplace && (a->grad || b->grad)) {
  4922. is_node = true;
  4923. }
  4924. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4925. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4926. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4928. result->src[0] = a;
  4929. result->src[1] = b;
  4930. return result;
  4931. }
  4932. struct ggml_tensor * ggml_map_custom2_f32(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. struct ggml_tensor * b,
  4936. const ggml_custom2_op_f32_t fun) {
  4937. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4938. }
  4939. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4940. struct ggml_context * ctx,
  4941. struct ggml_tensor * a,
  4942. struct ggml_tensor * b,
  4943. const ggml_custom2_op_f32_t fun) {
  4944. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4945. }
  4946. // ggml_map_custom3_f32
  4947. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4948. struct ggml_context * ctx,
  4949. struct ggml_tensor * a,
  4950. struct ggml_tensor * b,
  4951. struct ggml_tensor * c,
  4952. const ggml_custom3_op_f32_t fun,
  4953. bool inplace) {
  4954. bool is_node = false;
  4955. if (!inplace && (a->grad || b->grad || c->grad)) {
  4956. is_node = true;
  4957. }
  4958. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4959. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4960. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4962. result->src[0] = a;
  4963. result->src[1] = b;
  4964. result->src[2] = c;
  4965. return result;
  4966. }
  4967. struct ggml_tensor * ggml_map_custom3_f32(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. struct ggml_tensor * b,
  4971. struct ggml_tensor * c,
  4972. const ggml_custom3_op_f32_t fun) {
  4973. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4974. }
  4975. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4976. struct ggml_context * ctx,
  4977. struct ggml_tensor * a,
  4978. struct ggml_tensor * b,
  4979. struct ggml_tensor * c,
  4980. const ggml_custom3_op_f32_t fun) {
  4981. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4982. }
  4983. // ggml_map_custom1
  4984. struct ggml_map_custom1_op_params {
  4985. ggml_custom1_op_t fun;
  4986. int n_tasks;
  4987. void * userdata;
  4988. };
  4989. static struct ggml_tensor * ggml_map_custom1_impl(
  4990. struct ggml_context * ctx,
  4991. struct ggml_tensor * a,
  4992. const ggml_custom1_op_t fun,
  4993. int n_tasks,
  4994. void * userdata,
  4995. bool inplace) {
  4996. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4997. bool is_node = false;
  4998. if (!inplace && a->grad) {
  4999. is_node = true;
  5000. }
  5001. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5002. struct ggml_map_custom1_op_params params = {
  5003. /*.fun =*/ fun,
  5004. /*.n_tasks =*/ n_tasks,
  5005. /*.userdata =*/ userdata
  5006. };
  5007. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5008. result->op = GGML_OP_MAP_CUSTOM1;
  5009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5010. result->src[0] = a;
  5011. return result;
  5012. }
  5013. struct ggml_tensor * ggml_map_custom1(
  5014. struct ggml_context * ctx,
  5015. struct ggml_tensor * a,
  5016. const ggml_custom1_op_t fun,
  5017. int n_tasks,
  5018. void * userdata) {
  5019. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5020. }
  5021. struct ggml_tensor * ggml_map_custom1_inplace(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a,
  5024. const ggml_custom1_op_t fun,
  5025. int n_tasks,
  5026. void * userdata) {
  5027. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5028. }
  5029. // ggml_map_custom2
  5030. struct ggml_map_custom2_op_params {
  5031. ggml_custom2_op_t fun;
  5032. int n_tasks;
  5033. void * userdata;
  5034. };
  5035. static struct ggml_tensor * ggml_map_custom2_impl(
  5036. struct ggml_context * ctx,
  5037. struct ggml_tensor * a,
  5038. struct ggml_tensor * b,
  5039. const ggml_custom2_op_t fun,
  5040. int n_tasks,
  5041. void * userdata,
  5042. bool inplace) {
  5043. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5044. bool is_node = false;
  5045. if (!inplace && (a->grad || b->grad)) {
  5046. is_node = true;
  5047. }
  5048. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5049. struct ggml_map_custom2_op_params params = {
  5050. /*.fun =*/ fun,
  5051. /*.n_tasks =*/ n_tasks,
  5052. /*.userdata =*/ userdata
  5053. };
  5054. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5055. result->op = GGML_OP_MAP_CUSTOM2;
  5056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5057. result->src[0] = a;
  5058. result->src[1] = b;
  5059. return result;
  5060. }
  5061. struct ggml_tensor * ggml_map_custom2(
  5062. struct ggml_context * ctx,
  5063. struct ggml_tensor * a,
  5064. struct ggml_tensor * b,
  5065. const ggml_custom2_op_t fun,
  5066. int n_tasks,
  5067. void * userdata) {
  5068. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5069. }
  5070. struct ggml_tensor * ggml_map_custom2_inplace(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. struct ggml_tensor * b,
  5074. const ggml_custom2_op_t fun,
  5075. int n_tasks,
  5076. void * userdata) {
  5077. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5078. }
  5079. // ggml_map_custom3
  5080. struct ggml_map_custom3_op_params {
  5081. ggml_custom3_op_t fun;
  5082. int n_tasks;
  5083. void * userdata;
  5084. };
  5085. static struct ggml_tensor * ggml_map_custom3_impl(
  5086. struct ggml_context * ctx,
  5087. struct ggml_tensor * a,
  5088. struct ggml_tensor * b,
  5089. struct ggml_tensor * c,
  5090. const ggml_custom3_op_t fun,
  5091. int n_tasks,
  5092. void * userdata,
  5093. bool inplace) {
  5094. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5095. bool is_node = false;
  5096. if (!inplace && (a->grad || b->grad || c->grad)) {
  5097. is_node = true;
  5098. }
  5099. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5100. struct ggml_map_custom3_op_params params = {
  5101. /*.fun =*/ fun,
  5102. /*.n_tasks =*/ n_tasks,
  5103. /*.userdata =*/ userdata
  5104. };
  5105. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5106. result->op = GGML_OP_MAP_CUSTOM3;
  5107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5108. result->src[0] = a;
  5109. result->src[1] = b;
  5110. result->src[2] = c;
  5111. return result;
  5112. }
  5113. struct ggml_tensor * ggml_map_custom3(
  5114. struct ggml_context * ctx,
  5115. struct ggml_tensor * a,
  5116. struct ggml_tensor * b,
  5117. struct ggml_tensor * c,
  5118. const ggml_custom3_op_t fun,
  5119. int n_tasks,
  5120. void * userdata) {
  5121. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5122. }
  5123. struct ggml_tensor * ggml_map_custom3_inplace(
  5124. struct ggml_context * ctx,
  5125. struct ggml_tensor * a,
  5126. struct ggml_tensor * b,
  5127. struct ggml_tensor * c,
  5128. const ggml_custom3_op_t fun,
  5129. int n_tasks,
  5130. void * userdata) {
  5131. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5132. }
  5133. // ggml_cross_entropy_loss
  5134. struct ggml_tensor * ggml_cross_entropy_loss(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a,
  5137. struct ggml_tensor * b) {
  5138. GGML_ASSERT(ggml_are_same_shape(a, b));
  5139. bool is_node = false;
  5140. if (a->grad || b->grad) {
  5141. is_node = true;
  5142. }
  5143. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5144. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5146. result->src[0] = a;
  5147. result->src[1] = b;
  5148. return result;
  5149. }
  5150. // ggml_cross_entropy_loss_back
  5151. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a,
  5154. struct ggml_tensor * b,
  5155. struct ggml_tensor * c) {
  5156. GGML_ASSERT(ggml_are_same_shape(a, b));
  5157. GGML_ASSERT(ggml_is_scalar(c));
  5158. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5159. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5160. result->grad = NULL;
  5161. result->src[0] = a;
  5162. result->src[1] = b;
  5163. result->src[2] = c;
  5164. return result;
  5165. }
  5166. ////////////////////////////////////////////////////////////////////////////////
  5167. void ggml_set_param(
  5168. struct ggml_context * ctx,
  5169. struct ggml_tensor * tensor) {
  5170. tensor->is_param = true;
  5171. GGML_ASSERT(tensor->grad == NULL);
  5172. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5173. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5174. }
  5175. // ggml_compute_forward_dup
  5176. static void ggml_compute_forward_dup_same_cont(
  5177. const struct ggml_compute_params * params,
  5178. const struct ggml_tensor * src0,
  5179. struct ggml_tensor * dst) {
  5180. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5181. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5182. GGML_ASSERT(src0->type == dst->type);
  5183. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5184. return;
  5185. }
  5186. const size_t nb00 = src0->nb[0];
  5187. const size_t nb0 = dst->nb[0];
  5188. const int ith = params->ith; // thread index
  5189. const int nth = params->nth; // number of threads
  5190. // parallelize by elements
  5191. const int ne = ggml_nelements(dst);
  5192. const int dr = (ne + nth - 1) / nth;
  5193. const int ie0 = dr * ith;
  5194. const int ie1 = MIN(ie0 + dr, ne);
  5195. if (ie0 < ie1) {
  5196. memcpy(
  5197. ((char *) dst->data + ie0*nb0),
  5198. ((char *) src0->data + ie0*nb00),
  5199. (ie1 - ie0) * ggml_type_size(src0->type));
  5200. }
  5201. }
  5202. static void ggml_compute_forward_dup_f16(
  5203. const struct ggml_compute_params * params,
  5204. const struct ggml_tensor * src0,
  5205. struct ggml_tensor * dst) {
  5206. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5207. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5208. return;
  5209. }
  5210. GGML_TENSOR_UNARY_OP_LOCALS
  5211. const int ith = params->ith; // thread index
  5212. const int nth = params->nth; // number of threads
  5213. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5214. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5215. return;
  5216. }
  5217. // parallelize by rows
  5218. const int nr = ne01;
  5219. // number of rows per thread
  5220. const int dr = (nr + nth - 1) / nth;
  5221. // row range for this thread
  5222. const int ir0 = dr * ith;
  5223. const int ir1 = MIN(ir0 + dr, nr);
  5224. if (src0->type == dst->type &&
  5225. ne00 == ne0 &&
  5226. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5227. // copy by rows
  5228. const size_t rs = ne00*nb00;
  5229. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5230. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5231. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5232. memcpy(
  5233. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5234. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5235. rs);
  5236. }
  5237. }
  5238. }
  5239. return;
  5240. }
  5241. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5242. if (ggml_is_contiguous(dst)) {
  5243. if (nb00 == sizeof(ggml_fp16_t)) {
  5244. if (dst->type == GGML_TYPE_F16) {
  5245. size_t id = 0;
  5246. const size_t rs = ne00 * nb00;
  5247. char * dst_ptr = (char *) dst->data;
  5248. for (int i03 = 0; i03 < ne03; i03++) {
  5249. for (int i02 = 0; i02 < ne02; i02++) {
  5250. id += rs * ir0;
  5251. for (int i01 = ir0; i01 < ir1; i01++) {
  5252. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5253. memcpy(dst_ptr + id, src0_ptr, rs);
  5254. id += rs;
  5255. }
  5256. id += rs * (ne01 - ir1);
  5257. }
  5258. }
  5259. } else if (dst->type == GGML_TYPE_F32) {
  5260. size_t id = 0;
  5261. float * dst_ptr = (float *) dst->data;
  5262. for (int i03 = 0; i03 < ne03; i03++) {
  5263. for (int i02 = 0; i02 < ne02; i02++) {
  5264. id += ne00 * ir0;
  5265. for (int i01 = ir0; i01 < ir1; i01++) {
  5266. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5267. for (int i00 = 0; i00 < ne00; i00++) {
  5268. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5269. id++;
  5270. }
  5271. }
  5272. id += ne00 * (ne01 - ir1);
  5273. }
  5274. }
  5275. } else if (type_traits[dst->type].from_float) {
  5276. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5277. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5278. size_t id = 0;
  5279. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5280. char * dst_ptr = (char *) dst->data;
  5281. for (int i03 = 0; i03 < ne03; i03++) {
  5282. for (int i02 = 0; i02 < ne02; i02++) {
  5283. id += rs * ir0;
  5284. for (int i01 = ir0; i01 < ir1; i01++) {
  5285. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5286. for (int i00 = 0; i00 < ne00; i00++) {
  5287. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5288. }
  5289. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5290. id += rs;
  5291. }
  5292. id += rs * (ne01 - ir1);
  5293. }
  5294. }
  5295. } else {
  5296. GGML_ASSERT(false); // TODO: implement
  5297. }
  5298. } else {
  5299. //printf("%s: this is not optimal - fix me\n", __func__);
  5300. if (dst->type == GGML_TYPE_F32) {
  5301. size_t id = 0;
  5302. float * dst_ptr = (float *) dst->data;
  5303. for (int i03 = 0; i03 < ne03; i03++) {
  5304. for (int i02 = 0; i02 < ne02; i02++) {
  5305. id += ne00 * ir0;
  5306. for (int i01 = ir0; i01 < ir1; i01++) {
  5307. for (int i00 = 0; i00 < ne00; i00++) {
  5308. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5309. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5310. id++;
  5311. }
  5312. }
  5313. id += ne00 * (ne01 - ir1);
  5314. }
  5315. }
  5316. } else if (dst->type == GGML_TYPE_F16) {
  5317. size_t id = 0;
  5318. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5319. for (int i03 = 0; i03 < ne03; i03++) {
  5320. for (int i02 = 0; i02 < ne02; i02++) {
  5321. id += ne00 * ir0;
  5322. for (int i01 = ir0; i01 < ir1; i01++) {
  5323. for (int i00 = 0; i00 < ne00; i00++) {
  5324. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5325. dst_ptr[id] = *src0_ptr;
  5326. id++;
  5327. }
  5328. }
  5329. id += ne00 * (ne01 - ir1);
  5330. }
  5331. }
  5332. } else {
  5333. GGML_ASSERT(false); // TODO: implement
  5334. }
  5335. }
  5336. return;
  5337. }
  5338. // dst counters
  5339. int64_t i10 = 0;
  5340. int64_t i11 = 0;
  5341. int64_t i12 = 0;
  5342. int64_t i13 = 0;
  5343. if (dst->type == GGML_TYPE_F16) {
  5344. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5345. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5346. i10 += ne00 * ir0;
  5347. while (i10 >= ne0) {
  5348. i10 -= ne0;
  5349. if (++i11 == ne1) {
  5350. i11 = 0;
  5351. if (++i12 == ne2) {
  5352. i12 = 0;
  5353. if (++i13 == ne3) {
  5354. i13 = 0;
  5355. }
  5356. }
  5357. }
  5358. }
  5359. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5360. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5361. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5362. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5363. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5364. if (++i10 == ne00) {
  5365. i10 = 0;
  5366. if (++i11 == ne01) {
  5367. i11 = 0;
  5368. if (++i12 == ne02) {
  5369. i12 = 0;
  5370. if (++i13 == ne03) {
  5371. i13 = 0;
  5372. }
  5373. }
  5374. }
  5375. }
  5376. }
  5377. }
  5378. i10 += ne00 * (ne01 - ir1);
  5379. while (i10 >= ne0) {
  5380. i10 -= ne0;
  5381. if (++i11 == ne1) {
  5382. i11 = 0;
  5383. if (++i12 == ne2) {
  5384. i12 = 0;
  5385. if (++i13 == ne3) {
  5386. i13 = 0;
  5387. }
  5388. }
  5389. }
  5390. }
  5391. }
  5392. }
  5393. } else if (dst->type == GGML_TYPE_F32) {
  5394. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5395. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5396. i10 += ne00 * ir0;
  5397. while (i10 >= ne0) {
  5398. i10 -= ne0;
  5399. if (++i11 == ne1) {
  5400. i11 = 0;
  5401. if (++i12 == ne2) {
  5402. i12 = 0;
  5403. if (++i13 == ne3) {
  5404. i13 = 0;
  5405. }
  5406. }
  5407. }
  5408. }
  5409. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5410. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5411. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5412. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5413. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5414. if (++i10 == ne0) {
  5415. i10 = 0;
  5416. if (++i11 == ne1) {
  5417. i11 = 0;
  5418. if (++i12 == ne2) {
  5419. i12 = 0;
  5420. if (++i13 == ne3) {
  5421. i13 = 0;
  5422. }
  5423. }
  5424. }
  5425. }
  5426. }
  5427. }
  5428. i10 += ne00 * (ne01 - ir1);
  5429. while (i10 >= ne0) {
  5430. i10 -= ne0;
  5431. if (++i11 == ne1) {
  5432. i11 = 0;
  5433. if (++i12 == ne2) {
  5434. i12 = 0;
  5435. if (++i13 == ne3) {
  5436. i13 = 0;
  5437. }
  5438. }
  5439. }
  5440. }
  5441. }
  5442. }
  5443. } else {
  5444. GGML_ASSERT(false); // TODO: implement
  5445. }
  5446. }
  5447. static void ggml_compute_forward_dup_f32(
  5448. const struct ggml_compute_params * params,
  5449. const struct ggml_tensor * src0,
  5450. struct ggml_tensor * dst) {
  5451. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5453. return;
  5454. }
  5455. GGML_TENSOR_UNARY_OP_LOCALS
  5456. const int ith = params->ith; // thread index
  5457. const int nth = params->nth; // number of threads
  5458. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5459. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5460. return;
  5461. }
  5462. // parallelize by rows
  5463. const int nr = ne01;
  5464. // number of rows per thread
  5465. const int dr = (nr + nth - 1) / nth;
  5466. // row range for this thread
  5467. const int ir0 = dr * ith;
  5468. const int ir1 = MIN(ir0 + dr, nr);
  5469. if (src0->type == dst->type &&
  5470. ne00 == ne0 &&
  5471. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5472. // copy by rows
  5473. const size_t rs = ne00*nb00;
  5474. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5475. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5476. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5477. memcpy(
  5478. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5479. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5480. rs);
  5481. }
  5482. }
  5483. }
  5484. return;
  5485. }
  5486. if (ggml_is_contiguous(dst)) {
  5487. // TODO: simplify
  5488. if (nb00 == sizeof(float)) {
  5489. if (dst->type == GGML_TYPE_F32) {
  5490. size_t id = 0;
  5491. const size_t rs = ne00 * nb00;
  5492. char * dst_ptr = (char *) dst->data;
  5493. for (int i03 = 0; i03 < ne03; i03++) {
  5494. for (int i02 = 0; i02 < ne02; i02++) {
  5495. id += rs * ir0;
  5496. for (int i01 = ir0; i01 < ir1; i01++) {
  5497. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5498. memcpy(dst_ptr + id, src0_ptr, rs);
  5499. id += rs;
  5500. }
  5501. id += rs * (ne01 - ir1);
  5502. }
  5503. }
  5504. } else if (type_traits[dst->type].from_float) {
  5505. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5506. size_t id = 0;
  5507. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5508. char * dst_ptr = (char *) dst->data;
  5509. for (int i03 = 0; i03 < ne03; i03++) {
  5510. for (int i02 = 0; i02 < ne02; i02++) {
  5511. id += rs * ir0;
  5512. for (int i01 = ir0; i01 < ir1; i01++) {
  5513. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5514. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5515. id += rs;
  5516. }
  5517. id += rs * (ne01 - ir1);
  5518. }
  5519. }
  5520. } else {
  5521. GGML_ASSERT(false); // TODO: implement
  5522. }
  5523. } else {
  5524. //printf("%s: this is not optimal - fix me\n", __func__);
  5525. if (dst->type == GGML_TYPE_F32) {
  5526. size_t id = 0;
  5527. float * dst_ptr = (float *) dst->data;
  5528. for (int i03 = 0; i03 < ne03; i03++) {
  5529. for (int i02 = 0; i02 < ne02; i02++) {
  5530. id += ne00 * ir0;
  5531. for (int i01 = ir0; i01 < ir1; i01++) {
  5532. for (int i00 = 0; i00 < ne00; i00++) {
  5533. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5534. dst_ptr[id] = *src0_ptr;
  5535. id++;
  5536. }
  5537. }
  5538. id += ne00 * (ne01 - ir1);
  5539. }
  5540. }
  5541. } else if (dst->type == GGML_TYPE_F16) {
  5542. size_t id = 0;
  5543. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5544. for (int i03 = 0; i03 < ne03; i03++) {
  5545. for (int i02 = 0; i02 < ne02; i02++) {
  5546. id += ne00 * ir0;
  5547. for (int i01 = ir0; i01 < ir1; i01++) {
  5548. for (int i00 = 0; i00 < ne00; i00++) {
  5549. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5550. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5551. id++;
  5552. }
  5553. }
  5554. id += ne00 * (ne01 - ir1);
  5555. }
  5556. }
  5557. } else {
  5558. GGML_ASSERT(false); // TODO: implement
  5559. }
  5560. }
  5561. return;
  5562. }
  5563. // dst counters
  5564. int64_t i10 = 0;
  5565. int64_t i11 = 0;
  5566. int64_t i12 = 0;
  5567. int64_t i13 = 0;
  5568. if (dst->type == GGML_TYPE_F32) {
  5569. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5570. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5571. i10 += ne00 * ir0;
  5572. while (i10 >= ne0) {
  5573. i10 -= ne0;
  5574. if (++i11 == ne1) {
  5575. i11 = 0;
  5576. if (++i12 == ne2) {
  5577. i12 = 0;
  5578. if (++i13 == ne3) {
  5579. i13 = 0;
  5580. }
  5581. }
  5582. }
  5583. }
  5584. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5585. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5586. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5587. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5588. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5589. if (++i10 == ne0) {
  5590. i10 = 0;
  5591. if (++i11 == ne1) {
  5592. i11 = 0;
  5593. if (++i12 == ne2) {
  5594. i12 = 0;
  5595. if (++i13 == ne3) {
  5596. i13 = 0;
  5597. }
  5598. }
  5599. }
  5600. }
  5601. }
  5602. }
  5603. i10 += ne00 * (ne01 - ir1);
  5604. while (i10 >= ne0) {
  5605. i10 -= ne0;
  5606. if (++i11 == ne1) {
  5607. i11 = 0;
  5608. if (++i12 == ne2) {
  5609. i12 = 0;
  5610. if (++i13 == ne3) {
  5611. i13 = 0;
  5612. }
  5613. }
  5614. }
  5615. }
  5616. }
  5617. }
  5618. } else if (dst->type == GGML_TYPE_F16) {
  5619. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5620. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5621. i10 += ne00 * ir0;
  5622. while (i10 >= ne0) {
  5623. i10 -= ne0;
  5624. if (++i11 == ne1) {
  5625. i11 = 0;
  5626. if (++i12 == ne2) {
  5627. i12 = 0;
  5628. if (++i13 == ne3) {
  5629. i13 = 0;
  5630. }
  5631. }
  5632. }
  5633. }
  5634. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5635. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5636. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5637. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5638. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5639. if (++i10 == ne0) {
  5640. i10 = 0;
  5641. if (++i11 == ne1) {
  5642. i11 = 0;
  5643. if (++i12 == ne2) {
  5644. i12 = 0;
  5645. if (++i13 == ne3) {
  5646. i13 = 0;
  5647. }
  5648. }
  5649. }
  5650. }
  5651. }
  5652. }
  5653. i10 += ne00 * (ne01 - ir1);
  5654. while (i10 >= ne0) {
  5655. i10 -= ne0;
  5656. if (++i11 == ne1) {
  5657. i11 = 0;
  5658. if (++i12 == ne2) {
  5659. i12 = 0;
  5660. if (++i13 == ne3) {
  5661. i13 = 0;
  5662. }
  5663. }
  5664. }
  5665. }
  5666. }
  5667. }
  5668. } else {
  5669. GGML_ASSERT(false); // TODO: implement
  5670. }
  5671. }
  5672. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5673. static void ggml_compute_forward_dup_bytes(
  5674. const struct ggml_compute_params * params,
  5675. const struct ggml_tensor * src0,
  5676. struct ggml_tensor * dst) {
  5677. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5678. GGML_ASSERT(src0->type == dst->type);
  5679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5680. return;
  5681. }
  5682. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5683. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5684. return;
  5685. }
  5686. GGML_TENSOR_UNARY_OP_LOCALS;
  5687. const size_t type_size = ggml_type_size(src0->type);
  5688. const int ith = params->ith; // thread index
  5689. const int nth = params->nth; // number of threads
  5690. // parallelize by rows
  5691. const int nr = ne01;
  5692. // number of rows per thread
  5693. const int dr = (nr + nth - 1) / nth;
  5694. // row range for this thread
  5695. const int ir0 = dr * ith;
  5696. const int ir1 = MIN(ir0 + dr, nr);
  5697. if (src0->type == dst->type &&
  5698. ne00 == ne0 &&
  5699. nb00 == type_size && nb0 == type_size) {
  5700. // copy by rows
  5701. const size_t rs = ne00 * type_size;
  5702. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5703. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5704. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5705. memcpy(
  5706. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5707. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5708. rs);
  5709. }
  5710. }
  5711. }
  5712. return;
  5713. }
  5714. if (ggml_is_contiguous(dst)) {
  5715. size_t id = 0;
  5716. char * dst_ptr = (char *) dst->data;
  5717. const size_t rs = ne00 * type_size;
  5718. if (nb00 == type_size) {
  5719. // src0 is contigous on first dimension, copy by rows
  5720. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5721. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5722. id += rs * ir0;
  5723. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5724. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5725. memcpy(dst_ptr + id, src0_ptr, rs);
  5726. id += rs;
  5727. }
  5728. id += rs * (ne01 - ir1);
  5729. }
  5730. }
  5731. } else {
  5732. //printf("%s: this is not optimal - fix me\n", __func__);
  5733. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5734. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5735. id += rs * ir0;
  5736. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5737. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5738. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5739. memcpy(dst_ptr + id, src0_ptr, type_size);
  5740. id += type_size;
  5741. }
  5742. }
  5743. id += rs * (ne01 - ir1);
  5744. }
  5745. }
  5746. }
  5747. return;
  5748. }
  5749. // dst counters
  5750. int64_t i10 = 0;
  5751. int64_t i11 = 0;
  5752. int64_t i12 = 0;
  5753. int64_t i13 = 0;
  5754. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5755. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5756. i10 += ne00 * ir0;
  5757. while (i10 >= ne0) {
  5758. i10 -= ne0;
  5759. if (++i11 == ne1) {
  5760. i11 = 0;
  5761. if (++i12 == ne2) {
  5762. i12 = 0;
  5763. if (++i13 == ne3) {
  5764. i13 = 0;
  5765. }
  5766. }
  5767. }
  5768. }
  5769. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5770. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5771. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5772. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5773. memcpy(dst_ptr, src0_ptr, type_size);
  5774. if (++i10 == ne0) {
  5775. i10 = 0;
  5776. if (++i11 == ne1) {
  5777. i11 = 0;
  5778. if (++i12 == ne2) {
  5779. i12 = 0;
  5780. if (++i13 == ne3) {
  5781. i13 = 0;
  5782. }
  5783. }
  5784. }
  5785. }
  5786. }
  5787. }
  5788. i10 += ne00 * (ne01 - ir1);
  5789. while (i10 >= ne0) {
  5790. i10 -= ne0;
  5791. if (++i11 == ne1) {
  5792. i11 = 0;
  5793. if (++i12 == ne2) {
  5794. i12 = 0;
  5795. if (++i13 == ne3) {
  5796. i13 = 0;
  5797. }
  5798. }
  5799. }
  5800. }
  5801. }
  5802. }
  5803. }
  5804. static void ggml_compute_forward_dup(
  5805. const struct ggml_compute_params * params,
  5806. const struct ggml_tensor * src0,
  5807. struct ggml_tensor * dst) {
  5808. if (src0->type == dst->type) {
  5809. ggml_compute_forward_dup_bytes(params, src0, dst);
  5810. return;
  5811. }
  5812. switch (src0->type) {
  5813. case GGML_TYPE_F16:
  5814. {
  5815. ggml_compute_forward_dup_f16(params, src0, dst);
  5816. } break;
  5817. case GGML_TYPE_F32:
  5818. {
  5819. ggml_compute_forward_dup_f32(params, src0, dst);
  5820. } break;
  5821. default:
  5822. {
  5823. GGML_ASSERT(false);
  5824. } break;
  5825. }
  5826. }
  5827. // ggml_compute_forward_add
  5828. static void ggml_compute_forward_add_f32(
  5829. const struct ggml_compute_params * params,
  5830. const struct ggml_tensor * src0,
  5831. const struct ggml_tensor * src1,
  5832. struct ggml_tensor * dst) {
  5833. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5834. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5835. return;
  5836. }
  5837. const int ith = params->ith;
  5838. const int nth = params->nth;
  5839. const int nr = ggml_nrows(src0);
  5840. GGML_TENSOR_BINARY_OP_LOCALS
  5841. GGML_ASSERT( nb0 == sizeof(float));
  5842. GGML_ASSERT(nb00 == sizeof(float));
  5843. // rows per thread
  5844. const int dr = (nr + nth - 1)/nth;
  5845. // row range for this thread
  5846. const int ir0 = dr*ith;
  5847. const int ir1 = MIN(ir0 + dr, nr);
  5848. if (nb10 == sizeof(float)) {
  5849. for (int ir = ir0; ir < ir1; ++ir) {
  5850. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5851. const int64_t i03 = ir/(ne02*ne01);
  5852. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5853. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5854. const int64_t i13 = i03 % ne13;
  5855. const int64_t i12 = i02 % ne12;
  5856. const int64_t i11 = i01 % ne11;
  5857. const int64_t nr0 = ne00 / ne10;
  5858. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5859. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5860. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5861. for (int64_t r = 0; r < nr0; ++r) {
  5862. #ifdef GGML_USE_ACCELERATE
  5863. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5864. #else
  5865. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5866. #endif
  5867. }
  5868. }
  5869. } else {
  5870. // src1 is not contiguous
  5871. for (int ir = ir0; ir < ir1; ++ir) {
  5872. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5873. const int64_t i03 = ir/(ne02*ne01);
  5874. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5875. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5876. const int64_t i13 = i03 % ne13;
  5877. const int64_t i12 = i02 % ne12;
  5878. const int64_t i11 = i01 % ne11;
  5879. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5880. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5881. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5882. const int64_t i10 = i0 % ne10;
  5883. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5884. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5885. }
  5886. }
  5887. }
  5888. }
  5889. static void ggml_compute_forward_add_f16_f32(
  5890. const struct ggml_compute_params * params,
  5891. const struct ggml_tensor * src0,
  5892. const struct ggml_tensor * src1,
  5893. struct ggml_tensor * dst) {
  5894. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5895. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5896. return;
  5897. }
  5898. const int ith = params->ith;
  5899. const int nth = params->nth;
  5900. const int nr = ggml_nrows(src0);
  5901. GGML_TENSOR_BINARY_OP_LOCALS
  5902. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5903. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5904. if (dst->type == GGML_TYPE_F32) {
  5905. GGML_ASSERT( nb0 == sizeof(float));
  5906. }
  5907. else {
  5908. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5909. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5910. }
  5911. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5912. // rows per thread
  5913. const int dr = (nr + nth - 1)/nth;
  5914. // row range for this thread
  5915. const int ir0 = dr*ith;
  5916. const int ir1 = MIN(ir0 + dr, nr);
  5917. if (nb10 == sizeof(float)) {
  5918. if (dst->type == GGML_TYPE_F16) {
  5919. for (int ir = ir0; ir < ir1; ++ir) {
  5920. // src0, src1 and dst are same shape => same indices
  5921. const int i3 = ir/(ne2*ne1);
  5922. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5923. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5924. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5925. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5926. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5927. for (int i = 0; i < ne0; i++) {
  5928. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5929. }
  5930. }
  5931. } else {
  5932. for (int ir = ir0; ir < ir1; ++ir) {
  5933. // src0, src1 and dst are same shape => same indices
  5934. const int i3 = ir/(ne2*ne1);
  5935. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5936. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5937. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5938. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5939. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5940. for (int i = 0; i < ne0; i++) {
  5941. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5942. }
  5943. }
  5944. }
  5945. }
  5946. else {
  5947. // src1 is not contiguous
  5948. GGML_ASSERT(false);
  5949. }
  5950. }
  5951. static void ggml_compute_forward_add_f16_f16(
  5952. const struct ggml_compute_params * params,
  5953. const struct ggml_tensor * src0,
  5954. const struct ggml_tensor * src1,
  5955. struct ggml_tensor * dst) {
  5956. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5957. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5958. return;
  5959. }
  5960. const int ith = params->ith;
  5961. const int nth = params->nth;
  5962. const int nr = ggml_nrows(src0);
  5963. GGML_TENSOR_BINARY_OP_LOCALS
  5964. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5965. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5966. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5967. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5968. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5969. // rows per thread
  5970. const int dr = (nr + nth - 1)/nth;
  5971. // row range for this thread
  5972. const int ir0 = dr*ith;
  5973. const int ir1 = MIN(ir0 + dr, nr);
  5974. if (nb10 == sizeof(ggml_fp16_t)) {
  5975. for (int ir = ir0; ir < ir1; ++ir) {
  5976. // src0, src1 and dst are same shape => same indices
  5977. const int i3 = ir/(ne2*ne1);
  5978. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5979. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5980. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5981. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5982. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5983. for (int i = 0; i < ne0; i++) {
  5984. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5985. }
  5986. }
  5987. }
  5988. else {
  5989. // src1 is not contiguous
  5990. GGML_ASSERT(false);
  5991. }
  5992. }
  5993. static void ggml_compute_forward_add_q_f32(
  5994. const struct ggml_compute_params * params,
  5995. const struct ggml_tensor * src0,
  5996. const struct ggml_tensor * src1,
  5997. struct ggml_tensor * dst) {
  5998. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5999. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6000. return;
  6001. }
  6002. const int nr = ggml_nrows(src0);
  6003. GGML_TENSOR_BINARY_OP_LOCALS
  6004. const int ith = params->ith;
  6005. const int nth = params->nth;
  6006. const enum ggml_type type = src0->type;
  6007. const enum ggml_type dtype = dst->type;
  6008. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6009. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6010. // we don't support permuted src0 or src1
  6011. GGML_ASSERT(nb00 == ggml_type_size(type));
  6012. GGML_ASSERT(nb10 == sizeof(float));
  6013. // dst cannot be transposed or permuted
  6014. GGML_ASSERT(nb0 <= nb1);
  6015. GGML_ASSERT(nb1 <= nb2);
  6016. GGML_ASSERT(nb2 <= nb3);
  6017. GGML_ASSERT(ggml_is_quantized(src0->type));
  6018. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6019. // rows per thread
  6020. const int dr = (nr + nth - 1)/nth;
  6021. // row range for this thread
  6022. const int ir0 = dr*ith;
  6023. const int ir1 = MIN(ir0 + dr, nr);
  6024. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6025. for (int ir = ir0; ir < ir1; ++ir) {
  6026. // src0 indices
  6027. const int i03 = ir/(ne02*ne01);
  6028. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6029. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6030. // src1 and dst are same shape as src0 => same indices
  6031. const int i13 = i03;
  6032. const int i12 = i02;
  6033. const int i11 = i01;
  6034. const int i3 = i03;
  6035. const int i2 = i02;
  6036. const int i1 = i01;
  6037. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6038. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6039. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6040. assert(ne00 % 32 == 0);
  6041. // unquantize row from src0 to temp buffer
  6042. dequantize_row_q(src0_row, wdata, ne00);
  6043. // add src1
  6044. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6045. // quantize row to dst
  6046. if (quantize_row_q != NULL) {
  6047. quantize_row_q(wdata, dst_row, ne00);
  6048. } else {
  6049. memcpy(dst_row, wdata, ne0*nb0);
  6050. }
  6051. }
  6052. }
  6053. static void ggml_compute_forward_add(
  6054. const struct ggml_compute_params * params,
  6055. const struct ggml_tensor * src0,
  6056. const struct ggml_tensor * src1,
  6057. struct ggml_tensor * dst) {
  6058. switch (src0->type) {
  6059. case GGML_TYPE_F32:
  6060. {
  6061. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6062. } break;
  6063. case GGML_TYPE_F16:
  6064. {
  6065. if (src1->type == GGML_TYPE_F16) {
  6066. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6067. }
  6068. else if (src1->type == GGML_TYPE_F32) {
  6069. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6070. }
  6071. else {
  6072. GGML_ASSERT(false);
  6073. }
  6074. } break;
  6075. case GGML_TYPE_Q4_0:
  6076. case GGML_TYPE_Q4_1:
  6077. case GGML_TYPE_Q5_0:
  6078. case GGML_TYPE_Q5_1:
  6079. case GGML_TYPE_Q8_0:
  6080. case GGML_TYPE_Q2_K:
  6081. case GGML_TYPE_Q3_K:
  6082. case GGML_TYPE_Q4_K:
  6083. case GGML_TYPE_Q5_K:
  6084. case GGML_TYPE_Q6_K:
  6085. case GGML_TYPE_IQ2_XXS:
  6086. {
  6087. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6088. } break;
  6089. default:
  6090. {
  6091. GGML_ASSERT(false);
  6092. } break;
  6093. }
  6094. }
  6095. // ggml_compute_forward_add1
  6096. static void ggml_compute_forward_add1_f32(
  6097. const struct ggml_compute_params * params,
  6098. const struct ggml_tensor * src0,
  6099. const struct ggml_tensor * src1,
  6100. struct ggml_tensor * dst) {
  6101. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6102. GGML_ASSERT(ggml_is_scalar(src1));
  6103. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6104. return;
  6105. }
  6106. const int ith = params->ith;
  6107. const int nth = params->nth;
  6108. const int nr = ggml_nrows(src0);
  6109. GGML_TENSOR_UNARY_OP_LOCALS
  6110. GGML_ASSERT( nb0 == sizeof(float));
  6111. GGML_ASSERT(nb00 == sizeof(float));
  6112. // rows per thread
  6113. const int dr = (nr + nth - 1)/nth;
  6114. // row range for this thread
  6115. const int ir0 = dr*ith;
  6116. const int ir1 = MIN(ir0 + dr, nr);
  6117. for (int ir = ir0; ir < ir1; ++ir) {
  6118. // src0 and dst are same shape => same indices
  6119. const int i3 = ir/(ne2*ne1);
  6120. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6121. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6122. #ifdef GGML_USE_ACCELERATE
  6123. UNUSED(ggml_vec_add1_f32);
  6124. vDSP_vadd(
  6125. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6126. (float *) ((char *) src1->data), 0,
  6127. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6128. ne0);
  6129. #else
  6130. ggml_vec_add1_f32(ne0,
  6131. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6132. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6133. *(float *) src1->data);
  6134. #endif
  6135. }
  6136. }
  6137. static void ggml_compute_forward_add1_f16_f32(
  6138. const struct ggml_compute_params * params,
  6139. const struct ggml_tensor * src0,
  6140. const struct ggml_tensor * src1,
  6141. struct ggml_tensor * dst) {
  6142. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6143. GGML_ASSERT(ggml_is_scalar(src1));
  6144. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6145. return;
  6146. }
  6147. // scalar to add
  6148. const float v = *(float *) src1->data;
  6149. const int ith = params->ith;
  6150. const int nth = params->nth;
  6151. const int nr = ggml_nrows(src0);
  6152. GGML_TENSOR_UNARY_OP_LOCALS
  6153. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6154. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6155. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6156. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6157. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6158. // rows per thread
  6159. const int dr = (nr + nth - 1)/nth;
  6160. // row range for this thread
  6161. const int ir0 = dr*ith;
  6162. const int ir1 = MIN(ir0 + dr, nr);
  6163. for (int ir = ir0; ir < ir1; ++ir) {
  6164. // src0 and dst are same shape => same indices
  6165. const int i3 = ir/(ne2*ne1);
  6166. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6167. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6168. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6169. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6170. for (int i = 0; i < ne0; i++) {
  6171. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6172. }
  6173. }
  6174. }
  6175. static void ggml_compute_forward_add1_f16_f16(
  6176. const struct ggml_compute_params * params,
  6177. const struct ggml_tensor * src0,
  6178. const struct ggml_tensor * src1,
  6179. struct ggml_tensor * dst) {
  6180. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6181. GGML_ASSERT(ggml_is_scalar(src1));
  6182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6183. return;
  6184. }
  6185. // scalar to add
  6186. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6187. const int ith = params->ith;
  6188. const int nth = params->nth;
  6189. const int nr = ggml_nrows(src0);
  6190. GGML_TENSOR_UNARY_OP_LOCALS
  6191. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6192. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6193. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6194. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6195. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6196. // rows per thread
  6197. const int dr = (nr + nth - 1)/nth;
  6198. // row range for this thread
  6199. const int ir0 = dr*ith;
  6200. const int ir1 = MIN(ir0 + dr, nr);
  6201. for (int ir = ir0; ir < ir1; ++ir) {
  6202. // src0 and dst are same shape => same indices
  6203. const int i3 = ir/(ne2*ne1);
  6204. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6205. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6206. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6207. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6208. for (int i = 0; i < ne0; i++) {
  6209. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6210. }
  6211. }
  6212. }
  6213. static void ggml_compute_forward_add1_q_f32(
  6214. const struct ggml_compute_params * params,
  6215. const struct ggml_tensor * src0,
  6216. const struct ggml_tensor * src1,
  6217. struct ggml_tensor * dst) {
  6218. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6219. GGML_ASSERT(ggml_is_scalar(src1));
  6220. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6221. return;
  6222. }
  6223. // scalar to add
  6224. const float v = *(float *) src1->data;
  6225. const int ith = params->ith;
  6226. const int nth = params->nth;
  6227. const int nr = ggml_nrows(src0);
  6228. GGML_TENSOR_UNARY_OP_LOCALS
  6229. const enum ggml_type type = src0->type;
  6230. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6231. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6232. // we don't support permuted src0
  6233. GGML_ASSERT(nb00 == ggml_type_size(type));
  6234. // dst cannot be transposed or permuted
  6235. GGML_ASSERT(nb0 <= nb1);
  6236. GGML_ASSERT(nb1 <= nb2);
  6237. GGML_ASSERT(nb2 <= nb3);
  6238. GGML_ASSERT(ggml_is_quantized(src0->type));
  6239. GGML_ASSERT(dst->type == src0->type);
  6240. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6241. // rows per thread
  6242. const int dr = (nr + nth - 1)/nth;
  6243. // row range for this thread
  6244. const int ir0 = dr*ith;
  6245. const int ir1 = MIN(ir0 + dr, nr);
  6246. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6247. for (int ir = ir0; ir < ir1; ++ir) {
  6248. // src0 and dst are same shape => same indices
  6249. const int i3 = ir/(ne2*ne1);
  6250. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6251. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6252. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6253. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6254. assert(ne0 % 32 == 0);
  6255. // unquantize row from src0 to temp buffer
  6256. dequantize_row_q(src0_row, wdata, ne0);
  6257. // add src1
  6258. ggml_vec_acc1_f32(ne0, wdata, v);
  6259. // quantize row to dst
  6260. quantize_row_q(wdata, dst_row, ne0);
  6261. }
  6262. }
  6263. static void ggml_compute_forward_add1(
  6264. const struct ggml_compute_params * params,
  6265. const struct ggml_tensor * src0,
  6266. const struct ggml_tensor * src1,
  6267. struct ggml_tensor * dst) {
  6268. switch (src0->type) {
  6269. case GGML_TYPE_F32:
  6270. {
  6271. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6272. } break;
  6273. case GGML_TYPE_F16:
  6274. {
  6275. if (src1->type == GGML_TYPE_F16) {
  6276. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6277. }
  6278. else if (src1->type == GGML_TYPE_F32) {
  6279. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6280. }
  6281. else {
  6282. GGML_ASSERT(false);
  6283. }
  6284. } break;
  6285. case GGML_TYPE_Q4_0:
  6286. case GGML_TYPE_Q4_1:
  6287. case GGML_TYPE_Q5_0:
  6288. case GGML_TYPE_Q5_1:
  6289. case GGML_TYPE_Q8_0:
  6290. case GGML_TYPE_Q8_1:
  6291. case GGML_TYPE_Q2_K:
  6292. case GGML_TYPE_Q3_K:
  6293. case GGML_TYPE_Q4_K:
  6294. case GGML_TYPE_Q5_K:
  6295. case GGML_TYPE_Q6_K:
  6296. case GGML_TYPE_IQ2_XXS:
  6297. {
  6298. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6299. } break;
  6300. default:
  6301. {
  6302. GGML_ASSERT(false);
  6303. } break;
  6304. }
  6305. }
  6306. // ggml_compute_forward_acc
  6307. static void ggml_compute_forward_acc_f32(
  6308. const struct ggml_compute_params * params,
  6309. const struct ggml_tensor * src0,
  6310. const struct ggml_tensor * src1,
  6311. struct ggml_tensor * dst) {
  6312. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6313. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6314. // view src0 and dst with these strides and data offset inbytes during acc
  6315. // nb0 is implicitly element_size because src0 and dst are contiguous
  6316. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6317. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6318. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6319. size_t offset = ((int32_t *) dst->op_params)[3];
  6320. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6321. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6322. // memcpy needs to be synchronized across threads to avoid race conditions.
  6323. // => do it in INIT phase
  6324. memcpy(
  6325. ((char *) dst->data),
  6326. ((char *) src0->data),
  6327. ggml_nbytes(dst));
  6328. }
  6329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6330. return;
  6331. }
  6332. const int ith = params->ith;
  6333. const int nth = params->nth;
  6334. const int nr = ggml_nrows(src1);
  6335. const int nc = src1->ne[0];
  6336. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6337. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6338. // src0 and dst as viewed during acc
  6339. const size_t nb0 = ggml_element_size(src0);
  6340. const size_t nb00 = nb0;
  6341. const size_t nb01 = nb1;
  6342. const size_t nb02 = nb2;
  6343. const size_t nb03 = nb3;
  6344. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6345. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6346. GGML_ASSERT(nb10 == sizeof(float));
  6347. // rows per thread
  6348. const int dr = (nr + nth - 1)/nth;
  6349. // row range for this thread
  6350. const int ir0 = dr*ith;
  6351. const int ir1 = MIN(ir0 + dr, nr);
  6352. for (int ir = ir0; ir < ir1; ++ir) {
  6353. // src0 and dst are viewed with shape of src1 and offset
  6354. // => same indices
  6355. const int i3 = ir/(ne12*ne11);
  6356. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6357. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6358. #ifdef GGML_USE_ACCELERATE
  6359. vDSP_vadd(
  6360. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6361. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6362. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6363. #else
  6364. ggml_vec_add_f32(nc,
  6365. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6366. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6367. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6368. #endif
  6369. }
  6370. }
  6371. static void ggml_compute_forward_acc(
  6372. const struct ggml_compute_params * params,
  6373. const struct ggml_tensor * src0,
  6374. const struct ggml_tensor * src1,
  6375. struct ggml_tensor * dst) {
  6376. switch (src0->type) {
  6377. case GGML_TYPE_F32:
  6378. {
  6379. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6380. } break;
  6381. case GGML_TYPE_F16:
  6382. case GGML_TYPE_Q4_0:
  6383. case GGML_TYPE_Q4_1:
  6384. case GGML_TYPE_Q5_0:
  6385. case GGML_TYPE_Q5_1:
  6386. case GGML_TYPE_Q8_0:
  6387. case GGML_TYPE_Q8_1:
  6388. case GGML_TYPE_Q2_K:
  6389. case GGML_TYPE_Q3_K:
  6390. case GGML_TYPE_Q4_K:
  6391. case GGML_TYPE_Q5_K:
  6392. case GGML_TYPE_Q6_K:
  6393. case GGML_TYPE_IQ2_XXS:
  6394. default:
  6395. {
  6396. GGML_ASSERT(false);
  6397. } break;
  6398. }
  6399. }
  6400. // ggml_compute_forward_sub
  6401. static void ggml_compute_forward_sub_f32(
  6402. const struct ggml_compute_params * params,
  6403. const struct ggml_tensor * src0,
  6404. const struct ggml_tensor * src1,
  6405. struct ggml_tensor * dst) {
  6406. assert(params->ith == 0);
  6407. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6408. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6409. return;
  6410. }
  6411. const int nr = ggml_nrows(src0);
  6412. GGML_TENSOR_BINARY_OP_LOCALS
  6413. GGML_ASSERT( nb0 == sizeof(float));
  6414. GGML_ASSERT(nb00 == sizeof(float));
  6415. if (nb10 == sizeof(float)) {
  6416. for (int ir = 0; ir < nr; ++ir) {
  6417. // src0, src1 and dst are same shape => same indices
  6418. const int i3 = ir/(ne2*ne1);
  6419. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6420. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6421. #ifdef GGML_USE_ACCELERATE
  6422. vDSP_vsub(
  6423. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6424. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6425. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6426. ne0);
  6427. #else
  6428. ggml_vec_sub_f32(ne0,
  6429. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6430. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6431. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6432. #endif
  6433. // }
  6434. // }
  6435. }
  6436. } else {
  6437. // src1 is not contiguous
  6438. for (int ir = 0; ir < nr; ++ir) {
  6439. // src0, src1 and dst are same shape => same indices
  6440. const int i3 = ir/(ne2*ne1);
  6441. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6442. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6443. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6444. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6445. for (int i0 = 0; i0 < ne0; i0++) {
  6446. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6447. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6448. }
  6449. }
  6450. }
  6451. }
  6452. static void ggml_compute_forward_sub(
  6453. const struct ggml_compute_params * params,
  6454. const struct ggml_tensor * src0,
  6455. const struct ggml_tensor * src1,
  6456. struct ggml_tensor * dst) {
  6457. switch (src0->type) {
  6458. case GGML_TYPE_F32:
  6459. {
  6460. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6461. } break;
  6462. default:
  6463. {
  6464. GGML_ASSERT(false);
  6465. } break;
  6466. }
  6467. }
  6468. // ggml_compute_forward_mul
  6469. static void ggml_compute_forward_mul_f32(
  6470. const struct ggml_compute_params * params,
  6471. const struct ggml_tensor * src0,
  6472. const struct ggml_tensor * src1,
  6473. struct ggml_tensor * dst) {
  6474. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6475. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6476. return;
  6477. }
  6478. const int ith = params->ith;
  6479. const int nth = params->nth;
  6480. #ifdef GGML_USE_CLBLAST
  6481. if (src1->backend == GGML_BACKEND_GPU) {
  6482. // TODO: OpenCL kernel support full broadcast
  6483. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6484. if (ith == 0) {
  6485. ggml_cl_mul(src0, src1, dst);
  6486. }
  6487. return;
  6488. }
  6489. #endif
  6490. const int64_t nr = ggml_nrows(src0);
  6491. GGML_TENSOR_BINARY_OP_LOCALS
  6492. GGML_ASSERT( nb0 == sizeof(float));
  6493. GGML_ASSERT(nb00 == sizeof(float));
  6494. if (nb10 == sizeof(float)) {
  6495. for (int64_t ir = ith; ir < nr; ir += nth) {
  6496. // src0 and dst are same shape => same indices
  6497. const int64_t i03 = ir/(ne02*ne01);
  6498. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6499. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6500. const int64_t i13 = i03 % ne13;
  6501. const int64_t i12 = i02 % ne12;
  6502. const int64_t i11 = i01 % ne11;
  6503. const int64_t nr0 = ne00 / ne10;
  6504. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6505. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6506. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6507. for (int64_t r = 0 ; r < nr0; ++r) {
  6508. #ifdef GGML_USE_ACCELERATE
  6509. UNUSED(ggml_vec_mul_f32);
  6510. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6511. #else
  6512. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6513. #endif
  6514. }
  6515. }
  6516. } else {
  6517. // src1 is not contiguous
  6518. for (int64_t ir = ith; ir < nr; ir += nth) {
  6519. // src0 and dst are same shape => same indices
  6520. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6521. const int64_t i03 = ir/(ne02*ne01);
  6522. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6523. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6524. const int64_t i13 = i03 % ne13;
  6525. const int64_t i12 = i02 % ne12;
  6526. const int64_t i11 = i01 % ne11;
  6527. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6528. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6529. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6530. const int64_t i10 = i0 % ne10;
  6531. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6532. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6533. }
  6534. }
  6535. }
  6536. }
  6537. static void ggml_compute_forward_mul(
  6538. const struct ggml_compute_params * params,
  6539. const struct ggml_tensor * src0,
  6540. const struct ggml_tensor * src1,
  6541. struct ggml_tensor * dst) {
  6542. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6543. switch (src0->type) {
  6544. case GGML_TYPE_F32:
  6545. {
  6546. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6547. } break;
  6548. default:
  6549. {
  6550. GGML_ASSERT(false);
  6551. } break;
  6552. }
  6553. }
  6554. // ggml_compute_forward_div
  6555. static void ggml_compute_forward_div_f32(
  6556. const struct ggml_compute_params * params,
  6557. const struct ggml_tensor * src0,
  6558. const struct ggml_tensor * src1,
  6559. struct ggml_tensor * dst) {
  6560. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6561. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6562. return;
  6563. }
  6564. const int ith = params->ith;
  6565. const int nth = params->nth;
  6566. const int64_t nr = ggml_nrows(src0);
  6567. GGML_TENSOR_BINARY_OP_LOCALS
  6568. GGML_ASSERT( nb0 == sizeof(float));
  6569. GGML_ASSERT(nb00 == sizeof(float));
  6570. if (nb10 == sizeof(float)) {
  6571. for (int64_t ir = ith; ir < nr; ir += nth) {
  6572. // src0 and dst are same shape => same indices
  6573. const int64_t i03 = ir/(ne02*ne01);
  6574. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6575. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6576. const int64_t i13 = i03 % ne13;
  6577. const int64_t i12 = i02 % ne12;
  6578. const int64_t i11 = i01 % ne11;
  6579. const int64_t nr0 = ne00 / ne10;
  6580. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6581. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6582. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6583. for (int64_t r = 0; r < nr0; ++r) {
  6584. #ifdef GGML_USE_ACCELERATE
  6585. UNUSED(ggml_vec_div_f32);
  6586. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6587. #else
  6588. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6589. #endif
  6590. }
  6591. }
  6592. } else {
  6593. // src1 is not contiguous
  6594. for (int64_t ir = ith; ir < nr; ir += nth) {
  6595. // src0 and dst are same shape => same indices
  6596. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6597. const int64_t i03 = ir/(ne02*ne01);
  6598. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6599. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6600. const int64_t i13 = i03 % ne13;
  6601. const int64_t i12 = i02 % ne12;
  6602. const int64_t i11 = i01 % ne11;
  6603. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6604. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6605. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6606. const int64_t i10 = i0 % ne10;
  6607. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6608. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6609. }
  6610. }
  6611. }
  6612. }
  6613. static void ggml_compute_forward_div(
  6614. const struct ggml_compute_params * params,
  6615. const struct ggml_tensor * src0,
  6616. const struct ggml_tensor * src1,
  6617. struct ggml_tensor * dst) {
  6618. switch (src0->type) {
  6619. case GGML_TYPE_F32:
  6620. {
  6621. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6622. } break;
  6623. default:
  6624. {
  6625. GGML_ASSERT(false);
  6626. } break;
  6627. }
  6628. }
  6629. // ggml_compute_forward_sqr
  6630. static void ggml_compute_forward_sqr_f32(
  6631. const struct ggml_compute_params * params,
  6632. const struct ggml_tensor * src0,
  6633. struct ggml_tensor * dst) {
  6634. assert(params->ith == 0);
  6635. assert(ggml_are_same_shape(src0, dst));
  6636. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6637. return;
  6638. }
  6639. const int n = ggml_nrows(src0);
  6640. const int nc = src0->ne[0];
  6641. assert( dst->nb[0] == sizeof(float));
  6642. assert(src0->nb[0] == sizeof(float));
  6643. for (int i = 0; i < n; i++) {
  6644. ggml_vec_sqr_f32(nc,
  6645. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6646. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6647. }
  6648. }
  6649. static void ggml_compute_forward_sqr(
  6650. const struct ggml_compute_params * params,
  6651. const struct ggml_tensor * src0,
  6652. struct ggml_tensor * dst) {
  6653. switch (src0->type) {
  6654. case GGML_TYPE_F32:
  6655. {
  6656. ggml_compute_forward_sqr_f32(params, src0, dst);
  6657. } break;
  6658. default:
  6659. {
  6660. GGML_ASSERT(false);
  6661. } break;
  6662. }
  6663. }
  6664. // ggml_compute_forward_sqrt
  6665. static void ggml_compute_forward_sqrt_f32(
  6666. const struct ggml_compute_params * params,
  6667. const struct ggml_tensor * src0,
  6668. struct ggml_tensor * dst) {
  6669. assert(params->ith == 0);
  6670. assert(ggml_are_same_shape(src0, dst));
  6671. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6672. return;
  6673. }
  6674. const int n = ggml_nrows(src0);
  6675. const int nc = src0->ne[0];
  6676. assert( dst->nb[0] == sizeof(float));
  6677. assert(src0->nb[0] == sizeof(float));
  6678. for (int i = 0; i < n; i++) {
  6679. ggml_vec_sqrt_f32(nc,
  6680. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6681. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6682. }
  6683. }
  6684. static void ggml_compute_forward_sqrt(
  6685. const struct ggml_compute_params * params,
  6686. const struct ggml_tensor * src0,
  6687. struct ggml_tensor * dst) {
  6688. switch (src0->type) {
  6689. case GGML_TYPE_F32:
  6690. {
  6691. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6692. } break;
  6693. default:
  6694. {
  6695. GGML_ASSERT(false);
  6696. } break;
  6697. }
  6698. }
  6699. // ggml_compute_forward_log
  6700. static void ggml_compute_forward_log_f32(
  6701. const struct ggml_compute_params * params,
  6702. const struct ggml_tensor * src0,
  6703. struct ggml_tensor * dst) {
  6704. GGML_ASSERT(params->ith == 0);
  6705. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6706. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6707. return;
  6708. }
  6709. const int n = ggml_nrows(src0);
  6710. const int nc = src0->ne[0];
  6711. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6712. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6713. for (int i = 0; i < n; i++) {
  6714. ggml_vec_log_f32(nc,
  6715. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6716. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6717. }
  6718. }
  6719. static void ggml_compute_forward_log(
  6720. const struct ggml_compute_params * params,
  6721. const struct ggml_tensor * src0,
  6722. struct ggml_tensor * dst) {
  6723. switch (src0->type) {
  6724. case GGML_TYPE_F32:
  6725. {
  6726. ggml_compute_forward_log_f32(params, src0, dst);
  6727. } break;
  6728. default:
  6729. {
  6730. GGML_ASSERT(false);
  6731. } break;
  6732. }
  6733. }
  6734. // ggml_compute_forward_sum
  6735. static void ggml_compute_forward_sum_f32(
  6736. const struct ggml_compute_params * params,
  6737. const struct ggml_tensor * src0,
  6738. struct ggml_tensor * dst) {
  6739. assert(params->ith == 0);
  6740. assert(ggml_is_scalar(dst));
  6741. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6742. return;
  6743. }
  6744. assert(ggml_is_scalar(dst));
  6745. assert(src0->nb[0] == sizeof(float));
  6746. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6747. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6748. ggml_float sum = 0;
  6749. ggml_float row_sum = 0;
  6750. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6751. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6752. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6753. ggml_vec_sum_f32_ggf(ne00,
  6754. &row_sum,
  6755. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6756. sum += row_sum;
  6757. }
  6758. }
  6759. }
  6760. ((float *) dst->data)[0] = sum;
  6761. }
  6762. static void ggml_compute_forward_sum_f16(
  6763. const struct ggml_compute_params * params,
  6764. const struct ggml_tensor * src0,
  6765. struct ggml_tensor * dst) {
  6766. assert(params->ith == 0);
  6767. assert(ggml_is_scalar(dst));
  6768. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6769. return;
  6770. }
  6771. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6772. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6773. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6774. float sum = 0;
  6775. float row_sum = 0;
  6776. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6777. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6778. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6779. ggml_vec_sum_f16_ggf(ne00,
  6780. &row_sum,
  6781. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6782. sum += row_sum;
  6783. }
  6784. }
  6785. }
  6786. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6787. }
  6788. static void ggml_compute_forward_sum(
  6789. const struct ggml_compute_params * params,
  6790. const struct ggml_tensor * src0,
  6791. struct ggml_tensor * dst) {
  6792. switch (src0->type) {
  6793. case GGML_TYPE_F32:
  6794. {
  6795. ggml_compute_forward_sum_f32(params, src0, dst);
  6796. } break;
  6797. case GGML_TYPE_F16:
  6798. {
  6799. ggml_compute_forward_sum_f16(params, src0, dst);
  6800. } break;
  6801. default:
  6802. {
  6803. GGML_ASSERT(false);
  6804. } break;
  6805. }
  6806. }
  6807. // ggml_compute_forward_sum_rows
  6808. static void ggml_compute_forward_sum_rows_f32(
  6809. const struct ggml_compute_params * params,
  6810. const struct ggml_tensor * src0,
  6811. struct ggml_tensor * dst) {
  6812. GGML_ASSERT(params->ith == 0);
  6813. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6814. return;
  6815. }
  6816. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6817. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6818. GGML_TENSOR_UNARY_OP_LOCALS
  6819. GGML_ASSERT(ne0 == 1);
  6820. GGML_ASSERT(ne1 == ne01);
  6821. GGML_ASSERT(ne2 == ne02);
  6822. GGML_ASSERT(ne3 == ne03);
  6823. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6824. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6825. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6826. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6827. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6828. float row_sum = 0;
  6829. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6830. dst_row[0] = row_sum;
  6831. }
  6832. }
  6833. }
  6834. }
  6835. static void ggml_compute_forward_sum_rows(
  6836. const struct ggml_compute_params * params,
  6837. const struct ggml_tensor * src0,
  6838. struct ggml_tensor * dst) {
  6839. switch (src0->type) {
  6840. case GGML_TYPE_F32:
  6841. {
  6842. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6843. } break;
  6844. default:
  6845. {
  6846. GGML_ASSERT(false);
  6847. } break;
  6848. }
  6849. }
  6850. // ggml_compute_forward_mean
  6851. static void ggml_compute_forward_mean_f32(
  6852. const struct ggml_compute_params * params,
  6853. const struct ggml_tensor * src0,
  6854. struct ggml_tensor * dst) {
  6855. assert(params->ith == 0);
  6856. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6857. return;
  6858. }
  6859. assert(src0->nb[0] == sizeof(float));
  6860. GGML_TENSOR_UNARY_OP_LOCALS
  6861. assert(ne0 == 1);
  6862. assert(ne1 == ne01);
  6863. assert(ne2 == ne02);
  6864. assert(ne3 == ne03);
  6865. UNUSED(ne0);
  6866. UNUSED(ne1);
  6867. UNUSED(ne2);
  6868. UNUSED(ne3);
  6869. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6870. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6871. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6872. ggml_vec_sum_f32(ne00,
  6873. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6874. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6875. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6876. }
  6877. }
  6878. }
  6879. }
  6880. static void ggml_compute_forward_mean(
  6881. const struct ggml_compute_params * params,
  6882. const struct ggml_tensor * src0,
  6883. struct ggml_tensor * dst) {
  6884. switch (src0->type) {
  6885. case GGML_TYPE_F32:
  6886. {
  6887. ggml_compute_forward_mean_f32(params, src0, dst);
  6888. } break;
  6889. default:
  6890. {
  6891. GGML_ASSERT(false);
  6892. } break;
  6893. }
  6894. }
  6895. // ggml_compute_forward_argmax
  6896. static void ggml_compute_forward_argmax_f32(
  6897. const struct ggml_compute_params * params,
  6898. const struct ggml_tensor * src0,
  6899. struct ggml_tensor * dst) {
  6900. assert(params->ith == 0);
  6901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6902. return;
  6903. }
  6904. assert(src0->nb[0] == sizeof(float));
  6905. assert(dst->nb[0] == sizeof(float));
  6906. const int64_t ne00 = src0->ne[0];
  6907. const int64_t ne01 = src0->ne[1];
  6908. const size_t nb01 = src0->nb[1];
  6909. const size_t nb0 = dst->nb[0];
  6910. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6911. float * src = (float *) ((char *) src0->data + i1*nb01);
  6912. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6913. int v = 0;
  6914. ggml_vec_argmax_f32(ne00, &v, src);
  6915. dst_[0] = v;
  6916. }
  6917. }
  6918. static void ggml_compute_forward_argmax(
  6919. const struct ggml_compute_params * params,
  6920. const struct ggml_tensor * src0,
  6921. struct ggml_tensor * dst) {
  6922. switch (src0->type) {
  6923. case GGML_TYPE_F32:
  6924. {
  6925. ggml_compute_forward_argmax_f32(params, src0, dst);
  6926. } break;
  6927. default:
  6928. {
  6929. GGML_ASSERT(false);
  6930. } break;
  6931. }
  6932. }
  6933. // ggml_compute_forward_repeat
  6934. static void ggml_compute_forward_repeat_f32(
  6935. const struct ggml_compute_params * params,
  6936. const struct ggml_tensor * src0,
  6937. struct ggml_tensor * dst) {
  6938. GGML_ASSERT(params->ith == 0);
  6939. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6940. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6941. return;
  6942. }
  6943. GGML_TENSOR_UNARY_OP_LOCALS
  6944. // guaranteed to be an integer due to the check in ggml_can_repeat
  6945. const int nr0 = (int)(ne0/ne00);
  6946. const int nr1 = (int)(ne1/ne01);
  6947. const int nr2 = (int)(ne2/ne02);
  6948. const int nr3 = (int)(ne3/ne03);
  6949. // TODO: support for transposed / permuted tensors
  6950. GGML_ASSERT(nb0 == sizeof(float));
  6951. GGML_ASSERT(nb00 == sizeof(float));
  6952. // TODO: maybe this is not optimal?
  6953. for (int i3 = 0; i3 < nr3; i3++) {
  6954. for (int k3 = 0; k3 < ne03; k3++) {
  6955. for (int i2 = 0; i2 < nr2; i2++) {
  6956. for (int k2 = 0; k2 < ne02; k2++) {
  6957. for (int i1 = 0; i1 < nr1; i1++) {
  6958. for (int k1 = 0; k1 < ne01; k1++) {
  6959. for (int i0 = 0; i0 < nr0; i0++) {
  6960. ggml_vec_cpy_f32(ne00,
  6961. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6962. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6963. }
  6964. }
  6965. }
  6966. }
  6967. }
  6968. }
  6969. }
  6970. }
  6971. static void ggml_compute_forward_repeat_f16(
  6972. const struct ggml_compute_params * params,
  6973. const struct ggml_tensor * src0,
  6974. struct ggml_tensor * dst) {
  6975. GGML_ASSERT(params->ith == 0);
  6976. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6978. return;
  6979. }
  6980. GGML_TENSOR_UNARY_OP_LOCALS
  6981. // guaranteed to be an integer due to the check in ggml_can_repeat
  6982. const int nr0 = (int)(ne0/ne00);
  6983. const int nr1 = (int)(ne1/ne01);
  6984. const int nr2 = (int)(ne2/ne02);
  6985. const int nr3 = (int)(ne3/ne03);
  6986. // TODO: support for transposed / permuted tensors
  6987. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6988. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6989. // TODO: maybe this is not optimal?
  6990. for (int i3 = 0; i3 < nr3; i3++) {
  6991. for (int k3 = 0; k3 < ne03; k3++) {
  6992. for (int i2 = 0; i2 < nr2; i2++) {
  6993. for (int k2 = 0; k2 < ne02; k2++) {
  6994. for (int i1 = 0; i1 < nr1; i1++) {
  6995. for (int k1 = 0; k1 < ne01; k1++) {
  6996. for (int i0 = 0; i0 < nr0; i0++) {
  6997. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6998. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6999. // ggml_vec_cpy_f16(ne00, y, x)
  7000. for (int i = 0; i < ne00; ++i) {
  7001. y[i] = x[i];
  7002. }
  7003. }
  7004. }
  7005. }
  7006. }
  7007. }
  7008. }
  7009. }
  7010. }
  7011. static void ggml_compute_forward_repeat(
  7012. const struct ggml_compute_params * params,
  7013. const struct ggml_tensor * src0,
  7014. struct ggml_tensor * dst) {
  7015. switch (src0->type) {
  7016. case GGML_TYPE_F16:
  7017. case GGML_TYPE_I16:
  7018. {
  7019. ggml_compute_forward_repeat_f16(params, src0, dst);
  7020. } break;
  7021. case GGML_TYPE_F32:
  7022. case GGML_TYPE_I32:
  7023. {
  7024. ggml_compute_forward_repeat_f32(params, src0, dst);
  7025. } break;
  7026. default:
  7027. {
  7028. GGML_ASSERT(false);
  7029. } break;
  7030. }
  7031. }
  7032. // ggml_compute_forward_repeat_back
  7033. static void ggml_compute_forward_repeat_back_f32(
  7034. const struct ggml_compute_params * params,
  7035. const struct ggml_tensor * src0,
  7036. struct ggml_tensor * dst) {
  7037. GGML_ASSERT(params->ith == 0);
  7038. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7039. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7040. return;
  7041. }
  7042. GGML_TENSOR_UNARY_OP_LOCALS
  7043. // guaranteed to be an integer due to the check in ggml_can_repeat
  7044. const int nr0 = (int)(ne00/ne0);
  7045. const int nr1 = (int)(ne01/ne1);
  7046. const int nr2 = (int)(ne02/ne2);
  7047. const int nr3 = (int)(ne03/ne3);
  7048. // TODO: support for transposed / permuted tensors
  7049. GGML_ASSERT(nb0 == sizeof(float));
  7050. GGML_ASSERT(nb00 == sizeof(float));
  7051. if (ggml_is_contiguous(dst)) {
  7052. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7053. } else {
  7054. for (int k3 = 0; k3 < ne3; k3++) {
  7055. for (int k2 = 0; k2 < ne2; k2++) {
  7056. for (int k1 = 0; k1 < ne1; k1++) {
  7057. ggml_vec_set_f32(ne0,
  7058. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7059. 0);
  7060. }
  7061. }
  7062. }
  7063. }
  7064. // TODO: maybe this is not optimal?
  7065. for (int i3 = 0; i3 < nr3; i3++) {
  7066. for (int k3 = 0; k3 < ne3; k3++) {
  7067. for (int i2 = 0; i2 < nr2; i2++) {
  7068. for (int k2 = 0; k2 < ne2; k2++) {
  7069. for (int i1 = 0; i1 < nr1; i1++) {
  7070. for (int k1 = 0; k1 < ne1; k1++) {
  7071. for (int i0 = 0; i0 < nr0; i0++) {
  7072. ggml_vec_acc_f32(ne0,
  7073. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7074. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7075. }
  7076. }
  7077. }
  7078. }
  7079. }
  7080. }
  7081. }
  7082. }
  7083. static void ggml_compute_forward_repeat_back(
  7084. const struct ggml_compute_params * params,
  7085. const struct ggml_tensor * src0,
  7086. struct ggml_tensor * dst) {
  7087. switch (src0->type) {
  7088. case GGML_TYPE_F32:
  7089. {
  7090. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7091. } break;
  7092. default:
  7093. {
  7094. GGML_ASSERT(false);
  7095. } break;
  7096. }
  7097. }
  7098. // ggml_compute_forward_concat
  7099. static void ggml_compute_forward_concat_f32(
  7100. const struct ggml_compute_params * params,
  7101. const struct ggml_tensor * src0,
  7102. const struct ggml_tensor * src1,
  7103. struct ggml_tensor * dst) {
  7104. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7105. return;
  7106. }
  7107. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7108. const int ith = params->ith;
  7109. const int nth = params->nth;
  7110. GGML_TENSOR_BINARY_OP_LOCALS
  7111. // TODO: support for transposed / permuted tensors
  7112. GGML_ASSERT(nb0 == sizeof(float));
  7113. GGML_ASSERT(nb00 == sizeof(float));
  7114. GGML_ASSERT(nb10 == sizeof(float));
  7115. for (int i3 = 0; i3 < ne3; i3++) {
  7116. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7117. if (i2 < ne02) { // src0
  7118. for (int i1 = 0; i1 < ne1; i1++) {
  7119. for (int i0 = 0; i0 < ne0; i0++) {
  7120. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7121. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7122. *y = *x;
  7123. }
  7124. }
  7125. } // src1
  7126. else {
  7127. for (int i1 = 0; i1 < ne1; i1++) {
  7128. for (int i0 = 0; i0 < ne0; i0++) {
  7129. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7130. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7131. *y = *x;
  7132. }
  7133. }
  7134. }
  7135. }
  7136. }
  7137. }
  7138. static void ggml_compute_forward_concat(
  7139. const struct ggml_compute_params* params,
  7140. const struct ggml_tensor* src0,
  7141. const struct ggml_tensor* src1,
  7142. struct ggml_tensor* dst) {
  7143. switch (src0->type) {
  7144. case GGML_TYPE_F32:
  7145. case GGML_TYPE_I32:
  7146. {
  7147. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7148. } break;
  7149. default:
  7150. {
  7151. GGML_ASSERT(false);
  7152. } break;
  7153. }
  7154. }
  7155. // ggml_compute_forward_abs
  7156. static void ggml_compute_forward_abs_f32(
  7157. const struct ggml_compute_params * params,
  7158. const struct ggml_tensor * src0,
  7159. struct ggml_tensor * dst) {
  7160. assert(params->ith == 0);
  7161. assert(ggml_are_same_shape(src0, dst));
  7162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7163. return;
  7164. }
  7165. const int n = ggml_nrows(src0);
  7166. const int nc = src0->ne[0];
  7167. assert(dst->nb[0] == sizeof(float));
  7168. assert(src0->nb[0] == sizeof(float));
  7169. for (int i = 0; i < n; i++) {
  7170. ggml_vec_abs_f32(nc,
  7171. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7172. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7173. }
  7174. }
  7175. static void ggml_compute_forward_abs(
  7176. const struct ggml_compute_params * params,
  7177. const struct ggml_tensor * src0,
  7178. struct ggml_tensor * dst) {
  7179. switch (src0->type) {
  7180. case GGML_TYPE_F32:
  7181. {
  7182. ggml_compute_forward_abs_f32(params, src0, dst);
  7183. } break;
  7184. default:
  7185. {
  7186. GGML_ASSERT(false);
  7187. } break;
  7188. }
  7189. }
  7190. // ggml_compute_forward_sgn
  7191. static void ggml_compute_forward_sgn_f32(
  7192. const struct ggml_compute_params * params,
  7193. const struct ggml_tensor * src0,
  7194. struct ggml_tensor * dst) {
  7195. assert(params->ith == 0);
  7196. assert(ggml_are_same_shape(src0, dst));
  7197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7198. return;
  7199. }
  7200. const int n = ggml_nrows(src0);
  7201. const int nc = src0->ne[0];
  7202. assert(dst->nb[0] == sizeof(float));
  7203. assert(src0->nb[0] == sizeof(float));
  7204. for (int i = 0; i < n; i++) {
  7205. ggml_vec_sgn_f32(nc,
  7206. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7207. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7208. }
  7209. }
  7210. static void ggml_compute_forward_sgn(
  7211. const struct ggml_compute_params * params,
  7212. const struct ggml_tensor * src0,
  7213. struct ggml_tensor * dst) {
  7214. switch (src0->type) {
  7215. case GGML_TYPE_F32:
  7216. {
  7217. ggml_compute_forward_sgn_f32(params, src0, dst);
  7218. } break;
  7219. default:
  7220. {
  7221. GGML_ASSERT(false);
  7222. } break;
  7223. }
  7224. }
  7225. // ggml_compute_forward_neg
  7226. static void ggml_compute_forward_neg_f32(
  7227. const struct ggml_compute_params * params,
  7228. const struct ggml_tensor * src0,
  7229. struct ggml_tensor * dst) {
  7230. assert(params->ith == 0);
  7231. assert(ggml_are_same_shape(src0, dst));
  7232. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7233. return;
  7234. }
  7235. const int n = ggml_nrows(src0);
  7236. const int nc = src0->ne[0];
  7237. assert(dst->nb[0] == sizeof(float));
  7238. assert(src0->nb[0] == sizeof(float));
  7239. for (int i = 0; i < n; i++) {
  7240. ggml_vec_neg_f32(nc,
  7241. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7242. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7243. }
  7244. }
  7245. static void ggml_compute_forward_neg(
  7246. const struct ggml_compute_params * params,
  7247. const struct ggml_tensor * src0,
  7248. struct ggml_tensor * dst) {
  7249. switch (src0->type) {
  7250. case GGML_TYPE_F32:
  7251. {
  7252. ggml_compute_forward_neg_f32(params, src0, dst);
  7253. } break;
  7254. default:
  7255. {
  7256. GGML_ASSERT(false);
  7257. } break;
  7258. }
  7259. }
  7260. // ggml_compute_forward_step
  7261. static void ggml_compute_forward_step_f32(
  7262. const struct ggml_compute_params * params,
  7263. const struct ggml_tensor * src0,
  7264. struct ggml_tensor * dst) {
  7265. assert(params->ith == 0);
  7266. assert(ggml_are_same_shape(src0, dst));
  7267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7268. return;
  7269. }
  7270. const int n = ggml_nrows(src0);
  7271. const int nc = src0->ne[0];
  7272. assert(dst->nb[0] == sizeof(float));
  7273. assert(src0->nb[0] == sizeof(float));
  7274. for (int i = 0; i < n; i++) {
  7275. ggml_vec_step_f32(nc,
  7276. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7277. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7278. }
  7279. }
  7280. static void ggml_compute_forward_step(
  7281. const struct ggml_compute_params * params,
  7282. const struct ggml_tensor * src0,
  7283. struct ggml_tensor * dst) {
  7284. switch (src0->type) {
  7285. case GGML_TYPE_F32:
  7286. {
  7287. ggml_compute_forward_step_f32(params, src0, dst);
  7288. } break;
  7289. default:
  7290. {
  7291. GGML_ASSERT(false);
  7292. } break;
  7293. }
  7294. }
  7295. // ggml_compute_forward_tanh
  7296. static void ggml_compute_forward_tanh_f32(
  7297. const struct ggml_compute_params * params,
  7298. const struct ggml_tensor * src0,
  7299. struct ggml_tensor * dst) {
  7300. assert(params->ith == 0);
  7301. assert(ggml_are_same_shape(src0, dst));
  7302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7303. return;
  7304. }
  7305. const int n = ggml_nrows(src0);
  7306. const int nc = src0->ne[0];
  7307. assert(dst->nb[0] == sizeof(float));
  7308. assert(src0->nb[0] == sizeof(float));
  7309. for (int i = 0; i < n; i++) {
  7310. ggml_vec_tanh_f32(nc,
  7311. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7312. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7313. }
  7314. }
  7315. static void ggml_compute_forward_tanh(
  7316. const struct ggml_compute_params * params,
  7317. const struct ggml_tensor * src0,
  7318. struct ggml_tensor * dst) {
  7319. switch (src0->type) {
  7320. case GGML_TYPE_F32:
  7321. {
  7322. ggml_compute_forward_tanh_f32(params, src0, dst);
  7323. } break;
  7324. default:
  7325. {
  7326. GGML_ASSERT(false);
  7327. } break;
  7328. }
  7329. }
  7330. // ggml_compute_forward_elu
  7331. static void ggml_compute_forward_elu_f32(
  7332. const struct ggml_compute_params * params,
  7333. const struct ggml_tensor * src0,
  7334. struct ggml_tensor * dst) {
  7335. assert(params->ith == 0);
  7336. assert(ggml_are_same_shape(src0, dst));
  7337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7338. return;
  7339. }
  7340. const int n = ggml_nrows(src0);
  7341. const int nc = src0->ne[0];
  7342. assert(dst->nb[0] == sizeof(float));
  7343. assert(src0->nb[0] == sizeof(float));
  7344. for (int i = 0; i < n; i++) {
  7345. ggml_vec_elu_f32(nc,
  7346. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7347. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7348. }
  7349. }
  7350. static void ggml_compute_forward_elu(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. struct ggml_tensor * dst) {
  7354. switch (src0->type) {
  7355. case GGML_TYPE_F32:
  7356. {
  7357. ggml_compute_forward_elu_f32(params, src0, dst);
  7358. } break;
  7359. default:
  7360. {
  7361. GGML_ASSERT(false);
  7362. } break;
  7363. }
  7364. }
  7365. // ggml_compute_forward_relu
  7366. static void ggml_compute_forward_relu_f32(
  7367. const struct ggml_compute_params * params,
  7368. const struct ggml_tensor * src0,
  7369. struct ggml_tensor * dst) {
  7370. assert(params->ith == 0);
  7371. assert(ggml_are_same_shape(src0, dst));
  7372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7373. return;
  7374. }
  7375. const int n = ggml_nrows(src0);
  7376. const int nc = src0->ne[0];
  7377. assert(dst->nb[0] == sizeof(float));
  7378. assert(src0->nb[0] == sizeof(float));
  7379. for (int i = 0; i < n; i++) {
  7380. ggml_vec_relu_f32(nc,
  7381. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7382. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7383. }
  7384. }
  7385. static void ggml_compute_forward_relu(
  7386. const struct ggml_compute_params * params,
  7387. const struct ggml_tensor * src0,
  7388. struct ggml_tensor * dst) {
  7389. switch (src0->type) {
  7390. case GGML_TYPE_F32:
  7391. {
  7392. ggml_compute_forward_relu_f32(params, src0, dst);
  7393. } break;
  7394. default:
  7395. {
  7396. GGML_ASSERT(false);
  7397. } break;
  7398. }
  7399. }
  7400. // ggml_compute_forward_gelu
  7401. static void ggml_compute_forward_gelu_f32(
  7402. const struct ggml_compute_params * params,
  7403. const struct ggml_tensor * src0,
  7404. struct ggml_tensor * dst) {
  7405. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7406. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7407. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7408. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7409. return;
  7410. }
  7411. const int ith = params->ith;
  7412. const int nth = params->nth;
  7413. const int nc = src0->ne[0];
  7414. const int nr = ggml_nrows(src0);
  7415. // rows per thread
  7416. const int dr = (nr + nth - 1)/nth;
  7417. // row range for this thread
  7418. const int ir0 = dr*ith;
  7419. const int ir1 = MIN(ir0 + dr, nr);
  7420. for (int i1 = ir0; i1 < ir1; i1++) {
  7421. ggml_vec_gelu_f32(nc,
  7422. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7423. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7424. #ifndef NDEBUG
  7425. for (int k = 0; k < nc; k++) {
  7426. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7427. UNUSED(x);
  7428. assert(!isnan(x));
  7429. assert(!isinf(x));
  7430. }
  7431. #endif
  7432. }
  7433. }
  7434. static void ggml_compute_forward_gelu(
  7435. const struct ggml_compute_params * params,
  7436. const struct ggml_tensor * src0,
  7437. struct ggml_tensor * dst) {
  7438. switch (src0->type) {
  7439. case GGML_TYPE_F32:
  7440. {
  7441. ggml_compute_forward_gelu_f32(params, src0, dst);
  7442. } break;
  7443. default:
  7444. {
  7445. GGML_ASSERT(false);
  7446. } break;
  7447. }
  7448. }
  7449. // ggml_compute_forward_gelu_quick
  7450. static void ggml_compute_forward_gelu_quick_f32(
  7451. const struct ggml_compute_params * params,
  7452. const struct ggml_tensor * src0,
  7453. struct ggml_tensor * dst) {
  7454. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7455. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7456. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7457. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7458. return;
  7459. }
  7460. const int ith = params->ith;
  7461. const int nth = params->nth;
  7462. const int nc = src0->ne[0];
  7463. const int nr = ggml_nrows(src0);
  7464. // rows per thread
  7465. const int dr = (nr + nth - 1)/nth;
  7466. // row range for this thread
  7467. const int ir0 = dr*ith;
  7468. const int ir1 = MIN(ir0 + dr, nr);
  7469. for (int i1 = ir0; i1 < ir1; i1++) {
  7470. ggml_vec_gelu_quick_f32(nc,
  7471. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7472. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7473. #ifndef NDEBUG
  7474. for (int k = 0; k < nc; k++) {
  7475. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7476. UNUSED(x);
  7477. assert(!isnan(x));
  7478. assert(!isinf(x));
  7479. }
  7480. #endif
  7481. }
  7482. }
  7483. static void ggml_compute_forward_gelu_quick(
  7484. const struct ggml_compute_params * params,
  7485. const struct ggml_tensor * src0,
  7486. struct ggml_tensor * dst) {
  7487. switch (src0->type) {
  7488. case GGML_TYPE_F32:
  7489. {
  7490. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7491. } break;
  7492. default:
  7493. {
  7494. GGML_ASSERT(false);
  7495. } break;
  7496. }
  7497. }
  7498. // ggml_compute_forward_silu
  7499. static void ggml_compute_forward_silu_f32(
  7500. const struct ggml_compute_params * params,
  7501. const struct ggml_tensor * src0,
  7502. struct ggml_tensor * dst) {
  7503. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7504. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7505. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7506. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7507. return;
  7508. }
  7509. const int ith = params->ith;
  7510. const int nth = params->nth;
  7511. const int nc = src0->ne[0];
  7512. const int nr = ggml_nrows(src0);
  7513. // rows per thread
  7514. const int dr = (nr + nth - 1)/nth;
  7515. // row range for this thread
  7516. const int ir0 = dr*ith;
  7517. const int ir1 = MIN(ir0 + dr, nr);
  7518. for (int i1 = ir0; i1 < ir1; i1++) {
  7519. ggml_vec_silu_f32(nc,
  7520. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7521. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7522. #ifndef NDEBUG
  7523. for (int k = 0; k < nc; k++) {
  7524. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7525. UNUSED(x);
  7526. assert(!isnan(x));
  7527. assert(!isinf(x));
  7528. }
  7529. #endif
  7530. }
  7531. }
  7532. static void ggml_compute_forward_silu(
  7533. const struct ggml_compute_params * params,
  7534. const struct ggml_tensor * src0,
  7535. struct ggml_tensor * dst) {
  7536. switch (src0->type) {
  7537. case GGML_TYPE_F32:
  7538. {
  7539. ggml_compute_forward_silu_f32(params, src0, dst);
  7540. } break;
  7541. default:
  7542. {
  7543. GGML_ASSERT(false);
  7544. } break;
  7545. }
  7546. }
  7547. // ggml_compute_forward_leaky_relu
  7548. static void ggml_compute_forward_leaky_relu_f32(
  7549. const struct ggml_compute_params * params,
  7550. const struct ggml_tensor * src0,
  7551. struct ggml_tensor * dst) {
  7552. assert(params->ith == 0);
  7553. assert(ggml_are_same_shape(src0, dst));
  7554. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7555. return;
  7556. }
  7557. const int n = ggml_nrows(src0);
  7558. const int nc = src0->ne[0];
  7559. float negative_slope;
  7560. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7561. assert(dst->nb[0] == sizeof(float));
  7562. assert(src0->nb[0] == sizeof(float));
  7563. for (int i = 0; i < n; i++) {
  7564. ggml_vec_leaky_relu_f32(nc,
  7565. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7566. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7567. }
  7568. }
  7569. static void ggml_compute_forward_leaky_relu(
  7570. const struct ggml_compute_params * params,
  7571. const struct ggml_tensor * src0,
  7572. struct ggml_tensor * dst) {
  7573. switch (src0->type) {
  7574. case GGML_TYPE_F32:
  7575. {
  7576. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7577. } break;
  7578. default:
  7579. {
  7580. GGML_ASSERT(false);
  7581. } break;
  7582. }
  7583. }
  7584. // ggml_compute_forward_silu_back
  7585. static void ggml_compute_forward_silu_back_f32(
  7586. const struct ggml_compute_params * params,
  7587. const struct ggml_tensor * src0,
  7588. const struct ggml_tensor * grad,
  7589. struct ggml_tensor * dst) {
  7590. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7591. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7592. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7593. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7594. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7595. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7596. return;
  7597. }
  7598. const int ith = params->ith;
  7599. const int nth = params->nth;
  7600. const int nc = src0->ne[0];
  7601. const int nr = ggml_nrows(src0);
  7602. // rows per thread
  7603. const int dr = (nr + nth - 1)/nth;
  7604. // row range for this thread
  7605. const int ir0 = dr*ith;
  7606. const int ir1 = MIN(ir0 + dr, nr);
  7607. for (int i1 = ir0; i1 < ir1; i1++) {
  7608. ggml_vec_silu_backward_f32(nc,
  7609. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7610. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7611. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7612. #ifndef NDEBUG
  7613. for (int k = 0; k < nc; k++) {
  7614. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7615. UNUSED(x);
  7616. assert(!isnan(x));
  7617. assert(!isinf(x));
  7618. }
  7619. #endif
  7620. }
  7621. }
  7622. static void ggml_compute_forward_silu_back(
  7623. const struct ggml_compute_params * params,
  7624. const struct ggml_tensor * src0,
  7625. const struct ggml_tensor * grad,
  7626. struct ggml_tensor * dst) {
  7627. switch (src0->type) {
  7628. case GGML_TYPE_F32:
  7629. {
  7630. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7631. } break;
  7632. default:
  7633. {
  7634. GGML_ASSERT(false);
  7635. } break;
  7636. }
  7637. }
  7638. // ggml_compute_forward_norm
  7639. static void ggml_compute_forward_norm_f32(
  7640. const struct ggml_compute_params * params,
  7641. const struct ggml_tensor * src0,
  7642. struct ggml_tensor * dst) {
  7643. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7644. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7645. return;
  7646. }
  7647. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7648. const int ith = params->ith;
  7649. const int nth = params->nth;
  7650. GGML_TENSOR_UNARY_OP_LOCALS
  7651. float eps;
  7652. memcpy(&eps, dst->op_params, sizeof(float));
  7653. GGML_ASSERT(eps > 0.0f);
  7654. // TODO: optimize
  7655. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7656. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7657. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7658. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7659. ggml_float sum = 0.0;
  7660. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7661. sum += (ggml_float)x[i00];
  7662. }
  7663. float mean = sum/ne00;
  7664. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7665. ggml_float sum2 = 0.0;
  7666. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7667. float v = x[i00] - mean;
  7668. y[i00] = v;
  7669. sum2 += (ggml_float)(v*v);
  7670. }
  7671. float variance = sum2/ne00;
  7672. const float scale = 1.0f/sqrtf(variance + eps);
  7673. ggml_vec_scale_f32(ne00, y, scale);
  7674. }
  7675. }
  7676. }
  7677. }
  7678. static void ggml_compute_forward_norm(
  7679. const struct ggml_compute_params * params,
  7680. const struct ggml_tensor * src0,
  7681. struct ggml_tensor * dst) {
  7682. switch (src0->type) {
  7683. case GGML_TYPE_F32:
  7684. {
  7685. ggml_compute_forward_norm_f32(params, src0, dst);
  7686. } break;
  7687. default:
  7688. {
  7689. GGML_ASSERT(false);
  7690. } break;
  7691. }
  7692. }
  7693. // ggml_compute_forward_group_rms_norm
  7694. static void ggml_compute_forward_rms_norm_f32(
  7695. const struct ggml_compute_params * params,
  7696. const struct ggml_tensor * src0,
  7697. struct ggml_tensor * dst) {
  7698. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7699. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7700. return;
  7701. }
  7702. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7703. const int ith = params->ith;
  7704. const int nth = params->nth;
  7705. GGML_TENSOR_UNARY_OP_LOCALS
  7706. float eps;
  7707. memcpy(&eps, dst->op_params, sizeof(float));
  7708. GGML_ASSERT(eps > 0.0f);
  7709. // TODO: optimize
  7710. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7711. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7712. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7713. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7714. ggml_float sum = 0.0;
  7715. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7716. sum += (ggml_float)(x[i00] * x[i00]);
  7717. }
  7718. const float mean = sum/ne00;
  7719. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7720. memcpy(y, x, ne00 * sizeof(float));
  7721. // for (int i00 = 0; i00 < ne00; i00++) {
  7722. // y[i00] = x[i00];
  7723. // }
  7724. const float scale = 1.0f/sqrtf(mean + eps);
  7725. ggml_vec_scale_f32(ne00, y, scale);
  7726. }
  7727. }
  7728. }
  7729. }
  7730. static void ggml_compute_forward_rms_norm(
  7731. const struct ggml_compute_params * params,
  7732. const struct ggml_tensor * src0,
  7733. struct ggml_tensor * dst) {
  7734. switch (src0->type) {
  7735. case GGML_TYPE_F32:
  7736. {
  7737. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7738. } break;
  7739. default:
  7740. {
  7741. GGML_ASSERT(false);
  7742. } break;
  7743. }
  7744. }
  7745. static void ggml_compute_forward_rms_norm_back_f32(
  7746. const struct ggml_compute_params * params,
  7747. const struct ggml_tensor * src0,
  7748. const struct ggml_tensor * src1,
  7749. struct ggml_tensor * dst) {
  7750. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7751. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7752. return;
  7753. }
  7754. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7755. const int ith = params->ith;
  7756. const int nth = params->nth;
  7757. GGML_TENSOR_BINARY_OP_LOCALS
  7758. float eps;
  7759. memcpy(&eps, dst->op_params, sizeof(float));
  7760. // TODO: optimize
  7761. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7762. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7763. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7764. // src1 is same shape as src0 => same indices
  7765. const int64_t i11 = i01;
  7766. const int64_t i12 = i02;
  7767. const int64_t i13 = i03;
  7768. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7769. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7770. ggml_float sum_xx = 0.0;
  7771. ggml_float sum_xdz = 0.0;
  7772. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7773. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7774. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7775. }
  7776. //const float mean = (float)(sum_xx)/ne00;
  7777. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7778. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7779. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7780. // we could cache rms from forward pass to improve performance.
  7781. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7782. //const float rms = sqrtf(mean_eps);
  7783. const float rrms = 1.0f / sqrtf(mean_eps);
  7784. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7785. {
  7786. // z = rms_norm(x)
  7787. //
  7788. // rms_norm(src0) =
  7789. // scale(
  7790. // src0,
  7791. // div(
  7792. // 1,
  7793. // sqrt(
  7794. // add(
  7795. // scale(
  7796. // sum(
  7797. // sqr(
  7798. // src0)),
  7799. // (1.0/N)),
  7800. // eps))));
  7801. // postorder:
  7802. // ## op args grad
  7803. // 00 param src0 grad[#00]
  7804. // 01 const 1
  7805. // 02 sqr (#00) grad[#02]
  7806. // 03 sum (#02) grad[#03]
  7807. // 04 const 1/N
  7808. // 05 scale (#03, #04) grad[#05]
  7809. // 06 const eps
  7810. // 07 add (#05, #06) grad[#07]
  7811. // 08 sqrt (#07) grad[#08]
  7812. // 09 div (#01,#08) grad[#09]
  7813. // 10 scale (#00,#09) grad[#10]
  7814. //
  7815. // backward pass, given grad[#10]
  7816. // #10: scale
  7817. // grad[#00] += scale(grad[#10],#09)
  7818. // grad[#09] += sum(mul(grad[#10],#00))
  7819. // #09: div
  7820. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7821. // #08: sqrt
  7822. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7823. // #07: add
  7824. // grad[#05] += grad[#07]
  7825. // #05: scale
  7826. // grad[#03] += scale(grad[#05],#04)
  7827. // #03: sum
  7828. // grad[#02] += repeat(grad[#03], #02)
  7829. // #02:
  7830. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7831. //
  7832. // substitute and simplify:
  7833. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7834. // grad[#02] = repeat(grad[#03], #02)
  7835. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7836. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7837. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7838. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7839. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7840. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7841. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7842. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7843. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7844. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7845. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7846. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7847. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7848. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7849. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7850. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7851. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7852. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7853. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7854. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7855. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7856. // a = b*c + d*e
  7857. // a = b*c*f/f + d*e*f/f
  7858. // a = (b*c*f + d*e*f)*(1/f)
  7859. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7860. // a = (b + d*e/c)*c
  7861. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7862. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7863. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7864. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7865. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7866. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7867. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7868. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7869. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7870. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7871. }
  7872. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7873. // post-order:
  7874. // dx := x
  7875. // dx := scale(dx,-mean_xdz/mean_eps)
  7876. // dx := add(dx, dz)
  7877. // dx := scale(dx, rrms)
  7878. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7879. ggml_vec_cpy_f32 (ne00, dx, x);
  7880. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7881. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7882. ggml_vec_acc_f32 (ne00, dx, dz);
  7883. ggml_vec_scale_f32(ne00, dx, rrms);
  7884. }
  7885. }
  7886. }
  7887. }
  7888. static void ggml_compute_forward_rms_norm_back(
  7889. const struct ggml_compute_params * params,
  7890. const struct ggml_tensor * src0,
  7891. const struct ggml_tensor * src1,
  7892. struct ggml_tensor * dst) {
  7893. switch (src0->type) {
  7894. case GGML_TYPE_F32:
  7895. {
  7896. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7897. } break;
  7898. default:
  7899. {
  7900. GGML_ASSERT(false);
  7901. } break;
  7902. }
  7903. }
  7904. // ggml_compute_forward_group_norm
  7905. static void ggml_compute_forward_group_norm_f32(
  7906. const struct ggml_compute_params * params,
  7907. const struct ggml_tensor * src0,
  7908. struct ggml_tensor * dst) {
  7909. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7911. return;
  7912. }
  7913. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7914. const int ith = params->ith;
  7915. const int nth = params->nth;
  7916. GGML_TENSOR_UNARY_OP_LOCALS
  7917. const float eps = 1e-6f; // TODO: make this a parameter
  7918. // TODO: optimize
  7919. int n_channels = src0->ne[2];
  7920. int n_groups = dst->op_params[0];
  7921. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7922. for (int i = ith; i < n_groups; i+=nth) {
  7923. int start = i * n_channels_per_group;
  7924. int end = start + n_channels_per_group;
  7925. if (end > n_channels) {
  7926. end = n_channels;
  7927. }
  7928. int step = end - start;
  7929. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7930. ggml_float sum = 0.0;
  7931. for (int64_t i02 = start; i02 < end; i02++) {
  7932. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7933. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7934. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7935. sum += (ggml_float)x[i00];
  7936. }
  7937. }
  7938. }
  7939. float mean = sum / (ne00 * ne01 * step);
  7940. ggml_float sum2 = 0.0;
  7941. for (int64_t i02 = start; i02 < end; i02++) {
  7942. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7943. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7944. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7945. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7946. float v = x[i00] - mean;
  7947. y[i00] = v;
  7948. sum2 += (ggml_float)(v * v);
  7949. }
  7950. }
  7951. }
  7952. float variance = sum2 / (ne00 * ne01 * step);
  7953. const float scale = 1.0f / sqrtf(variance + eps);
  7954. for (int64_t i02 = start; i02 < end; i02++) {
  7955. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7956. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7957. ggml_vec_scale_f32(ne00, y, scale);
  7958. }
  7959. }
  7960. }
  7961. }
  7962. }
  7963. static void ggml_compute_forward_group_norm(
  7964. const struct ggml_compute_params * params,
  7965. const struct ggml_tensor * src0,
  7966. struct ggml_tensor * dst) {
  7967. switch (src0->type) {
  7968. case GGML_TYPE_F32:
  7969. {
  7970. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7971. } break;
  7972. default:
  7973. {
  7974. GGML_ASSERT(false);
  7975. } break;
  7976. }
  7977. }
  7978. // ggml_compute_forward_mul_mat
  7979. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7980. // helper function to determine if it is better to use BLAS or not
  7981. // for large matrices, BLAS is faster
  7982. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  7983. const struct ggml_tensor * src0 = dst->src[0];
  7984. const struct ggml_tensor * src1 = dst->src[1];
  7985. //const int64_t ne00 = src0->ne[0];
  7986. //const int64_t ne01 = src0->ne[1];
  7987. const int64_t ne10 = src1->ne[0];
  7988. const int64_t ne0 = dst->ne[0];
  7989. const int64_t ne1 = dst->ne[1];
  7990. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  7991. // all the experts for each batch element and the processing would become incredibly slow
  7992. // TODO: find the optimal values for these
  7993. if (dst->op != GGML_OP_MUL_MAT_ID &&
  7994. ggml_is_contiguous(src0) &&
  7995. ggml_is_contiguous(src1) &&
  7996. //src0->type == GGML_TYPE_F32 &&
  7997. src1->type == GGML_TYPE_F32 &&
  7998. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7999. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8000. return true;
  8001. }
  8002. return false;
  8003. }
  8004. #endif
  8005. static void ggml_compute_forward_mul_mat(
  8006. const struct ggml_compute_params * params,
  8007. const struct ggml_tensor * src0,
  8008. const struct ggml_tensor * src1,
  8009. struct ggml_tensor * dst) {
  8010. int64_t t0 = ggml_perf_time_us();
  8011. UNUSED(t0);
  8012. GGML_TENSOR_BINARY_OP_LOCALS
  8013. const int ith = params->ith;
  8014. const int nth = params->nth;
  8015. const enum ggml_type type = src0->type;
  8016. const bool src1_cont = ggml_is_contiguous(src1);
  8017. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8018. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8019. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8020. GGML_ASSERT(ne0 == ne01);
  8021. GGML_ASSERT(ne1 == ne11);
  8022. GGML_ASSERT(ne2 == ne12);
  8023. GGML_ASSERT(ne3 == ne13);
  8024. // we don't support permuted src0 or src1
  8025. GGML_ASSERT(nb00 == ggml_type_size(type));
  8026. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8027. // dst cannot be transposed or permuted
  8028. GGML_ASSERT(nb0 == sizeof(float));
  8029. GGML_ASSERT(nb0 <= nb1);
  8030. GGML_ASSERT(nb1 <= nb2);
  8031. GGML_ASSERT(nb2 <= nb3);
  8032. // broadcast factors
  8033. const int64_t r2 = ne12/ne02;
  8034. const int64_t r3 = ne13/ne03;
  8035. // nb01 >= nb00 - src0 is not transposed
  8036. // compute by src0 rows
  8037. #if defined(GGML_USE_CLBLAST)
  8038. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8039. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8040. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8041. }
  8042. return;
  8043. }
  8044. #endif
  8045. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8046. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8047. if (params->ith != 0) {
  8048. return;
  8049. }
  8050. if (params->type == GGML_TASK_INIT) {
  8051. return;
  8052. }
  8053. if (params->type == GGML_TASK_FINALIZE) {
  8054. return;
  8055. }
  8056. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8057. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8058. // broadcast src0 into src1 across 2nd,3rd dimension
  8059. const int64_t i03 = i13/r3;
  8060. const int64_t i02 = i12/r2;
  8061. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8062. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8063. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8064. if (type != GGML_TYPE_F32) {
  8065. float * const wdata = params->wdata;
  8066. ggml_to_float_t const to_float = type_traits[type].to_float;
  8067. size_t id = 0;
  8068. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8069. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  8070. id += ne00;
  8071. }
  8072. assert(id*sizeof(float) <= params->wsize);
  8073. x = wdata;
  8074. }
  8075. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8076. ne1, ne01, ne10,
  8077. 1.0f, y, ne10,
  8078. x, ne00,
  8079. 0.0f, d, ne01);
  8080. }
  8081. }
  8082. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8083. return;
  8084. }
  8085. #endif
  8086. if (params->type == GGML_TASK_INIT) {
  8087. if (src1->type != vec_dot_type) {
  8088. char * wdata = params->wdata;
  8089. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8090. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8091. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8092. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8093. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8094. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8095. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8096. wdata += row_size;
  8097. }
  8098. }
  8099. }
  8100. }
  8101. return;
  8102. }
  8103. if (params->type == GGML_TASK_FINALIZE) {
  8104. return;
  8105. }
  8106. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8107. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8108. const int64_t nr0 = ne01; // src0 rows
  8109. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8110. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8111. // distribute the thread work across the inner or outer loop based on which one is larger
  8112. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8113. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8114. const int64_t ith0 = ith % nth0;
  8115. const int64_t ith1 = ith / nth0;
  8116. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8117. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8118. const int64_t ir010 = dr0*ith0;
  8119. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8120. const int64_t ir110 = dr1*ith1;
  8121. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8122. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8123. // threads with no work simply yield (not sure if it helps)
  8124. if (ir010 >= ir011 || ir110 >= ir111) {
  8125. sched_yield();
  8126. return;
  8127. }
  8128. assert(ne12 % ne02 == 0);
  8129. assert(ne13 % ne03 == 0);
  8130. // block-tiling attempt
  8131. const int64_t blck_0 = 16;
  8132. const int64_t blck_1 = 16;
  8133. // attempt to reduce false-sharing (does not seem to make a difference)
  8134. float tmp[16];
  8135. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8136. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8137. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8138. const int64_t i13 = (ir1/(ne12*ne1));
  8139. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8140. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8141. // broadcast src0 into src1
  8142. const int64_t i03 = i13/r3;
  8143. const int64_t i02 = i12/r2;
  8144. const int64_t i1 = i11;
  8145. const int64_t i2 = i12;
  8146. const int64_t i3 = i13;
  8147. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8148. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8149. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8150. // the original src1 data pointer, so we should index using the indices directly
  8151. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8152. const char * src1_col = (const char *) wdata +
  8153. (src1_cont || src1->type != vec_dot_type
  8154. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8155. : (i11*nb11 + i12*nb12 + i13*nb13));
  8156. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8157. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8158. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8159. //}
  8160. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8161. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8162. }
  8163. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8164. }
  8165. }
  8166. }
  8167. }
  8168. // ggml_compute_forward_mul_mat_id
  8169. static void ggml_compute_forward_mul_mat_id(
  8170. const struct ggml_compute_params * params,
  8171. const struct ggml_tensor * ids,
  8172. const struct ggml_tensor * src1,
  8173. struct ggml_tensor * dst) {
  8174. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8175. GGML_TENSOR_BINARY_OP_LOCALS
  8176. const int ith = params->ith;
  8177. const int nth = params->nth;
  8178. const enum ggml_type type = src0->type;
  8179. const bool src1_cont = ggml_is_contiguous(src1);
  8180. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8181. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8182. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8183. GGML_ASSERT(ne0 == ne01);
  8184. GGML_ASSERT(ne1 == ne11);
  8185. GGML_ASSERT(ne2 == ne12);
  8186. GGML_ASSERT(ne3 == ne13);
  8187. // we don't support permuted src0 or src1
  8188. GGML_ASSERT(nb00 == ggml_type_size(type));
  8189. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8190. // dst cannot be transposed or permuted
  8191. GGML_ASSERT(nb0 == sizeof(float));
  8192. GGML_ASSERT(nb0 <= nb1);
  8193. GGML_ASSERT(nb1 <= nb2);
  8194. GGML_ASSERT(nb2 <= nb3);
  8195. // broadcast factors
  8196. const int64_t r2 = ne12/ne02;
  8197. const int64_t r3 = ne13/ne03;
  8198. // row groups
  8199. const int id = ggml_get_op_params_i32(dst, 0);
  8200. const int n_as = ggml_get_op_params_i32(dst, 1);
  8201. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8202. (char *) params->wdata :
  8203. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8204. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8205. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8206. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8207. if (params->type == GGML_TASK_INIT) {
  8208. char * wdata = params->wdata;
  8209. if (src1->type != vec_dot_type) {
  8210. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8211. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8212. assert(src1->type == GGML_TYPE_F32);
  8213. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8214. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8215. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8216. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8217. wdata += row_size;
  8218. }
  8219. }
  8220. }
  8221. }
  8222. // initialize matrix_row_counts
  8223. GGML_ASSERT(wdata == wdata_src1_end);
  8224. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8225. // group rows by src0 matrix
  8226. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8227. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8228. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8229. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8230. matrix_row_counts[row_id] += 1;
  8231. }
  8232. return;
  8233. }
  8234. if (params->type == GGML_TASK_FINALIZE) {
  8235. return;
  8236. }
  8237. // compute each matrix multiplication in sequence
  8238. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8239. const int64_t cne1 = matrix_row_counts[cur_a];
  8240. if (cne1 == 0) {
  8241. continue;
  8242. }
  8243. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8244. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8245. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8246. const int64_t nr0 = ne01; // src0 rows
  8247. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8248. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8249. // distribute the thread work across the inner or outer loop based on which one is larger
  8250. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8251. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8252. const int64_t ith0 = ith % nth0;
  8253. const int64_t ith1 = ith / nth0;
  8254. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8255. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8256. const int64_t ir010 = dr0*ith0;
  8257. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8258. const int64_t ir110 = dr1*ith1;
  8259. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8260. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8261. // threads with no work simply yield (not sure if it helps)
  8262. if (ir010 >= ir011 || ir110 >= ir111) {
  8263. sched_yield();
  8264. continue;
  8265. }
  8266. assert(ne12 % ne02 == 0);
  8267. assert(ne13 % ne03 == 0);
  8268. // block-tiling attempt
  8269. const int64_t blck_0 = 16;
  8270. const int64_t blck_1 = 16;
  8271. // attempt to reduce false-sharing (does not seem to make a difference)
  8272. float tmp[16];
  8273. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8274. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8275. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8276. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8277. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8278. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8279. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8280. // broadcast src0 into src1
  8281. const int64_t i03 = i13/r3;
  8282. const int64_t i02 = i12/r2;
  8283. const int64_t i1 = i11;
  8284. const int64_t i2 = i12;
  8285. const int64_t i3 = i13;
  8286. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8287. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8288. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8289. // the original src1 data pointer, so we should index using the indices directly
  8290. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8291. const char * src1_col = (const char *) wdata +
  8292. (src1_cont || src1->type != vec_dot_type
  8293. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8294. : (i11*nb11 + i12*nb12 + i13*nb13));
  8295. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8296. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8297. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8298. //}
  8299. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8300. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8301. }
  8302. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8303. }
  8304. }
  8305. }
  8306. }
  8307. #undef MMID_MATRIX_ROW
  8308. }
  8309. // ggml_compute_forward_out_prod
  8310. static void ggml_compute_forward_out_prod_f32(
  8311. const struct ggml_compute_params * params,
  8312. const struct ggml_tensor * src0,
  8313. const struct ggml_tensor * src1,
  8314. struct ggml_tensor * dst) {
  8315. // int64_t t0 = ggml_perf_time_us();
  8316. // UNUSED(t0);
  8317. GGML_TENSOR_BINARY_OP_LOCALS
  8318. const int ith = params->ith;
  8319. const int nth = params->nth;
  8320. GGML_ASSERT(ne0 == ne00);
  8321. GGML_ASSERT(ne1 == ne10);
  8322. GGML_ASSERT(ne2 == ne02);
  8323. GGML_ASSERT(ne02 == ne12);
  8324. GGML_ASSERT(ne3 == ne13);
  8325. GGML_ASSERT(ne03 == ne13);
  8326. // we don't support permuted src0 or src1
  8327. GGML_ASSERT(nb00 == sizeof(float));
  8328. // dst cannot be transposed or permuted
  8329. GGML_ASSERT(nb0 == sizeof(float));
  8330. // GGML_ASSERT(nb0 <= nb1);
  8331. // GGML_ASSERT(nb1 <= nb2);
  8332. // GGML_ASSERT(nb2 <= nb3);
  8333. // nb01 >= nb00 - src0 is not transposed
  8334. // compute by src0 rows
  8335. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8336. // TODO: #if defined(GGML_USE_CLBLAST)
  8337. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8338. bool use_blas = ggml_is_matrix(src0) &&
  8339. ggml_is_matrix(src1) &&
  8340. ggml_is_contiguous(src0) &&
  8341. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8342. #endif
  8343. if (params->type == GGML_TASK_INIT) {
  8344. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8345. if (use_blas) {
  8346. return;
  8347. }
  8348. #endif
  8349. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8350. return;
  8351. }
  8352. if (params->type == GGML_TASK_FINALIZE) {
  8353. return;
  8354. }
  8355. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8356. if (use_blas) {
  8357. if (params->ith != 0) { // All threads other than the first do no work.
  8358. return;
  8359. }
  8360. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8361. // src0: (k,n)
  8362. // src1: (k,m)
  8363. // dst: (m,n)
  8364. //
  8365. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8366. // Also expressed as (major,minor)
  8367. // a: (m,k): so src1 transposed
  8368. // b: (k,n): so src0
  8369. // c: (m,n)
  8370. //
  8371. // However, if ggml_is_transposed(src1) is true, then
  8372. // src1->data already contains a transposed version, so sgemm mustn't
  8373. // transpose it further.
  8374. int n = src0->ne[0];
  8375. int k = src0->ne[1];
  8376. int m = src1->ne[0];
  8377. int transposeA, lda;
  8378. if (!ggml_is_transposed(src1)) {
  8379. transposeA = CblasTrans;
  8380. lda = m;
  8381. } else {
  8382. transposeA = CblasNoTrans;
  8383. lda = k;
  8384. }
  8385. float * a = (float *) ((char *) src1->data);
  8386. float * b = (float *) ((char *) src0->data);
  8387. float * c = (float *) ((char *) dst->data);
  8388. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8389. return;
  8390. }
  8391. #endif
  8392. // dst[:,:,:,:] = 0
  8393. // for i2,i3:
  8394. // for i1:
  8395. // for i01:
  8396. // for i0:
  8397. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8398. // parallelize by last three dimensions
  8399. // total rows in dst
  8400. const int64_t nr = ne1*ne2*ne3;
  8401. // rows per thread
  8402. const int64_t dr = (nr + nth - 1)/nth;
  8403. // row range for this thread
  8404. const int64_t ir0 = dr*ith;
  8405. const int64_t ir1 = MIN(ir0 + dr, nr);
  8406. // block-tiling attempt
  8407. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8408. const int64_t blck_1 = 16;
  8409. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8410. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8411. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8412. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8413. for (int64_t ir = bir; ir < bir1; ++ir) {
  8414. // dst indices
  8415. const int64_t i3 = ir/(ne2*ne1);
  8416. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8417. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8418. const int64_t i02 = i2;
  8419. const int64_t i03 = i3;
  8420. //const int64_t i10 = i1;
  8421. const int64_t i12 = i2;
  8422. const int64_t i13 = i3;
  8423. #if GGML_VEC_MAD_UNROLL > 2
  8424. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8425. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8426. const int64_t i11 = i01;
  8427. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8428. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8429. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8430. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8431. }
  8432. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8433. const int64_t i11 = i01;
  8434. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8435. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8436. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8437. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8438. }
  8439. #else
  8440. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8441. const int64_t i11 = i01;
  8442. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8443. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8444. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8445. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8446. }
  8447. #endif
  8448. }
  8449. }
  8450. }
  8451. //int64_t t1 = ggml_perf_time_us();
  8452. //static int64_t acc = 0;
  8453. //acc += t1 - t0;
  8454. //if (t1 - t0 > 10) {
  8455. // printf("\n");
  8456. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8457. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8458. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8459. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8460. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8461. //}
  8462. }
  8463. static void ggml_compute_forward_out_prod_q_f32(
  8464. const struct ggml_compute_params * params,
  8465. const struct ggml_tensor * src0,
  8466. const struct ggml_tensor * src1,
  8467. struct ggml_tensor * dst) {
  8468. // int64_t t0 = ggml_perf_time_us();
  8469. // UNUSED(t0);
  8470. GGML_TENSOR_BINARY_OP_LOCALS;
  8471. const int ith = params->ith;
  8472. const int nth = params->nth;
  8473. const enum ggml_type type = src0->type;
  8474. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8475. GGML_ASSERT(ne02 == ne12);
  8476. GGML_ASSERT(ne03 == ne13);
  8477. GGML_ASSERT(ne2 == ne12);
  8478. GGML_ASSERT(ne3 == ne13);
  8479. // we don't support permuted src0 dim0
  8480. GGML_ASSERT(nb00 == ggml_type_size(type));
  8481. // dst dim0 cannot be transposed or permuted
  8482. GGML_ASSERT(nb0 == sizeof(float));
  8483. // GGML_ASSERT(nb0 <= nb1);
  8484. // GGML_ASSERT(nb1 <= nb2);
  8485. // GGML_ASSERT(nb2 <= nb3);
  8486. GGML_ASSERT(ne0 == ne00);
  8487. GGML_ASSERT(ne1 == ne10);
  8488. GGML_ASSERT(ne2 == ne02);
  8489. GGML_ASSERT(ne3 == ne03);
  8490. // nb01 >= nb00 - src0 is not transposed
  8491. // compute by src0 rows
  8492. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8493. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8494. if (params->type == GGML_TASK_INIT) {
  8495. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8496. return;
  8497. }
  8498. if (params->type == GGML_TASK_FINALIZE) {
  8499. return;
  8500. }
  8501. // parallelize by last three dimensions
  8502. // total rows in dst
  8503. const int64_t nr = ne1*ne2*ne3;
  8504. // rows per thread
  8505. const int64_t dr = (nr + nth - 1)/nth;
  8506. // row range for this thread
  8507. const int64_t ir0 = dr*ith;
  8508. const int64_t ir1 = MIN(ir0 + dr, nr);
  8509. // dst[:,:,:,:] = 0
  8510. // for i2,i3:
  8511. // for i1:
  8512. // for i01:
  8513. // for i0:
  8514. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8515. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8516. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8517. // dst indices
  8518. const int64_t i3 = ir/(ne2*ne1);
  8519. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8520. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8521. const int64_t i02 = i2;
  8522. const int64_t i03 = i3;
  8523. //const int64_t i10 = i1;
  8524. const int64_t i12 = i2;
  8525. const int64_t i13 = i3;
  8526. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8527. const int64_t i11 = i01;
  8528. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8529. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8530. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8531. dequantize_row_q(s0, wdata, ne0);
  8532. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8533. }
  8534. }
  8535. //int64_t t1 = ggml_perf_time_us();
  8536. //static int64_t acc = 0;
  8537. //acc += t1 - t0;
  8538. //if (t1 - t0 > 10) {
  8539. // printf("\n");
  8540. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8541. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8542. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8543. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8544. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8545. //}
  8546. }
  8547. static void ggml_compute_forward_out_prod(
  8548. const struct ggml_compute_params * params,
  8549. const struct ggml_tensor * src0,
  8550. const struct ggml_tensor * src1,
  8551. struct ggml_tensor * dst) {
  8552. switch (src0->type) {
  8553. case GGML_TYPE_Q4_0:
  8554. case GGML_TYPE_Q4_1:
  8555. case GGML_TYPE_Q5_0:
  8556. case GGML_TYPE_Q5_1:
  8557. case GGML_TYPE_Q8_0:
  8558. case GGML_TYPE_Q2_K:
  8559. case GGML_TYPE_Q3_K:
  8560. case GGML_TYPE_Q4_K:
  8561. case GGML_TYPE_Q5_K:
  8562. case GGML_TYPE_Q6_K:
  8563. case GGML_TYPE_IQ2_XXS:
  8564. {
  8565. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8566. } break;
  8567. case GGML_TYPE_F16:
  8568. {
  8569. GGML_ASSERT(false); // todo
  8570. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8571. } break;
  8572. case GGML_TYPE_F32:
  8573. {
  8574. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8575. } break;
  8576. default:
  8577. {
  8578. GGML_ASSERT(false);
  8579. } break;
  8580. }
  8581. }
  8582. // ggml_compute_forward_scale
  8583. static void ggml_compute_forward_scale_f32(
  8584. const struct ggml_compute_params * params,
  8585. const struct ggml_tensor * src0,
  8586. struct ggml_tensor * dst) {
  8587. GGML_ASSERT(ggml_is_contiguous(src0));
  8588. GGML_ASSERT(ggml_is_contiguous(dst));
  8589. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8591. return;
  8592. }
  8593. // scale factor
  8594. float v;
  8595. memcpy(&v, dst->op_params, sizeof(float));
  8596. const int ith = params->ith;
  8597. const int nth = params->nth;
  8598. const int nc = src0->ne[0];
  8599. const int nr = ggml_nrows(src0);
  8600. // rows per thread
  8601. const int dr = (nr + nth - 1)/nth;
  8602. // row range for this thread
  8603. const int ir0 = dr*ith;
  8604. const int ir1 = MIN(ir0 + dr, nr);
  8605. const size_t nb01 = src0->nb[1];
  8606. const size_t nb1 = dst->nb[1];
  8607. for (int i1 = ir0; i1 < ir1; i1++) {
  8608. if (dst->data != src0->data) {
  8609. // src0 is same shape as dst => same indices
  8610. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8611. }
  8612. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8613. }
  8614. }
  8615. static void ggml_compute_forward_scale(
  8616. const struct ggml_compute_params * params,
  8617. const struct ggml_tensor * src0,
  8618. struct ggml_tensor * dst) {
  8619. switch (src0->type) {
  8620. case GGML_TYPE_F32:
  8621. {
  8622. ggml_compute_forward_scale_f32(params, src0, dst);
  8623. } break;
  8624. default:
  8625. {
  8626. GGML_ASSERT(false);
  8627. } break;
  8628. }
  8629. }
  8630. // ggml_compute_forward_set
  8631. static void ggml_compute_forward_set_f32(
  8632. const struct ggml_compute_params * params,
  8633. const struct ggml_tensor * src0,
  8634. const struct ggml_tensor * src1,
  8635. struct ggml_tensor * dst) {
  8636. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8637. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8638. // view src0 and dst with these strides and data offset inbytes during set
  8639. // nb0 is implicitly element_size because src0 and dst are contiguous
  8640. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8641. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8642. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8643. size_t offset = ((int32_t *) dst->op_params)[3];
  8644. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8645. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8646. // memcpy needs to be synchronized across threads to avoid race conditions.
  8647. // => do it in INIT phase
  8648. memcpy(
  8649. ((char *) dst->data),
  8650. ((char *) src0->data),
  8651. ggml_nbytes(dst));
  8652. }
  8653. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8654. return;
  8655. }
  8656. const int ith = params->ith;
  8657. const int nth = params->nth;
  8658. const int nr = ggml_nrows(src1);
  8659. const int nc = src1->ne[0];
  8660. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8661. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8662. // src0 and dst as viewed during set
  8663. const size_t nb0 = ggml_element_size(src0);
  8664. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8665. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8666. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8667. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8668. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8669. GGML_ASSERT(nb10 == sizeof(float));
  8670. // rows per thread
  8671. const int dr = (nr + nth - 1)/nth;
  8672. // row range for this thread
  8673. const int ir0 = dr*ith;
  8674. const int ir1 = MIN(ir0 + dr, nr);
  8675. for (int ir = ir0; ir < ir1; ++ir) {
  8676. // src0 and dst are viewed with shape of src1 and offset
  8677. // => same indices
  8678. const int i3 = ir/(ne12*ne11);
  8679. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8680. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8681. ggml_vec_cpy_f32(nc,
  8682. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8683. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8684. }
  8685. }
  8686. static void ggml_compute_forward_set(
  8687. const struct ggml_compute_params * params,
  8688. const struct ggml_tensor * src0,
  8689. const struct ggml_tensor * src1,
  8690. struct ggml_tensor * dst) {
  8691. switch (src0->type) {
  8692. case GGML_TYPE_F32:
  8693. {
  8694. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8695. } break;
  8696. case GGML_TYPE_F16:
  8697. case GGML_TYPE_Q4_0:
  8698. case GGML_TYPE_Q4_1:
  8699. case GGML_TYPE_Q5_0:
  8700. case GGML_TYPE_Q5_1:
  8701. case GGML_TYPE_Q8_0:
  8702. case GGML_TYPE_Q8_1:
  8703. case GGML_TYPE_Q2_K:
  8704. case GGML_TYPE_Q3_K:
  8705. case GGML_TYPE_Q4_K:
  8706. case GGML_TYPE_Q5_K:
  8707. case GGML_TYPE_Q6_K:
  8708. case GGML_TYPE_IQ2_XXS:
  8709. default:
  8710. {
  8711. GGML_ASSERT(false);
  8712. } break;
  8713. }
  8714. }
  8715. // ggml_compute_forward_cpy
  8716. static void ggml_compute_forward_cpy(
  8717. const struct ggml_compute_params * params,
  8718. const struct ggml_tensor * src0,
  8719. struct ggml_tensor * dst) {
  8720. ggml_compute_forward_dup(params, src0, dst);
  8721. }
  8722. // ggml_compute_forward_cont
  8723. static void ggml_compute_forward_cont(
  8724. const struct ggml_compute_params * params,
  8725. const struct ggml_tensor * src0,
  8726. struct ggml_tensor * dst) {
  8727. ggml_compute_forward_dup(params, src0, dst);
  8728. }
  8729. // ggml_compute_forward_reshape
  8730. static void ggml_compute_forward_reshape(
  8731. const struct ggml_compute_params * params,
  8732. const struct ggml_tensor * src0,
  8733. struct ggml_tensor * dst) {
  8734. // NOP
  8735. UNUSED(params);
  8736. UNUSED(src0);
  8737. UNUSED(dst);
  8738. }
  8739. // ggml_compute_forward_view
  8740. static void ggml_compute_forward_view(
  8741. const struct ggml_compute_params * params,
  8742. const struct ggml_tensor * src0) {
  8743. // NOP
  8744. UNUSED(params);
  8745. UNUSED(src0);
  8746. }
  8747. // ggml_compute_forward_permute
  8748. static void ggml_compute_forward_permute(
  8749. const struct ggml_compute_params * params,
  8750. const struct ggml_tensor * src0) {
  8751. // NOP
  8752. UNUSED(params);
  8753. UNUSED(src0);
  8754. }
  8755. // ggml_compute_forward_transpose
  8756. static void ggml_compute_forward_transpose(
  8757. const struct ggml_compute_params * params,
  8758. const struct ggml_tensor * src0) {
  8759. // NOP
  8760. UNUSED(params);
  8761. UNUSED(src0);
  8762. }
  8763. // ggml_compute_forward_get_rows
  8764. static void ggml_compute_forward_get_rows_q(
  8765. const struct ggml_compute_params * params,
  8766. const struct ggml_tensor * src0,
  8767. const struct ggml_tensor * src1,
  8768. struct ggml_tensor * dst) {
  8769. assert(params->ith == 0);
  8770. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8771. return;
  8772. }
  8773. GGML_TENSOR_BINARY_OP_LOCALS
  8774. const int64_t nc = ne00;
  8775. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8776. const enum ggml_type type = src0->type;
  8777. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8778. assert(ne0 == nc);
  8779. assert(ne02 == ne11);
  8780. assert(nb00 == ggml_type_size(type));
  8781. assert(ggml_nrows(dst) == nr);
  8782. // TODO: multi-thread
  8783. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8784. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8785. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8786. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8787. dequantize_row_q(
  8788. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8789. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8790. }
  8791. }
  8792. }
  8793. }
  8794. static void ggml_compute_forward_get_rows_f16(
  8795. const struct ggml_compute_params * params,
  8796. const struct ggml_tensor * src0,
  8797. const struct ggml_tensor * src1,
  8798. struct ggml_tensor * dst) {
  8799. assert(params->ith == 0);
  8800. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8801. return;
  8802. }
  8803. GGML_TENSOR_BINARY_OP_LOCALS
  8804. const int64_t nc = ne00;
  8805. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8806. assert(ne0 == nc);
  8807. assert(ne02 == ne11);
  8808. assert(nb00 == sizeof(ggml_fp16_t));
  8809. assert(ggml_nrows(dst) == nr);
  8810. // TODO: multi-thread
  8811. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8812. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8813. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8814. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8815. ggml_fp16_to_fp32_row(
  8816. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8817. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8818. }
  8819. }
  8820. }
  8821. }
  8822. static void ggml_compute_forward_get_rows_f32(
  8823. const struct ggml_compute_params * params,
  8824. const struct ggml_tensor * src0,
  8825. const struct ggml_tensor * src1,
  8826. struct ggml_tensor * dst) {
  8827. assert(params->ith == 0);
  8828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8829. return;
  8830. }
  8831. GGML_TENSOR_BINARY_OP_LOCALS
  8832. const int64_t nc = ne00;
  8833. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8834. assert(ne0 == nc);
  8835. assert(ne02 == ne11);
  8836. assert(nb00 == sizeof(float));
  8837. assert(ggml_nrows(dst) == nr);
  8838. // TODO: multi-thread
  8839. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8840. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8841. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8842. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8843. ggml_vec_cpy_f32(nc,
  8844. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8845. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8846. }
  8847. }
  8848. }
  8849. }
  8850. static void ggml_compute_forward_get_rows(
  8851. const struct ggml_compute_params * params,
  8852. const struct ggml_tensor * src0,
  8853. const struct ggml_tensor * src1,
  8854. struct ggml_tensor * dst) {
  8855. switch (src0->type) {
  8856. case GGML_TYPE_Q4_0:
  8857. case GGML_TYPE_Q4_1:
  8858. case GGML_TYPE_Q5_0:
  8859. case GGML_TYPE_Q5_1:
  8860. case GGML_TYPE_Q8_0:
  8861. case GGML_TYPE_Q8_1:
  8862. case GGML_TYPE_Q2_K:
  8863. case GGML_TYPE_Q3_K:
  8864. case GGML_TYPE_Q4_K:
  8865. case GGML_TYPE_Q5_K:
  8866. case GGML_TYPE_Q6_K:
  8867. case GGML_TYPE_IQ2_XXS:
  8868. {
  8869. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8870. } break;
  8871. case GGML_TYPE_F16:
  8872. {
  8873. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8874. } break;
  8875. case GGML_TYPE_F32:
  8876. case GGML_TYPE_I32:
  8877. {
  8878. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8879. } break;
  8880. default:
  8881. {
  8882. GGML_ASSERT(false);
  8883. } break;
  8884. }
  8885. //static bool first = true;
  8886. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8887. //if (first) {
  8888. // first = false;
  8889. //} else {
  8890. // for (int k = 0; k < dst->ne[1]; ++k) {
  8891. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8892. // for (int i = 0; i < 16; ++i) {
  8893. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8894. // }
  8895. // printf("\n");
  8896. // }
  8897. // printf("\n");
  8898. // }
  8899. // printf("\n");
  8900. // exit(0);
  8901. //}
  8902. }
  8903. // ggml_compute_forward_get_rows_back
  8904. static void ggml_compute_forward_get_rows_back_f32_f16(
  8905. const struct ggml_compute_params * params,
  8906. const struct ggml_tensor * src0,
  8907. const struct ggml_tensor * src1,
  8908. struct ggml_tensor * dst) {
  8909. GGML_ASSERT(params->ith == 0);
  8910. GGML_ASSERT(ggml_is_contiguous(dst));
  8911. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8912. if (params->type == GGML_TASK_INIT) {
  8913. memset(dst->data, 0, ggml_nbytes(dst));
  8914. }
  8915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8916. return;
  8917. }
  8918. const int nc = src0->ne[0];
  8919. const int nr = ggml_nelements(src1);
  8920. GGML_ASSERT( dst->ne[0] == nc);
  8921. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8922. for (int i = 0; i < nr; ++i) {
  8923. const int r = ((int32_t *) src1->data)[i];
  8924. for (int j = 0; j < nc; ++j) {
  8925. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8926. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8927. }
  8928. }
  8929. }
  8930. static void ggml_compute_forward_get_rows_back_f32(
  8931. const struct ggml_compute_params * params,
  8932. const struct ggml_tensor * src0,
  8933. const struct ggml_tensor * src1,
  8934. struct ggml_tensor * dst) {
  8935. GGML_ASSERT(params->ith == 0);
  8936. GGML_ASSERT(ggml_is_contiguous(dst));
  8937. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8938. if (params->type == GGML_TASK_INIT) {
  8939. memset(dst->data, 0, ggml_nbytes(dst));
  8940. }
  8941. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8942. return;
  8943. }
  8944. const int nc = src0->ne[0];
  8945. const int nr = ggml_nelements(src1);
  8946. GGML_ASSERT( dst->ne[0] == nc);
  8947. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8948. for (int i = 0; i < nr; ++i) {
  8949. const int r = ((int32_t *) src1->data)[i];
  8950. ggml_vec_add_f32(nc,
  8951. (float *) ((char *) dst->data + r*dst->nb[1]),
  8952. (float *) ((char *) dst->data + r*dst->nb[1]),
  8953. (float *) ((char *) src0->data + i*src0->nb[1]));
  8954. }
  8955. }
  8956. static void ggml_compute_forward_get_rows_back(
  8957. const struct ggml_compute_params * params,
  8958. const struct ggml_tensor * src0,
  8959. const struct ggml_tensor * src1,
  8960. struct ggml_tensor * dst) {
  8961. switch (src0->type) {
  8962. case GGML_TYPE_F16:
  8963. {
  8964. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8965. } break;
  8966. case GGML_TYPE_F32:
  8967. {
  8968. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8969. } break;
  8970. default:
  8971. {
  8972. GGML_ASSERT(false);
  8973. } break;
  8974. }
  8975. //static bool first = true;
  8976. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8977. //if (first) {
  8978. // first = false;
  8979. //} else {
  8980. // for (int k = 0; k < dst->ne[1]; ++k) {
  8981. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8982. // for (int i = 0; i < 16; ++i) {
  8983. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8984. // }
  8985. // printf("\n");
  8986. // }
  8987. // printf("\n");
  8988. // }
  8989. // printf("\n");
  8990. // exit(0);
  8991. //}
  8992. }
  8993. // ggml_compute_forward_diag
  8994. static void ggml_compute_forward_diag_f32(
  8995. const struct ggml_compute_params * params,
  8996. const struct ggml_tensor * src0,
  8997. struct ggml_tensor * dst) {
  8998. GGML_ASSERT(params->ith == 0);
  8999. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9000. return;
  9001. }
  9002. // TODO: handle transposed/permuted matrices
  9003. GGML_TENSOR_UNARY_OP_LOCALS
  9004. GGML_ASSERT(ne00 == ne0);
  9005. GGML_ASSERT(ne00 == ne1);
  9006. GGML_ASSERT(ne01 == 1);
  9007. GGML_ASSERT(ne02 == ne2);
  9008. GGML_ASSERT(ne03 == ne3);
  9009. GGML_ASSERT(nb00 == sizeof(float));
  9010. GGML_ASSERT(nb0 == sizeof(float));
  9011. for (int i3 = 0; i3 < ne3; i3++) {
  9012. for (int i2 = 0; i2 < ne2; i2++) {
  9013. for (int i1 = 0; i1 < ne1; i1++) {
  9014. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9015. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9016. for (int i0 = 0; i0 < i1; i0++) {
  9017. d[i0] = 0;
  9018. }
  9019. d[i1] = s[i1];
  9020. for (int i0 = i1+1; i0 < ne0; i0++) {
  9021. d[i0] = 0;
  9022. }
  9023. }
  9024. }
  9025. }
  9026. }
  9027. static void ggml_compute_forward_diag(
  9028. const struct ggml_compute_params * params,
  9029. const struct ggml_tensor * src0,
  9030. struct ggml_tensor * dst) {
  9031. switch (src0->type) {
  9032. case GGML_TYPE_F32:
  9033. {
  9034. ggml_compute_forward_diag_f32(params, src0, dst);
  9035. } break;
  9036. default:
  9037. {
  9038. GGML_ASSERT(false);
  9039. } break;
  9040. }
  9041. }
  9042. // ggml_compute_forward_diag_mask_inf
  9043. static void ggml_compute_forward_diag_mask_f32(
  9044. const struct ggml_compute_params * params,
  9045. const struct ggml_tensor * src0,
  9046. struct ggml_tensor * dst,
  9047. const float value) {
  9048. const int ith = params->ith;
  9049. const int nth = params->nth;
  9050. const int n_past = ((int32_t *) dst->op_params)[0];
  9051. const bool inplace = src0->data == dst->data;
  9052. GGML_ASSERT(n_past >= 0);
  9053. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9054. // memcpy needs to be synchronized across threads to avoid race conditions.
  9055. // => do it in INIT phase
  9056. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9057. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9058. memcpy(
  9059. ((char *) dst->data),
  9060. ((char *) src0->data),
  9061. ggml_nbytes(dst));
  9062. }
  9063. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9064. return;
  9065. }
  9066. // TODO: handle transposed/permuted matrices
  9067. const int n = ggml_nrows(src0);
  9068. const int nc = src0->ne[0];
  9069. const int nr = src0->ne[1];
  9070. const int nz = n/nr;
  9071. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9072. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9073. for (int k = 0; k < nz; k++) {
  9074. for (int j = ith; j < nr; j += nth) {
  9075. for (int i = n_past; i < nc; i++) {
  9076. if (i > n_past + j) {
  9077. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9078. }
  9079. }
  9080. }
  9081. }
  9082. }
  9083. static void ggml_compute_forward_diag_mask_inf(
  9084. const struct ggml_compute_params * params,
  9085. const struct ggml_tensor * src0,
  9086. struct ggml_tensor * dst) {
  9087. switch (src0->type) {
  9088. case GGML_TYPE_F32:
  9089. {
  9090. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9091. } break;
  9092. default:
  9093. {
  9094. GGML_ASSERT(false);
  9095. } break;
  9096. }
  9097. }
  9098. static void ggml_compute_forward_diag_mask_zero(
  9099. const struct ggml_compute_params * params,
  9100. const struct ggml_tensor * src0,
  9101. struct ggml_tensor * dst) {
  9102. switch (src0->type) {
  9103. case GGML_TYPE_F32:
  9104. {
  9105. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9106. } break;
  9107. default:
  9108. {
  9109. GGML_ASSERT(false);
  9110. } break;
  9111. }
  9112. }
  9113. // ggml_compute_forward_soft_max
  9114. static void ggml_compute_forward_soft_max_f32(
  9115. const struct ggml_compute_params * params,
  9116. const struct ggml_tensor * src0,
  9117. const struct ggml_tensor * src1,
  9118. struct ggml_tensor * dst) {
  9119. assert(ggml_is_contiguous(dst));
  9120. assert(ggml_are_same_shape(src0, dst));
  9121. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9122. return;
  9123. }
  9124. float scale = 1.0f;
  9125. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9126. // TODO: handle transposed/permuted matrices
  9127. const int ith = params->ith;
  9128. const int nth = params->nth;
  9129. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9130. const int nc = src0->ne[0];
  9131. const int nr = ggml_nrows(src0);
  9132. // rows per thread
  9133. const int dr = (nr + nth - 1)/nth;
  9134. // row range for this thread
  9135. const int ir0 = dr*ith;
  9136. const int ir1 = MIN(ir0 + dr, nr);
  9137. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9138. for (int i1 = ir0; i1 < ir1; i1++) {
  9139. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9140. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9141. // broadcast the mask across rows
  9142. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9143. ggml_vec_cpy_f32 (nc, wp, sp);
  9144. ggml_vec_scale_f32(nc, wp, scale);
  9145. if (mp) {
  9146. ggml_vec_acc_f32(nc, wp, mp);
  9147. }
  9148. #ifndef NDEBUG
  9149. for (int i = 0; i < nc; ++i) {
  9150. //printf("p[%d] = %f\n", i, p[i]);
  9151. assert(!isnan(wp[i]));
  9152. }
  9153. #endif
  9154. float max = -INFINITY;
  9155. ggml_vec_max_f32(nc, &max, wp);
  9156. ggml_float sum = 0.0;
  9157. uint16_t scvt;
  9158. for (int i = 0; i < nc; i++) {
  9159. if (wp[i] == -INFINITY) {
  9160. dp[i] = 0.0f;
  9161. } else {
  9162. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9163. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9164. memcpy(&scvt, &s, sizeof(scvt));
  9165. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9166. sum += (ggml_float)val;
  9167. dp[i] = val;
  9168. }
  9169. }
  9170. assert(sum > 0.0);
  9171. sum = 1.0/sum;
  9172. ggml_vec_scale_f32(nc, dp, sum);
  9173. #ifndef NDEBUG
  9174. for (int i = 0; i < nc; ++i) {
  9175. assert(!isnan(dp[i]));
  9176. assert(!isinf(dp[i]));
  9177. }
  9178. #endif
  9179. }
  9180. }
  9181. static void ggml_compute_forward_soft_max(
  9182. const struct ggml_compute_params * params,
  9183. const struct ggml_tensor * src0,
  9184. const struct ggml_tensor * src1,
  9185. struct ggml_tensor * dst) {
  9186. switch (src0->type) {
  9187. case GGML_TYPE_F32:
  9188. {
  9189. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9190. } break;
  9191. default:
  9192. {
  9193. GGML_ASSERT(false);
  9194. } break;
  9195. }
  9196. }
  9197. // ggml_compute_forward_soft_max_back
  9198. static void ggml_compute_forward_soft_max_back_f32(
  9199. const struct ggml_compute_params * params,
  9200. const struct ggml_tensor * src0,
  9201. const struct ggml_tensor * src1,
  9202. struct ggml_tensor * dst) {
  9203. GGML_ASSERT(ggml_is_contiguous(src0));
  9204. GGML_ASSERT(ggml_is_contiguous(src1));
  9205. GGML_ASSERT(ggml_is_contiguous(dst));
  9206. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9207. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9208. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9209. return;
  9210. }
  9211. // TODO: handle transposed/permuted matrices
  9212. const int ith = params->ith;
  9213. const int nth = params->nth;
  9214. const int nc = src0->ne[0];
  9215. const int nr = ggml_nrows(src0);
  9216. // rows per thread
  9217. const int dr = (nr + nth - 1)/nth;
  9218. // row range for this thread
  9219. const int ir0 = dr*ith;
  9220. const int ir1 = MIN(ir0 + dr, nr);
  9221. for (int i1 = ir0; i1 < ir1; i1++) {
  9222. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9223. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9224. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9225. #ifndef NDEBUG
  9226. for (int i = 0; i < nc; ++i) {
  9227. //printf("p[%d] = %f\n", i, p[i]);
  9228. assert(!isnan(dy[i]));
  9229. assert(!isnan(y[i]));
  9230. }
  9231. #endif
  9232. // Jii = yi - yi*yi
  9233. // Jij = -yi*yj
  9234. // J = diag(y)-y.T*y
  9235. // dx = J * dy
  9236. // dxk = sum_i(Jki * dyi)
  9237. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9238. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9239. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9240. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9241. // dxk = -yk * dot(y, dy) + yk*dyk
  9242. // dxk = yk * (- dot(y, dy) + dyk)
  9243. // dxk = yk * (dyk - dot(y, dy))
  9244. //
  9245. // post-order:
  9246. // dot_y_dy := dot(y, dy)
  9247. // dx := dy
  9248. // dx := dx - dot_y_dy
  9249. // dx := dx * y
  9250. // linear runtime, no additional memory
  9251. float dot_y_dy = 0;
  9252. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9253. ggml_vec_cpy_f32 (nc, dx, dy);
  9254. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9255. ggml_vec_mul_f32 (nc, dx, dx, y);
  9256. #ifndef NDEBUG
  9257. for (int i = 0; i < nc; ++i) {
  9258. assert(!isnan(dx[i]));
  9259. assert(!isinf(dx[i]));
  9260. }
  9261. #endif
  9262. }
  9263. }
  9264. static void ggml_compute_forward_soft_max_back(
  9265. const struct ggml_compute_params * params,
  9266. const struct ggml_tensor * src0,
  9267. const struct ggml_tensor * src1,
  9268. struct ggml_tensor * dst) {
  9269. switch (src0->type) {
  9270. case GGML_TYPE_F32:
  9271. {
  9272. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9273. } break;
  9274. default:
  9275. {
  9276. GGML_ASSERT(false);
  9277. } break;
  9278. }
  9279. }
  9280. // ggml_compute_forward_alibi
  9281. static void ggml_compute_forward_alibi_f32(
  9282. const struct ggml_compute_params * params,
  9283. const struct ggml_tensor * src0,
  9284. struct ggml_tensor * dst) {
  9285. assert(params->ith == 0);
  9286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9287. return;
  9288. }
  9289. //const int n_past = ((int32_t *) dst->op_params)[0];
  9290. const int n_head = ((int32_t *) dst->op_params)[1];
  9291. float max_bias;
  9292. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9293. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9294. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9295. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9296. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9297. const int64_t n = ggml_nrows(src0);
  9298. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9299. const size_t nb0 = src0->nb[0];
  9300. const size_t nb1 = src0->nb[1];
  9301. const size_t nb2 = src0->nb[2];
  9302. //const int nb3 = src0->nb[3];
  9303. GGML_ASSERT(nb0 == sizeof(float));
  9304. GGML_ASSERT(n_head == ne2);
  9305. // add alibi to src0 (KQ_scaled)
  9306. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9307. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9308. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9309. for (int64_t i = 0; i < ne0; i++) {
  9310. for (int64_t j = 0; j < ne1; j++) {
  9311. for (int64_t k = 0; k < ne2_ne3; k++) {
  9312. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9313. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9314. // TODO: k*nb2 or k*nb3
  9315. float m_k;
  9316. if (k < n_heads_log2_floor) {
  9317. m_k = powf(m0, k + 1);
  9318. } else {
  9319. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9320. }
  9321. pdst[0] = i * m_k + src[0];
  9322. }
  9323. }
  9324. }
  9325. }
  9326. static void ggml_compute_forward_alibi_f16(
  9327. const struct ggml_compute_params * params,
  9328. const struct ggml_tensor * src0,
  9329. struct ggml_tensor * dst) {
  9330. assert(params->ith == 0);
  9331. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9332. return;
  9333. }
  9334. //const int n_past = ((int32_t *) dst->op_params)[0];
  9335. const int n_head = ((int32_t *) dst->op_params)[1];
  9336. float max_bias;
  9337. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9338. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9339. const int ne1 = src0->ne[1]; // seq_len_without_past
  9340. const int ne2 = src0->ne[2]; // n_head -> this is k
  9341. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9342. const int n = ggml_nrows(src0);
  9343. const int ne2_ne3 = n/ne1; // ne2*ne3
  9344. const int nb0 = src0->nb[0];
  9345. const int nb1 = src0->nb[1];
  9346. const int nb2 = src0->nb[2];
  9347. //const int nb3 = src0->nb[3];
  9348. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9349. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9350. GGML_ASSERT(n_head == ne2);
  9351. // add alibi to src0 (KQ_scaled)
  9352. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9353. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9354. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9355. for (int i = 0; i < ne0; i++) {
  9356. for (int j = 0; j < ne1; j++) {
  9357. for (int k = 0; k < ne2_ne3; k++) {
  9358. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9359. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9360. // TODO: k*nb2 or k*nb3
  9361. float m_k;
  9362. if (k < n_heads_log2_floor) {
  9363. m_k = powf(m0, k + 1);
  9364. } else {
  9365. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9366. }
  9367. // we return F32
  9368. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9369. }
  9370. }
  9371. }
  9372. }
  9373. static void ggml_compute_forward_alibi(
  9374. const struct ggml_compute_params * params,
  9375. const struct ggml_tensor * src0,
  9376. struct ggml_tensor * dst) {
  9377. switch (src0->type) {
  9378. case GGML_TYPE_F16:
  9379. {
  9380. ggml_compute_forward_alibi_f16(params, src0, dst);
  9381. } break;
  9382. case GGML_TYPE_F32:
  9383. {
  9384. ggml_compute_forward_alibi_f32(params, src0, dst);
  9385. } break;
  9386. case GGML_TYPE_Q4_0:
  9387. case GGML_TYPE_Q4_1:
  9388. case GGML_TYPE_Q5_0:
  9389. case GGML_TYPE_Q5_1:
  9390. case GGML_TYPE_Q8_0:
  9391. case GGML_TYPE_Q8_1:
  9392. case GGML_TYPE_Q2_K:
  9393. case GGML_TYPE_Q3_K:
  9394. case GGML_TYPE_Q4_K:
  9395. case GGML_TYPE_Q5_K:
  9396. case GGML_TYPE_Q6_K:
  9397. case GGML_TYPE_IQ2_XXS:
  9398. case GGML_TYPE_Q8_K:
  9399. case GGML_TYPE_I8:
  9400. case GGML_TYPE_I16:
  9401. case GGML_TYPE_I32:
  9402. case GGML_TYPE_COUNT:
  9403. {
  9404. GGML_ASSERT(false);
  9405. } break;
  9406. }
  9407. }
  9408. // ggml_compute_forward_clamp
  9409. static void ggml_compute_forward_clamp_f32(
  9410. const struct ggml_compute_params * params,
  9411. const struct ggml_tensor * src0,
  9412. struct ggml_tensor * dst) {
  9413. assert(params->ith == 0);
  9414. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9415. return;
  9416. }
  9417. float min;
  9418. float max;
  9419. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9420. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9421. const int ith = params->ith;
  9422. const int nth = params->nth;
  9423. const int n = ggml_nrows(src0);
  9424. const int nc = src0->ne[0];
  9425. const size_t nb00 = src0->nb[0];
  9426. const size_t nb01 = src0->nb[1];
  9427. const size_t nb0 = dst->nb[0];
  9428. const size_t nb1 = dst->nb[1];
  9429. GGML_ASSERT( nb0 == sizeof(float));
  9430. GGML_ASSERT(nb00 == sizeof(float));
  9431. for (int j = ith; j < n; j += nth) {
  9432. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9433. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9434. for (int i = 0; i < nc; i++) {
  9435. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9436. }
  9437. }
  9438. }
  9439. static void ggml_compute_forward_clamp(
  9440. const struct ggml_compute_params * params,
  9441. const struct ggml_tensor * src0,
  9442. struct ggml_tensor * dst) {
  9443. switch (src0->type) {
  9444. case GGML_TYPE_F32:
  9445. {
  9446. ggml_compute_forward_clamp_f32(params, src0, dst);
  9447. } break;
  9448. case GGML_TYPE_F16:
  9449. case GGML_TYPE_Q4_0:
  9450. case GGML_TYPE_Q4_1:
  9451. case GGML_TYPE_Q5_0:
  9452. case GGML_TYPE_Q5_1:
  9453. case GGML_TYPE_Q8_0:
  9454. case GGML_TYPE_Q8_1:
  9455. case GGML_TYPE_Q2_K:
  9456. case GGML_TYPE_Q3_K:
  9457. case GGML_TYPE_Q4_K:
  9458. case GGML_TYPE_Q5_K:
  9459. case GGML_TYPE_Q6_K:
  9460. case GGML_TYPE_IQ2_XXS:
  9461. case GGML_TYPE_Q8_K:
  9462. case GGML_TYPE_I8:
  9463. case GGML_TYPE_I16:
  9464. case GGML_TYPE_I32:
  9465. case GGML_TYPE_COUNT:
  9466. {
  9467. GGML_ASSERT(false);
  9468. } break;
  9469. }
  9470. }
  9471. // ggml_compute_forward_rope
  9472. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9473. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9474. return 1 - MIN(1, MAX(0, y));
  9475. }
  9476. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9477. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9478. static void rope_yarn(
  9479. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9480. float * cos_theta, float * sin_theta
  9481. ) {
  9482. // Get n-d rotational scaling corrected for extrapolation
  9483. float theta_interp = freq_scale * theta_extrap;
  9484. float theta = theta_interp;
  9485. if (ext_factor != 0.0f) {
  9486. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9487. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9488. // Get n-d magnitude scaling corrected for interpolation
  9489. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9490. }
  9491. *cos_theta = cosf(theta) * mscale;
  9492. *sin_theta = sinf(theta) * mscale;
  9493. }
  9494. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9495. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9496. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9497. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9498. }
  9499. void ggml_rope_yarn_corr_dims(
  9500. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9501. ) {
  9502. // start and end correction dims
  9503. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9504. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9505. }
  9506. static void ggml_compute_forward_rope_f32(
  9507. const struct ggml_compute_params * params,
  9508. const struct ggml_tensor * src0,
  9509. const struct ggml_tensor * src1,
  9510. struct ggml_tensor * dst,
  9511. const bool forward) {
  9512. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9513. return;
  9514. }
  9515. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9516. // these two only relevant for xPos RoPE:
  9517. float xpos_base;
  9518. bool xpos_down;
  9519. //const int n_past = ((int32_t *) dst->op_params)[0];
  9520. const int n_dims = ((int32_t *) dst->op_params)[1];
  9521. const int mode = ((int32_t *) dst->op_params)[2];
  9522. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9523. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9524. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9525. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9526. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9527. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9528. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9529. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9530. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9531. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9532. GGML_TENSOR_UNARY_OP_LOCALS
  9533. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9534. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9535. GGML_ASSERT(nb00 == sizeof(float));
  9536. const int ith = params->ith;
  9537. const int nth = params->nth;
  9538. const int nr = ggml_nrows(dst);
  9539. GGML_ASSERT(n_dims <= ne0);
  9540. GGML_ASSERT(n_dims % 2 == 0);
  9541. // rows per thread
  9542. const int dr = (nr + nth - 1)/nth;
  9543. // row range for this thread
  9544. const int ir0 = dr*ith;
  9545. const int ir1 = MIN(ir0 + dr, nr);
  9546. // row index used to determine which thread to use
  9547. int ir = 0;
  9548. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9549. const float inv_ndims = -1.f/n_dims;
  9550. float corr_dims[2];
  9551. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9552. const bool is_neox = mode & 2;
  9553. const bool is_glm = mode & 4;
  9554. // backward process uses inverse rotation by cos and sin.
  9555. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9556. // this essentially just switches the sign of sin.
  9557. const float sin_sign = forward ? 1.0f : -1.0f;
  9558. const int32_t * pos = (const int32_t *) src1->data;
  9559. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9560. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9561. const int64_t p = pos[i2];
  9562. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9563. if (ir++ < ir0) continue;
  9564. if (ir > ir1) break;
  9565. float theta_base = (float)p;
  9566. if (is_glm) {
  9567. theta_base = MIN(p, n_ctx - 2);
  9568. float block_theta = MAX(p - (n_ctx - 2), 0);
  9569. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9570. const float cos_theta = cosf(theta_base);
  9571. const float sin_theta = sinf(theta_base) * sin_sign;
  9572. const float cos_block_theta = cosf(block_theta);
  9573. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9574. theta_base *= theta_scale;
  9575. block_theta *= theta_scale;
  9576. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9577. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9578. const float x0 = src[0];
  9579. const float x1 = src[n_dims/2];
  9580. const float x2 = src[n_dims];
  9581. const float x3 = src[n_dims/2*3];
  9582. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9583. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9584. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9585. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9586. }
  9587. } else if (!is_neox) {
  9588. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9589. float cos_theta, sin_theta;
  9590. rope_yarn(
  9591. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9592. );
  9593. sin_theta *= sin_sign;
  9594. // zeta scaling for xPos only:
  9595. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9596. if (xpos_down) zeta = 1.0f / zeta;
  9597. theta_base *= theta_scale;
  9598. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9599. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9600. const float x0 = src[0];
  9601. const float x1 = src[1];
  9602. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9603. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9604. }
  9605. } else {
  9606. // TODO: this might be wrong for ne0 != n_dims - need double check
  9607. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9608. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9609. theta_base *= freq_scale;
  9610. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9611. if (ic < n_dims) {
  9612. const int64_t ib = 0;
  9613. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9614. float cur_rot = inv_ndims * ic - ib;
  9615. float cos_theta, sin_theta;
  9616. rope_yarn(
  9617. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9618. &cos_theta, &sin_theta
  9619. );
  9620. sin_theta *= sin_sign;
  9621. theta_base *= theta_scale;
  9622. const int64_t i0 = ib*n_dims + ic/2;
  9623. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9624. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9625. const float x0 = src[0];
  9626. const float x1 = src[n_dims/2];
  9627. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9628. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9629. } else {
  9630. const int64_t i0 = ic;
  9631. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9632. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9633. dst_data[0] = src[0];
  9634. dst_data[1] = src[1];
  9635. }
  9636. }
  9637. }
  9638. }
  9639. }
  9640. }
  9641. }
  9642. static void ggml_compute_forward_rope_f16(
  9643. const struct ggml_compute_params * params,
  9644. const struct ggml_tensor * src0,
  9645. const struct ggml_tensor * src1,
  9646. struct ggml_tensor * dst,
  9647. const bool forward) {
  9648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9649. return;
  9650. }
  9651. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9652. //const int n_past = ((int32_t *) dst->op_params)[0];
  9653. const int n_dims = ((int32_t *) dst->op_params)[1];
  9654. const int mode = ((int32_t *) dst->op_params)[2];
  9655. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9656. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9657. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9658. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9659. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9660. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9661. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9662. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9663. GGML_TENSOR_UNARY_OP_LOCALS
  9664. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9665. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9666. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9667. const int ith = params->ith;
  9668. const int nth = params->nth;
  9669. const int nr = ggml_nrows(dst);
  9670. GGML_ASSERT(n_dims <= ne0);
  9671. GGML_ASSERT(n_dims % 2 == 0);
  9672. // rows per thread
  9673. const int dr = (nr + nth - 1)/nth;
  9674. // row range for this thread
  9675. const int ir0 = dr*ith;
  9676. const int ir1 = MIN(ir0 + dr, nr);
  9677. // row index used to determine which thread to use
  9678. int ir = 0;
  9679. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9680. const float inv_ndims = -1.f/n_dims;
  9681. float corr_dims[2];
  9682. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9683. const bool is_neox = mode & 2;
  9684. const bool is_glm = mode & 4;
  9685. // backward process uses inverse rotation by cos and sin.
  9686. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9687. // this essentially just switches the sign of sin.
  9688. const float sin_sign = forward ? 1.0f : -1.0f;
  9689. const int32_t * pos = (const int32_t *) src1->data;
  9690. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9691. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9692. const int64_t p = pos[i2];
  9693. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9694. if (ir++ < ir0) continue;
  9695. if (ir > ir1) break;
  9696. float theta_base = (float)p;
  9697. if (is_glm) {
  9698. theta_base = MIN(p, n_ctx - 2);
  9699. float block_theta = MAX(p - (n_ctx - 2), 0);
  9700. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9701. const float cos_theta = cosf(theta_base);
  9702. const float sin_theta = sinf(theta_base) * sin_sign;
  9703. const float cos_block_theta = cosf(block_theta);
  9704. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9705. theta_base *= theta_scale;
  9706. block_theta *= theta_scale;
  9707. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9708. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9709. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9710. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9711. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9712. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9713. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9714. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9715. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9716. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9717. }
  9718. } else if (!is_neox) {
  9719. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9720. float cos_theta, sin_theta;
  9721. rope_yarn(
  9722. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9723. );
  9724. sin_theta *= sin_sign;
  9725. theta_base *= theta_scale;
  9726. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9727. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9728. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9729. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9730. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9731. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9732. }
  9733. } else {
  9734. // TODO: this might be wrong for ne0 != n_dims - need double check
  9735. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9736. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9737. theta_base *= freq_scale;
  9738. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9739. if (ic < n_dims) {
  9740. const int64_t ib = 0;
  9741. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9742. float cur_rot = inv_ndims * ic - ib;
  9743. float cos_theta, sin_theta;
  9744. rope_yarn(
  9745. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9746. &cos_theta, &sin_theta
  9747. );
  9748. sin_theta *= sin_sign;
  9749. theta_base *= theta_scale;
  9750. const int64_t i0 = ib*n_dims + ic/2;
  9751. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9752. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9753. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9754. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9755. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9756. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9757. } else {
  9758. const int64_t i0 = ic;
  9759. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9760. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9761. dst_data[0] = src[0];
  9762. dst_data[1] = src[1];
  9763. }
  9764. }
  9765. }
  9766. }
  9767. }
  9768. }
  9769. }
  9770. static void ggml_compute_forward_rope(
  9771. const struct ggml_compute_params * params,
  9772. const struct ggml_tensor * src0,
  9773. const struct ggml_tensor * src1,
  9774. struct ggml_tensor * dst) {
  9775. switch (src0->type) {
  9776. case GGML_TYPE_F16:
  9777. {
  9778. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9779. } break;
  9780. case GGML_TYPE_F32:
  9781. {
  9782. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9783. } break;
  9784. default:
  9785. {
  9786. GGML_ASSERT(false);
  9787. } break;
  9788. }
  9789. }
  9790. // ggml_compute_forward_rope_back
  9791. static void ggml_compute_forward_rope_back(
  9792. const struct ggml_compute_params * params,
  9793. const struct ggml_tensor * src0,
  9794. const struct ggml_tensor * src1,
  9795. struct ggml_tensor * dst) {
  9796. switch (src0->type) {
  9797. case GGML_TYPE_F16:
  9798. {
  9799. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9800. } break;
  9801. case GGML_TYPE_F32:
  9802. {
  9803. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9804. } break;
  9805. default:
  9806. {
  9807. GGML_ASSERT(false);
  9808. } break;
  9809. }
  9810. }
  9811. // ggml_compute_forward_conv_transpose_1d
  9812. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9813. const struct ggml_compute_params * params,
  9814. const struct ggml_tensor * src0,
  9815. const struct ggml_tensor * src1,
  9816. struct ggml_tensor * dst) {
  9817. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9818. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9819. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9820. int64_t t0 = ggml_perf_time_us();
  9821. UNUSED(t0);
  9822. GGML_TENSOR_BINARY_OP_LOCALS
  9823. const int ith = params->ith;
  9824. const int nth = params->nth;
  9825. const int nk = ne00*ne01*ne02;
  9826. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9827. GGML_ASSERT(nb10 == sizeof(float));
  9828. if (params->type == GGML_TASK_INIT) {
  9829. memset(params->wdata, 0, params->wsize);
  9830. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9831. {
  9832. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9833. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9834. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9835. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9836. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9837. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9838. dst_data[i00*ne02 + i02] = src[i00];
  9839. }
  9840. }
  9841. }
  9842. }
  9843. // permute source data (src1) from (L x Cin) to (Cin x L)
  9844. {
  9845. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9846. ggml_fp16_t * dst_data = wdata;
  9847. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9848. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9849. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9850. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9851. }
  9852. }
  9853. }
  9854. // need to zero dst since we are accumulating into it
  9855. memset(dst->data, 0, ggml_nbytes(dst));
  9856. return;
  9857. }
  9858. if (params->type == GGML_TASK_FINALIZE) {
  9859. return;
  9860. }
  9861. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9862. // total rows in dst
  9863. const int nr = ne1;
  9864. // rows per thread
  9865. const int dr = (nr + nth - 1)/nth;
  9866. // row range for this thread
  9867. const int ir0 = dr*ith;
  9868. const int ir1 = MIN(ir0 + dr, nr);
  9869. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9870. ggml_fp16_t * const wdata_src = wdata + nk;
  9871. for (int i1 = ir0; i1 < ir1; i1++) {
  9872. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9873. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9874. for (int i10 = 0; i10 < ne10; i10++) {
  9875. const int i1n = i10*ne11;
  9876. for (int i00 = 0; i00 < ne00; i00++) {
  9877. float v = 0;
  9878. ggml_vec_dot_f16(ne02, &v,
  9879. (ggml_fp16_t *) wdata_src + i1n,
  9880. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9881. dst_data[i10*s0 + i00] += v;
  9882. }
  9883. }
  9884. }
  9885. }
  9886. static void ggml_compute_forward_conv_transpose_1d_f32(
  9887. const struct ggml_compute_params * params,
  9888. const struct ggml_tensor * src0,
  9889. const struct ggml_tensor * src1,
  9890. struct ggml_tensor * dst) {
  9891. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9892. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9893. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9894. int64_t t0 = ggml_perf_time_us();
  9895. UNUSED(t0);
  9896. GGML_TENSOR_BINARY_OP_LOCALS
  9897. const int ith = params->ith;
  9898. const int nth = params->nth;
  9899. const int nk = ne00*ne01*ne02;
  9900. GGML_ASSERT(nb00 == sizeof(float));
  9901. GGML_ASSERT(nb10 == sizeof(float));
  9902. if (params->type == GGML_TASK_INIT) {
  9903. memset(params->wdata, 0, params->wsize);
  9904. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9905. {
  9906. float * const wdata = (float *) params->wdata + 0;
  9907. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9908. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9909. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9910. float * dst_data = wdata + i01*ne00*ne02;
  9911. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9912. dst_data[i00*ne02 + i02] = src[i00];
  9913. }
  9914. }
  9915. }
  9916. }
  9917. // prepare source data (src1)
  9918. {
  9919. float * const wdata = (float *) params->wdata + nk;
  9920. float * dst_data = wdata;
  9921. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9922. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9923. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9924. dst_data[i10*ne11 + i11] = src[i10];
  9925. }
  9926. }
  9927. }
  9928. // need to zero dst since we are accumulating into it
  9929. memset(dst->data, 0, ggml_nbytes(dst));
  9930. return;
  9931. }
  9932. if (params->type == GGML_TASK_FINALIZE) {
  9933. return;
  9934. }
  9935. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9936. // total rows in dst
  9937. const int nr = ne1;
  9938. // rows per thread
  9939. const int dr = (nr + nth - 1)/nth;
  9940. // row range for this thread
  9941. const int ir0 = dr*ith;
  9942. const int ir1 = MIN(ir0 + dr, nr);
  9943. float * const wdata = (float *) params->wdata + 0;
  9944. float * const wdata_src = wdata + nk;
  9945. for (int i1 = ir0; i1 < ir1; i1++) {
  9946. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9947. float * wdata_kernel = wdata + i1*ne02*ne00;
  9948. for (int i10 = 0; i10 < ne10; i10++) {
  9949. const int i1n = i10*ne11;
  9950. for (int i00 = 0; i00 < ne00; i00++) {
  9951. float v = 0;
  9952. ggml_vec_dot_f32(ne02, &v,
  9953. wdata_src + i1n,
  9954. wdata_kernel + i00*ne02);
  9955. dst_data[i10*s0 + i00] += v;
  9956. }
  9957. }
  9958. }
  9959. }
  9960. static void ggml_compute_forward_conv_transpose_1d(
  9961. const struct ggml_compute_params * params,
  9962. const struct ggml_tensor * src0,
  9963. const struct ggml_tensor * src1,
  9964. struct ggml_tensor * dst) {
  9965. switch (src0->type) {
  9966. case GGML_TYPE_F16:
  9967. {
  9968. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9969. } break;
  9970. case GGML_TYPE_F32:
  9971. {
  9972. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9973. } break;
  9974. default:
  9975. {
  9976. GGML_ASSERT(false);
  9977. } break;
  9978. }
  9979. }
  9980. // src0: kernel [OC, IC, KH, KW]
  9981. // src1: image [N, IC, IH, IW]
  9982. // dst: result [N, OH, OW, IC*KH*KW]
  9983. static void ggml_compute_forward_im2col_f16(
  9984. const struct ggml_compute_params * params,
  9985. const struct ggml_tensor * src0,
  9986. const struct ggml_tensor * src1,
  9987. struct ggml_tensor * dst) {
  9988. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9989. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9990. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9991. int64_t t0 = ggml_perf_time_us();
  9992. UNUSED(t0);
  9993. GGML_TENSOR_BINARY_OP_LOCALS;
  9994. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  9995. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  9996. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  9997. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  9998. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  9999. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10000. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10001. const int ith = params->ith;
  10002. const int nth = params->nth;
  10003. const int64_t N = is_2D ? ne13 : ne12;
  10004. const int64_t IC = is_2D ? ne12 : ne11;
  10005. const int64_t IH = is_2D ? ne11 : 1;
  10006. const int64_t IW = ne10;
  10007. const int64_t KH = is_2D ? ne01 : 1;
  10008. const int64_t KW = ne00;
  10009. const int64_t OH = is_2D ? ne2 : 1;
  10010. const int64_t OW = ne1;
  10011. int ofs0 = is_2D ? nb13 : nb12;
  10012. int ofs1 = is_2D ? nb12 : nb11;
  10013. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10014. GGML_ASSERT(nb10 == sizeof(float));
  10015. if (params->type == GGML_TASK_INIT) {
  10016. return;
  10017. }
  10018. if (params->type == GGML_TASK_FINALIZE) {
  10019. return;
  10020. }
  10021. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10022. {
  10023. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10024. for (int64_t in = 0; in < N; in++) {
  10025. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10026. for (int64_t iow = 0; iow < OW; iow++) {
  10027. for (int64_t iic = ith; iic < IC; iic += nth) {
  10028. // micro kernel
  10029. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10030. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10031. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10032. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10033. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10034. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10035. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10036. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10037. } else {
  10038. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10039. }
  10040. }
  10041. }
  10042. }
  10043. }
  10044. }
  10045. }
  10046. }
  10047. }
  10048. static void ggml_compute_forward_im2col(
  10049. const struct ggml_compute_params * params,
  10050. const struct ggml_tensor * src0,
  10051. const struct ggml_tensor * src1,
  10052. struct ggml_tensor * dst) {
  10053. switch (src0->type) {
  10054. case GGML_TYPE_F16:
  10055. {
  10056. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10057. } break;
  10058. case GGML_TYPE_F32:
  10059. {
  10060. GGML_ASSERT(false);
  10061. } break;
  10062. default:
  10063. {
  10064. GGML_ASSERT(false);
  10065. } break;
  10066. }
  10067. }
  10068. // ggml_compute_forward_conv_transpose_2d
  10069. static void ggml_compute_forward_conv_transpose_2d(
  10070. const struct ggml_compute_params * params,
  10071. const struct ggml_tensor * src0,
  10072. const struct ggml_tensor * src1,
  10073. struct ggml_tensor * dst) {
  10074. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10075. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10076. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10077. int64_t t0 = ggml_perf_time_us();
  10078. UNUSED(t0);
  10079. GGML_TENSOR_BINARY_OP_LOCALS
  10080. const int ith = params->ith;
  10081. const int nth = params->nth;
  10082. const int nk = ne00*ne01*ne02*ne03;
  10083. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10084. GGML_ASSERT(nb10 == sizeof(float));
  10085. if (params->type == GGML_TASK_INIT) {
  10086. memset(params->wdata, 0, params->wsize);
  10087. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10088. {
  10089. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10090. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10091. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10092. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10093. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10094. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10095. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10096. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10097. }
  10098. }
  10099. }
  10100. }
  10101. }
  10102. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10103. {
  10104. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10105. for (int i12 = 0; i12 < ne12; i12++) {
  10106. for (int i11 = 0; i11 < ne11; i11++) {
  10107. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10108. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10109. for (int i10 = 0; i10 < ne10; i10++) {
  10110. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10111. }
  10112. }
  10113. }
  10114. }
  10115. memset(dst->data, 0, ggml_nbytes(dst));
  10116. return;
  10117. }
  10118. if (params->type == GGML_TASK_FINALIZE) {
  10119. return;
  10120. }
  10121. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10122. // total patches in dst
  10123. const int np = ne2;
  10124. // patches per thread
  10125. const int dp = (np + nth - 1)/nth;
  10126. // patch range for this thread
  10127. const int ip0 = dp*ith;
  10128. const int ip1 = MIN(ip0 + dp, np);
  10129. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10130. ggml_fp16_t * const wdata_src = wdata + nk;
  10131. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10132. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10133. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10134. for (int i11 = 0; i11 < ne11; i11++) {
  10135. for (int i10 = 0; i10 < ne10; i10++) {
  10136. const int i1n = i11*ne10*ne12 + i10*ne12;
  10137. for (int i01 = 0; i01 < ne01; i01++) {
  10138. for (int i00 = 0; i00 < ne00; i00++) {
  10139. float v = 0;
  10140. ggml_vec_dot_f16(ne03, &v,
  10141. wdata_src + i1n,
  10142. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10143. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10144. }
  10145. }
  10146. }
  10147. }
  10148. }
  10149. }
  10150. // ggml_compute_forward_pool_1d_sk_p0
  10151. static void ggml_compute_forward_pool_1d_sk_p0(
  10152. const struct ggml_compute_params * params,
  10153. const enum ggml_op_pool op,
  10154. const struct ggml_tensor * src,
  10155. const int k,
  10156. struct ggml_tensor * dst) {
  10157. assert(src->type == GGML_TYPE_F32);
  10158. assert(params->ith == 0);
  10159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10160. return;
  10161. }
  10162. const char * cdata = (const char *)src->data;
  10163. const char * const data_end = cdata + ggml_nbytes(src);
  10164. float * drow = (float *)dst->data;
  10165. const int64_t rs = dst->ne[0];
  10166. while (cdata < data_end) {
  10167. const float * const srow = (const float *)cdata;
  10168. int j = 0;
  10169. for (int64_t i = 0; i < rs; ++i) {
  10170. switch (op) {
  10171. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10172. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10173. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10174. }
  10175. for (int ki = 0; ki < k; ++ki) {
  10176. switch (op) {
  10177. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10178. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10179. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10180. }
  10181. ++j;
  10182. }
  10183. switch (op) {
  10184. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10185. case GGML_OP_POOL_MAX: break;
  10186. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10187. }
  10188. }
  10189. cdata += src->nb[1];
  10190. drow += rs;
  10191. }
  10192. }
  10193. // ggml_compute_forward_pool_1d
  10194. static void ggml_compute_forward_pool_1d(
  10195. const struct ggml_compute_params * params,
  10196. const struct ggml_tensor * src0,
  10197. struct ggml_tensor * dst) {
  10198. const int32_t * opts = (const int32_t *)dst->op_params;
  10199. enum ggml_op_pool op = opts[0];
  10200. const int k0 = opts[1];
  10201. const int s0 = opts[2];
  10202. const int p0 = opts[3];
  10203. GGML_ASSERT(p0 == 0); // padding not supported
  10204. GGML_ASSERT(k0 == s0); // only s = k supported
  10205. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10206. }
  10207. // ggml_compute_forward_pool_2d
  10208. static void ggml_compute_forward_pool_2d(
  10209. const struct ggml_compute_params * params,
  10210. const struct ggml_tensor * src,
  10211. struct ggml_tensor * dst) {
  10212. assert(src->type == GGML_TYPE_F32);
  10213. assert(params->ith == 0);
  10214. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10215. return;
  10216. }
  10217. const int32_t * opts = (const int32_t *)dst->op_params;
  10218. enum ggml_op_pool op = opts[0];
  10219. const int k0 = opts[1];
  10220. const int k1 = opts[2];
  10221. const int s0 = opts[3];
  10222. const int s1 = opts[4];
  10223. const int p0 = opts[5];
  10224. const int p1 = opts[6];
  10225. const char * cdata = (const char*)src->data;
  10226. const char * const data_end = cdata + ggml_nbytes(src);
  10227. const int64_t px = dst->ne[0];
  10228. const int64_t py = dst->ne[1];
  10229. const int64_t pa = px * py;
  10230. float * dplane = (float *)dst->data;
  10231. const int ka = k0 * k1;
  10232. const int offset0 = -p0;
  10233. const int offset1 = -p1;
  10234. while (cdata < data_end) {
  10235. for (int oy = 0; oy < py; ++oy) {
  10236. float * const drow = dplane + oy * px;
  10237. for (int ox = 0; ox < px; ++ox) {
  10238. float * const out = drow + ox;
  10239. switch (op) {
  10240. case GGML_OP_POOL_AVG: *out = 0; break;
  10241. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10242. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10243. }
  10244. const int ix = offset0 + ox * s0;
  10245. const int iy = offset1 + oy * s1;
  10246. for (int ky = 0; ky < k1; ++ky) {
  10247. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10248. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10249. for (int kx = 0; kx < k0; ++kx) {
  10250. int j = ix + kx;
  10251. if (j < 0 || j >= src->ne[0]) continue;
  10252. switch (op) {
  10253. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10254. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10255. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10256. }
  10257. }
  10258. }
  10259. switch (op) {
  10260. case GGML_OP_POOL_AVG: *out /= ka; break;
  10261. case GGML_OP_POOL_MAX: break;
  10262. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10263. }
  10264. }
  10265. }
  10266. cdata += src->nb[2];
  10267. dplane += pa;
  10268. }
  10269. }
  10270. // ggml_compute_forward_upscale
  10271. static void ggml_compute_forward_upscale_f32(
  10272. const struct ggml_compute_params * params,
  10273. const struct ggml_tensor * src0,
  10274. struct ggml_tensor * dst) {
  10275. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10276. return;
  10277. }
  10278. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10279. const int ith = params->ith;
  10280. const int nth = params->nth;
  10281. GGML_TENSOR_UNARY_OP_LOCALS
  10282. const int scale_factor = dst->op_params[0];
  10283. // TODO: optimize
  10284. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10285. const int64_t i03 = i3;
  10286. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10287. const int64_t i02 = i2;
  10288. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10289. const int64_t i01 = i1 / scale_factor;
  10290. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10291. const int64_t i00 = i0 / scale_factor;
  10292. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10293. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10294. *y = *x;
  10295. }
  10296. }
  10297. }
  10298. }
  10299. }
  10300. static void ggml_compute_forward_upscale(
  10301. const struct ggml_compute_params * params,
  10302. const struct ggml_tensor * src0,
  10303. struct ggml_tensor * dst) {
  10304. switch (src0->type) {
  10305. case GGML_TYPE_F32:
  10306. {
  10307. ggml_compute_forward_upscale_f32(params, src0, dst);
  10308. } break;
  10309. default:
  10310. {
  10311. GGML_ASSERT(false);
  10312. } break;
  10313. }
  10314. }
  10315. // ggml_compute_forward_pad
  10316. static void ggml_compute_forward_pad_f32(
  10317. const struct ggml_compute_params * params,
  10318. const struct ggml_tensor * src0,
  10319. struct ggml_tensor * dst) {
  10320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10321. return;
  10322. }
  10323. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10324. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10325. const int ith = params->ith;
  10326. const int nth = params->nth;
  10327. GGML_TENSOR_UNARY_OP_LOCALS
  10328. float * dst_ptr = (float *) dst->data;
  10329. // TODO: optimize
  10330. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10331. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10332. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10333. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10334. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10335. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10336. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10337. dst_ptr[dst_idx] = *src_ptr;
  10338. } else {
  10339. dst_ptr[dst_idx] = 0;
  10340. }
  10341. }
  10342. }
  10343. }
  10344. }
  10345. }
  10346. static void ggml_compute_forward_pad(
  10347. const struct ggml_compute_params * params,
  10348. const struct ggml_tensor * src0,
  10349. struct ggml_tensor * dst) {
  10350. switch (src0->type) {
  10351. case GGML_TYPE_F32:
  10352. {
  10353. ggml_compute_forward_pad_f32(params, src0, dst);
  10354. } break;
  10355. default:
  10356. {
  10357. GGML_ASSERT(false);
  10358. } break;
  10359. }
  10360. }
  10361. // ggml_compute_forward_argsort
  10362. static void ggml_compute_forward_argsort_f32(
  10363. const struct ggml_compute_params * params,
  10364. const struct ggml_tensor * src0,
  10365. struct ggml_tensor * dst) {
  10366. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10367. return;
  10368. }
  10369. GGML_TENSOR_UNARY_OP_LOCALS
  10370. GGML_ASSERT(nb0 == sizeof(float));
  10371. const int ith = params->ith;
  10372. const int nth = params->nth;
  10373. const int64_t nr = ggml_nrows(src0);
  10374. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10375. for (int64_t i = ith; i < nr; i += nth) {
  10376. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10377. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10378. for (int64_t j = 0; j < ne0; j++) {
  10379. dst_data[j] = j;
  10380. }
  10381. // C doesn't have a functional sort, so we do a bubble sort instead
  10382. for (int64_t j = 0; j < ne0; j++) {
  10383. for (int64_t k = j + 1; k < ne0; k++) {
  10384. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10385. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10386. int32_t tmp = dst_data[j];
  10387. dst_data[j] = dst_data[k];
  10388. dst_data[k] = tmp;
  10389. }
  10390. }
  10391. }
  10392. }
  10393. }
  10394. static void ggml_compute_forward_argsort(
  10395. const struct ggml_compute_params * params,
  10396. const struct ggml_tensor * src0,
  10397. struct ggml_tensor * dst) {
  10398. switch (src0->type) {
  10399. case GGML_TYPE_F32:
  10400. {
  10401. ggml_compute_forward_argsort_f32(params, src0, dst);
  10402. } break;
  10403. default:
  10404. {
  10405. GGML_ASSERT(false);
  10406. } break;
  10407. }
  10408. }
  10409. // ggml_compute_forward_flash_attn
  10410. static void ggml_compute_forward_flash_attn_f32(
  10411. const struct ggml_compute_params * params,
  10412. const struct ggml_tensor * q,
  10413. const struct ggml_tensor * k,
  10414. const struct ggml_tensor * v,
  10415. const bool masked,
  10416. struct ggml_tensor * dst) {
  10417. int64_t t0 = ggml_perf_time_us();
  10418. UNUSED(t0);
  10419. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10420. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10421. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10422. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10423. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10424. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10425. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10426. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10427. const int ith = params->ith;
  10428. const int nth = params->nth;
  10429. const int64_t D = neq0;
  10430. const int64_t N = neq1;
  10431. const int64_t P = nek1 - N;
  10432. const int64_t M = P + N;
  10433. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10434. GGML_ASSERT(ne0 == D);
  10435. GGML_ASSERT(ne1 == N);
  10436. GGML_ASSERT(P >= 0);
  10437. GGML_ASSERT(nbq0 == sizeof(float));
  10438. GGML_ASSERT(nbk0 == sizeof(float));
  10439. GGML_ASSERT(nbv0 == sizeof(float));
  10440. GGML_ASSERT(neq0 == D);
  10441. GGML_ASSERT(nek0 == D);
  10442. GGML_ASSERT(nev1 == D);
  10443. GGML_ASSERT(neq1 == N);
  10444. GGML_ASSERT(nek1 == N + P);
  10445. GGML_ASSERT(nev1 == D);
  10446. // dst cannot be transposed or permuted
  10447. GGML_ASSERT(nb0 == sizeof(float));
  10448. GGML_ASSERT(nb0 <= nb1);
  10449. GGML_ASSERT(nb1 <= nb2);
  10450. GGML_ASSERT(nb2 <= nb3);
  10451. if (params->type == GGML_TASK_INIT) {
  10452. return;
  10453. }
  10454. if (params->type == GGML_TASK_FINALIZE) {
  10455. return;
  10456. }
  10457. // parallelize by q rows using ggml_vec_dot_f32
  10458. // total rows in q
  10459. const int nr = neq1*neq2*neq3;
  10460. // rows per thread
  10461. const int dr = (nr + nth - 1)/nth;
  10462. // row range for this thread
  10463. const int ir0 = dr*ith;
  10464. const int ir1 = MIN(ir0 + dr, nr);
  10465. const float scale = 1.0f/sqrtf(D);
  10466. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10467. for (int ir = ir0; ir < ir1; ++ir) {
  10468. // q indices
  10469. const int iq3 = ir/(neq2*neq1);
  10470. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10471. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10472. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10473. for (int i = M; i < Mup; ++i) {
  10474. S[i] = -INFINITY;
  10475. }
  10476. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10477. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10478. // k indices
  10479. const int ik3 = iq3;
  10480. const int ik2 = iq2 % nek2;
  10481. const int ik1 = ic;
  10482. // S indices
  10483. const int i1 = ik1;
  10484. ggml_vec_dot_f32(neq0,
  10485. S + i1,
  10486. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10487. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10488. }
  10489. // scale
  10490. ggml_vec_scale_f32(masked_begin, S, scale);
  10491. for (int64_t i = masked_begin; i < M; i++) {
  10492. S[i] = -INFINITY;
  10493. }
  10494. // softmax
  10495. // exclude known -INF S[..] values from max and loop
  10496. // dont forget to set their SW values to zero
  10497. {
  10498. float max = -INFINITY;
  10499. ggml_vec_max_f32(masked_begin, &max, S);
  10500. ggml_float sum = 0.0;
  10501. {
  10502. #ifdef GGML_SOFT_MAX_ACCELERATE
  10503. max = -max;
  10504. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10505. vvexpf(S, S, &Mup);
  10506. ggml_vec_sum_f32(Mup, &sum, S);
  10507. #else
  10508. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10509. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10510. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10511. if (i >= masked_begin) {
  10512. break;
  10513. }
  10514. float * SS = S + i;
  10515. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10516. if (i + j >= masked_begin) {
  10517. break;
  10518. } else if (SS[j] == -INFINITY) {
  10519. SS[j] = 0.0f;
  10520. } else {
  10521. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10522. const float val = expf(SS[j] - max);
  10523. #else
  10524. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10525. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10526. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10527. #endif
  10528. sump[j] += (ggml_float)val;
  10529. SS[j] = val;
  10530. }
  10531. }
  10532. }
  10533. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10534. sum += sump[i];
  10535. }
  10536. #endif
  10537. }
  10538. assert(sum > 0.0);
  10539. sum = 1.0/sum;
  10540. ggml_vec_scale_f32(masked_begin, S, sum);
  10541. #ifndef NDEBUG
  10542. for (int i = 0; i < masked_begin; ++i) {
  10543. assert(!isnan(S[i]));
  10544. assert(!isinf(S[i]));
  10545. }
  10546. #endif
  10547. }
  10548. for (int64_t ic = 0; ic < nev1; ++ic) {
  10549. // dst indices
  10550. const int i1 = iq1;
  10551. const int i2 = iq2;
  10552. const int i3 = iq3;
  10553. // v indices
  10554. const int iv2 = iq2 % nev2;
  10555. const int iv3 = iq3;
  10556. ggml_vec_dot_f32(masked_begin,
  10557. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10558. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10559. S);
  10560. }
  10561. }
  10562. }
  10563. static void ggml_compute_forward_flash_attn_f16(
  10564. const struct ggml_compute_params * params,
  10565. const struct ggml_tensor * q,
  10566. const struct ggml_tensor * k,
  10567. const struct ggml_tensor * v,
  10568. const bool masked,
  10569. struct ggml_tensor * dst) {
  10570. int64_t t0 = ggml_perf_time_us();
  10571. UNUSED(t0);
  10572. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10573. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10574. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10575. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10576. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10577. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10578. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10579. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10580. const int ith = params->ith;
  10581. const int nth = params->nth;
  10582. const int64_t D = neq0;
  10583. const int64_t N = neq1;
  10584. const int64_t P = nek1 - N;
  10585. const int64_t M = P + N;
  10586. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10587. GGML_ASSERT(ne0 == D);
  10588. GGML_ASSERT(ne1 == N);
  10589. GGML_ASSERT(P >= 0);
  10590. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10591. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10592. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10593. GGML_ASSERT(neq0 == D);
  10594. GGML_ASSERT(nek0 == D);
  10595. GGML_ASSERT(nev1 == D);
  10596. GGML_ASSERT(neq1 == N);
  10597. GGML_ASSERT(nek1 == N + P);
  10598. GGML_ASSERT(nev1 == D);
  10599. // dst cannot be transposed or permuted
  10600. GGML_ASSERT(nb0 == sizeof(float));
  10601. GGML_ASSERT(nb0 <= nb1);
  10602. GGML_ASSERT(nb1 <= nb2);
  10603. GGML_ASSERT(nb2 <= nb3);
  10604. if (params->type == GGML_TASK_INIT) {
  10605. return;
  10606. }
  10607. if (params->type == GGML_TASK_FINALIZE) {
  10608. return;
  10609. }
  10610. // parallelize by q rows using ggml_vec_dot_f32
  10611. // total rows in q
  10612. const int nr = neq1*neq2*neq3;
  10613. // rows per thread
  10614. const int dr = (nr + nth - 1)/nth;
  10615. // row range for this thread
  10616. const int ir0 = dr*ith;
  10617. const int ir1 = MIN(ir0 + dr, nr);
  10618. const float scale = 1.0f/sqrtf(D);
  10619. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10620. for (int ir = ir0; ir < ir1; ++ir) {
  10621. // q indices
  10622. const int iq3 = ir/(neq2*neq1);
  10623. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10624. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10625. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10626. for (int i = M; i < Mup; ++i) {
  10627. S[i] = -INFINITY;
  10628. }
  10629. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10630. for (int64_t ic = 0; ic < nek1; ++ic) {
  10631. // k indices
  10632. const int ik3 = iq3;
  10633. const int ik2 = iq2 % nek2;
  10634. const int ik1 = ic;
  10635. // S indices
  10636. const int i1 = ik1;
  10637. ggml_vec_dot_f16(neq0,
  10638. S + i1,
  10639. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10640. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10641. }
  10642. } else {
  10643. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10644. // k indices
  10645. const int ik3 = iq3;
  10646. const int ik2 = iq2 % nek2;
  10647. const int ik1 = ic;
  10648. // S indices
  10649. const int i1 = ik1;
  10650. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10651. S + i1,
  10652. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10653. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10654. }
  10655. }
  10656. // scale
  10657. ggml_vec_scale_f32(nek1, S, scale);
  10658. if (masked) {
  10659. for (int64_t i = P; i < M; i++) {
  10660. if (i > P + iq1) {
  10661. S[i] = -INFINITY;
  10662. }
  10663. }
  10664. }
  10665. // softmax
  10666. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10667. // dont forget to set their S values to zero
  10668. {
  10669. float max = -INFINITY;
  10670. ggml_vec_max_f32(M, &max, S);
  10671. ggml_float sum = 0.0;
  10672. {
  10673. #ifdef GGML_SOFT_MAX_ACCELERATE
  10674. max = -max;
  10675. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10676. vvexpf(S, S, &Mup);
  10677. ggml_vec_sum_f32(Mup, &sum, S);
  10678. #else
  10679. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10680. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10681. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10682. float * SS = S + i;
  10683. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10684. if (SS[j] == -INFINITY) {
  10685. SS[j] = 0.0f;
  10686. } else {
  10687. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10688. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10689. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10690. sump[j] += (ggml_float)val;
  10691. SS[j] = val;
  10692. }
  10693. }
  10694. }
  10695. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10696. sum += sump[i];
  10697. }
  10698. #endif
  10699. }
  10700. assert(sum > 0.0);
  10701. sum = 1.0/sum;
  10702. ggml_vec_scale_f32(M, S, sum);
  10703. #ifndef NDEBUG
  10704. for (int i = 0; i < M; ++i) {
  10705. assert(!isnan(S[i]));
  10706. assert(!isinf(S[i]));
  10707. }
  10708. #endif
  10709. }
  10710. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10711. for (int64_t i = 0; i < M; i++) {
  10712. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10713. }
  10714. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10715. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10716. for (int64_t ic = 0; ic < nev1; ++ic) {
  10717. // dst indices
  10718. const int i1 = iq1;
  10719. const int i2 = iq2;
  10720. const int i3 = iq3;
  10721. // v indices
  10722. const int iv2 = iq2 % nev2;
  10723. const int iv3 = iq3;
  10724. ggml_vec_dot_f16(nev0,
  10725. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10726. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10727. S16);
  10728. }
  10729. } else {
  10730. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10731. // dst indices
  10732. const int i1 = iq1;
  10733. const int i2 = iq2;
  10734. const int i3 = iq3;
  10735. // v indices
  10736. const int iv2 = iq2 % nev2;
  10737. const int iv3 = iq3;
  10738. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10739. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10740. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10741. S16);
  10742. }
  10743. }
  10744. }
  10745. }
  10746. static void ggml_compute_forward_flash_attn(
  10747. const struct ggml_compute_params * params,
  10748. const struct ggml_tensor * q,
  10749. const struct ggml_tensor * k,
  10750. const struct ggml_tensor * v,
  10751. const bool masked,
  10752. struct ggml_tensor * dst) {
  10753. switch (q->type) {
  10754. case GGML_TYPE_F16:
  10755. {
  10756. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10757. } break;
  10758. case GGML_TYPE_F32:
  10759. {
  10760. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10761. } break;
  10762. default:
  10763. {
  10764. GGML_ASSERT(false);
  10765. } break;
  10766. }
  10767. }
  10768. // ggml_compute_forward_flash_ff
  10769. static void ggml_compute_forward_flash_ff_f16(
  10770. const struct ggml_compute_params * params,
  10771. const struct ggml_tensor * a, // F16
  10772. const struct ggml_tensor * b0, // F16 fc_w
  10773. const struct ggml_tensor * b1, // F32 fc_b
  10774. const struct ggml_tensor * c0, // F16 proj_w
  10775. const struct ggml_tensor * c1, // F32 proj_b
  10776. struct ggml_tensor * dst) {
  10777. int64_t t0 = ggml_perf_time_us();
  10778. UNUSED(t0);
  10779. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10780. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10781. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10782. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10783. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10784. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10785. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10786. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10787. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10788. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10789. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10790. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10791. const int ith = params->ith;
  10792. const int nth = params->nth;
  10793. const int64_t D = nea0;
  10794. //const int64_t N = nea1;
  10795. const int64_t M = neb01;
  10796. GGML_ASSERT(ne0 == nea0);
  10797. GGML_ASSERT(ne1 == nea1);
  10798. GGML_ASSERT(ne2 == nea2);
  10799. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10800. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10801. GGML_ASSERT(nbb10 == sizeof(float));
  10802. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10803. GGML_ASSERT(nbc10 == sizeof(float));
  10804. GGML_ASSERT(neb00 == D);
  10805. GGML_ASSERT(neb01 == M);
  10806. GGML_ASSERT(neb10 == M);
  10807. GGML_ASSERT(neb11 == 1);
  10808. GGML_ASSERT(nec00 == M);
  10809. GGML_ASSERT(nec01 == D);
  10810. GGML_ASSERT(nec10 == D);
  10811. GGML_ASSERT(nec11 == 1);
  10812. // dst cannot be transposed or permuted
  10813. GGML_ASSERT(nb0 == sizeof(float));
  10814. GGML_ASSERT(nb0 <= nb1);
  10815. GGML_ASSERT(nb1 <= nb2);
  10816. GGML_ASSERT(nb2 <= nb3);
  10817. if (params->type == GGML_TASK_INIT) {
  10818. return;
  10819. }
  10820. if (params->type == GGML_TASK_FINALIZE) {
  10821. return;
  10822. }
  10823. // parallelize by a rows using ggml_vec_dot_f32
  10824. // total rows in a
  10825. const int nr = nea1*nea2*nea3;
  10826. // rows per thread
  10827. const int dr = (nr + nth - 1)/nth;
  10828. // row range for this thread
  10829. const int ir0 = dr*ith;
  10830. const int ir1 = MIN(ir0 + dr, nr);
  10831. for (int ir = ir0; ir < ir1; ++ir) {
  10832. // a indices
  10833. const int ia3 = ir/(nea2*nea1);
  10834. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10835. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10836. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10837. for (int64_t ic = 0; ic < neb01; ++ic) {
  10838. // b0 indices
  10839. const int ib03 = ia3;
  10840. const int ib02 = ia2;
  10841. const int ib01 = ic;
  10842. // S indices
  10843. const int i1 = ib01;
  10844. ggml_vec_dot_f16(nea0,
  10845. S + i1,
  10846. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10847. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10848. }
  10849. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10850. //ggml_vec_gelu_f32(neb01, S, S);
  10851. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10852. for (int64_t i = 0; i < M; i++) {
  10853. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10854. }
  10855. ggml_vec_gelu_f16(neb01, S16, S16);
  10856. {
  10857. // dst indices
  10858. const int i1 = ia1;
  10859. const int i2 = ia2;
  10860. const int i3 = ia3;
  10861. for (int64_t ic = 0; ic < nec01; ++ic) {
  10862. ggml_vec_dot_f16(neb01,
  10863. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10864. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10865. S16);
  10866. }
  10867. ggml_vec_add_f32(nec01,
  10868. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10869. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10870. (float *) c1->data);
  10871. }
  10872. }
  10873. }
  10874. static void ggml_compute_forward_flash_ff(
  10875. const struct ggml_compute_params * params,
  10876. const struct ggml_tensor * a,
  10877. const struct ggml_tensor * b0,
  10878. const struct ggml_tensor * b1,
  10879. const struct ggml_tensor * c0,
  10880. const struct ggml_tensor * c1,
  10881. struct ggml_tensor * dst) {
  10882. switch (b0->type) {
  10883. case GGML_TYPE_F16:
  10884. {
  10885. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10886. } break;
  10887. case GGML_TYPE_F32:
  10888. {
  10889. GGML_ASSERT(false); // TODO
  10890. } break;
  10891. default:
  10892. {
  10893. GGML_ASSERT(false);
  10894. } break;
  10895. }
  10896. }
  10897. // ggml_compute_forward_flash_attn_back
  10898. static void ggml_compute_forward_flash_attn_back_f32(
  10899. const struct ggml_compute_params * params,
  10900. const struct ggml_tensor * q,
  10901. const struct ggml_tensor * k,
  10902. const struct ggml_tensor * v,
  10903. const struct ggml_tensor * d,
  10904. const bool masked,
  10905. struct ggml_tensor * dst) {
  10906. int64_t t0 = ggml_perf_time_us();
  10907. UNUSED(t0);
  10908. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10909. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10910. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10911. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10912. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10913. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10914. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10915. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10916. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10917. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10918. const int ith = params->ith;
  10919. const int nth = params->nth;
  10920. const int64_t D = neq0;
  10921. const int64_t N = neq1;
  10922. const int64_t P = nek1 - N;
  10923. const int64_t M = P + N;
  10924. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10925. const int mxDM = MAX(D, Mup);
  10926. // GGML_ASSERT(ne0 == D);
  10927. // GGML_ASSERT(ne1 == N);
  10928. GGML_ASSERT(P >= 0);
  10929. GGML_ASSERT(nbq0 == sizeof(float));
  10930. GGML_ASSERT(nbk0 == sizeof(float));
  10931. GGML_ASSERT(nbv0 == sizeof(float));
  10932. GGML_ASSERT(neq0 == D);
  10933. GGML_ASSERT(nek0 == D);
  10934. GGML_ASSERT(nev1 == D);
  10935. GGML_ASSERT(ned0 == D);
  10936. GGML_ASSERT(neq1 == N);
  10937. GGML_ASSERT(nek1 == N + P);
  10938. GGML_ASSERT(nev1 == D);
  10939. GGML_ASSERT(ned1 == N);
  10940. // dst cannot be transposed or permuted
  10941. GGML_ASSERT(nb0 == sizeof(float));
  10942. GGML_ASSERT(nb0 <= nb1);
  10943. GGML_ASSERT(nb1 <= nb2);
  10944. GGML_ASSERT(nb2 <= nb3);
  10945. if (params->type == GGML_TASK_INIT) {
  10946. if (ith == 0) {
  10947. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10948. }
  10949. return;
  10950. }
  10951. if (params->type == GGML_TASK_FINALIZE) {
  10952. return;
  10953. }
  10954. const int64_t elem_q = ggml_nelements(q);
  10955. const int64_t elem_k = ggml_nelements(k);
  10956. enum ggml_type result_type = dst->type;
  10957. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10958. const size_t tsize = ggml_type_size(result_type);
  10959. const size_t offs_q = 0;
  10960. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10961. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10962. void * grad_q = (char *) dst->data;
  10963. void * grad_k = (char *) dst->data + offs_k;
  10964. void * grad_v = (char *) dst->data + offs_v;
  10965. const size_t nbgq1 = nb0*neq0;
  10966. const size_t nbgq2 = nb0*neq0*neq1;
  10967. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10968. const size_t nbgk1 = nb0*nek0;
  10969. const size_t nbgk2 = nb0*nek0*nek1;
  10970. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10971. const size_t nbgv1 = nb0*nev0;
  10972. const size_t nbgv2 = nb0*nev0*nev1;
  10973. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10974. // parallelize by k rows using ggml_vec_dot_f32
  10975. // total rows in k
  10976. const int nr = nek2*nek3;
  10977. // rows per thread
  10978. const int dr = (nr + nth - 1)/nth;
  10979. // row range for this thread
  10980. const int ir0 = dr*ith;
  10981. const int ir1 = MIN(ir0 + dr, nr);
  10982. const float scale = 1.0f/sqrtf(D);
  10983. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10984. // how often k2 (and v2) is repeated in q2
  10985. int nrep = neq2/nek2;
  10986. for (int ir = ir0; ir < ir1; ++ir) {
  10987. // q indices
  10988. const int ik3 = ir/(nek2);
  10989. const int ik2 = ir - ik3*nek2;
  10990. const int iq3 = ik3;
  10991. const int id3 = ik3;
  10992. const int iv3 = ik3;
  10993. const int iv2 = ik2;
  10994. for (int irep = 0; irep < nrep; ++irep) {
  10995. const int iq2 = ik2 + irep*nek2;
  10996. const int id2 = iq2;
  10997. // (ik2 + irep*nek2) % nek2 == ik2
  10998. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10999. const int id1 = iq1;
  11000. // not sure about CACHE_LINE_SIZE_F32..
  11001. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11002. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11003. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11004. for (int i = M; i < Mup; ++i) {
  11005. S[i] = -INFINITY;
  11006. }
  11007. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11008. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11009. // k indices
  11010. const int ik1 = ic;
  11011. // S indices
  11012. const int i1 = ik1;
  11013. ggml_vec_dot_f32(neq0,
  11014. S + i1,
  11015. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11016. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11017. }
  11018. // scale
  11019. ggml_vec_scale_f32(masked_begin, S, scale);
  11020. for (int64_t i = masked_begin; i < M; i++) {
  11021. S[i] = -INFINITY;
  11022. }
  11023. // softmax
  11024. // exclude known -INF S[..] values from max and loop
  11025. // dont forget to set their SM values to zero
  11026. {
  11027. float max = -INFINITY;
  11028. ggml_vec_max_f32(masked_begin, &max, S);
  11029. ggml_float sum = 0.0;
  11030. {
  11031. #ifdef GGML_SOFT_MAX_ACCELERATE
  11032. max = -max;
  11033. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11034. vvexpf(SM, SM, &Mup);
  11035. ggml_vec_sum_f32(Mup, &sum, SM);
  11036. #else
  11037. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11038. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11039. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11040. if (i >= masked_begin) {
  11041. break;
  11042. }
  11043. float * SR = S + i;
  11044. float * SW = SM + i;
  11045. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11046. if (i + j >= masked_begin) {
  11047. break;
  11048. } else if (SR[j] == -INFINITY) {
  11049. SW[j] = 0.0f;
  11050. } else {
  11051. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11052. const float val = expf(SR[j] - max);
  11053. #else
  11054. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11055. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11056. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11057. #endif
  11058. sump[j] += (ggml_float)val;
  11059. SW[j] = val;
  11060. }
  11061. }
  11062. }
  11063. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11064. sum += sump[i];
  11065. }
  11066. #endif
  11067. }
  11068. assert(sum > 0.0);
  11069. sum = 1.0/sum;
  11070. ggml_vec_scale_f32(masked_begin, SM, sum);
  11071. }
  11072. // step-by-step explanation
  11073. {
  11074. // forward-process shape grads from backward process
  11075. // parallel_for ik2,ik3:
  11076. // for irep:
  11077. // iq2 = ik2 + irep*nek2
  11078. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11079. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11080. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11081. // for iq1:
  11082. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11083. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11084. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11085. // S0 = -Inf [D,1,1,1]
  11086. // ~S1[i] = dot(kcur[:D,i], qcur)
  11087. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11088. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11089. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11090. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11091. // ~S5[i] = dot(vcur[:,i], S4)
  11092. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11093. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11094. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11095. // dst backward-/ grad[dst] = d
  11096. //
  11097. // output gradients with their dependencies:
  11098. //
  11099. // grad[kcur] = grad[S1].T @ qcur
  11100. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11101. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11102. // grad[S4] = grad[S5] @ vcur
  11103. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11104. // grad[qcur] = grad[S1] @ kcur
  11105. // grad[vcur] = grad[S5].T @ S4
  11106. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11107. //
  11108. // in post-order:
  11109. //
  11110. // S1 = qcur @ kcur.T
  11111. // S2 = S1 * scale
  11112. // S3 = diag_mask_inf(S2, P)
  11113. // S4 = softmax(S3)
  11114. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11115. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11116. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11117. // grad[qcur] = grad[S1] @ kcur
  11118. // grad[kcur] = grad[S1].T @ qcur
  11119. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11120. //
  11121. // using less variables (SM=S4):
  11122. //
  11123. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11124. // SM = softmax(S)
  11125. // S = d[:D,iq1,iq2,iq3] @ vcur
  11126. // dot_SM_gradSM = dot(SM, S)
  11127. // S = SM * (S - dot(SM, S))
  11128. // S = diag_mask_zero(S, P) * scale
  11129. //
  11130. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11131. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11132. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11133. }
  11134. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11135. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11136. // for ic:
  11137. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11138. // exclude known future zero S[..] values from operation
  11139. ggml_vec_set_f32(masked_begin, S, 0);
  11140. for (int64_t ic = 0; ic < D; ++ic) {
  11141. ggml_vec_mad_f32(masked_begin,
  11142. S,
  11143. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11144. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11145. }
  11146. // S = SM * (S - dot(SM, S))
  11147. float dot_SM_gradSM = 0;
  11148. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11149. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11150. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11151. // S = diag_mask_zero(S, P) * scale
  11152. // already done by above ggml_vec_set_f32
  11153. // exclude known zero S[..] values from operation
  11154. ggml_vec_scale_f32(masked_begin, S, scale);
  11155. // S shape [M,1]
  11156. // SM shape [M,1]
  11157. // kcur shape [D,M]
  11158. // qcur shape [D,1]
  11159. // vcur shape [M,D]
  11160. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11161. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11162. // for ic:
  11163. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11164. // exclude known zero S[..] values from loop
  11165. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11166. ggml_vec_mad_f32(D,
  11167. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11168. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11169. S[ic]);
  11170. }
  11171. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11172. // for ic:
  11173. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11174. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11175. // exclude known zero S[..] values from loop
  11176. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11177. ggml_vec_mad_f32(D,
  11178. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11179. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11180. S[ic]);
  11181. }
  11182. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11183. // for ic:
  11184. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11185. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11186. // exclude known zero SM[..] values from mad
  11187. for (int64_t ic = 0; ic < D; ++ic) {
  11188. ggml_vec_mad_f32(masked_begin,
  11189. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11190. SM,
  11191. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11192. }
  11193. }
  11194. }
  11195. }
  11196. }
  11197. static void ggml_compute_forward_flash_attn_back(
  11198. const struct ggml_compute_params * params,
  11199. const struct ggml_tensor * q,
  11200. const struct ggml_tensor * k,
  11201. const struct ggml_tensor * v,
  11202. const struct ggml_tensor * d,
  11203. const bool masked,
  11204. struct ggml_tensor * dst) {
  11205. switch (q->type) {
  11206. case GGML_TYPE_F32:
  11207. {
  11208. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11209. } break;
  11210. default:
  11211. {
  11212. GGML_ASSERT(false);
  11213. } break;
  11214. }
  11215. }
  11216. // ggml_compute_forward_win_part
  11217. static void ggml_compute_forward_win_part_f32(
  11218. const struct ggml_compute_params * params,
  11219. const struct ggml_tensor * src0,
  11220. struct ggml_tensor * dst) {
  11221. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11222. return;
  11223. }
  11224. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11225. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11226. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11227. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11228. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11229. assert(ne00 == ne0);
  11230. assert(ne3 == nep0*nep1);
  11231. // TODO: optimize / multi-thread
  11232. for (int py = 0; py < nep1; ++py) {
  11233. for (int px = 0; px < nep0; ++px) {
  11234. const int64_t i3 = py*nep0 + px;
  11235. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11236. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11237. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11238. const int64_t i02 = py*w + i2;
  11239. const int64_t i01 = px*w + i1;
  11240. const int64_t i00 = i0;
  11241. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11242. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11243. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11244. ((float *) dst->data)[i] = 0.0f;
  11245. } else {
  11246. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11247. }
  11248. }
  11249. }
  11250. }
  11251. }
  11252. }
  11253. }
  11254. static void ggml_compute_forward_win_part(
  11255. const struct ggml_compute_params * params,
  11256. const struct ggml_tensor * src0,
  11257. struct ggml_tensor * dst) {
  11258. switch (src0->type) {
  11259. case GGML_TYPE_F32:
  11260. {
  11261. ggml_compute_forward_win_part_f32(params, src0, dst);
  11262. } break;
  11263. default:
  11264. {
  11265. GGML_ASSERT(false);
  11266. } break;
  11267. }
  11268. }
  11269. // ggml_compute_forward_win_unpart
  11270. static void ggml_compute_forward_win_unpart_f32(
  11271. const struct ggml_compute_params * params,
  11272. const struct ggml_tensor * src0,
  11273. struct ggml_tensor * dst) {
  11274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11275. return;
  11276. }
  11277. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11278. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11279. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11280. // padding
  11281. const int px = (w - ne1%w)%w;
  11282. //const int py = (w - ne2%w)%w;
  11283. const int npx = (px + ne1)/w;
  11284. //const int npy = (py + ne2)/w;
  11285. assert(ne0 == ne00);
  11286. // TODO: optimize / multi-thread
  11287. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11288. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11289. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11290. const int ip2 = i2/w;
  11291. const int ip1 = i1/w;
  11292. const int64_t i02 = i2%w;
  11293. const int64_t i01 = i1%w;
  11294. const int64_t i00 = i0;
  11295. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11296. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11297. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11298. }
  11299. }
  11300. }
  11301. }
  11302. static void ggml_compute_forward_win_unpart(
  11303. const struct ggml_compute_params * params,
  11304. const struct ggml_tensor * src0,
  11305. struct ggml_tensor * dst) {
  11306. switch (src0->type) {
  11307. case GGML_TYPE_F32:
  11308. {
  11309. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11310. } break;
  11311. default:
  11312. {
  11313. GGML_ASSERT(false);
  11314. } break;
  11315. }
  11316. }
  11317. //gmml_compute_forward_unary
  11318. static void ggml_compute_forward_unary(
  11319. const struct ggml_compute_params * params,
  11320. const struct ggml_tensor * src0,
  11321. struct ggml_tensor * dst) {
  11322. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11323. switch (op) {
  11324. case GGML_UNARY_OP_ABS:
  11325. {
  11326. ggml_compute_forward_abs(params, src0, dst);
  11327. } break;
  11328. case GGML_UNARY_OP_SGN:
  11329. {
  11330. ggml_compute_forward_sgn(params, src0, dst);
  11331. } break;
  11332. case GGML_UNARY_OP_NEG:
  11333. {
  11334. ggml_compute_forward_neg(params, src0, dst);
  11335. } break;
  11336. case GGML_UNARY_OP_STEP:
  11337. {
  11338. ggml_compute_forward_step(params, src0, dst);
  11339. } break;
  11340. case GGML_UNARY_OP_TANH:
  11341. {
  11342. ggml_compute_forward_tanh(params, src0, dst);
  11343. } break;
  11344. case GGML_UNARY_OP_ELU:
  11345. {
  11346. ggml_compute_forward_elu(params, src0, dst);
  11347. } break;
  11348. case GGML_UNARY_OP_RELU:
  11349. {
  11350. ggml_compute_forward_relu(params, src0, dst);
  11351. } break;
  11352. case GGML_UNARY_OP_GELU:
  11353. {
  11354. ggml_compute_forward_gelu(params, src0, dst);
  11355. } break;
  11356. case GGML_UNARY_OP_GELU_QUICK:
  11357. {
  11358. ggml_compute_forward_gelu_quick(params, src0, dst);
  11359. } break;
  11360. case GGML_UNARY_OP_SILU:
  11361. {
  11362. ggml_compute_forward_silu(params, src0, dst);
  11363. } break;
  11364. default:
  11365. {
  11366. GGML_ASSERT(false);
  11367. } break;
  11368. }
  11369. }
  11370. // ggml_compute_forward_get_rel_pos
  11371. static void ggml_compute_forward_get_rel_pos_f16(
  11372. const struct ggml_compute_params * params,
  11373. const struct ggml_tensor * src0,
  11374. struct ggml_tensor * dst) {
  11375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11376. return;
  11377. }
  11378. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11379. GGML_TENSOR_UNARY_OP_LOCALS
  11380. const int64_t w = ne1;
  11381. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11382. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11383. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11384. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11385. const int64_t pos = (w - i1 - 1) + i2;
  11386. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11387. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11388. }
  11389. }
  11390. }
  11391. }
  11392. static void ggml_compute_forward_get_rel_pos(
  11393. const struct ggml_compute_params * params,
  11394. const struct ggml_tensor * src0,
  11395. struct ggml_tensor * dst) {
  11396. switch (src0->type) {
  11397. case GGML_TYPE_F16:
  11398. {
  11399. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11400. } break;
  11401. default:
  11402. {
  11403. GGML_ASSERT(false);
  11404. } break;
  11405. }
  11406. }
  11407. // ggml_compute_forward_add_rel_pos
  11408. static void ggml_compute_forward_add_rel_pos_f32(
  11409. const struct ggml_compute_params * params,
  11410. const struct ggml_tensor * src0,
  11411. const struct ggml_tensor * src1,
  11412. const struct ggml_tensor * src2,
  11413. struct ggml_tensor * dst) {
  11414. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11415. if (!inplace && params->type == GGML_TASK_INIT) {
  11416. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11417. return;
  11418. }
  11419. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11420. return;
  11421. }
  11422. int64_t t0 = ggml_perf_time_us();
  11423. UNUSED(t0);
  11424. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11425. float * src1_data = (float *) src1->data;
  11426. float * src2_data = (float *) src2->data;
  11427. float * dst_data = (float *) dst->data;
  11428. const int64_t ne10 = src1->ne[0];
  11429. const int64_t ne11 = src1->ne[1];
  11430. const int64_t ne12 = src1->ne[2];
  11431. const int64_t ne13 = src1->ne[3];
  11432. const int ith = params->ith;
  11433. const int nth = params->nth;
  11434. // total patches in dst
  11435. const int np = ne13;
  11436. // patches per thread
  11437. const int dp = (np + nth - 1)/nth;
  11438. // patch range for this thread
  11439. const int ip0 = dp*ith;
  11440. const int ip1 = MIN(ip0 + dp, np);
  11441. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11442. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11443. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11444. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11445. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11446. const int64_t jp0 = jp1 + i10;
  11447. const float src1_e = src1_data[jp0];
  11448. const float src2_e = src2_data[jp0];
  11449. const int64_t jdh = jp0 * ne10;
  11450. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11451. for (int64_t j = 0; j < ne10; ++j) {
  11452. dst_data[jdh + j ] += src2_e;
  11453. dst_data[jdw + j*ne10] += src1_e;
  11454. }
  11455. }
  11456. }
  11457. }
  11458. }
  11459. }
  11460. static void ggml_compute_forward_add_rel_pos(
  11461. const struct ggml_compute_params * params,
  11462. const struct ggml_tensor * src0,
  11463. const struct ggml_tensor * src1,
  11464. const struct ggml_tensor * src2,
  11465. struct ggml_tensor * dst) {
  11466. switch (src0->type) {
  11467. case GGML_TYPE_F32:
  11468. {
  11469. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11470. } break;
  11471. default:
  11472. {
  11473. GGML_ASSERT(false);
  11474. } break;
  11475. }
  11476. }
  11477. // ggml_compute_forward_map_unary
  11478. static void ggml_compute_forward_map_unary_f32(
  11479. const struct ggml_compute_params * params,
  11480. const struct ggml_tensor * src0,
  11481. struct ggml_tensor * dst,
  11482. const ggml_unary_op_f32_t fun) {
  11483. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11484. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11485. return;
  11486. }
  11487. const int n = ggml_nrows(src0);
  11488. const int nc = src0->ne[0];
  11489. assert( dst->nb[0] == sizeof(float));
  11490. assert(src0->nb[0] == sizeof(float));
  11491. for (int i = 0; i < n; i++) {
  11492. fun(nc,
  11493. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11494. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11495. }
  11496. }
  11497. static void ggml_compute_forward_map_unary(
  11498. const struct ggml_compute_params * params,
  11499. const struct ggml_tensor * src0,
  11500. struct ggml_tensor * dst,
  11501. const ggml_unary_op_f32_t fun) {
  11502. switch (src0->type) {
  11503. case GGML_TYPE_F32:
  11504. {
  11505. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11506. } break;
  11507. default:
  11508. {
  11509. GGML_ASSERT(false);
  11510. } break;
  11511. }
  11512. }
  11513. // ggml_compute_forward_map_binary
  11514. static void ggml_compute_forward_map_binary_f32(
  11515. const struct ggml_compute_params * params,
  11516. const struct ggml_tensor * src0,
  11517. const struct ggml_tensor * src1,
  11518. struct ggml_tensor * dst,
  11519. const ggml_binary_op_f32_t fun) {
  11520. assert(params->ith == 0);
  11521. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11522. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11523. return;
  11524. }
  11525. const int n = ggml_nrows(src0);
  11526. const int nc = src0->ne[0];
  11527. assert( dst->nb[0] == sizeof(float));
  11528. assert(src0->nb[0] == sizeof(float));
  11529. assert(src1->nb[0] == sizeof(float));
  11530. for (int i = 0; i < n; i++) {
  11531. fun(nc,
  11532. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11533. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11534. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11535. }
  11536. }
  11537. static void ggml_compute_forward_map_binary(
  11538. const struct ggml_compute_params * params,
  11539. const struct ggml_tensor * src0,
  11540. const struct ggml_tensor * src1,
  11541. struct ggml_tensor * dst,
  11542. const ggml_binary_op_f32_t fun) {
  11543. switch (src0->type) {
  11544. case GGML_TYPE_F32:
  11545. {
  11546. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11547. } break;
  11548. default:
  11549. {
  11550. GGML_ASSERT(false);
  11551. } break;
  11552. }
  11553. }
  11554. // ggml_compute_forward_map_custom1
  11555. static void ggml_compute_forward_map_custom1_f32(
  11556. const struct ggml_compute_params * params,
  11557. const struct ggml_tensor * a,
  11558. struct ggml_tensor * dst,
  11559. const ggml_custom1_op_f32_t fun) {
  11560. assert(params->ith == 0);
  11561. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11562. return;
  11563. }
  11564. fun(dst, a);
  11565. }
  11566. // ggml_compute_forward_map_custom2
  11567. static void ggml_compute_forward_map_custom2_f32(
  11568. const struct ggml_compute_params * params,
  11569. const struct ggml_tensor * a,
  11570. const struct ggml_tensor * b,
  11571. struct ggml_tensor * dst,
  11572. const ggml_custom2_op_f32_t fun) {
  11573. assert(params->ith == 0);
  11574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11575. return;
  11576. }
  11577. fun(dst, a, b);
  11578. }
  11579. // ggml_compute_forward_map_custom3
  11580. static void ggml_compute_forward_map_custom3_f32(
  11581. const struct ggml_compute_params * params,
  11582. const struct ggml_tensor * a,
  11583. const struct ggml_tensor * b,
  11584. const struct ggml_tensor * c,
  11585. struct ggml_tensor * dst,
  11586. const ggml_custom3_op_f32_t fun) {
  11587. assert(params->ith == 0);
  11588. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11589. return;
  11590. }
  11591. fun(dst, a, b, c);
  11592. }
  11593. // ggml_compute_forward_map_custom1
  11594. static void ggml_compute_forward_map_custom1(
  11595. const struct ggml_compute_params * params,
  11596. const struct ggml_tensor * a,
  11597. struct ggml_tensor * dst) {
  11598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11599. return;
  11600. }
  11601. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11602. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11603. }
  11604. // ggml_compute_forward_map_custom2
  11605. static void ggml_compute_forward_map_custom2(
  11606. const struct ggml_compute_params * params,
  11607. const struct ggml_tensor * a,
  11608. const struct ggml_tensor * b,
  11609. struct ggml_tensor * dst) {
  11610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11611. return;
  11612. }
  11613. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11614. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11615. }
  11616. // ggml_compute_forward_map_custom3
  11617. static void ggml_compute_forward_map_custom3(
  11618. const struct ggml_compute_params * params,
  11619. const struct ggml_tensor * a,
  11620. const struct ggml_tensor * b,
  11621. const struct ggml_tensor * c,
  11622. struct ggml_tensor * dst) {
  11623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11624. return;
  11625. }
  11626. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11627. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11628. }
  11629. // ggml_compute_forward_cross_entropy_loss
  11630. static void ggml_compute_forward_cross_entropy_loss_f32(
  11631. const struct ggml_compute_params * params,
  11632. const struct ggml_tensor * src0,
  11633. const struct ggml_tensor * src1,
  11634. struct ggml_tensor * dst) {
  11635. GGML_ASSERT(ggml_is_contiguous(src0));
  11636. GGML_ASSERT(ggml_is_contiguous(src1));
  11637. GGML_ASSERT(ggml_is_scalar(dst));
  11638. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11639. const int ith = params->ith;
  11640. const int nth = params->nth;
  11641. float * sums = (float *) params->wdata;
  11642. // TODO: handle transposed/permuted matrices
  11643. const int nc = src0->ne[0];
  11644. const int nr = ggml_nrows(src0);
  11645. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11646. if (params->type == GGML_TASK_INIT) {
  11647. if (ith == 0) {
  11648. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11649. }
  11650. return;
  11651. }
  11652. if (params->type == GGML_TASK_FINALIZE) {
  11653. if (ith == 0) {
  11654. float * dp = (float *) dst->data;
  11655. ggml_vec_sum_f32(nth, dp, sums);
  11656. dp[0] *= -1.0f / (float) nr;
  11657. }
  11658. return;
  11659. }
  11660. const double eps = 1e-9;
  11661. // rows per thread
  11662. const int dr = (nr + nth - 1)/nth;
  11663. // row range for this thread
  11664. const int ir0 = dr*ith;
  11665. const int ir1 = MIN(ir0 + dr, nr);
  11666. for (int i1 = ir0; i1 < ir1; i1++) {
  11667. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11668. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11669. float * st = ((float *) params->wdata) + nth + ith*nc;
  11670. #ifndef NDEBUG
  11671. for (int i = 0; i < nc; ++i) {
  11672. //printf("p[%d] = %f\n", i, p[i]);
  11673. assert(!isnan(s0[i]));
  11674. assert(!isnan(s1[i]));
  11675. }
  11676. #endif
  11677. // soft_max
  11678. ggml_float sum = 0.0;
  11679. {
  11680. float max = -INFINITY;
  11681. ggml_vec_max_f32(nc, &max, s0);
  11682. uint16_t scvt; UNUSED(scvt);
  11683. for (int i = 0; i < nc; i++) {
  11684. if (s0[i] == -INFINITY) {
  11685. st[i] = 0.0f;
  11686. } else {
  11687. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11688. const float s = s0[i] - max;
  11689. const float val = expf(s);
  11690. #else
  11691. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11692. memcpy(&scvt, &s, sizeof(scvt));
  11693. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11694. #endif
  11695. sum += (ggml_float)val;
  11696. st[i] = val;
  11697. }
  11698. }
  11699. assert(sum > 0.0);
  11700. // sum = 1.0/sum;
  11701. }
  11702. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11703. sum = (1.0 - eps) / sum;
  11704. ggml_vec_scale_f32(nc, st, sum);
  11705. ggml_vec_add1_f32(nc, st, st, eps);
  11706. ggml_vec_log_f32(nc, st, st);
  11707. ggml_vec_mul_f32(nc, st, st, s1);
  11708. float st_sum = 0;
  11709. ggml_vec_sum_f32(nc, &st_sum, st);
  11710. sums[ith] += st_sum;
  11711. #ifndef NDEBUG
  11712. for (int i = 0; i < nc; ++i) {
  11713. assert(!isnan(st[i]));
  11714. assert(!isinf(st[i]));
  11715. }
  11716. #endif
  11717. }
  11718. }
  11719. static void ggml_compute_forward_cross_entropy_loss(
  11720. const struct ggml_compute_params * params,
  11721. const struct ggml_tensor * src0,
  11722. const struct ggml_tensor * src1,
  11723. struct ggml_tensor * dst) {
  11724. switch (src0->type) {
  11725. case GGML_TYPE_F32:
  11726. {
  11727. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11728. } break;
  11729. default:
  11730. {
  11731. GGML_ASSERT(false);
  11732. } break;
  11733. }
  11734. }
  11735. // ggml_compute_forward_cross_entropy_loss_back
  11736. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11737. const struct ggml_compute_params * params,
  11738. const struct ggml_tensor * src0,
  11739. const struct ggml_tensor * src1,
  11740. const struct ggml_tensor * opt0,
  11741. struct ggml_tensor * dst) {
  11742. GGML_ASSERT(ggml_is_contiguous(dst));
  11743. GGML_ASSERT(ggml_is_contiguous(src0));
  11744. GGML_ASSERT(ggml_is_contiguous(src1));
  11745. GGML_ASSERT(ggml_is_contiguous(opt0));
  11746. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11747. const int64_t ith = params->ith;
  11748. const int64_t nth = params->nth;
  11749. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11750. return;
  11751. }
  11752. const double eps = 1e-9;
  11753. // TODO: handle transposed/permuted matrices
  11754. const int64_t nc = src0->ne[0];
  11755. const int64_t nr = ggml_nrows(src0);
  11756. // rows per thread
  11757. const int64_t dr = (nr + nth - 1)/nth;
  11758. // row range for this thread
  11759. const int64_t ir0 = dr*ith;
  11760. const int64_t ir1 = MIN(ir0 + dr, nr);
  11761. float * d = (float *) opt0->data;
  11762. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11763. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11764. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11765. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11766. #ifndef NDEBUG
  11767. for (int i = 0; i < nc; ++i) {
  11768. //printf("p[%d] = %f\n", i, p[i]);
  11769. assert(!isnan(s0[i]));
  11770. assert(!isnan(s1[i]));
  11771. }
  11772. #endif
  11773. // soft_max
  11774. ggml_float sum = 0.0;
  11775. {
  11776. float max = -INFINITY;
  11777. ggml_vec_max_f32(nc, &max, s0);
  11778. uint16_t scvt; UNUSED(scvt);
  11779. for (int i = 0; i < nc; i++) {
  11780. if (s0[i] == -INFINITY) {
  11781. ds0[i] = 0.0f;
  11782. } else {
  11783. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11784. const float s = s0[i] - max;
  11785. const float val = expf(s);
  11786. #else
  11787. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11788. memcpy(&scvt, &s, sizeof(scvt));
  11789. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11790. #endif
  11791. sum += (ggml_float)val;
  11792. ds0[i] = val;
  11793. }
  11794. }
  11795. assert(sum > 0.0);
  11796. sum = (1.0 - eps)/sum;
  11797. }
  11798. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11799. ggml_vec_scale_f32(nc, ds0, sum);
  11800. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11801. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11802. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11803. #ifndef NDEBUG
  11804. for (int i = 0; i < nc; ++i) {
  11805. assert(!isnan(ds0[i]));
  11806. assert(!isinf(ds0[i]));
  11807. }
  11808. #endif
  11809. }
  11810. }
  11811. static void ggml_compute_forward_cross_entropy_loss_back(
  11812. const struct ggml_compute_params * params,
  11813. const struct ggml_tensor * src0,
  11814. const struct ggml_tensor * src1,
  11815. const struct ggml_tensor * opt0,
  11816. struct ggml_tensor * dst) {
  11817. switch (src0->type) {
  11818. case GGML_TYPE_F32:
  11819. {
  11820. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11821. } break;
  11822. default:
  11823. {
  11824. GGML_ASSERT(false);
  11825. } break;
  11826. }
  11827. }
  11828. /////////////////////////////////
  11829. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11830. GGML_ASSERT(params);
  11831. if (tensor->op == GGML_OP_NONE) {
  11832. return;
  11833. }
  11834. #ifdef GGML_USE_CUBLAS
  11835. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11836. if (skip_cpu) {
  11837. return;
  11838. }
  11839. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11840. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11841. #endif // GGML_USE_CUBLAS
  11842. switch (tensor->op) {
  11843. case GGML_OP_DUP:
  11844. {
  11845. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11846. } break;
  11847. case GGML_OP_ADD:
  11848. {
  11849. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11850. } break;
  11851. case GGML_OP_ADD1:
  11852. {
  11853. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11854. } break;
  11855. case GGML_OP_ACC:
  11856. {
  11857. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11858. } break;
  11859. case GGML_OP_SUB:
  11860. {
  11861. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11862. } break;
  11863. case GGML_OP_MUL:
  11864. {
  11865. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11866. } break;
  11867. case GGML_OP_DIV:
  11868. {
  11869. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11870. } break;
  11871. case GGML_OP_SQR:
  11872. {
  11873. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11874. } break;
  11875. case GGML_OP_SQRT:
  11876. {
  11877. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11878. } break;
  11879. case GGML_OP_LOG:
  11880. {
  11881. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11882. } break;
  11883. case GGML_OP_SUM:
  11884. {
  11885. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11886. } break;
  11887. case GGML_OP_SUM_ROWS:
  11888. {
  11889. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11890. } break;
  11891. case GGML_OP_MEAN:
  11892. {
  11893. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11894. } break;
  11895. case GGML_OP_ARGMAX:
  11896. {
  11897. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11898. } break;
  11899. case GGML_OP_REPEAT:
  11900. {
  11901. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11902. } break;
  11903. case GGML_OP_REPEAT_BACK:
  11904. {
  11905. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11906. } break;
  11907. case GGML_OP_CONCAT:
  11908. {
  11909. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11910. } break;
  11911. case GGML_OP_SILU_BACK:
  11912. {
  11913. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11914. } break;
  11915. case GGML_OP_NORM:
  11916. {
  11917. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11918. } break;
  11919. case GGML_OP_RMS_NORM:
  11920. {
  11921. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11922. } break;
  11923. case GGML_OP_RMS_NORM_BACK:
  11924. {
  11925. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11926. } break;
  11927. case GGML_OP_GROUP_NORM:
  11928. {
  11929. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11930. } break;
  11931. case GGML_OP_MUL_MAT:
  11932. {
  11933. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11934. } break;
  11935. case GGML_OP_MUL_MAT_ID:
  11936. {
  11937. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11938. } break;
  11939. case GGML_OP_OUT_PROD:
  11940. {
  11941. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11942. } break;
  11943. case GGML_OP_SCALE:
  11944. {
  11945. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  11946. } break;
  11947. case GGML_OP_SET:
  11948. {
  11949. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11950. } break;
  11951. case GGML_OP_CPY:
  11952. {
  11953. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11954. } break;
  11955. case GGML_OP_CONT:
  11956. {
  11957. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11958. } break;
  11959. case GGML_OP_RESHAPE:
  11960. {
  11961. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11962. } break;
  11963. case GGML_OP_VIEW:
  11964. {
  11965. ggml_compute_forward_view(params, tensor->src[0]);
  11966. } break;
  11967. case GGML_OP_PERMUTE:
  11968. {
  11969. ggml_compute_forward_permute(params, tensor->src[0]);
  11970. } break;
  11971. case GGML_OP_TRANSPOSE:
  11972. {
  11973. ggml_compute_forward_transpose(params, tensor->src[0]);
  11974. } break;
  11975. case GGML_OP_GET_ROWS:
  11976. {
  11977. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11978. } break;
  11979. case GGML_OP_GET_ROWS_BACK:
  11980. {
  11981. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11982. } break;
  11983. case GGML_OP_DIAG:
  11984. {
  11985. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11986. } break;
  11987. case GGML_OP_DIAG_MASK_INF:
  11988. {
  11989. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11990. } break;
  11991. case GGML_OP_DIAG_MASK_ZERO:
  11992. {
  11993. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11994. } break;
  11995. case GGML_OP_SOFT_MAX:
  11996. {
  11997. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  11998. } break;
  11999. case GGML_OP_SOFT_MAX_BACK:
  12000. {
  12001. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12002. } break;
  12003. case GGML_OP_ROPE:
  12004. {
  12005. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12006. } break;
  12007. case GGML_OP_ROPE_BACK:
  12008. {
  12009. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12010. } break;
  12011. case GGML_OP_ALIBI:
  12012. {
  12013. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12014. } break;
  12015. case GGML_OP_CLAMP:
  12016. {
  12017. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12018. } break;
  12019. case GGML_OP_CONV_TRANSPOSE_1D:
  12020. {
  12021. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12022. } break;
  12023. case GGML_OP_IM2COL:
  12024. {
  12025. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12026. } break;
  12027. case GGML_OP_CONV_TRANSPOSE_2D:
  12028. {
  12029. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12030. } break;
  12031. case GGML_OP_POOL_1D:
  12032. {
  12033. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12034. } break;
  12035. case GGML_OP_POOL_2D:
  12036. {
  12037. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12038. } break;
  12039. case GGML_OP_UPSCALE:
  12040. {
  12041. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12042. } break;
  12043. case GGML_OP_PAD:
  12044. {
  12045. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12046. } break;
  12047. case GGML_OP_ARGSORT:
  12048. {
  12049. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12050. } break;
  12051. case GGML_OP_LEAKY_RELU:
  12052. {
  12053. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12054. } break;
  12055. case GGML_OP_FLASH_ATTN:
  12056. {
  12057. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12058. GGML_ASSERT(t == 0 || t == 1);
  12059. const bool masked = t != 0;
  12060. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12061. } break;
  12062. case GGML_OP_FLASH_FF:
  12063. {
  12064. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12065. } break;
  12066. case GGML_OP_FLASH_ATTN_BACK:
  12067. {
  12068. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12069. GGML_ASSERT(t == 0 || t == 1);
  12070. bool masked = t != 0;
  12071. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12072. } break;
  12073. case GGML_OP_WIN_PART:
  12074. {
  12075. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12076. } break;
  12077. case GGML_OP_WIN_UNPART:
  12078. {
  12079. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12080. } break;
  12081. case GGML_OP_UNARY:
  12082. {
  12083. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12084. } break;
  12085. case GGML_OP_GET_REL_POS:
  12086. {
  12087. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12088. } break;
  12089. case GGML_OP_ADD_REL_POS:
  12090. {
  12091. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12092. } break;
  12093. case GGML_OP_MAP_UNARY:
  12094. {
  12095. ggml_unary_op_f32_t fun;
  12096. memcpy(&fun, tensor->op_params, sizeof(fun));
  12097. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12098. }
  12099. break;
  12100. case GGML_OP_MAP_BINARY:
  12101. {
  12102. ggml_binary_op_f32_t fun;
  12103. memcpy(&fun, tensor->op_params, sizeof(fun));
  12104. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12105. }
  12106. break;
  12107. case GGML_OP_MAP_CUSTOM1_F32:
  12108. {
  12109. ggml_custom1_op_f32_t fun;
  12110. memcpy(&fun, tensor->op_params, sizeof(fun));
  12111. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12112. }
  12113. break;
  12114. case GGML_OP_MAP_CUSTOM2_F32:
  12115. {
  12116. ggml_custom2_op_f32_t fun;
  12117. memcpy(&fun, tensor->op_params, sizeof(fun));
  12118. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12119. }
  12120. break;
  12121. case GGML_OP_MAP_CUSTOM3_F32:
  12122. {
  12123. ggml_custom3_op_f32_t fun;
  12124. memcpy(&fun, tensor->op_params, sizeof(fun));
  12125. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12126. }
  12127. break;
  12128. case GGML_OP_MAP_CUSTOM1:
  12129. {
  12130. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12131. }
  12132. break;
  12133. case GGML_OP_MAP_CUSTOM2:
  12134. {
  12135. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12136. }
  12137. break;
  12138. case GGML_OP_MAP_CUSTOM3:
  12139. {
  12140. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12141. }
  12142. break;
  12143. case GGML_OP_CROSS_ENTROPY_LOSS:
  12144. {
  12145. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12146. }
  12147. break;
  12148. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12149. {
  12150. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12151. }
  12152. break;
  12153. case GGML_OP_NONE:
  12154. {
  12155. // nop
  12156. } break;
  12157. case GGML_OP_COUNT:
  12158. {
  12159. GGML_ASSERT(false);
  12160. } break;
  12161. }
  12162. }
  12163. ////////////////////////////////////////////////////////////////////////////////
  12164. static size_t ggml_hash_size(size_t min_sz) {
  12165. // next primes after powers of two
  12166. static const size_t primes[] = {
  12167. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12168. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12169. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12170. 16777259, 33554467, 67108879, 134217757, 268435459,
  12171. 536870923, 1073741827, 2147483659
  12172. };
  12173. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12174. // find the smallest prime that is larger or equal to min_sz
  12175. size_t l = 0;
  12176. size_t r = n_primes;
  12177. while (l < r) {
  12178. size_t m = (l + r)/2;
  12179. if (primes[m] < min_sz) {
  12180. l = m + 1;
  12181. } else {
  12182. r = m;
  12183. }
  12184. }
  12185. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12186. return sz;
  12187. }
  12188. static size_t ggml_hash(const void * p) {
  12189. return (size_t)p;
  12190. }
  12191. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12192. size_t h = ggml_hash(key) % hash_set.size;
  12193. // linear probing
  12194. size_t i = h;
  12195. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12196. i = (i + 1) % hash_set.size;
  12197. if (i == h) {
  12198. // visited all hash table entries -> not found
  12199. return GGML_HASHTABLE_FULL;
  12200. }
  12201. }
  12202. return i;
  12203. }
  12204. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12205. size_t i = ggml_hash_find(hash_set, key);
  12206. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12207. }
  12208. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12209. size_t i = ggml_hash_find(hash_set, key);
  12210. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12211. if (hash_set.keys[i] == key) {
  12212. return GGML_HASHTABLE_ALREADY_EXISTS;
  12213. }
  12214. // insert
  12215. GGML_ASSERT(hash_set.keys[i] == NULL);
  12216. hash_set.keys[i] = key;
  12217. return i;
  12218. }
  12219. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12220. size_t i = ggml_hash_find(hash_set, key);
  12221. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12222. hash_set.keys[i] = key;
  12223. return i;
  12224. }
  12225. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12226. size = ggml_hash_size(size);
  12227. struct ggml_hash_set result;
  12228. result.size = size;
  12229. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12230. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12231. return result;
  12232. }
  12233. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12234. free(hash_set.keys);
  12235. }
  12236. struct hash_map {
  12237. struct ggml_hash_set set;
  12238. struct ggml_tensor ** vals;
  12239. };
  12240. static struct hash_map * ggml_new_hash_map(size_t size) {
  12241. struct hash_map * result = malloc(sizeof(struct hash_map));
  12242. result->set = ggml_hash_set_new(size);
  12243. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12244. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12245. return result;
  12246. }
  12247. static void ggml_hash_map_free(struct hash_map * map) {
  12248. ggml_hash_set_free(map->set);
  12249. free(map->vals);
  12250. free(map);
  12251. }
  12252. // gradient checkpointing
  12253. static struct ggml_tensor * ggml_recompute_graph_node(
  12254. struct ggml_context * ctx,
  12255. struct ggml_cgraph * graph,
  12256. struct hash_map * replacements,
  12257. struct ggml_tensor * node) {
  12258. if (node == NULL) {
  12259. return NULL;
  12260. }
  12261. if (node->is_param) {
  12262. return node;
  12263. }
  12264. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12265. return node;
  12266. }
  12267. int count_children = 0;
  12268. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12269. if (node->src[k]) {
  12270. ++count_children;
  12271. }
  12272. }
  12273. if (count_children == 0) {
  12274. return node;
  12275. }
  12276. size_t i = ggml_hash_find(replacements->set, node);
  12277. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12278. if (replacements->set.keys[i] == node) {
  12279. return replacements->vals[i];
  12280. }
  12281. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12282. // insert clone into replacements
  12283. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12284. replacements->set.keys[i] = node;
  12285. replacements->vals[i] = clone;
  12286. clone->op = node->op;
  12287. clone->grad = node->grad;
  12288. clone->is_param = node->is_param;
  12289. clone->extra = node->extra;
  12290. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12291. clone->nb[k] = node->nb[k];
  12292. }
  12293. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12294. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12295. }
  12296. if (node->view_src != NULL) {
  12297. clone->data = (node->view_src->data == NULL)
  12298. ? NULL // view_src not yet allocated
  12299. : (char *) node->view_src->data // view_src already allocated
  12300. + node->view_offs;
  12301. clone->view_src = node->view_src;
  12302. clone->view_offs = node->view_offs;
  12303. }
  12304. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12305. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12306. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12307. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12308. return clone;
  12309. }
  12310. void ggml_build_backward_gradient_checkpointing(
  12311. struct ggml_context * ctx,
  12312. struct ggml_cgraph * gf,
  12313. struct ggml_cgraph * gb,
  12314. struct ggml_cgraph * gb_tmp,
  12315. struct ggml_tensor * * checkpoints,
  12316. int n_checkpoints) {
  12317. ggml_graph_cpy(gf, gb_tmp);
  12318. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12319. if (n_checkpoints <= 0) {
  12320. ggml_graph_cpy(gb_tmp, gb);
  12321. return;
  12322. }
  12323. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12324. // insert checkpoints in replacements
  12325. for (int i = 0; i < n_checkpoints; ++i) {
  12326. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12327. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12328. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12329. replacements->set.keys[k] = checkpoints[i];
  12330. replacements->vals[k] = checkpoints[i];
  12331. }
  12332. ggml_graph_cpy(gf, gb);
  12333. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12334. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12335. // by recomputing them from checkpoints
  12336. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12337. struct ggml_tensor * node = gb_tmp->nodes[i];
  12338. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12339. // insert new tensors recomputing src, reusing already made replacements,
  12340. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12341. // recurse for input tensors,
  12342. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12343. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12344. }
  12345. // insert rewritten backward node with replacements made into resulting backward graph gb
  12346. ggml_build_forward_expand(gb, node);
  12347. }
  12348. ggml_hash_map_free(replacements);
  12349. }
  12350. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12351. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12352. if (ggml_hash_contains(zero_table, a)) {
  12353. return b;
  12354. } else {
  12355. return ggml_add_impl(ctx, a, b, false);
  12356. }
  12357. }
  12358. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12359. if (ggml_hash_contains(zero_table, a)) {
  12360. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12361. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12362. } else {
  12363. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12364. }
  12365. }
  12366. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12367. if (ggml_hash_contains(zero_table, a)) {
  12368. return ggml_repeat(ctx, b, a);
  12369. } else {
  12370. return ggml_add1_impl(ctx, a, b, false);
  12371. }
  12372. }
  12373. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12374. if (ggml_hash_contains(zero_table, a)) {
  12375. return ggml_neg(ctx, b);
  12376. } else {
  12377. return ggml_sub_impl(ctx, a, b, false);
  12378. }
  12379. }
  12380. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12381. struct ggml_tensor * src0 = tensor->src[0];
  12382. struct ggml_tensor * src1 = tensor->src[1];
  12383. switch (tensor->op) {
  12384. case GGML_OP_DUP:
  12385. {
  12386. if (src0->grad) {
  12387. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12388. }
  12389. } break;
  12390. case GGML_OP_ADD:
  12391. {
  12392. if (src0->grad) {
  12393. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12394. }
  12395. if (src1->grad) {
  12396. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12397. }
  12398. } break;
  12399. case GGML_OP_ADD1:
  12400. {
  12401. if (src0->grad) {
  12402. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12403. }
  12404. if (src1->grad) {
  12405. src1->grad = ggml_add_or_set(ctx,
  12406. src1->grad,
  12407. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12408. zero_table);
  12409. }
  12410. } break;
  12411. case GGML_OP_ACC:
  12412. {
  12413. if (src0->grad) {
  12414. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12415. }
  12416. if (src1->grad) {
  12417. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12418. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12419. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12420. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12421. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12422. tensor->grad,
  12423. src1->grad->ne[0],
  12424. src1->grad->ne[1],
  12425. src1->grad->ne[2],
  12426. src1->grad->ne[3],
  12427. nb1, nb2, nb3, offset);
  12428. src1->grad =
  12429. ggml_add_or_set(ctx,
  12430. src1->grad,
  12431. ggml_reshape(ctx,
  12432. ggml_cont(ctx, tensor_grad_view),
  12433. src1->grad),
  12434. zero_table);
  12435. }
  12436. } break;
  12437. case GGML_OP_SUB:
  12438. {
  12439. if (src0->grad) {
  12440. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12441. }
  12442. if (src1->grad) {
  12443. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12444. }
  12445. } break;
  12446. case GGML_OP_MUL:
  12447. {
  12448. if (src0->grad) {
  12449. src0->grad =
  12450. ggml_add_or_set(ctx,
  12451. src0->grad,
  12452. ggml_mul(ctx, src1, tensor->grad),
  12453. zero_table);
  12454. }
  12455. if (src1->grad) {
  12456. src1->grad =
  12457. ggml_add_or_set(ctx,
  12458. src1->grad,
  12459. ggml_mul(ctx, src0, tensor->grad),
  12460. zero_table);
  12461. }
  12462. } break;
  12463. case GGML_OP_DIV:
  12464. {
  12465. if (src0->grad) {
  12466. src0->grad =
  12467. ggml_add_or_set(ctx,
  12468. src0->grad,
  12469. ggml_div(ctx, tensor->grad, src1),
  12470. zero_table);
  12471. }
  12472. if (src1->grad) {
  12473. src1->grad =
  12474. ggml_sub_or_set(ctx,
  12475. src1->grad,
  12476. ggml_mul(ctx,
  12477. tensor->grad,
  12478. ggml_div(ctx, tensor, src1)),
  12479. zero_table);
  12480. }
  12481. } break;
  12482. case GGML_OP_SQR:
  12483. {
  12484. if (src0->grad) {
  12485. src0->grad =
  12486. ggml_add_or_set(ctx,
  12487. src0->grad,
  12488. ggml_scale(ctx,
  12489. ggml_mul(ctx, src0, tensor->grad),
  12490. 2.0f),
  12491. zero_table);
  12492. }
  12493. } break;
  12494. case GGML_OP_SQRT:
  12495. {
  12496. if (src0->grad) {
  12497. src0->grad =
  12498. ggml_add_or_set(ctx,
  12499. src0->grad,
  12500. ggml_scale(ctx,
  12501. ggml_div(ctx,
  12502. tensor->grad,
  12503. tensor),
  12504. 0.5f),
  12505. zero_table);
  12506. }
  12507. } break;
  12508. case GGML_OP_LOG:
  12509. {
  12510. if (src0->grad) {
  12511. src0->grad =
  12512. ggml_add_or_set(ctx,
  12513. src0->grad,
  12514. ggml_div(ctx,
  12515. tensor->grad,
  12516. src0),
  12517. zero_table);
  12518. }
  12519. } break;
  12520. case GGML_OP_SUM:
  12521. {
  12522. if (src0->grad) {
  12523. src0->grad =
  12524. ggml_add1_or_set(ctx,
  12525. src0->grad,
  12526. tensor->grad,
  12527. zero_table);
  12528. }
  12529. } break;
  12530. case GGML_OP_SUM_ROWS:
  12531. {
  12532. if (src0->grad) {
  12533. src0->grad =
  12534. ggml_add_or_set(ctx,
  12535. src0->grad,
  12536. ggml_repeat(ctx,
  12537. tensor->grad,
  12538. src0->grad),
  12539. zero_table);
  12540. }
  12541. } break;
  12542. case GGML_OP_MEAN:
  12543. case GGML_OP_ARGMAX:
  12544. {
  12545. GGML_ASSERT(false); // TODO: implement
  12546. } break;
  12547. case GGML_OP_REPEAT:
  12548. {
  12549. // necessary for llama
  12550. if (src0->grad) {
  12551. src0->grad = ggml_add_or_set(ctx,
  12552. src0->grad,
  12553. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12554. zero_table);
  12555. }
  12556. } break;
  12557. case GGML_OP_REPEAT_BACK:
  12558. {
  12559. if (src0->grad) {
  12560. // TODO: test this
  12561. src0->grad = ggml_add_or_set(ctx,
  12562. src0->grad,
  12563. ggml_repeat(ctx, tensor->grad, src0->grad),
  12564. zero_table);
  12565. }
  12566. } break;
  12567. case GGML_OP_CONCAT:
  12568. {
  12569. GGML_ASSERT(false); // TODO: implement
  12570. } break;
  12571. case GGML_OP_SILU_BACK:
  12572. {
  12573. GGML_ASSERT(false); // TODO: not implemented
  12574. } break;
  12575. case GGML_OP_NORM:
  12576. {
  12577. GGML_ASSERT(false); // TODO: not implemented
  12578. } break;
  12579. case GGML_OP_RMS_NORM:
  12580. {
  12581. // necessary for llama
  12582. if (src0->grad) {
  12583. float eps;
  12584. memcpy(&eps, tensor->op_params, sizeof(float));
  12585. src0->grad = ggml_add_or_set(ctx,
  12586. src0->grad,
  12587. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12588. zero_table);
  12589. }
  12590. } break;
  12591. case GGML_OP_RMS_NORM_BACK:
  12592. {
  12593. GGML_ASSERT(false); // TODO: not implemented
  12594. } break;
  12595. case GGML_OP_GROUP_NORM:
  12596. {
  12597. GGML_ASSERT(false); // TODO: not implemented
  12598. } break;
  12599. case GGML_OP_MUL_MAT:
  12600. {
  12601. // https://cs231n.github.io/optimization-2/#staged
  12602. // # forward pass
  12603. // s0 = np.random.randn(5, 10)
  12604. // s1 = np.random.randn(10, 3)
  12605. // t = s0.dot(s1)
  12606. // # now suppose we had the gradient on t from above in the circuit
  12607. // dt = np.random.randn(*t.shape) # same shape as t
  12608. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12609. // ds1 = t.T.dot(dt)
  12610. // tensor.shape [m,p,qq,rr]
  12611. // src0.shape [n,m,q1,r1]
  12612. // src1.shape [n,p,qq,rr]
  12613. // necessary for llama
  12614. if (src0->grad) {
  12615. struct ggml_tensor * s1_tg =
  12616. ggml_out_prod(ctx, // [n,m,qq,rr]
  12617. src1, // [n,p,qq,rr]
  12618. tensor->grad); // [m,p,qq,rr]
  12619. const int64_t qq = s1_tg->ne[2];
  12620. const int64_t rr = s1_tg->ne[3];
  12621. const int64_t q1 = src0->ne[2];
  12622. const int64_t r1 = src0->ne[3];
  12623. const bool ne2_broadcasted = qq > q1;
  12624. const bool ne3_broadcasted = rr > r1;
  12625. if (ne2_broadcasted || ne3_broadcasted) {
  12626. // sum broadcast repetitions of s1_tg into shape of src0
  12627. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12628. }
  12629. src0->grad =
  12630. ggml_add_or_set(ctx,
  12631. src0->grad, // [n,m,q1,r1]
  12632. s1_tg, // [n,m,q1,r1]
  12633. zero_table);
  12634. }
  12635. if (src1->grad) {
  12636. src1->grad =
  12637. ggml_add_or_set(ctx,
  12638. src1->grad, // [n,p,qq,rr]
  12639. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12640. // ggml_cont(ctx, // [m,n,q1,r1]
  12641. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12642. // tensor->grad), // [m,p,qq,rr]
  12643. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12644. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12645. // // and then use ggml_out_prod
  12646. ggml_out_prod(ctx, // [n,p,qq,rr]
  12647. src0, // [n,m,q1,r1]
  12648. ggml_transpose(ctx, // [p,m,qq,rr]
  12649. tensor->grad)), // [m,p,qq,rr]
  12650. zero_table);
  12651. }
  12652. } break;
  12653. case GGML_OP_MUL_MAT_ID:
  12654. {
  12655. GGML_ASSERT(false); // TODO: not implemented
  12656. } break;
  12657. case GGML_OP_OUT_PROD:
  12658. {
  12659. GGML_ASSERT(false); // TODO: not implemented
  12660. } break;
  12661. case GGML_OP_SCALE:
  12662. {
  12663. // necessary for llama
  12664. if (src0->grad) {
  12665. float s;
  12666. memcpy(&s, tensor->op_params, sizeof(float));
  12667. src0->grad =
  12668. ggml_add_or_set(ctx,
  12669. src0->grad,
  12670. ggml_scale_impl(ctx, tensor->grad, s, false),
  12671. zero_table);
  12672. }
  12673. } break;
  12674. case GGML_OP_SET:
  12675. {
  12676. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12677. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12678. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12679. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12680. struct ggml_tensor * tensor_grad_view = NULL;
  12681. if (src0->grad || src1->grad) {
  12682. GGML_ASSERT(src0->type == tensor->type);
  12683. GGML_ASSERT(tensor->grad->type == tensor->type);
  12684. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12685. tensor_grad_view = ggml_view_4d(ctx,
  12686. tensor->grad,
  12687. src1->grad->ne[0],
  12688. src1->grad->ne[1],
  12689. src1->grad->ne[2],
  12690. src1->grad->ne[3],
  12691. nb1, nb2, nb3, offset);
  12692. }
  12693. if (src0->grad) {
  12694. src0->grad = ggml_add_or_set(ctx,
  12695. src0->grad,
  12696. ggml_acc_impl(ctx,
  12697. tensor->grad,
  12698. ggml_neg(ctx, tensor_grad_view),
  12699. nb1, nb2, nb3, offset, false),
  12700. zero_table);
  12701. }
  12702. if (src1->grad) {
  12703. src1->grad =
  12704. ggml_add_or_set(ctx,
  12705. src1->grad,
  12706. ggml_reshape(ctx,
  12707. ggml_cont(ctx, tensor_grad_view),
  12708. src1->grad),
  12709. zero_table);
  12710. }
  12711. } break;
  12712. case GGML_OP_CPY:
  12713. {
  12714. // necessary for llama
  12715. // cpy overwrites value of src1 by src0 and returns view(src1)
  12716. // the overwriting is mathematically equivalent to:
  12717. // tensor = src0 * 1 + src1 * 0
  12718. if (src0->grad) {
  12719. // dsrc0 = dtensor * 1
  12720. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12721. }
  12722. if (src1->grad) {
  12723. // dsrc1 = dtensor * 0 -> noop
  12724. }
  12725. } break;
  12726. case GGML_OP_CONT:
  12727. {
  12728. // same as cpy
  12729. if (src0->grad) {
  12730. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12731. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12732. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12733. }
  12734. } break;
  12735. case GGML_OP_RESHAPE:
  12736. {
  12737. // necessary for llama
  12738. if (src0->grad) {
  12739. src0->grad =
  12740. ggml_add_or_set(ctx, src0->grad,
  12741. ggml_reshape(ctx,
  12742. ggml_is_contiguous(tensor->grad)
  12743. ? tensor->grad
  12744. : ggml_cont(ctx, tensor->grad),
  12745. src0->grad),
  12746. zero_table);
  12747. }
  12748. } break;
  12749. case GGML_OP_VIEW:
  12750. {
  12751. // necessary for llama
  12752. if (src0->grad) {
  12753. size_t offset;
  12754. memcpy(&offset, tensor->op_params, sizeof(offset));
  12755. size_t nb1 = tensor->nb[1];
  12756. size_t nb2 = tensor->nb[2];
  12757. size_t nb3 = tensor->nb[3];
  12758. if (src0->type != src0->grad->type) {
  12759. // gradient is typically F32, but src0 could be other type
  12760. size_t ng = ggml_element_size(src0->grad);
  12761. size_t n0 = ggml_element_size(src0);
  12762. GGML_ASSERT(offset % n0 == 0);
  12763. GGML_ASSERT(nb1 % n0 == 0);
  12764. GGML_ASSERT(nb2 % n0 == 0);
  12765. GGML_ASSERT(nb3 % n0 == 0);
  12766. offset = (offset / n0) * ng;
  12767. nb1 = (nb1 / n0) * ng;
  12768. nb2 = (nb2 / n0) * ng;
  12769. nb3 = (nb3 / n0) * ng;
  12770. }
  12771. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12772. }
  12773. } break;
  12774. case GGML_OP_PERMUTE:
  12775. {
  12776. // necessary for llama
  12777. if (src0->grad) {
  12778. int32_t * axes = (int32_t *) tensor->op_params;
  12779. int axis0 = axes[0] & 0x3;
  12780. int axis1 = axes[1] & 0x3;
  12781. int axis2 = axes[2] & 0x3;
  12782. int axis3 = axes[3] & 0x3;
  12783. int axes_backward[4] = {0,0,0,0};
  12784. axes_backward[axis0] = 0;
  12785. axes_backward[axis1] = 1;
  12786. axes_backward[axis2] = 2;
  12787. axes_backward[axis3] = 3;
  12788. src0->grad =
  12789. ggml_add_or_set(ctx, src0->grad,
  12790. ggml_permute(ctx,
  12791. tensor->grad,
  12792. axes_backward[0],
  12793. axes_backward[1],
  12794. axes_backward[2],
  12795. axes_backward[3]),
  12796. zero_table);
  12797. }
  12798. } break;
  12799. case GGML_OP_TRANSPOSE:
  12800. {
  12801. // necessary for llama
  12802. if (src0->grad) {
  12803. src0->grad =
  12804. ggml_add_or_set(ctx, src0->grad,
  12805. ggml_transpose(ctx, tensor->grad),
  12806. zero_table);
  12807. }
  12808. } break;
  12809. case GGML_OP_GET_ROWS:
  12810. {
  12811. // necessary for llama (only for tokenizer)
  12812. if (src0->grad) {
  12813. src0->grad =
  12814. ggml_add_or_set(ctx, src0->grad,
  12815. // last ggml_get_rows_back argument src0->grad is only
  12816. // necessary to setup correct output shape
  12817. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12818. zero_table);
  12819. }
  12820. if (src1->grad) {
  12821. // noop
  12822. }
  12823. } break;
  12824. case GGML_OP_GET_ROWS_BACK:
  12825. {
  12826. GGML_ASSERT(false); // TODO: not implemented
  12827. } break;
  12828. case GGML_OP_DIAG:
  12829. {
  12830. GGML_ASSERT(false); // TODO: not implemented
  12831. } break;
  12832. case GGML_OP_DIAG_MASK_INF:
  12833. {
  12834. // necessary for llama
  12835. if (src0->grad) {
  12836. const int n_past = ((int32_t *) tensor->op_params)[0];
  12837. src0->grad =
  12838. ggml_add_or_set(ctx, src0->grad,
  12839. /* ggml_diag_mask_inf_impl() shouldn't be here */
  12840. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  12841. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12842. zero_table);
  12843. }
  12844. } break;
  12845. case GGML_OP_DIAG_MASK_ZERO:
  12846. {
  12847. // necessary for llama
  12848. if (src0->grad) {
  12849. const int n_past = ((int32_t *) tensor->op_params)[0];
  12850. src0->grad =
  12851. ggml_add_or_set(ctx, src0->grad,
  12852. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12853. zero_table);
  12854. }
  12855. } break;
  12856. case GGML_OP_SOFT_MAX:
  12857. {
  12858. // necessary for llama
  12859. if (src0->grad) {
  12860. src0->grad =
  12861. ggml_add_or_set(ctx, src0->grad,
  12862. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12863. zero_table);
  12864. }
  12865. } break;
  12866. case GGML_OP_SOFT_MAX_BACK:
  12867. {
  12868. GGML_ASSERT(false); // TODO: not implemented
  12869. } break;
  12870. case GGML_OP_ROPE:
  12871. {
  12872. // necessary for llama
  12873. if (src0->grad) {
  12874. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12875. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12876. const int mode = ((int32_t *) tensor->op_params)[2];
  12877. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12878. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12879. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12880. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12881. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12882. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12883. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12884. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12885. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12886. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12887. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12888. src0->grad = ggml_add_or_set(ctx,
  12889. src0->grad,
  12890. ggml_rope_back(ctx,
  12891. tensor->grad,
  12892. src1,
  12893. n_dims,
  12894. mode,
  12895. n_ctx,
  12896. n_orig_ctx,
  12897. freq_base,
  12898. freq_scale,
  12899. ext_factor,
  12900. attn_factor,
  12901. beta_fast,
  12902. beta_slow,
  12903. xpos_base,
  12904. xpos_down),
  12905. zero_table);
  12906. }
  12907. } break;
  12908. case GGML_OP_ROPE_BACK:
  12909. {
  12910. if (src0->grad) {
  12911. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12912. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12913. const int mode = ((int32_t *) tensor->op_params)[2];
  12914. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12915. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12916. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12917. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12918. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12919. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12920. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12921. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12922. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12923. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12924. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12925. src0->grad = ggml_add_or_set(ctx,
  12926. src0->grad,
  12927. ggml_rope_impl(ctx,
  12928. tensor->grad,
  12929. src1,
  12930. n_dims,
  12931. mode,
  12932. n_ctx,
  12933. n_orig_ctx,
  12934. freq_base,
  12935. freq_scale,
  12936. ext_factor,
  12937. attn_factor,
  12938. beta_fast,
  12939. beta_slow,
  12940. xpos_base,
  12941. xpos_down,
  12942. false),
  12943. zero_table);
  12944. }
  12945. } break;
  12946. case GGML_OP_ALIBI:
  12947. {
  12948. GGML_ASSERT(false); // TODO: not implemented
  12949. } break;
  12950. case GGML_OP_CLAMP:
  12951. {
  12952. GGML_ASSERT(false); // TODO: not implemented
  12953. } break;
  12954. case GGML_OP_CONV_TRANSPOSE_1D:
  12955. {
  12956. GGML_ASSERT(false); // TODO: not implemented
  12957. } break;
  12958. case GGML_OP_IM2COL:
  12959. {
  12960. GGML_ASSERT(false); // TODO: not implemented
  12961. } break;
  12962. case GGML_OP_CONV_TRANSPOSE_2D:
  12963. {
  12964. GGML_ASSERT(false); // TODO: not implemented
  12965. } break;
  12966. case GGML_OP_POOL_1D:
  12967. {
  12968. GGML_ASSERT(false); // TODO: not implemented
  12969. } break;
  12970. case GGML_OP_POOL_2D:
  12971. {
  12972. GGML_ASSERT(false); // TODO: not implemented
  12973. } break;
  12974. case GGML_OP_UPSCALE:
  12975. {
  12976. GGML_ASSERT(false); // TODO: not implemented
  12977. } break;
  12978. case GGML_OP_PAD:
  12979. {
  12980. GGML_ASSERT(false); // TODO: not implemented
  12981. } break;
  12982. case GGML_OP_ARGSORT:
  12983. {
  12984. GGML_ASSERT(false); // TODO: not implemented
  12985. } break;
  12986. case GGML_OP_LEAKY_RELU:
  12987. {
  12988. GGML_ASSERT(false); // TODO: not implemented
  12989. } break;
  12990. case GGML_OP_FLASH_ATTN:
  12991. {
  12992. struct ggml_tensor * flash_grad = NULL;
  12993. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12994. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12995. GGML_ASSERT(t == 0 || t == 1);
  12996. bool masked = t != 0;
  12997. flash_grad =
  12998. ggml_flash_attn_back(ctx,
  12999. src0,
  13000. src1,
  13001. tensor->src[2],
  13002. tensor->grad,
  13003. masked);
  13004. }
  13005. struct ggml_tensor * src2 = tensor->src[2];
  13006. const int64_t elem_q = ggml_nelements(src0);
  13007. const int64_t elem_k = ggml_nelements(src1);
  13008. const int64_t elem_v = ggml_nelements(src2);
  13009. enum ggml_type result_type = flash_grad->type;
  13010. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13011. const size_t tsize = ggml_type_size(result_type);
  13012. const size_t offs_q = 0;
  13013. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13014. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13015. if (src0->grad) {
  13016. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13017. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13018. src0->grad = ggml_add_or_set(ctx,
  13019. src0->grad,
  13020. grad_q,
  13021. zero_table);
  13022. }
  13023. if (src1->grad) {
  13024. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13025. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13026. src1->grad = ggml_add_or_set(ctx,
  13027. src1->grad,
  13028. grad_k,
  13029. zero_table);
  13030. }
  13031. if (src2->grad) {
  13032. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13033. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13034. src2->grad = ggml_add_or_set(ctx,
  13035. src2->grad,
  13036. grad_v,
  13037. zero_table);
  13038. }
  13039. } break;
  13040. case GGML_OP_FLASH_FF:
  13041. {
  13042. GGML_ASSERT(false); // not supported
  13043. } break;
  13044. case GGML_OP_FLASH_ATTN_BACK:
  13045. {
  13046. GGML_ASSERT(false); // not supported
  13047. } break;
  13048. case GGML_OP_WIN_PART:
  13049. case GGML_OP_WIN_UNPART:
  13050. case GGML_OP_UNARY:
  13051. {
  13052. switch (ggml_get_unary_op(tensor)) {
  13053. case GGML_UNARY_OP_ABS:
  13054. {
  13055. if (src0->grad) {
  13056. src0->grad =
  13057. ggml_add_or_set(ctx,
  13058. src0->grad,
  13059. ggml_mul(ctx,
  13060. ggml_sgn(ctx, src0),
  13061. tensor->grad),
  13062. zero_table);
  13063. }
  13064. } break;
  13065. case GGML_UNARY_OP_SGN:
  13066. {
  13067. if (src0->grad) {
  13068. // noop
  13069. }
  13070. } break;
  13071. case GGML_UNARY_OP_NEG:
  13072. {
  13073. if (src0->grad) {
  13074. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13075. }
  13076. } break;
  13077. case GGML_UNARY_OP_STEP:
  13078. {
  13079. if (src0->grad) {
  13080. // noop
  13081. }
  13082. } break;
  13083. case GGML_UNARY_OP_TANH:
  13084. {
  13085. GGML_ASSERT(false); // TODO: not implemented
  13086. } break;
  13087. case GGML_UNARY_OP_ELU:
  13088. {
  13089. GGML_ASSERT(false); // TODO: not implemented
  13090. } break;
  13091. case GGML_UNARY_OP_RELU:
  13092. {
  13093. if (src0->grad) {
  13094. src0->grad = ggml_add_or_set(ctx,
  13095. src0->grad,
  13096. ggml_mul(ctx,
  13097. ggml_step(ctx, src0),
  13098. tensor->grad),
  13099. zero_table);
  13100. }
  13101. } break;
  13102. case GGML_UNARY_OP_GELU:
  13103. {
  13104. GGML_ASSERT(false); // TODO: not implemented
  13105. } break;
  13106. case GGML_UNARY_OP_GELU_QUICK:
  13107. {
  13108. GGML_ASSERT(false); // TODO: not implemented
  13109. } break;
  13110. case GGML_UNARY_OP_SILU:
  13111. {
  13112. // necessary for llama
  13113. if (src0->grad) {
  13114. src0->grad = ggml_add_or_set(ctx,
  13115. src0->grad,
  13116. ggml_silu_back(ctx, src0, tensor->grad),
  13117. zero_table);
  13118. }
  13119. } break;
  13120. default:
  13121. GGML_ASSERT(false);
  13122. }
  13123. } break;
  13124. case GGML_OP_GET_REL_POS:
  13125. case GGML_OP_ADD_REL_POS:
  13126. case GGML_OP_MAP_UNARY:
  13127. case GGML_OP_MAP_BINARY:
  13128. case GGML_OP_MAP_CUSTOM1_F32:
  13129. case GGML_OP_MAP_CUSTOM2_F32:
  13130. case GGML_OP_MAP_CUSTOM3_F32:
  13131. case GGML_OP_MAP_CUSTOM1:
  13132. case GGML_OP_MAP_CUSTOM2:
  13133. case GGML_OP_MAP_CUSTOM3:
  13134. {
  13135. GGML_ASSERT(false); // not supported
  13136. } break;
  13137. case GGML_OP_CROSS_ENTROPY_LOSS:
  13138. {
  13139. if (src0->grad) {
  13140. src0->grad = ggml_add_or_set(ctx,
  13141. src0->grad,
  13142. ggml_cross_entropy_loss_back(ctx,
  13143. src0,
  13144. src1,
  13145. tensor->grad),
  13146. zero_table);
  13147. }
  13148. } break;
  13149. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13150. {
  13151. GGML_ASSERT(false); // not supported
  13152. } break;
  13153. case GGML_OP_NONE:
  13154. {
  13155. // nop
  13156. } break;
  13157. case GGML_OP_COUNT:
  13158. {
  13159. GGML_ASSERT(false);
  13160. } break;
  13161. }
  13162. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13163. if (tensor->src[i] && tensor->src[i]->grad) {
  13164. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13165. }
  13166. }
  13167. }
  13168. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13169. if (node->grad == NULL) {
  13170. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13171. // it can also happen during forward pass, if the user performs computations with constants
  13172. if (node->op != GGML_OP_NONE) {
  13173. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13174. }
  13175. }
  13176. // check if already visited
  13177. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13178. return;
  13179. }
  13180. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13181. const int k =
  13182. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13183. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13184. /* unknown order, just fall back to using i*/ i;
  13185. if (node->src[k]) {
  13186. ggml_visit_parents(cgraph, node->src[k]);
  13187. }
  13188. }
  13189. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13190. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13191. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13192. if (strlen(node->name) == 0) {
  13193. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13194. }
  13195. cgraph->leafs[cgraph->n_leafs] = node;
  13196. cgraph->n_leafs++;
  13197. } else {
  13198. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13199. if (strlen(node->name) == 0) {
  13200. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13201. }
  13202. cgraph->nodes[cgraph->n_nodes] = node;
  13203. if (cgraph->grads) {
  13204. cgraph->grads[cgraph->n_nodes] = node->grad;
  13205. }
  13206. cgraph->n_nodes++;
  13207. }
  13208. }
  13209. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13210. if (!expand) {
  13211. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13212. ggml_graph_clear(cgraph);
  13213. }
  13214. const int n0 = cgraph->n_nodes;
  13215. UNUSED(n0);
  13216. ggml_visit_parents(cgraph, tensor);
  13217. const int n_new = cgraph->n_nodes - n0;
  13218. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13219. if (n_new > 0) {
  13220. // the last added node should always be starting point
  13221. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13222. }
  13223. }
  13224. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13225. ggml_build_forward_impl(cgraph, tensor, true);
  13226. }
  13227. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13228. GGML_ASSERT(gf->n_nodes > 0);
  13229. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13230. if (keep) {
  13231. for (int i = 0; i < gf->n_nodes; i++) {
  13232. struct ggml_tensor * node = gf->nodes[i];
  13233. if (node->grad) {
  13234. node->grad = ggml_dup_tensor(ctx, node);
  13235. gf->grads[i] = node->grad;
  13236. }
  13237. }
  13238. }
  13239. // remember original gradients which start with zero values
  13240. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13241. for (int i = 0; i < gf->n_nodes; i++) {
  13242. if (gf->grads[i]) {
  13243. ggml_hash_insert(zero_table, gf->grads[i]);
  13244. }
  13245. }
  13246. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13247. struct ggml_tensor * node = gf->nodes[i];
  13248. // inplace operations to add gradients are not created by ggml_compute_backward
  13249. // use allocator to automatically make inplace operations
  13250. if (node->grad) {
  13251. ggml_compute_backward(ctx, node, zero_table);
  13252. }
  13253. }
  13254. for (int i = 0; i < gf->n_nodes; i++) {
  13255. struct ggml_tensor * node = gf->nodes[i];
  13256. if (node->is_param) {
  13257. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13258. ggml_build_forward_expand(gb, node->grad);
  13259. }
  13260. }
  13261. ggml_hash_set_free(zero_table);
  13262. }
  13263. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13264. size_t nbytes = sizeof(struct ggml_cgraph);
  13265. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13266. if (grads) {
  13267. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13268. }
  13269. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13270. return nbytes;
  13271. }
  13272. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13273. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13274. }
  13275. size_t ggml_graph_overhead(void) {
  13276. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13277. }
  13278. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13279. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13280. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13281. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13282. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13283. size_t hash_size = ggml_hash_size(size * 2);
  13284. struct ggml_tensor ** nodes_ptr = data_start;
  13285. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13286. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13287. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13288. // check that we allocated the correct amount of memory
  13289. assert(obj_size == (size_t) (
  13290. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13291. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13292. *cgraph = (struct ggml_cgraph) {
  13293. /*.size =*/ size,
  13294. /*.n_nodes =*/ 0,
  13295. /*.n_leafs =*/ 0,
  13296. /*.nodes =*/ nodes_ptr,
  13297. /*.grads =*/ grads_ptr,
  13298. /*.leafs =*/ leafs_ptr,
  13299. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13300. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13301. /*.perf_runs =*/ 0,
  13302. /*.perf_cycles =*/ 0,
  13303. /*.perf_time_us =*/ 0,
  13304. };
  13305. return cgraph;
  13306. }
  13307. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13308. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13309. }
  13310. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13311. struct ggml_cgraph cgraph = {
  13312. /*.size =*/ 0,
  13313. /*.n_nodes =*/ i1 - i0,
  13314. /*.n_leafs =*/ 0,
  13315. /*.nodes =*/ cgraph0->nodes + i0,
  13316. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13317. /*.leafs =*/ NULL,
  13318. /*.hash_table =*/ { 0, NULL },
  13319. /*.order =*/ cgraph0->order,
  13320. /*.perf_runs =*/ 0,
  13321. /*.perf_cycles =*/ 0,
  13322. /*.perf_time_us =*/ 0,
  13323. };
  13324. return cgraph;
  13325. }
  13326. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13327. GGML_ASSERT(dst->size >= src->n_leafs);
  13328. GGML_ASSERT(dst->size >= src->n_nodes);
  13329. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13330. dst->n_leafs = src->n_leafs;
  13331. dst->n_nodes = src->n_nodes;
  13332. dst->order = src->order;
  13333. for (int i = 0; i < src->n_leafs; ++i) {
  13334. dst->leafs[i] = src->leafs[i];
  13335. }
  13336. for (int i = 0; i < src->n_nodes; ++i) {
  13337. dst->nodes[i] = src->nodes[i];
  13338. }
  13339. if (src->grads) {
  13340. GGML_ASSERT(dst->grads != NULL);
  13341. for (int i = 0; i < src->n_nodes; ++i) {
  13342. dst->grads[i] = src->grads[i];
  13343. }
  13344. }
  13345. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13346. if (src->visited_hash_table.keys[i]) {
  13347. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13348. }
  13349. }
  13350. }
  13351. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13352. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13353. ggml_graph_cpy(cgraph, result);
  13354. return result;
  13355. }
  13356. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13357. GGML_ASSERT(cgraph->grads != NULL);
  13358. for (int i = 0; i < cgraph->n_nodes; i++) {
  13359. struct ggml_tensor * grad = cgraph->grads[i];
  13360. if (grad) {
  13361. ggml_set_zero(grad);
  13362. }
  13363. }
  13364. }
  13365. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13366. cgraph->n_leafs = 0;
  13367. cgraph->n_nodes = 0;
  13368. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13369. }
  13370. //
  13371. // thread data
  13372. //
  13373. // synchronization is done via busy loops
  13374. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13375. //
  13376. #ifdef __APPLE__
  13377. //#include <os/lock.h>
  13378. //
  13379. //typedef os_unfair_lock ggml_lock_t;
  13380. //
  13381. //#define ggml_lock_init(x) UNUSED(x)
  13382. //#define ggml_lock_destroy(x) UNUSED(x)
  13383. //#define ggml_lock_lock os_unfair_lock_lock
  13384. //#define ggml_lock_unlock os_unfair_lock_unlock
  13385. //
  13386. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13387. typedef int ggml_lock_t;
  13388. #define ggml_lock_init(x) UNUSED(x)
  13389. #define ggml_lock_destroy(x) UNUSED(x)
  13390. #define ggml_lock_lock(x) UNUSED(x)
  13391. #define ggml_lock_unlock(x) UNUSED(x)
  13392. #define GGML_LOCK_INITIALIZER 0
  13393. typedef pthread_t ggml_thread_t;
  13394. #define ggml_thread_create pthread_create
  13395. #define ggml_thread_join pthread_join
  13396. #else
  13397. //typedef pthread_spinlock_t ggml_lock_t;
  13398. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13399. //#define ggml_lock_destroy pthread_spin_destroy
  13400. //#define ggml_lock_lock pthread_spin_lock
  13401. //#define ggml_lock_unlock pthread_spin_unlock
  13402. typedef int ggml_lock_t;
  13403. #define ggml_lock_init(x) UNUSED(x)
  13404. #define ggml_lock_destroy(x) UNUSED(x)
  13405. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13406. #define ggml_lock_lock(x) _mm_pause()
  13407. #else
  13408. #define ggml_lock_lock(x) UNUSED(x)
  13409. #endif
  13410. #define ggml_lock_unlock(x) UNUSED(x)
  13411. #define GGML_LOCK_INITIALIZER 0
  13412. typedef pthread_t ggml_thread_t;
  13413. #define ggml_thread_create pthread_create
  13414. #define ggml_thread_join pthread_join
  13415. #endif
  13416. // Android's libc implementation "bionic" does not support setting affinity
  13417. #if defined(__linux__) && !defined(__BIONIC__)
  13418. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13419. if (!ggml_is_numa()) {
  13420. return;
  13421. }
  13422. // run thread on node_num thread_n / (threads per node)
  13423. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13424. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13425. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13426. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13427. CPU_ZERO_S(setsize, cpus);
  13428. for (size_t i = 0; i < node->n_cpus; ++i) {
  13429. CPU_SET_S(node->cpus[i], setsize, cpus);
  13430. }
  13431. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13432. if (rv) {
  13433. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13434. strerror(rv));
  13435. }
  13436. CPU_FREE(cpus);
  13437. }
  13438. static void clear_numa_thread_affinity(void) {
  13439. if (!ggml_is_numa()) {
  13440. return;
  13441. }
  13442. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13443. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13444. CPU_ZERO_S(setsize, cpus);
  13445. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13446. CPU_SET_S(i, setsize, cpus);
  13447. }
  13448. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13449. if (rv) {
  13450. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13451. strerror(rv));
  13452. }
  13453. CPU_FREE(cpus);
  13454. }
  13455. #else
  13456. // TODO: Windows etc.
  13457. // (the linux implementation may also work on BSD, someone should test)
  13458. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13459. static void clear_numa_thread_affinity(void) {}
  13460. #endif
  13461. struct ggml_compute_state_shared {
  13462. const struct ggml_cgraph * cgraph;
  13463. const struct ggml_cplan * cplan;
  13464. int64_t perf_node_start_cycles;
  13465. int64_t perf_node_start_time_us;
  13466. const int n_threads;
  13467. // synchronization primitives
  13468. atomic_int n_active; // num active threads
  13469. atomic_int node_n; // active graph node
  13470. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13471. void * abort_callback_data;
  13472. };
  13473. struct ggml_compute_state {
  13474. ggml_thread_t thrd;
  13475. int ith;
  13476. struct ggml_compute_state_shared * shared;
  13477. };
  13478. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13479. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13480. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13481. node->perf_runs++;
  13482. node->perf_cycles += cycles_cur;
  13483. node->perf_time_us += time_us_cur;
  13484. }
  13485. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13486. int n_tasks = 0;
  13487. switch (node->op) {
  13488. case GGML_OP_CPY:
  13489. case GGML_OP_DUP:
  13490. case GGML_OP_ADD:
  13491. case GGML_OP_ADD1:
  13492. case GGML_OP_ACC:
  13493. {
  13494. n_tasks = n_threads;
  13495. } break;
  13496. case GGML_OP_SUB:
  13497. case GGML_OP_SQR:
  13498. case GGML_OP_SQRT:
  13499. case GGML_OP_LOG:
  13500. case GGML_OP_SUM:
  13501. case GGML_OP_SUM_ROWS:
  13502. case GGML_OP_MEAN:
  13503. case GGML_OP_ARGMAX:
  13504. case GGML_OP_REPEAT:
  13505. case GGML_OP_REPEAT_BACK:
  13506. case GGML_OP_LEAKY_RELU:
  13507. {
  13508. n_tasks = 1;
  13509. } break;
  13510. case GGML_OP_UNARY:
  13511. switch (ggml_get_unary_op(node)) {
  13512. case GGML_UNARY_OP_ABS:
  13513. case GGML_UNARY_OP_SGN:
  13514. case GGML_UNARY_OP_NEG:
  13515. case GGML_UNARY_OP_STEP:
  13516. case GGML_UNARY_OP_TANH:
  13517. case GGML_UNARY_OP_ELU:
  13518. case GGML_UNARY_OP_RELU:
  13519. {
  13520. n_tasks = 1;
  13521. } break;
  13522. case GGML_UNARY_OP_GELU:
  13523. case GGML_UNARY_OP_GELU_QUICK:
  13524. case GGML_UNARY_OP_SILU:
  13525. {
  13526. n_tasks = n_threads;
  13527. } break;
  13528. default:
  13529. GGML_ASSERT(false);
  13530. }
  13531. break;
  13532. case GGML_OP_SILU_BACK:
  13533. case GGML_OP_MUL:
  13534. case GGML_OP_DIV:
  13535. case GGML_OP_NORM:
  13536. case GGML_OP_RMS_NORM:
  13537. case GGML_OP_RMS_NORM_BACK:
  13538. case GGML_OP_GROUP_NORM:
  13539. case GGML_OP_CONCAT:
  13540. {
  13541. n_tasks = n_threads;
  13542. } break;
  13543. case GGML_OP_MUL_MAT:
  13544. {
  13545. n_tasks = n_threads;
  13546. // TODO: use different scheduling for different matrix sizes
  13547. //const int nr0 = ggml_nrows(node->src[0]);
  13548. //const int nr1 = ggml_nrows(node->src[1]);
  13549. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13550. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13551. } break;
  13552. case GGML_OP_MUL_MAT_ID:
  13553. {
  13554. n_tasks = n_threads;
  13555. } break;
  13556. case GGML_OP_OUT_PROD:
  13557. {
  13558. n_tasks = n_threads;
  13559. } break;
  13560. case GGML_OP_SCALE:
  13561. case GGML_OP_SET:
  13562. case GGML_OP_CONT:
  13563. case GGML_OP_RESHAPE:
  13564. case GGML_OP_VIEW:
  13565. case GGML_OP_PERMUTE:
  13566. case GGML_OP_TRANSPOSE:
  13567. case GGML_OP_GET_ROWS:
  13568. case GGML_OP_GET_ROWS_BACK:
  13569. case GGML_OP_DIAG:
  13570. {
  13571. n_tasks = 1;
  13572. } break;
  13573. case GGML_OP_DIAG_MASK_ZERO:
  13574. case GGML_OP_DIAG_MASK_INF:
  13575. case GGML_OP_SOFT_MAX_BACK:
  13576. case GGML_OP_ROPE:
  13577. case GGML_OP_ROPE_BACK:
  13578. case GGML_OP_ADD_REL_POS:
  13579. {
  13580. n_tasks = n_threads;
  13581. } break;
  13582. case GGML_OP_ALIBI:
  13583. {
  13584. n_tasks = 1; //TODO
  13585. } break;
  13586. case GGML_OP_CLAMP:
  13587. {
  13588. n_tasks = 1; //TODO
  13589. } break;
  13590. case GGML_OP_SOFT_MAX:
  13591. {
  13592. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13593. } break;
  13594. case GGML_OP_CONV_TRANSPOSE_1D:
  13595. {
  13596. n_tasks = n_threads;
  13597. } break;
  13598. case GGML_OP_IM2COL:
  13599. {
  13600. n_tasks = n_threads;
  13601. } break;
  13602. case GGML_OP_CONV_TRANSPOSE_2D:
  13603. {
  13604. n_tasks = n_threads;
  13605. } break;
  13606. case GGML_OP_POOL_1D:
  13607. case GGML_OP_POOL_2D:
  13608. {
  13609. n_tasks = 1;
  13610. } break;
  13611. case GGML_OP_UPSCALE:
  13612. {
  13613. n_tasks = n_threads;
  13614. } break;
  13615. case GGML_OP_PAD:
  13616. {
  13617. n_tasks = n_threads;
  13618. } break;
  13619. case GGML_OP_ARGSORT:
  13620. {
  13621. n_tasks = n_threads;
  13622. } break;
  13623. case GGML_OP_FLASH_ATTN:
  13624. {
  13625. n_tasks = n_threads;
  13626. } break;
  13627. case GGML_OP_FLASH_FF:
  13628. {
  13629. n_tasks = n_threads;
  13630. } break;
  13631. case GGML_OP_FLASH_ATTN_BACK:
  13632. {
  13633. n_tasks = n_threads;
  13634. } break;
  13635. case GGML_OP_WIN_PART:
  13636. case GGML_OP_WIN_UNPART:
  13637. case GGML_OP_GET_REL_POS:
  13638. case GGML_OP_MAP_UNARY:
  13639. case GGML_OP_MAP_BINARY:
  13640. case GGML_OP_MAP_CUSTOM1_F32:
  13641. case GGML_OP_MAP_CUSTOM2_F32:
  13642. case GGML_OP_MAP_CUSTOM3_F32:
  13643. {
  13644. n_tasks = 1;
  13645. } break;
  13646. case GGML_OP_MAP_CUSTOM1:
  13647. {
  13648. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13649. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13650. n_tasks = n_threads;
  13651. } else {
  13652. n_tasks = MIN(p->n_tasks, n_threads);
  13653. }
  13654. } break;
  13655. case GGML_OP_MAP_CUSTOM2:
  13656. {
  13657. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13658. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13659. n_tasks = n_threads;
  13660. } else {
  13661. n_tasks = MIN(p->n_tasks, n_threads);
  13662. }
  13663. } break;
  13664. case GGML_OP_MAP_CUSTOM3:
  13665. {
  13666. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13667. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13668. n_tasks = n_threads;
  13669. } else {
  13670. n_tasks = MIN(p->n_tasks, n_threads);
  13671. }
  13672. } break;
  13673. case GGML_OP_CROSS_ENTROPY_LOSS:
  13674. {
  13675. n_tasks = n_threads;
  13676. } break;
  13677. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13678. {
  13679. n_tasks = n_threads;
  13680. } break;
  13681. case GGML_OP_NONE:
  13682. {
  13683. n_tasks = 1;
  13684. } break;
  13685. case GGML_OP_COUNT:
  13686. {
  13687. GGML_ASSERT(false);
  13688. } break;
  13689. default:
  13690. {
  13691. fprintf(stderr, "%s: op not implemented: ", __func__);
  13692. if (node->op < GGML_OP_COUNT) {
  13693. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13694. } else {
  13695. fprintf(stderr, "%d\n", node->op);
  13696. }
  13697. GGML_ASSERT(false);
  13698. } break;
  13699. }
  13700. assert(n_tasks > 0);
  13701. return n_tasks;
  13702. }
  13703. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13704. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13705. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13706. const struct ggml_cplan * cplan = state->shared->cplan;
  13707. const int n_threads = state->shared->n_threads;
  13708. set_numa_thread_affinity(state->ith, n_threads);
  13709. int node_n = -1;
  13710. while (true) {
  13711. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13712. state->shared->node_n += 1;
  13713. return (thread_ret_t) GGML_EXIT_ABORTED;
  13714. }
  13715. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13716. // all other threads are finished and spinning
  13717. // do finalize and init here so we don't have synchronize again
  13718. struct ggml_compute_params params = {
  13719. /*.type =*/ GGML_TASK_FINALIZE,
  13720. /*.ith =*/ 0,
  13721. /*.nth =*/ 0,
  13722. /*.wsize =*/ cplan->work_size,
  13723. /*.wdata =*/ cplan->work_data,
  13724. };
  13725. if (node_n != -1) {
  13726. /* FINALIZE */
  13727. struct ggml_tensor * node = cgraph->nodes[node_n];
  13728. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13729. params.nth = ggml_get_n_tasks(node, n_threads);
  13730. ggml_compute_forward(&params, node);
  13731. }
  13732. ggml_graph_compute_perf_stats_node(node, state->shared);
  13733. }
  13734. // distribute new work or execute it direct if 1T
  13735. while (++node_n < cgraph->n_nodes) {
  13736. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13737. struct ggml_tensor * node = cgraph->nodes[node_n];
  13738. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13739. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13740. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13741. params.nth = n_tasks;
  13742. /* INIT */
  13743. if (GGML_OP_HAS_INIT[node->op]) {
  13744. params.type = GGML_TASK_INIT;
  13745. ggml_compute_forward(&params, node);
  13746. }
  13747. if (n_tasks == 1) {
  13748. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13749. // they do something more efficient than spinning (?)
  13750. params.type = GGML_TASK_COMPUTE;
  13751. ggml_compute_forward(&params, node);
  13752. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13753. params.type = GGML_TASK_FINALIZE;
  13754. ggml_compute_forward(&params, node);
  13755. }
  13756. ggml_graph_compute_perf_stats_node(node, state->shared);
  13757. } else {
  13758. break;
  13759. }
  13760. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13761. break;
  13762. }
  13763. }
  13764. atomic_store(&state->shared->n_active, n_threads);
  13765. atomic_store(&state->shared->node_n, node_n);
  13766. } else {
  13767. // wait for other threads to finish
  13768. const int last = node_n;
  13769. const bool do_yield = last < 0 || cgraph->nodes[last]->op == GGML_OP_MUL_MAT;
  13770. while (true) {
  13771. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13772. // depending on the workload and the operating system.
  13773. // since it is not clear what is the best approach, it should potentially become user-configurable
  13774. // ref: https://github.com/ggerganov/ggml/issues/291
  13775. // UPD: adding the do_yield flag seems to resolve the issue universally
  13776. if (do_yield) {
  13777. sched_yield();
  13778. }
  13779. node_n = atomic_load(&state->shared->node_n);
  13780. if (node_n != last) break;
  13781. };
  13782. }
  13783. // check if we should stop
  13784. if (node_n >= cgraph->n_nodes) break;
  13785. /* COMPUTE */
  13786. struct ggml_tensor * node = cgraph->nodes[node_n];
  13787. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13788. struct ggml_compute_params params = {
  13789. /*.type =*/ GGML_TASK_COMPUTE,
  13790. /*.ith =*/ state->ith,
  13791. /*.nth =*/ n_tasks,
  13792. /*.wsize =*/ cplan->work_size,
  13793. /*.wdata =*/ cplan->work_data,
  13794. };
  13795. if (state->ith < n_tasks) {
  13796. ggml_compute_forward(&params, node);
  13797. }
  13798. }
  13799. return GGML_EXIT_SUCCESS;
  13800. }
  13801. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13802. if (n_threads <= 0) {
  13803. n_threads = GGML_DEFAULT_N_THREADS;
  13804. }
  13805. size_t work_size = 0;
  13806. struct ggml_cplan cplan;
  13807. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13808. // thread scheduling for the different operations + work buffer size estimation
  13809. for (int i = 0; i < cgraph->n_nodes; i++) {
  13810. struct ggml_tensor * node = cgraph->nodes[i];
  13811. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13812. size_t cur = 0;
  13813. switch (node->op) {
  13814. case GGML_OP_CPY:
  13815. case GGML_OP_DUP:
  13816. {
  13817. if (ggml_is_quantized(node->type)) {
  13818. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13819. }
  13820. } break;
  13821. case GGML_OP_ADD:
  13822. case GGML_OP_ADD1:
  13823. {
  13824. if (ggml_is_quantized(node->src[0]->type)) {
  13825. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13826. }
  13827. } break;
  13828. case GGML_OP_ACC:
  13829. {
  13830. if (ggml_is_quantized(node->src[0]->type)) {
  13831. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13832. }
  13833. } break;
  13834. case GGML_OP_MUL_MAT:
  13835. {
  13836. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13837. #if defined(GGML_USE_CLBLAST)
  13838. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13839. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13840. } else
  13841. #endif
  13842. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13843. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  13844. if (node->src[0]->type != GGML_TYPE_F32) {
  13845. // here we need memory just for single 2D matrix from src0
  13846. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13847. }
  13848. } else
  13849. #endif
  13850. if (node->src[1]->type != vec_dot_type) {
  13851. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  13852. }
  13853. } break;
  13854. case GGML_OP_MUL_MAT_ID:
  13855. {
  13856. const struct ggml_tensor * src0 = node->src[2];
  13857. const struct ggml_tensor * src1 = node->src[1];
  13858. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  13859. if (src1->type != vec_dot_type) {
  13860. cur = ggml_row_size(vec_dot_type, ggml_nelements(src1));
  13861. }
  13862. const int n_as = ggml_get_op_params_i32(node, 1);
  13863. cur = GGML_PAD(cur, sizeof(int64_t)); // align
  13864. cur += n_as * sizeof(int64_t); // matrix_row_counts
  13865. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  13866. } break;
  13867. case GGML_OP_OUT_PROD:
  13868. {
  13869. if (ggml_is_quantized(node->src[0]->type)) {
  13870. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13871. }
  13872. } break;
  13873. case GGML_OP_SOFT_MAX:
  13874. {
  13875. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13876. } break;
  13877. case GGML_OP_CONV_TRANSPOSE_1D:
  13878. {
  13879. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13880. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13881. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13882. const int64_t ne00 = node->src[0]->ne[0]; // K
  13883. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13884. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13885. const int64_t ne10 = node->src[1]->ne[0]; // L
  13886. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13887. if (node->src[0]->type == GGML_TYPE_F16 &&
  13888. node->src[1]->type == GGML_TYPE_F32) {
  13889. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13890. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13891. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13892. node->src[1]->type == GGML_TYPE_F32) {
  13893. cur += sizeof(float)*ne00*ne01*ne02;
  13894. cur += sizeof(float)*ne10*ne11;
  13895. } else {
  13896. GGML_ASSERT(false);
  13897. }
  13898. } break;
  13899. case GGML_OP_CONV_TRANSPOSE_2D:
  13900. {
  13901. const int64_t ne00 = node->src[0]->ne[0]; // W
  13902. const int64_t ne01 = node->src[0]->ne[1]; // H
  13903. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13904. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13905. const int64_t ne10 = node->src[1]->ne[0]; // W
  13906. const int64_t ne11 = node->src[1]->ne[1]; // H
  13907. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13908. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13909. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13910. } break;
  13911. case GGML_OP_FLASH_ATTN:
  13912. {
  13913. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13914. if (node->src[1]->type == GGML_TYPE_F32) {
  13915. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13916. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13917. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13918. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13919. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13920. }
  13921. } break;
  13922. case GGML_OP_FLASH_FF:
  13923. {
  13924. if (node->src[1]->type == GGML_TYPE_F32) {
  13925. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13926. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13927. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13928. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13929. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13930. }
  13931. } break;
  13932. case GGML_OP_FLASH_ATTN_BACK:
  13933. {
  13934. const int64_t D = node->src[0]->ne[0];
  13935. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13936. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13937. if (node->src[1]->type == GGML_TYPE_F32) {
  13938. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13939. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13940. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13941. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13942. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13943. }
  13944. } break;
  13945. case GGML_OP_CROSS_ENTROPY_LOSS:
  13946. {
  13947. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13948. } break;
  13949. case GGML_OP_COUNT:
  13950. {
  13951. GGML_ASSERT(false);
  13952. } break;
  13953. default:
  13954. break;
  13955. }
  13956. work_size = MAX(work_size, cur);
  13957. }
  13958. if (work_size > 0) {
  13959. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13960. }
  13961. cplan.n_threads = n_threads;
  13962. cplan.work_size = work_size;
  13963. cplan.work_data = NULL;
  13964. return cplan;
  13965. }
  13966. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13967. {
  13968. GGML_ASSERT(cplan);
  13969. GGML_ASSERT(cplan->n_threads > 0);
  13970. if (cplan->work_size > 0) {
  13971. GGML_ASSERT(cplan->work_data);
  13972. }
  13973. }
  13974. const int n_threads = cplan->n_threads;
  13975. struct ggml_compute_state_shared state_shared = {
  13976. /*.cgraph =*/ cgraph,
  13977. /*.cgraph_plan =*/ cplan,
  13978. /*.perf_node_start_cycles =*/ 0,
  13979. /*.perf_node_start_time_us =*/ 0,
  13980. /*.n_threads =*/ n_threads,
  13981. /*.n_active =*/ n_threads,
  13982. /*.node_n =*/ -1,
  13983. /*.abort_callback =*/ NULL,
  13984. /*.abort_callback_data =*/ NULL,
  13985. };
  13986. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13987. // create thread pool
  13988. if (n_threads > 1) {
  13989. for (int j = 1; j < n_threads; ++j) {
  13990. workers[j] = (struct ggml_compute_state) {
  13991. .thrd = 0,
  13992. .ith = j,
  13993. .shared = &state_shared,
  13994. };
  13995. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13996. GGML_ASSERT(rc == 0);
  13997. UNUSED(rc);
  13998. }
  13999. }
  14000. workers[0].ith = 0;
  14001. workers[0].shared = &state_shared;
  14002. const int64_t perf_start_cycles = ggml_perf_cycles();
  14003. const int64_t perf_start_time_us = ggml_perf_time_us();
  14004. // this is a work thread too
  14005. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14006. // don't leave affinity set on the main thread
  14007. clear_numa_thread_affinity();
  14008. // join or kill thread pool
  14009. if (n_threads > 1) {
  14010. for (int j = 1; j < n_threads; j++) {
  14011. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14012. GGML_ASSERT(rc == 0);
  14013. }
  14014. }
  14015. // performance stats (graph)
  14016. {
  14017. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14018. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14019. cgraph->perf_runs++;
  14020. cgraph->perf_cycles += perf_cycles_cur;
  14021. cgraph->perf_time_us += perf_time_us_cur;
  14022. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14023. __func__, cgraph->perf_runs,
  14024. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14025. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14026. (double) perf_time_us_cur / 1000.0,
  14027. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14028. }
  14029. return compute_status;
  14030. }
  14031. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14032. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14033. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14034. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14035. ggml_graph_compute(cgraph, &cplan);
  14036. }
  14037. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14038. for (int i = 0; i < cgraph->n_leafs; i++) {
  14039. struct ggml_tensor * leaf = cgraph->leafs[i];
  14040. if (strcmp(leaf->name, name) == 0) {
  14041. return leaf;
  14042. }
  14043. }
  14044. for (int i = 0; i < cgraph->n_nodes; i++) {
  14045. struct ggml_tensor * node = cgraph->nodes[i];
  14046. if (strcmp(node->name, name) == 0) {
  14047. return node;
  14048. }
  14049. }
  14050. return NULL;
  14051. }
  14052. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14053. const int64_t * ne = tensor->ne;
  14054. const size_t * nb = tensor->nb;
  14055. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14056. ggml_type_name(tensor->type),
  14057. ggml_op_name (tensor->op),
  14058. ggml_n_dims(tensor),
  14059. ne[0], ne[1], ne[2], ne[3],
  14060. nb[0], nb[1], nb[2], nb[3],
  14061. tensor->data,
  14062. tensor->name);
  14063. }
  14064. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14065. const int64_t * ne = tensor->ne;
  14066. const size_t * nb = tensor->nb;
  14067. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14068. arg,
  14069. ggml_type_name(tensor->type),
  14070. ggml_op_name (tensor->op),
  14071. ggml_n_dims(tensor),
  14072. ne[0], ne[1], ne[2], ne[3],
  14073. nb[0], nb[1], nb[2], nb[3],
  14074. tensor->data,
  14075. tensor->name);
  14076. }
  14077. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14078. uint64_t size_eval = 0;
  14079. // compute size of intermediate results
  14080. // TODO: does not take into account scratch buffers !!!!
  14081. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14082. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14083. }
  14084. // print
  14085. {
  14086. FILE * fout = stdout;
  14087. fprintf(fout, "\n");
  14088. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14089. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14090. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14091. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14092. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14093. // header
  14094. fprintf(fout, "\n");
  14095. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14096. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14097. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14098. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14099. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14100. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14101. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14102. }
  14103. // header
  14104. fprintf(fout, "\n");
  14105. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14106. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14107. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14108. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14109. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14110. if (cgraph->nodes[i]->src[j]) {
  14111. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14112. }
  14113. }
  14114. fprintf(fout, "\n");
  14115. }
  14116. fprintf(fout, "\n");
  14117. }
  14118. // write binary data
  14119. {
  14120. FILE * fout = fopen(fname, "wb");
  14121. if (!fout) {
  14122. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14123. return;
  14124. }
  14125. // header
  14126. {
  14127. const uint32_t magic = GGML_FILE_MAGIC;
  14128. const uint32_t version = GGML_FILE_VERSION;
  14129. const uint32_t n_leafs = cgraph->n_leafs;
  14130. const uint32_t n_nodes = cgraph->n_nodes;
  14131. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14132. fwrite(&version, sizeof(uint32_t), 1, fout);
  14133. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14134. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14135. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14136. }
  14137. // leafs
  14138. {
  14139. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14140. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14141. const uint32_t type = tensor->type;
  14142. const uint32_t op = tensor->op;
  14143. fwrite(&type, sizeof(uint32_t), 1, fout);
  14144. fwrite(&op, sizeof(uint32_t), 1, fout);
  14145. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14146. const uint64_t ne = tensor->ne[j];
  14147. const uint64_t nb = tensor->nb[j];
  14148. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14149. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14150. }
  14151. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14152. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14153. // dump the data
  14154. // TODO: pad this to 32 byte boundary
  14155. {
  14156. const size_t size = ggml_nbytes(tensor);
  14157. fwrite(tensor->data, sizeof(char), size, fout);
  14158. }
  14159. }
  14160. }
  14161. // nodes
  14162. {
  14163. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14164. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14165. const uint32_t type = tensor->type;
  14166. const uint32_t op = tensor->op;
  14167. fwrite(&type, sizeof(uint32_t), 1, fout);
  14168. fwrite(&op, sizeof(uint32_t), 1, fout);
  14169. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14170. const uint64_t ne = tensor->ne[j];
  14171. const uint64_t nb = tensor->nb[j];
  14172. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14173. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14174. }
  14175. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14176. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14177. // output the op arguments
  14178. {
  14179. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14180. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14181. args[j] = tensor->src[j];
  14182. }
  14183. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14184. if (args[j]) {
  14185. int32_t idx = -1;
  14186. // check if leaf
  14187. {
  14188. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14189. if (args[j] == cgraph->leafs[k]) {
  14190. idx = k;
  14191. break;
  14192. }
  14193. }
  14194. }
  14195. // check if node
  14196. if (idx == -1) {
  14197. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14198. if (args[j] == cgraph->nodes[k]) {
  14199. idx = cgraph->n_leafs + k;
  14200. break;
  14201. }
  14202. }
  14203. }
  14204. if (idx == -1) {
  14205. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14206. fclose(fout);
  14207. return;
  14208. }
  14209. fwrite(&idx, sizeof(int32_t), 1, fout);
  14210. } else {
  14211. const int32_t nul = -1;
  14212. fwrite(&nul, sizeof(int32_t), 1, fout);
  14213. }
  14214. }
  14215. }
  14216. }
  14217. }
  14218. fclose(fout);
  14219. }
  14220. }
  14221. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14222. assert(*ctx_data == NULL);
  14223. assert(*ctx_eval == NULL);
  14224. struct ggml_cgraph * result = NULL;
  14225. struct ggml_tensor * data = NULL;
  14226. // read file into data
  14227. {
  14228. FILE * fin = fopen(fname, "rb");
  14229. if (!fin) {
  14230. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14231. return result;
  14232. }
  14233. size_t fsize = 0;
  14234. fseek(fin, 0, SEEK_END);
  14235. fsize = ftell(fin);
  14236. fseek(fin, 0, SEEK_SET);
  14237. // create the data context
  14238. {
  14239. const size_t overhead = 1*ggml_tensor_overhead();
  14240. struct ggml_init_params params = {
  14241. .mem_size = fsize + overhead,
  14242. .mem_buffer = NULL,
  14243. .no_alloc = false,
  14244. };
  14245. *ctx_data = ggml_init(params);
  14246. if (!*ctx_data) {
  14247. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14248. fclose(fin);
  14249. return result;
  14250. }
  14251. }
  14252. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14253. {
  14254. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14255. if (ret != fsize) {
  14256. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14257. fclose(fin);
  14258. return result;
  14259. }
  14260. }
  14261. fclose(fin);
  14262. }
  14263. // populate result
  14264. {
  14265. char * ptr = (char *) data->data;
  14266. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14267. if (magic != GGML_FILE_MAGIC) {
  14268. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14269. return result;
  14270. }
  14271. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14272. if (version != GGML_FILE_VERSION) {
  14273. fprintf(stderr, "%s: invalid version number\n", __func__);
  14274. return result;
  14275. }
  14276. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14277. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14278. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14279. const int graph_size = MAX(n_leafs, n_nodes);
  14280. // create the data context
  14281. {
  14282. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14283. struct ggml_init_params params = {
  14284. .mem_size = size_eval + overhead,
  14285. .mem_buffer = NULL,
  14286. .no_alloc = true,
  14287. };
  14288. *ctx_eval = ggml_init(params);
  14289. if (!*ctx_eval) {
  14290. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14291. return result;
  14292. }
  14293. }
  14294. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14295. result->n_leafs = n_leafs;
  14296. result->n_nodes = n_nodes;
  14297. // leafs
  14298. {
  14299. uint32_t type;
  14300. uint32_t op;
  14301. for (uint32_t i = 0; i < n_leafs; ++i) {
  14302. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14303. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14304. int64_t ne[GGML_MAX_DIMS];
  14305. size_t nb[GGML_MAX_DIMS];
  14306. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14307. uint64_t ne_cur;
  14308. uint64_t nb_cur;
  14309. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14310. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14311. ne[j] = ne_cur;
  14312. nb[j] = nb_cur;
  14313. }
  14314. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14315. tensor->op = (enum ggml_op) op;
  14316. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14317. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14318. tensor->data = (void *) ptr;
  14319. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14320. tensor->nb[j] = nb[j];
  14321. }
  14322. result->leafs[i] = tensor;
  14323. ptr += ggml_nbytes(tensor);
  14324. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14325. }
  14326. }
  14327. ggml_set_no_alloc(*ctx_eval, false);
  14328. // nodes
  14329. {
  14330. uint32_t type;
  14331. uint32_t op;
  14332. for (uint32_t i = 0; i < n_nodes; ++i) {
  14333. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14334. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14335. enum ggml_op eop = (enum ggml_op) op;
  14336. int64_t ne[GGML_MAX_DIMS];
  14337. size_t nb[GGML_MAX_DIMS];
  14338. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14339. uint64_t ne_cur;
  14340. uint64_t nb_cur;
  14341. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14342. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14343. ne[j] = ne_cur;
  14344. nb[j] = nb_cur;
  14345. }
  14346. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14347. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14348. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14349. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14350. // parse args
  14351. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14352. const int32_t arg_idx = ptr_arg_idx[j];
  14353. if (arg_idx == -1) {
  14354. continue;
  14355. }
  14356. if (arg_idx < result->n_leafs) {
  14357. args[j] = result->leafs[arg_idx];
  14358. } else {
  14359. args[j] = result->nodes[arg_idx - result->n_leafs];
  14360. }
  14361. }
  14362. // create the tensor
  14363. // "view" operations are handled differently
  14364. // TODO: handle inplace ops - currently a copy is always made
  14365. struct ggml_tensor * tensor = NULL;
  14366. switch (eop) {
  14367. // TODO: implement other view ops
  14368. case GGML_OP_RESHAPE:
  14369. {
  14370. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14371. } break;
  14372. case GGML_OP_VIEW:
  14373. {
  14374. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14375. size_t offs;
  14376. memcpy(&offs, ptr_op_params, sizeof(offs));
  14377. tensor->data = ((char *) tensor->data) + offs;
  14378. } break;
  14379. case GGML_OP_TRANSPOSE:
  14380. {
  14381. tensor = ggml_transpose(*ctx_eval, args[0]);
  14382. } break;
  14383. case GGML_OP_PERMUTE:
  14384. {
  14385. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14386. } break;
  14387. default:
  14388. {
  14389. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14390. tensor->op = eop;
  14391. } break;
  14392. }
  14393. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14394. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14395. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14396. tensor->nb[j] = nb[j];
  14397. }
  14398. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14399. tensor->src[j] = args[j];
  14400. }
  14401. result->nodes[i] = tensor;
  14402. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14403. }
  14404. }
  14405. }
  14406. return result;
  14407. }
  14408. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14409. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14410. GGML_PRINT("=== GRAPH ===\n");
  14411. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14412. for (int i = 0; i < cgraph->n_nodes; i++) {
  14413. struct ggml_tensor * node = cgraph->nodes[i];
  14414. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14415. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14416. i,
  14417. node->ne[0], node->ne[1], node->ne[2],
  14418. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14419. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14420. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14421. (double) node->perf_time_us / 1000.0,
  14422. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14423. }
  14424. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14425. for (int i = 0; i < cgraph->n_leafs; i++) {
  14426. struct ggml_tensor * node = cgraph->leafs[i];
  14427. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14428. i,
  14429. node->ne[0], node->ne[1],
  14430. ggml_op_name(node->op),
  14431. ggml_get_name(node));
  14432. }
  14433. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14434. if (perf_total_per_op_us[i] == 0) {
  14435. continue;
  14436. }
  14437. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14438. }
  14439. GGML_PRINT("========================================\n");
  14440. }
  14441. // check if node is part of the graph
  14442. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14443. if (cgraph == NULL) {
  14444. return true;
  14445. }
  14446. for (int i = 0; i < cgraph->n_nodes; i++) {
  14447. if (cgraph->nodes[i] == node) {
  14448. return true;
  14449. }
  14450. }
  14451. return false;
  14452. }
  14453. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14454. for (int i = 0; i < cgraph->n_nodes; i++) {
  14455. struct ggml_tensor * parent = cgraph->nodes[i];
  14456. if (parent->grad == node) {
  14457. return parent;
  14458. }
  14459. }
  14460. return NULL;
  14461. }
  14462. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14463. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14464. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14465. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14466. gparent0 ? (void *) gparent0 : (void *) parent,
  14467. gparent0 ? "g" : "x",
  14468. gparent ? (void *) gparent : (void *) node,
  14469. gparent ? "g" : "x",
  14470. gparent ? "empty" : "vee",
  14471. gparent ? "dashed" : "solid",
  14472. label);
  14473. }
  14474. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14475. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14476. (void *) parent, "x",
  14477. (void *) node, "x",
  14478. label);
  14479. }
  14480. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14481. char color[16];
  14482. FILE * fp = fopen(filename, "w");
  14483. GGML_ASSERT(fp);
  14484. fprintf(fp, "digraph G {\n");
  14485. fprintf(fp, " newrank = true;\n");
  14486. fprintf(fp, " rankdir = LR;\n");
  14487. for (int i = 0; i < gb->n_nodes; i++) {
  14488. struct ggml_tensor * node = gb->nodes[i];
  14489. if (ggml_graph_get_parent(gb, node) != NULL) {
  14490. continue;
  14491. }
  14492. if (node->is_param) {
  14493. snprintf(color, sizeof(color), "yellow");
  14494. } else if (node->grad) {
  14495. if (ggml_graph_find(gf, node)) {
  14496. snprintf(color, sizeof(color), "green");
  14497. } else {
  14498. snprintf(color, sizeof(color), "lightblue");
  14499. }
  14500. } else {
  14501. snprintf(color, sizeof(color), "white");
  14502. }
  14503. fprintf(fp, " \"%p\" [ "
  14504. "style = filled; fillcolor = %s; shape = record; "
  14505. "label=\"",
  14506. (void *) node, color);
  14507. if (strlen(node->name) > 0) {
  14508. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14509. } else {
  14510. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14511. }
  14512. if (ggml_is_matrix(node)) {
  14513. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14514. } else {
  14515. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14516. }
  14517. if (node->grad) {
  14518. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14519. } else {
  14520. fprintf(fp, "\"; ]\n");
  14521. }
  14522. }
  14523. for (int i = 0; i < gb->n_leafs; i++) {
  14524. struct ggml_tensor * node = gb->leafs[i];
  14525. snprintf(color, sizeof(color), "pink");
  14526. fprintf(fp, " \"%p\" [ "
  14527. "style = filled; fillcolor = %s; shape = record; "
  14528. "label=\"<x>",
  14529. (void *) node, color);
  14530. if (strlen(node->name) > 0) {
  14531. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14532. } else {
  14533. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14534. }
  14535. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14536. if (ggml_nelements(node) < 5) {
  14537. fprintf(fp, " | (");
  14538. for (int j = 0; j < ggml_nelements(node); j++) {
  14539. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14540. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14541. }
  14542. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14543. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14544. }
  14545. else {
  14546. fprintf(fp, "#");
  14547. }
  14548. if (j < ggml_nelements(node) - 1) {
  14549. fprintf(fp, ", ");
  14550. }
  14551. }
  14552. fprintf(fp, ")");
  14553. }
  14554. fprintf(fp, "\"; ]\n");
  14555. }
  14556. for (int i = 0; i < gb->n_nodes; i++) {
  14557. struct ggml_tensor * node = gb->nodes[i];
  14558. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14559. if (node->src[j]) {
  14560. char label[16];
  14561. snprintf(label, sizeof(label), "src %d", j);
  14562. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14563. }
  14564. }
  14565. }
  14566. for (int i = 0; i < gb->n_leafs; i++) {
  14567. struct ggml_tensor * node = gb->leafs[i];
  14568. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14569. if (node->src[j]) {
  14570. char label[16];
  14571. snprintf(label, sizeof(label), "src %d", j);
  14572. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14573. }
  14574. }
  14575. }
  14576. fprintf(fp, "}\n");
  14577. fclose(fp);
  14578. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14579. }
  14580. ////////////////////////////////////////////////////////////////////////////////
  14581. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14582. int i = 0;
  14583. for (int p = 0; p < np; ++p) {
  14584. const int64_t ne = ggml_nelements(ps[p]) ;
  14585. // TODO: add function to set tensor from array
  14586. for (int64_t j = 0; j < ne; ++j) {
  14587. ggml_set_f32_1d(ps[p], j, x[i++]);
  14588. }
  14589. }
  14590. }
  14591. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14592. int i = 0;
  14593. for (int p = 0; p < np; ++p) {
  14594. const int64_t ne = ggml_nelements(ps[p]) ;
  14595. // TODO: add function to get all elements at once
  14596. for (int64_t j = 0; j < ne; ++j) {
  14597. x[i++] = ggml_get_f32_1d(ps[p], j);
  14598. }
  14599. }
  14600. }
  14601. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14602. int64_t i = 0;
  14603. for (int p = 0; p < np; ++p) {
  14604. const int64_t ne = ggml_nelements(ps[p]) ;
  14605. // TODO: add function to get all elements at once
  14606. for (int64_t j = 0; j < ne; ++j) {
  14607. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14608. }
  14609. }
  14610. }
  14611. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14612. int64_t i = 0;
  14613. for (int p = 0; p < np; ++p) {
  14614. const int64_t ne = ggml_nelements(ps[p]) ;
  14615. // TODO: add function to get all elements at once
  14616. for (int64_t j = 0; j < ne; ++j) {
  14617. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14618. }
  14619. }
  14620. }
  14621. //
  14622. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14623. //
  14624. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14625. //
  14626. static enum ggml_opt_result ggml_opt_adam(
  14627. struct ggml_context * ctx,
  14628. struct ggml_opt_context * opt,
  14629. struct ggml_opt_params params,
  14630. struct ggml_tensor * f,
  14631. struct ggml_cgraph * gf,
  14632. struct ggml_cgraph * gb,
  14633. ggml_opt_callback callback,
  14634. void * callback_data) {
  14635. GGML_ASSERT(ggml_is_scalar(f));
  14636. // these will store the parameters we want to optimize
  14637. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14638. int np = 0;
  14639. int64_t nx = 0;
  14640. for (int i = 0; i < gf->n_nodes; ++i) {
  14641. if (gf->nodes[i]->is_param) {
  14642. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14643. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14644. ps[np++] = gf->nodes[i];
  14645. nx += ggml_nelements(gf->nodes[i]);
  14646. }
  14647. }
  14648. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14649. int iter = opt->iter;
  14650. ggml_opt_init(opt->ctx, opt, params, nx);
  14651. opt->iter = iter;
  14652. }
  14653. // constants
  14654. float sched = params.adam.sched;
  14655. const float alpha = params.adam.alpha;
  14656. const float decay = params.adam.decay * alpha;
  14657. const float beta1 = params.adam.beta1;
  14658. const float beta2 = params.adam.beta2;
  14659. const float eps = params.adam.eps;
  14660. const float gclip = params.adam.gclip;
  14661. const int decay_min_ndim = params.adam.decay_min_ndim;
  14662. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14663. const float accum_norm = 1.0f / (float) n_accum;
  14664. float * g = opt->adam.g->data; // gradients
  14665. float * m = opt->adam.m->data; // first moment
  14666. float * v = opt->adam.v->data; // second moment
  14667. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14668. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14669. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14670. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14671. bool cancel = false;
  14672. // compute the function value
  14673. float fx = 0;
  14674. ggml_set_zero(opt->adam.g);
  14675. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14676. if (callback) {
  14677. callback(callback_data, accum_step, &sched, &cancel);
  14678. if (cancel) {
  14679. return GGML_OPT_CANCEL;
  14680. }
  14681. }
  14682. // ggml_graph_reset (gf);
  14683. ggml_set_f32 (f->grad, 1.0f);
  14684. ggml_graph_compute(gb, &cplan);
  14685. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14686. fx += ggml_get_f32_1d(f, 0);
  14687. }
  14688. fx *= accum_norm;
  14689. opt->adam.fx_prev = fx;
  14690. opt->adam.fx_best = opt->adam.fx_prev;
  14691. if (pf) {
  14692. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14693. }
  14694. opt->loss_before = opt->adam.fx_prev;
  14695. opt->loss_after = opt->adam.fx_prev;
  14696. // initialize
  14697. if (opt->just_initialized) {
  14698. opt->adam.n_no_improvement = 0;
  14699. opt->just_initialized = false;
  14700. }
  14701. float * fx_best = &opt->adam.fx_best;
  14702. float * fx_prev = &opt->adam.fx_prev;
  14703. int * n_no_improvement = &opt->adam.n_no_improvement;
  14704. int iter0 = opt->iter;
  14705. // run the optimizer
  14706. for (int t = 0; t < params.adam.n_iter; ++t) {
  14707. opt->iter = iter0 + t + 1;
  14708. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14709. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14710. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14711. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14712. for (int i = 0; i < np; ++i) {
  14713. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14714. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14715. }
  14716. const int64_t t_start_wall = ggml_time_us();
  14717. const int64_t t_start_cpu = ggml_cycles();
  14718. UNUSED(t_start_wall);
  14719. UNUSED(t_start_cpu);
  14720. {
  14721. float gnorm = 1.0f;
  14722. if (gclip > 0.0f) {
  14723. // gradient clipping
  14724. ggml_float sum = 0.0;
  14725. for (int64_t i = 0; i < nx; ++i) {
  14726. sum += (ggml_float)(g[i]*g[i]);
  14727. }
  14728. ggml_float norm = sqrt(sum);
  14729. if (norm > (ggml_float) gclip) {
  14730. gnorm = (float) ((ggml_float) gclip / norm);
  14731. }
  14732. }
  14733. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14734. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14735. int64_t i = 0;
  14736. for (int p = 0; p < np; ++p) {
  14737. const int64_t ne = ggml_nelements(ps[p]);
  14738. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  14739. for (int64_t j = 0; j < ne; ++j) {
  14740. float x = ggml_get_f32_1d(ps[p], j);
  14741. float g_ = g[i]*gnorm;
  14742. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14743. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14744. float mh = m[i]*beta1h;
  14745. float vh = v[i]*beta2h;
  14746. vh = sqrtf(vh) + eps;
  14747. x = x*(1.0f - p_decay) - mh/vh;
  14748. ggml_set_f32_1d(ps[p], j, x);
  14749. ++i;
  14750. }
  14751. }
  14752. }
  14753. fx = 0;
  14754. ggml_set_zero(opt->adam.g);
  14755. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14756. if (callback) {
  14757. callback(callback_data, accum_step, &sched, &cancel);
  14758. if (cancel) {
  14759. return GGML_OPT_CANCEL;;
  14760. }
  14761. }
  14762. // ggml_graph_reset (gf);
  14763. ggml_set_f32 (f->grad, 1.0f);
  14764. ggml_graph_compute(gb, &cplan);
  14765. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14766. fx += ggml_get_f32_1d(f, 0);
  14767. }
  14768. fx *= accum_norm;
  14769. opt->loss_after = fx;
  14770. // check convergence
  14771. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14772. GGML_PRINT_DEBUG("converged\n");
  14773. return GGML_OPT_OK;
  14774. }
  14775. // delta-based convergence test
  14776. if (pf != NULL) {
  14777. // need at least params.past iterations to start checking for convergence
  14778. if (params.past <= iter0 + t) {
  14779. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14780. if (fabsf(rate) < params.delta) {
  14781. return GGML_OPT_OK;
  14782. }
  14783. }
  14784. pf[(iter0 + t)%params.past] = fx;
  14785. }
  14786. // check for improvement
  14787. if (params.max_no_improvement > 0) {
  14788. if (fx_best[0] > fx) {
  14789. fx_best[0] = fx;
  14790. n_no_improvement[0] = 0;
  14791. } else {
  14792. ++n_no_improvement[0];
  14793. if (n_no_improvement[0] >= params.max_no_improvement) {
  14794. return GGML_OPT_OK;
  14795. }
  14796. }
  14797. }
  14798. fx_prev[0] = fx;
  14799. {
  14800. const int64_t t_end_cpu = ggml_cycles();
  14801. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14802. UNUSED(t_end_cpu);
  14803. const int64_t t_end_wall = ggml_time_us();
  14804. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14805. UNUSED(t_end_wall);
  14806. }
  14807. }
  14808. return GGML_OPT_DID_NOT_CONVERGE;
  14809. }
  14810. //
  14811. // L-BFGS
  14812. //
  14813. // the L-BFGS implementation below is based on the following implementation:
  14814. //
  14815. // https://github.com/chokkan/liblbfgs
  14816. //
  14817. struct ggml_lbfgs_iteration_data {
  14818. float alpha;
  14819. float ys;
  14820. float * s;
  14821. float * y;
  14822. };
  14823. static enum ggml_opt_result linesearch_backtracking(
  14824. const struct ggml_opt_params * params,
  14825. int nx,
  14826. float * x,
  14827. float * fx,
  14828. float * g,
  14829. float * d,
  14830. float * step,
  14831. const float * xp,
  14832. struct ggml_tensor * f,
  14833. struct ggml_cgraph * gb,
  14834. struct ggml_cplan * cplan,
  14835. const int np,
  14836. struct ggml_tensor * ps[],
  14837. bool * cancel,
  14838. ggml_opt_callback callback,
  14839. void * callback_data) {
  14840. int count = 0;
  14841. float width = 0.0f;
  14842. float dg = 0.0f;
  14843. float finit = 0.0f;
  14844. float dginit = 0.0f;
  14845. float dgtest = 0.0f;
  14846. const float dec = 0.5f;
  14847. const float inc = 2.1f;
  14848. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14849. const float accum_norm = 1.0f / (float) n_accum;
  14850. if (*step <= 0.f) {
  14851. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14852. }
  14853. // compute the initial gradient in the search direction
  14854. ggml_vec_dot_f32(nx, &dginit, g, d);
  14855. // make sure that d points to a descent direction
  14856. if (0 < dginit) {
  14857. return GGML_LINESEARCH_FAIL;
  14858. }
  14859. // initialize local variables
  14860. finit = *fx;
  14861. dgtest = params->lbfgs.ftol*dginit;
  14862. while (true) {
  14863. ggml_vec_cpy_f32(nx, x, xp);
  14864. ggml_vec_mad_f32(nx, x, d, *step);
  14865. // evaluate the function and gradient values
  14866. {
  14867. ggml_opt_set_params(np, ps, x);
  14868. *fx = 0;
  14869. memset(g, 0, sizeof(float)*nx);
  14870. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14871. if (callback) {
  14872. // LBFG-S does not support learning rate -> ignore learning schedule
  14873. float sched = 0;
  14874. callback(callback_data, accum_step, &sched, cancel);
  14875. if (*cancel) {
  14876. return GGML_OPT_CANCEL;
  14877. }
  14878. }
  14879. // ggml_graph_reset (gf);
  14880. ggml_set_f32 (f->grad, 1.0f);
  14881. ggml_graph_compute(gb, cplan);
  14882. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14883. *fx += ggml_get_f32_1d(f, 0);
  14884. }
  14885. *fx *= accum_norm;
  14886. }
  14887. ++count;
  14888. if (*fx > finit + (*step)*dgtest) {
  14889. width = dec;
  14890. } else {
  14891. // Armijo condition is satisfied
  14892. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14893. return count;
  14894. }
  14895. ggml_vec_dot_f32(nx, &dg, g, d);
  14896. // check the Wolfe condition
  14897. if (dg < params->lbfgs.wolfe * dginit) {
  14898. width = inc;
  14899. } else {
  14900. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14901. // regular Wolfe conditions
  14902. return count;
  14903. }
  14904. if(dg > -params->lbfgs.wolfe*dginit) {
  14905. width = dec;
  14906. } else {
  14907. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14908. return count;
  14909. }
  14910. }
  14911. }
  14912. if (*step < params->lbfgs.min_step) {
  14913. return GGML_LINESEARCH_MINIMUM_STEP;
  14914. }
  14915. if (*step > params->lbfgs.max_step) {
  14916. return GGML_LINESEARCH_MAXIMUM_STEP;
  14917. }
  14918. if (params->lbfgs.max_linesearch <= count) {
  14919. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14920. }
  14921. (*step) *= width;
  14922. }
  14923. GGML_UNREACHABLE();
  14924. }
  14925. static enum ggml_opt_result ggml_opt_lbfgs(
  14926. struct ggml_context * ctx,
  14927. struct ggml_opt_context * opt,
  14928. struct ggml_opt_params params,
  14929. struct ggml_tensor * f,
  14930. struct ggml_cgraph * gf,
  14931. struct ggml_cgraph * gb,
  14932. ggml_opt_callback callback,
  14933. void * callback_data) {
  14934. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14935. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14936. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14937. return GGML_OPT_INVALID_WOLFE;
  14938. }
  14939. }
  14940. const int m = params.lbfgs.m;
  14941. // these will store the parameters we want to optimize
  14942. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14943. int np = 0;
  14944. int nx = 0;
  14945. for (int i = 0; i < gf->n_nodes; ++i) {
  14946. if (gf->nodes[i]->is_param) {
  14947. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14948. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14949. ps[np++] = gf->nodes[i];
  14950. nx += ggml_nelements(gf->nodes[i]);
  14951. }
  14952. }
  14953. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14954. int iter = opt->iter;
  14955. ggml_opt_init(ctx, opt, params, nx);
  14956. opt->iter = iter;
  14957. }
  14958. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14959. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14960. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14961. float * x = opt->lbfgs.x->data; // current parameters
  14962. float * xp = opt->lbfgs.xp->data; // previous parameters
  14963. float * g = opt->lbfgs.g->data; // current gradient
  14964. float * gp = opt->lbfgs.gp->data; // previous gradient
  14965. float * d = opt->lbfgs.d->data; // search direction
  14966. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14967. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14968. const float accum_norm = 1.0f / (float) n_accum;
  14969. float fx = 0.0f; // cost function value
  14970. float xnorm = 0.0f; // ||x||
  14971. float gnorm = 0.0f; // ||g||
  14972. // initialize x from the graph nodes
  14973. ggml_opt_get_params(np, ps, x);
  14974. // the L-BFGS memory
  14975. float * lm_alpha = opt->lbfgs.lmal->data;
  14976. float * lm_ys = opt->lbfgs.lmys->data;
  14977. float * lm_s = opt->lbfgs.lms->data;
  14978. float * lm_y = opt->lbfgs.lmy->data;
  14979. bool cancel = false;
  14980. // evaluate the function value and its gradient
  14981. {
  14982. ggml_opt_set_params(np, ps, x);
  14983. fx = 0;
  14984. memset(g, 0, sizeof(float)*nx);
  14985. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14986. if (callback) {
  14987. // LBFG-S does not support learning rate -> ignore learning schedule
  14988. float sched = 0;
  14989. callback(callback_data, accum_step, &sched, &cancel);
  14990. if (cancel) {
  14991. return GGML_OPT_CANCEL;
  14992. }
  14993. }
  14994. // ggml_graph_reset (gf);
  14995. ggml_set_f32 (f->grad, 1.0f);
  14996. ggml_graph_compute(gb, &cplan);
  14997. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14998. fx += ggml_get_f32_1d(f, 0);
  14999. }
  15000. fx *= accum_norm;
  15001. opt->loss_before = fx;
  15002. opt->loss_after = fx;
  15003. }
  15004. // search direction = -gradient
  15005. ggml_vec_neg_f32(nx, d, g);
  15006. // ||x||, ||g||
  15007. ggml_vec_norm_f32(nx, &xnorm, x);
  15008. ggml_vec_norm_f32(nx, &gnorm, g);
  15009. if (xnorm < 1.0f) {
  15010. xnorm = 1.0f;
  15011. }
  15012. // already optimized
  15013. if (gnorm/xnorm <= params.lbfgs.eps) {
  15014. return GGML_OPT_OK;
  15015. }
  15016. if (opt->just_initialized) {
  15017. if (pf) {
  15018. pf[0] = fx;
  15019. }
  15020. opt->lbfgs.fx_best = fx;
  15021. // initial step
  15022. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15023. opt->lbfgs.j = 0;
  15024. opt->lbfgs.k = 1;
  15025. opt->lbfgs.end = 0;
  15026. opt->lbfgs.n_no_improvement = 0;
  15027. opt->just_initialized = false;
  15028. }
  15029. float * fx_best = &opt->lbfgs.fx_best;
  15030. float * step = &opt->lbfgs.step;
  15031. int * j = &opt->lbfgs.j;
  15032. int * k = &opt->lbfgs.k;
  15033. int * end = &opt->lbfgs.end;
  15034. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15035. int ls = 0;
  15036. int bound = 0;
  15037. float ys = 0.0f;
  15038. float yy = 0.0f;
  15039. float beta = 0.0f;
  15040. int it = 0;
  15041. while (true) {
  15042. // store the current position and gradient vectors
  15043. ggml_vec_cpy_f32(nx, xp, x);
  15044. ggml_vec_cpy_f32(nx, gp, g);
  15045. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15046. // to determine if the optimization should be cancelled
  15047. // this is a simple change, but not doing this atm, since I don't have a nice
  15048. // way to test and don't want to break something with so many changes lined up
  15049. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15050. if (cancel) {
  15051. return GGML_OPT_CANCEL;
  15052. }
  15053. if (ls < 0) {
  15054. // linesearch failed - go back to the previous point and return
  15055. ggml_vec_cpy_f32(nx, x, xp);
  15056. ggml_vec_cpy_f32(nx, g, gp);
  15057. return ls;
  15058. }
  15059. opt->loss_after = fx;
  15060. ggml_vec_norm_f32(nx, &xnorm, x);
  15061. ggml_vec_norm_f32(nx, &gnorm, g);
  15062. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15063. if (xnorm < 1.0f) {
  15064. xnorm = 1.0f;
  15065. }
  15066. if (gnorm/xnorm <= params.lbfgs.eps) {
  15067. // converged
  15068. return GGML_OPT_OK;
  15069. }
  15070. // delta-based convergence test
  15071. if (pf != NULL) {
  15072. // need at least params.past iterations to start checking for convergence
  15073. if (params.past <= k[0]) {
  15074. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15075. if (fabsf(rate) < params.delta) {
  15076. return GGML_OPT_OK;
  15077. }
  15078. }
  15079. pf[k[0]%params.past] = fx;
  15080. }
  15081. // check for improvement
  15082. if (params.max_no_improvement > 0) {
  15083. if (fx < fx_best[0]) {
  15084. fx_best[0] = fx;
  15085. n_no_improvement[0] = 0;
  15086. } else {
  15087. n_no_improvement[0]++;
  15088. if (n_no_improvement[0] >= params.max_no_improvement) {
  15089. return GGML_OPT_OK;
  15090. }
  15091. }
  15092. }
  15093. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15094. // reached the maximum number of iterations
  15095. return GGML_OPT_DID_NOT_CONVERGE;
  15096. }
  15097. // update vectors s and y:
  15098. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15099. // y_{k+1} = g_{k+1} - g_{k}.
  15100. //
  15101. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15102. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15103. // compute scalars ys and yy:
  15104. // ys = y^t \cdot s -> 1 / \rho.
  15105. // yy = y^t \cdot y.
  15106. //
  15107. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15108. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15109. lm_ys[end[0]] = ys;
  15110. // find new search direction
  15111. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15112. bound = (m <= k[0]) ? m : k[0];
  15113. k[0]++;
  15114. it++;
  15115. end[0] = (end[0] + 1)%m;
  15116. // initialize search direction with -g
  15117. ggml_vec_neg_f32(nx, d, g);
  15118. j[0] = end[0];
  15119. for (int i = 0; i < bound; ++i) {
  15120. j[0] = (j[0] + m - 1) % m;
  15121. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15122. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15123. lm_alpha[j[0]] /= lm_ys[j[0]];
  15124. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15125. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15126. }
  15127. ggml_vec_scale_f32(nx, d, ys/yy);
  15128. for (int i = 0; i < bound; ++i) {
  15129. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15130. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15131. beta /= lm_ys[j[0]];
  15132. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15133. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15134. j[0] = (j[0] + 1)%m;
  15135. }
  15136. step[0] = 1.0;
  15137. }
  15138. GGML_UNREACHABLE();
  15139. }
  15140. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15141. struct ggml_opt_params result;
  15142. switch (type) {
  15143. case GGML_OPT_ADAM:
  15144. {
  15145. result = (struct ggml_opt_params) {
  15146. .type = GGML_OPT_ADAM,
  15147. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15148. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15149. .past = 0,
  15150. .delta = 1e-5f,
  15151. .max_no_improvement = 100,
  15152. .print_forward_graph = true,
  15153. .print_backward_graph = true,
  15154. .n_gradient_accumulation = 1,
  15155. .adam = {
  15156. .n_iter = 10000,
  15157. .sched = 1.000f,
  15158. .decay = 0.0f,
  15159. .decay_min_ndim = 2,
  15160. .alpha = 0.001f,
  15161. .beta1 = 0.9f,
  15162. .beta2 = 0.999f,
  15163. .eps = 1e-8f,
  15164. .eps_f = 1e-5f,
  15165. .eps_g = 1e-3f,
  15166. .gclip = 0.0f,
  15167. },
  15168. };
  15169. } break;
  15170. case GGML_OPT_LBFGS:
  15171. {
  15172. result = (struct ggml_opt_params) {
  15173. .type = GGML_OPT_LBFGS,
  15174. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15175. .n_threads = 1,
  15176. .past = 0,
  15177. .delta = 1e-5f,
  15178. .max_no_improvement = 0,
  15179. .print_forward_graph = true,
  15180. .print_backward_graph = true,
  15181. .n_gradient_accumulation = 1,
  15182. .lbfgs = {
  15183. .m = 6,
  15184. .n_iter = 100,
  15185. .max_linesearch = 20,
  15186. .eps = 1e-5f,
  15187. .ftol = 1e-4f,
  15188. .wolfe = 0.9f,
  15189. .min_step = 1e-20f,
  15190. .max_step = 1e+20f,
  15191. .linesearch = GGML_LINESEARCH_DEFAULT,
  15192. },
  15193. };
  15194. } break;
  15195. }
  15196. return result;
  15197. }
  15198. GGML_API void ggml_opt_init(
  15199. struct ggml_context * ctx,
  15200. struct ggml_opt_context * opt,
  15201. struct ggml_opt_params params,
  15202. int64_t nx) {
  15203. opt->ctx = ctx;
  15204. opt->params = params;
  15205. opt->iter = 0;
  15206. opt->nx = nx;
  15207. opt->just_initialized = true;
  15208. if (opt->ctx == NULL) {
  15209. struct ggml_init_params ctx_opt_params;
  15210. if (opt->params.type == GGML_OPT_ADAM) {
  15211. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15212. if (opt->params.past > 0) {
  15213. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15214. }
  15215. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15216. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15217. if (opt->params.past > 0) {
  15218. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15219. }
  15220. }
  15221. ctx_opt_params.mem_buffer = NULL;
  15222. ctx_opt_params.no_alloc = false;
  15223. opt->ctx = ggml_init(ctx_opt_params);
  15224. }
  15225. switch (opt->params.type) {
  15226. case GGML_OPT_ADAM:
  15227. {
  15228. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15229. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15230. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15231. opt->adam.pf = params.past > 0
  15232. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15233. : NULL;
  15234. ggml_set_zero(opt->adam.m);
  15235. ggml_set_zero(opt->adam.v);
  15236. if (opt->adam.pf) {
  15237. ggml_set_zero(opt->adam.pf);
  15238. }
  15239. } break;
  15240. case GGML_OPT_LBFGS:
  15241. {
  15242. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15243. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15244. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15245. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15246. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15247. opt->lbfgs.pf = params.past > 0
  15248. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15249. : NULL;
  15250. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15251. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15252. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15253. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15254. ggml_set_zero(opt->lbfgs.x);
  15255. ggml_set_zero(opt->lbfgs.xp);
  15256. ggml_set_zero(opt->lbfgs.g);
  15257. ggml_set_zero(opt->lbfgs.gp);
  15258. ggml_set_zero(opt->lbfgs.d);
  15259. if (opt->lbfgs.pf) {
  15260. ggml_set_zero(opt->lbfgs.pf);
  15261. }
  15262. ggml_set_zero(opt->lbfgs.lmal);
  15263. ggml_set_zero(opt->lbfgs.lmys);
  15264. ggml_set_zero(opt->lbfgs.lms);
  15265. ggml_set_zero(opt->lbfgs.lmy);
  15266. } break;
  15267. }
  15268. }
  15269. enum ggml_opt_result ggml_opt(
  15270. struct ggml_context * ctx,
  15271. struct ggml_opt_params params,
  15272. struct ggml_tensor * f) {
  15273. bool free_ctx = false;
  15274. if (ctx == NULL) {
  15275. struct ggml_init_params params_ctx = {
  15276. .mem_size = 16*1024*1024,
  15277. .mem_buffer = NULL,
  15278. .no_alloc = false,
  15279. };
  15280. ctx = ggml_init(params_ctx);
  15281. if (ctx == NULL) {
  15282. return GGML_OPT_NO_CONTEXT;
  15283. }
  15284. free_ctx = true;
  15285. }
  15286. enum ggml_opt_result result = GGML_OPT_OK;
  15287. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15288. ggml_opt_init(ctx, opt, params, 0);
  15289. result = ggml_opt_resume(ctx, opt, f);
  15290. if (free_ctx) {
  15291. ggml_free(ctx);
  15292. }
  15293. return result;
  15294. }
  15295. enum ggml_opt_result ggml_opt_resume(
  15296. struct ggml_context * ctx,
  15297. struct ggml_opt_context * opt,
  15298. struct ggml_tensor * f) {
  15299. // build forward + backward compute graphs
  15300. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15301. ggml_build_forward_expand(gf, f);
  15302. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15303. ggml_build_backward_expand(ctx, gf, gb, true);
  15304. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15305. }
  15306. enum ggml_opt_result ggml_opt_resume_g(
  15307. struct ggml_context * ctx,
  15308. struct ggml_opt_context * opt,
  15309. struct ggml_tensor * f,
  15310. struct ggml_cgraph * gf,
  15311. struct ggml_cgraph * gb,
  15312. ggml_opt_callback callback,
  15313. void * callback_data) {
  15314. // build forward + backward compute graphs
  15315. enum ggml_opt_result result = GGML_OPT_OK;
  15316. switch (opt->params.type) {
  15317. case GGML_OPT_ADAM:
  15318. {
  15319. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15320. } break;
  15321. case GGML_OPT_LBFGS:
  15322. {
  15323. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15324. } break;
  15325. }
  15326. if (opt->params.print_forward_graph) {
  15327. ggml_graph_print (gf);
  15328. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15329. }
  15330. if (opt->params.print_backward_graph) {
  15331. ggml_graph_print (gb);
  15332. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15333. }
  15334. return result;
  15335. }
  15336. ////////////////////////////////////////////////////////////////////////////////
  15337. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15338. assert(k % QK4_0 == 0);
  15339. const int nb = k / QK4_0;
  15340. for (int b = 0; b < n; b += k) {
  15341. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15342. quantize_row_q4_0_reference(src + b, y, k);
  15343. for (int i = 0; i < nb; i++) {
  15344. for (int j = 0; j < QK4_0; j += 2) {
  15345. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15346. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15347. hist[vi0]++;
  15348. hist[vi1]++;
  15349. }
  15350. }
  15351. }
  15352. return (n/QK4_0*sizeof(block_q4_0));
  15353. }
  15354. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15355. assert(k % QK4_1 == 0);
  15356. const int nb = k / QK4_1;
  15357. for (int b = 0; b < n; b += k) {
  15358. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15359. quantize_row_q4_1_reference(src + b, y, k);
  15360. for (int i = 0; i < nb; i++) {
  15361. for (int j = 0; j < QK4_1; j += 2) {
  15362. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15363. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15364. hist[vi0]++;
  15365. hist[vi1]++;
  15366. }
  15367. }
  15368. }
  15369. return (n/QK4_1*sizeof(block_q4_1));
  15370. }
  15371. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15372. assert(k % QK5_0 == 0);
  15373. const int nb = k / QK5_0;
  15374. for (int b = 0; b < n; b += k) {
  15375. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15376. quantize_row_q5_0_reference(src + b, y, k);
  15377. for (int i = 0; i < nb; i++) {
  15378. uint32_t qh;
  15379. memcpy(&qh, &y[i].qh, sizeof(qh));
  15380. for (int j = 0; j < QK5_0; j += 2) {
  15381. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15382. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15383. // cast to 16 bins
  15384. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15385. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15386. hist[vi0]++;
  15387. hist[vi1]++;
  15388. }
  15389. }
  15390. }
  15391. return (n/QK5_0*sizeof(block_q5_0));
  15392. }
  15393. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15394. assert(k % QK5_1 == 0);
  15395. const int nb = k / QK5_1;
  15396. for (int b = 0; b < n; b += k) {
  15397. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15398. quantize_row_q5_1_reference(src + b, y, k);
  15399. for (int i = 0; i < nb; i++) {
  15400. uint32_t qh;
  15401. memcpy(&qh, &y[i].qh, sizeof(qh));
  15402. for (int j = 0; j < QK5_1; j += 2) {
  15403. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15404. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15405. // cast to 16 bins
  15406. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15407. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15408. hist[vi0]++;
  15409. hist[vi1]++;
  15410. }
  15411. }
  15412. }
  15413. return (n/QK5_1*sizeof(block_q5_1));
  15414. }
  15415. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15416. assert(k % QK8_0 == 0);
  15417. const int nb = k / QK8_0;
  15418. for (int b = 0; b < n; b += k) {
  15419. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15420. quantize_row_q8_0_reference(src + b, y, k);
  15421. for (int i = 0; i < nb; i++) {
  15422. for (int j = 0; j < QK8_0; ++j) {
  15423. const int8_t vi = y[i].qs[j];
  15424. hist[vi/16 + 8]++;
  15425. }
  15426. }
  15427. }
  15428. return (n/QK8_0*sizeof(block_q8_0));
  15429. }
  15430. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15431. size_t result = 0;
  15432. switch (type) {
  15433. case GGML_TYPE_Q4_0:
  15434. {
  15435. GGML_ASSERT(start % QK4_0 == 0);
  15436. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15437. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15438. } break;
  15439. case GGML_TYPE_Q4_1:
  15440. {
  15441. GGML_ASSERT(start % QK4_1 == 0);
  15442. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15443. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15444. } break;
  15445. case GGML_TYPE_Q5_0:
  15446. {
  15447. GGML_ASSERT(start % QK5_0 == 0);
  15448. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15449. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15450. } break;
  15451. case GGML_TYPE_Q5_1:
  15452. {
  15453. GGML_ASSERT(start % QK5_1 == 0);
  15454. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15455. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15456. } break;
  15457. case GGML_TYPE_Q8_0:
  15458. {
  15459. GGML_ASSERT(start % QK8_0 == 0);
  15460. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15461. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15462. } break;
  15463. case GGML_TYPE_Q2_K:
  15464. {
  15465. GGML_ASSERT(start % QK_K == 0);
  15466. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15467. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15468. } break;
  15469. case GGML_TYPE_Q3_K:
  15470. {
  15471. GGML_ASSERT(start % QK_K == 0);
  15472. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15473. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15474. } break;
  15475. case GGML_TYPE_Q4_K:
  15476. {
  15477. GGML_ASSERT(start % QK_K == 0);
  15478. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15479. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15480. } break;
  15481. case GGML_TYPE_Q5_K:
  15482. {
  15483. GGML_ASSERT(start % QK_K == 0);
  15484. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15485. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15486. } break;
  15487. case GGML_TYPE_Q6_K:
  15488. {
  15489. GGML_ASSERT(start % QK_K == 0);
  15490. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15491. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15492. } break;
  15493. case GGML_TYPE_IQ2_XXS:
  15494. {
  15495. GGML_ASSERT(start % QK_K == 0);
  15496. block_iq2_xxs * block = (block_iq2_xxs*)dst + start / QK_K;
  15497. result = ggml_quantize_iq2_xxs(src + start, block, n, n, hist);
  15498. } break;
  15499. case GGML_TYPE_F16:
  15500. {
  15501. int elemsize = sizeof(ggml_fp16_t);
  15502. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15503. result = n * elemsize;
  15504. } break;
  15505. case GGML_TYPE_F32:
  15506. {
  15507. int elemsize = sizeof(float);
  15508. result = n * elemsize;
  15509. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15510. } break;
  15511. default:
  15512. assert(false);
  15513. }
  15514. return result;
  15515. }
  15516. ////////////////////////////////////////////////////////////////////////////////
  15517. struct gguf_str {
  15518. uint64_t n; // GGUFv2
  15519. char * data;
  15520. };
  15521. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15522. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15523. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15524. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15525. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15526. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15527. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15528. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15529. [GGUF_TYPE_BOOL] = sizeof(bool),
  15530. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15531. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15532. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15533. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15534. [GGUF_TYPE_ARRAY] = 0, // undefined
  15535. };
  15536. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15537. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15538. [GGUF_TYPE_UINT8] = "u8",
  15539. [GGUF_TYPE_INT8] = "i8",
  15540. [GGUF_TYPE_UINT16] = "u16",
  15541. [GGUF_TYPE_INT16] = "i16",
  15542. [GGUF_TYPE_UINT32] = "u32",
  15543. [GGUF_TYPE_INT32] = "i32",
  15544. [GGUF_TYPE_FLOAT32] = "f32",
  15545. [GGUF_TYPE_BOOL] = "bool",
  15546. [GGUF_TYPE_STRING] = "str",
  15547. [GGUF_TYPE_ARRAY] = "arr",
  15548. [GGUF_TYPE_UINT64] = "u64",
  15549. [GGUF_TYPE_INT64] = "i64",
  15550. [GGUF_TYPE_FLOAT64] = "f64",
  15551. };
  15552. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15553. union gguf_value {
  15554. uint8_t uint8;
  15555. int8_t int8;
  15556. uint16_t uint16;
  15557. int16_t int16;
  15558. uint32_t uint32;
  15559. int32_t int32;
  15560. float float32;
  15561. uint64_t uint64;
  15562. int64_t int64;
  15563. double float64;
  15564. bool bool_;
  15565. struct gguf_str str;
  15566. struct {
  15567. enum gguf_type type;
  15568. uint64_t n; // GGUFv2
  15569. void * data;
  15570. } arr;
  15571. };
  15572. struct gguf_kv {
  15573. struct gguf_str key;
  15574. enum gguf_type type;
  15575. union gguf_value value;
  15576. };
  15577. struct gguf_header {
  15578. char magic[4];
  15579. uint32_t version;
  15580. uint64_t n_tensors; // GGUFv2
  15581. uint64_t n_kv; // GGUFv2
  15582. };
  15583. struct gguf_tensor_info {
  15584. struct gguf_str name;
  15585. uint32_t n_dims;
  15586. uint64_t ne[GGML_MAX_DIMS];
  15587. enum ggml_type type;
  15588. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15589. // for writing API
  15590. const void * data;
  15591. size_t size;
  15592. };
  15593. struct gguf_context {
  15594. struct gguf_header header;
  15595. struct gguf_kv * kv;
  15596. struct gguf_tensor_info * infos;
  15597. size_t alignment;
  15598. size_t offset; // offset of `data` from beginning of file
  15599. size_t size; // size of `data` in bytes
  15600. //uint8_t * padding;
  15601. void * data;
  15602. };
  15603. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15604. const size_t n = fread(dst, 1, size, file);
  15605. *offset += n;
  15606. return n == size;
  15607. }
  15608. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15609. p->n = 0;
  15610. p->data = NULL;
  15611. bool ok = true;
  15612. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15613. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15614. return ok;
  15615. }
  15616. struct gguf_context * gguf_init_empty(void) {
  15617. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15618. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15619. ctx->header.version = GGUF_VERSION;
  15620. ctx->header.n_tensors = 0;
  15621. ctx->header.n_kv = 0;
  15622. ctx->kv = NULL;
  15623. ctx->infos = NULL;
  15624. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15625. ctx->offset = 0;
  15626. ctx->size = 0;
  15627. ctx->data = NULL;
  15628. return ctx;
  15629. }
  15630. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15631. FILE * file = fopen(fname, "rb");
  15632. if (!file) {
  15633. return NULL;
  15634. }
  15635. // offset from start of file
  15636. size_t offset = 0;
  15637. char magic[4];
  15638. // check the magic before making allocations
  15639. {
  15640. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15641. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15642. if (magic[i] != GGUF_MAGIC[i]) {
  15643. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15644. fclose(file);
  15645. return NULL;
  15646. }
  15647. }
  15648. }
  15649. bool ok = true;
  15650. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15651. // read the header
  15652. {
  15653. strncpy(ctx->header.magic, magic, 4);
  15654. ctx->kv = NULL;
  15655. ctx->infos = NULL;
  15656. ctx->data = NULL;
  15657. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15658. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15659. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15660. if (ctx->header.version == 1) {
  15661. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15662. fclose(file);
  15663. gguf_free(ctx);
  15664. return NULL;
  15665. }
  15666. if (!ok) {
  15667. fprintf(stderr, "%s: failed to read header\n", __func__);
  15668. fclose(file);
  15669. gguf_free(ctx);
  15670. return NULL;
  15671. }
  15672. }
  15673. // read the kv pairs
  15674. {
  15675. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15676. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15677. struct gguf_kv * kv = &ctx->kv[i];
  15678. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15679. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15680. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15681. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15682. switch (kv->type) {
  15683. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15684. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15685. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15686. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15687. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15688. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15689. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15690. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15691. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15692. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15693. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15694. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15695. case GGUF_TYPE_ARRAY:
  15696. {
  15697. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15698. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15699. switch (kv->value.arr.type) {
  15700. case GGUF_TYPE_UINT8:
  15701. case GGUF_TYPE_INT8:
  15702. case GGUF_TYPE_UINT16:
  15703. case GGUF_TYPE_INT16:
  15704. case GGUF_TYPE_UINT32:
  15705. case GGUF_TYPE_INT32:
  15706. case GGUF_TYPE_FLOAT32:
  15707. case GGUF_TYPE_UINT64:
  15708. case GGUF_TYPE_INT64:
  15709. case GGUF_TYPE_FLOAT64:
  15710. case GGUF_TYPE_BOOL:
  15711. {
  15712. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15713. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15714. } break;
  15715. case GGUF_TYPE_STRING:
  15716. {
  15717. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15718. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15719. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15720. }
  15721. } break;
  15722. case GGUF_TYPE_ARRAY:
  15723. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15724. }
  15725. } break;
  15726. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15727. }
  15728. if (!ok) {
  15729. break;
  15730. }
  15731. }
  15732. if (!ok) {
  15733. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15734. fclose(file);
  15735. gguf_free(ctx);
  15736. return NULL;
  15737. }
  15738. }
  15739. // read the tensor infos
  15740. {
  15741. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15742. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15743. struct gguf_tensor_info * info = &ctx->infos[i];
  15744. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15745. info->ne[j] = 1;
  15746. }
  15747. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15748. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15749. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15750. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15751. }
  15752. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15753. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15754. if (!ok) {
  15755. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15756. fclose(file);
  15757. gguf_free(ctx);
  15758. return NULL;
  15759. }
  15760. }
  15761. }
  15762. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15763. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15764. if (alignment_idx != -1) {
  15765. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15766. }
  15767. // we require the data section to be aligned, so take into account any padding
  15768. {
  15769. const size_t offset_pad = offset % ctx->alignment;
  15770. if (offset_pad != 0) {
  15771. offset += ctx->alignment - offset_pad;
  15772. fseek(file, offset, SEEK_SET);
  15773. }
  15774. }
  15775. // store the current file offset - this is where the data section starts
  15776. ctx->offset = offset;
  15777. // compute the total size of the data section, taking into account the alignment
  15778. {
  15779. ctx->size = 0;
  15780. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15781. struct gguf_tensor_info * info = &ctx->infos[i];
  15782. const int64_t ne =
  15783. (int64_t) info->ne[0] *
  15784. (int64_t) info->ne[1] *
  15785. (int64_t) info->ne[2] *
  15786. (int64_t) info->ne[3];
  15787. if (ne % ggml_blck_size(info->type) != 0) {
  15788. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15789. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15790. fclose(file);
  15791. gguf_free(ctx);
  15792. return NULL;
  15793. }
  15794. const size_t size_cur = ggml_row_size(info->type, ne);
  15795. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15796. }
  15797. }
  15798. // load the tensor data only if requested
  15799. if (params.ctx != NULL) {
  15800. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15801. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15802. // the ggml_tensor structs to the appropriate locations in the binary blob
  15803. // compute the exact size needed for the new ggml_context
  15804. const size_t mem_size =
  15805. params.no_alloc ?
  15806. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15807. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15808. struct ggml_init_params pdata = {
  15809. .mem_size = mem_size,
  15810. .mem_buffer = NULL,
  15811. .no_alloc = params.no_alloc,
  15812. };
  15813. *params.ctx = ggml_init(pdata);
  15814. struct ggml_context * ctx_data = *params.ctx;
  15815. struct ggml_tensor * data = NULL;
  15816. if (!params.no_alloc) {
  15817. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15818. ok = ok && data != NULL;
  15819. // read the binary blob with the tensor data
  15820. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15821. if (!ok) {
  15822. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15823. fclose(file);
  15824. ggml_free(ctx_data);
  15825. gguf_free(ctx);
  15826. return NULL;
  15827. }
  15828. ctx->data = data->data;
  15829. }
  15830. ggml_set_no_alloc(ctx_data, true);
  15831. // create the tensors
  15832. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15833. const int64_t ne[GGML_MAX_DIMS] = {
  15834. ctx->infos[i].ne[0],
  15835. ctx->infos[i].ne[1],
  15836. ctx->infos[i].ne[2],
  15837. ctx->infos[i].ne[3],
  15838. };
  15839. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15840. ok = ok && cur != NULL;
  15841. ggml_set_name(cur, ctx->infos[i].name.data);
  15842. if (!ok) {
  15843. break;
  15844. }
  15845. // point the data member to the appropriate location in the binary blob using the tensor infos
  15846. if (!params.no_alloc) {
  15847. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15848. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15849. }
  15850. }
  15851. if (!ok) {
  15852. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15853. fclose(file);
  15854. ggml_free(ctx_data);
  15855. gguf_free(ctx);
  15856. return NULL;
  15857. }
  15858. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15859. }
  15860. fclose(file);
  15861. return ctx;
  15862. }
  15863. void gguf_free(struct gguf_context * ctx) {
  15864. if (ctx == NULL) {
  15865. return;
  15866. }
  15867. if (ctx->kv) {
  15868. // free string memory - not great..
  15869. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15870. struct gguf_kv * kv = &ctx->kv[i];
  15871. if (kv->key.data) {
  15872. free(kv->key.data);
  15873. }
  15874. if (kv->type == GGUF_TYPE_STRING) {
  15875. if (kv->value.str.data) {
  15876. free(kv->value.str.data);
  15877. }
  15878. }
  15879. if (kv->type == GGUF_TYPE_ARRAY) {
  15880. if (kv->value.arr.data) {
  15881. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15882. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15883. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15884. if (str->data) {
  15885. free(str->data);
  15886. }
  15887. }
  15888. }
  15889. free(kv->value.arr.data);
  15890. }
  15891. }
  15892. }
  15893. free(ctx->kv);
  15894. }
  15895. if (ctx->infos) {
  15896. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15897. struct gguf_tensor_info * info = &ctx->infos[i];
  15898. if (info->name.data) {
  15899. free(info->name.data);
  15900. }
  15901. }
  15902. free(ctx->infos);
  15903. }
  15904. GGML_ALIGNED_FREE(ctx);
  15905. }
  15906. const char * gguf_type_name(enum gguf_type type) {
  15907. return GGUF_TYPE_NAME[type];
  15908. }
  15909. int gguf_get_version(const struct gguf_context * ctx) {
  15910. return ctx->header.version;
  15911. }
  15912. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15913. return ctx->alignment;
  15914. }
  15915. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15916. return ctx->offset;
  15917. }
  15918. void * gguf_get_data(const struct gguf_context * ctx) {
  15919. return ctx->data;
  15920. }
  15921. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15922. return ctx->header.n_kv;
  15923. }
  15924. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15925. // return -1 if key not found
  15926. int keyfound = -1;
  15927. const int n_kv = gguf_get_n_kv(ctx);
  15928. for (int i = 0; i < n_kv; ++i) {
  15929. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15930. keyfound = i;
  15931. break;
  15932. }
  15933. }
  15934. return keyfound;
  15935. }
  15936. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15937. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15938. return ctx->kv[key_id].key.data;
  15939. }
  15940. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15941. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15942. return ctx->kv[key_id].type;
  15943. }
  15944. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15945. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15946. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15947. return ctx->kv[key_id].value.arr.type;
  15948. }
  15949. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15950. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15951. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15952. return ctx->kv[key_id].value.arr.data;
  15953. }
  15954. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15955. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15956. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15957. struct gguf_kv * kv = &ctx->kv[key_id];
  15958. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15959. return str->data;
  15960. }
  15961. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15962. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15963. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15964. return ctx->kv[key_id].value.arr.n;
  15965. }
  15966. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15967. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15968. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15969. return ctx->kv[key_id].value.uint8;
  15970. }
  15971. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15972. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15973. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15974. return ctx->kv[key_id].value.int8;
  15975. }
  15976. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15977. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15978. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15979. return ctx->kv[key_id].value.uint16;
  15980. }
  15981. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15982. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15983. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15984. return ctx->kv[key_id].value.int16;
  15985. }
  15986. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15987. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15988. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15989. return ctx->kv[key_id].value.uint32;
  15990. }
  15991. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15992. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15993. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15994. return ctx->kv[key_id].value.int32;
  15995. }
  15996. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15997. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15998. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15999. return ctx->kv[key_id].value.float32;
  16000. }
  16001. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16002. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16003. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16004. return ctx->kv[key_id].value.uint64;
  16005. }
  16006. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16007. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16008. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16009. return ctx->kv[key_id].value.int64;
  16010. }
  16011. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16012. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16013. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16014. return ctx->kv[key_id].value.float64;
  16015. }
  16016. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16017. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16018. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16019. return ctx->kv[key_id].value.bool_;
  16020. }
  16021. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16022. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16023. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16024. return ctx->kv[key_id].value.str.data;
  16025. }
  16026. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16027. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16028. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16029. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16030. return &ctx->kv[key_id].value;
  16031. }
  16032. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16033. return ctx->header.n_tensors;
  16034. }
  16035. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16036. // return -1 if tensor not found
  16037. int tensorfound = -1;
  16038. const int n_tensors = gguf_get_n_tensors(ctx);
  16039. for (int i = 0; i < n_tensors; ++i) {
  16040. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16041. tensorfound = i;
  16042. break;
  16043. }
  16044. }
  16045. return tensorfound;
  16046. }
  16047. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16048. return ctx->infos[i].offset;
  16049. }
  16050. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16051. return ctx->infos[i].name.data;
  16052. }
  16053. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16054. return ctx->infos[i].type;
  16055. }
  16056. // returns the index
  16057. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16058. const int idx = gguf_find_key(ctx, key);
  16059. if (idx >= 0) {
  16060. return idx;
  16061. }
  16062. const int n_kv = gguf_get_n_kv(ctx);
  16063. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16064. ctx->kv[n_kv].key.n = strlen(key);
  16065. ctx->kv[n_kv].key.data = strdup(key);
  16066. ctx->header.n_kv++;
  16067. return n_kv;
  16068. }
  16069. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16070. const int idx = gguf_get_or_add_key(ctx, key);
  16071. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16072. ctx->kv[idx].value.uint8 = val;
  16073. }
  16074. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16075. const int idx = gguf_get_or_add_key(ctx, key);
  16076. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16077. ctx->kv[idx].value.int8 = val;
  16078. }
  16079. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16080. const int idx = gguf_get_or_add_key(ctx, key);
  16081. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16082. ctx->kv[idx].value.uint16 = val;
  16083. }
  16084. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16085. const int idx = gguf_get_or_add_key(ctx, key);
  16086. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16087. ctx->kv[idx].value.int16 = val;
  16088. }
  16089. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16090. const int idx = gguf_get_or_add_key(ctx, key);
  16091. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16092. ctx->kv[idx].value.uint32 = val;
  16093. }
  16094. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16095. const int idx = gguf_get_or_add_key(ctx, key);
  16096. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16097. ctx->kv[idx].value.int32 = val;
  16098. }
  16099. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16100. const int idx = gguf_get_or_add_key(ctx, key);
  16101. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16102. ctx->kv[idx].value.float32 = val;
  16103. }
  16104. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16105. const int idx = gguf_get_or_add_key(ctx, key);
  16106. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16107. ctx->kv[idx].value.uint64 = val;
  16108. }
  16109. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16110. const int idx = gguf_get_or_add_key(ctx, key);
  16111. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16112. ctx->kv[idx].value.int64 = val;
  16113. }
  16114. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16115. const int idx = gguf_get_or_add_key(ctx, key);
  16116. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16117. ctx->kv[idx].value.float64 = val;
  16118. }
  16119. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16120. const int idx = gguf_get_or_add_key(ctx, key);
  16121. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16122. ctx->kv[idx].value.bool_ = val;
  16123. }
  16124. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16125. const int idx = gguf_get_or_add_key(ctx, key);
  16126. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16127. ctx->kv[idx].value.str.n = strlen(val);
  16128. ctx->kv[idx].value.str.data = strdup(val);
  16129. }
  16130. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16131. const int idx = gguf_get_or_add_key(ctx, key);
  16132. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16133. ctx->kv[idx].value.arr.type = type;
  16134. ctx->kv[idx].value.arr.n = n;
  16135. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16136. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16137. }
  16138. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16139. const int idx = gguf_get_or_add_key(ctx, key);
  16140. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16141. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16142. ctx->kv[idx].value.arr.n = n;
  16143. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16144. for (int i = 0; i < n; i++) {
  16145. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16146. str->n = strlen(data[i]);
  16147. str->data = strdup(data[i]);
  16148. }
  16149. }
  16150. // set or add KV pairs from another context
  16151. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16152. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16153. switch (src->kv[i].type) {
  16154. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16155. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16156. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16157. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16158. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16159. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16160. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16161. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16162. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16163. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16164. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16165. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16166. case GGUF_TYPE_ARRAY:
  16167. {
  16168. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16169. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16170. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16171. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16172. }
  16173. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16174. free((void *)data);
  16175. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16176. GGML_ASSERT(false && "nested arrays not supported");
  16177. } else {
  16178. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16179. }
  16180. } break;
  16181. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16182. }
  16183. }
  16184. }
  16185. void gguf_add_tensor(
  16186. struct gguf_context * ctx,
  16187. const struct ggml_tensor * tensor) {
  16188. const int idx = ctx->header.n_tensors;
  16189. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16190. ctx->infos[idx].name.n = strlen(tensor->name);
  16191. ctx->infos[idx].name.data = strdup(tensor->name);
  16192. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16193. ctx->infos[idx].ne[i] = 1;
  16194. }
  16195. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16196. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16197. ctx->infos[idx].ne[i] = tensor->ne[i];
  16198. }
  16199. ctx->infos[idx].type = tensor->type;
  16200. ctx->infos[idx].offset = 0;
  16201. ctx->infos[idx].data = tensor->data;
  16202. ctx->infos[idx].size = ggml_nbytes(tensor);
  16203. if (ctx->header.n_tensors > 0) {
  16204. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16205. }
  16206. ctx->header.n_tensors++;
  16207. }
  16208. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16209. const int idx = gguf_find_tensor(ctx, name);
  16210. if (idx < 0) {
  16211. GGML_ASSERT(false && "tensor not found");
  16212. }
  16213. ctx->infos[idx].type = type;
  16214. }
  16215. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16216. const int idx = gguf_find_tensor(ctx, name);
  16217. if (idx < 0) {
  16218. GGML_ASSERT(false && "tensor not found");
  16219. }
  16220. ctx->infos[idx].data = data;
  16221. ctx->infos[idx].size = size;
  16222. // update offsets
  16223. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16224. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16225. }
  16226. }
  16227. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16228. // fwrite(&val->n, sizeof(val->n), 1, file);
  16229. // fwrite(val->data, sizeof(char), val->n, file);
  16230. //}
  16231. //
  16232. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16233. // fwrite(val, sizeof(char), size, file);
  16234. //}
  16235. struct gguf_buf {
  16236. void * data;
  16237. size_t size;
  16238. size_t offset;
  16239. };
  16240. static struct gguf_buf gguf_buf_init(size_t size) {
  16241. struct gguf_buf buf = {
  16242. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16243. /*buf.size =*/ size,
  16244. /*buf.offset =*/ 0,
  16245. };
  16246. return buf;
  16247. }
  16248. static void gguf_buf_free(struct gguf_buf buf) {
  16249. if (buf.data) {
  16250. free(buf.data);
  16251. }
  16252. }
  16253. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16254. if (buf->offset + size > buf->size) {
  16255. buf->size = 1.5*(buf->offset + size);
  16256. if (buf->data) {
  16257. buf->data = realloc(buf->data, buf->size);
  16258. }
  16259. }
  16260. }
  16261. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16262. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16263. if (buf->data) {
  16264. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16265. }
  16266. buf->offset += sizeof(val->n);
  16267. if (buf->data) {
  16268. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16269. }
  16270. buf->offset += val->n;
  16271. }
  16272. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16273. gguf_buf_grow(buf, el_size);
  16274. if (buf->data) {
  16275. memcpy((char *) buf->data + buf->offset, val, el_size);
  16276. }
  16277. buf->offset += el_size;
  16278. }
  16279. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16280. // write header
  16281. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16282. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16283. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16284. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16285. // write key-value pairs
  16286. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16287. struct gguf_kv * kv = &ctx->kv[i];
  16288. gguf_bwrite_str(buf, &kv->key);
  16289. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16290. switch (kv->type) {
  16291. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16292. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16293. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16294. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16295. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16296. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16297. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16298. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16299. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16300. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16301. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16302. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16303. case GGUF_TYPE_ARRAY:
  16304. {
  16305. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16306. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16307. switch (kv->value.arr.type) {
  16308. case GGUF_TYPE_UINT8:
  16309. case GGUF_TYPE_INT8:
  16310. case GGUF_TYPE_UINT16:
  16311. case GGUF_TYPE_INT16:
  16312. case GGUF_TYPE_UINT32:
  16313. case GGUF_TYPE_INT32:
  16314. case GGUF_TYPE_FLOAT32:
  16315. case GGUF_TYPE_UINT64:
  16316. case GGUF_TYPE_INT64:
  16317. case GGUF_TYPE_FLOAT64:
  16318. case GGUF_TYPE_BOOL:
  16319. {
  16320. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16321. } break;
  16322. case GGUF_TYPE_STRING:
  16323. {
  16324. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16325. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16326. }
  16327. } break;
  16328. case GGUF_TYPE_ARRAY:
  16329. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16330. }
  16331. } break;
  16332. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16333. }
  16334. }
  16335. // write tensor infos
  16336. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16337. struct gguf_tensor_info * info = &ctx->infos[i];
  16338. gguf_bwrite_str(buf, &info->name);
  16339. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16340. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16341. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16342. }
  16343. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16344. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16345. }
  16346. // we require the data section to be aligned, so take into account any padding
  16347. {
  16348. const size_t offset = buf->offset;
  16349. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16350. if (offset_pad != offset) {
  16351. uint8_t pad = 0;
  16352. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16353. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16354. }
  16355. }
  16356. }
  16357. if (only_meta) {
  16358. return;
  16359. }
  16360. size_t offset = 0;
  16361. // write tensor data
  16362. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16363. struct gguf_tensor_info * info = &ctx->infos[i];
  16364. const size_t size = info->size;
  16365. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16366. gguf_bwrite_el(buf, info->data, size);
  16367. if (size_pad != size) {
  16368. uint8_t pad = 0;
  16369. for (size_t j = 0; j < size_pad - size; ++j) {
  16370. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16371. }
  16372. }
  16373. GGML_ASSERT(offset == info->offset);
  16374. offset += size_pad;
  16375. }
  16376. }
  16377. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16378. FILE * file = fopen(fname, "wb");
  16379. if (!file) {
  16380. GGML_ASSERT(false && "failed to open file for writing");
  16381. }
  16382. struct gguf_buf buf = gguf_buf_init(16*1024);
  16383. gguf_write_to_buf(ctx, &buf, only_meta);
  16384. fwrite(buf.data, 1, buf.offset, file);
  16385. gguf_buf_free(buf);
  16386. fclose(file);
  16387. }
  16388. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16389. // no allocs - only compute size
  16390. struct gguf_buf buf = gguf_buf_init(0);
  16391. gguf_write_to_buf(ctx, &buf, true);
  16392. return buf.offset;
  16393. }
  16394. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16395. struct gguf_buf buf = gguf_buf_init(16*1024);
  16396. gguf_write_to_buf(ctx, &buf, true);
  16397. memcpy(data, buf.data, buf.offset);
  16398. gguf_buf_free(buf);
  16399. }
  16400. ////////////////////////////////////////////////////////////////////////////////
  16401. int ggml_cpu_has_avx(void) {
  16402. #if defined(__AVX__)
  16403. return 1;
  16404. #else
  16405. return 0;
  16406. #endif
  16407. }
  16408. int ggml_cpu_has_avx_vnni(void) {
  16409. #if defined(__AVXVNNI__)
  16410. return 1;
  16411. #else
  16412. return 0;
  16413. #endif
  16414. }
  16415. int ggml_cpu_has_avx2(void) {
  16416. #if defined(__AVX2__)
  16417. return 1;
  16418. #else
  16419. return 0;
  16420. #endif
  16421. }
  16422. int ggml_cpu_has_avx512(void) {
  16423. #if defined(__AVX512F__)
  16424. return 1;
  16425. #else
  16426. return 0;
  16427. #endif
  16428. }
  16429. int ggml_cpu_has_avx512_vbmi(void) {
  16430. #if defined(__AVX512VBMI__)
  16431. return 1;
  16432. #else
  16433. return 0;
  16434. #endif
  16435. }
  16436. int ggml_cpu_has_avx512_vnni(void) {
  16437. #if defined(__AVX512VNNI__)
  16438. return 1;
  16439. #else
  16440. return 0;
  16441. #endif
  16442. }
  16443. int ggml_cpu_has_fma(void) {
  16444. #if defined(__FMA__)
  16445. return 1;
  16446. #else
  16447. return 0;
  16448. #endif
  16449. }
  16450. int ggml_cpu_has_neon(void) {
  16451. #if defined(__ARM_NEON)
  16452. return 1;
  16453. #else
  16454. return 0;
  16455. #endif
  16456. }
  16457. int ggml_cpu_has_arm_fma(void) {
  16458. #if defined(__ARM_FEATURE_FMA)
  16459. return 1;
  16460. #else
  16461. return 0;
  16462. #endif
  16463. }
  16464. int ggml_cpu_has_metal(void) {
  16465. #if defined(GGML_USE_METAL)
  16466. return 1;
  16467. #else
  16468. return 0;
  16469. #endif
  16470. }
  16471. int ggml_cpu_has_f16c(void) {
  16472. #if defined(__F16C__)
  16473. return 1;
  16474. #else
  16475. return 0;
  16476. #endif
  16477. }
  16478. int ggml_cpu_has_fp16_va(void) {
  16479. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16480. return 1;
  16481. #else
  16482. return 0;
  16483. #endif
  16484. }
  16485. int ggml_cpu_has_wasm_simd(void) {
  16486. #if defined(__wasm_simd128__)
  16487. return 1;
  16488. #else
  16489. return 0;
  16490. #endif
  16491. }
  16492. int ggml_cpu_has_blas(void) {
  16493. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16494. return 1;
  16495. #else
  16496. return 0;
  16497. #endif
  16498. }
  16499. int ggml_cpu_has_cublas(void) {
  16500. #if defined(GGML_USE_CUBLAS)
  16501. return 1;
  16502. #else
  16503. return 0;
  16504. #endif
  16505. }
  16506. int ggml_cpu_has_clblast(void) {
  16507. #if defined(GGML_USE_CLBLAST)
  16508. return 1;
  16509. #else
  16510. return 0;
  16511. #endif
  16512. }
  16513. int ggml_cpu_has_gpublas(void) {
  16514. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16515. }
  16516. int ggml_cpu_has_sse3(void) {
  16517. #if defined(__SSE3__)
  16518. return 1;
  16519. #else
  16520. return 0;
  16521. #endif
  16522. }
  16523. int ggml_cpu_has_ssse3(void) {
  16524. #if defined(__SSSE3__)
  16525. return 1;
  16526. #else
  16527. return 0;
  16528. #endif
  16529. }
  16530. int ggml_cpu_has_vsx(void) {
  16531. #if defined(__POWER9_VECTOR__)
  16532. return 1;
  16533. #else
  16534. return 0;
  16535. #endif
  16536. }
  16537. ////////////////////////////////////////////////////////////////////////////////