| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483 |
- #include <cstddef>
- #include <cstdint>
- #include <limits>
- #include <stdint.h>
- #include <stdio.h>
- #include <atomic>
- #include <assert.h>
- #include <cuda_runtime.h>
- #include <cublas_v2.h>
- #include <cuda_fp16.h>
- #include "ggml-cuda.h"
- #include "ggml.h"
- static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
- #define CUDA_CHECK(err) \
- do { \
- cudaError_t err_ = (err); \
- if (err_ != cudaSuccess) { \
- fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
- cudaGetErrorString(err_)); \
- exit(1); \
- } \
- } while (0)
- #if CUDART_VERSION >= 12
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
- err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
- exit(1); \
- } \
- } while (0)
- #else
- #define CUBLAS_CHECK(err) \
- do { \
- cublasStatus_t err_ = (err); \
- if (err_ != CUBLAS_STATUS_SUCCESS) { \
- fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
- exit(1); \
- } \
- } while (0)
- #endif // CUDART_VERSION >= 11
- typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1);
- typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
- typedef void (*dot_kernel_k_t)(const void * vx, const int ib, const int iqs, const float * y, float & v);
- typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
- typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- typedef void (*ggml_cuda_op_t)(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i,
- float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main);
- // QK = number of values after dequantization
- // QR = QK / number of values before dequantization
- #define QK4_0 32
- #define QR4_0 2
- typedef struct {
- half d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
- #define QK4_1 32
- #define QR4_1 2
- typedef struct {
- half d; // delta
- half m; // min
- uint8_t qs[QK4_1 / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
- #define QK5_0 32
- #define QR5_0 2
- typedef struct {
- half d; // delta
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_0 / 2]; // nibbles / quants
- } block_q5_0;
- static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
- #define QK5_1 32
- #define QR5_1 2
- typedef struct {
- half d; // delta
- half m; // min
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_1 / 2]; // nibbles / quants
- } block_q5_1;
- static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
- #define QK8_0 32
- #define QR8_0 1
- typedef struct {
- half d; // delta
- int8_t qs[QK8_0]; // quants
- } block_q8_0;
- static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
- //================================= k-quants
- #define QK_K 256
- typedef struct {
- uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
- uint8_t qs[QK_K/4]; // quants
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- } block_q2_K;
- static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
- typedef struct {
- uint8_t hmask[QK_K/8];
- uint8_t qs[QK_K/4]; // nibbles / quants
- uint8_t scales[3*QK_K/64];
- half d;
- } block_q3_K;
- static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_K block size/padding");
- typedef struct {
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
- uint8_t qs[QK_K/2]; // 4--bit quants
- } block_q4_K;
- static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
- typedef struct {
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
- } block_q5_K;
- static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
- typedef struct {
- uint8_t ql[QK_K/2]; // quants, lower 4 bits
- uint8_t qh[QK_K/4]; // quants, upper 2 bits
- int8_t scales[QK_K/16]; // scales
- half d; // delta
- } block_q6_K;
- static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
- #define WARP_SIZE 32
- #define CUDA_ADD_BLOCK_SIZE 256
- #define CUDA_MUL_BLOCK_SIZE 256
- #define CUDA_SILU_BLOCK_SIZE 256
- #define CUDA_CPY_BLOCK_SIZE 32
- #define CUDA_SCALE_BLOCK_SIZE 256
- #define CUDA_ROPE_BLOCK_SIZE 256
- #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
- #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
- // dmmv = dequantize_mul_mat_vec
- #ifndef GGML_CUDA_DMMV_X
- #define GGML_CUDA_DMMV_X 32
- #endif
- #ifndef GGML_CUDA_DMMV_Y
- #define GGML_CUDA_DMMV_Y 1
- #endif
- static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] + y[i];
- }
- static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= kx) {
- return;
- }
- dst[i] = x[i] * y[i%ky];
- }
- static __global__ void silu_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] / (1.0f + expf(-x[i]));
- }
- static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- const float eps = 1e-6;
- float tmp = 0.0f; // partial sum for thread in warp
- for (int i = 0; i < ncols; i += WARP_SIZE) {
- const int col = i + tid;
- const float xi = x[row*ncols + col];
- tmp += xi * xi;
- }
- // sum up partial sums
- __syncthreads();
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- const float mean = tmp / ncols;
- const float scale = 1.0f / sqrtf(mean + eps);
- for (int i = 0; i < ncols; i += WARP_SIZE) {
- const int col = i + tid;
- dst[row*ncols + col] = scale * x[row*ncols + col];
- }
- }
- static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const float d = x[ib].d;
- const uint8_t vui = x[ib].qs[iqs];
- const int8_t vi0 = vui & 0xF;
- const int8_t vi1 = vui >> 4;
- v0 = (vi0 - 8)*d;
- v1 = (vi1 - 8)*d;
- }
- static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q4_1 * x = (const block_q4_1 *) vx;
- const float d = x[ib].d;
- const float m = x[ib].m;
- const uint8_t vui = x[ib].qs[iqs];
- const int8_t vi0 = vui & 0xF;
- const int8_t vi1 = vui >> 4;
- v0 = vi0*d + m;
- v1 = vi1*d + m;
- }
- static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q5_0 * x = (const block_q5_0 *) vx;
- const float d = x[ib].d;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
- const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
- v0 = x0*d;
- v1 = x1*d;
- }
- static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q5_1 * x = (const block_q5_1 *) vx;
- const float d = x[ib].d;
- const float m = x[ib].m;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
- const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
- v0 = x0*d + m;
- v1 = x1*d + m;
- }
- static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const block_q8_0 * x = (const block_q8_0 *) vx;
- const float d = x[ib].d;
- const int8_t vi0 = x[ib].qs[iqs + 0];
- const int8_t vi1 = x[ib].qs[iqs + 1];
- v0 = vi0*d;
- v1 = vi1*d;
- }
- //================================== k-quants
- static __global__ void dequantize_block_q2_K(const void * vx, float * yy) {
- const int i = blockIdx.x;
- const int tid = threadIdx.x;
- const int n = tid/32;
- const int l = tid - 32*n;
- const int is = 8*n + l/16;
- const block_q2_K * x = (const block_q2_K *) vx;
- const uint8_t q = x[i].qs[32*n + l];
- float * y = yy + i*QK_K + 128*n;
- float dall = x[i].d;
- float dmin = x[i].dmin;
- y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
- y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
- y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
- }
- static __device__ void vec_dot_q2_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q2_K * x = (const block_q2_K *) vx;
- // if n is 0, we want to do the lower 128, else the upper 128,
- // covering y[l+0], y[l+32], y[l+64], y[l+96] and
- // y[l+16], y[l+48], y[l+80], y[l+112]
- int n = iqs/128; // 0 or 1
- int r = iqs - 128*n; // 0...120 in steps of 8
- int l = r/8; // 0...15 in steps of 1
- const float * y = yy + 128*n + l;
- const uint8_t * q = x[ib].qs + 32*n + l;
- const uint8_t * s = x[ib].scales + 8*n;
- const float dall = x[ib].d;
- const float dmin = x[ib].dmin;
- float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4))
- + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4))
- + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4))
- + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4))
- + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4))
- + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4))
- + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4))
- + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4));
- result = sum;
- }
- static __global__ void dequantize_block_q3_K(const void * vx, float * yy) {
- int r = threadIdx.x/4;
- int i = blockIdx.x;
- int tid = r/2;
- int is0 = r%2;
- int l0 = 16*is0 + 4*(threadIdx.x%4);
- int n = tid / 4;
- int j = tid - 4*n;
- const block_q3_K * x = (const block_q3_K *) vx;
- uint8_t m = 1 << (4*n + j);
- int is = 8*n + 2*j + is0;
- int shift = 2*j;
- int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
- is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
- is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
- (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
- float d_all = x[i].d;
- float dl = d_all * (us - 32);
- float * y = yy + i*QK_K + 128*n + 32*j;
- const uint8_t * q = x[i].qs + 32*n;
- const uint8_t * hm = x[i].hmask;
- for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
- }
- static __device__ void vec_dot_q3_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q3_K * x = (const block_q3_K *) vx;
- const uint32_t kmask1 = 0x03030303;
- const uint32_t kmask2 = 0x0f0f0f0f;
- uint32_t aux[3];
- uint32_t utmp[4];
- // if n is 0, we want to do the lower 128, else the upper 128,
- // covering y[l+0], y[l+32], y[l+64], y[l+96] and
- // y[l+16], y[l+48], y[l+80], y[l+112]
- int n = iqs/128; // 0 or 1
- int r = iqs - 128*n; // 0...120 in steps of 8
- int l = r/8; // 0...15 in steps of 1
- const float * y = yy + 128*n + l;
- const uint8_t * q = x[ib].qs + 32*n + l;
- const uint8_t * hm = x[ib].hmask + l;
- const int8_t * s = (const int8_t *)utmp + 8*n;
- memcpy(aux, x[ib].scales, 12);
- utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
- utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
- utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
- utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
- const float dall = x[ib].d;
- const uint8_t m = 1 << (4*n);
- float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4))
- + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4))
- + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4))
- + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4))
- + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4))
- + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4))
- + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4))
- + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4));
- result = sum * dall;
- }
- static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
- if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
- } else {
- d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
- }
- }
- static __global__ void dequantize_block_q4_K(const void * vx, float * yy) {
- const block_q4_K * x = (const block_q4_K *) vx;
- const int i = blockIdx.x;
- //// assume 64 threads - this is very slightly better than the one below
- //const int tid = threadIdx.x;
- //const int il = tid/16;
- //const int ir = tid%16;
- //const int is = 2*il;
- //const int n = 2;
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int is = 2*il;
- const int n = 4;
- float * y = yy + i*QK_K + 64*il + n*ir;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
- const uint8_t * q = x[i].qs + 32*il + n*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
- }
- }
- static __device__ void vec_dot_q4_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q4_K * x = (const block_q4_K *) vx;
- // iqs is in 0...248 in steps of 8 =>
- const int j = iqs / 64; // j is in 0...3
- const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4
- const int is = 2*j; // is is in 0...6 in steps of 2
- const float * y = yy + 64*j + ir;
- const uint8_t * q = x[ib].qs + 32*j + ir;
- const float dall = x[ib].d;
- const float dmin = x[ib].dmin;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[ib].scales, sc, m);
- const float d1 = dall * sc;
- const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[ib].scales, sc, m);
- const float d2 = dall * sc;
- const float m2 = dmin * m;
- float sum = 0;
- for (int k = 0; k < 4; ++k) {
- sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1);
- sum += y[k + 32] * (d2 * (q[k] >> 4) - m2);
- }
- result = sum;
- }
- static __global__ void dequantize_block_q5_K(const void * vx, float * yy) {
- const block_q5_K * x = (const block_q5_K *) vx;
- const int i = blockIdx.x;
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int il = tid/16; // il is in 0...3
- const int ir = tid%16; // ir is in 0...15
- const int is = 2*il; // is is in 0...6
- float * y = yy + i*QK_K + 64*il + 2*ir;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
- const uint8_t * ql = x[i].qs + 32*il + 2*ir;
- const uint8_t * qh = x[i].qh + 2*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- uint8_t hm = 1 << (2*il);
- y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
- y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
- }
- static __device__ void vec_dot_q5_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q5_K * x = (const block_q5_K *) vx;
- // iqs is in 0...248 in steps of 8 =>
- const int j = iqs / 64; // j is in 0...3
- const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4
- const int is = 2*j; // is is in 0...6 in steps of 2
- const float * y = yy + 64*j + ir;
- const uint8_t * ql = x[ib].qs + 32*j + ir;
- const uint8_t * qh = x[ib].qh + ir;
- const float dall = x[ib].d;
- const float dmin = x[ib].dmin;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[ib].scales, sc, m);
- const float d1 = dall * sc;
- const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[ib].scales, sc, m);
- const float d2 = dall * sc;
- const float m2 = dmin * m;
- uint8_t hm = 1 << is;
- float sum = 0;
- for (int k = 0; k < 4; ++k) {
- sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1);
- }
- hm <<= 1;
- for (int k = 0; k < 4; ++k) {
- sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2);
- }
- result = sum;
- }
- static __global__ void dequantize_block_q6_K(const void * vx, float * yy) {
- const block_q6_K * x = (const block_q6_K *) vx;
- const int i = blockIdx.x;
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int ip = tid/32; // ip is 0 or 1
- const int il = tid - 32*ip; // 0...32
- const int is = 8*ip + il/16;
- float * y = yy + i*QK_K + 128*ip + il;
- const float d = x[i].d;
- const uint8_t * ql = x[i].ql + 64*ip + il;
- const uint8_t qh = x[i].qh[32*ip + il];
- const int8_t * sc = x[i].scales + is;
- y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
- }
- static __device__ void vec_dot_q6_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q6_K * x = (const block_q6_K *) vx;
- const int ip = iqs / 128; // 0 or 1
- const int il = (iqs - 128*ip)/8; // 0...15
- const int is = 8*ip;
- const float * y = yy + 128*ip + il;
- const float d = x[ib].d;
- const uint8_t * ql = x[ib].ql + 64*ip + il;
- const uint8_t * qh = x[ib].qh + 32*ip + il;
- const int8_t * sc = x[ib].scales + is;
- result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32)
- + y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32)
- + y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32)
- + y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32)
- + y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32)
- + y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32)
- + y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32)
- + y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32);
- }
- static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){
- const half * x = (const half *) vx;
- v0 = __half2float(x[ib + iqs + 0]);
- v1 = __half2float(x[ib + iqs + 1]);
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_block(const void * vx, float * y, const int k) {
- const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
- if (i >= k) {
- return;
- }
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- float & v0 = y[iybs + iqs + 0];
- float & v1 = y[iybs + iqs + y_offset];
- dequantize_kernel(vx, ib, iqs, v0, v1);
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols, const int nrows) {
- // qk = quantized weights per x block
- // qr = number of quantized weights per data value in x block
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row >= nrows) {
- return;
- }
- const int tid = threadIdx.x;
- const int iter_stride = 2*GGML_CUDA_DMMV_X;
- const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
- const int y_offset = qr == 1 ? 1 : qk/2;
- float tmp = 0.0f; // partial sum for thread in warp
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = (row*ncols + col)/qk; // x block index
- const int iqs = (col%qk)/qr; // x quant index
- const int iybs = col - col%qk; // y block start index
- // processing >2 values per i iter is faster for fast GPUs
- #pragma unroll
- for (int j = 0; j < vals_per_iter; j += 2) {
- // process 2 vals per j iter
- // dequantize
- float v0, v1;
- dequantize_kernel(vx, ib, iqs + j/qr, v0, v1);
- // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
- // matrix multiplication
- tmp += v0 * y[iybs + iqs + j/qr + 0];
- tmp += v1 * y[iybs + iqs + j/qr + y_offset];
- // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
- }
- }
- // sum up partial sums and write back result
- __syncthreads();
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- template <int n_thread, dot_kernel_k_t dot_kernel>
- static __global__ void dequantize_mul_mat_vec_k(const void * vx, const float * y, float * dst, const int ncols, const int nrows) {
- const int row = blockIdx.y*blockDim.y + threadIdx.y;
- if (row >= nrows) {
- return;
- }
- const int tid = threadIdx.x;
- const int iter_stride = QK_K;
- const int vals_per_iter = iter_stride / n_thread;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- float tmp = 0; // partial sum for thread in warp
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = ib0 + col/QK_K; // x block index
- const int iqs = col%QK_K; // x quant index
- const int iybs = col - col%QK_K; // y block start index
- float v;
- dot_kernel(vx, ib, iqs, y + iybs, v);
- tmp += v;
- }
- // sum up partial sums and write back result
- __syncthreads();
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void mul_mat_p021_f16_f32(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x) {
- const half * x = (half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- // x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel*ncols_x + col_x;
- const float xi = __half2float(x[ix]);
- const int row_y = col_x;
- // y is not transposed but permuted
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // dst is not transposed and not permuted
- const int idst = channel*nrows_dst + row_dst;
- // sum up partial sums and write back result
- __syncthreads();
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int nchannels_x, const int channel_stride_x) {
- const half * x = (half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- const int idst = channel*nrows_dst + row_dst;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- const int ix = channel*channel_stride_x + row_x*row_stride_x + col_x;
- const float xi = __half2float(x[ix]);
- const int row_y = col_x;
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // sum up partial sums and write back result
- __syncthreads();
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
- const float * xi = (float *) cxi;
- float * dsti = (float *) cdsti;
- *dsti = *xi;
- }
- static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
- const float * xi = (float *) cxi;
- half * dsti = (half *) cdsti;
- *dsti = __float2half(*xi);
- }
- template <cpy_kernel_t cpy_1>
- static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= ne) {
- return;
- }
- // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
- // then combine those indices with the corresponding byte offsets to get the total offsets
- const int i02 = i / (ne00*ne01);
- const int i01 = (i - i02*ne01*ne00) / ne00;
- const int i00 = i - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
- const int i12 = i / (ne10*ne11);
- const int i11 = (i - i12*ne10*ne11) / ne10;
- const int i10 = i - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
- cpy_1(cx + x_offset, cdst + dst_offset);
- }
- // rope == RoPE == rotary positional embedding
- static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p, const float theta_scale) {
- const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
- if (col >= ncols) {
- return;
- }
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
- const float theta = p*powf(theta_scale, col/2);
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
- }
- static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
- const int col = blockDim.x*blockIdx.x + threadIdx.x;
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- if (col >= ncols) {
- return;
- }
- const int i = row*ncols + col;
- // dst[i] = col > n_past + row ? -INFINITY : x[i];
- dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
- }
- // the CUDA soft max implementation differs from the CPU implementation
- // instead of doubles floats are used
- // values are also not normalized to the maximum value by subtracting it in the exponential function
- // theoretically these changes could cause problems with rounding error and arithmetic overflow but for LLaMa it seems to be fine
- static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) {
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int block_size = blockDim.x;
- const int tid = threadIdx.x;
- float tmp = 0.0;
- for (int block_start = 0; block_start < ncols; block_start += block_size) {
- const int col = block_start + tid;
- if (col >= ncols) {
- break;
- }
- const int i = row*ncols + col;
- const float val = expf(x[i]);
- tmp += val;
- dst[i] = val;
- }
- // sum up partial sums
- __syncthreads();
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
- }
- for (int block_start = 0; block_start < ncols; block_start += block_size) {
- const int col = block_start + tid;
- if (col >= ncols) {
- break;
- }
- const int i = row*ncols + col;
- dst[i] /= tmp;
- }
- }
- static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = scale * x[i];
- }
- static void add_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
- add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
- }
- static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
- const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
- mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
- }
- static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
- silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
- }
- static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
- }
- static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q2_K><<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q3_K><<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q4_K><<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q5_K><<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q6_K><<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
- const dim3 block_nums(1, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
- dequantize_mul_mat_vec<1, 1, convert_f16>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_row_q5_0_cuda;
- case GGML_TYPE_Q5_1:
- return dequantize_row_q5_1_cuda;
- case GGML_TYPE_Q8_0:
- return dequantize_row_q8_0_cuda;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_cuda;
- case GGML_TYPE_F16:
- return convert_fp16_to_fp32_cuda;
- default:
- return nullptr;
- }
- }
- static void ggml_mul_mat_p021_f16_f32_cuda(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_x);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x);
- }
- static void ggml_mul_mat_vec_nc_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
- const int nchannels_x, const int channel_stride_x, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_x);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
- (vx, y, dst, ncols_x, nrows_x, row_stride_x, nchannels_x, channel_stride_x);
- }
- static void ggml_cpy_f32_f32_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void ggml_cpy_f32_f16_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
- const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
- }
- static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
- scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
- }
- static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) {
- GGML_ASSERT(nrows % 2 == 0);
- const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
- const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(num_blocks_x, nrows, 1);
- rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale);
- }
- static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
- const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
- const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
- const dim3 block_nums(block_num_x, nrows_x, 1);
- diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
- }
- static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- const dim3 block_nums(1, nrows_x, 1);
- soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
- }
- // buffer pool for cuda
- #define MAX_CUDA_BUFFERS 256
- struct scoped_spin_lock {
- std::atomic_flag& lock;
- scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
- while (lock.test_and_set(std::memory_order_acquire)) {
- ; // spin
- }
- }
- ~scoped_spin_lock() {
- lock.clear(std::memory_order_release);
- }
- scoped_spin_lock(const scoped_spin_lock&) = delete;
- scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
- };
- struct cuda_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
- static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
- static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[id][i];
- if (b.size >= size && b.ptr != nullptr) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
- void * ptr;
- CUDA_CHECK(cudaMalloc((void **) &ptr, size));
- *actual_size = size;
- return ptr;
- }
- static void ggml_cuda_pool_free(void * ptr, size_t size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- cuda_buffer& b = g_cuda_buffer_pool[id][i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
- CUDA_CHECK(cudaFree(ptr));
- }
- static void * g_scratch_buffer = nullptr;
- static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
- static size_t g_scratch_offset = 0;
- #define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication.
- #define GGML_CUDA_MAX_EVENTS 64
- static int g_device_count = -1;
- static int g_main_device = 0;
- static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
- static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
- static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr };
- static cudaStream_t g_cudaStreams_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { nullptr };
- static cudaEvent_t g_cudaEvents_memcpy_src1[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_EVENTS] = { nullptr };
- void ggml_init_cublas() {
- static bool initialized = false;
- if (!initialized) {
- CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
- GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
- int64_t total_vram = 0;
- fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count);
- for (int id = 0; id < g_device_count; ++id) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
- fprintf(stderr, " Device %d: %s\n", id, prop.name);
- g_tensor_split[id] = total_vram;
- total_vram += prop.totalGlobalMem;
- }
- for (int id = 0; id < g_device_count; ++id) {
- g_tensor_split[id] /= total_vram;
- }
- for (int id = 0; id < g_device_count; ++id) {
- CUDA_CHECK(cudaSetDevice(id));
- // create streams
- for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id][i], cudaStreamNonBlocking));
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_memcpy_src1[id][i], cudaStreamNonBlocking));
- }
- // create events
- for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
- CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents_memcpy_src1[id][i], cudaEventDisableTiming));
- }
- // create cublas handle
- CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
- CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
- }
- // configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
- initialized = true;
- }
- }
- void ggml_cuda_set_tensor_split(const float * tensor_split) {
- bool all_zero = true;
- for (int i = 0; i < g_device_count; ++i) {
- if (tensor_split[i] != 0.0f) {
- all_zero = false;
- break;
- }
- }
- if (all_zero) {
- return;
- }
- float split_sum = 0.0f;
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < g_device_count; ++i) {
- g_tensor_split[i] /= split_sum;
- }
- }
- void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
- }
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- // The allocation error can be bypassed. A null ptr will assigned out of this function.
- // This can fixed the OOM error in WSL.
- cudaGetLastError();
- fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
- size/1024.0/1024.0, cudaGetErrorString(err));
- return nullptr;
- }
- return ptr;
- }
- void ggml_cuda_host_free(void * ptr) {
- CUDA_CHECK(cudaFreeHost(ptr));
- }
- static cudaError_t ggml_cuda_cpy_tensor_2d(
- void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
- cudaMemcpyKind kind;
- char * src_ptr;
- if (src->backend == GGML_BACKEND_CPU) {
- kind = cudaMemcpyHostToDevice;
- src_ptr = (char *) src->data;
- } else if (src->backend == GGML_BACKEND_GPU) {
- kind = cudaMemcpyDeviceToDevice;
- struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- src_ptr = (char *) extra->data_device[id];
- } else {
- GGML_ASSERT(false);
- }
- char * dst_ptr = (char *) dst;
- const int64_t ne0 = src->ne[0];
- const int64_t nb0 = src->nb[0];
- const int64_t nb1 = src->nb[1];
- const int64_t nb2 = src->nb[2];
- const int64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const int64_t ts = ggml_type_size(type);
- const int64_t bs = ggml_blck_size(type);
- int64_t i1_diff = i1_high - i1_low;
- const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
- } else if (nb0 == ts) {
- return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
- } else {
- for (int64_t i1 = 0; i1 < i1_diff; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
- if (r != cudaSuccess) return r;
- }
- return cudaSuccess;
- }
- }
- inline void ggml_cuda_op_add(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne0 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne0*i01_diff, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_mul(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- for (int64_t i01 = i01_low; i01 < i01_high; i01++) {
- const int64_t i11 = i1*ne11 + i01%ne11; // broadcast src1 across src0
- float * src0_ddf_i01 = src0_ddf_i + i01*ne00;
- float * src1_ddf_i01 = src1_ddf_i + i11*ne10;
- float * dst_ddf_i01 = dst_ddf_i + i01*ne00;
- // compute
- mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- }
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- }
- inline void ggml_cuda_op_silu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_rms_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_dequantize_mul_mat_vec(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddq_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = i01_high - i01_low;
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_1:
- dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_0:
- dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_1:
- dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q8_0:
- dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q2_K:
- dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q3_K:
- dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q4_K:
- dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q5_K:
- dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_Q6_K:
- dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- case GGML_TYPE_F16:
- convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_mul_mat_cublas(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const float alpha = 1.0f;
- const float beta = 0.0f;
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne0 = dst->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // ldc == nrows of the matrix that cuBLAS writes into
- int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main));
- CUBLAS_CHECK(
- cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
- i01_diff, ne11, ne10,
- &alpha, src0_ddf_i, ne00,
- src1_ddf_i, ne10,
- &beta, dst_ddf_i, ldc));
- (void) dst;
- (void) src0_ddq_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_rope(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- GGML_ASSERT(mode == 0);
- const float theta_scale = powf(10000.0, -2.0f/n_dims);
- const float p = ((mode & 1) == 0 ? n_past + i02 : i02);
- // compute
- rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i1;
- }
- inline void ggml_cuda_op_diag_mask_inf(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t i01_diff = i01_high - i01_low;
- const int n_past = ((int32_t *) src1->data)[0];
- // compute
- diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_soft_max(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- inline void ggml_cuda_op_scale(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
- float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
- cudaStream_t & cudaStream_main){
- GGML_ASSERT(src0_ddf_i != nullptr);
- GGML_ASSERT(dst_ddf_i != nullptr);
- const float scale = ((float *) src1->data)[0];
- const int64_t ne00 = src0->ne[0];
- const int64_t i01_diff = i01_high - i01_low;
- // compute
- scale_f32_cuda(src0_ddf_i, dst_ddf_i, scale, ne00*i01_diff, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src0_ddq_i;
- (void) src1_ddf_i;
- (void) i02;
- (void) i1;
- }
- static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- ggml_cuda_op_t op, bool src0_needs_f32, bool flatten_rows) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t nrows0 = ggml_nrows(src0);
- const bool use_src1 = src1 != nullptr;
- const int64_t ne10 = use_src1 ? src1->ne[0] : 1;
- const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
- const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
- const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
- // strides for iteration over dims 3 and 2
- const int64_t num_iters = flatten_rows ? 1 : ne02 * ne03;
- const int64_t stride_mod = flatten_rows ? ne02 * ne03 : 1;
- const int64_t src0_stride = ne00 * ne01 * stride_mod;
- const int64_t src1_stride = ne10 * ne11 * stride_mod;
- const int64_t dst_stride = ne0 * ne1 * stride_mod;
- const size_t src0_ts = ggml_type_size(src0->type);
- const size_t src0_bs = ggml_blck_size(src0->type);
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
- struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
- const bool src0_is_contiguous = ggml_is_contiguous(src0);
- const bool src0_is_f32 = src0->type == GGML_TYPE_F32;
- const bool src1_is_contiguous = use_src1 && ggml_is_contiguous(src1);
- const bool src1_stays_on_host = use_src1 && (
- dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
- const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
- // dd = data device
- char * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized
- float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float
- float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
- float * dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
- // asq = actual size quantized, asf = actual size float
- size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0};
- size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0};
- size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
- size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0};
- for (int id = 0; id < g_device_count; ++id) {
- if (!split && id != g_main_device) {
- continue;
- }
- const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device;
- const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
- int64_t row_low, row_high;
- if (split) {
- row_low = id == 0 ? 0 : nrows0*g_tensor_split[id];
- row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1];
- } else {
- row_low = 0;
- row_high = nrows0;
- }
- if (row_low == row_high) {
- continue;
- }
- int64_t row_diff = row_high - row_low;
- cudaSetDevice(id);
- if (src0_on_device && src0_is_contiguous) {
- if (src0_is_f32) {
- src0_ddf[id] = (float *) src0_extra->data_device[id];
- } else {
- src0_ddq[id] = (char *) src0_extra->data_device[id];
- }
- } else {
- if (src0_is_f32) {
- src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
- } else {
- src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]);
- }
- }
- if (src0_needs_f32 && !src0_is_f32) {
- src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
- }
- if (use_src1 && !src1_stays_on_host) {
- if (src1_on_device && src1_is_contiguous) {
- src1_ddf[id] = (float *) src1_extra->data_device[id];
- } else {
- src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]);
- }
- }
- if (dst_on_device) {
- dst_ddf[id] = (float *) dst_extra->data_device[id];
- } else {
- size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float);
- dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
- }
- const int64_t i03_max = flatten_rows ? 1 : ne03;
- const int64_t i02_max = flatten_rows ? 1 : ne02;
- const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
- for (int64_t i03 = 0; i03 < i03_max; i03++) {
- const int64_t i13 = i03 % ne13;
- for (int64_t i02 = 0; i02 < i02_max; i02++) {
- const int64_t i12 = i02 % ne12;
- const int64_t i0 = i03*ne02 + i02;
- // i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
- const int64_t i0_offset_low = row_low/rows_per_iter;
- const int64_t i0_offset_high = row_high/rows_per_iter;
- int64_t i01_low = 0;
- int64_t i01_high = rows_per_iter;
- if (split) {
- if (i0 < i0_offset_low || i0 > i0_offset_high) {
- continue;
- }
- if (i0 == i0_offset_low) {
- i01_low = row_low % rows_per_iter;
- }
- if (i0 == i0_offset_high) {
- i01_high = row_high % rows_per_iter;
- }
- }
- // There is possibly a bug in the Windows nvcc compiler regarding instruction reordering or optimizing out local variables.
- // Removing the first assert or changing the order of the arguments causes the second assert to fail.
- // Removing both asserts results in i01_high becoming 0 which in turn results in garbage output.
- // The root cause seems to be a problem with i0_offset_high becoming 0 when it should always be >0 (for single GPU).
- GGML_ASSERT(i01_low == 0 || g_device_count > 1);
- GGML_ASSERT(i01_high == rows_per_iter || g_device_count > 1);
- const int64_t i01_diff = i01_high - i01_low;
- if (i01_diff == 0) {
- continue;
- }
- const int64_t i11 = i13*ne12 + i12;
- cudaStream_t cudaStream_main = g_cudaStreams_main[id][i0 % GGML_CUDA_MAX_STREAMS];
- cudaStream_t cudaStream_memcpy_src1 = g_cudaStreams_memcpy_src1[id][i0 % GGML_CUDA_MAX_STREAMS];
- cudaEvent_t cudaEvent_memcpy_src1 = g_cudaEvents_memcpy_src1[id][i0 % GGML_CUDA_MAX_EVENTS];
- // for split tensors the data begins at i0 == i0_offset_low
- char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
- float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride;
- float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
- float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
- // for split tensors the data pointer needs to be rounded down
- // to the bin edge for i03, i02 bins beyond the first
- if (i0 - i0_offset_low > 0) {
- GGML_ASSERT(!flatten_rows);
- src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs;
- src0_ddf_i -= (row_low % ne01)*ne00;
- dst_ddf_i -= (row_low % ne0)*ne1;
- }
- // the main device memory buffer can be on VRAM scratch, with space for all partial results
- // in that case an offset on dst_ddf_i is needed
- if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
- dst_ddf_i += i01_low; // offset is 0 if no tensor split
- }
- // copy src0, src1 to device if necessary
- if (use_src1 && !src1_stays_on_host) {
- if (src1->backend == GGML_BACKEND_CPU) {
- GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1));
- int64_t nrows1 = flatten_rows ? nrows0 : ne11;
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_memcpy_src1));
- } else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
- if (id != g_main_device) {
- GGML_ASSERT(!flatten_rows);
- float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
- src1_ddf_i_source += i11*src1_stride;
- CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float),
- cudaMemcpyDeviceToDevice, cudaStream_memcpy_src1));
- }
- } else if (src1_on_device && !src1_is_contiguous) {
- GGML_ASSERT(!split);
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_main));
- } else {
- GGML_ASSERT(false);
- }
- }
- CUDA_CHECK(cudaEventRecord(cudaEvent_memcpy_src1, cudaStream_memcpy_src1));
- if (!src0_on_device || !src0_is_contiguous) {
- if (src0_is_f32) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
- } else {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
- }
- }
- // convert src0 to f32 if it is necessary for the ggml_cuda_op
- if (src0_needs_f32 && !src0_is_f32) {
- to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main);
- CUDA_CHECK(cudaGetLastError());
- }
- // wait with main stream until src1 memcpy is done
- CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, cudaEvent_memcpy_src1, 0));
- // do the computation
- op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
- // copy dst to host or other device if necessary
- if (!dst_on_device) {
- void * dst_off_device;
- cudaMemcpyKind kind;
- if (dst->backend == GGML_BACKEND_CPU) {
- dst_off_device = dst->data;
- kind = cudaMemcpyDeviceToHost;
- } else if (dst->backend == GGML_BACKEND_GPU) {
- dst_off_device = dst_extra->data_device[g_main_device];
- kind = cudaMemcpyDeviceToDevice;
- } else {
- GGML_ASSERT(false);
- }
- if (split) {
- // src0 = weight matrix is saved as a transposed matrix for better memory layout.
- // dst is NOT transposed.
- // The outputs of cuBLAS matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
- // Instead they need to be copied to the correct slice in ne0 = dst row index.
- // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- for (int64_t j = 0; j < ne1; ++j) {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + (j*ne0 + i01_low)*sizeof(float) + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i + j*i01_diff, i01_diff*sizeof(float), kind, cudaStream_main));
- }
- } else {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
- }
- }
- }
- }
- }
- // wait until each device is finished, then free their buffers
- for (int id = 0; id < g_device_count; ++id) {
- CUDA_CHECK(cudaSetDevice(id));
- CUDA_CHECK(cudaDeviceSynchronize());
- if (src0_asq[id] > 0) {
- ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
- }
- if (src0_asf[id] > 0) {
- ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]);
- }
- if (src1_asf[id] > 0) {
- ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
- }
- if (dst_asf[id] > 0) {
- ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
- }
- }
- }
- void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, true, true);
- }
- void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten
- }
- void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true);
- }
- void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true);
- }
- bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
- return true;
- }
- return false;
- }
- void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
- GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- CUDA_CHECK(cudaSetDevice(g_main_device));
- cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0];
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, cudaStream_main);
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
- GGML_ASSERT(!ggml_is_permuted(src0));
- GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- CUDA_CHECK(cudaSetDevice(g_main_device));
- cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0];
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- const int row_stride_x = nb01 / sizeof(half);
- const int channel_stride_x = nb02 / sizeof(half);
- ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main);
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
- src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
- if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
- ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
- } else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) {
- ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
- }else if (src0->type == GGML_TYPE_F32) {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
- } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
- if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src0->ne[1] % GGML_CUDA_DMMV_Y == 0) {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false, false);
- } else {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
- }
- } else {
- GGML_ASSERT(false);
- }
- }
- void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_scale, true, true);
- }
- void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne = ggml_nelements(src0);
- GGML_ASSERT(ne == ggml_nelements(src1));
- GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
- GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
- GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
- GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- GGML_ASSERT(src0->ne[3] == 1);
- const int64_t nb00 = src0->nb[0];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- GGML_ASSERT(src1->ne[3] == 1);
- const int64_t nb10 = src1->nb[0];
- const int64_t nb11 = src1->nb[1];
- const int64_t nb12 = src1->nb[2];
- CUDA_CHECK(cudaSetDevice(g_main_device));
- cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device][0];
- const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
- ne10, ne11, nb10, nb11, nb12, cudaStream_main);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
- ne10, ne11, nb10, nb11, nb12, cudaStream_main);
- } else {
- GGML_ASSERT(false);
- }
- CUDA_CHECK(cudaDeviceSynchronize());
- (void) dst;
- }
- void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true);
- }
- void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_soft_max, true, true);
- }
- void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, false); // FIXME flatten changes results
- }
- void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- (void) src0;
- (void) src1;
- (void) dst;
- }
- void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
- int nrows = ggml_nrows(tensor);
- const size_t nb1 = tensor->nb[1];
- ggml_backend backend = tensor->backend;
- struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
- memset(extra, 0, sizeof(*extra));
- for (int id = 0; id < g_device_count; ++id) {
- if (backend == GGML_BACKEND_GPU && id != g_main_device) {
- continue;
- }
- cudaSetDevice(id);
- int row_low, row_high;
- if (backend == GGML_BACKEND_GPU) {
- row_low = 0;
- row_high = nrows;
- } else if (backend == GGML_BACKEND_GPU_SPLIT) {
- row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
- row_high = id == g_device_count - 1 ? nrows : nrows*g_tensor_split[id + 1];
- } else {
- GGML_ASSERT(false);
- }
- if (row_low == row_high) {
- continue;
- }
- int64_t nrows_split = row_high - row_low;
- const size_t offset_split = row_low*nb1;
- const size_t size = ggml_nbytes_split(tensor, nrows_split);
- void * buf;
- CUDA_CHECK(cudaMalloc(&buf, size));
- void * buf_host = (char*)data + offset_split;
- cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
- extra->data_device[id] = buf;
- }
- tensor->extra = extra;
- }
- void ggml_cuda_free_data(struct ggml_tensor * tensor) {
- if (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) {
- return;
- }
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
- for (int id = 0; id < g_device_count; ++id) {
- if (extra->data_device[id] == nullptr) {
- continue;
- }
- CUDA_CHECK(cudaSetDevice(id));
- CUDA_CHECK(cudaFree(extra->data_device[id]));
- }
- delete extra;
- }
- void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) {
- if (scratch && g_scratch_size == 0) {
- return;
- }
- // recursively assign CUDA buffers until a compute tensor is found
- if (tensor->src0 != nullptr && tensor->src0->backend == GGML_BACKEND_CPU) {
- const ggml_op src0_op = tensor->src0->op;
- if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW) {
- ggml_cuda_assign_buffers_impl(tensor->src0, scratch);
- }
- }
- if (tensor->op == GGML_OP_CPY && tensor->src1->backend == GGML_BACKEND_CPU) {
- ggml_cuda_assign_buffers_impl(tensor->src1, scratch);
- }
- tensor->backend = GGML_BACKEND_GPU;
- struct ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu;
- const bool inplace = (tensor->src0 != nullptr && tensor->src0->data == tensor->data) ||
- tensor->op == GGML_OP_VIEW;
- const size_t size = ggml_nbytes(tensor);
- CUDA_CHECK(cudaSetDevice(g_main_device));
- if (inplace && tensor->src0->backend == GGML_BACKEND_GPU) {
- struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src0->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- size_t offset = 0;
- if (tensor->op == GGML_OP_VIEW) {
- memcpy(&offset, tensor->opt[0]->data, sizeof(size_t));
- }
- extra->data_device[g_main_device] = src0_ddc + offset;
- } else if (tensor->op == GGML_OP_CPY) {
- struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src1->extra;
- void * src1_ddv = src1_extra->data_device[g_main_device];
- extra->data_device[g_main_device] = src1_ddv;
- } else if (scratch) {
- GGML_ASSERT(size <= g_scratch_size);
- if (g_scratch_offset + size > g_scratch_size) {
- g_scratch_offset = 0;
- }
- char * data = (char *) g_scratch_buffer;
- if (data == nullptr) {
- CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
- g_scratch_buffer = data;
- }
- extra->data_device[g_main_device] = data + g_scratch_offset;
- g_scratch_offset += size;
- GGML_ASSERT(g_scratch_offset <= g_scratch_size);
- } else { // allocate new buffers outside of scratch
- void * data;
- CUDA_CHECK(cudaMalloc(&data, size));
- CUDA_CHECK(cudaMemset(data, 0, size));
- extra->data_device[g_main_device] = data;
- }
- tensor->extra = extra;
- }
- void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, true);
- }
- void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
- ggml_cuda_assign_buffers_impl(tensor, false);
- }
- void ggml_cuda_set_main_device(int main_device) {
- if (main_device >= g_device_count) {
- fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
- main_device, g_device_count, g_main_device);
- return;
- }
- g_main_device = main_device;
- if (g_device_count > 1) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
- fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
- }
- }
- void ggml_cuda_set_scratch_size(size_t scratch_size) {
- g_scratch_size = scratch_size;
- }
- void ggml_cuda_free_scratch() {
- if (g_scratch_buffer == nullptr) {
- return;
- }
- CUDA_CHECK(cudaFree(g_scratch_buffer));
- g_scratch_buffer = nullptr;
- }
- bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){
- ggml_cuda_func_t func;
- const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
- || tensor->src0->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU_SPLIT
- || (tensor->src1 != nullptr && tensor->src1->backend == GGML_BACKEND_GPU);
- switch (tensor->op) {
- case GGML_OP_ADD:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_add;
- break;
- case GGML_OP_MUL:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_mul;
- break;
- case GGML_OP_SILU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_silu;
- break;
- case GGML_OP_RMS_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_rms_norm;
- break;
- case GGML_OP_MUL_MAT:
- if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src0, tensor->src1, tensor)) {
- return false;
- }
- func = ggml_cuda_mul_mat;
- break;
- case GGML_OP_SCALE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_scale;
- break;
- case GGML_OP_CPY:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_cpy;
- break;
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_soft_max;
- break;
- case GGML_OP_ROPE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cuda_rope;
- break;
- default:
- return false;
- }
- if (params->ith != 0) {
- return true;
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return true;
- }
- func(tensor->src0, tensor->src1, tensor);
- return true;
- }
|