| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492 |
- #include "ggml-cuda.h"
- #include "ggml.h"
- #include "ggml-backend-impl.h"
- #include <algorithm>
- #include <assert.h>
- #include <atomic>
- #include <cinttypes>
- #include <cstddef>
- #include <cstdint>
- #include <float.h>
- #include <limits>
- #include <stdint.h>
- #include <stdio.h>
- #include <string>
- #include <vector>
- #include <map>
- #include <array>
- // stringize macro for converting __CUDA_ARCH_LIST__ (list of integers) to string
- #define STRINGIZE_IMPL(...) #__VA_ARGS__
- #define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
- #if defined(GGML_USE_HIPBLAS)
- #include <hip/hip_runtime.h>
- #include <hipblas/hipblas.h>
- #include <hip/hip_fp16.h>
- #ifdef __HIP_PLATFORM_AMD__
- // for rocblas_initialize()
- #include "rocblas/rocblas.h"
- #endif // __HIP_PLATFORM_AMD__
- #define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
- #define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
- #define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
- #define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
- #define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
- #define CUBLAS_OP_N HIPBLAS_OP_N
- #define CUBLAS_OP_T HIPBLAS_OP_T
- #define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
- #define CUBLAS_TF32_TENSOR_OP_MATH 0
- #define CUDA_R_16F HIPBLAS_R_16F
- #define CUDA_R_32F HIPBLAS_R_32F
- #define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
- #define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
- #define cublasCreate hipblasCreate
- #define cublasGemmEx hipblasGemmEx
- #define cublasGemmBatchedEx hipblasGemmBatchedEx
- #define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
- #define cublasHandle_t hipblasHandle_t
- #define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
- #define cublasSetStream hipblasSetStream
- #define cublasSgemm hipblasSgemm
- #define cublasStatus_t hipblasStatus_t
- #define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
- #define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
- #define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
- #define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
- #define cudaDeviceProp hipDeviceProp_t
- #define cudaDeviceSynchronize hipDeviceSynchronize
- #define cudaError_t hipError_t
- #define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
- #define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
- #define cudaEventCreateWithFlags hipEventCreateWithFlags
- #define cudaEventDisableTiming hipEventDisableTiming
- #define cudaEventRecord hipEventRecord
- #define cudaEvent_t hipEvent_t
- #define cudaEventDestroy hipEventDestroy
- #define cudaFree hipFree
- #define cudaFreeHost hipHostFree
- #define cudaGetDevice hipGetDevice
- #define cudaGetDeviceCount hipGetDeviceCount
- #define cudaGetDeviceProperties hipGetDeviceProperties
- #define cudaGetErrorString hipGetErrorString
- #define cudaGetLastError hipGetLastError
- #ifdef GGML_HIP_UMA
- #define cudaMalloc hipMallocManaged
- #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
- #else
- #define cudaMalloc hipMalloc
- #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
- #endif
- #define cudaMemcpy hipMemcpy
- #define cudaMemcpyAsync hipMemcpyAsync
- #define cudaMemcpyPeerAsync hipMemcpyPeerAsync
- #define cudaMemcpy2DAsync hipMemcpy2DAsync
- #define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
- #define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
- #define cudaMemcpyHostToDevice hipMemcpyHostToDevice
- #define cudaMemcpyKind hipMemcpyKind
- #define cudaMemset hipMemset
- #define cudaMemsetAsync hipMemsetAsync
- #define cudaMemGetInfo hipMemGetInfo
- #define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
- #define cudaSetDevice hipSetDevice
- #define cudaStreamCreateWithFlags hipStreamCreateWithFlags
- #define cudaStreamFireAndForget hipStreamFireAndForget
- #define cudaStreamNonBlocking hipStreamNonBlocking
- #define cudaStreamSynchronize hipStreamSynchronize
- #define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
- #define cudaStream_t hipStream_t
- #define cudaSuccess hipSuccess
- #define __trap abort
- #define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
- #define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
- #define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
- #define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
- #define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
- #define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
- #define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
- #define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
- #define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
- #else
- #include <cuda_runtime.h>
- #include <cuda.h>
- #include <cublas_v2.h>
- #include <cuda_fp16.h>
- #if CUDART_VERSION < 11020
- #define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
- #define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
- #define CUBLAS_COMPUTE_16F CUDA_R_16F
- #define CUBLAS_COMPUTE_32F CUDA_R_32F
- #define cublasComputeType_t cudaDataType_t
- #endif // CUDART_VERSION < 11020
- #endif // defined(GGML_USE_HIPBLAS)
- #define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
- #define CC_PASCAL 600
- #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
- #define CC_VOLTA 700
- #define CC_OFFSET_AMD 1000000
- #define CC_RDNA1 (CC_OFFSET_AMD + 1010)
- #define CC_RDNA2 (CC_OFFSET_AMD + 1030)
- #define CC_RDNA3 (CC_OFFSET_AMD + 1100)
- #define GGML_CUDA_MAX_NODES 8192
- // define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
- // on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
- // for large computational tasks. the drawback is that this requires some extra amount of VRAM:
- // - 7B quantum model: +100-200 MB
- // - 13B quantum model: +200-400 MB
- //
- //#define GGML_CUDA_FORCE_MMQ
- // TODO: improve this to be correct for more hardware
- // for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
- #if !defined(GGML_CUDA_FORCE_MMQ)
- #define CUDA_USE_TENSOR_CORES
- #endif
- #define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
- #define MMQ_MAX_BATCH_SIZE 32 // max batch size to use MMQ kernels when tensor cores are available
- #if defined(GGML_USE_HIPBLAS)
- #define __CUDA_ARCH__ 1300
- #if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
- defined(__gfx1150__) || defined(__gfx1151__)
- #define RDNA3
- #endif
- #if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
- defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
- #define RDNA2
- #endif
- #ifndef __has_builtin
- #define __has_builtin(x) 0
- #endif
- typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
- typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
- static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
- const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
- const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
- #if __has_builtin(__builtin_elementwise_sub_sat)
- const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
- return reinterpret_cast<const int &>(c);
- #else
- int8x4_t c;
- int16_t tmp;
- #pragma unroll
- for (int i = 0; i < 4; i++) {
- tmp = va[i] - vb[i];
- if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
- if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
- c[i] = tmp;
- }
- return reinterpret_cast<int &>(c);
- #endif // __has_builtin(__builtin_elementwise_sub_sat)
- }
- static __device__ __forceinline__ int __vsub4(const int a, const int b) {
- return __vsubss4(a, b);
- }
- static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
- const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
- const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
- unsigned int c;
- uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
- #pragma unroll
- for (int i = 0; i < 4; ++i) {
- vc[i] = va[i] == vb[i] ? 0xff : 0x00;
- }
- return c;
- }
- static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
- #if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
- c = __builtin_amdgcn_sdot4(a, b, c, false);
- #elif defined(RDNA3)
- c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
- #elif defined(__gfx1010__) || defined(__gfx900__)
- int tmp1;
- int tmp2;
- asm("\n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- "
- : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
- : "v"(a), "v"(b)
- );
- #else
- const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
- const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
- c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
- #endif
- return c;
- }
- #endif // defined(GGML_USE_HIPBLAS)
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
- [[noreturn]]
- static void ggml_cuda_error(const char * stmt, const char * func, const char * file, const int line, const char * msg) {
- int id = -1; // in case cudaGetDevice fails
- cudaGetDevice(&id);
- fprintf(stderr, "CUDA error: %s\n", msg);
- fprintf(stderr, " current device: %d, in function %s at %s:%d\n", id, func, file, line);
- fprintf(stderr, " %s\n", stmt);
- // abort with GGML_ASSERT to get a stack trace
- GGML_ASSERT(!"CUDA error");
- }
- #define CUDA_CHECK_GEN(err, success, error_fn) \
- do { \
- auto err_ = (err); \
- if (err_ != (success)) { \
- ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \
- } \
- } while (0)
- #define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
- #if CUDART_VERSION >= 12000
- static const char * cublas_get_error_str(const cublasStatus_t err) {
- return cublasGetStatusString(err);
- }
- #else
- static const char * cublas_get_error_str(const cublasStatus_t err) {
- switch (err) {
- case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
- case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
- case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
- case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
- case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
- case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
- case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
- case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
- case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
- default: return "unknown error";
- }
- }
- #endif // CUDART_VERSION >= 12000
- #define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
- #if !defined(GGML_USE_HIPBLAS)
- static const char * cu_get_error_str(CUresult err) {
- const char * err_str;
- cuGetErrorString(err, &err_str);
- return err_str;
- }
- #define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
- #endif
- #if CUDART_VERSION >= 11100
- #define GGML_CUDA_ASSUME(x) __builtin_assume(x)
- #else
- #define GGML_CUDA_ASSUME(x)
- #endif // CUDART_VERSION >= 11100
- #ifdef GGML_CUDA_F16
- typedef half dfloat; // dequantize float
- typedef half2 dfloat2;
- #else
- typedef float dfloat; // dequantize float
- typedef float2 dfloat2;
- #endif //GGML_CUDA_F16
- static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- template<typename T>
- using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream);
- typedef to_t_cuda_t<float> to_fp32_cuda_t;
- typedef to_t_cuda_t<half> to_fp16_cuda_t;
- typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
- typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
- typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
- typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- typedef void (*ggml_cuda_op_mul_mat_t)(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream);
- typedef void (*ggml_cuda_op_flatten_t)(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream);
- // QK = number of values after dequantization
- // QR = QK / number of values before dequantization
- // QI = number of 32 bit integers before dequantization
- #define QK4_0 32
- #define QR4_0 2
- #define QI4_0 (QK4_0 / (4 * QR4_0))
- typedef struct {
- half d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
- #define QK4_1 32
- #define QR4_1 2
- #define QI4_1 (QK4_1 / (4 * QR4_1))
- typedef struct {
- half2 dm; // dm.x = delta, dm.y = min
- uint8_t qs[QK4_1 / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
- #define QK5_0 32
- #define QR5_0 2
- #define QI5_0 (QK5_0 / (4 * QR5_0))
- typedef struct {
- half d; // delta
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_0 / 2]; // nibbles / quants
- } block_q5_0;
- static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
- #define QK5_1 32
- #define QR5_1 2
- #define QI5_1 (QK5_1 / (4 * QR5_1))
- typedef struct {
- half2 dm; // dm.x = delta, dm.y = min
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_1 / 2]; // nibbles / quants
- } block_q5_1;
- static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
- #define QK8_0 32
- #define QR8_0 1
- #define QI8_0 (QK8_0 / (4 * QR8_0))
- typedef struct {
- half d; // delta
- int8_t qs[QK8_0]; // quants
- } block_q8_0;
- static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
- #define QK8_1 32
- #define QR8_1 1
- #define QI8_1 (QK8_1 / (4 * QR8_1))
- typedef struct {
- half2 ds; // ds.x = delta, ds.y = sum
- int8_t qs[QK8_0]; // quants
- } block_q8_1;
- static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
- typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
- typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
- typedef void (*load_tiles_cuda_t)(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
- typedef float (*vec_dot_q_mul_mat_cuda_t)(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
- //================================= k-quants
- #ifdef GGML_QKK_64
- #define QK_K 64
- #define K_SCALE_SIZE 4
- #else
- #define QK_K 256
- #define K_SCALE_SIZE 12
- #endif
- #define QR2_K 4
- #define QI2_K (QK_K / (4*QR2_K))
- typedef struct {
- uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
- uint8_t qs[QK_K/4]; // quants
- half2 dm; // super-block scale for quantized scales/mins
- } block_q2_K;
- static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
- #define QR3_K 4
- #define QI3_K (QK_K / (4*QR3_K))
- typedef struct {
- uint8_t hmask[QK_K/8]; // quants - high bit
- uint8_t qs[QK_K/4]; // quants - low 2 bits
- #ifdef GGML_QKK_64
- uint8_t scales[2]; // scales, quantized with 8 bits
- #else
- uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
- #endif
- half d; // super-block scale
- } block_q3_K;
- //static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
- #define QR4_K 2
- #define QI4_K (QK_K / (4*QR4_K))
- #ifdef GGML_QKK_64
- typedef struct {
- half dm[2]; // super-block scales/mins
- uint8_t scales[2]; // 4-bit block scales/mins
- uint8_t qs[QK_K/2]; // 4--bit quants
- } block_q4_K;
- static_assert(sizeof(block_q4_K) == sizeof(half2) + QK_K/2 + 2, "wrong q4_K block size/padding");
- #else
- typedef struct {
- half2 dm; // super-block scale for quantized scales/mins
- uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
- uint8_t qs[QK_K/2]; // 4--bit quants
- } block_q4_K;
- static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
- #endif
- #define QR5_K 2
- #define QI5_K (QK_K / (4*QR5_K))
- #ifdef GGML_QKK_64
- typedef struct {
- half d; // super-block scale
- int8_t scales[QK_K/16]; // block scales
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
- } block_q5_K;
- static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
- #else
- typedef struct {
- half2 dm; // super-block scale for quantized scales/mins
- uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
- } block_q5_K;
- static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
- #endif
- #define QR6_K 2
- #define QI6_K (QK_K / (4*QR6_K))
- typedef struct {
- uint8_t ql[QK_K/2]; // quants, lower 4 bits
- uint8_t qh[QK_K/4]; // quants, upper 2 bits
- int8_t scales[QK_K/16]; // scales
- half d; // delta
- } block_q6_K;
- static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
- #define QR2_XXS 8
- #define QI2_XXS (QK_K / (4*QR2_XXS))
- typedef struct {
- half d;
- uint16_t qs[QK_K/8];
- } block_iq2_xxs;
- static_assert(sizeof(block_iq2_xxs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t), "wrong iq2_xxs block size/padding");
- #define QR2_XS 8
- #define QI2_XS (QK_K / (4*QR2_XS))
- typedef struct {
- half d;
- uint16_t qs[QK_K/8];
- uint8_t scales[QK_K/32];
- } block_iq2_xs;
- static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding");
- // 2.5625 bpw quants
- #define QR2_S 8
- #define QI2_S (QK_K / (4*QR2_S))
- typedef struct {
- half d;
- uint8_t qs[QK_K/4];
- uint8_t qh[QK_K/32];
- uint8_t scales[QK_K/32];
- } block_iq2_s;
- static_assert(sizeof(block_iq2_s) == sizeof(ggml_fp16_t) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding");
- #define QR3_XXS 8
- #define QI3_XXS (QK_K / (4*QR3_XXS))
- typedef struct {
- half d;
- uint8_t qs[3*(QK_K/8)];
- } block_iq3_xxs;
- static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
- #define QR3_XS 8
- #define QI3_XS (QK_K / (4*QR3_XS))
- #if QK_K == 64
- #define IQ3S_N_SCALE 2
- #else
- #define IQ3S_N_SCALE QK_K/64
- #endif
- typedef struct {
- half d;
- uint8_t qs[QK_K/4];
- uint8_t qh[QK_K/32];
- uint8_t signs[QK_K/8];
- uint8_t scales[IQ3S_N_SCALE];
- } block_iq3_s;
- static_assert(sizeof(block_iq3_s) == sizeof(ggml_fp16_t) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding");
- #define QR1_S 8
- #define QI1_S (QK_K / (4*QR1_S))
- typedef struct {
- half d;
- uint8_t qs[QK_K/8];
- uint8_t scales[QK_K/16];
- } block_iq1_s;
- static_assert(sizeof(block_iq1_s) == sizeof(ggml_fp16_t) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
- #define QK4_NL 32
- #define QR4_NL 2
- #define QI4_NL (QK4_NL / (4*QR4_NL))
- typedef struct {
- half d;
- uint8_t qs[QK4_NL/2];
- } block_iq4_nl;
- static_assert(sizeof(block_iq4_nl) == sizeof(ggml_fp16_t) + QK4_NL/2, "wrong iq4_nl block size/padding");
- #if QK_K == 64
- #define block_iq4_xs block_iq4_nl
- #define QR4_XS QR4_NL
- #define QI4_XS QI4_NL
- #else
- // QR4_XS = 8 is very slightly faster than QR4_XS = 4
- #define QR4_XS 8
- #define QI4_XS (QK_K / (4*QR4_XS))
- typedef struct {
- half d;
- uint16_t scales_h;
- uint8_t scales_l[QK_K/64];
- uint8_t qs[QK_K/2];
- } block_iq4_xs;
- static_assert(sizeof(block_iq4_xs) == sizeof(ggml_fp16_t) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
- #endif
- #define WARP_SIZE 32
- #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
- #define CUDA_GELU_BLOCK_SIZE 256
- #define CUDA_SILU_BLOCK_SIZE 256
- #define CUDA_TANH_BLOCK_SIZE 256
- #define CUDA_RELU_BLOCK_SIZE 256
- #define CUDA_HARDSIGMOID_BLOCK_SIZE 256
- #define CUDA_HARDSWISH_BLOCK_SIZE 256
- #define CUDA_SQR_BLOCK_SIZE 256
- #define CUDA_CPY_BLOCK_SIZE 32
- #define CUDA_SCALE_BLOCK_SIZE 256
- #define CUDA_CLAMP_BLOCK_SIZE 256
- #define CUDA_ROPE_BLOCK_SIZE 256
- #define CUDA_SOFT_MAX_BLOCK_SIZE 1024
- #define CUDA_ALIBI_BLOCK_SIZE 32
- #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
- #define CUDA_QUANTIZE_BLOCK_SIZE 256
- #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
- #define CUDA_GET_ROWS_BLOCK_SIZE 256
- #define CUDA_UPSCALE_BLOCK_SIZE 256
- #define CUDA_CONCAT_BLOCK_SIZE 256
- #define CUDA_PAD_BLOCK_SIZE 256
- #define CUDA_ARANGE_BLOCK_SIZE 256
- #define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
- #define CUDA_ACC_BLOCK_SIZE 256
- #define CUDA_IM2COL_BLOCK_SIZE 256
- #define CUDA_POOL2D_BLOCK_SIZE 256
- #define CUDA_Q8_0_NE_ALIGN 2048
- // dmmv = dequantize_mul_mat_vec
- #ifndef GGML_CUDA_DMMV_X
- #define GGML_CUDA_DMMV_X 32
- #endif
- #ifndef GGML_CUDA_MMV_Y
- #define GGML_CUDA_MMV_Y 1
- #endif
- #ifndef K_QUANTS_PER_ITERATION
- #define K_QUANTS_PER_ITERATION 2
- #else
- static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
- #endif
- #ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
- #define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
- #endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
- #define MUL_MAT_SRC1_COL_STRIDE 128
- #define MAX_STREAMS 8
- static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { { nullptr } };
- struct ggml_tensor_extra_gpu {
- void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
- cudaEvent_t events[GGML_CUDA_MAX_DEVICES][MAX_STREAMS]; // events for synchronizing multiple GPUs
- };
- // this is faster on Windows
- // probably because the Windows CUDA libraries forget to make this check before invoking the drivers
- static void ggml_cuda_set_device(const int device) {
- int current_device;
- CUDA_CHECK(cudaGetDevice(¤t_device));
- if (device == current_device) {
- return;
- }
- CUDA_CHECK(cudaSetDevice(device));
- }
- static int g_device_count = -1;
- static int g_main_device = 0;
- static std::array<float, GGML_CUDA_MAX_DEVICES> g_default_tensor_split = {};
- struct cuda_device_capabilities {
- int cc; // compute capability
- size_t smpb; // max. shared memory per block
- bool vmm; // virtual memory support
- size_t vmm_granularity; // granularity of virtual memory
- };
- static cuda_device_capabilities g_device_caps[GGML_CUDA_MAX_DEVICES] = { {0, 0, false, 0} };
- static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
- [[noreturn]]
- static __device__ void no_device_code(
- const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
- file_name, line, function_name, arch);
- (void) arch_list;
- #else
- printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
- file_name, line, function_name, arch, arch_list);
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- __trap();
- (void) no_device_code; // suppress unused function warning
- }
- #ifdef __CUDA_ARCH__
- #define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
- #else
- #define NO_DEVICE_CODE GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
- #endif // __CUDA_ARCH__
- static __device__ __forceinline__ float warp_reduce_sum(float x) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x += __shfl_xor_sync(0xffffffff, x, mask, 32);
- }
- return x;
- }
- static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
- a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
- }
- return a;
- }
- #ifdef GGML_CUDA_F16
- static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
- }
- return a;
- #else
- (void) a;
- NO_DEVICE_CODE;
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
- }
- #endif // GGML_CUDA_F16
- static __device__ __forceinline__ float warp_reduce_max(float x) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
- }
- return x;
- }
- //static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
- //#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
- //#pragma unroll
- // for (int mask = 16; mask > 0; mask >>= 1) {
- // x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
- // }
- // return x;
- //#else
- // (void) x;
- // NO_DEVICE_CODE;
- //#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
- //}
- static __device__ __forceinline__ float op_repeat(const float a, const float b) {
- return b;
- GGML_UNUSED(a);
- }
- static __device__ __forceinline__ float op_add(const float a, const float b) {
- return a + b;
- }
- static __device__ __forceinline__ float op_mul(const float a, const float b) {
- return a * b;
- }
- static __device__ __forceinline__ float op_div(const float a, const float b) {
- return a / b;
- }
- template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
- static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
- int ne0, int ne1, int ne2, int ne3,
- int ne10, int ne11, int ne12, int ne13,
- /*int s0, */ int s1, int s2, int s3,
- /*int s10,*/ int s11, int s12, int s13) {
- const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
- const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
- const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
- const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
- if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
- return;
- }
- const int i11 = i1 % ne11;
- const int i12 = i2 % ne12;
- const int i13 = i3 % ne13;
- const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
- const size_t i_dst = i_src0;
- const src0_t * src0_row = src0 + i_src0;
- const src1_t * src1_row = src1 + i_src1;
- dst_t * dst_row = dst + i_dst;
- for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
- const int i10 = i0 % ne10;
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
- }
- }
- template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
- static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
- int ne0, int ne1, int ne2, int ne3,
- int ne10, int ne11, int ne12, int ne13,
- /*int s0, */ int s1, int s2, int s3,
- /*int s10,*/ int s11, int s12, int s13) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- const int i3 = i/(ne2*ne1*ne0);
- const int i2 = (i/(ne1*ne0)) % ne2;
- const int i1 = (i/ne0) % ne1;
- const int i0 = i % ne0;
- if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
- return;
- }
- const int i11 = i1 % ne11;
- const int i12 = i2 % ne12;
- const int i13 = i3 % ne13;
- const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
- const size_t i_dst = i_src0;
- const src0_t * src0_row = src0 + i_src0;
- const src1_t * src1_row = src1 + i_src1;
- dst_t * dst_row = dst + i_dst;
- const int i10 = i0 % ne10;
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
- }
- static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
- const int ne10, const int ne11, const int ne12,
- const int nb1, const int nb2, int offset) {
- const int i = blockDim.x * blockIdx.x + threadIdx.x;
- if (i >= ne) {
- return;
- }
- int src1_idx = i - offset;
- int oz = src1_idx / nb2;
- int oy = (src1_idx - (oz * nb2)) / nb1;
- int ox = src1_idx % nb1;
- if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
- dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
- } else {
- dst[i] = x[i];
- }
- }
- static __global__ void gelu_f32(const float * x, float * dst, const int k) {
- const float GELU_COEF_A = 0.044715f;
- const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- float xi = x[i];
- dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
- }
- static __global__ void silu_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] / (1.0f + expf(-x[i]));
- }
- static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
- const float GELU_QUICK_COEF = -1.702f;
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
- }
- static __global__ void tanh_f32(const float * x, float * dst, int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = tanhf(x[i]);
- }
- static __global__ void relu_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = fmaxf(x[i], 0);
- }
- static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
- }
- static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
- }
- static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
- }
- static __global__ void sqr_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * x[i];
- }
- template <int block_size>
- static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- float2 mean_var = make_float2(0.f, 0.f);
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- mean_var.x += xi;
- mean_var.y += xi * xi;
- }
- // sum up partial sums
- mean_var = warp_reduce_sum(mean_var);
- if (block_size > WARP_SIZE) {
- __shared__ float2 s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = mean_var;
- }
- __syncthreads();
- mean_var = s_sum[lane_id];
- mean_var = warp_reduce_sum(mean_var);
- }
- const float mean = mean_var.x / ncols;
- const float var = mean_var.y / ncols - mean * mean;
- const float inv_std = rsqrtf(var + eps);
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
- }
- }
- static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- // operation
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (blockIdx.z < ne02) { // src0
- int offset_src =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- dst[offset_dst] = x[offset_src];
- } else {
- int offset_src =
- nidx +
- blockIdx.y * ne0 +
- (blockIdx.z - ne02) * ne0 * gridDim.y;
- dst[offset_dst] = y[offset_src];
- }
- }
- static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
- // blockIdx.z: idx of ne02*ne03
- // blockIdx.y: idx of ne01*scale_factor, aka ne1
- // blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
- // ne00xne01: ne00 * ne01
- int ne0 = ne00 * scale_factor;
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- // operation
- int i00 = nidx / scale_factor;
- int i01 = blockIdx.y / scale_factor;
- int offset_src =
- i00 +
- i01 * ne00 +
- blockIdx.z * ne00xne01;
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- dst[offset_dst] = x[offset_src];
- }
- static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
- // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
- // blockIdx.y: idx of ne1
- // blockIDx.x: idx of ne0 / BLOCK_SIZE
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- // operation
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
- int offset_src =
- nidx +
- blockIdx.y * ne00 +
- blockIdx.z * ne00 * ne01;
- dst[offset_dst] = x[offset_src];
- } else {
- dst[offset_dst] = 0.0f;
- }
- }
- static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
- // blockIDx.x: idx of ne0 / BLOCK_SIZE
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- dst[nidx] = start + step * nidx;
- }
- static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
- // blockIDx.y: idx of timesteps->ne[0]
- // blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
- int i = blockIdx.y;
- int j = threadIdx.x + blockIdx.x * blockDim.x;
- float * embed_data = (float *)((char *)dst + i*nb1);
- if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
- embed_data[dim] = 0.f;
- }
- int half = dim / 2;
- if (j >= half) {
- return;
- }
- float timestep = timesteps[i];
- float freq = (float)expf(-logf(max_period) * j / half);
- float arg = timestep * freq;
- embed_data[j] = cosf(arg);
- embed_data[j + half] = sinf(arg);
- }
- template <int block_size>
- static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
- // blockIdx.x: num_groups idx
- // threadIdx.x: block_size idx
- int start = blockIdx.x * group_size;
- int end = start + group_size;
- start += threadIdx.x;
- if (end >= ne_elements) {
- end = ne_elements;
- }
- float tmp = 0.0f; // partial sum for thread in warp
- for (int j = start; j < end; j += block_size) {
- tmp += x[j];
- }
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __shared__ float s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- __syncthreads();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
- float mean = tmp / group_size;
- tmp = 0.0f;
- for (int j = start; j < end; j += block_size) {
- float xi = x[j] - mean;
- dst[j] = xi;
- tmp += xi * xi;
- }
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __shared__ float s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- __syncthreads();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
- float variance = tmp / group_size;
- float scale = rsqrtf(variance + eps);
- for (int j = start; j < end; j += block_size) {
- dst[j] *= scale;
- }
- }
- template <int block_size>
- static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
- float tmp = 0.0f; // partial sum for thread in warp
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- tmp += xi * xi;
- }
- // sum up partial sums
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __shared__ float s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- __syncthreads();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
- const float mean = tmp / ncols;
- const float scale = rsqrtf(mean + eps);
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = scale * x[row*ncols + col];
- }
- }
- static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const dfloat d = x[ib].d;
- const int vui = x[ib].qs[iqs];
- v.x = vui & 0xF;
- v.y = vui >> 4;
- #ifdef GGML_CUDA_F16
- v = __hsub2(v, {8.0f, 8.0f});
- v = __hmul2(v, {d, d});
- #else
- v.x = (v.x - 8.0f) * d;
- v.y = (v.y - 8.0f) * d;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q4_1 * x = (const block_q4_1 *) vx;
- const dfloat d = __low2half(x[ib].dm);
- const dfloat m = __high2half(x[ib].dm);
- const int vui = x[ib].qs[iqs];
- v.x = vui & 0xF;
- v.y = vui >> 4;
- #ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
- v = __hadd2(v, {m, m});
- #else
- v.x = (v.x * d) + m;
- v.y = (v.y * d) + m;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q5_0 * x = (const block_q5_0 *) vx;
- const dfloat d = x[ib].d;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_CUDA_F16
- v = __hsub2(v, {16.0f, 16.0f});
- v = __hmul2(v, {d, d});
- #else
- v.x = (v.x - 16.0f) * d;
- v.y = (v.y - 16.0f) * d;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q5_1 * x = (const block_q5_1 *) vx;
- const dfloat d = __low2half(x[ib].dm);
- const dfloat m = __high2half(x[ib].dm);
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
- v = __hadd2(v, {m, m});
- #else
- v.x = (v.x * d) + m;
- v.y = (v.y * d) + m;
- #endif // GGML_CUDA_F16
- }
- static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q8_0 * x = (const block_q8_0 *) vx;
- const dfloat d = x[ib].d;
- v.x = x[ib].qs[iqs + 0];
- v.y = x[ib].qs[iqs + 1];
- #ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
- #else
- v.x *= d;
- v.y *= d;
- #endif // GGML_CUDA_F16
- }
- template<typename dst_t>
- static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
- const int i = blockIdx.x;
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int ib = 8*i + ir;
- if (ib >= nb32) {
- return;
- }
- dst_t * y = yy + 256*i + 32*ir + 4*il;
- const block_q4_0 * x = (const block_q4_0 *)vx + ib;
- const float d = __half2float(x->d);
- const float dm = -8*d;
- const uint8_t * q = x->qs + 4*il;
- for (int l = 0; l < 4; ++l) {
- y[l+ 0] = d * (q[l] & 0xF) + dm;
- y[l+16] = d * (q[l] >> 4) + dm;
- }
- }
- template<typename dst_t>
- static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
- const int i = blockIdx.x;
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int ib = 8*i + ir;
- if (ib >= nb32) {
- return;
- }
- dst_t * y = yy + 256*i + 32*ir + 4*il;
- const block_q4_1 * x = (const block_q4_1 *)vx + ib;
- const float2 d = __half22float2(x->dm);
- const uint8_t * q = x->qs + 4*il;
- for (int l = 0; l < 4; ++l) {
- y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
- y[l+16] = d.x * (q[l] >> 4) + d.y;
- }
- }
- //================================== k-quants
- template<typename dst_t>
- static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_q2_K * x = (const block_q2_K *) vx;
- const int tid = threadIdx.x;
- #if QK_K == 256
- const int n = tid/32;
- const int l = tid - 32*n;
- const int is = 8*n + l/16;
- const uint8_t q = x[i].qs[32*n + l];
- dst_t * y = yy + i*QK_K + 128*n;
- float dall = __low2half(x[i].dm);
- float dmin = __high2half(x[i].dm);
- y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
- y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
- y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
- #else
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const uint8_t q = x[i].qs[il] >> (2*is);
- dst_t * y = yy + i*QK_K + 16*is + il;
- float dall = __low2half(x[i].dm);
- float dmin = __high2half(x[i].dm);
- y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
- #endif
- }
- template<typename dst_t>
- static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_q3_K * x = (const block_q3_K *) vx;
- #if QK_K == 256
- const int r = threadIdx.x/4;
- const int tid = r/2;
- const int is0 = r%2;
- const int l0 = 16*is0 + 4*(threadIdx.x%4);
- const int n = tid / 4;
- const int j = tid - 4*n;
- uint8_t m = 1 << (4*n + j);
- int is = 8*n + 2*j + is0;
- int shift = 2*j;
- int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
- is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
- is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
- (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
- float d_all = x[i].d;
- float dl = d_all * (us - 32);
- dst_t * y = yy + i*QK_K + 128*n + 32*j;
- const uint8_t * q = x[i].qs + 32*n;
- const uint8_t * hm = x[i].hmask;
- for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
- #else
- const int tid = threadIdx.x;
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const int im = il/8; // 0...1
- const int in = il%8; // 0...7
- dst_t * y = yy + i*QK_K + 16*is + il;
- const uint8_t q = x[i].qs[il] >> (2*is);
- const uint8_t h = x[i].hmask[in] >> (2*is + im);
- const float d = (float)x[i].d;
- if (is == 0) {
- y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- } else {
- y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- }
- #endif
- }
- #if QK_K == 256
- static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
- if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
- } else {
- d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
- }
- }
- #endif
- template<typename dst_t>
- static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const block_q4_K * x = (const block_q4_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int is = 2*il;
- const int n = 4;
- dst_t * y = yy + i*QK_K + 64*il + n*ir;
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
- const uint8_t * q = x[i].qs + 32*il + n*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
- }
- #else
- const int tid = threadIdx.x;
- const uint8_t * q = x[i].qs;
- dst_t * y = yy + i*QK_K;
- const float d = (float)x[i].dm[0];
- const float m = (float)x[i].dm[1];
- y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
- y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
- #endif
- }
- template<typename dst_t>
- static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const block_q5_K * x = (const block_q5_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int il = tid/16; // il is in 0...3
- const int ir = tid%16; // ir is in 0...15
- const int is = 2*il; // is is in 0...6
- dst_t * y = yy + i*QK_K + 64*il + 2*ir;
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
- const uint8_t * ql = x[i].qs + 32*il + 2*ir;
- const uint8_t * qh = x[i].qh + 2*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- uint8_t hm = 1 << (2*il);
- y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
- y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
- #else
- const int tid = threadIdx.x;
- const uint8_t q = x[i].qs[tid];
- const int im = tid/8; // 0...3
- const int in = tid%8; // 0...7
- const int is = tid/16; // 0 or 1
- const uint8_t h = x[i].qh[in] >> im;
- const float d = x[i].d;
- dst_t * y = yy + i*QK_K + tid;
- y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
- y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
- #endif
- }
- template<typename dst_t>
- static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const block_q6_K * x = (const block_q6_K *) vx;
- const int i = blockIdx.x;
- #if QK_K == 256
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int ip = tid/32; // ip is 0 or 1
- const int il = tid - 32*ip; // 0...32
- const int is = 8*ip + il/16;
- dst_t * y = yy + i*QK_K + 128*ip + il;
- const float d = x[i].d;
- const uint8_t * ql = x[i].ql + 64*ip + il;
- const uint8_t qh = x[i].qh[32*ip + il];
- const int8_t * sc = x[i].scales + is;
- y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
- #else
- // assume 32 threads
- const int tid = threadIdx.x;
- const int ip = tid/16; // 0 or 1
- const int il = tid - 16*ip; // 0...15
- dst_t * y = yy + i*QK_K + 16*ip + il;
- const float d = x[i].d;
- const uint8_t ql = x[i].ql[16*ip + il];
- const uint8_t qh = x[i].qh[il] >> (2*ip);
- const int8_t * sc = x[i].scales;
- y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- #endif
- }
- static const __device__ uint64_t iq2xxs_grid[256] = {
- 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
- 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808,
- 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819,
- 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819,
- 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b,
- 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808,
- 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08,
- 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b,
- 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819,
- 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08,
- 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808,
- 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08,
- 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808,
- 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808,
- 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919,
- 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819,
- 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08,
- 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908,
- 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819,
- 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808,
- 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808,
- 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908,
- 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808,
- 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08,
- 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819,
- 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819,
- 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819,
- 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908,
- 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19,
- 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819,
- 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b,
- 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808,
- 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908,
- 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08,
- 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08,
- 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908,
- 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819,
- 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808,
- 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808,
- 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19,
- 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819,
- 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919,
- 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b,
- 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08,
- 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808,
- 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908,
- 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b,
- 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819,
- 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08,
- 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08,
- 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808,
- 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b,
- 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b,
- 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908,
- 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819,
- 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808,
- 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908,
- 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b,
- 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808,
- 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b,
- 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b,
- 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808,
- 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19,
- 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908,
- };
- static const __device__ uint64_t iq2xs_grid[512] = {
- 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
- 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b,
- 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919,
- 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b,
- 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919,
- 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808,
- 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819,
- 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819,
- 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808,
- 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b,
- 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b,
- 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908,
- 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908,
- 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919,
- 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808,
- 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919,
- 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908,
- 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b,
- 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908,
- 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08,
- 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808,
- 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808,
- 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819,
- 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908,
- 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819,
- 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808,
- 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b,
- 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819,
- 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819,
- 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808,
- 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908,
- 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19,
- 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b,
- 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b,
- 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919,
- 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808,
- 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819,
- 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819,
- 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b,
- 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908,
- 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808,
- 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819,
- 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808,
- 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919,
- 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808,
- 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808,
- 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908,
- 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908,
- 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808,
- 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b,
- 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819,
- 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919,
- 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908,
- 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808,
- 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908,
- 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919,
- 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08,
- 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19,
- 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b,
- 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b,
- 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808,
- 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08,
- 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b,
- 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908,
- 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b,
- 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908,
- 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08,
- 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808,
- 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808,
- 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08,
- 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819,
- 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919,
- 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808,
- 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808,
- 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819,
- 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819,
- 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908,
- 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908,
- 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b,
- 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908,
- 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908,
- 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908,
- 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808,
- 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819,
- 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819,
- 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819,
- 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808,
- 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b,
- 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819,
- 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819,
- 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08,
- 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808,
- 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19,
- 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919,
- 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808,
- 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19,
- 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b,
- 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808,
- 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b,
- 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b,
- 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08,
- 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b,
- 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808,
- 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819,
- 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808,
- 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808,
- 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08,
- 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b,
- 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19,
- 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08,
- 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919,
- 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08,
- 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08,
- 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908,
- 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908,
- 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b,
- 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908,
- 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808,
- 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b,
- 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808,
- 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808,
- 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19,
- 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08,
- 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808,
- 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b,
- 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808,
- 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b,
- 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
- };
- static const __device__ uint64_t iq2s_grid[1024] = {
- 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
- 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b,
- 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919,
- 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b,
- 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919,
- 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b,
- 0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919,
- 0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808,
- 0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908,
- 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b,
- 0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908,
- 0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08,
- 0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19,
- 0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819,
- 0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919,
- 0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b,
- 0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908,
- 0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908,
- 0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919,
- 0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908,
- 0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b,
- 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919,
- 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b,
- 0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919,
- 0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908,
- 0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b,
- 0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b,
- 0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08,
- 0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b,
- 0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819,
- 0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808,
- 0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908,
- 0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b,
- 0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908,
- 0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08,
- 0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819,
- 0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808,
- 0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08,
- 0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819,
- 0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b,
- 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908,
- 0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919,
- 0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b,
- 0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919,
- 0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808,
- 0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819,
- 0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919,
- 0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919,
- 0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808,
- 0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819,
- 0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b,
- 0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908,
- 0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b,
- 0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908,
- 0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919,
- 0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b,
- 0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919,
- 0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b,
- 0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819,
- 0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919,
- 0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908,
- 0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b,
- 0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908,
- 0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b,
- 0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908,
- 0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08,
- 0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908,
- 0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819,
- 0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819,
- 0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808,
- 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08,
- 0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19,
- 0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819,
- 0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808,
- 0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819,
- 0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919,
- 0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808,
- 0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19,
- 0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08,
- 0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b,
- 0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908,
- 0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808,
- 0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819,
- 0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908,
- 0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819,
- 0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808,
- 0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808,
- 0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819,
- 0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908,
- 0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08,
- 0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819,
- 0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b,
- 0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b,
- 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08,
- 0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19,
- 0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819,
- 0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919,
- 0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908,
- 0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808,
- 0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808,
- 0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908,
- 0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808,
- 0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08,
- 0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08,
- 0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908,
- 0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919,
- 0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808,
- 0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819,
- 0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908,
- 0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08,
- 0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819,
- 0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808,
- 0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808,
- 0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819,
- 0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808,
- 0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908,
- 0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b,
- 0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819,
- 0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808,
- 0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b,
- 0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808,
- 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b,
- 0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19,
- 0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819,
- 0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08,
- 0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b,
- 0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908,
- 0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b,
- 0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b,
- 0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919,
- 0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808,
- 0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819,
- 0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908,
- 0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08,
- 0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08,
- 0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819,
- 0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919,
- 0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908,
- 0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b,
- 0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908,
- 0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b,
- 0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908,
- 0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08,
- 0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819,
- 0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808,
- 0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819,
- 0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919,
- 0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808,
- 0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808,
- 0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08,
- 0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819,
- 0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919,
- 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808,
- 0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819,
- 0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919,
- 0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808,
- 0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b,
- 0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908,
- 0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808,
- 0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908,
- 0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b,
- 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908,
- 0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b,
- 0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908,
- 0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b,
- 0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908,
- 0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08,
- 0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908,
- 0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b,
- 0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908,
- 0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08,
- 0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819,
- 0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919,
- 0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808,
- 0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19,
- 0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b,
- 0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919,
- 0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808,
- 0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819,
- 0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908,
- 0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919,
- 0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808,
- 0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808,
- 0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b,
- 0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919,
- 0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808,
- 0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b,
- 0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808,
- 0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919,
- 0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b,
- 0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08,
- 0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919,
- 0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808,
- 0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b,
- 0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908,
- 0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808,
- 0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808,
- 0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808,
- 0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908,
- 0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808,
- 0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808,
- 0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b,
- 0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908,
- 0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808,
- 0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808,
- 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819,
- 0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919,
- 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b,
- 0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808,
- 0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819,
- 0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b,
- 0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908,
- 0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08,
- 0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908,
- 0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919,
- 0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819,
- 0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908,
- 0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b,
- 0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808,
- 0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819,
- 0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908,
- 0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919,
- 0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808,
- 0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808,
- 0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808,
- 0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919,
- 0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908,
- 0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908,
- 0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08,
- 0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819,
- 0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b,
- 0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808,
- 0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819,
- 0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908,
- 0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819,
- 0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808,
- 0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808,
- 0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b,
- 0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908,
- 0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808,
- 0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908,
- 0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819,
- 0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819,
- 0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808,
- 0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b,
- 0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b,
- 0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819,
- 0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b,
- 0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b,
- 0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b,
- 0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819,
- 0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19,
- 0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819,
- 0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908,
- 0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808,
- 0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b,
- };
- static const __device__ uint32_t iq3xxs_grid[256] = {
- 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
- 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
- 0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
- 0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
- 0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
- 0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
- 0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
- 0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
- 0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
- 0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
- 0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
- 0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
- 0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
- 0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
- 0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
- 0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
- 0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
- 0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
- 0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
- 0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
- 0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
- 0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
- 0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
- 0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
- 0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
- 0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
- 0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
- 0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
- 0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
- 0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
- 0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
- 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
- };
- static const __device__ uint32_t iq3s_grid[512] = {
- 0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305,
- 0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905,
- 0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09,
- 0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b,
- 0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b,
- 0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d,
- 0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03,
- 0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505,
- 0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03,
- 0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901,
- 0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d,
- 0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303,
- 0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501,
- 0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105,
- 0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505,
- 0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101,
- 0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707,
- 0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b,
- 0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01,
- 0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f,
- 0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305,
- 0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103,
- 0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509,
- 0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503,
- 0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b,
- 0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f,
- 0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f,
- 0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f,
- 0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109,
- 0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f,
- 0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509,
- 0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501,
- 0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303,
- 0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f,
- 0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907,
- 0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703,
- 0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03,
- 0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01,
- 0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01,
- 0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903,
- 0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505,
- 0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b,
- 0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107,
- 0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509,
- 0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303,
- 0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103,
- 0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05,
- 0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b,
- 0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f,
- 0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701,
- 0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909,
- 0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305,
- 0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d,
- 0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b,
- 0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d,
- 0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307,
- 0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09,
- 0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309,
- 0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709,
- 0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f,
- 0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303,
- 0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503,
- 0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b,
- 0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101,
- };
- static const __device__ uint64_t iq1s_grid[512] = {
- 0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000,
- 0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01,
- 0xffffff00ff000000, 0xffffff000000ff00, 0xffffff00000000ff, 0xffffff0000000100,
- 0xffffff0000010000, 0xffffff0001000000, 0xffffff01ffff00ff, 0xffffff01ff01ff00,
- 0xffffff01ff010100, 0xffffff0100000001, 0xffffff0101ffff00, 0xffffff0101ff0101,
- 0xffffff0101010100, 0xffff00ffff00ff01, 0xffff00ffff0000ff, 0xffff00ff00ff0100,
- 0xffff00ff0100ff00, 0xffff00ff010001ff, 0xffff0000ff0101ff, 0xffff000000ffff00,
- 0xffff000000000000, 0xffff00000001ff01, 0xffff000001000101, 0xffff0000010100ff,
- 0xffff0001ffff0100, 0xffff00010000ff00, 0xffff000100010101, 0xffff000101000000,
- 0xffff01ffffff0000, 0xffff01ffff01ffff, 0xffff01ffff010100, 0xffff01ff00000000,
- 0xffff01ff01ffffff, 0xffff01ff01ff0001, 0xffff01ff0101ffff, 0xffff01ff01010001,
- 0xffff0100ffffff01, 0xffff01000000ffff, 0xffff010000000100, 0xffff010001ff01ff,
- 0xffff010001000000, 0xffff0101ff000000, 0xffff0101000101ff, 0xffff010101ffff01,
- 0xffff01010101ff00, 0xff00ffffff000000, 0xff00ffff00ffff00, 0xff00ffff00000001,
- 0xff00ffff000001ff, 0xff00ffff01010000, 0xff00ff00ffff0000, 0xff00ff00ff00ff00,
- 0xff00ff00ff0000ff, 0xff00ff00ff000100, 0xff00ff00ff010001, 0xff00ff0000ff0001,
- 0xff00ff000000ffff, 0xff00ff0000000000, 0xff00ff000001ff00, 0xff00ff0000010100,
- 0xff00ff0001ff0000, 0xff00ff000100ff00, 0xff00ff0001000100, 0xff00ff01ff000000,
- 0xff00ff0100ff0000, 0xff00ff01000001ff, 0xff00ff0101010001, 0xff0000ff00000000,
- 0xff0000ff0001ff00, 0xff0000ff00010100, 0xff000000ffff0101, 0xff000000ff000000,
- 0xff000000ff01ff00, 0xff00000000ff0000, 0xff0000000000ff00, 0xff000000000000ff,
- 0xff00000000000000, 0xff00000000000001, 0xff00000000000100, 0xff0000000001ffff,
- 0xff00000000010000, 0xff00000001000000, 0xff00000001010100, 0xff000001ff00ff01,
- 0xff000001ff0100ff, 0xff00000100000000, 0xff0000010001ff00, 0xff00000101ff0100,
- 0xff0000010100ff00, 0xff0001ff00ff00ff, 0xff0001ff00000101, 0xff0001ff000100ff,
- 0xff0001ff01000000, 0xff000100ff0001ff, 0xff0001000000ff01, 0xff00010000000000,
- 0xff00010000010001, 0xff00010000010100, 0xff00010001ffff00, 0xff00010001ff0101,
- 0xff00010001010000, 0xff000101ffffffff, 0xff000101ff000101, 0xff00010101ff00ff,
- 0xff00010101000001, 0xff000101010100ff, 0xff01ffffff000101, 0xff01ffffff01ffff,
- 0xff01ffffff01ff01, 0xff01ffffff0101ff, 0xff01ffff00000000, 0xff01ffff01ff0001,
- 0xff01ffff0101ff01, 0xff01ff00ff000000, 0xff01ff0000ff0100, 0xff01ff000000ff01,
- 0xff01ff0000010000, 0xff01ff00010000ff, 0xff01ff01ff01ff00, 0xff01ff0100000101,
- 0xff0100ffffff0000, 0xff0100ffff010000, 0xff0100ff01ff00ff, 0xff0100ff01000100,
- 0xff0100ff010100ff, 0xff010000ffffff01, 0xff01000000000000, 0xff0100000101ff00,
- 0xff010001ffff00ff, 0xff010001ff000100, 0xff01000100ffff00, 0xff01000100010001,
- 0xff01000101ff0001, 0xff010001010001ff, 0xff0101ffffffffff, 0xff0101ffff01ffff,
- 0xff0101ffff010101, 0xff0101ff0000ff00, 0xff0101ff01010001, 0xff010100ff000000,
- 0xff010100ff01ff01, 0xff01010000ff0001, 0xff01010000000100, 0xff01010001000000,
- 0xff0101010100ffff, 0x00ffffff0000ff01, 0x00ffffff000000ff, 0x00ffffff00000100,
- 0x00ffffff00010000, 0x00ffff00ffff0001, 0x00ffff00ff0000ff, 0x00ffff00ff000100,
- 0x00ffff0000000000, 0x00ffff0001000100, 0x00ffff0001010001, 0x00ffff01ff00ff01,
- 0x00ffff0100ff0100, 0x00ffff010000ff00, 0x00ffff01000100ff, 0x00ffff0101ff00ff,
- 0x00ffff010101ff00, 0x00ff00ffffffffff, 0x00ff00ffffff01ff, 0x00ff00ffff000101,
- 0x00ff00ff00000000, 0x00ff00ff000101ff, 0x00ff00ff01010101, 0x00ff0000ff000000,
- 0x00ff0000ff01ffff, 0x00ff000000ff0000, 0x00ff00000000ff00, 0x00ff0000000000ff,
- 0x00ff000000000000, 0x00ff000000000001, 0x00ff000000000100, 0x00ff000000010000,
- 0x00ff000001ffff01, 0x00ff000001000000, 0x00ff0001ff000101, 0x00ff000100ffffff,
- 0x00ff000100000000, 0x00ff0001010001ff, 0x00ff01ffff000000, 0x00ff01ff0001ff00,
- 0x00ff01ff01ff0100, 0x00ff0100ff01ff01, 0x00ff010000ff00ff, 0x00ff010000ff0101,
- 0x00ff010000000000, 0x00ff010000010101, 0x00ff01000100ff00, 0x00ff010001010000,
- 0x00ff0101ffffff00, 0x00ff01010000ff01, 0x00ff010100000100, 0x00ff010101ff0000,
- 0x0000ffffffff0100, 0x0000ffffff00ff00, 0x0000ffffff0000ff, 0x0000ffffff010000,
- 0x0000ffff00000000, 0x0000ffff00010101, 0x0000ffff01ffff01, 0x0000ffff01000100,
- 0x0000ff00ff000000, 0x0000ff00ff01ff00, 0x0000ff00ff0101ff, 0x0000ff0000ff0000,
- 0x0000ff000000ff00, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001,
- 0x0000ff0000000100, 0x0000ff0000010000, 0x0000ff0001ffffff, 0x0000ff0001ff01ff,
- 0x0000ff0001000000, 0x0000ff000101ffff, 0x0000ff01ffff0101, 0x0000ff01ff010000,
- 0x0000ff0100000000, 0x0000ff0101000101, 0x000000ffffff0001, 0x000000ffff000000,
- 0x000000ff00ff0000, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000,
- 0x000000ff00000001, 0x000000ff00000100, 0x000000ff00010000, 0x000000ff01000000,
- 0x000000ff0101ff00, 0x00000000ffff0000, 0x00000000ff00ff00, 0x00000000ff0000ff,
- 0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff010000,
- 0x0000000000ffff00, 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001,
- 0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01,
- 0x00000000000000ff, 0x0000000000000001, 0x00000000000001ff, 0x0000000000000100,
- 0x0000000000000101, 0x000000000001ff00, 0x00000000000100ff, 0x0000000000010000,
- 0x0000000000010001, 0x0000000000010100, 0x0000000001ff0000, 0x000000000100ff00,
- 0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, 0x0000000001000100,
- 0x0000000001010000, 0x00000001ffff01ff, 0x00000001ff000000, 0x0000000100ff0000,
- 0x000000010000ff00, 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001,
- 0x0000000100000100, 0x0000000100010000, 0x0000000101000000, 0x000001ffff00ff00,
- 0x000001ffff010001, 0x000001ffff0101ff, 0x000001ff00ffff01, 0x000001ff0000ffff,
- 0x000001ff00000000, 0x000001ff010000ff, 0x000001ff01010100, 0x00000100ffff0100,
- 0x00000100ff000000, 0x0000010000ff0000, 0x000001000000ff00, 0x00000100000000ff,
- 0x0000010000000000, 0x0000010000000001, 0x0000010000000100, 0x0000010000010000,
- 0x0000010001000000, 0x000001000101ff01, 0x00000101ffff0001, 0x00000101ff01ffff,
- 0x0000010100000000, 0x0000010101010100, 0x0001ffffff000000, 0x0001ffff00ffffff,
- 0x0001ffff00000100, 0x0001ffff0001ff00, 0x0001ffff01000000, 0x0001ff00ffffff00,
- 0x0001ff00ffff01ff, 0x0001ff00ff010000, 0x0001ff0000000000, 0x0001ff0000010001,
- 0x0001ff0001ff0000, 0x0001ff0001010100, 0x0001ff01ff0000ff, 0x0001ff01ff000001,
- 0x0001ff0100ffffff, 0x0001ff010001ffff, 0x0001ff01000101ff, 0x0001ff010100ff01,
- 0x000100ffff00ffff, 0x000100ffff00ff01, 0x000100ffff000100, 0x000100ff00000000,
- 0x000100ff000101ff, 0x000100ff01ff0101, 0x000100ff0100ffff, 0x000100ff01010101,
- 0x00010000ff000000, 0x00010000ff010100, 0x0001000000ff0000, 0x000100000000ff00,
- 0x00010000000000ff, 0x0001000000000000, 0x0001000000000001, 0x0001000000000100,
- 0x0001000000010000, 0x0001000001ffff01, 0x0001000001000000, 0x0001000100ff0101,
- 0x0001000100000000, 0x00010001010100ff, 0x000101ffffff01ff, 0x000101ffffff0101,
- 0x000101ff00010000, 0x000101ff01ff0000, 0x000101ff0100ff01, 0x00010100ffff0000,
- 0x0001010000000000, 0x000101000001ffff, 0x0001010000010101, 0x00010100010001ff,
- 0x00010101ff00ff00, 0x00010101ff010001, 0x0001010100ffffff, 0x0001010100ff01ff,
- 0x00010101000101ff, 0x0001010101ff0000, 0x000101010100ff01, 0x0001010101000101,
- 0x01ffffffffff0101, 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff,
- 0x01ffffffff010101, 0x01ffffff00000000, 0x01ffffff01ff01ff, 0x01ffffff01000101,
- 0x01ffffff0101ff01, 0x01ffffff010100ff, 0x01ffff000000ff00, 0x01ffff0000000001,
- 0x01ffff00000001ff, 0x01ffff0000010000, 0x01ffff0001ff0000, 0x01ffff01ffffffff,
- 0x01ffff01ffff01ff, 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff0101ff,
- 0x01ffff010100ffff, 0x01ff00ffffff0000, 0x01ff00ffff010000, 0x01ff00ff00ffff01,
- 0x01ff0000ff0000ff, 0x01ff000000000000, 0x01ff00000001ff01, 0x01ff000001ffffff,
- 0x01ff000001010100, 0x01ff0001ffffff01, 0x01ff0001ff010001, 0x01ff000101ff0100,
- 0x01ff000101000001, 0x01ff0001010100ff, 0x01ff01ffff00ffff, 0x01ff01ff00010001,
- 0x01ff01ff01000000, 0x01ff01ff010101ff, 0x01ff0100ff000001, 0x01ff010000ffff00,
- 0x01ff010000000100, 0x01ff010001ff01ff, 0x01ff01000101ffff, 0x01ff0101ffff00ff,
- 0x01ff0101ffff0101, 0x01ff0101ff0101ff, 0x01ff010100010000, 0x0100ffff00ff00ff,
- 0x0100ffff00ff0001, 0x0100ffff00000100, 0x0100ffff0100ff00, 0x0100ff00ffff0000,
- 0x0100ff00ff00ffff, 0x0100ff00ff00ff01, 0x0100ff00ff000100, 0x0100ff00ff010000,
- 0x0100ff0000000000, 0x0100ff00000100ff, 0x0100ff0001ff0101, 0x0100ff0001010101,
- 0x0100ff0100ff00ff, 0x0100ff0100ff0001, 0x0100ff0100000100, 0x0100ff0100010001,
- 0x0100ff0101000000, 0x010000ffff00ff00, 0x010000ff0000ffff, 0x010000ff00000000,
- 0x010000ff010001ff, 0x010000ff01010001, 0x01000000ffffff00, 0x01000000ffff0101,
- 0x01000000ff000000, 0x01000000ff0100ff, 0x01000000ff010101, 0x0100000000ff0000,
- 0x010000000000ff00, 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001,
- 0x0100000000000100, 0x0100000000010000, 0x0100000001000000, 0x0100000100000000,
- 0x01000001000101ff, 0x0100000101ffff01, 0x010001ffff000101, 0x010001ff00ff0100,
- 0x010001ff0000ff00, 0x010001ff000100ff, 0x010001ff01ffffff, 0x01000100ffff0000,
- 0x01000100ff0001ff, 0x0100010000000000, 0x010001000001ff00, 0x0100010001ff0000,
- 0x01000100010000ff, 0x0100010001000101, 0x01000101ff00ff01, 0x0100010100ff0100,
- 0x010001010000ffff, 0x0100010101010001, 0x0101ffffffff0101, 0x0101ffffff0001ff,
- 0x0101ffffff01ffff, 0x0101ffffff010101, 0x0101ffff00000000, 0x0101ffff0101ffff,
- 0x0101ffff010101ff, 0x0101ff00ff000000, 0x0101ff0000ff0100, 0x0101ff000000ff00,
- 0x0101ff0000010000, 0x0101ff00010000ff, 0x0101ff0001000001, 0x0101ff01ff010101,
- 0x0101ff0100000000, 0x0101ff010101ff00, 0x010100ffffff0000, 0x010100ffff010000,
- 0x010100ff00ff01ff, 0x010100ff000000ff, 0x010100ff00000101, 0x010100ff01ffff00,
- 0x01010000ffffff01, 0x01010000ff000100, 0x01010000ff01ff01, 0x0101000000000000,
- 0x01010000000100ff, 0x010100000101ff01, 0x01010001ffff0000, 0x01010001ff00ffff,
- 0x01010001ff010000, 0x0101000101ffffff, 0x0101000101ff01ff, 0x0101000101010101,
- 0x010101ffff01ffff, 0x010101ff00000000, 0x010101ff0001ff01, 0x010101ff0101ffff,
- 0x010101ff010101ff, 0x01010100ffffffff, 0x01010100ff000001, 0x010101000000ff00,
- 0x0101010001010000, 0x0101010100ff0001, 0x010101010001ff01, 0x010101010101ffff,
- };
- static const __device__ uint8_t ksigns_iq2xs[128] = {
- 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
- 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
- 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175,
- 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63,
- 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207,
- 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95,
- 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111,
- 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
- };
- //#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- static const __device__ uint64_t ksigns64[128] = {
- 0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff,
- 0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff,
- 0xff000000ff000000, 0x00000000ff0000ff, 0x00000000ff00ff00, 0xff000000ff00ffff,
- 0x00000000ffff0000, 0xff000000ffff00ff, 0xff000000ffffff00, 0x00000000ffffffff,
- 0xff0000ff00000000, 0x000000ff000000ff, 0x000000ff0000ff00, 0xff0000ff0000ffff,
- 0x000000ff00ff0000, 0xff0000ff00ff00ff, 0xff0000ff00ffff00, 0x000000ff00ffffff,
- 0x000000ffff000000, 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0x000000ffff00ffff,
- 0xff0000ffffff0000, 0x000000ffffff00ff, 0x000000ffffffff00, 0xff0000ffffffffff,
- 0xff00ff0000000000, 0x0000ff00000000ff, 0x0000ff000000ff00, 0xff00ff000000ffff,
- 0x0000ff0000ff0000, 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0x0000ff0000ffffff,
- 0x0000ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, 0x0000ff00ff00ffff,
- 0xff00ff00ffff0000, 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0xff00ff00ffffffff,
- 0x0000ffff00000000, 0xff00ffff000000ff, 0xff00ffff0000ff00, 0x0000ffff0000ffff,
- 0xff00ffff00ff0000, 0x0000ffff00ff00ff, 0x0000ffff00ffff00, 0xff00ffff00ffffff,
- 0xff00ffffff000000, 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0xff00ffffff00ffff,
- 0x0000ffffffff0000, 0xff00ffffffff00ff, 0xff00ffffffffff00, 0x0000ffffffffffff,
- 0xffff000000000000, 0x00ff0000000000ff, 0x00ff00000000ff00, 0xffff00000000ffff,
- 0x00ff000000ff0000, 0xffff000000ff00ff, 0xffff000000ffff00, 0x00ff000000ffffff,
- 0x00ff0000ff000000, 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0x00ff0000ff00ffff,
- 0xffff0000ffff0000, 0x00ff0000ffff00ff, 0x00ff0000ffffff00, 0xffff0000ffffffff,
- 0x00ff00ff00000000, 0xffff00ff000000ff, 0xffff00ff0000ff00, 0x00ff00ff0000ffff,
- 0xffff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, 0xffff00ff00ffffff,
- 0xffff00ffff000000, 0x00ff00ffff0000ff, 0x00ff00ffff00ff00, 0xffff00ffff00ffff,
- 0x00ff00ffffff0000, 0xffff00ffffff00ff, 0xffff00ffffffff00, 0x00ff00ffffffffff,
- 0x00ffff0000000000, 0xffffff00000000ff, 0xffffff000000ff00, 0x00ffff000000ffff,
- 0xffffff0000ff0000, 0x00ffff0000ff00ff, 0x00ffff0000ffff00, 0xffffff0000ffffff,
- 0xffffff00ff000000, 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0xffffff00ff00ffff,
- 0x00ffff00ffff0000, 0xffffff00ffff00ff, 0xffffff00ffffff00, 0x00ffff00ffffffff,
- 0xffffffff00000000, 0x00ffffff000000ff, 0x00ffffff0000ff00, 0xffffffff0000ffff,
- 0x00ffffff00ff0000, 0xffffffff00ff00ff, 0xffffffff00ffff00, 0x00ffffff00ffffff,
- 0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff,
- 0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff,
- };
- //#endif
- static const __device__ uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128};
- inline bool ggml_cuda_supports_mmq(enum ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- return true;
- default:
- return false;
- }
- }
- template<typename dst_t>
- static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
- const int tid = threadIdx.x;
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * q2 = x[i].qs + 4*ib;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
- const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
- #else
- assert(false);
- #endif
- }
- template<typename dst_t>
- static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_iq2_xs * x = (const block_iq2_xs *) vx;
- const int tid = threadIdx.x;
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * q2 = x[i].qs + 4*ib;
- const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
- const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
- const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
- #else
- assert(false);
- #endif
- }
- template<typename dst_t>
- static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_iq2_s * x = (const block_iq2_s *) vx;
- const int tid = threadIdx.x;
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
- const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
- const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
- #else
- assert(false);
- #endif
- }
- template<typename dst_t>
- static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
- const int tid = threadIdx.x;
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * q3 = x[i].qs + 8*ib;
- const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
- const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
- const uint32_t aux32 = gas[0] | (gas[1] << 16);
- const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
- const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
- for (int j = 0; j < 4; ++j) {
- y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
- y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
- }
- #else
- assert(false);
- #endif
- }
- template<typename dst_t>
- static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_iq3_s * x = (const block_iq3_s *) vx;
- const int tid = threadIdx.x;
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * qs = x[i].qs + 8*ib;
- const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
- const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
- const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
- const uint8_t signs = x[i].signs[4*ib + il];
- for (int j = 0; j < 4; ++j) {
- y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
- y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
- }
- #else
- assert(false);
- #endif
- }
- template<typename dst_t>
- static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_iq1_s * x = (const block_iq1_s *) vx;
- const int tid = threadIdx.x;
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const int i8 = 4*ib+il;
- uint8_t h = x[i].scales[i8/2] >> 4*(i8%2);
- const int8_t * grid = (const int8_t *)(iq1s_grid + (x[i].qs[i8] | ((h & 8) << 5)));
- const float d = (float)x[i].d * (2*(h & 7) + 1);
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j];
- #else
- assert(false);
- #endif
- }
- static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
- template<typename dst_t>
- static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
- const int tid = threadIdx.x;
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 4*il;
- const uint8_t * q4 = x[ib].qs + 4*il;
- const float d = (float)x[ib].d;
- for (int j = 0; j < 4; ++j) {
- y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
- y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
- }
- }
- #if QK_K != 64
- template<typename dst_t>
- static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_iq4_xs * x = (const block_iq4_xs *)vx;
- const int tid = threadIdx.x;
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 4*il;
- const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
- const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
- for (int j = 0; j < 4; ++j) {
- y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
- y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
- }
- }
- #endif
- static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q2_K * x = (const block_q2_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int s_offset = 8*im;
- const int y_offset = 128*im + l0;
- uint32_t aux[4];
- const uint8_t * d = (const uint8_t *)aux;
- const uint8_t * m = (const uint8_t *)(aux + 2);
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
- const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
- aux[0] = a[0] & 0x0f0f0f0f;
- aux[1] = a[1] & 0x0f0f0f0f;
- aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
- aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
- + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
- + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
- + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
- + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
- + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
- + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
- +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
- sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
- + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
- }
- tmp += dall * sum1 - dmin * sum2;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION;
- uint32_t uaux[2];
- const uint8_t * d = (const uint8_t *)uaux;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint32_t * s = (const uint32_t *)x[i].scales;
- uaux[0] = s[0] & 0x0f0f0f0f;
- uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
- const float2 dall = __half22float2(x[i].dm);
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t ql = q[l];
- sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
- + y[l+16] * d[1] * ((ql >> 2) & 3)
- + y[l+32] * d[2] * ((ql >> 4) & 3)
- + y[l+48] * d[3] * ((ql >> 6) & 3);
- sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
- }
- tmp += dall.x * sum1 - dall.y * sum2;
- }
- #endif
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q3_K * x = (const block_q3_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const uint16_t kmask1 = 0x0303;
- const uint16_t kmask2 = 0x0f0f;
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0....15 or 0...7
- const uint8_t m = 1 << (4*im);
- const int l0 = n*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int y_offset = 128*im + l0;
- uint16_t utmp[4];
- const int8_t * s = (const int8_t *)utmp;
- const uint16_t s_shift = 4*im;
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const uint8_t * h = x[i].hmask + l0;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
- utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
- utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
- utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
- const float d = x[i].d;
- float sum = 0;
- for (int l = 0; l < n; ++l) {
- sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
- + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
- + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
- + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
- sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
- + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
- + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
- + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
- }
- tmp += d * sum;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
- const int in = offset/8; // 0 or 1
- const int im = offset%8; // 0...7
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint8_t * s = x[i].scales;
- const float dall = (float)x[i].d;
- float sum = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t hl = x[i].hmask[im+l] >> in;
- const uint8_t ql = q[l];
- sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
- + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
- + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
- + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q4_K * x = (const block_q4_K *)vx + ib0;
- #if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
- const int il = tid/step; // 0...3
- const int ir = tid - step*il; // 0...7 or 0...3
- const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- #if K_QUANTS_PER_ITERATION == 2
- uint32_t q32[4];
- const uint8_t * q4 = (const uint8_t *)q32;
- #else
- uint16_t q16[4];
- const uint8_t * q4 = (const uint8_t *)q16;
- #endif
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- #if K_QUANTS_PER_ITERATION == 2
- const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
- const uint32_t * q2 = q1 + 16;
- q32[0] = q1[0] & 0x0f0f0f0f;
- q32[1] = q1[0] & 0xf0f0f0f0;
- q32[2] = q2[0] & 0x0f0f0f0f;
- q32[3] = q2[0] & 0xf0f0f0f0;
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 4; ++l) {
- s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
- s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
- #else
- const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[0] & 0xf0f0;
- q16[2] = q2[0] & 0x0f0f;
- q16[3] = q2[0] & 0xf0f0;
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 2; ++l) {
- s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
- s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
- #endif
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
- const int step = tid * K_QUANTS_PER_ITERATION;
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
- float tmp = 0;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const float * y = yy + i*QK_K + step;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
- const float d = (float)x[i].dm[0];
- const float m = (float)x[i].dm[1];
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
- + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
- + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
- + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
- const int row = blockIdx.x;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q5_K * x = (const block_q5_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid = threadIdx.x/2; // 0...15
- const int ix = threadIdx.x%2;
- const int il = tid/4; // 0...3
- const int ir = tid - 4*il;// 0...3
- const int n = 2;
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- const uint8_t hm1 = 1 << (2*im);
- const uint8_t hm2 = hm1 << 4;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- uint16_t q16[8];
- const uint8_t * q4 = (const uint8_t *)q16;
- for (int i = ix; i < num_blocks_per_row; i += 2) {
- const uint8_t * ql1 = x[i].qs + q_offset;
- const uint8_t * qh = x[i].qh + l0;
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- float4 sum = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- const uint16_t * q1 = (const uint16_t *)ql1;
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[8] & 0x0f0f;
- q16[2] = (q1[0] >> 4) & 0x0f0f;
- q16[3] = (q1[8] >> 4) & 0x0f0f;
- q16[4] = q2[0] & 0x0f0f;
- q16[5] = q2[8] & 0x0f0f;
- q16[6] = (q2[0] >> 4) & 0x0f0f;
- q16[7] = (q2[8] >> 4) & 0x0f0f;
- for (int l = 0; l < n; ++l) {
- sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
- + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
- sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
- + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
- sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
- + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
- sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
- + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
- smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
- + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
- }
- tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
- const int step = tid * K_QUANTS_PER_ITERATION;
- const int im = step/8;
- const int in = step%8;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const int8_t * s = x[i].scales;
- const float * y = yy + i*QK_K + step;
- const float d = x[i].d;
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- const uint8_t h = x[i].qh[in+j] >> im;
- sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
- + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
- + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
- + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (threadIdx.x == 0) {
- dst[row] = tmp;
- }
- }
- static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q6_K * x = (const block_q6_K *)vx + ib0;
- #if QK_K == 256
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
- const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- #if K_QUANTS_PER_ITERATION == 1
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
- const int is = 0;
- #else
- const int l0 = 4 * in; // 0, 4, 8, ..., 28
- const int is = in / 4;
- #endif
- const int ql_offset = 64*im + l0;
- const int qh_offset = 32*im + l0;
- const int s_offset = 8*im + is;
- const int y_offset = 128*im + l0;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * ql = x[i].ql + ql_offset;
- const uint8_t * qh = x[i].qh + qh_offset;
- const int8_t * s = x[i].scales + s_offset;
- const float d = x[i].d;
- #if K_QUANTS_PER_ITERATION == 1
- float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
- + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
- + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
- + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
- + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
- + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
- + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
- +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
- tmp += sum;
- #else
- float sum = 0;
- for (int l = 0; l < 4; ++l) {
- sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
- + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
- + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
- + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
- }
- tmp += sum;
- #endif
- }
- #else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
- const int step = tid * K_QUANTS_PER_ITERATION;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + step;
- const uint8_t * ql = x[i].ql + step;
- const uint8_t * qh = x[i].qh + step;
- const int8_t * s = x[i].scales;
- const float d = x[i+0].d;
- float sum = 0;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
- + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
- + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
- + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const half * x = (const half *) vx;
- // automatic half -> float type cast if dfloat == float
- v.x = x[ib + iqs + 0];
- v.y = x[ib + iqs + 1];
- }
- static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
- const int ix = blockDim.x*blockIdx.x + threadIdx.x;
- if (ix >= kx_padded) {
- return;
- }
- const int iy = blockDim.y*blockIdx.y + threadIdx.y;
- const int i_padded = iy*kx_padded + ix;
- block_q8_1 * y = (block_q8_1 *) vy;
- const int ib = i_padded / QK8_1; // block index
- const int iqs = i_padded % QK8_1; // quant index
- const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
- float amax = fabsf(xi);
- float sum = xi;
- amax = warp_reduce_max(amax);
- sum = warp_reduce_sum(sum);
- const float d = amax / 127;
- const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
- y[ib].qs[iqs] = q;
- if (iqs > 0) {
- return;
- }
- reinterpret_cast<half&>(y[ib].ds.x) = d;
- reinterpret_cast<half&>(y[ib].ds.y) = sum;
- }
- template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static __global__ void k_get_rows(
- const void * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
- const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
- const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
- const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
- const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
- if (i00 >= ne00) {
- return;
- }
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
- const int ib = i00/qk; // block index
- const int iqs = (i00%qk)/qr; // quant index
- const int iybs = i00 - i00%qk; // dst block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- dfloat2 v;
- dequantize_kernel(src0_row, ib, iqs, v);
- dst_row[iybs + iqs + 0] = v.x;
- dst_row[iybs + iqs + y_offset] = v.y;
- }
- template<typename src0_t, typename dst_t>
- static __global__ void k_get_rows_float(
- const src0_t * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
- const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
- const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
- const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
- const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
- if (i00 >= ne00) {
- return;
- }
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
- dst_row[i00] = src0_row[i00];
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
- const int i = 2*(blockDim.x*blockIdx.x + threadIdx.x);
- if (i >= k) {
- return;
- }
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs, v);
- y[iybs + iqs + 0] = v.x;
- y[iybs + iqs + y_offset] = v.y;
- }
- template <typename src_t, typename dst_t>
- static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- const src_t * x = (src_t *) vx;
- y[i] = x[i];
- }
- template <bool need_check>
- static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int k) {
- #if __CUDA_ARCH__ >= CC_PASCAL
- constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
- const int i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
- const int * x0 = ((int *) vx) + blockIdx.x * nint;
- half2 * y2 = (half2 *) (y + i0);
- __shared__ int vals[nint];
- #pragma unroll
- for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) {
- if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) {
- break;
- }
- const int ix = ix0 + threadIdx.x;
- vals[ix] = x0[ix];
- }
- #pragma unroll
- for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
- if (need_check && i0 + iy + 2*threadIdx.x >= k) {
- return;
- }
- const half * b0 = ((const half *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0);
- const half d = *b0;
- const char2 qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)];
- y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
- }
- #else
- (void) vx; (void) y; (void) k;
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= CC_PASCAL
- }
- // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
- // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
- #define VDR_Q4_0_Q8_1_MMVQ 2
- #define VDR_Q4_0_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
- const int * v, const int * u, const float & d4, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = __dp4a(vi0, u[2*i+0], sumi);
- sumi = __dp4a(vi1, u[2*i+1], sumi);
- }
- const float2 ds8f = __half22float2(ds8);
- // second part effectively subtracts 8 from each quant value
- return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q4_1_Q8_1_MMVQ 2
- #define VDR_Q4_1_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
- const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = __dp4a(vi0, u[2*i+0], sumi);
- sumi = __dp4a(vi1, u[2*i+1], sumi);
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm4, ds8));
- const float d4d8 = tmp.x;
- const float m4s8 = tmp.y;
- #else
- const float2 dm4f = __half22float2(dm4);
- const float2 ds8f = __half22float2(ds8);
- const float d4d8 = dm4f.x * ds8f.x;
- const float m4s8 = dm4f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
- return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_0_Q8_1_MMVQ 2
- #define VDR_Q5_0_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
- const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
- }
- const float2 ds8f = __half22float2(ds8);
- // second part effectively subtracts 16 from each quant value
- return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_1_Q8_1_MMVQ 2
- #define VDR_Q5_1_Q8_1_MMQ 4
- template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
- const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm5, ds8));
- const float d5d8 = tmp.x;
- const float m5s8 = tmp.y;
- #else
- const float2 dm5f = __half22float2(dm5);
- const float2 ds8f = __half22float2(ds8);
- const float d5d8 = dm5f.x * ds8f.x;
- const float m5s8 = dm5f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
- return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q8_0_Q8_1_MMVQ 2
- #define VDR_Q8_0_Q8_1_MMQ 8
- template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
- const int * v, const int * u, const float & d8_0, const float & d8_1) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = __dp4a(v[i], u[i], sumi);
- }
- return d8_0*d8_1 * sumi;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
- const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = __dp4a(v[i], u[i], sumi);
- }
- #ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm8, ds8));
- const float d8d8 = tmp.x;
- const float m8s8 = tmp.y;
- #else
- const float2 dm8f = __half22float2(dm8);
- const float2 ds8f = __half22float2(ds8);
- const float d8d8 = dm8f.x * ds8f.x;
- const float m8s8 = dm8f.y * ds8f.y;
- #endif // GGML_CUDA_F16
- // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
- return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q2_K_Q8_1_MMVQ 1
- #define VDR_Q2_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
- const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const half2 & dm2, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR2_K; ++i) {
- const int sc = scales[2*i];
- const int vi = (v >> (2*i)) & 0x03030303;
- sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
- }
- const float2 dm2f = __half22float2(dm2);
- return dm2f.x*sumf_d - dm2f.y*sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const half2 & dm2, const float & d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi_d = 0;
- int sumi_m = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
- int sumi_d_sc = 0;
- const int sc = scales[i0 / (QI8_1/2)];
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- #pragma unroll
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
- sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
- }
- sumi_d += sumi_d_sc * (sc & 0xF);
- }
- const float2 dm2f = __half22float2(dm2);
- return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q3_K_Q8_1_MMVQ 1
- #define VDR_Q3_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
- const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const int & scale_offset, const float & d3, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- const int isc = scale_offset + 2*i;
- const int isc_low = isc % (QK_K/32);
- const int sc_shift_low = 4 * (isc / (QK_K/32));
- const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
- const int isc_high = isc % (QK_K/64);
- const int sc_shift_high = 2 * (isc / (QK_K/64));
- const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
- const int sc = (sc_low | sc_high) - 32;
- const int vil = (vl >> (2*i)) & 0x03030303;
- const int vih = ((vh >> i) << 2) & 0x04040404;
- const int vi = __vsubss4(vil, vih);
- sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d3 * sumf;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
- const float & d3, const float & d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
- int sumi_sc = 0;
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
- }
- sumi += sumi_sc * scales[i0 / (QI8_1/2)];
- }
- return d3*d8 * sumi;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q4_K_Q8_1_MMVQ 2
- #define VDR_Q4_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K; ++i) {
- const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
- const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
- const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
- const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
- }
- const float2 ds8f = __half22float2(ds8[i]);
- sumf_d += ds8f.x * (sc[i] * sumi_d);
- sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q5_K_Q8_1_MMVQ 2
- #define VDR_Q5_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
- const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
- const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
- const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
- const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
- const int v0i = vl0i | vh0i;
- const int v1i = vl1i | vh1i;
- const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
- const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]);
- }
- const float2 dm5f = __half22float2(dm5);
- return dm5f.x*sumf_d - dm5f.y*sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
- }
- const float2 ds8f = __half22float2(ds8[i]);
- sumf_d += ds8f.x * (sc[i] * sumi_d);
- sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
- }
- const float2 dm4f = __half22float2(dm4);
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- #define VDR_Q6_K_Q8_1_MMVQ 1
- #define VDR_Q6_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
- const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
- const float & d, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- const int sc = scales[4*i];
- const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
- const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
- const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
- sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d*sumf;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- // contiguous u/y values
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
- const float & d6, const float * __restrict__ d8) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- #pragma unroll
- for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
- int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
- #pragma unroll
- for (int i = i0; i < i0 + 2; ++i) {
- sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
- sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
- sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
- sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
- }
- sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
- }
- return d6 * sumf_d;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- }
- static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
- int v[VDR_Q4_0_Q8_1_MMVQ];
- int u[2*VDR_Q4_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
- }
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
- *x_ql = tile_x_qs;
- *x_dm = (half2 *) tile_x_d;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_0;
- const int kqsx = k % QI4_0;
- const block_q4_0 * bx0 = (const block_q4_0 *) vx;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
- int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
- }
- }
- static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const float * x_dmf = (const float *) x_dm;
- int u[2*VDR_Q4_0_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
- }
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
- int v[VDR_Q4_1_Q8_1_MMVQ];
- int u[2*VDR_Q4_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
- }
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
- *x_ql = tile_x_qs;
- *x_dm = tile_x_dm;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_1;
- const int kqsx = k % QI4_1;
- const block_q4_1 * bx0 = (const block_q4_1 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
- int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
- }
- }
- static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- int u[2*VDR_Q4_1_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
- }
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
- int vl[VDR_Q5_0_Q8_1_MMVQ];
- int vh[VDR_Q5_0_Q8_1_MMVQ];
- int u[2*VDR_Q5_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
- vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
- }
- return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
- *x_ql = tile_x_ql;
- *x_dm = (half2 *) tile_x_d;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_0;
- const int kqsx = k % QI5_0;
- const block_q5_0 * bx0 = (const block_q5_0 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ql = get_int_from_uint8(bxi->qs, kqsx);
- const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
- int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
- }
- }
- static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- int u[2*VDR_Q5_0_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
- }
- return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
- int vl[VDR_Q5_1_Q8_1_MMVQ];
- int vh[VDR_Q5_1_Q8_1_MMVQ];
- int u[2*VDR_Q5_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
- vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
- }
- return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_1;
- const int kqsx = k % QI5_1;
- const block_q5_1 * bx0 = (const block_q5_1 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
- int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
- }
- }
- static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
- int u[2*VDR_Q5_1_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
- }
- return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
- int v[VDR_Q8_0_Q8_1_MMVQ];
- int u[VDR_Q8_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
- u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- }
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
- *x_ql = tile_x_qs;
- *x_dm = (half2 *) tile_x_d;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI8_0;
- const int kqsx = k % QI8_0;
- float * x_dmf = (float *) x_dm;
- const block_q8_0 * bx0 = (const block_q8_0 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
- int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
- }
- }
- static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
- y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q2_K * bq2_K = (const block_q2_K *) vbq;
- const int bq8_offset = QR2_K * (iqs / QI8_1);
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const uint8_t * scales = bq2_K->scales + scale_offset;
- const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
- int u[QR2_K];
- float d8[QR2_K];
- #pragma unroll
- for (int i = 0; i < QR2_K; ++ i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = __low2half(bq8_1[bq8_offset + i].ds);
- }
- return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI2_K;
- const int kqsx = k % QI2_K;
- const block_q2_K * bx0 = (const block_q2_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
- int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
- }
- }
- static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
- const int kbx = k / QI2_K;
- const int ky = (k % QI2_K) * QR2_K;
- const float * y_df = (const float *) y_ds;
- int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
- const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
- #pragma unroll
- for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
- v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
- }
- const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
- const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
- return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q3_K * bq3_K = (const block_q3_K *) vbq;
- const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const float d = bq3_K->d;
- const int vl = get_int_from_uint8(bq3_K->qs, iqs);
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
- int u[QR3_K];
- float d8[QR3_K];
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = __low2half(bq8_1[bq8_offset + i].ds);
- }
- return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
- __shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_qh = tile_x_qh;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI3_K;
- const int kqsx = k % QI3_K;
- const block_q3_K * bx0 = (const block_q3_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
- int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
- int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
- const int ksc = k % (QI3_K/4);
- const int ksc_low = ksc % (QI3_K/8);
- const int shift_low = 4 * (ksc / (QI3_K/8));
- const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
- const int ksc_high = QI3_K/8;
- const int shift_high = 2 * ksc;
- const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
- const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
- }
- }
- static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- const int kbx = k / QI3_K;
- const int ky = (k % QI3_K) * QR3_K;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
- int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
- const int shift = 2 * ((ky % 32) / 8);
- const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
- const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
- const int vlh = (vh << 2) & 0x04040404;
- v[l] = __vsubss4(vll, vlh);
- }
- const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
- return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #ifndef GGML_QKK_64
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- int v[2];
- int u[2*QR4_K];
- float d8[QR4_K];
- // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
- const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
- // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
- // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
- // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
- // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
- const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- v[0] = q4[0];
- v[1] = q4[4];
- const uint16_t * scales = (const uint16_t *)bq4_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- for (int i = 0; i < QR4_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = __low2half(bq8i->ds);
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
- #else
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
- const uint16_t * a = (const uint16_t *)bq4_K->scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
- const float dall = bq4_K->dm[0];
- const float dmin = bq4_K->dm[1];
- const float d8_1 = __low2float(bq8_1[0].ds);
- const float d8_2 = __low2float(bq8_1[1].ds);
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
- const int * q4 = (const int *)bq4_K->qs + (iqs/2);
- const int v1 = q4[0];
- const int v2 = q4[4];
- const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
- const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
- const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
- const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
- sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
- sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
- return dall * sumf_d - dmin * sumf_m;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- #endif
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_K; // == 0 if QK_K == 256
- const int kqsx = k % QI4_K; // == k if QK_K == 256
- const block_q4_K * bx0 = (const block_q4_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
- int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
- #if QK_K == 256
- x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
- #else
- x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
- #endif
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
- const int * scales = (const int *) bxi->scales;
- const int ksc = k % (WARP_SIZE/8);
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
- }
- static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
- const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
- return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #ifndef GGML_QKK_64
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- int vl[2];
- int vh[2];
- int u[2*QR5_K];
- float d8[QR5_K];
- const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
- const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
- vl[0] = ql[0];
- vl[1] = ql[4];
- vh[0] = qh[0] >> bq8_offset;
- vh[1] = qh[4] >> bq8_offset;
- const uint16_t * scales = (const uint16_t *)bq5_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = __low2float(bq8i->ds);
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
- #else
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- const int8_t * s = bq5_K->scales;
- const float d = bq5_K->d;
- const float d8_1 = __low2half(bq8_1[0].ds);
- const float d8_2 = __low2half(bq8_1[1].ds);
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
- const int * ql = (const int *)bq5_K->qs + (iqs/2);
- const int vl1 = ql[0];
- const int vl2 = ql[4];
- const int step = 4 * (iqs/2); // 0, 4, 8, 12
- const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
- const int in = step%8; // 0, 4, 0, 4
- const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
- const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
- const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
- const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
- const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
- const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
- + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
- return d * sumf_d;
- #else
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- #endif
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_K; // == 0 if QK_K == 256
- const int kqsx = k % QI5_K; // == k if QK_K == 256
- const block_q5_K * bx0 = (const block_q5_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR5_K*kqsx;
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
- const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
- const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
- const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
- const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
- x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
- x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
- int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
- #if QK_K == 256
- x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
- #endif
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
- const int * scales = (const int *) bxi->scales;
- const int ksc = k % (WARP_SIZE/8);
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
- }
- static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
- const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
- const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
- return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q6_K * bq6_K = (const block_q6_K *) vbq;
- const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
- const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
- const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
- const int vl = get_int_from_uint8(bq6_K->ql, iqs);
- const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
- const int8_t * scales = bq6_K->scales + scale_offset;
- int u[QR6_K];
- float d8[QR6_K];
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
- d8[i] = __low2half(bq8_1[bq8_offset + 2*i].ds);
- }
- return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
- }
- template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI6_K; // == 0 if QK_K == 256
- const int kqsx = k % QI6_K; // == k if QK_K == 256
- const block_q6_K * bx0 = (const block_q6_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR6_K*kqsx;
- const int ql = get_int_from_uint8(bxi->ql, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
- const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
- const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
- const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
- const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
- x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
- x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
- int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
- x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
- }
- }
- static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
- const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
- const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
- return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
- }
- static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if QK_K == 256
- const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
- #if QR2_XXS == 8
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = q2[2] | (q2[3] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
- const uint8_t signs = ksigns_iq2xs[aux32 & 127];
- for (int j = 0; j < 8; ++j) {
- sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
- }
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.25f;
- return d * sumi;
- #else
- // iqs is 0...15
- const int ib32 = iqs/2;
- const int il = iqs%2;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * __low2float(bq8_1[ib32].ds) * 0.25f;
- const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
- const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
- const int8_t * q8 = bq8_1[ib32].qs + 16*il;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 8; ++j) {
- sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
- sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
- }
- return d * (sumi1 + sumi2);
- #endif
- #else
- assert(false);
- return 0.f;
- #endif
- }
- static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- #if QK_K == 256
- const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
- const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
- sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
- const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
- sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
- #else
- (void) ksigns64;
- assert(false);
- return 0.f;
- #endif
- #else
- (void) ksigns64;
- assert(false);
- return 0.f;
- #endif
- }
- // TODO
- static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- #if QK_K == 256
- const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
- const int ib32 = iqs;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
- const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
- const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
- const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
- sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
- const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
- const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
- const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
- sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
- #else
- (void) ksigns64;
- assert(false);
- return 0.f;
- #endif
- #else
- (void) ksigns64;
- assert(false);
- return 0.f;
- #endif
- }
- static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- #if QK_K == 256
- const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
- const int ib32 = iqs;
- const uint8_t * q3 = bq2->qs + 8*ib32;
- const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = gas[0] | (gas[1] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
- const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
- const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]);
- const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]);
- sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
- sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f;
- return d * sumi;
- #else
- assert(false);
- return 0.f;
- #endif
- #else
- assert(false);
- return 0.f;
- #endif
- }
- // TODO: don't use lookup table for signs
- static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- #if QK_K == 256
- const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
- const int ib32 = iqs;
- const uint8_t * qs = bq2->qs + 8*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
- const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
- uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
- uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
- const int grid_l = __vsub4(grid1[0] ^ signs0, signs0);
- const int grid_h = __vsub4(grid2[0] ^ signs1, signs1);
- sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
- sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
- q8 += 8;
- }
- const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds);
- return d * sumi;
- #else
- assert(false);
- return 0.f;
- #endif
- #else
- assert(false);
- return 0.f;
- #endif
- }
- static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if QK_K == 256
- const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
- const int ib32 = iqs;
- int sumi1 = 0, sumi2 = 0, sumi3 = 0, sumi4 = 0;
- const uint8_t h1 = bq1->scales[2*ib32+0];
- const uint8_t h2 = bq1->scales[2*ib32+1];
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const int * q8 = (const int *)bq8_1[ib32].qs;
- const int * grid1 = (const int *)(iq1s_grid + (bq1->qs[4*ib32+0] | ((h1 & 0x08) << 5)));
- const int * grid2 = (const int *)(iq1s_grid + (bq1->qs[4*ib32+1] | ((h1 & 0x80) << 1)));
- const int * grid3 = (const int *)(iq1s_grid + (bq1->qs[4*ib32+2] | ((h2 & 0x08) << 5)));
- const int * grid4 = (const int *)(iq1s_grid + (bq1->qs[4*ib32+3] | ((h2 & 0x80) << 1)));
- for (int j = 0; j < 2; ++j) {
- sumi1 = __dp4a(q8[j+0], grid1[j], sumi1);
- sumi2 = __dp4a(q8[j+2], grid2[j], sumi2);
- sumi3 = __dp4a(q8[j+4], grid3[j], sumi3);
- sumi4 = __dp4a(q8[j+6], grid4[j], sumi4);
- }
- #else
- const int8_t * q8 = bq8_1[ib32].qs;
- const int8_t * grid1 = (const int8_t *)(iq1s_grid + (bq1->qs[4*ib32+0] | ((h1 & 0x08) << 5)));
- const int8_t * grid2 = (const int8_t *)(iq1s_grid + (bq1->qs[4*ib32+1] | ((h1 & 0x80) << 1)));
- const int8_t * grid3 = (const int8_t *)(iq1s_grid + (bq1->qs[4*ib32+2] | ((h2 & 0x08) << 5)));
- const int8_t * grid4 = (const int8_t *)(iq1s_grid + (bq1->qs[4*ib32+3] | ((h2 & 0x80) << 1)));
- for (int j = 0; j < 8; ++j) {
- sumi1 += q8[j+ 0] * grid1[j];
- sumi2 += q8[j+ 8] * grid2[j];
- sumi3 += q8[j+16] * grid3[j];
- sumi4 += q8[j+24] * grid4[j];
- }
- #endif
- const float d = (float)bq1->d * __low2float(bq8_1[ib32].ds);
- return d * (sumi1 * (2*(h1 & 7) + 1) + sumi2 * (2*((h1 >> 4) & 7) + 1) +
- sumi3 * (2*(h2 & 7) + 1) + sumi4 * (2*((h2 >> 4) & 7) + 1));
- #else
- assert(false);
- return 0.f;
- #endif
- }
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
- int & val1, int & val2) {
- uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
- aux32 = q4 & 0x0f0f0f0f;
- uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
- uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
- val1 = v1 | (v2 << 16);
- aux32 = (q4 >> 4) & 0x0f0f0f0f;
- v1 = values[q8[0]] | (values[q8[1]] << 8);
- v2 = values[q8[2]] | (values[q8[3]] << 8);
- val2 = v1 | (v2 << 16);
- }
- #endif
- static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
- const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
- const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
- get_int_from_table_16(aux, values, v1, v2);
- sumi1 = __dp4a(v1, q8[l+0], sumi1);
- sumi2 = __dp4a(v2, q8[l+4], sumi2);
- }
- #else
- const uint8_t * q4 = bq->qs + 4*iqs;
- const int8_t * q8 = bq8_1->qs + 4*iqs;
- int sumi1 = 0, sumi2 = 0;
- for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
- sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
- sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4];
- }
- #endif
- const float d = (float)bq->d * __low2float(bq8_1->ds);
- return d * (sumi1 + sumi2);
- }
- static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- #if QK_K == 256
- #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
- //// iqs is 0...7
- //const int ib64 = iqs/2;
- //const int il = iqs%2;
- //const int32_t * q8_1 = (const int *)bq8_1[2*ib64+0].qs + 2*il;
- //const int32_t * q8_2 = (const int *)bq8_1[2*ib64+1].qs + 2*il;
- //const uint32_t * q4_1 = (const uint32_t *)bq4->qs + 8*ib64 + 2*il;
- //const uint32_t * q4_2 = q4_1 + 4;
- //const int8_t ls1 = (bq4->scales_l[ib64] & 0xf) | (((bq4->scales_h >> (4*ib64+0)) & 3) << 4);
- //const int8_t ls2 = (bq4->scales_l[ib64] >> 4) | (((bq4->scales_h >> (4*ib64+2)) & 3) << 4);
- //const float d1 = (float)bq4->d * (ls1 - 32) * __low2float(bq8_1[2*ib64+0].ds);
- //const float d2 = (float)bq4->d * (ls2 - 32) * __low2float(bq8_1[2*ib64+1].ds);
- //int v1, v2;
- //int sumi1 = 0, sumi2 = 0;
- //for (int j = 0; j < 2; ++j) {
- // get_int_from_table_16(q4_1[j], values, v1, v2);
- // sumi1 = __dp4a(v2, q8_1[j+4], __dp4a(v1, q8_1[j+0], sumi1));
- // get_int_from_table_16(q4_2[j], values, v1, v2);
- // sumi2 = __dp4a(v2, q8_2[j+4], __dp4a(v1, q8_2[j+0], sumi2));
- //}
- //return d1 * sumi1 + d2 * sumi2;
- // iqs is 0...7
- const int ib32 = iqs;
- const int32_t * q8 = (const int *)bq8_1[ib32].qs;
- const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
- const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
- const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 4; ++j) {
- get_int_from_table_16(q4[j], values, v1, v2);
- sumi1 = __dp4a(v1, q8[j+0], sumi1);
- sumi2 = __dp4a(v2, q8[j+4], sumi2);
- }
- return d * (sumi1 + sumi2);
- //// iqs is 0...15
- //const int ib32 = iqs/2;
- //const int il = iqs%2;
- //const int32_t * q8 = (const int *)bq8_1[ib32].qs + 2*il;
- //const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32 + 2*il;
- //const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
- //const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
- //int v1, v2;
- //int sumi1 = 0, sumi2 = 0;
- //for (int j = 0; j < 2; ++j) {
- // get_int_from_table_16(q4[j], values, v1, v2);
- // sumi1 = __dp4a(v1, q8[j+0], sumi1);
- // sumi2 = __dp4a(v2, q8[j+4], sumi2);
- //}
- //return d * (sumi1 + sumi2);
- #else
- assert(false);
- return 0.f;
- #endif
- #else
- return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
- #endif
- }
- template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
- allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
- static __device__ __forceinline__ void mul_mat_q(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- const int blocks_per_row_x = ncols_x / qk;
- const int blocks_per_col_y = nrows_y / QK8_1;
- const int blocks_per_warp = WARP_SIZE / qi;
- const int & ncols_dst = ncols_y;
- const int row_dst_0 = blockIdx.x*mmq_y;
- const int & row_x_0 = row_dst_0;
- const int col_dst_0 = blockIdx.y*mmq_x;
- const int & col_y_0 = col_dst_0;
- int * tile_x_ql = nullptr;
- half2 * tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
- __shared__ int tile_y_qs[mmq_x * WARP_SIZE];
- __shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
- float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
- for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
- load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
- threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
- #pragma unroll
- for (int ir = 0; ir < qr; ++ir) {
- const int kqs = ir*WARP_SIZE + threadIdx.x;
- const int kbxd = kqs / QI8_1;
- #pragma unroll
- for (int i = 0; i < mmq_x; i += nwarps) {
- const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
- const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
- const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
- tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
- }
- #pragma unroll
- for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
- const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
- const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
- const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
- // if the sum is not needed it's faster to transform the scale to f32 ahead of time
- const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
- half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
- if (need_sum) {
- *dsi_dst = *dsi_src;
- } else {
- float * dfi_dst = (float *) dsi_dst;
- *dfi_dst = __low2half(*dsi_src);
- }
- }
- __syncthreads();
- // #pragma unroll // unrolling this loop causes too much register pressure
- for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
- #pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- #pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- sum[i/WARP_SIZE][j/nwarps] += vec_dot(
- tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
- threadIdx.x + i, threadIdx.y + j, k);
- }
- }
- }
- __syncthreads();
- }
- }
- #pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- const int col_dst = col_dst_0 + j + threadIdx.y;
- if (col_dst >= ncols_dst) {
- return;
- }
- #pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- const int row_dst = row_dst_0 + threadIdx.x + i;
- if (row_dst >= nrows_dst) {
- continue;
- }
- dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
- }
- }
- }
- #define MMQ_X_Q4_0_RDNA2 64
- #define MMQ_Y_Q4_0_RDNA2 128
- #define NWARPS_Q4_0_RDNA2 8
- #define MMQ_X_Q4_0_RDNA1 64
- #define MMQ_Y_Q4_0_RDNA1 64
- #define NWARPS_Q4_0_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q4_0_AMPERE 4
- #define MMQ_Y_Q4_0_AMPERE 32
- #define NWARPS_Q4_0_AMPERE 4
- #else
- #define MMQ_X_Q4_0_AMPERE 64
- #define MMQ_Y_Q4_0_AMPERE 128
- #define NWARPS_Q4_0_AMPERE 4
- #endif
- #define MMQ_X_Q4_0_PASCAL 64
- #define MMQ_Y_Q4_0_PASCAL 64
- #define NWARPS_Q4_0_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_0_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q4_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q4_0_RDNA2;
- const int mmq_y = MMQ_Y_Q4_0_RDNA2;
- const int nwarps = NWARPS_Q4_0_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q4_0_RDNA1;
- const int mmq_y = MMQ_Y_Q4_0_RDNA1;
- const int nwarps = NWARPS_Q4_0_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q4_0_AMPERE;
- const int mmq_y = MMQ_Y_Q4_0_AMPERE;
- const int nwarps = NWARPS_Q4_0_AMPERE;
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_0_PASCAL;
- const int mmq_y = MMQ_Y_Q4_0_PASCAL;
- const int nwarps = NWARPS_Q4_0_PASCAL;
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q4_0_q8_1_mul_mat;
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q4_1_RDNA2 64
- #define MMQ_Y_Q4_1_RDNA2 128
- #define NWARPS_Q4_1_RDNA2 8
- #define MMQ_X_Q4_1_RDNA1 64
- #define MMQ_Y_Q4_1_RDNA1 64
- #define NWARPS_Q4_1_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q4_1_AMPERE 4
- #define MMQ_Y_Q4_1_AMPERE 32
- #define NWARPS_Q4_1_AMPERE 4
- #else
- #define MMQ_X_Q4_1_AMPERE 64
- #define MMQ_Y_Q4_1_AMPERE 128
- #define NWARPS_Q4_1_AMPERE 4
- #endif
- #define MMQ_X_Q4_1_PASCAL 64
- #define MMQ_Y_Q4_1_PASCAL 64
- #define NWARPS_Q4_1_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q4_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q4_1_RDNA2;
- const int mmq_y = MMQ_Y_Q4_1_RDNA2;
- const int nwarps = NWARPS_Q4_1_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q4_1_RDNA1;
- const int mmq_y = MMQ_Y_Q4_1_RDNA1;
- const int nwarps = NWARPS_Q4_1_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q4_1_AMPERE;
- const int mmq_y = MMQ_Y_Q4_1_AMPERE;
- const int nwarps = NWARPS_Q4_1_AMPERE;
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_1_PASCAL;
- const int mmq_y = MMQ_Y_Q4_1_PASCAL;
- const int nwarps = NWARPS_Q4_1_PASCAL;
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q4_1_q8_1_mul_mat;
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q5_0_RDNA2 64
- #define MMQ_Y_Q5_0_RDNA2 128
- #define NWARPS_Q5_0_RDNA2 8
- #define MMQ_X_Q5_0_RDNA1 64
- #define MMQ_Y_Q5_0_RDNA1 64
- #define NWARPS_Q5_0_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q5_0_AMPERE 4
- #define MMQ_Y_Q5_0_AMPERE 32
- #define NWARPS_Q5_0_AMPERE 4
- #else
- #define MMQ_X_Q5_0_AMPERE 128
- #define MMQ_Y_Q5_0_AMPERE 64
- #define NWARPS_Q5_0_AMPERE 4
- #endif
- #define MMQ_X_Q5_0_PASCAL 64
- #define MMQ_Y_Q5_0_PASCAL 64
- #define NWARPS_Q5_0_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q5_0_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q5_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q5_0_RDNA2;
- const int mmq_y = MMQ_Y_Q5_0_RDNA2;
- const int nwarps = NWARPS_Q5_0_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q5_0_RDNA1;
- const int mmq_y = MMQ_Y_Q5_0_RDNA1;
- const int nwarps = NWARPS_Q5_0_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q5_0_AMPERE;
- const int mmq_y = MMQ_Y_Q5_0_AMPERE;
- const int nwarps = NWARPS_Q5_0_AMPERE;
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_0_PASCAL;
- const int mmq_y = MMQ_Y_Q5_0_PASCAL;
- const int nwarps = NWARPS_Q5_0_PASCAL;
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q5_0_q8_1_mul_mat;
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q5_1_RDNA2 64
- #define MMQ_Y_Q5_1_RDNA2 128
- #define NWARPS_Q5_1_RDNA2 8
- #define MMQ_X_Q5_1_RDNA1 64
- #define MMQ_Y_Q5_1_RDNA1 64
- #define NWARPS_Q5_1_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q5_1_AMPERE 4
- #define MMQ_Y_Q5_1_AMPERE 32
- #define NWARPS_Q5_1_AMPERE 4
- #else
- #define MMQ_X_Q5_1_AMPERE 128
- #define MMQ_Y_Q5_1_AMPERE 64
- #define NWARPS_Q5_1_AMPERE 4
- #endif
- #define MMQ_X_Q5_1_PASCAL 64
- #define MMQ_Y_Q5_1_PASCAL 64
- #define NWARPS_Q5_1_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q5_1_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q5_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q5_1_RDNA2;
- const int mmq_y = MMQ_Y_Q5_1_RDNA2;
- const int nwarps = NWARPS_Q5_1_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q5_1_RDNA1;
- const int mmq_y = MMQ_Y_Q5_1_RDNA1;
- const int nwarps = NWARPS_Q5_1_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q5_1_AMPERE;
- const int mmq_y = MMQ_Y_Q5_1_AMPERE;
- const int nwarps = NWARPS_Q5_1_AMPERE;
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_1_PASCAL;
- const int mmq_y = MMQ_Y_Q5_1_PASCAL;
- const int nwarps = NWARPS_Q5_1_PASCAL;
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q5_1_q8_1_mul_mat;
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q8_0_RDNA2 64
- #define MMQ_Y_Q8_0_RDNA2 128
- #define NWARPS_Q8_0_RDNA2 8
- #define MMQ_X_Q8_0_RDNA1 64
- #define MMQ_Y_Q8_0_RDNA1 64
- #define NWARPS_Q8_0_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q8_0_AMPERE 4
- #define MMQ_Y_Q8_0_AMPERE 32
- #define NWARPS_Q8_0_AMPERE 4
- #else
- #define MMQ_X_Q8_0_AMPERE 128
- #define MMQ_Y_Q8_0_AMPERE 64
- #define NWARPS_Q8_0_AMPERE 4
- #endif
- #define MMQ_X_Q8_0_PASCAL 64
- #define MMQ_Y_Q8_0_PASCAL 64
- #define NWARPS_Q8_0_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q8_0_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q8_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q8_0_RDNA2;
- const int mmq_y = MMQ_Y_Q8_0_RDNA2;
- const int nwarps = NWARPS_Q8_0_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q8_0_RDNA1;
- const int mmq_y = MMQ_Y_Q8_0_RDNA1;
- const int nwarps = NWARPS_Q8_0_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q8_0_AMPERE;
- const int mmq_y = MMQ_Y_Q8_0_AMPERE;
- const int nwarps = NWARPS_Q8_0_AMPERE;
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q8_0_PASCAL;
- const int mmq_y = MMQ_Y_Q8_0_PASCAL;
- const int nwarps = NWARPS_Q8_0_PASCAL;
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q8_0_q8_1_mul_mat;
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q2_K_RDNA2 64
- #define MMQ_Y_Q2_K_RDNA2 128
- #define NWARPS_Q2_K_RDNA2 8
- #define MMQ_X_Q2_K_RDNA1 128
- #define MMQ_Y_Q2_K_RDNA1 32
- #define NWARPS_Q2_K_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q2_K_AMPERE 4
- #define MMQ_Y_Q2_K_AMPERE 32
- #define NWARPS_Q2_K_AMPERE 4
- #else
- #define MMQ_X_Q2_K_AMPERE 64
- #define MMQ_Y_Q2_K_AMPERE 128
- #define NWARPS_Q2_K_AMPERE 4
- #endif
- #define MMQ_X_Q2_K_PASCAL 64
- #define MMQ_Y_Q2_K_PASCAL 64
- #define NWARPS_Q2_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q2_K_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q2_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q2_K_RDNA2;
- const int mmq_y = MMQ_Y_Q2_K_RDNA2;
- const int nwarps = NWARPS_Q2_K_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q2_K_RDNA1;
- const int mmq_y = MMQ_Y_Q2_K_RDNA1;
- const int nwarps = NWARPS_Q2_K_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q2_K_AMPERE;
- const int mmq_y = MMQ_Y_Q2_K_AMPERE;
- const int nwarps = NWARPS_Q2_K_AMPERE;
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q2_K_PASCAL;
- const int mmq_y = MMQ_Y_Q2_K_PASCAL;
- const int nwarps = NWARPS_Q2_K_PASCAL;
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q2_K_q8_1_mul_mat;
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q3_K_RDNA2 128
- #define MMQ_Y_Q3_K_RDNA2 64
- #define NWARPS_Q3_K_RDNA2 8
- #define MMQ_X_Q3_K_RDNA1 32
- #define MMQ_Y_Q3_K_RDNA1 128
- #define NWARPS_Q3_K_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q3_K_AMPERE 4
- #define MMQ_Y_Q3_K_AMPERE 32
- #define NWARPS_Q3_K_AMPERE 4
- #else
- #define MMQ_X_Q3_K_AMPERE 128
- #define MMQ_Y_Q3_K_AMPERE 128
- #define NWARPS_Q3_K_AMPERE 4
- #endif
- #define MMQ_X_Q3_K_PASCAL 64
- #define MMQ_Y_Q3_K_PASCAL 64
- #define NWARPS_Q3_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q3_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q3_K_RDNA2;
- const int mmq_y = MMQ_Y_Q3_K_RDNA2;
- const int nwarps = NWARPS_Q3_K_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q3_K_RDNA1;
- const int mmq_y = MMQ_Y_Q3_K_RDNA1;
- const int nwarps = NWARPS_Q3_K_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q3_K_AMPERE;
- const int mmq_y = MMQ_Y_Q3_K_AMPERE;
- const int nwarps = NWARPS_Q3_K_AMPERE;
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q3_K_PASCAL;
- const int mmq_y = MMQ_Y_Q3_K_PASCAL;
- const int nwarps = NWARPS_Q3_K_PASCAL;
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q3_K_q8_1_mul_mat;
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q4_K_RDNA2 64
- #define MMQ_Y_Q4_K_RDNA2 128
- #define NWARPS_Q4_K_RDNA2 8
- #define MMQ_X_Q4_K_RDNA1 32
- #define MMQ_Y_Q4_K_RDNA1 64
- #define NWARPS_Q4_K_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q4_K_AMPERE 4
- #define MMQ_Y_Q4_K_AMPERE 32
- #define NWARPS_Q4_K_AMPERE 4
- #else
- #define MMQ_X_Q4_K_AMPERE 64
- #define MMQ_Y_Q4_K_AMPERE 128
- #define NWARPS_Q4_K_AMPERE 4
- #endif
- #define MMQ_X_Q4_K_PASCAL 64
- #define MMQ_Y_Q4_K_PASCAL 64
- #define NWARPS_Q4_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q4_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q4_K_RDNA2;
- const int mmq_y = MMQ_Y_Q4_K_RDNA2;
- const int nwarps = NWARPS_Q4_K_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q4_K_RDNA1;
- const int mmq_y = MMQ_Y_Q4_K_RDNA1;
- const int nwarps = NWARPS_Q4_K_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q4_K_AMPERE;
- const int mmq_y = MMQ_Y_Q4_K_AMPERE;
- const int nwarps = NWARPS_Q4_K_AMPERE;
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_K_PASCAL;
- const int mmq_y = MMQ_Y_Q4_K_PASCAL;
- const int nwarps = NWARPS_Q4_K_PASCAL;
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q4_K_q8_1_mul_mat;
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q5_K_RDNA2 64
- #define MMQ_Y_Q5_K_RDNA2 128
- #define NWARPS_Q5_K_RDNA2 8
- #define MMQ_X_Q5_K_RDNA1 32
- #define MMQ_Y_Q5_K_RDNA1 64
- #define NWARPS_Q5_K_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q5_K_AMPERE 4
- #define MMQ_Y_Q5_K_AMPERE 32
- #define NWARPS_Q5_K_AMPERE 4
- #else
- #define MMQ_X_Q5_K_AMPERE 64
- #define MMQ_Y_Q5_K_AMPERE 128
- #define NWARPS_Q5_K_AMPERE 4
- #endif
- #define MMQ_X_Q5_K_PASCAL 64
- #define MMQ_Y_Q5_K_PASCAL 64
- #define NWARPS_Q5_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q5_K_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q5_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q5_K_RDNA2;
- const int mmq_y = MMQ_Y_Q5_K_RDNA2;
- const int nwarps = NWARPS_Q5_K_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q5_K_RDNA1;
- const int mmq_y = MMQ_Y_Q5_K_RDNA1;
- const int nwarps = NWARPS_Q5_K_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q5_K_AMPERE;
- const int mmq_y = MMQ_Y_Q5_K_AMPERE;
- const int nwarps = NWARPS_Q5_K_AMPERE;
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_K_PASCAL;
- const int mmq_y = MMQ_Y_Q5_K_PASCAL;
- const int nwarps = NWARPS_Q5_K_PASCAL;
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q5_K_q8_1_mul_mat;
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- #define MMQ_X_Q6_K_RDNA2 64
- #define MMQ_Y_Q6_K_RDNA2 128
- #define NWARPS_Q6_K_RDNA2 8
- #define MMQ_X_Q6_K_RDNA1 32
- #define MMQ_Y_Q6_K_RDNA1 64
- #define NWARPS_Q6_K_RDNA1 8
- #if defined(CUDA_USE_TENSOR_CORES)
- #define MMQ_X_Q6_K_AMPERE 4
- #define MMQ_Y_Q6_K_AMPERE 32
- #define NWARPS_Q6_K_AMPERE 4
- #else
- #define MMQ_X_Q6_K_AMPERE 64
- #define MMQ_Y_Q6_K_AMPERE 64
- #define NWARPS_Q6_K_AMPERE 4
- #endif
- #define MMQ_X_Q6_K_PASCAL 64
- #define MMQ_Y_Q6_K_PASCAL 64
- #define NWARPS_Q6_K_PASCAL 8
- template <bool need_check> static __global__ void
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
- #endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q6_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q6_K_RDNA2;
- const int mmq_y = MMQ_Y_Q6_K_RDNA2;
- const int nwarps = NWARPS_Q6_K_RDNA2;
- #else
- const int mmq_x = MMQ_X_Q6_K_RDNA1;
- const int mmq_y = MMQ_Y_Q6_K_RDNA1;
- const int nwarps = NWARPS_Q6_K_RDNA1;
- #endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q6_K_AMPERE;
- const int mmq_y = MMQ_Y_Q6_K_AMPERE;
- const int nwarps = NWARPS_Q6_K_AMPERE;
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q6_K_PASCAL;
- const int mmq_y = MMQ_Y_Q6_K_PASCAL;
- const int nwarps = NWARPS_Q6_K_PASCAL;
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- #else
- (void) vec_dot_q6_K_q8_1_mul_mat;
- NO_DEVICE_CODE;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- }
- template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- // tell the compiler to use as many registers as it wants, see nwarps definition below
- __launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- static __global__ void mul_mat_vec_q(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
- constexpr int nwarps = 1;
- constexpr int rows_per_cuda_block = 1;
- #else
- constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
- constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
- const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
- const int row0 = rows_per_cuda_block*blockIdx.x;
- const int blocks_per_row_x = ncols_x / qk;
- const int blocks_per_col_y = nrows_y / QK8_1;
- constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
- // partial sum for each thread
- float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
- const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
- // x block quant index when casting the quants to int
- const int kqs = vdr * (tid % (qi/vdr));
- #pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
- #pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
- tmp[j][i] += vec_dot_q_cuda(
- &x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
- }
- }
- }
- __shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
- if (threadIdx.y > 0) {
- #pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
- #pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
- tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
- }
- }
- }
- __syncthreads();
- if (threadIdx.y > 0) {
- return;
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
- #pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
- #pragma unroll
- for (int l = 0; l < nwarps-1; ++l) {
- tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
- }
- tmp[j][i] = warp_reduce_sum(tmp[j][i]);
- }
- if (threadIdx.x < rows_per_cuda_block) {
- dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
- }
- }
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
- // qk = quantized weights per x block
- // qr = number of quantized weights per data value in x block
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row >= nrows) {
- return;
- }
- const int tid = threadIdx.x;
- const int iter_stride = 2*GGML_CUDA_DMMV_X;
- const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
- const int y_offset = qr == 1 ? 1 : qk/2;
- // partial sum for each thread
- #ifdef GGML_CUDA_F16
- half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
- #else
- float tmp = 0.0f;
- #endif // GGML_CUDA_F16
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = (row*ncols + col)/qk; // x block index
- const int iqs = (col%qk)/qr; // x quant index
- const int iybs = col - col%qk; // y block start index
- // processing >2 values per i iter is faster for fast GPUs
- #pragma unroll
- for (int j = 0; j < vals_per_iter; j += 2) {
- // process 2 vals per j iter
- // dequantize
- // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs + j/qr, v);
- // matrix multiplication
- // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
- #ifdef GGML_CUDA_F16
- tmp += __hmul2(v, {
- y[iybs + iqs + j/qr + 0],
- y[iybs + iqs + j/qr + y_offset]
- });
- #else
- tmp += v.x * y[iybs + iqs + j/qr + 0];
- tmp += v.y * y[iybs + iqs + j/qr + y_offset];
- #endif // GGML_CUDA_F16
- }
- }
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (tid == 0) {
- #ifdef GGML_CUDA_F16
- dst[row] = tmp.x + tmp.y;
- #else
- dst[row] = tmp;
- #endif // GGML_CUDA_F16
- }
- }
- static __global__ void mul_mat_p021_f16_f32(
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / (nchannels_y / nchannels_x);
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- // x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
- const float xi = __half2float(x[ix]);
- const int row_y = col_x;
- // y is not transposed but permuted
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // dst is not transposed and not permuted
- const int idst = channel*nrows_dst + row_dst;
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / channel_x_divisor;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- const int idst = channel*nrows_dst + row_dst;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- const int row_y = col_x;
- const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
- const int iy = channel*nrows_y + row_y;
- const float xi = __half2float(x[ix]);
- tmp += xi * y[iy];
- }
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- float * dsti = (float *) cdsti;
- *dsti = *xi;
- }
- static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- half * dsti = (half *) cdsti;
- *dsti = __float2half(*xi);
- }
- static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
- const half * xi = (const half *) cxi;
- half * dsti = (half *) cdsti;
- *dsti = *xi;
- }
- static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
- const half * xi = (const half *) cxi;
- float * dsti = (float *) cdsti;
- *dsti = *xi;
- }
- template <cpy_kernel_t cpy_1>
- static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13) {
- const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= ne) {
- return;
- }
- // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
- // then combine those indices with the corresponding byte offsets to get the total offsets
- const int64_t i03 = i/(ne00 * ne01 * ne02);
- const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
- const int64_t i13 = i/(ne10 * ne11 * ne12);
- const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
- cpy_1(cx + x_offset, cdst + dst_offset);
- }
- static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q8_0 * dsti = (block_q8_0 *) cdsti;
- float amax = 0.0f; // absolute max
- for (int j = 0; j < QK8_0; j++) {
- const float v = xi[j];
- amax = fmaxf(amax, fabsf(v));
- }
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- dsti->d = d;
- for (int j = 0; j < QK8_0; ++j) {
- const float x0 = xi[j]*id;
- dsti->qs[j] = roundf(x0);
- }
- }
- static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_0 * dsti = (block_q4_0 *) cdsti;
- float amax = 0.0f;
- float vmax = 0.0f;
- for (int j = 0; j < QK4_0; ++j) {
- const float v = xi[j];
- if (amax < fabsf(v)) {
- amax = fabsf(v);
- vmax = v;
- }
- }
- const float d = vmax / -8;
- const float id = d ? 1.0f/d : 0.0f;
- dsti->d = d;
- for (int j = 0; j < QK4_0/2; ++j) {
- const float x0 = xi[0 + j]*id;
- const float x1 = xi[QK4_0/2 + j]*id;
- const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
- const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
- }
- }
- static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_1 * dsti = (block_q4_1 *) cdsti;
- float vmin = FLT_MAX;
- float vmax = -FLT_MAX;
- for (int j = 0; j < QK4_1; ++j) {
- const float v = xi[j];
- if (v < vmin) vmin = v;
- if (v > vmax) vmax = v;
- }
- const float d = (vmax - vmin) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- dsti->dm.x = d;
- dsti->dm.y = vmin;
- for (int j = 0; j < QK4_1/2; ++j) {
- const float x0 = (xi[0 + j] - vmin)*id;
- const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
- const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
- const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
- }
- }
- template <cpy_kernel_t cpy_blck, int qk>
- static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13) {
- const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
- if (i >= ne) {
- return;
- }
- const int i03 = i/(ne00 * ne01 * ne02);
- const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
- const int i13 = i/(ne10 * ne11 * ne12);
- const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
- cpy_blck(cx + x_offset, cdst + dst_offset);
- }
- static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
- const float y = (i0 / 2 - low) / max(0.001f, high - low);
- return 1.0f - min(1.0f, max(0.0f, y));
- }
- struct rope_corr_dims {
- float v[4];
- };
- // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
- // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
- static __device__ void rope_yarn(
- float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
- float * cos_theta, float * sin_theta
- ) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
- }
- *cos_theta = cosf(theta) * mscale;
- *sin_theta = sinf(theta) * mscale;
- }
- // rope == RoPE == rotary positional embedding
- template<typename T, bool has_pos>
- static __global__ void rope(
- const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims
- ) {
- const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
- if (col >= ncols) {
- return;
- }
- const int row = blockDim.x*blockIdx.x + threadIdx.x;
- const int i = row*ncols + col;
- const int i2 = row/p_delta_rows;
- const int p = has_pos ? pos[i2] : 0;
- const float theta_base = p*powf(freq_base, -float(col)/ncols);
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
- }
- template<typename T, bool has_pos>
- static __global__ void rope_neox(
- const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
- ) {
- const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
- if (col >= ncols) {
- return;
- }
- const int row = blockDim.x*blockIdx.x + threadIdx.x;
- const int ib = col / n_dims;
- const int ic = col % n_dims;
- if (ib > 0) {
- const int i = row*ncols + ib*n_dims + ic;
- dst[i + 0] = x[i + 0];
- dst[i + 1] = x[i + 1];
- return;
- }
- const int i = row*ncols + ib*n_dims + ic/2;
- const int i2 = row/p_delta_rows;
- float cur_rot = inv_ndims * ic - ib;
- const int p = has_pos ? pos[i2] : 0;
- const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + n_dims/2];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
- }
- static __global__ void rope_glm_f32(
- const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
- int n_ctx
- ) {
- const int col = blockDim.x*blockIdx.x + threadIdx.x;
- const int half_n_dims = ncols/4;
- if (col >= half_n_dims) {
- return;
- }
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
- const int i2 = row/p_delta_rows;
- const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
- // FIXME: this is likely wrong
- const int p = pos != nullptr ? pos[i2] : 0;
- const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + half_n_dims];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
- const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
- const float sin_block_theta = sinf(block_theta);
- const float cos_block_theta = cosf(block_theta);
- const float x2 = x[i + half_n_dims * 2];
- const float x3 = x[i + half_n_dims * 3];
- dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
- dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
- }
- static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
- const int n_heads_log2_floor, const float m0, const float m1) {
- const int col = blockDim.x*blockIdx.x + threadIdx.x;
- if (col >= ncols) {
- return;
- }
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
- const int k = row/k_rows;
- float m_k;
- if (k < n_heads_log2_floor) {
- m_k = powf(m0, k + 1);
- } else {
- m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
- }
- dst[i] = col * m_k + x[i];
- }
- static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
- const int row = blockIdx.x;
- const int col = threadIdx.x;
- float sum = 0.0f;
- for (int i = col; i < ncols; i += blockDim.x) {
- sum += x[row * ncols + i];
- }
- sum = warp_reduce_sum(sum);
- if (col == 0) {
- dst[row] = sum;
- }
- }
- template<typename T>
- static inline __device__ void swap(T & a, T & b) {
- T tmp = a;
- a = b;
- b = tmp;
- }
- template<ggml_sort_order order>
- static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
- // bitonic sort
- int col = threadIdx.x;
- int row = blockIdx.y;
- if (col >= ncols) return;
- const float * x_row = x + row * ncols;
- int * dst_row = dst + row * ncols;
- // initialize indices
- if (col < ncols) {
- dst_row[col] = col;
- }
- __syncthreads();
- for (int k = 2; k <= ncols; k *= 2) {
- for (int j = k / 2; j > 0; j /= 2) {
- int ixj = col ^ j;
- if (ixj > col) {
- if ((col & k) == 0) {
- if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
- swap(dst_row[col], dst_row[ixj]);
- }
- } else {
- if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
- swap(dst_row[col], dst_row[ixj]);
- }
- }
- }
- __syncthreads();
- }
- }
- }
- static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
- const int col = blockDim.y*blockIdx.y + threadIdx.y;
- const int row = blockDim.x*blockIdx.x + threadIdx.x;
- if (col >= ncols) {
- return;
- }
- const int i = row*ncols + col;
- //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
- //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
- dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
- }
- template <bool vals_smem, int ncols_template, int block_size_template>
- static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
- const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
- const int tid = threadIdx.x;
- const int rowx = blockIdx.x;
- const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
- const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
- const int warp_id = threadIdx.x / WARP_SIZE;
- const int lane_id = threadIdx.x % WARP_SIZE;
- float slope = 0.0f;
- // ALiBi
- if (max_bias > 0.0f) {
- const int h = rowx/nrows_y; // head index
- const float base = h < n_head_log2 ? m0 : m1;
- const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
- slope = powf(base, exp);
- }
- extern __shared__ float data_soft_max_f32[];
- float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
- // shared memory buffer to cache values between iterations:
- float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols;
- float max_val = -INFINITY;
- #pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
- const int ix = rowx*ncols + col;
- const int iy = rowy*ncols + col;
- const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
- vals[col] = val;
- max_val = max(max_val, val);
- }
- // find the max value in the block
- max_val = warp_reduce_max(max_val);
- if (block_size > WARP_SIZE) {
- if (warp_id == 0) {
- buf_iw[lane_id] = -INFINITY;
- }
- __syncthreads();
- if (lane_id == 0) {
- buf_iw[warp_id] = max_val;
- }
- __syncthreads();
- max_val = buf_iw[lane_id];
- max_val = warp_reduce_max(max_val);
- }
- float tmp = 0.0f; // partial sum
- #pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
- const float val = expf(vals[col] - max_val);
- tmp += val;
- vals[col] = val;
- }
- // find the sum of exps in the block
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __syncthreads();
- if (warp_id == 0) {
- buf_iw[lane_id] = 0.0f;
- }
- __syncthreads();
- if (lane_id == 0) {
- buf_iw[warp_id] = tmp;
- }
- __syncthreads();
- tmp = buf_iw[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
- const float inv_sum = 1.0f / tmp;
- #pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- return;
- }
- const int idst = rowx*ncols + col;
- dst[idst] = vals[col] * inv_sum;
- }
- }
- static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = scale * x[i];
- }
- static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
- }
- template <typename T>
- static __global__ void im2col_kernel(
- const float * x, T * dst, int64_t batch_offset,
- int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
- int s0, int s1, int p0, int p1, int d0, int d1) {
- const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
- if (i >= pelements) {
- return;
- }
- const int64_t ksize = OW * (KH > 1 ? KW : 1);
- const int64_t kx = i / ksize;
- const int64_t kd = kx * ksize;
- const int64_t ky = (i - kd) / OW;
- const int64_t ix = i % OW;
- const int64_t oh = blockIdx.y;
- const int64_t batch = blockIdx.z / IC;
- const int64_t ic = blockIdx.z % IC;
- const int64_t iiw = ix * s0 + kx * d0 - p0;
- const int64_t iih = oh * s1 + ky * d1 - p1;
- const int64_t offset_dst =
- ((batch * OH + oh) * OW + ix) * CHW +
- (ic * (KW * KH) + ky * KW + kx);
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst[offset_dst] = 0.0f;
- } else {
- const int64_t offset_src = ic * offset_delta + batch * batch_offset;
- dst[offset_dst] = x[offset_src + iih * IW + iiw];
- }
- }
- template <typename Ti, typename To>
- static __global__ void pool2d_nchw_kernel(
- const int ih, const int iw, const int oh, const int ow,
- const int kh, const int kw, const int sh, const int sw,
- const int ph, const int pw, const int parallel_elements,
- const Ti* src, To* dst, const enum ggml_op_pool op) {
- int idx = threadIdx.x + blockIdx.x * blockDim.x;
- if (idx >= parallel_elements) {
- return;
- }
- const int I_HW = ih * iw;
- const int O_HW = oh * ow;
- const int nc = idx / O_HW;
- const int cur_oh = idx % O_HW / ow;
- const int cur_ow = idx % O_HW % ow;
- const Ti* i_ptr = src + nc * I_HW;
- To* o_ptr = dst + nc * O_HW;
- const int start_h = cur_oh * sh - ph;
- const int bh = max(0, start_h);
- const int eh = min(ih, start_h + kh);
- const int start_w = cur_ow * sw - pw;
- const int bw = max(0, start_w);
- const int ew = min(iw, start_w + kw);
- const To scale = 1. / (kh * kw);
- To res = 0;
- switch (op) {
- case GGML_OP_POOL_AVG: res = 0; break;
- case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
- }
- for (int i = bh; i < eh; i += 1) {
- for (int j = bw; j < ew; j += 1) {
- #if __CUDA_ARCH__ >= 350
- Ti cur = __ldg(i_ptr + i * iw + j);
- #else
- Ti cur = i_ptr[i * iw + j];
- #endif
- switch (op) {
- case GGML_OP_POOL_AVG: res += cur * scale; break;
- case GGML_OP_POOL_MAX: res = max(res, (To)cur); break;
- }
- }
- }
- o_ptr[cur_oh * ow + cur_ow] = res;
- }
- template<int qk, int qr, dequantize_kernel_t dq>
- static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
- const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
- const dim3 block_nums(block_num_x, ne10, ne11*ne12);
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
- GGML_ASSERT(ne00 % 2 == 0);
- k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne00, /*ne01, ne02, ne03,*/
- /*ne10, ne11,*/ ne12, /*ne13,*/
- /* s0,*/ s1, s2, s3,
- /* nb00,*/ nb01, nb02, nb03,
- s10, s11, s12/*, s13*/);
- (void) dst;
- }
- template<typename src0_t>
- static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
- const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
- const dim3 block_nums(block_num_x, ne10, ne11*ne12);
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
- k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne00, /*ne01, ne02, ne03,*/
- /*ne10, ne11,*/ ne12, /*ne13,*/
- /* s0,*/ s1, s2, s3,
- /* nb00,*/ nb01, nb02, nb03,
- s10, s11, s12/*, s13*/);
- (void) dst;
- }
- template<float (*bin_op)(const float, const float)>
- struct bin_bcast_cuda {
- template<typename src0_t, typename src1_t, typename dst_t>
- void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
- const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
- cudaStream_t stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- int nr0 = ne10/ne0;
- int nr1 = ne11/ne1;
- int nr2 = ne12/ne2;
- int nr3 = ne13/ne3;
- int nr[4] = { nr0, nr1, nr2, nr3 };
- // collapse dimensions until first broadcast dimension
- int64_t cne0[] = {ne0, ne1, ne2, ne3};
- int64_t cne1[] = {ne10, ne11, ne12, ne13};
- size_t cnb0[] = {nb0, nb1, nb2, nb3};
- size_t cnb1[] = {nb10, nb11, nb12, nb13};
- auto collapse = [](int64_t cne[]) {
- cne[0] *= cne[1];
- cne[1] = cne[2];
- cne[2] = cne[3];
- cne[3] = 1;
- };
- auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
- cnb[1] *= cne[1];
- cnb[2] *= cne[2];
- cnb[3] *= cne[3];
- };
- for (int i = 0; i < 4; i++) {
- if (nr[i] != 1) {
- break;
- }
- if (i > 0) {
- collapse_nb(cnb0, cne0);
- collapse_nb(cnb1, cne1);
- collapse(cne0);
- collapse(cne1);
- }
- }
- {
- int64_t ne0 = cne0[0];
- int64_t ne1 = cne0[1];
- int64_t ne2 = cne0[2];
- int64_t ne3 = cne0[3];
- int64_t ne10 = cne1[0];
- int64_t ne11 = cne1[1];
- int64_t ne12 = cne1[2];
- int64_t ne13 = cne1[3];
- size_t nb0 = cnb0[0];
- size_t nb1 = cnb0[1];
- size_t nb2 = cnb0[2];
- size_t nb3 = cnb0[3];
- size_t nb10 = cnb1[0];
- size_t nb11 = cnb1[1];
- size_t nb12 = cnb1[2];
- size_t nb13 = cnb1[3];
- size_t s0 = nb0 / sizeof(dst_t);
- size_t s1 = nb1 / sizeof(dst_t);
- size_t s2 = nb2 / sizeof(dst_t);
- size_t s3 = nb3 / sizeof(dst_t);
- size_t s10 = nb10 / sizeof(src1_t);
- size_t s11 = nb11 / sizeof(src1_t);
- size_t s12 = nb12 / sizeof(src1_t);
- size_t s13 = nb13 / sizeof(src1_t);
- GGML_ASSERT(s0 == 1);
- GGML_ASSERT(s10 == 1);
- const int block_size = 128;
- int64_t hne0 = std::max(ne0/2LL, 1LL);
- dim3 block_dims;
- block_dims.x = std::min<unsigned int>(hne0, block_size);
- block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
- block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
- dim3 block_nums(
- (hne0 + block_dims.x - 1) / block_dims.x,
- (ne1 + block_dims.y - 1) / block_dims.y,
- (ne2*ne3 + block_dims.z - 1) / block_dims.z
- );
- if (block_nums.z > 65535) {
- // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
- int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
- k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne0, ne1, ne2, ne3,
- ne10, ne11, ne12, ne13,
- /* s0, */ s1, s2, s3,
- /* s10, */ s11, s12, s13);
- } else {
- k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne0, ne1, ne2, ne3,
- ne10, ne11, ne12, ne13,
- /* s0, */ s1, s2, s3,
- /* s10, */ s11, s12, s13);
- }
- }
- }
- };
- static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
- const int ne10, const int ne11, const int ne12,
- const int nb1, const int nb2, const int offset, cudaStream_t stream) {
- int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
- acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
- }
- static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
- gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
- silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
- gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
- tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
- relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
- hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
- hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
- leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
- }
- static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
- sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
- }
- static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- if (ncols < 1024) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- } else {
- const dim3 block_dims(1024, 1, 1);
- norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- }
- }
- static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
- static const float eps = 1e-6f;
- if (group_size < 1024) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
- } else {
- const dim3 block_dims(1024, 1, 1);
- group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
- }
- }
- static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne1, ne2);
- concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
- }
- static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
- const int scale_factor, cudaStream_t stream) {
- int ne0 = (ne00 * scale_factor);
- int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
- dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
- upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
- }
- static void pad_f32_cuda(const float * x, float * dst,
- const int ne00, const int ne01, const int ne02, const int ne03,
- const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne1, ne2*ne3);
- pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
- }
- static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
- arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start, step);
- }
- static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
- const int dim, const int max_period, cudaStream_t stream) {
- int half_ceil = (dim + 1) / 2;
- int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne00, 1);
- timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
- }
- static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- if (ncols < 1024) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- } else {
- const dim3 block_dims(1024, 1, 1);
- rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- }
- }
- static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
- const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
- const dim3 num_blocks(block_num_x, ky, 1);
- const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
- quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
- dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN;
- if (k % CUDA_Q8_0_NE_ALIGN == 0) {
- const bool need_check = false;
- dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
- } else {
- const bool need_check = true;
- dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
- }
- }
- template<typename dst_t>
- static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- template<typename dst_t>
- static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- template<typename dst_t>
- static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb32 = k / 32;
- const int nb = (k + 255) / 256;
- dequantize_block_q4_0<<<nb, 32, 0, stream>>>(vx, y, nb32);
- }
- template<typename dst_t>
- static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb32 = k / 32;
- const int nb = (k + 255) / 256;
- dequantize_block_q4_1<<<nb, 32, 0, stream>>>(vx, y, nb32);
- }
- template<typename dst_t>
- static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
- }
- template<typename dst_t>
- static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- template<typename dst_t>
- static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
- #else
- dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- template<typename dst_t>
- static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
- }
- template<typename dst_t>
- static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
- }
- template<typename dst_t>
- static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
- }
- template<typename dst_t>
- static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
- }
- template<typename dst_t>
- static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq3_s<<<nb, 32, 0, stream>>>(vx, y);
- }
- template<typename dst_t>
- static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
- }
- template<typename dst_t>
- static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = (k + QK_K - 1) / QK_K;
- dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
- }
- template<typename dst_t>
- static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = (k + QK_K - 1) / QK_K;
- #if QK_K == 64
- dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
- #else
- dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
- #endif
- }
- template <typename src_t, typename dst_t>
- static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
- }
- static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
- int id;
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- CUDA_CHECK(cudaGetDevice(&id));
- if (g_device_caps[id].cc >= CC_PASCAL) {
- return dequantize_block_q8_0_f16_cuda;
- }
- return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_cuda;
- case GGML_TYPE_IQ2_XXS:
- return dequantize_row_iq2_xxs_cuda;
- case GGML_TYPE_IQ2_XS:
- return dequantize_row_iq2_xs_cuda;
- case GGML_TYPE_IQ2_S:
- return dequantize_row_iq2_s_cuda;
- case GGML_TYPE_IQ3_XXS:
- return dequantize_row_iq3_xxs_cuda;
- case GGML_TYPE_IQ1_S:
- return dequantize_row_iq1_s_cuda;
- case GGML_TYPE_IQ4_NL:
- return dequantize_row_iq4_nl_cuda;
- case GGML_TYPE_IQ4_XS:
- return dequantize_row_iq4_xs_cuda;
- case GGML_TYPE_IQ3_S:
- return dequantize_row_iq3_s_cuda;
- case GGML_TYPE_F32:
- return convert_unary_cuda<float>;
- default:
- return nullptr;
- }
- }
- static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_cuda;
- case GGML_TYPE_IQ2_XXS:
- return dequantize_row_iq2_xxs_cuda;
- case GGML_TYPE_IQ2_XS:
- return dequantize_row_iq2_xs_cuda;
- case GGML_TYPE_IQ2_S:
- return dequantize_row_iq2_s_cuda;
- case GGML_TYPE_IQ3_XXS:
- return dequantize_row_iq3_xxs_cuda;
- case GGML_TYPE_IQ1_S:
- return dequantize_row_iq1_s_cuda;
- case GGML_TYPE_IQ4_NL:
- return dequantize_row_iq4_nl_cuda;
- case GGML_TYPE_IQ4_XS:
- return dequantize_row_iq4_xs_cuda;
- case GGML_TYPE_IQ3_S:
- return dequantize_row_iq3_s_cuda;
- case GGML_TYPE_F16:
- return convert_unary_cuda<half>;
- default:
- return nullptr;
- }
- }
- static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 1, 1);
- dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
- }
- static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<1, 1, convert_f16>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
- }
- template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
- static void mul_mat_vec_q_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- GGML_ASSERT(ncols_x % qk == 0);
- GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- int64_t nwarps = 1;
- int64_t rows_per_cuda_block = 1;
- if (g_device_caps[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
- switch(ncols_y) {
- case 1:
- nwarps = 4;
- rows_per_cuda_block = 1;
- break;
- case 2:
- case 3:
- case 4:
- nwarps = 4;
- rows_per_cuda_block = 2;
- break;
- case 5:
- case 6:
- case 7:
- case 8:
- nwarps = 2;
- rows_per_cuda_block = 2;
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- }
- const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
- const dim3 block_nums(nblocks, 1, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- switch (ncols_y) {
- case 1:
- mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 2:
- mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 3:
- mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 4:
- mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 5:
- mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 6:
- mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 7:
- mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 8:
- mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- }
- static void ggml_mul_mat_q4_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q4_0_RDNA2;
- mmq_y = MMQ_Y_Q4_0_RDNA2;
- nwarps = NWARPS_Q4_0_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q4_0_RDNA1;
- mmq_y = MMQ_Y_Q4_0_RDNA1;
- nwarps = NWARPS_Q4_0_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q4_0_AMPERE;
- mmq_y = MMQ_Y_Q4_0_AMPERE;
- nwarps = NWARPS_Q4_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_0_PASCAL;
- mmq_y = MMQ_Y_Q4_0_PASCAL;
- nwarps = NWARPS_Q4_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q4_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q4_1_RDNA2;
- mmq_y = MMQ_Y_Q4_1_RDNA2;
- nwarps = NWARPS_Q4_1_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q4_1_RDNA1;
- mmq_y = MMQ_Y_Q4_1_RDNA1;
- nwarps = NWARPS_Q4_1_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q4_1_AMPERE;
- mmq_y = MMQ_Y_Q4_1_AMPERE;
- nwarps = NWARPS_Q4_1_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_1_PASCAL;
- mmq_y = MMQ_Y_Q4_1_PASCAL;
- nwarps = NWARPS_Q4_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q5_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q5_0_RDNA2;
- mmq_y = MMQ_Y_Q5_0_RDNA2;
- nwarps = NWARPS_Q5_0_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q5_0_RDNA1;
- mmq_y = MMQ_Y_Q5_0_RDNA1;
- nwarps = NWARPS_Q5_0_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q5_0_AMPERE;
- mmq_y = MMQ_Y_Q5_0_AMPERE;
- nwarps = NWARPS_Q5_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_0_PASCAL;
- mmq_y = MMQ_Y_Q5_0_PASCAL;
- nwarps = NWARPS_Q5_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q5_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q5_1_RDNA2;
- mmq_y = MMQ_Y_Q5_1_RDNA2;
- nwarps = NWARPS_Q5_1_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q5_1_RDNA1;
- mmq_y = MMQ_Y_Q5_1_RDNA1;
- nwarps = NWARPS_Q5_1_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q5_1_AMPERE;
- mmq_y = MMQ_Y_Q5_1_AMPERE;
- nwarps = NWARPS_Q5_1_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_1_PASCAL;
- mmq_y = MMQ_Y_Q5_1_PASCAL;
- nwarps = NWARPS_Q5_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q8_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q8_0_RDNA2;
- mmq_y = MMQ_Y_Q8_0_RDNA2;
- nwarps = NWARPS_Q8_0_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q8_0_RDNA1;
- mmq_y = MMQ_Y_Q8_0_RDNA1;
- nwarps = NWARPS_Q8_0_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q8_0_AMPERE;
- mmq_y = MMQ_Y_Q8_0_AMPERE;
- nwarps = NWARPS_Q8_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q8_0_PASCAL;
- mmq_y = MMQ_Y_Q8_0_PASCAL;
- nwarps = NWARPS_Q8_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q2_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q2_K_RDNA2;
- mmq_y = MMQ_Y_Q2_K_RDNA2;
- nwarps = NWARPS_Q2_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q2_K_RDNA1;
- mmq_y = MMQ_Y_Q2_K_RDNA1;
- nwarps = NWARPS_Q2_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q2_K_AMPERE;
- mmq_y = MMQ_Y_Q2_K_AMPERE;
- nwarps = NWARPS_Q2_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q2_K_PASCAL;
- mmq_y = MMQ_Y_Q2_K_PASCAL;
- nwarps = NWARPS_Q2_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q3_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- #if QK_K == 256
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q3_K_RDNA2;
- mmq_y = MMQ_Y_Q3_K_RDNA2;
- nwarps = NWARPS_Q3_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q3_K_RDNA1;
- mmq_y = MMQ_Y_Q3_K_RDNA1;
- nwarps = NWARPS_Q3_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q3_K_AMPERE;
- mmq_y = MMQ_Y_Q3_K_AMPERE;
- nwarps = NWARPS_Q3_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q3_K_PASCAL;
- mmq_y = MMQ_Y_Q3_K_PASCAL;
- nwarps = NWARPS_Q3_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- #endif
- }
- static void ggml_mul_mat_q4_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q4_K_RDNA2;
- mmq_y = MMQ_Y_Q4_K_RDNA2;
- nwarps = NWARPS_Q4_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q4_K_RDNA1;
- mmq_y = MMQ_Y_Q4_K_RDNA1;
- nwarps = NWARPS_Q4_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q4_K_AMPERE;
- mmq_y = MMQ_Y_Q4_K_AMPERE;
- nwarps = NWARPS_Q4_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_K_PASCAL;
- mmq_y = MMQ_Y_Q4_K_PASCAL;
- nwarps = NWARPS_Q4_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q5_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q5_K_RDNA2;
- mmq_y = MMQ_Y_Q5_K_RDNA2;
- nwarps = NWARPS_Q5_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q5_K_RDNA1;
- mmq_y = MMQ_Y_Q5_K_RDNA1;
- nwarps = NWARPS_Q5_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q5_K_AMPERE;
- mmq_y = MMQ_Y_Q5_K_AMPERE;
- nwarps = NWARPS_Q5_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_K_PASCAL;
- mmq_y = MMQ_Y_Q5_K_PASCAL;
- nwarps = NWARPS_Q5_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_q6_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q6_K_RDNA2;
- mmq_y = MMQ_Y_Q6_K_RDNA2;
- nwarps = NWARPS_Q6_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q6_K_RDNA1;
- mmq_y = MMQ_Y_Q6_K_RDNA1;
- nwarps = NWARPS_Q6_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q6_K_AMPERE;
- mmq_y = MMQ_Y_Q6_K_AMPERE;
- nwarps = NWARPS_Q6_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q6_K_PASCAL;
- mmq_y = MMQ_Y_Q6_K_PASCAL;
- nwarps = NWARPS_Q6_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
- }
- static void ggml_mul_mat_p021_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
- const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
- }
- static void ggml_mul_mat_vec_nc_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
- const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
- (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
- }
- static void ggml_cpy_f16_f32_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
- }
- static void ggml_cpy_f32_f32_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
- }
- static void ggml_cpy_f32_f16_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
- }
- static void ggml_cpy_f32_q8_0_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- GGML_ASSERT(ne % QK8_0 == 0);
- const int num_blocks = ne / QK8_0;
- cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
- }
- static void ggml_cpy_f32_q4_0_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- GGML_ASSERT(ne % QK4_0 == 0);
- const int num_blocks = ne / QK4_0;
- cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
- }
- static void ggml_cpy_f32_q4_1_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- GGML_ASSERT(ne % QK4_1 == 0);
- const int num_blocks = ne / QK4_1;
- cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
- }
- static void ggml_cpy_f16_f16_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
- }
- static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
- scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
- }
- static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
- clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
- }
- template<typename T>
- static void rope_cuda(
- const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
- float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
- ) {
- GGML_ASSERT(ncols % 2 == 0);
- const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(nrows, num_blocks_x, 1);
- if (pos == nullptr) {
- rope<T, false><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
- );
- } else {
- rope<T, true><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
- );
- }
- }
- template<typename T>
- static void rope_neox_cuda(
- const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
- float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
- ) {
- GGML_ASSERT(ncols % 2 == 0);
- const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(nrows, num_blocks_x, 1);
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const float inv_ndims = -1.0f / n_dims;
- if (pos == nullptr) {
- rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
- theta_scale, inv_ndims
- );
- } else {
- rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
- theta_scale, inv_ndims
- );
- }
- }
- static void rope_glm_f32_cuda(
- const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
- float freq_base, int n_ctx, cudaStream_t stream
- ) {
- GGML_ASSERT(ncols % 4 == 0);
- const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
- const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
- const dim3 block_nums(num_blocks_x, nrows, 1);
- rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
- }
- static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
- const int k_rows, const int n_heads_log2_floor, const float m0,
- const float m1, cudaStream_t stream) {
- const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
- const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
- const dim3 block_nums(num_blocks_x, nrows, 1);
- alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
- }
- static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- const dim3 block_nums(nrows, 1, 1);
- k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
- }
- static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
- // bitonic sort requires ncols to be power of 2
- GGML_ASSERT((ncols & (ncols - 1)) == 0);
- const dim3 block_dims(ncols, 1, 1);
- const dim3 block_nums(1, nrows, 1);
- if (order == GGML_SORT_ORDER_ASC) {
- k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
- } else if (order == GGML_SORT_ORDER_DESC) {
- k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
- } else {
- GGML_ASSERT(false);
- }
- }
- static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
- const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
- const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
- const dim3 block_nums(nrows_x, block_num_x, 1);
- diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
- }
- static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
- int nth = WARP_SIZE;
- while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
- const dim3 block_dims(nth, 1, 1);
- const dim3 block_nums(nrows_x, 1, 1);
- const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
- static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
- const uint32_t n_head_kv = nrows_x/nrows_y;
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- if (shmem < g_device_caps[g_main_device].smpb) {
- switch (ncols_x) {
- case 32:
- soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 64:
- soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 128:
- soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 256:
- soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 512:
- soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 1024:
- soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 2048:
- soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 4096:
- soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- default:
- soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- }
- } else {
- const size_t shmem_low = WARP_SIZE*sizeof(float);
- soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- }
- }
- template <typename T>
- static void im2col_cuda(const float* x, T* dst,
- int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
- int64_t batch, int64_t batch_offset, int64_t offset_delta,
- int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
- const int parallel_elements = OW * KW * KH;
- const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
- dim3 block_nums(num_blocks, OH, batch * IC);
- im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
- }
- // buffer pool for cuda
- #define MAX_CUDA_BUFFERS 256
- struct scoped_spin_lock {
- std::atomic_flag& lock;
- scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
- while (lock.test_and_set(std::memory_order_acquire)) {
- ; // spin
- }
- }
- ~scoped_spin_lock() {
- lock.clear(std::memory_order_release);
- }
- scoped_spin_lock(const scoped_spin_lock&) = delete;
- scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
- };
- static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
- // #define DEBUG_CUDA_MALLOC
- struct ggml_cuda_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- static ggml_cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
- static size_t g_cuda_pool_size[GGML_CUDA_MAX_DEVICES] = {0};
- static void * ggml_cuda_pool_malloc_leg(int device, size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- #ifdef DEBUG_CUDA_MALLOC
- int nnz = 0;
- size_t max_size = 0;
- #endif
- size_t best_diff = 1ull << 36;
- int ibest = -1;
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- ggml_cuda_buffer& b = g_cuda_buffer_pool[device][i];
- if (b.ptr != nullptr) {
- #ifdef DEBUG_CUDA_MALLOC
- ++nnz;
- if (b.size > max_size) max_size = b.size;
- #endif
- if (b.size >= size) {
- size_t diff = b.size - size;
- if (diff < best_diff) {
- best_diff = diff;
- ibest = i;
- if (!best_diff) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
- }
- }
- }
- if (ibest >= 0) {
- ggml_cuda_buffer& b = g_cuda_buffer_pool[device][ibest];
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- void * ptr;
- size_t look_ahead_size = (size_t) (1.05 * size);
- look_ahead_size = 256 * ((look_ahead_size + 255)/256);
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
- *actual_size = look_ahead_size;
- g_cuda_pool_size[device] += look_ahead_size;
- #ifdef DEBUG_CUDA_MALLOC
- fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
- (uint32_t)(max_size/1024/1024), (uint32_t)(g_cuda_pool_size[device]/1024/1024), (uint32_t)(size/1024/1024));
- #endif
- return ptr;
- }
- static void ggml_cuda_pool_free_leg(int device, void * ptr, size_t size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- ggml_cuda_buffer& b = g_cuda_buffer_pool[device][i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaFree(ptr));
- g_cuda_pool_size[device] -= size;
- }
- #if !defined(GGML_USE_HIPBLAS)
- // pool with virtual memory
- static CUdeviceptr g_cuda_pool_addr[GGML_CUDA_MAX_DEVICES] = {0};
- static size_t g_cuda_pool_used[GGML_CUDA_MAX_DEVICES] = {0};
- static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
- static void * ggml_cuda_pool_malloc_vmm(int device, size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
- const size_t alignment = 128;
- size = alignment * ((size + alignment - 1) / alignment);
- size_t avail = g_cuda_pool_size[device] - g_cuda_pool_used[device];
- if (size > avail) {
- // round up to the next multiple of the granularity
- size_t reserve_size = size - avail;
- const size_t granularity = g_device_caps[device].vmm_granularity;
- reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
- GGML_ASSERT(g_cuda_pool_size[device] + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
- // allocate more physical memory
- CUmemAllocationProp prop = {};
- prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
- prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- prop.location.id = device;
- CUmemGenericAllocationHandle handle;
- CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
- // reserve virtual address space (if not already reserved)
- if (g_cuda_pool_addr[device] == 0) {
- CU_CHECK(cuMemAddressReserve(&g_cuda_pool_addr[device], CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
- }
- // map at the end of the pool
- CU_CHECK(cuMemMap(g_cuda_pool_addr[device] + g_cuda_pool_size[device], reserve_size, 0, handle, 0));
- // the memory allocation handle is no longer needed after mapping
- CU_CHECK(cuMemRelease(handle));
- // set access
- CUmemAccessDesc access = {};
- access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- access.location.id = device;
- access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
- CU_CHECK(cuMemSetAccess(g_cuda_pool_addr[device] + g_cuda_pool_size[device], reserve_size, &access, 1));
- // add to the pool
- g_cuda_pool_size[device] += reserve_size;
- //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
- // id, (unsigned long long) (g_cuda_pool_size[id]/1024/1024),
- // (unsigned long long) (reserve_size/1024/1024));
- }
- GGML_ASSERT(g_cuda_pool_addr[device] != 0);
- void * ptr = (void *) (g_cuda_pool_addr[device] + g_cuda_pool_used[device]);
- *actual_size = size;
- g_cuda_pool_used[device] += size;
- #ifdef DEBUG_CUDA_MALLOC
- printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
- #endif
- return ptr;
- }
- static void ggml_cuda_pool_free_vmm(int device, void * ptr, size_t size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
- #ifdef DEBUG_CUDA_MALLOC
- printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
- #endif
- g_cuda_pool_used[device] -= size;
- // all deallocations must be in reverse order of the allocations
- GGML_ASSERT(ptr == (void *) (g_cuda_pool_addr[device] + g_cuda_pool_used[device]));
- }
- static void * ggml_cuda_pool_malloc(int device, size_t size, size_t * actual_size) {
- if (g_device_caps[device].vmm) {
- return ggml_cuda_pool_malloc_vmm(device, size, actual_size);
- } else {
- return ggml_cuda_pool_malloc_leg(device, size, actual_size);
- }
- }
- static void ggml_cuda_pool_free(int device, void * ptr, size_t size) {
- if (g_device_caps[device].vmm) {
- ggml_cuda_pool_free_vmm(device, ptr, size);
- } else {
- ggml_cuda_pool_free_leg(device, ptr, size);
- }
- }
- #else
- #define ggml_cuda_pool_malloc ggml_cuda_pool_malloc_leg
- #define ggml_cuda_pool_free ggml_cuda_pool_free_leg
- #endif // !defined(GGML_USE_HIPBLAS)
- template<typename T>
- struct cuda_pool_alloc {
- int device = -1;
- T * ptr = nullptr;
- size_t actual_size = 0;
- // size is in number of elements
- T * alloc(size_t size) {
- GGML_ASSERT(ptr == nullptr);
- CUDA_CHECK(cudaGetDevice(&device));
- ptr = (T *) ggml_cuda_pool_malloc(device, size * sizeof(T), &this->actual_size);
- return ptr;
- }
- cuda_pool_alloc(size_t size) {
- alloc(size);
- }
- ~cuda_pool_alloc() {
- if (ptr != nullptr) {
- ggml_cuda_pool_free(device, ptr, actual_size);
- }
- }
- T * get() {
- return ptr;
- }
- cuda_pool_alloc() = default;
- cuda_pool_alloc(const cuda_pool_alloc &) = delete;
- cuda_pool_alloc(cuda_pool_alloc &&) = delete;
- cuda_pool_alloc& operator=(const cuda_pool_alloc &) = delete;
- cuda_pool_alloc& operator=(cuda_pool_alloc &&) = delete;
- };
- static bool g_cublas_loaded = false;
- GGML_CALL bool ggml_cublas_loaded(void) {
- return g_cublas_loaded;
- }
- GGML_CALL void ggml_init_cublas() {
- static bool initialized = false;
- if (!initialized) {
- #ifdef __HIP_PLATFORM_AMD__
- // Workaround for a rocBLAS bug when using multiple graphics cards:
- // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
- rocblas_initialize();
- CUDA_CHECK(cudaDeviceSynchronize());
- #endif
- if (cudaGetDeviceCount(&g_device_count) != cudaSuccess) {
- initialized = true;
- g_cublas_loaded = false;
- fprintf(stderr, "%s: no " GGML_CUDA_NAME " devices found, " GGML_CUDA_NAME " will be disabled\n", __func__);
- return;
- }
- GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
- int64_t total_vram = 0;
- #if defined(GGML_CUDA_FORCE_MMQ)
- fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
- #else
- fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
- #endif
- #if defined(CUDA_USE_TENSOR_CORES)
- fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
- #else
- fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
- #endif
- fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, g_device_count);
- for (int id = 0; id < g_device_count; ++id) {
- int device_vmm = 0;
- #if !defined(GGML_USE_HIPBLAS)
- CUdevice device;
- CU_CHECK(cuDeviceGet(&device, id));
- CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
- if (device_vmm) {
- CUmemAllocationProp alloc_prop = {};
- alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
- alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- alloc_prop.location.id = id;
- CU_CHECK(cuMemGetAllocationGranularity(&g_device_caps[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
- }
- #endif // !defined(GGML_USE_HIPBLAS)
- g_device_caps[id].vmm = !!device_vmm;
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
- fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
- g_default_tensor_split[id] = total_vram;
- total_vram += prop.totalGlobalMem;
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- g_device_caps[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
- #else
- g_device_caps[id].cc = 100*prop.major + 10*prop.minor;
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- g_device_caps[id].smpb = prop.sharedMemPerBlock;
- }
- for (int id = 0; id < g_device_count; ++id) {
- g_default_tensor_split[id] /= total_vram;
- }
- for (int id = 0; id < g_device_count; ++id) {
- ggml_cuda_set_device(id);
- // create cuda streams
- for (int is = 0; is < MAX_STREAMS; ++is) {
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[id][is], cudaStreamNonBlocking));
- }
- // create cublas handle
- CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
- CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
- }
- // configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
- initialized = true;
- g_cublas_loaded = true;
- }
- }
- GGML_CALL void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
- }
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
- fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
- size/1024.0/1024.0, cudaGetErrorString(err));
- return nullptr;
- }
- return ptr;
- }
- GGML_CALL void ggml_cuda_host_free(void * ptr) {
- CUDA_CHECK(cudaFreeHost(ptr));
- }
- static cudaError_t ggml_cuda_cpy_tensor_2d(
- void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
- cudaMemcpyKind kind;
- char * src_ptr;
- if (src->backend == GGML_BACKEND_TYPE_CPU) {
- kind = cudaMemcpyHostToDevice;
- src_ptr = (char *) src->data;
- } else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
- GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
- kind = cudaMemcpyDeviceToDevice;
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- src_ptr = (char *) extra->data_device[id];
- } else {
- GGML_ASSERT(false);
- }
- char * dst_ptr = (char *) dst;
- const int64_t ne0 = src->ne[0];
- const int64_t nb0 = src->nb[0];
- const int64_t nb1 = src->nb[1];
- const int64_t nb2 = src->nb[2];
- const int64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const int64_t ts = ggml_type_size(type);
- const int64_t bs = ggml_blck_size(type);
- int64_t i1_diff = i1_high - i1_low;
- const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
- } else if (nb0 == ts) {
- return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
- } else {
- for (int64_t i1 = 0; i1 < i1_diff; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
- if (r != cudaSuccess) return r;
- }
- return cudaSuccess;
- }
- }
- static void ggml_cuda_op_get_rows(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_d, const float * src1_d, float * dst_d, cudaStream_t stream) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
- GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
- GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
- const int32_t * src1_i32 = (const int32_t *) src1_d;
- switch (src0->type) {
- case GGML_TYPE_F16:
- get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_F32:
- get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q4_0:
- get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q4_1:
- get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q5_0:
- get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q5_1:
- get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q8_0:
- get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- default:
- // TODO: k-quants
- fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
- GGML_ASSERT(false);
- break;
- }
- }
- template<class op>
- static void ggml_cuda_op_bin_bcast(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- op()(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- op()(src0, src1, dst, (const half *) src0_dd, src1_dd, (half *) dst_dd, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
- op()(src0, src1, dst, (const half *) src0_dd, src1_dd, dst_dd, main_stream);
- } else {
- fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
- ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
- GGML_ASSERT(false);
- }
- }
- static void ggml_cuda_op_repeat(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_d, const float * src1_d, float * dst_d, cudaStream_t main_stream) {
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
- (void) src1;
- (void) src1_d;
- }
- static void ggml_cuda_op_add(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- static void ggml_cuda_op_acc(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
- int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
- int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
- // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
- int offset = dst->op_params[3] / 4; // offset in bytes
- acc_f32_cuda(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
- (void) dst;
- }
- static void ggml_cuda_op_mul(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- static void ggml_cuda_op_div(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- static void ggml_cuda_op_gelu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- gelu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_silu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- silu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_gelu_quick(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- gelu_quick_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_tanh(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- tanh_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_relu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_hardsigmoid(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- hardsigmoid_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_hardswish(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- hardswish_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_leaky_relu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
- leaky_relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_sqr(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- sqr_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_group_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int num_groups = dst->op_params[0];
- int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
- group_norm_f32_cuda(src0_dd, dst_dd, num_groups * src0->ne[3], group_size, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_concat(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- for (int i3 = 0; i3 < dst->ne[3]; i3++) {
- concat_f32_cuda(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
- }
- (void) src1;
- (void) dst;
- }
- static void ggml_cuda_op_upscale(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- const int scale_factor = dst->op_params[0];
- upscale_f32_cuda(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_pad(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- pad_f32_cuda(src0_dd, dst_dd,
- src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
- dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_arange(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- float start;
- float stop;
- float step;
- memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
- memcpy(&stop, (float *)dst->op_params + 1, sizeof(float));
- memcpy(&step, (float *)dst->op_params + 2, sizeof(float));
- int64_t steps = (int64_t)ceil((stop - start) / step);
- GGML_ASSERT(ggml_nelements(dst) == steps);
- arange_f32_cuda(dst_dd, dst->ne[0], start, step, main_stream);
- (void) src0;
- (void) src1;
- (void) src0_dd;
- (void) src1_dd;
- }
- static void ggml_cuda_op_timestep_embedding(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- const int dim = dst->op_params[0];
- const int max_period = dst->op_params[1];
- timestep_embedding_f32_cuda(src0_dd, dst_dd, src0->ne[0], dst->nb[1], dim, max_period, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_rms_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- rms_norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_mul_mat_q(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
- const int64_t ne0 = dst->ne[0];
- const int64_t row_diff = row_high - row_low;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the kernel writes into
- const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- ggml_mul_mat_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_1:
- ggml_mul_mat_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_0:
- ggml_mul_mat_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_1:
- ggml_mul_mat_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q8_0:
- ggml_mul_mat_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q2_K:
- ggml_mul_mat_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q3_K:
- ggml_mul_mat_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_K:
- ggml_mul_mat_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_K:
- ggml_mul_mat_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q6_K:
- ggml_mul_mat_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
- }
- static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
- int64_t min_compute_capability = INT_MAX;
- int64_t max_compute_capability = INT_MIN;
- for (int id = 0; id < g_device_count; ++id) {
- if (tensor_split[id] < (id + 1 < g_device_count ? tensor_split[id + 1] : 1.0f)) {
- if (min_compute_capability > g_device_caps[id].cc) {
- min_compute_capability = g_device_caps[id].cc;
- }
- if (max_compute_capability < g_device_caps[id].cc) {
- max_compute_capability = g_device_caps[id].cc;
- }
- }
- }
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return max_compute_capability >= CC_RDNA2 ? 128 : 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- return max_compute_capability >= CC_RDNA2 ? 128 : 32;
- case GGML_TYPE_Q3_K:
- return min_compute_capability < CC_RDNA2 ? 128 : 64;
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- return max_compute_capability >= CC_RDNA2 ? 128 : 64;
- default:
- GGML_ASSERT(false);
- }
- #else
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- return max_compute_capability >= CC_VOLTA ? 128 : 64;
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- return max_compute_capability >= CC_VOLTA ? 128 : 64;
- case GGML_TYPE_Q6_K:
- return 64;
- default:
- GGML_ASSERT(false);
- }
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- }
- static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
- const int64_t nrows = ggml_nrows(tensor);
- const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
- *row_low = id == 0 ? 0 : nrows*tensor_split[id];
- *row_low -= *row_low % rounding;
- if (id == g_device_count - 1) {
- *row_high = nrows;
- } else {
- *row_high = nrows*tensor_split[id + 1];
- *row_high -= *row_high % rounding;
- }
- }
- static void ggml_cuda_op_mul_mat_vec_q(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
- const int64_t ne0 = dst->ne[0];
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the kernel writes into
- const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_1:
- mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_0:
- mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_1:
- mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q8_0:
- mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q2_K:
- mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q3_K:
- mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_K:
- mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_K:
- mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q6_K:
- mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_XXS:
- mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_XS:
- mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_S:
- mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ3_XXS:
- mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ1_S:
- mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ4_NL:
- mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ4_XS:
- mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ3_S:
- mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
- }
- static void ggml_cuda_op_dequantize_mul_mat_vec(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
- #ifdef GGML_CUDA_F16
- cuda_pool_alloc<half> src1_dfloat_a;
- half * src1_dfloat = nullptr; // dfloat == half
- bool src1_convert_f16 =
- src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
- src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
- src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
- if (src1_convert_f16) {
- src1_dfloat = src1_dfloat_a.alloc(ne00);
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
- }
- #else
- const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
- #endif // GGML_CUDA_F16
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_1:
- dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_0:
- dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_1:
- dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q8_0:
- dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q2_K:
- dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q3_K:
- dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_K:
- dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_K:
- dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q6_K:
- dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_F16:
- convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- (void) src1;
- (void) dst;
- (void) src1_ddq_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
- }
- static void ggml_cuda_op_mul_mat_cublas(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
- GGML_ASSERT(src0_dd_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_dd_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t row_diff = row_high - row_low;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // ldc == nrows of the matrix that cuBLAS writes into
- int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
- const int compute_capability = g_device_caps[id].cc;
- if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
- //printf("this branch\n");
- // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
- cuda_pool_alloc<half> src0_as_f16;
- if (src0->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t ne = row_diff*ne00;
- src0_as_f16.alloc(ne);
- to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
- }
- const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
- cuda_pool_alloc<half> src1_as_f16;
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t ne = src1_ncols*ne10;
- src1_as_f16.alloc(ne);
- to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
- }
- const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
- cuda_pool_alloc<half> dst_f16(row_diff*src1_ncols);
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
- CUBLAS_CHECK(
- cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
- row_diff, src1_ncols, ne10,
- &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
- src1_ptr, CUDA_R_16F, ne10,
- &beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
- CUBLAS_COMPUTE_16F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
- } else {
- cuda_pool_alloc<float> src0_ddq_as_f32;
- cuda_pool_alloc<float> src1_ddq_as_f32;
- if (src0->type != GGML_TYPE_F32) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
- GGML_ASSERT(to_fp32_cuda != nullptr);
- src0_ddq_as_f32.alloc(row_diff*ne00);
- to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
- }
- if (src1->type != GGML_TYPE_F32) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
- GGML_ASSERT(to_fp32_cuda != nullptr);
- src1_ddq_as_f32.alloc(src1_ncols*ne10);
- to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
- }
- const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
- const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
- const float alpha = 1.0f;
- const float beta = 0.0f;
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
- CUBLAS_CHECK(
- cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
- row_diff, src1_ncols, ne10,
- &alpha, src0_ddf_i, ne00,
- src1_ddf1_i, ne10,
- &beta, dst_dd_i, ldc));
- }
- (void) dst;
- (void) src1_ddq_i;
- (void) src1_padded_row_size;
- }
- static void ggml_cuda_op_rope(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t nrows = ggml_nrows(src0);
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
- // RoPE alteration for extended context
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- const int32_t * pos = nullptr;
- if ((mode & 1) == 0) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(src1->ne[0] == ne2);
- pos = (const int32_t *) src1_dd;
- }
- const bool is_neox = mode & 2;
- const bool is_glm = mode & 4;
- rope_corr_dims corr_dims;
- ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
- // compute
- if (is_glm) {
- GGML_ASSERT(false);
- rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
- } else if (is_neox) {
- if (src0->type == GGML_TYPE_F32) {
- rope_neox_cuda(
- (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_neox_cuda(
- (const half *)src0_dd, (half *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else {
- GGML_ASSERT(false);
- }
- } else {
- if (src0->type == GGML_TYPE_F32) {
- rope_cuda(
- (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_cuda(
- (const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else {
- GGML_ASSERT(false);
- }
- }
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_alibi(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t nrows = ggml_nrows(src0);
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_head = ((int32_t *) dst->op_params)[1];
- float max_bias;
- memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
- //GGML_ASSERT(ne01 + n_past == ne00);
- GGML_ASSERT(n_head == ne02);
- const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- alibi_f32_cuda(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
- (void) src1;
- (void) src1_dd;
- }
- static void ggml_cuda_op_pool2d(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
- const int64_t IH = src0->ne[1];
- const int64_t IW = src0->ne[0];
- const int64_t N = dst->ne[3];
- const int64_t OC = dst->ne[2];
- const int64_t OH = dst->ne[1];
- const int64_t OW = dst->ne[0];
- const int parallel_elements = N * OC * OH * OW;
- const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE;
- dim3 block_nums(num_blocks);
- pool2d_nchw_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, main_stream>>>(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_dd, dst_dd, op);
- (void) src1;
- (void) src1_dd;
- }
- static void ggml_cuda_op_im2col(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
- const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
- const int64_t IC = src1->ne[is_2D ? 2 : 1];
- const int64_t IH = is_2D ? src1->ne[1] : 1;
- const int64_t IW = src1->ne[0];
- const int64_t KH = is_2D ? src0->ne[1] : 1;
- const int64_t KW = src0->ne[0];
- const int64_t OH = is_2D ? dst->ne[2] : 1;
- const int64_t OW = dst->ne[1];
- const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
- const int64_t batch = src1->ne[3];
- const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
- if(dst->type == GGML_TYPE_F16) {
- im2col_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
- } else {
- im2col_cuda(src1_dd, (float*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
- }
- (void) src0;
- (void) src0_dd;
- }
- static void ggml_cuda_op_sum_rows(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- sum_rows_f32_cuda(src0_dd, dst_dd, ncols, nrows, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_argsort(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_I32);
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
- argsort_f32_i32_cuda(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_diag_mask_inf(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int nrows0 = ggml_nrows(src0);
- const int n_past = ((int32_t *) dst->op_params)[0];
- diag_mask_inf_f32_cuda(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_soft_max(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows_x = ggml_nrows(src0);
- const int64_t nrows_y = src0->ne[1];
- float scale = 1.0f;
- float max_bias = 0.0f;
- memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
- // positions tensor
- float * src2_dd = nullptr;
- cuda_pool_alloc<float> src2_f;
- ggml_tensor * src2 = dst->src[2];
- const bool use_src2 = src2 != nullptr;
- if (use_src2) {
- const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
- if (src2_on_device) {
- ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
- src2_dd = (float *) src2_extra->data_device[g_main_device];
- } else {
- src2_dd = src2_f.alloc(ggml_nelements(src2));
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream));
- }
- }
- soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream);
- }
- static void ggml_cuda_op_scale(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float scale;
- memcpy(&scale, dst->op_params, sizeof(float));
- scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_clamp(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float min;
- float max;
- memcpy(&min, dst->op_params, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
- clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
- CUDA_CHECK(cudaGetLastError());
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) {
- const int64_t nrows0 = ggml_nrows(src0);
- const bool use_src1 = src1 != nullptr;
- const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
- GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
- const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
- const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
- // dd = data device
- float * src0_ddf = nullptr;
- float * src1_ddf = nullptr;
- float * dst_ddf = nullptr;
- cuda_pool_alloc<float> src0_f;
- cuda_pool_alloc<float> src1_f;
- cuda_pool_alloc<float> dst_f;
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- if (src0_on_device) {
- src0_ddf = (float *) src0_extra->data_device[g_main_device];
- } else {
- src0_ddf = src0_f.alloc(ggml_nelements(src0));
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
- }
- if (use_src1) {
- if (src1_on_device) {
- src1_ddf = (float *) src1_extra->data_device[g_main_device];
- } else {
- src1_ddf = src1_f.alloc(ggml_nelements(src1));
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream));
- }
- }
- if (dst_on_device) {
- dst_ddf = (float *) dst_extra->data_device[g_main_device];
- } else {
- dst_ddf = dst_f.alloc(ggml_nelements(dst));
- }
- // do the computation
- op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
- CUDA_CHECK(cudaGetLastError());
- // copy dst to host if necessary
- if (!dst_on_device) {
- CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
- }
- if (dst->backend == GGML_BACKEND_TYPE_CPU) {
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- }
- static void ggml_cuda_set_peer_access(const int n_tokens) {
- static bool peer_access_enabled = false;
- const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
- if (peer_access_enabled == enable_peer_access) {
- return;
- }
- #ifdef NDEBUG
- for (int id = 0; id < g_device_count; ++id) {
- ggml_cuda_set_device(id);
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- for (int id = 0; id < g_device_count; ++id) {
- ggml_cuda_set_device(id);
- for (int id_other = 0; id_other < g_device_count; ++id_other) {
- if (id == id_other) {
- continue;
- }
- if (id != g_main_device && id_other != g_main_device) {
- continue;
- }
- int can_access_peer;
- CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
- if (can_access_peer) {
- if (enable_peer_access) {
- cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
- if (err != cudaErrorPeerAccessAlreadyEnabled) {
- CUDA_CHECK(err);
- }
- } else {
- cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
- if (err != cudaErrorPeerAccessNotEnabled) {
- CUDA_CHECK(err);
- }
- }
- }
- }
- }
- #endif // NDEBUG
- peer_access_enabled = enable_peer_access;
- }
- // FIXME: move this somewhere else
- struct ggml_backend_cuda_split_buffer_type_context {
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
- };
- static void ggml_cuda_op_mul_mat(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
- const bool convert_src1_to_q8_1) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t nrows1 = ggml_nrows(src1);
- GGML_ASSERT(ne03 == ne13);
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
- GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
- const int64_t i02_divisor = ne12 / ne02;
- const size_t src0_ts = ggml_type_size(src0->type);
- const size_t src0_bs = ggml_blck_size(src0->type);
- const size_t q8_1_ts = sizeof(block_q8_1);
- const size_t q8_1_bs = QK8_1;
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
- const bool src0_is_contiguous = ggml_is_contiguous(src0);
- const bool src1_is_contiguous = ggml_is_contiguous(src1);
- const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
- const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
- GGML_ASSERT(!(split && ne02 > 1));
- GGML_ASSERT(!(split && ne03 > 1));
- GGML_ASSERT(!(split && ne02 < ne12));
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
- if (split) {
- // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
- // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
- tensor_split = buft_ctx->tensor_split;
- }
- struct dev_data {
- cuda_pool_alloc<char> src0_dd_alloc;
- cuda_pool_alloc<float> src1_ddf_alloc;
- cuda_pool_alloc<char> src1_ddq_alloc;
- cuda_pool_alloc<float> dst_dd_alloc;
- char * src0_dd = nullptr;
- float * src1_ddf = nullptr; // float
- char * src1_ddq = nullptr; // q8_1
- float * dst_dd = nullptr;
- int64_t row_low;
- int64_t row_high;
- };
- dev_data dev[GGML_CUDA_MAX_DEVICES];
- int used_devices = 0;
- for (int id = 0; id < g_device_count; ++id) {
- // by default, use all rows
- dev[id].row_low = 0;
- dev[id].row_high = ne01;
- // for multi GPU, get the row boundaries from tensor split
- // and round to mul_mat_q tile sizes
- if (split) {
- const int64_t rounding = get_row_rounding(src0->type, tensor_split);
- if (id != 0) {
- dev[id].row_low = ne01*tensor_split[id];
- if (dev[id].row_low < ne01) {
- dev[id].row_low -= dev[id].row_low % rounding;
- }
- }
- if (id != g_device_count - 1) {
- dev[id].row_high = ne01*tensor_split[id + 1];
- if (dev[id].row_high < ne01) {
- dev[id].row_high -= dev[id].row_high % rounding;
- }
- }
- }
- }
- for (int id = 0; id < g_device_count; ++id) {
- if ((!split && id != g_main_device) || dev[id].row_low == dev[id].row_high) {
- continue;
- }
- used_devices++;
- const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
- const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
- ggml_cuda_set_device(id);
- cudaStream_t stream = g_cudaStreams[id][0];
- if (src0_on_device && src0_is_contiguous) {
- dev[id].src0_dd = (char *) src0_extra->data_device[id];
- } else {
- dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ggml_nbytes(src0));
- }
- if (src1_on_device && src1_is_contiguous) {
- dev[id].src1_ddf = (float *) src1_extra->data_device[id];
- } else {
- dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ggml_nelements(src1));
- }
- if (convert_src1_to_q8_1) {
- dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
- if (src1_on_device && src1_is_contiguous) {
- quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- }
- }
- if (dst_on_device) {
- dev[id].dst_dd = (float *) dst_extra->data_device[id];
- } else {
- const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
- dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(size_dst_ddf);
- }
- }
- // if multiple devices are used they need to wait for the main device
- // here an event is recorded that signals that the main device has finished calculating the input data
- if (split && used_devices > 1) {
- ggml_cuda_set_device(g_main_device);
- CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device][0], g_cudaStreams[g_main_device][0]));
- }
- const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
- for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
- const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
- const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
- for (int id = 0; id < g_device_count; ++id) {
- if ((!split && id != g_main_device) || dev[id].row_low == dev[id].row_high) {
- continue;
- }
- const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
- const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
- const int64_t row_diff = dev[id].row_high - dev[id].row_low;
- ggml_cuda_set_device(id);
- cudaStream_t stream = g_cudaStreams[id][is];
- // wait for main GPU data if necessary
- if (split && (id != g_main_device || is != 0)) {
- CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[g_main_device][0], 0));
- }
- for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
- const int64_t i03 = i0 / ne12;
- const int64_t i02 = i0 % ne12;
- const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
- // for split tensors the data begins at i0 == i0_offset_low
- char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
- float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
- char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset;
- float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
- // the main device memory buffer can be on VRAM scratch, with space for all partial results
- // in that case an offset on dst_ddf_i is needed
- if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device) {
- dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
- }
- // copy src0, src1 to device if necessary
- if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
- if (id != g_main_device) {
- if (convert_src1_to_q8_1) {
- char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset;
- CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, g_main_device,
- src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
- } else {
- float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
- src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
- CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, g_main_device,
- src1_ncols*ne10*sizeof(float), stream));
- }
- }
- } else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
- src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
- } else {
- GGML_ASSERT(false);
- }
- if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
- quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- }
- if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
- }
- // do the computation
- op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
- dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- // copy dst to host or other device if necessary
- if (!dst_on_device) {
- void * dst_off_device;
- cudaMemcpyKind kind;
- if (dst->backend == GGML_BACKEND_TYPE_CPU) {
- dst_off_device = dst->data;
- kind = cudaMemcpyDeviceToHost;
- } else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
- dst_off_device = dst_extra->data_device[g_main_device];
- kind = cudaMemcpyDeviceToDevice;
- } else {
- GGML_ASSERT(false);
- }
- if (split) {
- // src0 = weight matrix is saved as a transposed matrix for better memory layout.
- // dst is NOT transposed.
- // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
- // Instead they need to be copied to the correct slice in ne0 = dst row index.
- // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
- #if !defined(GGML_USE_HIPBLAS)
- if (kind == cudaMemcpyDeviceToDevice) {
- // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
- cudaMemcpy3DPeerParms p = {};
- p.dstDevice = g_main_device;
- p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols);
- p.srcDevice = id;
- p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
- p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
- CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
- } else
- #endif
- {
- CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
- dst_dd_i, row_diff*sizeof(float),
- row_diff*sizeof(float), src1_ncols,
- kind, stream));
- }
- } else {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0;
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), kind, stream));
- }
- }
- // add event for the main device to wait on until other device is done
- if (split && (id != g_main_device || is != 0)) {
- CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
- }
- }
- }
- }
- // main device waits for all other devices to be finished
- if (split && g_device_count > 1) {
- int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
- is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS;
- ggml_cuda_set_device(g_main_device);
- for (int id = 0; id < g_device_count; ++id) {
- if (dev[id].row_low == dev[id].row_high) {
- continue;
- }
- for (int64_t is = 0; is < is_max; ++is) {
- CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[g_main_device][0], src0_extra->events[id][is], 0));
- }
- }
- }
- if (dst->backend == GGML_BACKEND_TYPE_CPU) {
- ggml_cuda_set_device(g_main_device);
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- }
- static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_repeat);
- }
- static void ggml_cuda_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_get_rows);
- }
- static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add);
- }
- static void ggml_cuda_acc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_acc);
- }
- static void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul);
- }
- static void ggml_cuda_div(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_div);
- }
- static void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu);
- }
- static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
- }
- static void ggml_cuda_gelu_quick(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu_quick);
- }
- static void ggml_cuda_tanh(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_tanh);
- }
- static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu);
- }
- static void ggml_cuda_hardsigmoid(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardsigmoid);
- }
- static void ggml_cuda_hardswish(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardswish);
- }
- static void ggml_cuda_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_leaky_relu);
- }
- static void ggml_cuda_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sqr);
- }
- static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
- }
- static void ggml_cuda_group_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_group_norm);
- }
- static void ggml_cuda_concat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_concat);
- }
- static void ggml_cuda_upscale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_upscale);
- }
- static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pad);
- }
- static void ggml_cuda_arange(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
- // dd = data device
- float * src0_ddf = nullptr;
- float * src1_ddf = nullptr;
- float * dst_ddf = nullptr;
- cuda_pool_alloc<float> dst_f;
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- if (dst_on_device) {
- dst_ddf = (float *) dst_extra->data_device[g_main_device];
- } else {
- dst_ddf = dst_f.alloc(ggml_nelements(dst));
- }
- // do the computation
- ggml_cuda_op_arange(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
- CUDA_CHECK(cudaGetLastError());
- // copy dst to host if necessary
- if (!dst_on_device) {
- CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
- }
- if (dst->backend == GGML_BACKEND_TYPE_CPU) {
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- }
- static void ggml_cuda_timestep_embedding(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_timestep_embedding);
- }
- static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
- }
- GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- if (!g_cublas_loaded) return false;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
- }
- static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
- GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne12 = src1->ne[2];
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
- }
- static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(!ggml_is_permuted(src0));
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t ne12 = src1->ne[2];
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- const int64_t row_stride_x = nb01 / sizeof(half);
- const int64_t channel_stride_x = nb02 / sizeof(half);
- ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
- }
- static __global__ void k_compute_batched_ptrs(
- const half * src0_as_f16, const half * src1_as_f16, char * dst,
- const void ** ptrs_src, void ** ptrs_dst,
- int64_t ne12, int64_t ne13,
- int64_t ne23,
- size_t nb02, size_t nb03,
- size_t nb12, size_t nb13,
- size_t nbd2, size_t nbd3,
- int64_t r2, int64_t r3) {
- int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
- int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
- int64_t i03 = i13 / r3;
- int64_t i02 = i12 / r2;
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
- }
- static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t ne_dst = ggml_nelements(dst);
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- half * src0_f16 = (half *) src0_ddq;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- // convert src1 to fp16
- cuda_pool_alloc<half> src1_f16_alloc;
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- const int64_t ne_src1 = ggml_nelements(src1);
- src1_f16_alloc.alloc(ne_src1);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
- }
- half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
- cuda_pool_alloc<half> dst_f16;
- char * dst_t;
- cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
- cudaDataType_t cu_data_type = CUDA_R_16F;
- // dst strides
- size_t nbd2 = dst->nb[2];
- size_t nbd3 = dst->nb[3];
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- const float alpha_f32 = 1.0f;
- const float beta_f32 = 0.0f;
- const void * alpha = &alpha_f16;
- const void * beta = &beta_f16;
- if (dst->op_params[0] == GGML_PREC_DEFAULT) {
- dst_t = (char *) dst_f16.alloc(ne_dst);
- nbd2 /= sizeof(float) / sizeof(half);
- nbd3 /= sizeof(float) / sizeof(half);
- } else {
- dst_t = (char *) dst_ddf;
- cu_compute_type = CUBLAS_COMPUTE_32F;
- cu_data_type = CUDA_R_32F;
- alpha = &alpha_f32;
- beta = &beta_f32;
- }
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- #if 0
- // use cublasGemmEx
- {
- for (int i13 = 0; i13 < ne13; ++i13) {
- for (int i12 = 0; i12 < ne12; ++i12) {
- int i03 = i13 / r3;
- int i02 = i12 / r2;
- CUBLAS_CHECK(
- cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
- (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
- beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- }
- }
- }
- #else
- if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
- // there is no broadcast and src0, src1 are contiguous across dims 2, 3
- // use cublasGemmStridedBatchedEx
- CUBLAS_CHECK(
- cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
- (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
- beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
- ne12*ne13,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- } else {
- // use cublasGemmBatchedEx
- const int ne23 = ne12*ne13;
- cuda_pool_alloc<const void *> ptrs_src(2*ne23);
- cuda_pool_alloc< void *> ptrs_dst(1*ne23);
- dim3 block_dims(ne13, ne12);
- k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
- src0_f16, src1_f16, dst_t,
- ptrs_src.get(), ptrs_dst.get(),
- ne12, ne13,
- ne23,
- nb02, nb03,
- src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
- src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
- nbd2, nbd3,
- r2, r3);
- CUDA_CHECK(cudaGetLastError());
- CUBLAS_CHECK(
- cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
- (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
- beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
- ne23,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- }
- #endif
- if (dst->op_params[0] == GGML_PREC_DEFAULT) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
- }
- }
- static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const bool all_on_device =
- (src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
- (src1->backend == GGML_BACKEND_TYPE_GPU) &&
- ( dst->backend == GGML_BACKEND_TYPE_GPU);
- const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
- int64_t min_compute_capability = INT_MAX;
- bool any_pascal_with_slow_fp16 = false;
- if (split) {
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
- auto & tensor_split = buft_ctx->tensor_split;
- for (int id = 0; id < g_device_count; ++id) {
- // skip devices that are not going to do any work:
- if (tensor_split[id] >= (id + 1 < g_device_count ? tensor_split[id + 1] : 1.0f)) {
- continue;
- }
- if (min_compute_capability > g_device_caps[id].cc) {
- min_compute_capability = g_device_caps[id].cc;
- }
- if (g_device_caps[id].cc == 610) {
- any_pascal_with_slow_fp16 = true;
- }
- }
- } else {
- min_compute_capability = g_device_caps[g_main_device].cc;
- any_pascal_with_slow_fp16 = g_device_caps[g_main_device].cc == 610;
- }
- // check data types and tensor shapes for custom matrix multiplication kernels:
- bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
- && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
- bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
- && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
- bool use_mul_mat_q = ggml_cuda_supports_mmq(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
- #ifdef CUDA_USE_TENSOR_CORES
- use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
- #endif // CUDA_USE_TENSOR_CORES
- #else
- // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
- const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
- // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
- use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
- use_mul_mat_q = use_mul_mat_q && min_compute_capability >= MIN_CC_DP4A;
- #ifdef CUDA_USE_TENSOR_CORES
- // when tensor cores are available, use them for large batch size
- // ref: https://github.com/ggerganov/llama.cpp/pull/3776
- use_mul_mat_q = use_mul_mat_q && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
- #endif // CUDA_USE_TENSOR_CORES
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- // if mmvq is available it's a better choice than dmmv:
- #ifndef GGML_CUDA_FORCE_DMMV
- use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
- #endif // GGML_CUDA_FORCE_DMMV
- // debug helpers
- //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
- //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
- //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
- //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
- if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
- // KQ single-batch
- ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
- } else if (!split && all_on_device && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
- // KQV single-batch
- ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
- } else if (!split && all_on_device && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
- // KQ + KQV multi-batch
- ggml_cuda_mul_mat_batched_cublas(src0, src1, dst);
- } else if (use_dequantize_mul_mat_vec) {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
- } else if (use_mul_mat_vec_q) {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
- } else if (use_mul_mat_q) {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
- } else {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
- }
- }
- #if 0
- template<typename ... Srcs>
- static __global__ void k_compute_batched_ptrs_id(
- const void ** ptrs_src, void ** ptrs_dst,
- int ne12, int ne13,
- int ne23,
- int nb02, int nb03,
- int nb12, int nb13,
- int nb2, int nb3,
- int r2, int r3,
- ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
- const half * src1_f16, half * dst_f16,
- const int32_t * ids, const int id,
- Srcs... src0s) {
- int i = ids[id];
- half * src0_f16;
- const void * srcs_ar[] = { (const half *) src0s... };
- if (src0_type == GGML_TYPE_F16) {
- src0_f16 = (half *) srcs_ar[i];
- } else {
- src0_f16 = src0_as_f16;
- if (threadIdx.x == 0 && threadIdx.y == 0) {
- const to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(src0_type);
- to_fp16(srcs_ar[i], src0_f16, src0_ne, cudaStreamFireAndForget);
- }
- }
- int i13 = blockIdx.x * blockDim.x + threadIdx.x;
- int i12 = blockIdx.y * blockDim.y + threadIdx.y;
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
- int i03 = i13 / r3;
- int i02 = i12 / r2;
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
- }
- static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
- const struct ggml_tensor * ids = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * src00 = dst->src[2];
- const int id = dst->op_params[0];
- GGML_ASSERT(!ggml_is_transposed(src00));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
- const int64_t ne01 = src00->ne[1];
- const int64_t ne02 = src00->ne[2];
- const int64_t ne03 = src00->ne[3];
- //const int64_t nb01 = src00->nb[1];
- const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
- const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- //const int64_t nb11 = src1->nb[1];
- const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
- const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
- const int64_t ne1 = ggml_nelements(src1);
- const int64_t ne = ggml_nelements(dst);
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
- //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- //void * src0_ddq = src0_extra->data_device[g_main_device];
- //half * src0_as_f16 = (half *) src0_ddq;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- // convert src1 to fp16
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t src1_as = 0;
- half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
- to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
- size_t dst_as = 0;
- half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- // use cublasGemmBatchedEx
- const int ne23 = ne12*ne13;
- const void ** ptrs_src = nullptr;
- void ** ptrs_dst = nullptr;
- size_t ptrs_src_s = 0;
- size_t ptrs_dst_s = 0;
- ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
- ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
- int64_t src0_ne = ggml_nelements(src00);
- half * src0_as_f16 = nullptr;
- size_t src0_as = 0;
- if (src00->type != GGML_TYPE_F16) {
- src0_as_f16 = (half *) ggml_cuda_pool_malloc(src0_ne * sizeof(half), &src0_as);
- }
- static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
- dim3 block_dims(ne13, ne12);
- k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
- ptrs_src, ptrs_dst,
- ne12, ne13,
- ne23,
- ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
- nb12, nb13,
- dst->nb[2], dst->nb[3],
- r2, r3,
- src00->type, src0_as_f16, src0_ne,
- src1_as_f16, dst_f16,
- (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id,
- dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr,
- dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr,
- dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr,
- dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr
- );
- CUDA_CHECK(cudaGetLastError());
- CUBLAS_CHECK(
- cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, ne00,
- (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, ne10,
- &beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
- ne23,
- CUBLAS_COMPUTE_16F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- if (src0_as != 0) {
- ggml_cuda_pool_free(src0_as_f16, src0_as);
- }
- if (ptrs_src_s != 0) {
- ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
- }
- if (ptrs_dst_s != 0) {
- ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
- }
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
- ggml_cuda_pool_free(src1_as_f16, src1_as);
- ggml_cuda_pool_free(dst_f16, dst_as);
- }
- #endif
- static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- #if 0
- ggml_cuda_mul_mat_id_cublas(dst);
- // TODO: mmq/mmv support
- #endif
- const size_t nb11 = src1->nb[1];
- const size_t nb1 = dst->nb[1];
- const struct ggml_tensor * ids = src0;
- const int32_t id = ((int32_t *) dst->op_params)[0];
- const int32_t n_as = ((int32_t *) dst->op_params)[1];
- std::vector<char> ids_host(ggml_nbytes(ids));
- cudaStream_t stream = g_cudaStreams[g_main_device][0];
- if (ids->backend == GGML_BACKEND_TYPE_GPU) {
- const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
- CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
- CUDA_CHECK(cudaStreamSynchronize(stream));
- } else {
- memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
- }
- const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
- const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
- ggml_tensor_extra_gpu src1_row_extra;
- ggml_tensor_extra_gpu dst_row_extra;
- ggml_tensor src1_row = *src1;
- ggml_tensor dst_row = *dst;
- src1_row.backend = GGML_BACKEND_TYPE_GPU;
- dst_row.backend = GGML_BACKEND_TYPE_GPU;
- src1_row.extra = &src1_row_extra;
- dst_row.extra = &dst_row_extra;
- char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
- (char *) src1->data : (char *) src1_extra->data_device[g_main_device];
- char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ?
- (char *) dst->data : (char *) dst_extra->data_device[g_main_device];
- if (src1->ne[1] == 1) {
- GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
- GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- //int32_t row_id;
- //CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
- //CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
- const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- const struct ggml_tensor * src0_row = dst->src[row_id + 2];
- src1_row_extra.data_device[g_main_device] = src1_original + i01*src1->nb[1];
- src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
- dst_row_extra.data_device[g_main_device] = dst_original + i01*dst->nb[1];
- dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
- ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
- }
- } else {
- cuda_pool_alloc<char> src1_contiguous(sizeof(float)*ggml_nelements(src1));
- cuda_pool_alloc<char> dst_contiguous(sizeof(float)*ggml_nelements(dst));
- src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
- dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
- const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_TYPE_CPU ?
- cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
- const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_TYPE_CPU ?
- cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice;
- for (int32_t row_id = 0; row_id < n_as; ++row_id) {
- const struct ggml_tensor * src0_row = dst->src[row_id + 2];
- int64_t num_src1_rows = 0;
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- if (row_id_i != row_id) {
- continue;
- }
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
- nb11, src1_kind, stream));
- num_src1_rows++;
- }
- if (num_src1_rows == 0) {
- continue;
- }
- src1_row.ne[1] = num_src1_rows;
- dst_row.ne[1] = num_src1_rows;
- src1_row.nb[1] = nb11;
- src1_row.nb[2] = num_src1_rows*nb11;
- src1_row.nb[3] = num_src1_rows*nb11;
- dst_row.nb[1] = nb1;
- dst_row.nb[2] = num_src1_rows*nb1;
- dst_row.nb[3] = num_src1_rows*nb1;
- ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
- num_src1_rows = 0;
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- if (row_id_i != row_id) {
- continue;
- }
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
- nb1, dst_kind, stream));
- num_src1_rows++;
- }
- }
- }
- if (dst->backend == GGML_BACKEND_TYPE_CPU) {
- CUDA_CHECK(cudaStreamSynchronize(stream));
- }
- }
- static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
- }
- static void ggml_cuda_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_clamp);
- }
- static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne = ggml_nelements(src0);
- GGML_ASSERT(ne == ggml_nelements(src1));
- GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
- GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
- GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
- GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- //GGML_ASSERT(src0->ne[3] == 1);
- const int64_t nb00 = src0->nb[0];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t nb03 = src0->nb[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- //GGML_ASSERT(src1->ne[3] == 1);
- const int64_t nb10 = src1->nb[0];
- const int64_t nb11 = src1->nb[1];
- const int64_t nb12 = src1->nb[2];
- const int64_t nb13 = src1->nb[3];
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
- ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
- ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
- ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else {
- fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
- ggml_type_name(src0->type), ggml_type_name(src1->type));
- GGML_ASSERT(false);
- }
- (void) dst;
- }
- static void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- // TODO: why do we pass dst as src1 here?
- ggml_cuda_cpy(src0, dst, nullptr);
- (void) src1;
- }
- static void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_diag_mask_inf);
- }
- static void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_soft_max);
- }
- static void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rope);
- }
- static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
- }
- static void ggml_cuda_pool2d(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pool2d);
- }
- static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
- }
- static void ggml_cuda_sum_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sum_rows);
- }
- static void ggml_cuda_argsort(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_argsort);
- }
- static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- (void) src0;
- (void) src1;
- (void) dst;
- }
- static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
- }
- GGML_CALL static void ggml_cuda_set_main_device(const int main_device) {
- if (main_device >= g_device_count) {
- fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
- main_device, g_device_count, g_main_device);
- return;
- }
- if (g_main_device != main_device && g_device_count > 1) {
- g_main_device = main_device;
- //cudaDeviceProp prop;
- //CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
- //fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
- }
- }
- GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
- if (!g_cublas_loaded) return false;
- ggml_cuda_func_t func;
- const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
- || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
- || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
- if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
- return false;
- }
- if (tensor->op == GGML_OP_MUL_MAT) {
- if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
- #ifndef NDEBUG
- fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
- #endif
- return false;
- }
- }
- switch (tensor->op) {
- case GGML_OP_REPEAT:
- func = ggml_cuda_repeat;
- break;
- case GGML_OP_GET_ROWS:
- func = ggml_cuda_get_rows;
- break;
- case GGML_OP_DUP:
- func = ggml_cuda_dup;
- break;
- case GGML_OP_ADD:
- func = ggml_cuda_add;
- break;
- case GGML_OP_ACC:
- func = ggml_cuda_acc;
- break;
- case GGML_OP_MUL:
- func = ggml_cuda_mul;
- break;
- case GGML_OP_DIV:
- func = ggml_cuda_div;
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_GELU:
- func = ggml_cuda_gelu;
- break;
- case GGML_UNARY_OP_SILU:
- func = ggml_cuda_silu;
- break;
- case GGML_UNARY_OP_GELU_QUICK:
- func = ggml_cuda_gelu_quick;
- break;
- case GGML_UNARY_OP_TANH:
- func = ggml_cuda_tanh;
- break;
- case GGML_UNARY_OP_RELU:
- func = ggml_cuda_relu;
- break;
- case GGML_UNARY_OP_HARDSIGMOID:
- func = ggml_cuda_hardsigmoid;
- break;
- case GGML_UNARY_OP_HARDSWISH:
- func = ggml_cuda_hardswish;
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_NORM:
- func = ggml_cuda_norm;
- break;
- case GGML_OP_GROUP_NORM:
- func = ggml_cuda_group_norm;
- break;
- case GGML_OP_CONCAT:
- func = ggml_cuda_concat;
- break;
- case GGML_OP_UPSCALE:
- func = ggml_cuda_upscale;
- break;
- case GGML_OP_PAD:
- func = ggml_cuda_pad;
- break;
- case GGML_OP_ARANGE:
- func = ggml_cuda_arange;
- break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- func = ggml_cuda_timestep_embedding;
- break;
- case GGML_OP_LEAKY_RELU:
- func = ggml_cuda_leaky_relu;
- break;
- case GGML_OP_RMS_NORM:
- func = ggml_cuda_rms_norm;
- break;
- case GGML_OP_MUL_MAT:
- if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_cuda_mul_mat;
- break;
- case GGML_OP_MUL_MAT_ID:
- if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[2], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_cuda_mul_mat_id;
- break;
- case GGML_OP_SCALE:
- func = ggml_cuda_scale;
- break;
- case GGML_OP_SQR:
- func = ggml_cuda_sqr;
- break;
- case GGML_OP_CLAMP:
- func = ggml_cuda_clamp;
- break;
- case GGML_OP_CPY:
- func = ggml_cuda_cpy;
- break;
- case GGML_OP_CONT:
- func = ggml_cuda_dup;
- break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- func = ggml_cuda_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- func = ggml_cuda_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- func = ggml_cuda_soft_max;
- break;
- case GGML_OP_ROPE:
- func = ggml_cuda_rope;
- break;
- case GGML_OP_ALIBI:
- func = ggml_cuda_alibi;
- break;
- case GGML_OP_IM2COL:
- func = ggml_cuda_im2col;
- break;
- case GGML_OP_POOL_2D:
- func = ggml_cuda_pool2d;
- break;
- case GGML_OP_SUM_ROWS:
- func = ggml_cuda_sum_rows;
- break;
- case GGML_OP_ARGSORT:
- func = ggml_cuda_argsort;
- break;
- default:
- return false;
- }
- if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
- ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
- }
- if (params->ith != 0) {
- return true;
- }
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return true;
- }
- func(tensor->src[0], tensor->src[1], tensor);
- return true;
- }
- GGML_CALL int ggml_cuda_get_device_count() {
- int device_count;
- if (cudaGetDeviceCount(&device_count) != cudaSuccess) {
- return 0;
- }
- return device_count;
- }
- GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
- snprintf(description, description_size, "%s", prop.name);
- }
- ////////////////////////////////////////////////////////////////////////////////
- // backend interface
- #define UNUSED GGML_UNUSED
- struct ggml_backend_cuda_context {
- int device;
- std::string name;
- };
- // cuda buffer
- struct ggml_backend_cuda_buffer_context {
- int device;
- void * dev_ptr = nullptr;
- ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
- size_t temp_tensor_extra_index = 0;
- std::string name;
- ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
- device(device), dev_ptr(dev_ptr),
- name(GGML_CUDA_NAME + std::to_string(device)) {
- }
- ~ggml_backend_cuda_buffer_context() {
- delete[] temp_tensor_extras;
- }
- ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
- // TODO: remove GGML_CUDA_MAX_NODES, allocate dynamically and reuse in backend_buffer_reset
- if (temp_tensor_extras == nullptr) {
- temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
- }
- size_t alloc_index = temp_tensor_extra_index;
- temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
- ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
- memset(extra, 0, sizeof(*extra));
- return extra;
- }
- };
- GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- return ctx->name.c_str();
- }
- GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
- }
- GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- CUDA_CHECK(cudaFree(ctx->dev_ptr));
- delete ctx;
- }
- GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- return ctx->dev_ptr;
- }
- GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- if (tensor->view_src != NULL && tensor->view_offs == 0) {
- assert(tensor->view_src->buffer->buft == buffer->buft);
- tensor->backend = tensor->view_src->backend;
- tensor->extra = tensor->view_src->extra;
- return;
- }
- ggml_tensor_extra_gpu * extra = ctx->ggml_cuda_alloc_temp_tensor_extra();
- extra->data_device[ctx->device] = tensor->data;
- tensor->backend = GGML_BACKEND_TYPE_GPU;
- tensor->extra = extra;
- if (ggml_is_quantized(tensor->type)) {
- // initialize padding to 0 to avoid possible NaN values
- size_t original_size = ggml_nbytes(tensor);
- size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
- if (padded_size > original_size && tensor->view_src == nullptr) {
- CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
- }
- }
- }
- GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaDeviceSynchronize());
- CUDA_CHECK(cudaMemcpy((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice));
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaDeviceSynchronize());
- CUDA_CHECK(cudaMemcpy(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost));
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
- if (ggml_backend_buffer_is_cuda(src->buffer)) {
- ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
- ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- ggml_cuda_set_device(src_ctx->device);
- CUDA_CHECK(cudaDeviceSynchronize());
- ggml_cuda_set_device(dst_ctx->device);
- CUDA_CHECK(cudaDeviceSynchronize());
- CUDA_CHECK(cudaMemcpy((char *)dst->data, (const char *)src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice));
- CUDA_CHECK(cudaDeviceSynchronize());
- return true;
- }
- return false;
- }
- GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaDeviceSynchronize());
- CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
- /* .get_name = */ ggml_backend_cuda_buffer_get_name,
- /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cuda_buffer_get_base,
- /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
- /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
- /* .clear = */ ggml_backend_cuda_buffer_clear,
- /* .reset = */ NULL,
- };
- // cuda buffer type
- struct ggml_backend_cuda_buffer_type_context {
- int device;
- std::string name;
- };
- GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
- ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- return ctx->name.c_str();
- }
- GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- ggml_cuda_set_device(buft_ctx->device);
- size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
- void * dev_ptr;
- cudaError_t err = cudaMalloc(&dev_ptr, size);
- if (err != cudaSuccess) {
- fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
- return nullptr;
- }
- ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
- return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
- }
- GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
- UNUSED(buft);
- }
- GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- size_t size = ggml_nbytes(tensor);
- int64_t ne0 = tensor->ne[0];
- if (ggml_is_quantized(tensor->type)) {
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
- return size;
- UNUSED(buft);
- }
- GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- if (!ggml_backend_is_cuda(backend)) {
- return false;
- }
- ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- return buft_ctx->device == cuda_ctx->device;
- }
- static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
- /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
- /* .is_host = */ NULL,
- };
- GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
- // FIXME: this is not thread safe
- if (device >= ggml_backend_cuda_get_device_count()) {
- return nullptr;
- }
- static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
- static bool ggml_backend_cuda_buffer_type_initialized = false;
- if (!ggml_backend_cuda_buffer_type_initialized) {
- for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
- ggml_backend_cuda_buffer_types[i] = {
- /* .iface = */ ggml_backend_cuda_buffer_type_interface,
- /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
- };
- }
- ggml_backend_cuda_buffer_type_initialized = true;
- }
- return &ggml_backend_cuda_buffer_types[device];
- }
- // cuda split buffer
- struct ggml_backend_cuda_split_buffer_context {
- ~ggml_backend_cuda_split_buffer_context() {
- for (ggml_tensor_extra_gpu * extra : tensor_extras) {
- for (int id = 0; id < g_device_count; ++id) {
- for (int64_t is = 0; is < MAX_STREAMS; ++is) {
- if (extra->events[id][is] != nullptr) {
- CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
- }
- }
- if (extra->data_device[id] != nullptr) {
- CUDA_CHECK(cudaFree(extra->data_device[id]));
- }
- }
- delete extra;
- }
- }
- std::vector<ggml_tensor_extra_gpu *> tensor_extras;
- };
- GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
- return GGML_CUDA_NAME "_Split";
- UNUSED(buffer);
- }
- static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
- UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
- delete ctx;
- }
- GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
- // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
- return (void *)0x1000;
- UNUSED(buffer);
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
- ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
- ctx->tensor_extras.push_back(extra);
- for (int id = 0; id < g_device_count; ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- // FIXME: do not crash if cudaMalloc fails
- // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
- ggml_cuda_set_device(id);
- char * buf;
- CUDA_CHECK(cudaMalloc(&buf, size));
- // set padding to 0 to avoid possible NaN values
- if (size > original_size) {
- CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
- }
- extra->data_device[id] = buf;
- for (int64_t is = 0; is < MAX_STREAMS; ++is) {
- CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
- }
- }
- tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
- tensor->extra = extra;
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- for (int id = 0; id < g_device_count; ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- const char * buf_host = (const char *)data + offset_split;
- CUDA_CHECK(cudaMemcpy(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice));
- }
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- for (int id = 0; id < g_device_count; ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- char * buf_host = (char *)data + offset_split;
- CUDA_CHECK(cudaMemcpy(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost));
- }
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- UNUSED(buffer);
- UNUSED(value);
- }
- static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
- /* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
- /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
- /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_cuda_split_buffer_clear,
- /* .reset = */ NULL,
- };
- // cuda split buffer type
- GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_CUDA_NAME "_Split";
- UNUSED(buft);
- }
- GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
- // instead, we allocate them for each tensor separately in init_tensor
- // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
- // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
- ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
- return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
- }
- GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
- UNUSED(buft);
- }
- GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
- size_t total_size = 0;
- const int64_t ne0 = tensor->ne[0];
- for (int id = 0; id < g_device_count; ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- total_size += ggml_nbytes_split(tensor, nrows_split);
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
- return total_size;
- }
- GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return ggml_backend_is_cuda(backend);
- UNUSED(buft);
- }
- GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
- return false;
- UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
- /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
- /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
- };
- GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
- // FIXME: this is not thread safe
- static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
- if (all_zero) {
- tensor_split_arr = g_default_tensor_split;
- } else {
- float split_sum = 0.0f;
- for (int i = 0; i < g_device_count; ++i) {
- tensor_split_arr[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < g_device_count; ++i) {
- tensor_split_arr[i] /= split_sum;
- }
- }
- auto it = buft_map.find(tensor_split_arr);
- if (it != buft_map.end()) {
- return &it->second;
- }
- struct ggml_backend_buffer_type buft {
- /* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
- /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
- };
- auto result = buft_map.emplace(tensor_split_arr, buft);
- return &result.first->second;
- }
- // host buffer type
- GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_CUDA_NAME "_Host";
- UNUSED(buft);
- }
- GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
- return GGML_CUDA_NAME "_Host";
- UNUSED(buffer);
- }
- GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_cuda_host_free(buffer->context);
- }
- GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- void * ptr = ggml_cuda_host_malloc(size);
- if (ptr == nullptr) {
- // fallback to cpu buffer
- return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
- }
- ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
- buffer->buft = buft;
- buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
- buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
- return buffer;
- }
- GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
- static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
- /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
- /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
- },
- /* .context = */ nullptr,
- };
- return &ggml_backend_cuda_buffer_type_host;
- }
- // backend
- GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- return cuda_ctx->name.c_str();
- }
- GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- delete cuda_ctx;
- delete backend;
- }
- GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- return ggml_backend_cuda_buffer_type(cuda_ctx->device);
- }
- GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
- CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
- }
- GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
- CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
- }
- GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- if (dst->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && ggml_backend_buffer_is_cuda(src->buffer)) {
- CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, g_cudaStreams[cuda_ctx->device][0]));
- return true;
- }
- return false;
- }
- GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[cuda_ctx->device][0]));
- UNUSED(backend);
- }
- GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- ggml_cuda_set_main_device(cuda_ctx->device);
- ggml_compute_params params = {};
- params.type = GGML_TASK_TYPE_COMPUTE;
- params.ith = 0;
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_tensor * node = cgraph->nodes[i];
- if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
- continue;
- }
- #ifndef NDEBUG
- assert(node->backend == GGML_BACKEND_TYPE_GPU || node->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
- assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
- assert(node->extra != nullptr);
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j] != nullptr) {
- assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU || node->src[j]->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
- assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
- assert(node->src[j]->extra != nullptr);
- }
- }
- #endif
- bool ok = ggml_cuda_compute_forward(¶ms, node);
- if (!ok) {
- fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
- }
- GGML_ASSERT(ok);
- }
- return GGML_STATUS_SUCCESS;
- }
- GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
- switch (op->op) {
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_TANH:
- return true;
- default:
- return false;
- }
- break;
- case GGML_OP_MUL_MAT:
- case GGML_OP_MUL_MAT_ID:
- {
- struct ggml_tensor * a;
- struct ggml_tensor * b;
- if (op->op == GGML_OP_MUL_MAT) {
- a = op->src[0];
- b = op->src[1];
- } else {
- a = op->src[2];
- b = op->src[1];
- }
- if (a->ne[3] != b->ne[3]) {
- return false;
- }
- ggml_type a_type = a->type;
- if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
- a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S ||
- a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS) {
- if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
- return false;
- }
- }
- return true;
- } break;
- case GGML_OP_GET_ROWS:
- {
- switch (op->src[0]->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return true;
- default:
- return false;
- }
- } break;
- case GGML_OP_CPY:
- {
- ggml_type src0_type = op->src[0]->type;
- ggml_type src1_type = op->src[1]->type;
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
- return true;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- return false;
- } break;
- case GGML_OP_DUP:
- case GGML_OP_REPEAT:
- case GGML_OP_CONCAT:
- {
- ggml_type src0_type = op->src[0]->type;
- return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
- } break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_NORM:
- case GGML_OP_ADD:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_RMS_NORM:
- case GGML_OP_SCALE:
- case GGML_OP_SQR:
- case GGML_OP_CLAMP:
- case GGML_OP_CONT:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_ROPE:
- case GGML_OP_ALIBI:
- case GGML_OP_IM2COL:
- case GGML_OP_POOL_2D:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_ARGSORT:
- case GGML_OP_ACC:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_UPSCALE:
- case GGML_OP_PAD:
- case GGML_OP_ARANGE:
- case GGML_OP_TIMESTEP_EMBEDDING:
- case GGML_OP_LEAKY_RELU:
- return true;
- default:
- return false;
- }
- UNUSED(backend);
- }
- static ggml_backend_i ggml_backend_cuda_interface = {
- /* .get_name = */ ggml_backend_cuda_name,
- /* .free = */ ggml_backend_cuda_free,
- /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
- /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
- /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
- /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
- /* .synchronize = */ ggml_backend_cuda_synchronize,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_cuda_graph_compute,
- /* .supports_op = */ ggml_backend_cuda_supports_op,
- };
- static ggml_guid_t ggml_backend_cuda_guid() {
- static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
- return &guid;
- }
- GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
- ggml_init_cublas(); // TODO: remove from ggml.c
- if (device < 0 || device >= ggml_cuda_get_device_count()) {
- fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
- return nullptr;
- }
- // not strictly necessary, but it may reduce the overhead of the first graph_compute
- ggml_cuda_set_main_device(device);
- ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context {
- /* .device = */ device,
- /* .name = */ GGML_CUDA_NAME + std::to_string(device),
- };
- ggml_backend_t cuda_backend = new ggml_backend {
- /* .guid = */ ggml_backend_cuda_guid(),
- /* .interface = */ ggml_backend_cuda_interface,
- /* .context = */ ctx
- };
- return cuda_backend;
- }
- GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
- }
- GGML_CALL int ggml_backend_cuda_get_device_count() {
- return ggml_cuda_get_device_count();
- }
- GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
- ggml_cuda_get_device_description(device, description, description_size);
- }
- GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaMemGetInfo(free, total));
- }
- // backend registry
- GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
- ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
- return cuda_backend;
- UNUSED(params);
- }
- extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
- GGML_CALL int ggml_backend_cuda_reg_devices() {
- int device_count = ggml_cuda_get_device_count();
- //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
- for (int i = 0; i < device_count; i++) {
- char name[128];
- snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
- ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
- }
- return device_count;
- }
|