ggml.c 683 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. const char * ggml_status_to_string(enum ggml_status status) {
  271. switch (status) {
  272. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  273. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  274. case GGML_STATUS_SUCCESS: return "GGML status: success";
  275. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  276. }
  277. return "GGML status: unknown";
  278. }
  279. // note: do not use these inside ggml.c
  280. // these are meant to be used via the ggml.h API
  281. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  282. return GGML_FP16_TO_FP32(x);
  283. }
  284. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  285. return GGML_FP32_TO_FP16(x);
  286. }
  287. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  288. for (int i = 0; i < n; i++) {
  289. y[i] = GGML_FP16_TO_FP32(x[i]);
  290. }
  291. }
  292. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  293. int i = 0;
  294. #if defined(__F16C__)
  295. for (; i + 7 < n; i += 8) {
  296. __m256 x_vec = _mm256_loadu_ps(x + i);
  297. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  298. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  299. }
  300. for(; i + 3 < n; i += 4) {
  301. __m128 x_vec = _mm_loadu_ps(x + i);
  302. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  304. }
  305. #endif
  306. for (; i < n; i++) {
  307. y[i] = GGML_FP32_TO_FP16(x[i]);
  308. }
  309. }
  310. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  311. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  312. }
  313. //
  314. // timing
  315. //
  316. #if defined(_MSC_VER) || defined(__MINGW32__)
  317. static int64_t timer_freq, timer_start;
  318. void ggml_time_init(void) {
  319. LARGE_INTEGER t;
  320. QueryPerformanceFrequency(&t);
  321. timer_freq = t.QuadPart;
  322. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  323. // and the uptime is high enough.
  324. // We subtract the program start time to reduce the likelihood of that happening.
  325. QueryPerformanceCounter(&t);
  326. timer_start = t.QuadPart;
  327. }
  328. int64_t ggml_time_ms(void) {
  329. LARGE_INTEGER t;
  330. QueryPerformanceCounter(&t);
  331. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  332. }
  333. int64_t ggml_time_us(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  337. }
  338. #else
  339. void ggml_time_init(void) {}
  340. int64_t ggml_time_ms(void) {
  341. struct timespec ts;
  342. clock_gettime(CLOCK_MONOTONIC, &ts);
  343. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  344. }
  345. int64_t ggml_time_us(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  349. }
  350. #endif
  351. int64_t ggml_cycles(void) {
  352. return clock();
  353. }
  354. int64_t ggml_cycles_per_ms(void) {
  355. return CLOCKS_PER_SEC/1000;
  356. }
  357. #ifdef GGML_PERF
  358. #define ggml_perf_time_ms() ggml_time_ms()
  359. #define ggml_perf_time_us() ggml_time_us()
  360. #define ggml_perf_cycles() ggml_cycles()
  361. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  362. #else
  363. #define ggml_perf_time_ms() 0
  364. #define ggml_perf_time_us() 0
  365. #define ggml_perf_cycles() 0
  366. #define ggml_perf_cycles_per_ms() 0
  367. #endif
  368. //
  369. // cache line
  370. //
  371. #if defined(__cpp_lib_hardware_interference_size)
  372. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  373. #else
  374. #if defined(__POWER9_VECTOR__)
  375. #define CACHE_LINE_SIZE 128
  376. #else
  377. #define CACHE_LINE_SIZE 64
  378. #endif
  379. #endif
  380. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  381. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  382. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  383. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  384. [GGML_TYPE_I8] = {
  385. .type_name = "i8",
  386. .blck_size = 1,
  387. .type_size = sizeof(int8_t),
  388. .is_quantized = false,
  389. },
  390. [GGML_TYPE_I16] = {
  391. .type_name = "i16",
  392. .blck_size = 1,
  393. .type_size = sizeof(int16_t),
  394. .is_quantized = false,
  395. },
  396. [GGML_TYPE_I32] = {
  397. .type_name = "i32",
  398. .blck_size = 1,
  399. .type_size = sizeof(int32_t),
  400. .is_quantized = false,
  401. },
  402. [GGML_TYPE_F32] = {
  403. .type_name = "f32",
  404. .blck_size = 1,
  405. .type_size = sizeof(float),
  406. .is_quantized = false,
  407. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  408. .vec_dot_type = GGML_TYPE_F32,
  409. .nrows = 1,
  410. },
  411. [GGML_TYPE_F16] = {
  412. .type_name = "f16",
  413. .blck_size = 1,
  414. .type_size = sizeof(ggml_fp16_t),
  415. .is_quantized = false,
  416. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  417. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  418. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  419. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  420. .vec_dot_type = GGML_TYPE_F16,
  421. .nrows = 1,
  422. },
  423. [GGML_TYPE_Q4_0] = {
  424. .type_name = "q4_0",
  425. .blck_size = QK4_0,
  426. .type_size = sizeof(block_q4_0),
  427. .is_quantized = true,
  428. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  429. .from_float = quantize_row_q4_0,
  430. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  431. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  432. .vec_dot_type = GGML_TYPE_Q8_0,
  433. #if defined (__ARM_FEATURE_MATMUL_INT8)
  434. .nrows = 2,
  435. #else
  436. .nrows = 1,
  437. #endif
  438. },
  439. [GGML_TYPE_Q4_1] = {
  440. .type_name = "q4_1",
  441. .blck_size = QK4_1,
  442. .type_size = sizeof(block_q4_1),
  443. .is_quantized = true,
  444. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  445. .from_float = quantize_row_q4_1,
  446. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  447. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  448. .vec_dot_type = GGML_TYPE_Q8_1,
  449. #if defined (__ARM_FEATURE_MATMUL_INT8)
  450. .nrows = 2,
  451. #else
  452. .nrows = 1,
  453. #endif
  454. },
  455. [4] = { // GGML_TYPE_Q4_2
  456. .type_name = "DEPRECATED",
  457. .blck_size = 0,
  458. .type_size = 0,
  459. .is_quantized = false,
  460. .to_float = NULL,
  461. .from_float = NULL,
  462. .from_float_reference = NULL,
  463. .vec_dot = NULL,
  464. .vec_dot_type = GGML_TYPE_COUNT,
  465. .nrows = 1,
  466. },
  467. [5] = { // GGML_TYPE_Q4_3
  468. .type_name = "DEPRECATED",
  469. .blck_size = 0,
  470. .type_size = 0,
  471. .is_quantized = false,
  472. .to_float = NULL,
  473. .from_float = NULL,
  474. .from_float_reference = NULL,
  475. .vec_dot = NULL,
  476. .vec_dot_type = GGML_TYPE_COUNT,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q5_0] = {
  480. .type_name = "q5_0",
  481. .blck_size = QK5_0,
  482. .type_size = sizeof(block_q5_0),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  485. .from_float = quantize_row_q5_0,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  487. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  488. .vec_dot_type = GGML_TYPE_Q8_0,
  489. .nrows = 1,
  490. },
  491. [GGML_TYPE_Q5_1] = {
  492. .type_name = "q5_1",
  493. .blck_size = QK5_1,
  494. .type_size = sizeof(block_q5_1),
  495. .is_quantized = true,
  496. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  497. .from_float = quantize_row_q5_1,
  498. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  499. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  500. .vec_dot_type = GGML_TYPE_Q8_1,
  501. .nrows = 1,
  502. },
  503. [GGML_TYPE_Q8_0] = {
  504. .type_name = "q8_0",
  505. .blck_size = QK8_0,
  506. .type_size = sizeof(block_q8_0),
  507. .is_quantized = true,
  508. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  509. .from_float = quantize_row_q8_0,
  510. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  511. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  512. .vec_dot_type = GGML_TYPE_Q8_0,
  513. #if defined (__ARM_FEATURE_MATMUL_INT8)
  514. .nrows = 2,
  515. #else
  516. .nrows = 1,
  517. #endif
  518. },
  519. [GGML_TYPE_Q8_1] = {
  520. .type_name = "q8_1",
  521. .blck_size = QK8_1,
  522. .type_size = sizeof(block_q8_1),
  523. .is_quantized = true,
  524. .from_float = quantize_row_q8_1,
  525. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  526. .vec_dot_type = GGML_TYPE_Q8_1,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_Q2_K] = {
  530. .type_name = "q2_K",
  531. .blck_size = QK_K,
  532. .type_size = sizeof(block_q2_K),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  535. .from_float = quantize_row_q2_K,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  537. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  538. .vec_dot_type = GGML_TYPE_Q8_K,
  539. .nrows = 1,
  540. },
  541. [GGML_TYPE_Q3_K] = {
  542. .type_name = "q3_K",
  543. .blck_size = QK_K,
  544. .type_size = sizeof(block_q3_K),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  547. .from_float = quantize_row_q3_K,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  549. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  550. .vec_dot_type = GGML_TYPE_Q8_K,
  551. .nrows = 1,
  552. },
  553. [GGML_TYPE_Q4_K] = {
  554. .type_name = "q4_K",
  555. .blck_size = QK_K,
  556. .type_size = sizeof(block_q4_K),
  557. .is_quantized = true,
  558. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  559. .from_float = quantize_row_q4_K,
  560. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  561. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  562. .vec_dot_type = GGML_TYPE_Q8_K,
  563. .nrows = 1,
  564. },
  565. [GGML_TYPE_Q5_K] = {
  566. .type_name = "q5_K",
  567. .blck_size = QK_K,
  568. .type_size = sizeof(block_q5_K),
  569. .is_quantized = true,
  570. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  571. .from_float = quantize_row_q5_K,
  572. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  573. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  574. .vec_dot_type = GGML_TYPE_Q8_K,
  575. .nrows = 1,
  576. },
  577. [GGML_TYPE_Q6_K] = {
  578. .type_name = "q6_K",
  579. .blck_size = QK_K,
  580. .type_size = sizeof(block_q6_K),
  581. .is_quantized = true,
  582. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  583. .from_float = quantize_row_q6_K,
  584. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  585. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  586. .vec_dot_type = GGML_TYPE_Q8_K,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_IQ2_XXS] = {
  590. .type_name = "iq2_xxs",
  591. .blck_size = QK_K,
  592. .type_size = sizeof(block_iq2_xxs),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  595. .from_float = NULL,
  596. .from_float_reference = NULL,
  597. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  598. .vec_dot_type = GGML_TYPE_Q8_K,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_IQ2_XS] = {
  602. .type_name = "iq2_xs",
  603. .blck_size = QK_K,
  604. .type_size = sizeof(block_iq2_xs),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  607. .from_float = NULL,
  608. .from_float_reference = NULL,
  609. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  610. .vec_dot_type = GGML_TYPE_Q8_K,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_IQ3_XXS] = {
  614. .type_name = "iq3_xxs",
  615. .blck_size = QK_K,
  616. .type_size = sizeof(block_iq3_xxs),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  619. .from_float = quantize_row_iq3_xxs,
  620. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  621. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  622. .vec_dot_type = GGML_TYPE_Q8_K,
  623. .nrows = 1,
  624. },
  625. [GGML_TYPE_IQ3_S] = {
  626. .type_name = "iq3_s",
  627. .blck_size = QK_K,
  628. .type_size = sizeof(block_iq3_s),
  629. .is_quantized = true,
  630. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  631. .from_float = quantize_row_iq3_s,
  632. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  633. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  634. .vec_dot_type = GGML_TYPE_Q8_K,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_IQ2_S] = {
  638. .type_name = "iq2_s",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_iq2_s),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  643. .from_float = quantize_row_iq2_s,
  644. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  645. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_IQ1_S] = {
  650. .type_name = "iq1_s",
  651. .blck_size = QK_K,
  652. .type_size = sizeof(block_iq1_s),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  655. .from_float = NULL,
  656. .from_float_reference = NULL,
  657. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  658. .vec_dot_type = GGML_TYPE_Q8_K,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_IQ4_NL] = {
  662. .type_name = "iq4_nl",
  663. .blck_size = QK4_NL,
  664. .type_size = sizeof(block_iq4_nl),
  665. .is_quantized = true,
  666. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  667. .from_float = quantize_row_iq4_nl,
  668. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  669. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  670. .vec_dot_type = GGML_TYPE_Q8_0,
  671. .nrows = 1,
  672. },
  673. [GGML_TYPE_IQ4_XS] = {
  674. .type_name = "iq4_xs",
  675. #if QK_K == 64
  676. .blck_size = QK4_NL,
  677. #else
  678. .blck_size = QK_K,
  679. #endif
  680. .type_size = sizeof(block_iq4_xs),
  681. .is_quantized = true,
  682. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  683. .from_float = quantize_row_iq4_xs,
  684. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  685. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  686. #if QK_K == 64
  687. .vec_dot_type = GGML_TYPE_Q8_0,
  688. #else
  689. .vec_dot_type = GGML_TYPE_Q8_K,
  690. #endif
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_Q8_K] = {
  694. .type_name = "q8_K",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_q8_K),
  697. .is_quantized = true,
  698. .from_float = quantize_row_q8_K,
  699. }
  700. };
  701. // For internal test use
  702. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  703. GGML_ASSERT(type < GGML_TYPE_COUNT);
  704. return type_traits[type];
  705. }
  706. //
  707. // simd mappings
  708. //
  709. #if defined(__ARM_NEON)
  710. #if !defined(__aarch64__)
  711. // 64-bit compatibility
  712. inline static float vaddvq_f32(float32x4_t v) {
  713. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  714. }
  715. #endif
  716. #endif
  717. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  718. // we then implement the fundamental computation operations below using only these macros
  719. // adding support for new architectures requires to define the corresponding SIMD macros
  720. //
  721. // GGML_F32_STEP / GGML_F16_STEP
  722. // number of elements to process in a single step
  723. //
  724. // GGML_F32_EPR / GGML_F16_EPR
  725. // number of elements to fit in a single register
  726. //
  727. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  728. #define GGML_SIMD
  729. // F32 NEON
  730. #define GGML_F32_STEP 16
  731. #define GGML_F32_EPR 4
  732. #define GGML_F32x4 float32x4_t
  733. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  734. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  735. #define GGML_F32x4_LOAD vld1q_f32
  736. #define GGML_F32x4_STORE vst1q_f32
  737. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  738. #define GGML_F32x4_ADD vaddq_f32
  739. #define GGML_F32x4_MUL vmulq_f32
  740. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  741. #define GGML_F32x4_REDUCE(res, x) \
  742. { \
  743. int offset = GGML_F32_ARR >> 1; \
  744. for (int i = 0; i < offset; ++i) { \
  745. x[i] = vaddq_f32(x[i], x[offset+i]); \
  746. } \
  747. offset >>= 1; \
  748. for (int i = 0; i < offset; ++i) { \
  749. x[i] = vaddq_f32(x[i], x[offset+i]); \
  750. } \
  751. offset >>= 1; \
  752. for (int i = 0; i < offset; ++i) { \
  753. x[i] = vaddq_f32(x[i], x[offset+i]); \
  754. } \
  755. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  756. }
  757. #define GGML_F32_VEC GGML_F32x4
  758. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  759. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  760. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  761. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  762. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  763. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  764. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  765. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  766. // F16 NEON
  767. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  768. #define GGML_F16_STEP 32
  769. #define GGML_F16_EPR 8
  770. #define GGML_F16x8 float16x8_t
  771. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  772. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  773. #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
  774. #define GGML_F16x8_STORE vst1q_f16
  775. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  776. #define GGML_F16x8_ADD vaddq_f16
  777. #define GGML_F16x8_MUL vmulq_f16
  778. #define GGML_F16x8_REDUCE(res, x) \
  779. do { \
  780. int offset = GGML_F16_ARR >> 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = vaddq_f16(x[i], x[offset+i]); \
  783. } \
  784. offset >>= 1; \
  785. for (int i = 0; i < offset; ++i) { \
  786. x[i] = vaddq_f16(x[i], x[offset+i]); \
  787. } \
  788. offset >>= 1; \
  789. for (int i = 0; i < offset; ++i) { \
  790. x[i] = vaddq_f16(x[i], x[offset+i]); \
  791. } \
  792. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  793. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  794. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  795. } while (0)
  796. #define GGML_F16_VEC GGML_F16x8
  797. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  798. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  799. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  800. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  801. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  802. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  803. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  804. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  805. #else
  806. // if FP16 vector arithmetic is not supported, we use FP32 instead
  807. // and take advantage of the vcvt_ functions to convert to/from FP16
  808. #define GGML_F16_STEP 16
  809. #define GGML_F16_EPR 4
  810. #define GGML_F32Cx4 float32x4_t
  811. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  812. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  813. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
  814. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  815. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  816. #define GGML_F32Cx4_ADD vaddq_f32
  817. #define GGML_F32Cx4_MUL vmulq_f32
  818. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  819. #define GGML_F16_VEC GGML_F32Cx4
  820. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  821. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  822. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  823. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  824. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  825. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  826. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  827. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  828. #endif
  829. #elif defined(__AVX__)
  830. #define GGML_SIMD
  831. // F32 AVX
  832. #define GGML_F32_STEP 32
  833. #define GGML_F32_EPR 8
  834. #define GGML_F32x8 __m256
  835. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  836. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  837. #define GGML_F32x8_LOAD _mm256_loadu_ps
  838. #define GGML_F32x8_STORE _mm256_storeu_ps
  839. #if defined(__FMA__)
  840. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  841. #else
  842. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  843. #endif
  844. #define GGML_F32x8_ADD _mm256_add_ps
  845. #define GGML_F32x8_MUL _mm256_mul_ps
  846. #define GGML_F32x8_REDUCE(res, x) \
  847. do { \
  848. int offset = GGML_F32_ARR >> 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  851. } \
  852. offset >>= 1; \
  853. for (int i = 0; i < offset; ++i) { \
  854. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  855. } \
  856. offset >>= 1; \
  857. for (int i = 0; i < offset; ++i) { \
  858. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  859. } \
  860. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  861. _mm256_extractf128_ps(x[0], 1)); \
  862. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  863. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  864. } while (0)
  865. // TODO: is this optimal ?
  866. #define GGML_F32_VEC GGML_F32x8
  867. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  868. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  869. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  870. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  871. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  872. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  873. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  874. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  875. // F16 AVX
  876. #define GGML_F16_STEP 32
  877. #define GGML_F16_EPR 8
  878. // F16 arithmetic is not supported by AVX, so we use F32 instead
  879. #define GGML_F32Cx8 __m256
  880. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  881. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  882. #if defined(__F16C__)
  883. // the _mm256_cvt intrinsics require F16C
  884. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  885. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  886. #else
  887. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  888. float tmp[8];
  889. for (int i = 0; i < 8; i++) {
  890. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  891. }
  892. return _mm256_loadu_ps(tmp);
  893. }
  894. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  895. float arr[8];
  896. _mm256_storeu_ps(arr, y);
  897. for (int i = 0; i < 8; i++)
  898. x[i] = GGML_FP32_TO_FP16(arr[i]);
  899. }
  900. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  901. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  902. #endif
  903. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  904. #define GGML_F32Cx8_ADD _mm256_add_ps
  905. #define GGML_F32Cx8_MUL _mm256_mul_ps
  906. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  907. #define GGML_F16_VEC GGML_F32Cx8
  908. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  909. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  910. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  911. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  912. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  913. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  914. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  915. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  916. #elif defined(__POWER9_VECTOR__)
  917. #define GGML_SIMD
  918. // F32 POWER9
  919. #define GGML_F32_STEP 32
  920. #define GGML_F32_EPR 4
  921. #define GGML_F32x4 vector float
  922. #define GGML_F32x4_ZERO 0.0f
  923. #define GGML_F32x4_SET1 vec_splats
  924. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  925. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  926. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  927. #define GGML_F32x4_ADD vec_add
  928. #define GGML_F32x4_MUL vec_mul
  929. #define GGML_F32x4_REDUCE(res, x) \
  930. { \
  931. int offset = GGML_F32_ARR >> 1; \
  932. for (int i = 0; i < offset; ++i) { \
  933. x[i] = vec_add(x[i], x[offset+i]); \
  934. } \
  935. offset >>= 1; \
  936. for (int i = 0; i < offset; ++i) { \
  937. x[i] = vec_add(x[i], x[offset+i]); \
  938. } \
  939. offset >>= 1; \
  940. for (int i = 0; i < offset; ++i) { \
  941. x[i] = vec_add(x[i], x[offset+i]); \
  942. } \
  943. res = vec_extract(x[0], 0) + \
  944. vec_extract(x[0], 1) + \
  945. vec_extract(x[0], 2) + \
  946. vec_extract(x[0], 3); \
  947. }
  948. #define GGML_F32_VEC GGML_F32x4
  949. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  950. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  951. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  952. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  953. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  954. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  955. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  956. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  957. // F16 POWER9
  958. #define GGML_F16_STEP GGML_F32_STEP
  959. #define GGML_F16_EPR GGML_F32_EPR
  960. #define GGML_F16_VEC GGML_F32x4
  961. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  962. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  963. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  964. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  965. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  966. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  967. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  968. vec_extract_fp32_from_shortl(vec_xl(0, p))
  969. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  970. #define GGML_F16_VEC_STORE(p, r, i) \
  971. if (i & 0x1) \
  972. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  973. r[i - GGML_ENDIAN_BYTE(0)]), \
  974. 0, p - GGML_F16_EPR)
  975. #elif defined(__wasm_simd128__)
  976. #define GGML_SIMD
  977. // F32 WASM
  978. #define GGML_F32_STEP 16
  979. #define GGML_F32_EPR 4
  980. #define GGML_F32x4 v128_t
  981. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  982. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  983. #define GGML_F32x4_LOAD wasm_v128_load
  984. #define GGML_F32x4_STORE wasm_v128_store
  985. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  986. #define GGML_F32x4_ADD wasm_f32x4_add
  987. #define GGML_F32x4_MUL wasm_f32x4_mul
  988. #define GGML_F32x4_REDUCE(res, x) \
  989. { \
  990. int offset = GGML_F32_ARR >> 1; \
  991. for (int i = 0; i < offset; ++i) { \
  992. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  993. } \
  994. offset >>= 1; \
  995. for (int i = 0; i < offset; ++i) { \
  996. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  997. } \
  998. offset >>= 1; \
  999. for (int i = 0; i < offset; ++i) { \
  1000. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1001. } \
  1002. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1003. wasm_f32x4_extract_lane(x[0], 1) + \
  1004. wasm_f32x4_extract_lane(x[0], 2) + \
  1005. wasm_f32x4_extract_lane(x[0], 3); \
  1006. }
  1007. #define GGML_F32_VEC GGML_F32x4
  1008. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1009. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1010. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1011. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1012. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1013. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1014. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1015. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1016. // F16 WASM
  1017. #define GGML_F16_STEP 16
  1018. #define GGML_F16_EPR 4
  1019. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1020. float tmp[4];
  1021. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1022. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1023. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1024. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1025. return wasm_v128_load(tmp);
  1026. }
  1027. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1028. float tmp[4];
  1029. wasm_v128_store(tmp, x);
  1030. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1031. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1032. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1033. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1034. }
  1035. #define GGML_F16x4 v128_t
  1036. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1037. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1038. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1039. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1040. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1041. #define GGML_F16x4_ADD wasm_f32x4_add
  1042. #define GGML_F16x4_MUL wasm_f32x4_mul
  1043. #define GGML_F16x4_REDUCE(res, x) \
  1044. { \
  1045. int offset = GGML_F16_ARR >> 1; \
  1046. for (int i = 0; i < offset; ++i) { \
  1047. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1048. } \
  1049. offset >>= 1; \
  1050. for (int i = 0; i < offset; ++i) { \
  1051. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1052. } \
  1053. offset >>= 1; \
  1054. for (int i = 0; i < offset; ++i) { \
  1055. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1056. } \
  1057. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1058. wasm_f32x4_extract_lane(x[0], 1) + \
  1059. wasm_f32x4_extract_lane(x[0], 2) + \
  1060. wasm_f32x4_extract_lane(x[0], 3); \
  1061. }
  1062. #define GGML_F16_VEC GGML_F16x4
  1063. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1064. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1065. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1066. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1067. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1068. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1069. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1070. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1071. #elif defined(__SSE3__)
  1072. #define GGML_SIMD
  1073. // F32 SSE
  1074. #define GGML_F32_STEP 32
  1075. #define GGML_F32_EPR 4
  1076. #define GGML_F32x4 __m128
  1077. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1078. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1079. #define GGML_F32x4_LOAD _mm_loadu_ps
  1080. #define GGML_F32x4_STORE _mm_storeu_ps
  1081. #if defined(__FMA__)
  1082. // TODO: Does this work?
  1083. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1084. #else
  1085. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1086. #endif
  1087. #define GGML_F32x4_ADD _mm_add_ps
  1088. #define GGML_F32x4_MUL _mm_mul_ps
  1089. #define GGML_F32x4_REDUCE(res, x) \
  1090. { \
  1091. int offset = GGML_F32_ARR >> 1; \
  1092. for (int i = 0; i < offset; ++i) { \
  1093. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1094. } \
  1095. offset >>= 1; \
  1096. for (int i = 0; i < offset; ++i) { \
  1097. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1098. } \
  1099. offset >>= 1; \
  1100. for (int i = 0; i < offset; ++i) { \
  1101. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1102. } \
  1103. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1104. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1105. }
  1106. // TODO: is this optimal ?
  1107. #define GGML_F32_VEC GGML_F32x4
  1108. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1109. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1110. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1111. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1112. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1113. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1114. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1115. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1116. // F16 SSE
  1117. #define GGML_F16_STEP 32
  1118. #define GGML_F16_EPR 4
  1119. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1120. float tmp[4];
  1121. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1122. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1123. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1124. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1125. return _mm_loadu_ps(tmp);
  1126. }
  1127. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1128. float arr[4];
  1129. _mm_storeu_ps(arr, y);
  1130. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1131. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1132. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1133. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1134. }
  1135. #define GGML_F32Cx4 __m128
  1136. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1137. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1138. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1139. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1140. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1141. #define GGML_F32Cx4_ADD _mm_add_ps
  1142. #define GGML_F32Cx4_MUL _mm_mul_ps
  1143. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1144. #define GGML_F16_VEC GGML_F32Cx4
  1145. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1146. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1147. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1148. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1149. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1150. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1151. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1152. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1153. #endif
  1154. // GGML_F32_ARR / GGML_F16_ARR
  1155. // number of registers to use per step
  1156. #ifdef GGML_SIMD
  1157. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1158. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1159. #endif
  1160. //
  1161. // fundamental operations
  1162. //
  1163. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1164. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1165. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1166. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1167. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1168. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1169. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1170. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1171. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1172. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1173. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1174. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1175. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1176. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1177. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1178. assert(nrc == 1);
  1179. UNUSED(nrc);
  1180. UNUSED(bx);
  1181. UNUSED(by);
  1182. UNUSED(bs);
  1183. #ifdef GGML_SIMD
  1184. float sumf = 0.0f;
  1185. const int np = (n & ~(GGML_F32_STEP - 1));
  1186. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1187. GGML_F32_VEC ax[GGML_F32_ARR];
  1188. GGML_F32_VEC ay[GGML_F32_ARR];
  1189. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1190. for (int j = 0; j < GGML_F32_ARR; j++) {
  1191. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1192. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1193. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1194. }
  1195. }
  1196. // reduce sum0..sum3 to sum0
  1197. GGML_F32_VEC_REDUCE(sumf, sum);
  1198. // leftovers
  1199. for (int i = np; i < n; ++i) {
  1200. sumf += x[i]*y[i];
  1201. }
  1202. #else
  1203. // scalar
  1204. ggml_float sumf = 0.0;
  1205. for (int i = 0; i < n; ++i) {
  1206. sumf += (ggml_float)(x[i]*y[i]);
  1207. }
  1208. #endif
  1209. *s = sumf;
  1210. }
  1211. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1212. assert(nrc == 1);
  1213. UNUSED(nrc);
  1214. UNUSED(bx);
  1215. UNUSED(by);
  1216. UNUSED(bs);
  1217. ggml_float sumf = 0.0;
  1218. #if defined(GGML_SIMD)
  1219. const int np = (n & ~(GGML_F16_STEP - 1));
  1220. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1221. GGML_F16_VEC ax[GGML_F16_ARR];
  1222. GGML_F16_VEC ay[GGML_F16_ARR];
  1223. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1224. for (int j = 0; j < GGML_F16_ARR; j++) {
  1225. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1226. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1227. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1228. }
  1229. }
  1230. // reduce sum0..sum3 to sum0
  1231. GGML_F16_VEC_REDUCE(sumf, sum);
  1232. // leftovers
  1233. for (int i = np; i < n; ++i) {
  1234. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1235. }
  1236. #else
  1237. for (int i = 0; i < n; ++i) {
  1238. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1239. }
  1240. #endif
  1241. *s = sumf;
  1242. }
  1243. // compute GGML_VEC_DOT_UNROLL dot products at once
  1244. // xs - x row stride in bytes
  1245. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1246. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1247. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1248. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1249. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1250. }
  1251. #if defined(GGML_SIMD)
  1252. const int np = (n & ~(GGML_F16_STEP - 1));
  1253. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1254. GGML_F16_VEC ax[GGML_F16_ARR];
  1255. GGML_F16_VEC ay[GGML_F16_ARR];
  1256. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1257. for (int j = 0; j < GGML_F16_ARR; j++) {
  1258. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1259. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1260. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1261. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1262. }
  1263. }
  1264. }
  1265. // reduce sum0..sum3 to sum0
  1266. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1267. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1268. }
  1269. // leftovers
  1270. for (int i = np; i < n; ++i) {
  1271. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1272. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1273. }
  1274. }
  1275. #else
  1276. for (int i = 0; i < n; ++i) {
  1277. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1278. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1279. }
  1280. }
  1281. #endif
  1282. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1283. s[i] = sumf[i];
  1284. }
  1285. }
  1286. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1287. #if defined(GGML_SIMD)
  1288. const int np = (n & ~(GGML_F32_STEP - 1));
  1289. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1290. GGML_F32_VEC ax[GGML_F32_ARR];
  1291. GGML_F32_VEC ay[GGML_F32_ARR];
  1292. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1293. for (int j = 0; j < GGML_F32_ARR; j++) {
  1294. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1295. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1296. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1297. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1298. }
  1299. }
  1300. // leftovers
  1301. for (int i = np; i < n; ++i) {
  1302. y[i] += x[i]*v;
  1303. }
  1304. #else
  1305. // scalar
  1306. for (int i = 0; i < n; ++i) {
  1307. y[i] += x[i]*v;
  1308. }
  1309. #endif
  1310. }
  1311. // xs and vs are byte strides of x and v
  1312. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1313. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1314. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1315. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1316. x[i] = (const float *) ((const char *) xv + i*xs);
  1317. v[i] = (const float *) ((const char *) vv + i*vs);
  1318. }
  1319. #if defined(GGML_SIMD)
  1320. const int np = (n & ~(GGML_F32_STEP - 1));
  1321. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1322. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1323. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1324. }
  1325. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1326. GGML_F32_VEC ay[GGML_F32_ARR];
  1327. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1328. for (int j = 0; j < GGML_F32_ARR; j++) {
  1329. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1330. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1331. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1332. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1333. }
  1334. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1335. }
  1336. }
  1337. // leftovers
  1338. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1339. for (int i = np; i < n; ++i) {
  1340. y[i] += x[k][i]*v[k][0];
  1341. }
  1342. }
  1343. #else
  1344. // scalar
  1345. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1346. for (int i = 0; i < n; ++i) {
  1347. y[i] += x[k][i]*v[k][0];
  1348. }
  1349. }
  1350. #endif
  1351. }
  1352. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1353. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1354. #if defined(GGML_USE_ACCELERATE)
  1355. vDSP_vsmul(y, 1, &v, y, 1, n);
  1356. #elif defined(GGML_SIMD)
  1357. const int np = (n & ~(GGML_F32_STEP - 1));
  1358. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1359. GGML_F32_VEC ay[GGML_F32_ARR];
  1360. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1361. for (int j = 0; j < GGML_F32_ARR; j++) {
  1362. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1363. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1364. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1365. }
  1366. }
  1367. // leftovers
  1368. for (int i = np; i < n; ++i) {
  1369. y[i] *= v;
  1370. }
  1371. #else
  1372. // scalar
  1373. for (int i = 0; i < n; ++i) {
  1374. y[i] *= v;
  1375. }
  1376. #endif
  1377. }
  1378. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1379. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1380. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1381. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1382. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1383. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1384. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1385. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1386. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1387. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1388. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1389. // TODO: optimize performance
  1390. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1391. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1392. static const float GELU_COEF_A = 0.044715f;
  1393. static const float GELU_QUICK_COEF = -1.702f;
  1394. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1395. inline static float ggml_gelu_f32(float x) {
  1396. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1397. }
  1398. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1399. const uint16_t * i16 = (const uint16_t *) x;
  1400. for (int i = 0; i < n; ++i) {
  1401. y[i] = ggml_table_gelu_f16[i16[i]];
  1402. }
  1403. }
  1404. #ifdef GGML_GELU_FP16
  1405. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1406. uint16_t t;
  1407. for (int i = 0; i < n; ++i) {
  1408. if (x[i] <= -10.0f) {
  1409. y[i] = 0.0f;
  1410. } else if (x[i] >= 10.0f) {
  1411. y[i] = x[i];
  1412. } else {
  1413. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1414. memcpy(&t, &fp16, sizeof(uint16_t));
  1415. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1416. }
  1417. }
  1418. }
  1419. #else
  1420. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1421. for (int i = 0; i < n; ++i) {
  1422. y[i] = ggml_gelu_f32(x[i]);
  1423. }
  1424. }
  1425. #endif
  1426. inline static float ggml_gelu_quick_f32(float x) {
  1427. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1428. }
  1429. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1430. // const uint16_t * i16 = (const uint16_t *) x;
  1431. // for (int i = 0; i < n; ++i) {
  1432. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1433. // }
  1434. //}
  1435. #ifdef GGML_GELU_QUICK_FP16
  1436. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1437. uint16_t t;
  1438. for (int i = 0; i < n; ++i) {
  1439. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1440. memcpy(&t, &fp16, sizeof(uint16_t));
  1441. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1442. }
  1443. }
  1444. #else
  1445. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1446. for (int i = 0; i < n; ++i) {
  1447. y[i] = ggml_gelu_quick_f32(x[i]);
  1448. }
  1449. }
  1450. #endif
  1451. // Sigmoid Linear Unit (SiLU) function
  1452. inline static float ggml_silu_f32(float x) {
  1453. return x/(1.0f + expf(-x));
  1454. }
  1455. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1456. // const uint16_t * i16 = (const uint16_t *) x;
  1457. // for (int i = 0; i < n; ++i) {
  1458. // y[i] = ggml_table_silu_f16[i16[i]];
  1459. // }
  1460. //}
  1461. #ifdef GGML_SILU_FP16
  1462. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1463. uint16_t t;
  1464. for (int i = 0; i < n; ++i) {
  1465. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1466. memcpy(&t, &fp16, sizeof(uint16_t));
  1467. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1468. }
  1469. }
  1470. #else
  1471. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1472. for (int i = 0; i < n; ++i) {
  1473. y[i] = ggml_silu_f32(x[i]);
  1474. }
  1475. }
  1476. #endif
  1477. inline static float ggml_silu_backward_f32(float x, float dy) {
  1478. const float s = 1.0f/(1.0f + expf(-x));
  1479. return dy*s*(1.0f + x*(1.0f - s));
  1480. }
  1481. #ifdef GGML_SILU_FP16
  1482. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1483. for (int i = 0; i < n; ++i) {
  1484. // we did not use x[i] to compute forward silu but its f16 equivalent
  1485. // take derivative at f16 of x[i]:
  1486. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1487. float usedx = GGML_FP16_TO_FP32(fp16);
  1488. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1489. }
  1490. }
  1491. #else
  1492. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1493. for (int i = 0; i < n; ++i) {
  1494. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1495. }
  1496. }
  1497. #endif
  1498. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1499. #ifndef GGML_USE_ACCELERATE
  1500. ggml_float sum = 0.0;
  1501. for (int i = 0; i < n; ++i) {
  1502. sum += (ggml_float)x[i];
  1503. }
  1504. *s = sum;
  1505. #else
  1506. vDSP_sve(x, 1, s, n);
  1507. #endif
  1508. }
  1509. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1510. ggml_float sum = 0.0;
  1511. for (int i = 0; i < n; ++i) {
  1512. sum += (ggml_float)x[i];
  1513. }
  1514. *s = sum;
  1515. }
  1516. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1517. float sum = 0.0f;
  1518. for (int i = 0; i < n; ++i) {
  1519. sum += GGML_FP16_TO_FP32(x[i]);
  1520. }
  1521. *s = sum;
  1522. }
  1523. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1524. #ifndef GGML_USE_ACCELERATE
  1525. float max = -INFINITY;
  1526. for (int i = 0; i < n; ++i) {
  1527. max = MAX(max, x[i]);
  1528. }
  1529. *s = max;
  1530. #else
  1531. vDSP_maxv(x, 1, s, n);
  1532. #endif
  1533. }
  1534. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1535. ggml_vec_norm_f32(n, s, x);
  1536. *s = 1.f/(*s);
  1537. }
  1538. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1539. float max = -INFINITY;
  1540. int idx = 0;
  1541. for (int i = 0; i < n; ++i) {
  1542. max = MAX(max, x[i]);
  1543. if (max == x[i]) { idx = i; }
  1544. }
  1545. *s = idx;
  1546. }
  1547. //
  1548. // data types
  1549. //
  1550. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1551. "NONE",
  1552. "DUP",
  1553. "ADD",
  1554. "ADD1",
  1555. "ACC",
  1556. "SUB",
  1557. "MUL",
  1558. "DIV",
  1559. "SQR",
  1560. "SQRT",
  1561. "LOG",
  1562. "SUM",
  1563. "SUM_ROWS",
  1564. "MEAN",
  1565. "ARGMAX",
  1566. "REPEAT",
  1567. "REPEAT_BACK",
  1568. "CONCAT",
  1569. "SILU_BACK",
  1570. "NORM",
  1571. "RMS_NORM",
  1572. "RMS_NORM_BACK",
  1573. "GROUP_NORM",
  1574. "MUL_MAT",
  1575. "MUL_MAT_ID",
  1576. "OUT_PROD",
  1577. "SCALE",
  1578. "SET",
  1579. "CPY",
  1580. "CONT",
  1581. "RESHAPE",
  1582. "VIEW",
  1583. "PERMUTE",
  1584. "TRANSPOSE",
  1585. "GET_ROWS",
  1586. "GET_ROWS_BACK",
  1587. "DIAG",
  1588. "DIAG_MASK_INF",
  1589. "DIAG_MASK_ZERO",
  1590. "SOFT_MAX",
  1591. "SOFT_MAX_BACK",
  1592. "ROPE",
  1593. "ROPE_BACK",
  1594. "ALIBI",
  1595. "CLAMP",
  1596. "CONV_TRANSPOSE_1D",
  1597. "IM2COL",
  1598. "CONV_TRANSPOSE_2D",
  1599. "POOL_1D",
  1600. "POOL_2D",
  1601. "UPSCALE",
  1602. "PAD",
  1603. "ARANGE",
  1604. "TIMESTEP_EMBEDDING",
  1605. "ARGSORT",
  1606. "LEAKY_RELU",
  1607. "FLASH_ATTN",
  1608. "FLASH_FF",
  1609. "FLASH_ATTN_BACK",
  1610. "WIN_PART",
  1611. "WIN_UNPART",
  1612. "GET_REL_POS",
  1613. "ADD_REL_POS",
  1614. "UNARY",
  1615. "MAP_UNARY",
  1616. "MAP_BINARY",
  1617. "MAP_CUSTOM1_F32",
  1618. "MAP_CUSTOM2_F32",
  1619. "MAP_CUSTOM3_F32",
  1620. "MAP_CUSTOM1",
  1621. "MAP_CUSTOM2",
  1622. "MAP_CUSTOM3",
  1623. "CROSS_ENTROPY_LOSS",
  1624. "CROSS_ENTROPY_LOSS_BACK",
  1625. };
  1626. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  1627. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1628. "none",
  1629. "x",
  1630. "x+y",
  1631. "x+y",
  1632. "view(x,nb,offset)+=y->x",
  1633. "x-y",
  1634. "x*y",
  1635. "x/y",
  1636. "x^2",
  1637. "√x",
  1638. "log(x)",
  1639. "Σx",
  1640. "Σx_k",
  1641. "Σx/n",
  1642. "argmax(x)",
  1643. "repeat(x)",
  1644. "repeat_back(x)",
  1645. "concat(x, y)",
  1646. "silu_back(x)",
  1647. "norm(x)",
  1648. "rms_norm(x)",
  1649. "rms_norm_back(x)",
  1650. "group_norm(x)",
  1651. "X*Y",
  1652. "X[i]*Y",
  1653. "X*Y",
  1654. "x*v",
  1655. "y-\\>view(x)",
  1656. "x-\\>y",
  1657. "cont(x)",
  1658. "reshape(x)",
  1659. "view(x)",
  1660. "permute(x)",
  1661. "transpose(x)",
  1662. "get_rows(x)",
  1663. "get_rows_back(x)",
  1664. "diag(x)",
  1665. "diag_mask_inf(x)",
  1666. "diag_mask_zero(x)",
  1667. "soft_max(x)",
  1668. "soft_max_back(x)",
  1669. "rope(x)",
  1670. "rope_back(x)",
  1671. "alibi(x)",
  1672. "clamp(x)",
  1673. "conv_transpose_1d(x)",
  1674. "im2col(x)",
  1675. "conv_transpose_2d(x)",
  1676. "pool_1d(x)",
  1677. "pool_2d(x)",
  1678. "upscale(x)",
  1679. "pad(x)",
  1680. "arange(start, stop, step)",
  1681. "timestep_embedding(timesteps, dim, max_period)",
  1682. "argsort(x)",
  1683. "leaky_relu(x)",
  1684. "flash_attn(x)",
  1685. "flash_ff(x)",
  1686. "flash_attn_back(x)",
  1687. "win_part(x)",
  1688. "win_unpart(x)",
  1689. "get_rel_pos(x)",
  1690. "add_rel_pos(x)",
  1691. "unary(x)",
  1692. "f(x)",
  1693. "f(x,y)",
  1694. "custom_f32(x)",
  1695. "custom_f32(x,y)",
  1696. "custom_f32(x,y,z)",
  1697. "custom(x)",
  1698. "custom(x,y)",
  1699. "custom(x,y,z)",
  1700. "cross_entropy_loss(x,y)",
  1701. "cross_entropy_loss_back(x,y)",
  1702. };
  1703. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  1704. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1705. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1706. "ABS",
  1707. "SGN",
  1708. "NEG",
  1709. "STEP",
  1710. "TANH",
  1711. "ELU",
  1712. "RELU",
  1713. "GELU",
  1714. "GELU_QUICK",
  1715. "SILU",
  1716. "HARDSWISH",
  1717. "HARDSIGMOID",
  1718. };
  1719. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1720. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1721. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1722. // WARN:
  1723. // Mis-configuration can lead to problem that's hard to reason about:
  1724. // * At best it crash or talks nosense.
  1725. // * At worst it talks slightly difference but hard to perceive.
  1726. //
  1727. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1728. // Take care about compile options (e.g., GGML_USE_xxx).
  1729. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1730. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1731. static void ggml_setup_op_has_task_pass(void) {
  1732. { // INIT
  1733. bool * p = GGML_OP_HAS_INIT;
  1734. p[GGML_OP_ACC ] = true;
  1735. p[GGML_OP_MUL_MAT ] = true;
  1736. p[GGML_OP_MUL_MAT_ID ] = true;
  1737. p[GGML_OP_OUT_PROD ] = true;
  1738. p[GGML_OP_SET ] = true;
  1739. p[GGML_OP_GET_ROWS_BACK ] = true;
  1740. p[GGML_OP_DIAG_MASK_INF ] = true;
  1741. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1742. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1743. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1744. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1745. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1746. p[GGML_OP_ADD_REL_POS ] = true;
  1747. }
  1748. { // FINALIZE
  1749. bool * p = GGML_OP_HAS_FINALIZE;
  1750. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1751. }
  1752. }
  1753. //
  1754. // ggml context
  1755. //
  1756. struct ggml_context {
  1757. size_t mem_size;
  1758. void * mem_buffer;
  1759. bool mem_buffer_owned;
  1760. bool no_alloc;
  1761. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1762. int n_objects;
  1763. struct ggml_object * objects_begin;
  1764. struct ggml_object * objects_end;
  1765. struct ggml_scratch scratch;
  1766. struct ggml_scratch scratch_save;
  1767. };
  1768. struct ggml_context_container {
  1769. bool used;
  1770. struct ggml_context context;
  1771. };
  1772. //
  1773. // NUMA support
  1774. //
  1775. #define GGML_NUMA_MAX_NODES 8
  1776. #define GGML_NUMA_MAX_CPUS 512
  1777. struct ggml_numa_node {
  1778. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1779. uint32_t n_cpus;
  1780. };
  1781. struct ggml_numa_nodes {
  1782. enum ggml_numa_strategy numa_strategy;
  1783. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1784. uint32_t n_nodes;
  1785. uint32_t total_cpus; // hardware threads on system
  1786. uint32_t current_node; // node on which main process is execting
  1787. #if defined(__gnu_linux__)
  1788. cpu_set_t cpuset; // cpuset from numactl
  1789. #else
  1790. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1791. #endif
  1792. };
  1793. //
  1794. // ggml state
  1795. //
  1796. struct ggml_state {
  1797. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1798. struct ggml_numa_nodes numa;
  1799. };
  1800. // global state
  1801. static struct ggml_state g_state;
  1802. static atomic_int g_state_barrier = 0;
  1803. // barrier via spin lock
  1804. inline static void ggml_critical_section_start(void) {
  1805. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1806. while (processing > 0) {
  1807. // wait for other threads to finish
  1808. atomic_fetch_sub(&g_state_barrier, 1);
  1809. sched_yield(); // TODO: reconsider this
  1810. processing = atomic_fetch_add(&g_state_barrier, 1);
  1811. }
  1812. }
  1813. // TODO: make this somehow automatically executed
  1814. // some sort of "sentry" mechanism
  1815. inline static void ggml_critical_section_end(void) {
  1816. atomic_fetch_sub(&g_state_barrier, 1);
  1817. }
  1818. #if defined(__gnu_linux__)
  1819. static cpu_set_t ggml_get_numa_affinity(void) {
  1820. cpu_set_t cpuset;
  1821. pthread_t thread;
  1822. thread = pthread_self();
  1823. CPU_ZERO(&cpuset);
  1824. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1825. return cpuset;
  1826. }
  1827. #else
  1828. static uint32_t ggml_get_numa_affinity(void) {
  1829. return 0; // no NUMA support
  1830. }
  1831. #endif
  1832. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1833. if (g_state.numa.n_nodes > 0) {
  1834. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1835. return;
  1836. }
  1837. #if defined(__gnu_linux__)
  1838. struct stat st;
  1839. char path[256];
  1840. int rv;
  1841. // set numa scheme
  1842. g_state.numa.numa_strategy = numa_flag;
  1843. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1844. g_state.numa.cpuset = ggml_get_numa_affinity();
  1845. // enumerate nodes
  1846. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1847. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1848. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1849. if (stat(path, &st) != 0) { break; }
  1850. ++g_state.numa.n_nodes;
  1851. }
  1852. // enumerate CPUs
  1853. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1854. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1855. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1856. if (stat(path, &st) != 0) { break; }
  1857. ++g_state.numa.total_cpus;
  1858. }
  1859. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1860. // figure out which node we're on
  1861. uint current_cpu;
  1862. int getcpu_ret = 0;
  1863. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1864. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1865. #else
  1866. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1867. getcpu_ret = syscall(SYS_getcpu,&current_cpu,&g_state.numa.current_node);
  1868. #endif
  1869. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1870. g_state.numa.n_nodes = 0;
  1871. return;
  1872. }
  1873. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1874. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1875. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1876. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1877. node->n_cpus = 0;
  1878. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1879. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1880. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1881. if (stat(path, &st) == 0) {
  1882. node->cpus[node->n_cpus++] = c;
  1883. GGML_PRINT_DEBUG(" %u", c);
  1884. }
  1885. }
  1886. GGML_PRINT_DEBUG("\n");
  1887. }
  1888. if (ggml_is_numa()) {
  1889. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1890. if (fptr != NULL) {
  1891. char buf[42];
  1892. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1893. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1894. }
  1895. fclose(fptr);
  1896. }
  1897. }
  1898. #else
  1899. GGML_UNUSED(numa_flag);
  1900. // TODO
  1901. #endif
  1902. }
  1903. bool ggml_is_numa(void) {
  1904. return g_state.numa.n_nodes > 1;
  1905. }
  1906. ////////////////////////////////////////////////////////////////////////////////
  1907. void ggml_print_object(const struct ggml_object * obj) {
  1908. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1909. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1910. }
  1911. void ggml_print_objects(const struct ggml_context * ctx) {
  1912. struct ggml_object * obj = ctx->objects_begin;
  1913. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1914. while (obj != NULL) {
  1915. ggml_print_object(obj);
  1916. obj = obj->next;
  1917. }
  1918. GGML_PRINT("%s: --- end ---\n", __func__);
  1919. }
  1920. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1921. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1922. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1923. }
  1924. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1925. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1926. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1927. }
  1928. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1929. size_t nbytes;
  1930. size_t blck_size = ggml_blck_size(tensor->type);
  1931. if (blck_size == 1) {
  1932. nbytes = ggml_type_size(tensor->type);
  1933. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1934. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1935. }
  1936. }
  1937. else {
  1938. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1939. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1940. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1941. }
  1942. }
  1943. return nbytes;
  1944. }
  1945. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1946. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1947. }
  1948. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1949. return type_traits[type].blck_size;
  1950. }
  1951. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1952. return type_traits[type].type_size;
  1953. }
  1954. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1955. assert(ne % ggml_blck_size(type) == 0);
  1956. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1957. }
  1958. double ggml_type_sizef(enum ggml_type type) {
  1959. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1960. }
  1961. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1962. return type_traits[type].type_name;
  1963. }
  1964. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1965. return type_traits[type].is_quantized;
  1966. }
  1967. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1968. return GGML_OP_NAME[op];
  1969. }
  1970. const char * ggml_op_symbol(enum ggml_op op) {
  1971. return GGML_OP_SYMBOL[op];
  1972. }
  1973. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1974. return GGML_UNARY_OP_NAME[op];
  1975. }
  1976. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1977. if (t->op == GGML_OP_UNARY) {
  1978. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1979. return ggml_unary_op_name(uop);
  1980. }
  1981. else {
  1982. return ggml_op_name(t->op);
  1983. }
  1984. }
  1985. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1986. return ggml_type_size(tensor->type);
  1987. }
  1988. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1989. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1990. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1991. }
  1992. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1993. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1994. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1995. }
  1996. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1997. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1998. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1999. }
  2000. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2001. return tensor->ne[3] == 1;
  2002. }
  2003. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2004. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2005. if (tensor->ne[i] > 1) {
  2006. return i + 1;
  2007. }
  2008. }
  2009. return 1;
  2010. }
  2011. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2012. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2013. return (t0->ne[0] == t1->ne[0]) &&
  2014. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2015. (t1->ne[3]%t0->ne[3] == 0);
  2016. }
  2017. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2018. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2019. return (t0->ne[1] == t1->ne[1]) &&
  2020. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2021. (t1->ne[3]%t0->ne[3] == 0);
  2022. }
  2023. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2024. enum ggml_type wtype = GGML_TYPE_COUNT;
  2025. switch (ftype) {
  2026. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2027. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2028. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2029. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2030. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2031. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2032. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2033. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2034. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2035. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2036. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2037. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2038. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2039. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2040. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2041. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2042. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2043. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2044. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2045. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2046. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2047. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2048. }
  2049. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2050. return wtype;
  2051. }
  2052. size_t ggml_tensor_overhead(void) {
  2053. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2054. }
  2055. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2056. return tensor->nb[0] > tensor->nb[1];
  2057. }
  2058. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2059. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2060. return
  2061. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2062. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2063. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2064. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2065. }
  2066. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2067. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2068. return
  2069. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2070. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2071. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2072. }
  2073. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2074. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2075. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2076. }
  2077. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2078. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2079. return
  2080. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2081. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2082. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2083. }
  2084. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2085. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2086. return
  2087. (t0->ne[0] == t1->ne[0] ) &&
  2088. (t0->ne[1] == t1->ne[1] ) &&
  2089. (t0->ne[2] == t1->ne[2] ) &&
  2090. (t0->ne[3] == t1->ne[3] );
  2091. }
  2092. // check if t1 can be represented as a repeatition of t0
  2093. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2094. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2095. return
  2096. (t1->ne[0]%t0->ne[0] == 0) &&
  2097. (t1->ne[1]%t0->ne[1] == 0) &&
  2098. (t1->ne[2]%t0->ne[2] == 0) &&
  2099. (t1->ne[3]%t0->ne[3] == 0);
  2100. }
  2101. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2102. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2103. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2104. }
  2105. static inline int ggml_up32(int n) {
  2106. return (n + 31) & ~31;
  2107. }
  2108. //static inline int ggml_up64(int n) {
  2109. // return (n + 63) & ~63;
  2110. //}
  2111. static inline int ggml_up(int n, int m) {
  2112. // assert m is a power of 2
  2113. GGML_ASSERT((m & (m - 1)) == 0);
  2114. return (n + m - 1) & ~(m - 1);
  2115. }
  2116. // assert that pointer is aligned to GGML_MEM_ALIGN
  2117. #define ggml_assert_aligned(ptr) \
  2118. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2119. ////////////////////////////////////////////////////////////////////////////////
  2120. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2121. // make this function thread safe
  2122. ggml_critical_section_start();
  2123. static bool is_first_call = true;
  2124. if (is_first_call) {
  2125. // initialize time system (required on Windows)
  2126. ggml_time_init();
  2127. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2128. {
  2129. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2130. ggml_fp16_t ii;
  2131. for (int i = 0; i < (1 << 16); ++i) {
  2132. uint16_t ui = i;
  2133. memcpy(&ii, &ui, sizeof(ii));
  2134. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2135. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2136. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2137. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2138. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2139. }
  2140. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2141. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2142. }
  2143. // initialize g_state
  2144. {
  2145. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2146. g_state = (struct ggml_state) {
  2147. /*.contexts =*/ { { 0 } },
  2148. /*.numa =*/ {
  2149. .n_nodes = 0,
  2150. .total_cpus = 0,
  2151. },
  2152. };
  2153. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2154. g_state.contexts[i].used = false;
  2155. }
  2156. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2157. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2158. }
  2159. #if defined(GGML_USE_CUBLAS)
  2160. ggml_init_cublas();
  2161. #elif defined(GGML_USE_CLBLAST)
  2162. ggml_cl_init();
  2163. #elif defined(GGML_USE_VULKAN)
  2164. ggml_vk_init_cpu_assist();
  2165. #elif defined(GGML_USE_SYCL)
  2166. ggml_init_sycl();
  2167. #endif
  2168. ggml_setup_op_has_task_pass();
  2169. is_first_call = false;
  2170. }
  2171. // find non-used context in g_state
  2172. struct ggml_context * ctx = NULL;
  2173. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2174. if (!g_state.contexts[i].used) {
  2175. g_state.contexts[i].used = true;
  2176. ctx = &g_state.contexts[i].context;
  2177. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2178. break;
  2179. }
  2180. }
  2181. if (ctx == NULL) {
  2182. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2183. ggml_critical_section_end();
  2184. return NULL;
  2185. }
  2186. // allow to call ggml_init with 0 size
  2187. if (params.mem_size == 0) {
  2188. params.mem_size = GGML_MEM_ALIGN;
  2189. }
  2190. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2191. *ctx = (struct ggml_context) {
  2192. /*.mem_size =*/ mem_size,
  2193. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2194. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2195. /*.no_alloc =*/ params.no_alloc,
  2196. /*.no_alloc_save =*/ params.no_alloc,
  2197. /*.n_objects =*/ 0,
  2198. /*.objects_begin =*/ NULL,
  2199. /*.objects_end =*/ NULL,
  2200. /*.scratch =*/ { 0, 0, NULL, },
  2201. /*.scratch_save =*/ { 0, 0, NULL, },
  2202. };
  2203. GGML_ASSERT(ctx->mem_buffer != NULL);
  2204. ggml_assert_aligned(ctx->mem_buffer);
  2205. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2206. ggml_critical_section_end();
  2207. return ctx;
  2208. }
  2209. void ggml_free(struct ggml_context * ctx) {
  2210. if (ctx == NULL) {
  2211. return;
  2212. }
  2213. // make this function thread safe
  2214. ggml_critical_section_start();
  2215. bool found = false;
  2216. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2217. if (&g_state.contexts[i].context == ctx) {
  2218. g_state.contexts[i].used = false;
  2219. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2220. __func__, i, ggml_used_mem(ctx));
  2221. if (ctx->mem_buffer_owned) {
  2222. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2223. }
  2224. found = true;
  2225. break;
  2226. }
  2227. }
  2228. if (!found) {
  2229. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2230. }
  2231. ggml_critical_section_end();
  2232. }
  2233. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2234. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2235. }
  2236. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2237. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2238. ctx->scratch = scratch;
  2239. return result;
  2240. }
  2241. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2242. return ctx->no_alloc;
  2243. }
  2244. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2245. ctx->no_alloc = no_alloc;
  2246. }
  2247. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2248. return ctx->mem_buffer;
  2249. }
  2250. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2251. return ctx->mem_size;
  2252. }
  2253. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2254. size_t max_size = 0;
  2255. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2256. size_t bytes = ggml_nbytes(tensor);
  2257. max_size = MAX(max_size, bytes);
  2258. }
  2259. return max_size;
  2260. }
  2261. // IMPORTANT:
  2262. // when creating "opt" tensors, always save and load the scratch buffer
  2263. // this is an error prone process, but it is necessary to support inplace
  2264. // operators when using scratch buffers
  2265. // TODO: implement a better way
  2266. static void ggml_scratch_save(struct ggml_context * ctx) {
  2267. // this is needed to allow opt tensors to store their data
  2268. // TODO: again, need to find a better way
  2269. ctx->no_alloc_save = ctx->no_alloc;
  2270. ctx->no_alloc = false;
  2271. ctx->scratch_save = ctx->scratch;
  2272. ctx->scratch.data = NULL;
  2273. }
  2274. static void ggml_scratch_load(struct ggml_context * ctx) {
  2275. ctx->no_alloc = ctx->no_alloc_save;
  2276. ctx->scratch = ctx->scratch_save;
  2277. }
  2278. ////////////////////////////////////////////////////////////////////////////////
  2279. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2280. // always insert objects at the end of the context's memory pool
  2281. struct ggml_object * obj_cur = ctx->objects_end;
  2282. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2283. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2284. const size_t cur_end = cur_offs + cur_size;
  2285. // align to GGML_MEM_ALIGN
  2286. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2287. char * const mem_buffer = ctx->mem_buffer;
  2288. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2289. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2290. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2291. __func__, cur_end + size_needed, ctx->mem_size);
  2292. assert(false);
  2293. return NULL;
  2294. }
  2295. *obj_new = (struct ggml_object) {
  2296. .offs = cur_end + GGML_OBJECT_SIZE,
  2297. .size = size_needed,
  2298. .next = NULL,
  2299. .type = type,
  2300. };
  2301. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2302. if (obj_cur != NULL) {
  2303. obj_cur->next = obj_new;
  2304. } else {
  2305. // this is the first object in this context
  2306. ctx->objects_begin = obj_new;
  2307. }
  2308. ctx->objects_end = obj_new;
  2309. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2310. return obj_new;
  2311. }
  2312. static struct ggml_tensor * ggml_new_tensor_impl(
  2313. struct ggml_context * ctx,
  2314. enum ggml_type type,
  2315. int n_dims,
  2316. const int64_t * ne,
  2317. struct ggml_tensor * view_src,
  2318. size_t view_offs) {
  2319. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2320. // find the base tensor and absolute offset
  2321. if (view_src != NULL && view_src->view_src != NULL) {
  2322. view_offs += view_src->view_offs;
  2323. view_src = view_src->view_src;
  2324. }
  2325. size_t data_size = ggml_row_size(type, ne[0]);
  2326. for (int i = 1; i < n_dims; i++) {
  2327. data_size *= ne[i];
  2328. }
  2329. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2330. void * data = view_src != NULL ? view_src->data : NULL;
  2331. if (data != NULL) {
  2332. data = (char *) data + view_offs;
  2333. }
  2334. size_t obj_alloc_size = 0;
  2335. if (view_src == NULL && !ctx->no_alloc) {
  2336. if (ctx->scratch.data != NULL) {
  2337. // allocate tensor data in the scratch buffer
  2338. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2339. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2340. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2341. assert(false);
  2342. return NULL;
  2343. }
  2344. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2345. ctx->scratch.offs += data_size;
  2346. } else {
  2347. // allocate tensor data in the context's memory pool
  2348. obj_alloc_size = data_size;
  2349. }
  2350. }
  2351. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2352. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2353. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2354. *result = (struct ggml_tensor) {
  2355. /*.type =*/ type,
  2356. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2357. /*.buffer =*/ NULL,
  2358. /*.ne =*/ { 1, 1, 1, 1 },
  2359. /*.nb =*/ { 0, 0, 0, 0 },
  2360. /*.op =*/ GGML_OP_NONE,
  2361. /*.op_params =*/ { 0 },
  2362. /*.flags =*/ 0,
  2363. /*.grad =*/ NULL,
  2364. /*.src =*/ { NULL },
  2365. /*.perf_runs =*/ 0,
  2366. /*.perf_cycles =*/ 0,
  2367. /*.perf_time_us =*/ 0,
  2368. /*.view_src =*/ view_src,
  2369. /*.view_offs =*/ view_offs,
  2370. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2371. /*.name =*/ { 0 },
  2372. /*.extra =*/ NULL,
  2373. /*.padding =*/ { 0 },
  2374. };
  2375. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2376. //ggml_assert_aligned(result->data);
  2377. for (int i = 0; i < n_dims; i++) {
  2378. result->ne[i] = ne[i];
  2379. }
  2380. result->nb[0] = ggml_type_size(type);
  2381. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2382. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2383. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2384. }
  2385. ctx->n_objects++;
  2386. return result;
  2387. }
  2388. struct ggml_tensor * ggml_new_tensor(
  2389. struct ggml_context * ctx,
  2390. enum ggml_type type,
  2391. int n_dims,
  2392. const int64_t * ne) {
  2393. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2394. }
  2395. struct ggml_tensor * ggml_new_tensor_1d(
  2396. struct ggml_context * ctx,
  2397. enum ggml_type type,
  2398. int64_t ne0) {
  2399. return ggml_new_tensor(ctx, type, 1, &ne0);
  2400. }
  2401. struct ggml_tensor * ggml_new_tensor_2d(
  2402. struct ggml_context * ctx,
  2403. enum ggml_type type,
  2404. int64_t ne0,
  2405. int64_t ne1) {
  2406. const int64_t ne[2] = { ne0, ne1 };
  2407. return ggml_new_tensor(ctx, type, 2, ne);
  2408. }
  2409. struct ggml_tensor * ggml_new_tensor_3d(
  2410. struct ggml_context * ctx,
  2411. enum ggml_type type,
  2412. int64_t ne0,
  2413. int64_t ne1,
  2414. int64_t ne2) {
  2415. const int64_t ne[3] = { ne0, ne1, ne2 };
  2416. return ggml_new_tensor(ctx, type, 3, ne);
  2417. }
  2418. struct ggml_tensor * ggml_new_tensor_4d(
  2419. struct ggml_context * ctx,
  2420. enum ggml_type type,
  2421. int64_t ne0,
  2422. int64_t ne1,
  2423. int64_t ne2,
  2424. int64_t ne3) {
  2425. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2426. return ggml_new_tensor(ctx, type, 4, ne);
  2427. }
  2428. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2429. ggml_scratch_save(ctx);
  2430. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2431. ggml_scratch_load(ctx);
  2432. ggml_set_i32(result, value);
  2433. return result;
  2434. }
  2435. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2436. ggml_scratch_save(ctx);
  2437. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2438. ggml_scratch_load(ctx);
  2439. ggml_set_f32(result, value);
  2440. return result;
  2441. }
  2442. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2443. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2444. }
  2445. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2446. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2447. assert(params_size <= GGML_MAX_OP_PARAMS);
  2448. memcpy(tensor->op_params, params, params_size);
  2449. }
  2450. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2451. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2452. return ((const int32_t *)(tensor->op_params))[i];
  2453. }
  2454. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2455. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2456. return ((const float *)(tensor->op_params))[i];
  2457. }
  2458. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2459. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2460. ((int32_t *)(tensor->op_params))[i] = value;
  2461. }
  2462. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2463. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2464. ((float *)(tensor->op_params))[i] = value;
  2465. }
  2466. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2467. memset(tensor->data, 0, ggml_nbytes(tensor));
  2468. return tensor;
  2469. }
  2470. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2471. const int n = ggml_nrows(tensor);
  2472. const int nc = tensor->ne[0];
  2473. const size_t n1 = tensor->nb[1];
  2474. char * const data = tensor->data;
  2475. switch (tensor->type) {
  2476. case GGML_TYPE_I8:
  2477. {
  2478. assert(tensor->nb[0] == sizeof(int8_t));
  2479. for (int i = 0; i < n; i++) {
  2480. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2481. }
  2482. } break;
  2483. case GGML_TYPE_I16:
  2484. {
  2485. assert(tensor->nb[0] == sizeof(int16_t));
  2486. for (int i = 0; i < n; i++) {
  2487. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2488. }
  2489. } break;
  2490. case GGML_TYPE_I32:
  2491. {
  2492. assert(tensor->nb[0] == sizeof(int32_t));
  2493. for (int i = 0; i < n; i++) {
  2494. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2495. }
  2496. } break;
  2497. case GGML_TYPE_F16:
  2498. {
  2499. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2500. for (int i = 0; i < n; i++) {
  2501. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2502. }
  2503. } break;
  2504. case GGML_TYPE_F32:
  2505. {
  2506. assert(tensor->nb[0] == sizeof(float));
  2507. for (int i = 0; i < n; i++) {
  2508. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2509. }
  2510. } break;
  2511. default:
  2512. {
  2513. GGML_ASSERT(false);
  2514. } break;
  2515. }
  2516. return tensor;
  2517. }
  2518. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2519. const int n = ggml_nrows(tensor);
  2520. const int nc = tensor->ne[0];
  2521. const size_t n1 = tensor->nb[1];
  2522. char * const data = tensor->data;
  2523. switch (tensor->type) {
  2524. case GGML_TYPE_I8:
  2525. {
  2526. assert(tensor->nb[0] == sizeof(int8_t));
  2527. for (int i = 0; i < n; i++) {
  2528. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2529. }
  2530. } break;
  2531. case GGML_TYPE_I16:
  2532. {
  2533. assert(tensor->nb[0] == sizeof(int16_t));
  2534. for (int i = 0; i < n; i++) {
  2535. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2536. }
  2537. } break;
  2538. case GGML_TYPE_I32:
  2539. {
  2540. assert(tensor->nb[0] == sizeof(int32_t));
  2541. for (int i = 0; i < n; i++) {
  2542. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2543. }
  2544. } break;
  2545. case GGML_TYPE_F16:
  2546. {
  2547. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2548. for (int i = 0; i < n; i++) {
  2549. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2550. }
  2551. } break;
  2552. case GGML_TYPE_F32:
  2553. {
  2554. assert(tensor->nb[0] == sizeof(float));
  2555. for (int i = 0; i < n; i++) {
  2556. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2557. }
  2558. } break;
  2559. default:
  2560. {
  2561. GGML_ASSERT(false);
  2562. } break;
  2563. }
  2564. return tensor;
  2565. }
  2566. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2567. const int64_t ne2 = tensor->ne[2];
  2568. const int64_t ne1 = tensor->ne[1];
  2569. const int64_t ne0 = tensor->ne[0];
  2570. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2571. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2572. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2573. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2574. if (i0) {
  2575. * i0 = i0_;
  2576. }
  2577. if (i1) {
  2578. * i1 = i1_;
  2579. }
  2580. if (i2) {
  2581. * i2 = i2_;
  2582. }
  2583. if (i3) {
  2584. * i3 = i3_;
  2585. }
  2586. }
  2587. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2588. if (!ggml_is_contiguous(tensor)) {
  2589. int64_t id[4] = { 0, 0, 0, 0 };
  2590. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2591. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2592. }
  2593. switch (tensor->type) {
  2594. case GGML_TYPE_I8:
  2595. {
  2596. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2597. return ((int8_t *)(tensor->data))[i];
  2598. }
  2599. case GGML_TYPE_I16:
  2600. {
  2601. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2602. return ((int16_t *)(tensor->data))[i];
  2603. }
  2604. case GGML_TYPE_I32:
  2605. {
  2606. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2607. return ((int32_t *)(tensor->data))[i];
  2608. }
  2609. case GGML_TYPE_F16:
  2610. {
  2611. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2612. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2613. }
  2614. case GGML_TYPE_F32:
  2615. {
  2616. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2617. return ((float *)(tensor->data))[i];
  2618. }
  2619. default:
  2620. {
  2621. GGML_ASSERT(false);
  2622. }
  2623. }
  2624. return 0.0f;
  2625. }
  2626. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2627. if (!ggml_is_contiguous(tensor)) {
  2628. int64_t id[4] = { 0, 0, 0, 0 };
  2629. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2630. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2631. return;
  2632. }
  2633. switch (tensor->type) {
  2634. case GGML_TYPE_I8:
  2635. {
  2636. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2637. ((int8_t *)(tensor->data))[i] = value;
  2638. } break;
  2639. case GGML_TYPE_I16:
  2640. {
  2641. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2642. ((int16_t *)(tensor->data))[i] = value;
  2643. } break;
  2644. case GGML_TYPE_I32:
  2645. {
  2646. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2647. ((int32_t *)(tensor->data))[i] = value;
  2648. } break;
  2649. case GGML_TYPE_F16:
  2650. {
  2651. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2652. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2653. } break;
  2654. case GGML_TYPE_F32:
  2655. {
  2656. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2657. ((float *)(tensor->data))[i] = value;
  2658. } break;
  2659. default:
  2660. {
  2661. GGML_ASSERT(false);
  2662. } break;
  2663. }
  2664. }
  2665. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2666. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2667. switch (tensor->type) {
  2668. case GGML_TYPE_I8:
  2669. return ((int8_t *) data)[0];
  2670. case GGML_TYPE_I16:
  2671. return ((int16_t *) data)[0];
  2672. case GGML_TYPE_I32:
  2673. return ((int32_t *) data)[0];
  2674. case GGML_TYPE_F16:
  2675. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2676. case GGML_TYPE_F32:
  2677. return ((float *) data)[0];
  2678. default:
  2679. GGML_ASSERT(false);
  2680. }
  2681. return 0.0f;
  2682. }
  2683. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2684. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2685. switch (tensor->type) {
  2686. case GGML_TYPE_I8:
  2687. {
  2688. ((int8_t *)(data))[0] = value;
  2689. } break;
  2690. case GGML_TYPE_I16:
  2691. {
  2692. ((int16_t *)(data))[0] = value;
  2693. } break;
  2694. case GGML_TYPE_I32:
  2695. {
  2696. ((int32_t *)(data))[0] = value;
  2697. } break;
  2698. case GGML_TYPE_F16:
  2699. {
  2700. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2701. } break;
  2702. case GGML_TYPE_F32:
  2703. {
  2704. ((float *)(data))[0] = value;
  2705. } break;
  2706. default:
  2707. {
  2708. GGML_ASSERT(false);
  2709. } break;
  2710. }
  2711. }
  2712. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2713. if (!ggml_is_contiguous(tensor)) {
  2714. int64_t id[4] = { 0, 0, 0, 0 };
  2715. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2716. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2717. }
  2718. switch (tensor->type) {
  2719. case GGML_TYPE_I8:
  2720. {
  2721. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2722. return ((int8_t *)(tensor->data))[i];
  2723. }
  2724. case GGML_TYPE_I16:
  2725. {
  2726. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2727. return ((int16_t *)(tensor->data))[i];
  2728. }
  2729. case GGML_TYPE_I32:
  2730. {
  2731. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2732. return ((int32_t *)(tensor->data))[i];
  2733. }
  2734. case GGML_TYPE_F16:
  2735. {
  2736. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2737. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2738. }
  2739. case GGML_TYPE_F32:
  2740. {
  2741. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2742. return ((float *)(tensor->data))[i];
  2743. }
  2744. default:
  2745. {
  2746. GGML_ASSERT(false);
  2747. }
  2748. }
  2749. return 0.0f;
  2750. }
  2751. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2752. if (!ggml_is_contiguous(tensor)) {
  2753. int64_t id[4] = { 0, 0, 0, 0 };
  2754. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2755. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2756. return;
  2757. }
  2758. switch (tensor->type) {
  2759. case GGML_TYPE_I8:
  2760. {
  2761. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2762. ((int8_t *)(tensor->data))[i] = value;
  2763. } break;
  2764. case GGML_TYPE_I16:
  2765. {
  2766. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2767. ((int16_t *)(tensor->data))[i] = value;
  2768. } break;
  2769. case GGML_TYPE_I32:
  2770. {
  2771. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2772. ((int32_t *)(tensor->data))[i] = value;
  2773. } break;
  2774. case GGML_TYPE_F16:
  2775. {
  2776. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2777. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2778. } break;
  2779. case GGML_TYPE_F32:
  2780. {
  2781. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2782. ((float *)(tensor->data))[i] = value;
  2783. } break;
  2784. default:
  2785. {
  2786. GGML_ASSERT(false);
  2787. } break;
  2788. }
  2789. }
  2790. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2791. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2792. switch (tensor->type) {
  2793. case GGML_TYPE_I8:
  2794. return ((int8_t *) data)[0];
  2795. case GGML_TYPE_I16:
  2796. return ((int16_t *) data)[0];
  2797. case GGML_TYPE_I32:
  2798. return ((int32_t *) data)[0];
  2799. case GGML_TYPE_F16:
  2800. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2801. case GGML_TYPE_F32:
  2802. return ((float *) data)[0];
  2803. default:
  2804. GGML_ASSERT(false);
  2805. }
  2806. return 0.0f;
  2807. }
  2808. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2809. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2810. switch (tensor->type) {
  2811. case GGML_TYPE_I8:
  2812. {
  2813. ((int8_t *)(data))[0] = value;
  2814. } break;
  2815. case GGML_TYPE_I16:
  2816. {
  2817. ((int16_t *)(data))[0] = value;
  2818. } break;
  2819. case GGML_TYPE_I32:
  2820. {
  2821. ((int32_t *)(data))[0] = value;
  2822. } break;
  2823. case GGML_TYPE_F16:
  2824. {
  2825. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2826. } break;
  2827. case GGML_TYPE_F32:
  2828. {
  2829. ((float *)(data))[0] = value;
  2830. } break;
  2831. default:
  2832. {
  2833. GGML_ASSERT(false);
  2834. } break;
  2835. }
  2836. }
  2837. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2838. return tensor->data;
  2839. }
  2840. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2841. assert(tensor->type == GGML_TYPE_F32);
  2842. return (float *)(tensor->data);
  2843. }
  2844. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2845. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2846. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2847. }
  2848. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2849. return tensor->name;
  2850. }
  2851. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2852. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2853. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2854. return tensor;
  2855. }
  2856. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2857. va_list args;
  2858. va_start(args, fmt);
  2859. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2860. va_end(args);
  2861. return tensor;
  2862. }
  2863. struct ggml_tensor * ggml_view_tensor(
  2864. struct ggml_context * ctx,
  2865. struct ggml_tensor * src) {
  2866. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2867. ggml_format_name(result, "%s (view)", src->name);
  2868. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2869. result->nb[i] = src->nb[i];
  2870. }
  2871. return result;
  2872. }
  2873. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2874. struct ggml_object * obj = ctx->objects_begin;
  2875. char * const mem_buffer = ctx->mem_buffer;
  2876. while (obj != NULL) {
  2877. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2878. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2879. }
  2880. obj = obj->next;
  2881. }
  2882. return NULL;
  2883. }
  2884. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2885. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2886. obj = obj->next;
  2887. char * const mem_buffer = ctx->mem_buffer;
  2888. while (obj != NULL) {
  2889. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2890. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2891. }
  2892. obj = obj->next;
  2893. }
  2894. return NULL;
  2895. }
  2896. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2897. struct ggml_object * obj = ctx->objects_begin;
  2898. char * const mem_buffer = ctx->mem_buffer;
  2899. while (obj != NULL) {
  2900. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2901. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2902. if (strcmp(cur->name, name) == 0) {
  2903. return cur;
  2904. }
  2905. }
  2906. obj = obj->next;
  2907. }
  2908. return NULL;
  2909. }
  2910. ////////////////////////////////////////////////////////////////////////////////
  2911. // ggml_dup
  2912. static struct ggml_tensor * ggml_dup_impl(
  2913. struct ggml_context * ctx,
  2914. struct ggml_tensor * a,
  2915. bool inplace) {
  2916. bool is_node = false;
  2917. if (!inplace && (a->grad)) {
  2918. is_node = true;
  2919. }
  2920. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2921. result->op = GGML_OP_DUP;
  2922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2923. result->src[0] = a;
  2924. return result;
  2925. }
  2926. struct ggml_tensor * ggml_dup(
  2927. struct ggml_context * ctx,
  2928. struct ggml_tensor * a) {
  2929. return ggml_dup_impl(ctx, a, false);
  2930. }
  2931. struct ggml_tensor * ggml_dup_inplace(
  2932. struct ggml_context * ctx,
  2933. struct ggml_tensor * a) {
  2934. return ggml_dup_impl(ctx, a, true);
  2935. }
  2936. // ggml_add
  2937. static struct ggml_tensor * ggml_add_impl(
  2938. struct ggml_context * ctx,
  2939. struct ggml_tensor * a,
  2940. struct ggml_tensor * b,
  2941. bool inplace) {
  2942. GGML_ASSERT(ggml_can_repeat(b, a));
  2943. bool is_node = false;
  2944. if (!inplace && (a->grad || b->grad)) {
  2945. // TODO: support backward pass for broadcasting
  2946. GGML_ASSERT(ggml_are_same_shape(a, b));
  2947. is_node = true;
  2948. }
  2949. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2950. result->op = GGML_OP_ADD;
  2951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2952. result->src[0] = a;
  2953. result->src[1] = b;
  2954. return result;
  2955. }
  2956. struct ggml_tensor * ggml_add(
  2957. struct ggml_context * ctx,
  2958. struct ggml_tensor * a,
  2959. struct ggml_tensor * b) {
  2960. return ggml_add_impl(ctx, a, b, false);
  2961. }
  2962. struct ggml_tensor * ggml_add_inplace(
  2963. struct ggml_context * ctx,
  2964. struct ggml_tensor * a,
  2965. struct ggml_tensor * b) {
  2966. return ggml_add_impl(ctx, a, b, true);
  2967. }
  2968. // ggml_add_cast
  2969. static struct ggml_tensor * ggml_add_cast_impl(
  2970. struct ggml_context * ctx,
  2971. struct ggml_tensor * a,
  2972. struct ggml_tensor * b,
  2973. enum ggml_type type) {
  2974. // TODO: support less-strict constraint
  2975. // GGML_ASSERT(ggml_can_repeat(b, a));
  2976. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2977. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2978. bool is_node = false;
  2979. if (a->grad || b->grad) {
  2980. // TODO: support backward pass for broadcasting
  2981. GGML_ASSERT(ggml_are_same_shape(a, b));
  2982. is_node = true;
  2983. }
  2984. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2985. result->op = GGML_OP_ADD;
  2986. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2987. result->src[0] = a;
  2988. result->src[1] = b;
  2989. return result;
  2990. }
  2991. struct ggml_tensor * ggml_add_cast(
  2992. struct ggml_context * ctx,
  2993. struct ggml_tensor * a,
  2994. struct ggml_tensor * b,
  2995. enum ggml_type type) {
  2996. return ggml_add_cast_impl(ctx, a, b, type);
  2997. }
  2998. // ggml_add1
  2999. static struct ggml_tensor * ggml_add1_impl(
  3000. struct ggml_context * ctx,
  3001. struct ggml_tensor * a,
  3002. struct ggml_tensor * b,
  3003. bool inplace) {
  3004. GGML_ASSERT(ggml_is_scalar(b));
  3005. GGML_ASSERT(ggml_is_padded_1d(a));
  3006. bool is_node = false;
  3007. if (a->grad || b->grad) {
  3008. is_node = true;
  3009. }
  3010. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3011. result->op = GGML_OP_ADD1;
  3012. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3013. result->src[0] = a;
  3014. result->src[1] = b;
  3015. return result;
  3016. }
  3017. struct ggml_tensor * ggml_add1(
  3018. struct ggml_context * ctx,
  3019. struct ggml_tensor * a,
  3020. struct ggml_tensor * b) {
  3021. return ggml_add1_impl(ctx, a, b, false);
  3022. }
  3023. struct ggml_tensor * ggml_add1_inplace(
  3024. struct ggml_context * ctx,
  3025. struct ggml_tensor * a,
  3026. struct ggml_tensor * b) {
  3027. return ggml_add1_impl(ctx, a, b, true);
  3028. }
  3029. // ggml_acc
  3030. static struct ggml_tensor * ggml_acc_impl(
  3031. struct ggml_context * ctx,
  3032. struct ggml_tensor * a,
  3033. struct ggml_tensor * b,
  3034. size_t nb1,
  3035. size_t nb2,
  3036. size_t nb3,
  3037. size_t offset,
  3038. bool inplace) {
  3039. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3040. GGML_ASSERT(ggml_is_contiguous(a));
  3041. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3042. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3043. bool is_node = false;
  3044. if (!inplace && (a->grad || b->grad)) {
  3045. is_node = true;
  3046. }
  3047. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3048. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3049. ggml_set_op_params(result, params, sizeof(params));
  3050. result->op = GGML_OP_ACC;
  3051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3052. result->src[0] = a;
  3053. result->src[1] = b;
  3054. return result;
  3055. }
  3056. struct ggml_tensor * ggml_acc(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a,
  3059. struct ggml_tensor * b,
  3060. size_t nb1,
  3061. size_t nb2,
  3062. size_t nb3,
  3063. size_t offset) {
  3064. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3065. }
  3066. struct ggml_tensor * ggml_acc_inplace(
  3067. struct ggml_context * ctx,
  3068. struct ggml_tensor * a,
  3069. struct ggml_tensor * b,
  3070. size_t nb1,
  3071. size_t nb2,
  3072. size_t nb3,
  3073. size_t offset) {
  3074. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3075. }
  3076. // ggml_sub
  3077. static struct ggml_tensor * ggml_sub_impl(
  3078. struct ggml_context * ctx,
  3079. struct ggml_tensor * a,
  3080. struct ggml_tensor * b,
  3081. bool inplace) {
  3082. GGML_ASSERT(ggml_are_same_shape(a, b));
  3083. bool is_node = false;
  3084. if (!inplace && (a->grad || b->grad)) {
  3085. is_node = true;
  3086. }
  3087. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3088. result->op = GGML_OP_SUB;
  3089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3090. result->src[0] = a;
  3091. result->src[1] = b;
  3092. return result;
  3093. }
  3094. struct ggml_tensor * ggml_sub(
  3095. struct ggml_context * ctx,
  3096. struct ggml_tensor * a,
  3097. struct ggml_tensor * b) {
  3098. return ggml_sub_impl(ctx, a, b, false);
  3099. }
  3100. struct ggml_tensor * ggml_sub_inplace(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a,
  3103. struct ggml_tensor * b) {
  3104. return ggml_sub_impl(ctx, a, b, true);
  3105. }
  3106. // ggml_mul
  3107. static struct ggml_tensor * ggml_mul_impl(
  3108. struct ggml_context * ctx,
  3109. struct ggml_tensor * a,
  3110. struct ggml_tensor * b,
  3111. bool inplace) {
  3112. GGML_ASSERT(ggml_can_repeat(b, a));
  3113. bool is_node = false;
  3114. if (!inplace && (a->grad || b->grad)) {
  3115. // TODO: support backward pass for broadcasting
  3116. GGML_ASSERT(ggml_are_same_shape(a, b));
  3117. is_node = true;
  3118. }
  3119. if (inplace) {
  3120. GGML_ASSERT(!is_node);
  3121. }
  3122. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3123. result->op = GGML_OP_MUL;
  3124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3125. result->src[0] = a;
  3126. result->src[1] = b;
  3127. return result;
  3128. }
  3129. struct ggml_tensor * ggml_mul(
  3130. struct ggml_context * ctx,
  3131. struct ggml_tensor * a,
  3132. struct ggml_tensor * b) {
  3133. return ggml_mul_impl(ctx, a, b, false);
  3134. }
  3135. struct ggml_tensor * ggml_mul_inplace(
  3136. struct ggml_context * ctx,
  3137. struct ggml_tensor * a,
  3138. struct ggml_tensor * b) {
  3139. return ggml_mul_impl(ctx, a, b, true);
  3140. }
  3141. // ggml_div
  3142. static struct ggml_tensor * ggml_div_impl(
  3143. struct ggml_context * ctx,
  3144. struct ggml_tensor * a,
  3145. struct ggml_tensor * b,
  3146. bool inplace) {
  3147. GGML_ASSERT(ggml_can_repeat(b, a));
  3148. bool is_node = false;
  3149. if (!inplace && (a->grad || b->grad)) {
  3150. is_node = true;
  3151. }
  3152. if (inplace) {
  3153. GGML_ASSERT(!is_node);
  3154. }
  3155. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3156. result->op = GGML_OP_DIV;
  3157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3158. result->src[0] = a;
  3159. result->src[1] = b;
  3160. return result;
  3161. }
  3162. struct ggml_tensor * ggml_div(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a,
  3165. struct ggml_tensor * b) {
  3166. return ggml_div_impl(ctx, a, b, false);
  3167. }
  3168. struct ggml_tensor * ggml_div_inplace(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a,
  3171. struct ggml_tensor * b) {
  3172. return ggml_div_impl(ctx, a, b, true);
  3173. }
  3174. // ggml_sqr
  3175. static struct ggml_tensor * ggml_sqr_impl(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a,
  3178. bool inplace) {
  3179. bool is_node = false;
  3180. if (!inplace && (a->grad)) {
  3181. is_node = true;
  3182. }
  3183. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3184. result->op = GGML_OP_SQR;
  3185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3186. result->src[0] = a;
  3187. return result;
  3188. }
  3189. struct ggml_tensor * ggml_sqr(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a) {
  3192. return ggml_sqr_impl(ctx, a, false);
  3193. }
  3194. struct ggml_tensor * ggml_sqr_inplace(
  3195. struct ggml_context * ctx,
  3196. struct ggml_tensor * a) {
  3197. return ggml_sqr_impl(ctx, a, true);
  3198. }
  3199. // ggml_sqrt
  3200. static struct ggml_tensor * ggml_sqrt_impl(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a,
  3203. bool inplace) {
  3204. bool is_node = false;
  3205. if (!inplace && (a->grad)) {
  3206. is_node = true;
  3207. }
  3208. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3209. result->op = GGML_OP_SQRT;
  3210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3211. result->src[0] = a;
  3212. return result;
  3213. }
  3214. struct ggml_tensor * ggml_sqrt(
  3215. struct ggml_context * ctx,
  3216. struct ggml_tensor * a) {
  3217. return ggml_sqrt_impl(ctx, a, false);
  3218. }
  3219. struct ggml_tensor * ggml_sqrt_inplace(
  3220. struct ggml_context * ctx,
  3221. struct ggml_tensor * a) {
  3222. return ggml_sqrt_impl(ctx, a, true);
  3223. }
  3224. // ggml_log
  3225. static struct ggml_tensor * ggml_log_impl(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. bool inplace) {
  3229. bool is_node = false;
  3230. if (!inplace && (a->grad)) {
  3231. is_node = true;
  3232. }
  3233. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3234. result->op = GGML_OP_LOG;
  3235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3236. result->src[0] = a;
  3237. return result;
  3238. }
  3239. struct ggml_tensor * ggml_log(
  3240. struct ggml_context * ctx,
  3241. struct ggml_tensor * a) {
  3242. return ggml_log_impl(ctx, a, false);
  3243. }
  3244. struct ggml_tensor * ggml_log_inplace(
  3245. struct ggml_context * ctx,
  3246. struct ggml_tensor * a) {
  3247. return ggml_log_impl(ctx, a, true);
  3248. }
  3249. // ggml_sum
  3250. struct ggml_tensor * ggml_sum(
  3251. struct ggml_context * ctx,
  3252. struct ggml_tensor * a) {
  3253. bool is_node = false;
  3254. if (a->grad) {
  3255. is_node = true;
  3256. }
  3257. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3258. result->op = GGML_OP_SUM;
  3259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3260. result->src[0] = a;
  3261. return result;
  3262. }
  3263. // ggml_sum_rows
  3264. struct ggml_tensor * ggml_sum_rows(
  3265. struct ggml_context * ctx,
  3266. struct ggml_tensor * a) {
  3267. bool is_node = false;
  3268. if (a->grad) {
  3269. is_node = true;
  3270. }
  3271. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3272. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3273. ne[i] = a->ne[i];
  3274. }
  3275. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3276. result->op = GGML_OP_SUM_ROWS;
  3277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3278. result->src[0] = a;
  3279. return result;
  3280. }
  3281. // ggml_mean
  3282. struct ggml_tensor * ggml_mean(
  3283. struct ggml_context * ctx,
  3284. struct ggml_tensor * a) {
  3285. bool is_node = false;
  3286. if (a->grad) {
  3287. GGML_ASSERT(false); // TODO: implement
  3288. is_node = true;
  3289. }
  3290. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3291. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3292. result->op = GGML_OP_MEAN;
  3293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3294. result->src[0] = a;
  3295. return result;
  3296. }
  3297. // ggml_argmax
  3298. struct ggml_tensor * ggml_argmax(
  3299. struct ggml_context * ctx,
  3300. struct ggml_tensor * a) {
  3301. GGML_ASSERT(ggml_is_matrix(a));
  3302. bool is_node = false;
  3303. if (a->grad) {
  3304. GGML_ASSERT(false);
  3305. is_node = true;
  3306. }
  3307. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3308. result->op = GGML_OP_ARGMAX;
  3309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3310. result->src[0] = a;
  3311. return result;
  3312. }
  3313. // ggml_repeat
  3314. struct ggml_tensor * ggml_repeat(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a,
  3317. struct ggml_tensor * b) {
  3318. GGML_ASSERT(ggml_can_repeat(a, b));
  3319. bool is_node = false;
  3320. if (a->grad) {
  3321. is_node = true;
  3322. }
  3323. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3324. result->op = GGML_OP_REPEAT;
  3325. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3326. result->src[0] = a;
  3327. return result;
  3328. }
  3329. // ggml_repeat_back
  3330. struct ggml_tensor * ggml_repeat_back(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a,
  3333. struct ggml_tensor * b) {
  3334. GGML_ASSERT(ggml_can_repeat(b, a));
  3335. bool is_node = false;
  3336. if (a->grad) {
  3337. is_node = true;
  3338. }
  3339. if (ggml_are_same_shape(a, b) && !is_node) {
  3340. return a;
  3341. }
  3342. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3343. result->op = GGML_OP_REPEAT_BACK;
  3344. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3345. result->src[0] = a;
  3346. return result;
  3347. }
  3348. // ggml_concat
  3349. struct ggml_tensor * ggml_concat(
  3350. struct ggml_context* ctx,
  3351. struct ggml_tensor* a,
  3352. struct ggml_tensor* b) {
  3353. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3354. bool is_node = false;
  3355. if (a->grad || b->grad) {
  3356. is_node = true;
  3357. }
  3358. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3359. result->op = GGML_OP_CONCAT;
  3360. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3361. result->src[0] = a;
  3362. result->src[1] = b;
  3363. return result;
  3364. }
  3365. // ggml_abs
  3366. struct ggml_tensor * ggml_abs(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a) {
  3369. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3370. }
  3371. struct ggml_tensor * ggml_abs_inplace(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a) {
  3374. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3375. }
  3376. // ggml_sgn
  3377. struct ggml_tensor * ggml_sgn(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a) {
  3380. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3381. }
  3382. struct ggml_tensor * ggml_sgn_inplace(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a) {
  3385. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3386. }
  3387. // ggml_neg
  3388. struct ggml_tensor * ggml_neg(
  3389. struct ggml_context * ctx,
  3390. struct ggml_tensor * a) {
  3391. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3392. }
  3393. struct ggml_tensor * ggml_neg_inplace(
  3394. struct ggml_context * ctx,
  3395. struct ggml_tensor * a) {
  3396. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3397. }
  3398. // ggml_step
  3399. struct ggml_tensor * ggml_step(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a) {
  3402. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3403. }
  3404. struct ggml_tensor * ggml_step_inplace(
  3405. struct ggml_context * ctx,
  3406. struct ggml_tensor * a) {
  3407. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3408. }
  3409. // ggml_tanh
  3410. struct ggml_tensor * ggml_tanh(
  3411. struct ggml_context * ctx,
  3412. struct ggml_tensor * a) {
  3413. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3414. }
  3415. struct ggml_tensor * ggml_tanh_inplace(
  3416. struct ggml_context * ctx,
  3417. struct ggml_tensor * a) {
  3418. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3419. }
  3420. // ggml_elu
  3421. struct ggml_tensor * ggml_elu(
  3422. struct ggml_context * ctx,
  3423. struct ggml_tensor * a) {
  3424. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3425. }
  3426. struct ggml_tensor * ggml_elu_inplace(
  3427. struct ggml_context * ctx,
  3428. struct ggml_tensor * a) {
  3429. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3430. }
  3431. // ggml_relu
  3432. struct ggml_tensor * ggml_relu(
  3433. struct ggml_context * ctx,
  3434. struct ggml_tensor * a) {
  3435. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3436. }
  3437. struct ggml_tensor * ggml_relu_inplace(
  3438. struct ggml_context * ctx,
  3439. struct ggml_tensor * a) {
  3440. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3441. }
  3442. // ggml_leaky_relu
  3443. struct ggml_tensor * ggml_leaky_relu(
  3444. struct ggml_context * ctx,
  3445. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3446. bool is_node = false;
  3447. if (!inplace && (a->grad)) {
  3448. is_node = true;
  3449. }
  3450. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3451. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3452. result->op = GGML_OP_LEAKY_RELU;
  3453. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3454. result->src[0] = a;
  3455. return result;
  3456. }
  3457. // ggml_gelu
  3458. struct ggml_tensor * ggml_gelu(
  3459. struct ggml_context * ctx,
  3460. struct ggml_tensor * a) {
  3461. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3462. }
  3463. struct ggml_tensor * ggml_gelu_inplace(
  3464. struct ggml_context * ctx,
  3465. struct ggml_tensor * a) {
  3466. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3467. }
  3468. // ggml_gelu_quick
  3469. struct ggml_tensor * ggml_gelu_quick(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * a) {
  3472. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3473. }
  3474. struct ggml_tensor * ggml_gelu_quick_inplace(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a) {
  3477. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3478. }
  3479. // ggml_silu
  3480. struct ggml_tensor * ggml_silu(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a) {
  3483. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3484. }
  3485. struct ggml_tensor * ggml_silu_inplace(
  3486. struct ggml_context * ctx,
  3487. struct ggml_tensor * a) {
  3488. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3489. }
  3490. // ggml_silu_back
  3491. struct ggml_tensor * ggml_silu_back(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a,
  3494. struct ggml_tensor * b) {
  3495. bool is_node = false;
  3496. if (a->grad || b->grad) {
  3497. // TODO: implement backward
  3498. is_node = true;
  3499. }
  3500. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3501. result->op = GGML_OP_SILU_BACK;
  3502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3503. result->src[0] = a;
  3504. result->src[1] = b;
  3505. return result;
  3506. }
  3507. // ggml hardswish
  3508. struct ggml_tensor * ggml_hardswish(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * a) {
  3511. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3512. }
  3513. // ggml hardsigmoid
  3514. struct ggml_tensor * ggml_hardsigmoid(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a) {
  3517. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3518. }
  3519. // ggml_norm
  3520. static struct ggml_tensor * ggml_norm_impl(
  3521. struct ggml_context * ctx,
  3522. struct ggml_tensor * a,
  3523. float eps,
  3524. bool inplace) {
  3525. bool is_node = false;
  3526. if (!inplace && (a->grad)) {
  3527. GGML_ASSERT(false); // TODO: implement backward
  3528. is_node = true;
  3529. }
  3530. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3531. ggml_set_op_params(result, &eps, sizeof(eps));
  3532. result->op = GGML_OP_NORM;
  3533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3534. result->src[0] = a;
  3535. return result;
  3536. }
  3537. struct ggml_tensor * ggml_norm(
  3538. struct ggml_context * ctx,
  3539. struct ggml_tensor * a,
  3540. float eps) {
  3541. return ggml_norm_impl(ctx, a, eps, false);
  3542. }
  3543. struct ggml_tensor * ggml_norm_inplace(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a,
  3546. float eps) {
  3547. return ggml_norm_impl(ctx, a, eps, true);
  3548. }
  3549. // ggml_rms_norm
  3550. static struct ggml_tensor * ggml_rms_norm_impl(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. float eps,
  3554. bool inplace) {
  3555. bool is_node = false;
  3556. if (!inplace && (a->grad)) {
  3557. is_node = true;
  3558. }
  3559. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3560. ggml_set_op_params(result, &eps, sizeof(eps));
  3561. result->op = GGML_OP_RMS_NORM;
  3562. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3563. result->src[0] = a;
  3564. return result;
  3565. }
  3566. struct ggml_tensor * ggml_rms_norm(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a,
  3569. float eps) {
  3570. return ggml_rms_norm_impl(ctx, a, eps, false);
  3571. }
  3572. struct ggml_tensor * ggml_rms_norm_inplace(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * a,
  3575. float eps) {
  3576. return ggml_rms_norm_impl(ctx, a, eps, true);
  3577. }
  3578. // ggml_rms_norm_back
  3579. struct ggml_tensor * ggml_rms_norm_back(
  3580. struct ggml_context * ctx,
  3581. struct ggml_tensor * a,
  3582. struct ggml_tensor * b,
  3583. float eps) {
  3584. bool is_node = false;
  3585. if (a->grad) {
  3586. // TODO: implement backward
  3587. is_node = true;
  3588. }
  3589. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3590. ggml_set_op_params(result, &eps, sizeof(eps));
  3591. result->op = GGML_OP_RMS_NORM_BACK;
  3592. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3593. result->src[0] = a;
  3594. result->src[1] = b;
  3595. return result;
  3596. }
  3597. // ggml_group_norm
  3598. static struct ggml_tensor * ggml_group_norm_impl(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a,
  3601. int n_groups,
  3602. bool inplace) {
  3603. bool is_node = false;
  3604. if (!inplace && (a->grad)) {
  3605. GGML_ASSERT(false); // TODO: implement backward
  3606. is_node = true;
  3607. }
  3608. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3609. result->op_params[0] = n_groups;
  3610. result->op = GGML_OP_GROUP_NORM;
  3611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3612. result->src[0] = a;
  3613. return result;
  3614. }
  3615. struct ggml_tensor * ggml_group_norm(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a,
  3618. int n_groups) {
  3619. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3620. }
  3621. struct ggml_tensor * ggml_group_norm_inplace(
  3622. struct ggml_context * ctx,
  3623. struct ggml_tensor * a,
  3624. int n_groups) {
  3625. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3626. }
  3627. // ggml_mul_mat
  3628. struct ggml_tensor * ggml_mul_mat(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a,
  3631. struct ggml_tensor * b) {
  3632. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3633. GGML_ASSERT(!ggml_is_transposed(a));
  3634. bool is_node = false;
  3635. if (a->grad || b->grad) {
  3636. is_node = true;
  3637. }
  3638. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3639. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3640. result->op = GGML_OP_MUL_MAT;
  3641. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3642. result->src[0] = a;
  3643. result->src[1] = b;
  3644. return result;
  3645. }
  3646. void ggml_mul_mat_set_prec(
  3647. struct ggml_tensor * a,
  3648. enum ggml_prec prec) {
  3649. const int32_t prec_i32 = (int32_t) prec;
  3650. ggml_set_op_params_i32(a, 0, prec_i32);
  3651. }
  3652. // ggml_mul_mat_id
  3653. struct ggml_tensor * ggml_mul_mat_id(
  3654. struct ggml_context * ctx,
  3655. struct ggml_tensor * const as[],
  3656. int n_as,
  3657. struct ggml_tensor * ids,
  3658. int id,
  3659. struct ggml_tensor * b) {
  3660. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3661. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3662. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3663. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3664. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3665. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3666. bool is_node = false;
  3667. if (as[0]->grad || b->grad) {
  3668. is_node = true;
  3669. }
  3670. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3671. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3672. ggml_set_op_params_i32(result, 0, id);
  3673. ggml_set_op_params_i32(result, 1, n_as);
  3674. result->op = GGML_OP_MUL_MAT_ID;
  3675. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3676. result->src[0] = ids;
  3677. result->src[1] = b;
  3678. for (int i = 0; i < n_as; i++) {
  3679. struct ggml_tensor * a = as[i];
  3680. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3681. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3682. GGML_ASSERT(!ggml_is_transposed(a));
  3683. result->src[i + 2] = a;
  3684. }
  3685. return result;
  3686. }
  3687. // ggml_out_prod
  3688. struct ggml_tensor * ggml_out_prod(
  3689. struct ggml_context * ctx,
  3690. struct ggml_tensor * a,
  3691. struct ggml_tensor * b) {
  3692. GGML_ASSERT(ggml_can_out_prod(a, b));
  3693. GGML_ASSERT(!ggml_is_transposed(a));
  3694. bool is_node = false;
  3695. if (a->grad || b->grad) {
  3696. is_node = true;
  3697. }
  3698. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3699. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3700. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3701. result->op = GGML_OP_OUT_PROD;
  3702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3703. result->src[0] = a;
  3704. result->src[1] = b;
  3705. return result;
  3706. }
  3707. // ggml_scale
  3708. static struct ggml_tensor * ggml_scale_impl(
  3709. struct ggml_context * ctx,
  3710. struct ggml_tensor * a,
  3711. float s,
  3712. bool inplace) {
  3713. GGML_ASSERT(ggml_is_padded_1d(a));
  3714. bool is_node = false;
  3715. if (a->grad) {
  3716. is_node = true;
  3717. }
  3718. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3719. ggml_set_op_params(result, &s, sizeof(s));
  3720. result->op = GGML_OP_SCALE;
  3721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3722. result->src[0] = a;
  3723. return result;
  3724. }
  3725. struct ggml_tensor * ggml_scale(
  3726. struct ggml_context * ctx,
  3727. struct ggml_tensor * a,
  3728. float s) {
  3729. return ggml_scale_impl(ctx, a, s, false);
  3730. }
  3731. struct ggml_tensor * ggml_scale_inplace(
  3732. struct ggml_context * ctx,
  3733. struct ggml_tensor * a,
  3734. float s) {
  3735. return ggml_scale_impl(ctx, a, s, true);
  3736. }
  3737. // ggml_set
  3738. static struct ggml_tensor * ggml_set_impl(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a,
  3741. struct ggml_tensor * b,
  3742. size_t nb1,
  3743. size_t nb2,
  3744. size_t nb3,
  3745. size_t offset,
  3746. bool inplace) {
  3747. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3748. bool is_node = false;
  3749. if (a->grad || b->grad) {
  3750. is_node = true;
  3751. }
  3752. // make a view of the destination
  3753. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3754. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3755. ggml_set_op_params(result, params, sizeof(params));
  3756. result->op = GGML_OP_SET;
  3757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3758. result->src[0] = a;
  3759. result->src[1] = b;
  3760. return result;
  3761. }
  3762. struct ggml_tensor * ggml_set(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a,
  3765. struct ggml_tensor * b,
  3766. size_t nb1,
  3767. size_t nb2,
  3768. size_t nb3,
  3769. size_t offset) {
  3770. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3771. }
  3772. struct ggml_tensor * ggml_set_inplace(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a,
  3775. struct ggml_tensor * b,
  3776. size_t nb1,
  3777. size_t nb2,
  3778. size_t nb3,
  3779. size_t offset) {
  3780. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3781. }
  3782. struct ggml_tensor * ggml_set_1d(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a,
  3785. struct ggml_tensor * b,
  3786. size_t offset) {
  3787. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3788. }
  3789. struct ggml_tensor * ggml_set_1d_inplace(
  3790. struct ggml_context * ctx,
  3791. struct ggml_tensor * a,
  3792. struct ggml_tensor * b,
  3793. size_t offset) {
  3794. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3795. }
  3796. struct ggml_tensor * ggml_set_2d(
  3797. struct ggml_context * ctx,
  3798. struct ggml_tensor * a,
  3799. struct ggml_tensor * b,
  3800. size_t nb1,
  3801. size_t offset) {
  3802. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3803. }
  3804. struct ggml_tensor * ggml_set_2d_inplace(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a,
  3807. struct ggml_tensor * b,
  3808. size_t nb1,
  3809. size_t offset) {
  3810. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3811. }
  3812. // ggml_cpy
  3813. static struct ggml_tensor * ggml_cpy_impl(
  3814. struct ggml_context * ctx,
  3815. struct ggml_tensor * a,
  3816. struct ggml_tensor * b) {
  3817. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3818. bool is_node = false;
  3819. if (a->grad || b->grad) {
  3820. // inplace is false and either one have a grad
  3821. is_node = true;
  3822. }
  3823. // make a view of the destination
  3824. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3825. if (strlen(b->name) > 0) {
  3826. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3827. } else {
  3828. ggml_format_name(result, "%s (copy)", a->name);
  3829. }
  3830. result->op = GGML_OP_CPY;
  3831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3832. result->src[0] = a;
  3833. result->src[1] = b;
  3834. return result;
  3835. }
  3836. struct ggml_tensor * ggml_cpy(
  3837. struct ggml_context * ctx,
  3838. struct ggml_tensor * a,
  3839. struct ggml_tensor * b) {
  3840. return ggml_cpy_impl(ctx, a, b);
  3841. }
  3842. struct ggml_tensor * ggml_cast(
  3843. struct ggml_context * ctx,
  3844. struct ggml_tensor * a,
  3845. enum ggml_type type) {
  3846. bool is_node = false;
  3847. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3848. ggml_format_name(result, "%s (copy)", a->name);
  3849. result->op = GGML_OP_CPY;
  3850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3851. result->src[0] = a;
  3852. result->src[1] = result;
  3853. return result;
  3854. }
  3855. // ggml_cont
  3856. static struct ggml_tensor * ggml_cont_impl(
  3857. struct ggml_context * ctx,
  3858. struct ggml_tensor * a) {
  3859. bool is_node = false;
  3860. if (a->grad) {
  3861. is_node = true;
  3862. }
  3863. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3864. ggml_format_name(result, "%s (cont)", a->name);
  3865. result->op = GGML_OP_CONT;
  3866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3867. result->src[0] = a;
  3868. return result;
  3869. }
  3870. struct ggml_tensor * ggml_cont(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a) {
  3873. return ggml_cont_impl(ctx, a);
  3874. }
  3875. // make contiguous, with new shape
  3876. GGML_API struct ggml_tensor * ggml_cont_1d(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. int64_t ne0) {
  3880. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3881. }
  3882. GGML_API struct ggml_tensor * ggml_cont_2d(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. int64_t ne0,
  3886. int64_t ne1) {
  3887. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3888. }
  3889. GGML_API struct ggml_tensor * ggml_cont_3d(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. int64_t ne0,
  3893. int64_t ne1,
  3894. int64_t ne2) {
  3895. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3896. }
  3897. struct ggml_tensor * ggml_cont_4d(
  3898. struct ggml_context * ctx,
  3899. struct ggml_tensor * a,
  3900. int64_t ne0,
  3901. int64_t ne1,
  3902. int64_t ne2,
  3903. int64_t ne3) {
  3904. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3905. bool is_node = false;
  3906. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3907. ggml_format_name(result, "%s (cont)", a->name);
  3908. result->op = GGML_OP_CONT;
  3909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3910. result->src[0] = a;
  3911. return result;
  3912. }
  3913. // ggml_reshape
  3914. struct ggml_tensor * ggml_reshape(
  3915. struct ggml_context * ctx,
  3916. struct ggml_tensor * a,
  3917. struct ggml_tensor * b) {
  3918. GGML_ASSERT(ggml_is_contiguous(a));
  3919. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3920. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3921. bool is_node = false;
  3922. if (a->grad) {
  3923. is_node = true;
  3924. }
  3925. if (b->grad) {
  3926. // gradient propagation is not supported
  3927. //GGML_ASSERT(false);
  3928. }
  3929. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3930. ggml_format_name(result, "%s (reshaped)", a->name);
  3931. result->op = GGML_OP_RESHAPE;
  3932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3933. result->src[0] = a;
  3934. return result;
  3935. }
  3936. struct ggml_tensor * ggml_reshape_1d(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a,
  3939. int64_t ne0) {
  3940. GGML_ASSERT(ggml_is_contiguous(a));
  3941. GGML_ASSERT(ggml_nelements(a) == ne0);
  3942. bool is_node = false;
  3943. if (a->grad) {
  3944. is_node = true;
  3945. }
  3946. const int64_t ne[1] = { ne0 };
  3947. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3948. ggml_format_name(result, "%s (reshaped)", a->name);
  3949. result->op = GGML_OP_RESHAPE;
  3950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3951. result->src[0] = a;
  3952. return result;
  3953. }
  3954. struct ggml_tensor * ggml_reshape_2d(
  3955. struct ggml_context * ctx,
  3956. struct ggml_tensor * a,
  3957. int64_t ne0,
  3958. int64_t ne1) {
  3959. GGML_ASSERT(ggml_is_contiguous(a));
  3960. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3961. bool is_node = false;
  3962. if (a->grad) {
  3963. is_node = true;
  3964. }
  3965. const int64_t ne[2] = { ne0, ne1 };
  3966. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3967. ggml_format_name(result, "%s (reshaped)", a->name);
  3968. result->op = GGML_OP_RESHAPE;
  3969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3970. result->src[0] = a;
  3971. return result;
  3972. }
  3973. struct ggml_tensor * ggml_reshape_3d(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a,
  3976. int64_t ne0,
  3977. int64_t ne1,
  3978. int64_t ne2) {
  3979. GGML_ASSERT(ggml_is_contiguous(a));
  3980. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3981. bool is_node = false;
  3982. if (a->grad) {
  3983. is_node = true;
  3984. }
  3985. const int64_t ne[3] = { ne0, ne1, ne2 };
  3986. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3987. ggml_format_name(result, "%s (reshaped)", a->name);
  3988. result->op = GGML_OP_RESHAPE;
  3989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3990. result->src[0] = a;
  3991. return result;
  3992. }
  3993. struct ggml_tensor * ggml_reshape_4d(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a,
  3996. int64_t ne0,
  3997. int64_t ne1,
  3998. int64_t ne2,
  3999. int64_t ne3) {
  4000. GGML_ASSERT(ggml_is_contiguous(a));
  4001. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4002. bool is_node = false;
  4003. if (a->grad) {
  4004. is_node = true;
  4005. }
  4006. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4007. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4008. ggml_format_name(result, "%s (reshaped)", a->name);
  4009. result->op = GGML_OP_RESHAPE;
  4010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4011. result->src[0] = a;
  4012. return result;
  4013. }
  4014. static struct ggml_tensor * ggml_view_impl(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a,
  4017. int n_dims,
  4018. const int64_t * ne,
  4019. size_t offset) {
  4020. bool is_node = false;
  4021. if (a->grad) {
  4022. is_node = true;
  4023. }
  4024. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4025. ggml_format_name(result, "%s (view)", a->name);
  4026. ggml_set_op_params(result, &offset, sizeof(offset));
  4027. result->op = GGML_OP_VIEW;
  4028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4029. result->src[0] = a;
  4030. return result;
  4031. }
  4032. // ggml_view_1d
  4033. struct ggml_tensor * ggml_view_1d(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a,
  4036. int64_t ne0,
  4037. size_t offset) {
  4038. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4039. return result;
  4040. }
  4041. // ggml_view_2d
  4042. struct ggml_tensor * ggml_view_2d(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. int64_t ne0,
  4046. int64_t ne1,
  4047. size_t nb1,
  4048. size_t offset) {
  4049. const int64_t ne[2] = { ne0, ne1 };
  4050. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4051. result->nb[1] = nb1;
  4052. result->nb[2] = result->nb[1]*ne1;
  4053. result->nb[3] = result->nb[2];
  4054. return result;
  4055. }
  4056. // ggml_view_3d
  4057. struct ggml_tensor * ggml_view_3d(
  4058. struct ggml_context * ctx,
  4059. struct ggml_tensor * a,
  4060. int64_t ne0,
  4061. int64_t ne1,
  4062. int64_t ne2,
  4063. size_t nb1,
  4064. size_t nb2,
  4065. size_t offset) {
  4066. const int64_t ne[3] = { ne0, ne1, ne2 };
  4067. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4068. result->nb[1] = nb1;
  4069. result->nb[2] = nb2;
  4070. result->nb[3] = result->nb[2]*ne2;
  4071. return result;
  4072. }
  4073. // ggml_view_4d
  4074. struct ggml_tensor * ggml_view_4d(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a,
  4077. int64_t ne0,
  4078. int64_t ne1,
  4079. int64_t ne2,
  4080. int64_t ne3,
  4081. size_t nb1,
  4082. size_t nb2,
  4083. size_t nb3,
  4084. size_t offset) {
  4085. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4086. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4087. result->nb[1] = nb1;
  4088. result->nb[2] = nb2;
  4089. result->nb[3] = nb3;
  4090. return result;
  4091. }
  4092. // ggml_permute
  4093. struct ggml_tensor * ggml_permute(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. int axis0,
  4097. int axis1,
  4098. int axis2,
  4099. int axis3) {
  4100. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4101. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4102. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4103. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4104. GGML_ASSERT(axis0 != axis1);
  4105. GGML_ASSERT(axis0 != axis2);
  4106. GGML_ASSERT(axis0 != axis3);
  4107. GGML_ASSERT(axis1 != axis2);
  4108. GGML_ASSERT(axis1 != axis3);
  4109. GGML_ASSERT(axis2 != axis3);
  4110. bool is_node = false;
  4111. if (a->grad) {
  4112. is_node = true;
  4113. }
  4114. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4115. ggml_format_name(result, "%s (permuted)", a->name);
  4116. int ne[GGML_MAX_DIMS];
  4117. int nb[GGML_MAX_DIMS];
  4118. ne[axis0] = a->ne[0];
  4119. ne[axis1] = a->ne[1];
  4120. ne[axis2] = a->ne[2];
  4121. ne[axis3] = a->ne[3];
  4122. nb[axis0] = a->nb[0];
  4123. nb[axis1] = a->nb[1];
  4124. nb[axis2] = a->nb[2];
  4125. nb[axis3] = a->nb[3];
  4126. result->ne[0] = ne[0];
  4127. result->ne[1] = ne[1];
  4128. result->ne[2] = ne[2];
  4129. result->ne[3] = ne[3];
  4130. result->nb[0] = nb[0];
  4131. result->nb[1] = nb[1];
  4132. result->nb[2] = nb[2];
  4133. result->nb[3] = nb[3];
  4134. result->op = GGML_OP_PERMUTE;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src[0] = a;
  4137. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4138. ggml_set_op_params(result, params, sizeof(params));
  4139. return result;
  4140. }
  4141. // ggml_transpose
  4142. struct ggml_tensor * ggml_transpose(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a) {
  4145. bool is_node = false;
  4146. if (a->grad) {
  4147. is_node = true;
  4148. }
  4149. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4150. ggml_format_name(result, "%s (transposed)", a->name);
  4151. result->ne[0] = a->ne[1];
  4152. result->ne[1] = a->ne[0];
  4153. result->nb[0] = a->nb[1];
  4154. result->nb[1] = a->nb[0];
  4155. result->op = GGML_OP_TRANSPOSE;
  4156. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4157. result->src[0] = a;
  4158. return result;
  4159. }
  4160. // ggml_get_rows
  4161. struct ggml_tensor * ggml_get_rows(
  4162. struct ggml_context * ctx,
  4163. struct ggml_tensor * a,
  4164. struct ggml_tensor * b) {
  4165. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4166. GGML_ASSERT(b->ne[3] == 1);
  4167. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4168. bool is_node = false;
  4169. if (a->grad || b->grad) {
  4170. is_node = true;
  4171. }
  4172. // TODO: implement non F32 return
  4173. enum ggml_type type = GGML_TYPE_F32;
  4174. if (a->type == GGML_TYPE_I32) {
  4175. type = a->type;
  4176. }
  4177. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4178. result->op = GGML_OP_GET_ROWS;
  4179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4180. result->src[0] = a;
  4181. result->src[1] = b;
  4182. return result;
  4183. }
  4184. // ggml_get_rows_back
  4185. struct ggml_tensor * ggml_get_rows_back(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a,
  4188. struct ggml_tensor * b,
  4189. struct ggml_tensor * c) {
  4190. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4191. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4192. bool is_node = false;
  4193. if (a->grad || b->grad) {
  4194. is_node = true;
  4195. }
  4196. // TODO: implement non F32 return
  4197. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4198. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4199. result->op = GGML_OP_GET_ROWS_BACK;
  4200. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4201. result->src[0] = a;
  4202. result->src[1] = b;
  4203. return result;
  4204. }
  4205. // ggml_diag
  4206. struct ggml_tensor * ggml_diag(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a) {
  4209. GGML_ASSERT(a->ne[1] == 1);
  4210. bool is_node = false;
  4211. if (a->grad) {
  4212. is_node = true;
  4213. }
  4214. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4215. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4216. result->op = GGML_OP_DIAG;
  4217. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4218. result->src[0] = a;
  4219. return result;
  4220. }
  4221. // ggml_diag_mask_inf
  4222. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a,
  4225. int n_past,
  4226. bool inplace) {
  4227. bool is_node = false;
  4228. if (a->grad) {
  4229. is_node = true;
  4230. }
  4231. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4232. int32_t params[] = { n_past };
  4233. ggml_set_op_params(result, params, sizeof(params));
  4234. result->op = GGML_OP_DIAG_MASK_INF;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src[0] = a;
  4237. return result;
  4238. }
  4239. struct ggml_tensor * ggml_diag_mask_inf(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a,
  4242. int n_past) {
  4243. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4244. }
  4245. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a,
  4248. int n_past) {
  4249. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4250. }
  4251. // ggml_diag_mask_zero
  4252. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. int n_past,
  4256. bool inplace) {
  4257. bool is_node = false;
  4258. if (a->grad) {
  4259. is_node = true;
  4260. }
  4261. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4262. int32_t params[] = { n_past };
  4263. ggml_set_op_params(result, params, sizeof(params));
  4264. result->op = GGML_OP_DIAG_MASK_ZERO;
  4265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4266. result->src[0] = a;
  4267. return result;
  4268. }
  4269. struct ggml_tensor * ggml_diag_mask_zero(
  4270. struct ggml_context * ctx,
  4271. struct ggml_tensor * a,
  4272. int n_past) {
  4273. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4274. }
  4275. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a,
  4278. int n_past) {
  4279. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4280. }
  4281. // ggml_soft_max
  4282. static struct ggml_tensor * ggml_soft_max_impl(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a,
  4285. struct ggml_tensor * mask,
  4286. struct ggml_tensor * pos,
  4287. float scale,
  4288. float max_bias,
  4289. bool inplace) {
  4290. GGML_ASSERT(ggml_is_contiguous(a));
  4291. if (mask) {
  4292. GGML_ASSERT(ggml_is_contiguous(mask));
  4293. GGML_ASSERT(ggml_is_matrix(mask));
  4294. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4295. }
  4296. if (pos) {
  4297. GGML_ASSERT(ggml_is_vector(pos));
  4298. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4299. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4300. }
  4301. if (max_bias > 0.0f) {
  4302. GGML_ASSERT(pos);
  4303. }
  4304. bool is_node = false;
  4305. if (a->grad) {
  4306. is_node = true;
  4307. }
  4308. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4309. float params[] = { scale, max_bias };
  4310. ggml_set_op_params(result, params, sizeof(params));
  4311. result->op = GGML_OP_SOFT_MAX;
  4312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4313. result->src[0] = a;
  4314. result->src[1] = mask;
  4315. result->src[2] = pos;
  4316. return result;
  4317. }
  4318. struct ggml_tensor * ggml_soft_max(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a) {
  4321. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4322. }
  4323. struct ggml_tensor * ggml_soft_max_inplace(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a) {
  4326. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4327. }
  4328. struct ggml_tensor * ggml_soft_max_ext(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a,
  4331. struct ggml_tensor * mask,
  4332. struct ggml_tensor * pos,
  4333. float scale,
  4334. float max_bias) {
  4335. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4336. }
  4337. // ggml_soft_max_back
  4338. static struct ggml_tensor * ggml_soft_max_back_impl(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a,
  4341. struct ggml_tensor * b,
  4342. bool inplace) {
  4343. bool is_node = false;
  4344. if (a->grad || b->grad) {
  4345. is_node = true; // TODO : implement backward pass
  4346. }
  4347. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4348. result->op = GGML_OP_SOFT_MAX_BACK;
  4349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4350. result->src[0] = a;
  4351. result->src[1] = b;
  4352. return result;
  4353. }
  4354. struct ggml_tensor * ggml_soft_max_back(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. struct ggml_tensor * b) {
  4358. return ggml_soft_max_back_impl(ctx, a, b, false);
  4359. }
  4360. struct ggml_tensor * ggml_soft_max_back_inplace(
  4361. struct ggml_context * ctx,
  4362. struct ggml_tensor * a,
  4363. struct ggml_tensor * b) {
  4364. return ggml_soft_max_back_impl(ctx, a, b, true);
  4365. }
  4366. // ggml_rope
  4367. static struct ggml_tensor * ggml_rope_impl(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. struct ggml_tensor * b,
  4371. int n_dims,
  4372. int mode,
  4373. int n_ctx,
  4374. int n_orig_ctx,
  4375. float freq_base,
  4376. float freq_scale,
  4377. float ext_factor,
  4378. float attn_factor,
  4379. float beta_fast,
  4380. float beta_slow,
  4381. float xpos_base,
  4382. bool xpos_down,
  4383. bool inplace) {
  4384. GGML_ASSERT(ggml_is_vector(b));
  4385. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4386. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4387. bool is_node = false;
  4388. if (a->grad) {
  4389. is_node = true;
  4390. }
  4391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4392. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4393. memcpy(params + 5, &freq_base, sizeof(float));
  4394. memcpy(params + 6, &freq_scale, sizeof(float));
  4395. memcpy(params + 7, &ext_factor, sizeof(float));
  4396. memcpy(params + 8, &attn_factor, sizeof(float));
  4397. memcpy(params + 9, &beta_fast, sizeof(float));
  4398. memcpy(params + 10, &beta_slow, sizeof(float));
  4399. memcpy(params + 11, &xpos_base, sizeof(float));
  4400. memcpy(params + 12, &xpos_down, sizeof(bool));
  4401. ggml_set_op_params(result, params, sizeof(params));
  4402. result->op = GGML_OP_ROPE;
  4403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4404. result->src[0] = a;
  4405. result->src[1] = b;
  4406. return result;
  4407. }
  4408. struct ggml_tensor * ggml_rope(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a,
  4411. struct ggml_tensor * b,
  4412. int n_dims,
  4413. int mode,
  4414. int n_ctx) {
  4415. return ggml_rope_impl(
  4416. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4417. );
  4418. }
  4419. struct ggml_tensor * ggml_rope_inplace(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a,
  4422. struct ggml_tensor * b,
  4423. int n_dims,
  4424. int mode,
  4425. int n_ctx) {
  4426. return ggml_rope_impl(
  4427. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4428. );
  4429. }
  4430. struct ggml_tensor * ggml_rope_custom(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. struct ggml_tensor * b,
  4434. int n_dims,
  4435. int mode,
  4436. int n_ctx,
  4437. int n_orig_ctx,
  4438. float freq_base,
  4439. float freq_scale,
  4440. float ext_factor,
  4441. float attn_factor,
  4442. float beta_fast,
  4443. float beta_slow) {
  4444. return ggml_rope_impl(
  4445. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4446. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4447. );
  4448. }
  4449. struct ggml_tensor * ggml_rope_custom_inplace(
  4450. struct ggml_context * ctx,
  4451. struct ggml_tensor * a,
  4452. struct ggml_tensor * b,
  4453. int n_dims,
  4454. int mode,
  4455. int n_ctx,
  4456. int n_orig_ctx,
  4457. float freq_base,
  4458. float freq_scale,
  4459. float ext_factor,
  4460. float attn_factor,
  4461. float beta_fast,
  4462. float beta_slow) {
  4463. return ggml_rope_impl(
  4464. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4465. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4466. );
  4467. }
  4468. struct ggml_tensor * ggml_rope_xpos_inplace(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * a,
  4471. struct ggml_tensor * b,
  4472. int n_dims,
  4473. float base,
  4474. bool down) {
  4475. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4476. }
  4477. // ggml_rope_back
  4478. struct ggml_tensor * ggml_rope_back(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a,
  4481. struct ggml_tensor * b,
  4482. int n_dims,
  4483. int mode,
  4484. int n_ctx,
  4485. int n_orig_ctx,
  4486. float freq_base,
  4487. float freq_scale,
  4488. float ext_factor,
  4489. float attn_factor,
  4490. float beta_fast,
  4491. float beta_slow,
  4492. float xpos_base,
  4493. bool xpos_down) {
  4494. GGML_ASSERT(ggml_is_vector(b));
  4495. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4496. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4497. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4498. bool is_node = false;
  4499. if (a->grad) {
  4500. is_node = false; // TODO: implement backward
  4501. }
  4502. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4503. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4504. memcpy(params + 5, &freq_base, sizeof(float));
  4505. memcpy(params + 6, &freq_scale, sizeof(float));
  4506. memcpy(params + 7, &ext_factor, sizeof(float));
  4507. memcpy(params + 8, &attn_factor, sizeof(float));
  4508. memcpy(params + 9, &beta_fast, sizeof(float));
  4509. memcpy(params + 10, &beta_slow, sizeof(float));
  4510. memcpy(params + 11, &xpos_base, sizeof(float));
  4511. memcpy(params + 12, &xpos_down, sizeof(bool));
  4512. ggml_set_op_params(result, params, sizeof(params));
  4513. result->op = GGML_OP_ROPE_BACK;
  4514. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4515. result->src[0] = a;
  4516. result->src[1] = b;
  4517. return result;
  4518. }
  4519. // ggml_alibi
  4520. struct ggml_tensor * ggml_alibi(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a,
  4523. int n_past,
  4524. int n_head,
  4525. float bias_max) {
  4526. GGML_ASSERT(n_past >= 0);
  4527. bool is_node = false;
  4528. if (a->grad) {
  4529. GGML_ASSERT(false); // TODO: implement backward
  4530. is_node = true;
  4531. }
  4532. // TODO: when implement backward, fix this:
  4533. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4534. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4535. int32_t op_params[3] = { n_past, n_head };
  4536. memcpy(op_params + 2, &bias_max, sizeof(float));
  4537. ggml_set_op_params(result, op_params, sizeof(op_params));
  4538. result->op = GGML_OP_ALIBI;
  4539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4540. result->src[0] = a;
  4541. return result;
  4542. }
  4543. // ggml_clamp
  4544. struct ggml_tensor * ggml_clamp(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a,
  4547. float min,
  4548. float max) {
  4549. bool is_node = false;
  4550. if (a->grad) {
  4551. GGML_ASSERT(false); // TODO: implement backward
  4552. is_node = true;
  4553. }
  4554. // TODO: when implement backward, fix this:
  4555. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4556. float params[] = { min, max };
  4557. ggml_set_op_params(result, params, sizeof(params));
  4558. result->op = GGML_OP_CLAMP;
  4559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4560. result->src[0] = a;
  4561. return result;
  4562. }
  4563. // ggml_conv_1d
  4564. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4565. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4566. }
  4567. GGML_API struct ggml_tensor * ggml_conv_1d(
  4568. struct ggml_context * ctx,
  4569. struct ggml_tensor * a,
  4570. struct ggml_tensor * b,
  4571. int s0,
  4572. int p0,
  4573. int d0) {
  4574. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4575. struct ggml_tensor * result =
  4576. ggml_mul_mat(ctx,
  4577. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4578. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4579. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4580. return result;
  4581. }
  4582. // ggml_conv_1d_ph
  4583. struct ggml_tensor* ggml_conv_1d_ph(
  4584. struct ggml_context * ctx,
  4585. struct ggml_tensor * a,
  4586. struct ggml_tensor * b,
  4587. int s,
  4588. int d) {
  4589. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4590. }
  4591. // ggml_conv_transpose_1d
  4592. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4593. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4594. }
  4595. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. struct ggml_tensor * b,
  4599. int s0,
  4600. int p0,
  4601. int d0) {
  4602. GGML_ASSERT(ggml_is_matrix(b));
  4603. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4604. GGML_ASSERT(a->ne[3] == 1);
  4605. GGML_ASSERT(p0 == 0);
  4606. GGML_ASSERT(d0 == 1);
  4607. bool is_node = false;
  4608. if (a->grad || b->grad) {
  4609. GGML_ASSERT(false); // TODO: implement backward
  4610. is_node = true;
  4611. }
  4612. const int64_t ne[4] = {
  4613. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4614. a->ne[1], b->ne[2], 1,
  4615. };
  4616. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4617. int32_t params[] = { s0, p0, d0 };
  4618. ggml_set_op_params(result, params, sizeof(params));
  4619. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4620. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4621. result->src[0] = a;
  4622. result->src[1] = b;
  4623. return result;
  4624. }
  4625. // ggml_conv_depthwise
  4626. struct ggml_tensor * ggml_conv_depthwise_2d(
  4627. struct ggml_context * ctx,
  4628. struct ggml_tensor * a,
  4629. struct ggml_tensor * b,
  4630. int s0,
  4631. int s1,
  4632. int p0,
  4633. int p1,
  4634. int d0,
  4635. int d1) {
  4636. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4637. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4638. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4639. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4640. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4641. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4642. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4643. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4644. return result;
  4645. }
  4646. // ggml_conv_2d
  4647. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4648. // a: [OC,IC, KH, KW]
  4649. // b: [N, IC, IH, IW]
  4650. // result: [N, OH, OW, IC*KH*KW]
  4651. struct ggml_tensor * ggml_im2col(
  4652. struct ggml_context * ctx,
  4653. struct ggml_tensor * a,
  4654. struct ggml_tensor * b,
  4655. int s0,
  4656. int s1,
  4657. int p0,
  4658. int p1,
  4659. int d0,
  4660. int d1,
  4661. bool is_2D,
  4662. enum ggml_type dst_type) {
  4663. if(is_2D) {
  4664. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4665. } else {
  4666. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4667. }
  4668. bool is_node = false;
  4669. if (a->grad || b->grad) {
  4670. GGML_ASSERT(false); // TODO: implement backward
  4671. is_node = true;
  4672. }
  4673. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4674. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4675. const int64_t ne[4] = {
  4676. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4677. OW,
  4678. is_2D ? OH : b->ne[2],
  4679. is_2D ? b->ne[3] : 1,
  4680. };
  4681. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4682. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4683. ggml_set_op_params(result, params, sizeof(params));
  4684. result->op = GGML_OP_IM2COL;
  4685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4686. result->src[0] = a;
  4687. result->src[1] = b;
  4688. return result;
  4689. }
  4690. // a: [OC,IC, KH, KW]
  4691. // b: [N, IC, IH, IW]
  4692. // result: [N, OC, OH, OW]
  4693. struct ggml_tensor * ggml_conv_2d(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. struct ggml_tensor * b,
  4697. int s0,
  4698. int s1,
  4699. int p0,
  4700. int p1,
  4701. int d0,
  4702. int d1) {
  4703. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4704. struct ggml_tensor * result =
  4705. ggml_mul_mat(ctx,
  4706. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4707. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4708. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4709. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4710. return result;
  4711. }
  4712. // ggml_conv_2d_sk_p0
  4713. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. struct ggml_tensor * b) {
  4717. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4718. }
  4719. // ggml_conv_2d_s1_ph
  4720. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * b) {
  4724. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4725. }
  4726. // ggml_conv_transpose_2d_p0
  4727. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4728. return (ins - 1) * s - 2 * p + ks;
  4729. }
  4730. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a,
  4733. struct ggml_tensor * b,
  4734. int stride) {
  4735. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4736. bool is_node = false;
  4737. if (a->grad || b->grad) {
  4738. GGML_ASSERT(false); // TODO: implement backward
  4739. is_node = true;
  4740. }
  4741. const int64_t ne[4] = {
  4742. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4743. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4744. a->ne[2], b->ne[3],
  4745. };
  4746. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4747. ggml_set_op_params_i32(result, 0, stride);
  4748. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4750. result->src[0] = a;
  4751. result->src[1] = b;
  4752. return result;
  4753. }
  4754. // ggml_pool_*
  4755. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4756. return (ins + 2 * p - ks) / s + 1;
  4757. }
  4758. // ggml_pool_1d
  4759. struct ggml_tensor * ggml_pool_1d(
  4760. struct ggml_context * ctx,
  4761. struct ggml_tensor * a,
  4762. enum ggml_op_pool op,
  4763. int k0,
  4764. int s0,
  4765. int p0) {
  4766. bool is_node = false;
  4767. if (a->grad) {
  4768. GGML_ASSERT(false); // TODO: implement backward
  4769. is_node = true;
  4770. }
  4771. const int64_t ne[4] = {
  4772. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4773. a->ne[1],
  4774. a->ne[2],
  4775. a->ne[3],
  4776. };
  4777. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4778. int32_t params[] = { op, k0, s0, p0 };
  4779. ggml_set_op_params(result, params, sizeof(params));
  4780. result->op = GGML_OP_POOL_1D;
  4781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4782. result->src[0] = a;
  4783. return result;
  4784. }
  4785. // ggml_pool_2d
  4786. struct ggml_tensor * ggml_pool_2d(
  4787. struct ggml_context * ctx,
  4788. struct ggml_tensor * a,
  4789. enum ggml_op_pool op,
  4790. int k0,
  4791. int k1,
  4792. int s0,
  4793. int s1,
  4794. float p0,
  4795. float p1) {
  4796. bool is_node = false;
  4797. if (a->grad) {
  4798. GGML_ASSERT(false); // TODO: implement backward
  4799. is_node = true;
  4800. }
  4801. struct ggml_tensor * result;
  4802. const int64_t ne[3] = {
  4803. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4804. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4805. a->ne[2],
  4806. };
  4807. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4808. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4809. ggml_set_op_params(result, params, sizeof(params));
  4810. result->op = GGML_OP_POOL_2D;
  4811. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4812. result->src[0] = a;
  4813. return result;
  4814. }
  4815. // ggml_upscale
  4816. static struct ggml_tensor * ggml_upscale_impl(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. int scale_factor) {
  4820. bool is_node = false;
  4821. if (a->grad) {
  4822. GGML_ASSERT(false); // TODO: implement backward
  4823. is_node = true;
  4824. }
  4825. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4826. a->ne[0] * scale_factor,
  4827. a->ne[1] * scale_factor,
  4828. a->ne[2], a->ne[3]);
  4829. result->op = GGML_OP_UPSCALE;
  4830. result->op_params[0] = scale_factor;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src[0] = a;
  4833. return result;
  4834. }
  4835. struct ggml_tensor * ggml_pad(
  4836. struct ggml_context * ctx,
  4837. struct ggml_tensor * a,
  4838. int p0, int p1, int p2, int p3) {
  4839. bool is_node = false;
  4840. if (a->grad) {
  4841. GGML_ASSERT(false); // TODO: implement backward
  4842. is_node = true;
  4843. }
  4844. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4845. a->ne[0] + p0,
  4846. a->ne[1] + p1,
  4847. a->ne[2] + p2,
  4848. a->ne[3] + p3);
  4849. result->op = GGML_OP_PAD;
  4850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4851. result->src[0] = a;
  4852. return result;
  4853. }
  4854. struct ggml_tensor * ggml_upscale(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a,
  4857. int scale_factor) {
  4858. return ggml_upscale_impl(ctx, a, scale_factor);
  4859. }
  4860. struct ggml_tensor * ggml_arange(
  4861. struct ggml_context * ctx,
  4862. float start,
  4863. float stop,
  4864. float step) {
  4865. GGML_ASSERT(stop > start);
  4866. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  4867. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  4868. result->op = GGML_OP_ARANGE;
  4869. ggml_set_op_params_f32(result, 0, start);
  4870. ggml_set_op_params_f32(result, 1, stop);
  4871. ggml_set_op_params_f32(result, 2, step);
  4872. return result;
  4873. }
  4874. struct ggml_tensor * ggml_timestep_embedding(
  4875. struct ggml_context * ctx,
  4876. struct ggml_tensor * timesteps,
  4877. int dim,
  4878. int max_period) {
  4879. bool is_node = false;
  4880. if (timesteps->grad) {
  4881. GGML_ASSERT(false); // TODO: implement backward
  4882. is_node = true;
  4883. }
  4884. int actual_dim = dim;
  4885. if (dim % 2 != 0) {
  4886. actual_dim = dim + 1;
  4887. }
  4888. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  4889. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  4890. ggml_set_op_params_i32(result, 0, dim);
  4891. ggml_set_op_params_i32(result, 1, max_period);
  4892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4893. result->src[0] = timesteps;
  4894. return result;
  4895. }
  4896. // ggml_argsort
  4897. struct ggml_tensor * ggml_argsort(
  4898. struct ggml_context * ctx,
  4899. struct ggml_tensor * a,
  4900. enum ggml_sort_order order) {
  4901. bool is_node = false;
  4902. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4903. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4904. result->op = GGML_OP_ARGSORT;
  4905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4906. result->src[0] = a;
  4907. return result;
  4908. }
  4909. // ggml_top_k
  4910. struct ggml_tensor * ggml_top_k(
  4911. struct ggml_context * ctx,
  4912. struct ggml_tensor * a,
  4913. int k) {
  4914. GGML_ASSERT(a->ne[0] >= k);
  4915. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  4916. result = ggml_view_4d(ctx, result,
  4917. k, result->ne[1], result->ne[2], result->ne[3],
  4918. result->nb[1], result->nb[2], result->nb[3],
  4919. 0);
  4920. return result;
  4921. }
  4922. // ggml_flash_attn
  4923. struct ggml_tensor * ggml_flash_attn(
  4924. struct ggml_context * ctx,
  4925. struct ggml_tensor * q,
  4926. struct ggml_tensor * k,
  4927. struct ggml_tensor * v,
  4928. bool masked) {
  4929. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4930. // TODO: check if vT can be multiplied by (k*qT)
  4931. bool is_node = false;
  4932. if (q->grad || k->grad || v->grad) {
  4933. is_node = true;
  4934. }
  4935. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4936. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4937. int32_t t = masked ? 1 : 0;
  4938. ggml_set_op_params(result, &t, sizeof(t));
  4939. result->op = GGML_OP_FLASH_ATTN;
  4940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4941. result->src[0] = q;
  4942. result->src[1] = k;
  4943. result->src[2] = v;
  4944. return result;
  4945. }
  4946. // ggml_flash_ff
  4947. struct ggml_tensor * ggml_flash_ff(
  4948. struct ggml_context * ctx,
  4949. struct ggml_tensor * a,
  4950. struct ggml_tensor * b0,
  4951. struct ggml_tensor * b1,
  4952. struct ggml_tensor * c0,
  4953. struct ggml_tensor * c1) {
  4954. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4955. // TODO: more checks
  4956. bool is_node = false;
  4957. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4958. is_node = true;
  4959. }
  4960. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4961. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4962. result->op = GGML_OP_FLASH_FF;
  4963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4964. result->src[0] = a;
  4965. result->src[1] = b0;
  4966. result->src[2] = b1;
  4967. result->src[3] = c0;
  4968. result->src[4] = c1;
  4969. return result;
  4970. }
  4971. // ggml_flash_attn_back
  4972. struct ggml_tensor * ggml_flash_attn_back(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * q,
  4975. struct ggml_tensor * k,
  4976. struct ggml_tensor * v,
  4977. struct ggml_tensor * d,
  4978. bool masked) {
  4979. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4980. // TODO: check if vT can be multiplied by (k*qT)
  4981. // d shape [D,N,ne2,ne3]
  4982. // q shape [D,N,ne2,ne3]
  4983. // k shape [D,M,kvne2,ne3]
  4984. // v shape [M,D,kvne2,ne3]
  4985. const int64_t D = q->ne[0];
  4986. const int64_t N = q->ne[1];
  4987. const int64_t M = k->ne[1];
  4988. const int64_t ne2 = q->ne[2];
  4989. const int64_t ne3 = q->ne[3];
  4990. const int64_t kvne2 = k->ne[2];
  4991. GGML_ASSERT(k->ne[0] == D);
  4992. GGML_ASSERT(v->ne[0] == M);
  4993. GGML_ASSERT(v->ne[1] == D);
  4994. GGML_ASSERT(d->ne[0] == D);
  4995. GGML_ASSERT(d->ne[1] == N);
  4996. GGML_ASSERT(k->ne[2] == kvne2);
  4997. GGML_ASSERT(k->ne[3] == ne3);
  4998. GGML_ASSERT(v->ne[2] == kvne2);
  4999. GGML_ASSERT(v->ne[3] == ne3);
  5000. GGML_ASSERT(d->ne[2] == ne2);
  5001. GGML_ASSERT(d->ne[3] == ne3);
  5002. GGML_ASSERT(ne2 % kvne2 == 0);
  5003. bool is_node = false;
  5004. if (q->grad || k->grad || v->grad) {
  5005. // when using this operation (in backwards pass) these grads are set.
  5006. // we don't want to create (big) grad of our result, so is_node is false.
  5007. is_node = false;
  5008. }
  5009. // store gradients of q, k and v as continuous tensors concatenated in result.
  5010. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5011. const int64_t elem_q = ggml_nelements(q);
  5012. const int64_t elem_k = ggml_nelements(k);
  5013. const int64_t elem_v = ggml_nelements(v);
  5014. enum ggml_type result_type = GGML_TYPE_F32;
  5015. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5016. const size_t tsize = ggml_type_size(result_type);
  5017. const size_t offs_q = 0;
  5018. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5019. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5020. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5021. const size_t nelements = (end + tsize - 1)/tsize;
  5022. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5023. int32_t masked_i = masked ? 1 : 0;
  5024. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5025. result->op = GGML_OP_FLASH_ATTN_BACK;
  5026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5027. result->src[0] = q;
  5028. result->src[1] = k;
  5029. result->src[2] = v;
  5030. result->src[3] = d;
  5031. return result;
  5032. }
  5033. // ggml_win_part
  5034. struct ggml_tensor * ggml_win_part(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * a,
  5037. int w) {
  5038. GGML_ASSERT(a->ne[3] == 1);
  5039. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5040. bool is_node = false;
  5041. if (a->grad) {
  5042. GGML_ASSERT(false); // TODO: implement backward
  5043. is_node = true;
  5044. }
  5045. // padding
  5046. const int px = (w - a->ne[1]%w)%w;
  5047. const int py = (w - a->ne[2]%w)%w;
  5048. const int npx = (px + a->ne[1])/w;
  5049. const int npy = (py + a->ne[2])/w;
  5050. const int np = npx*npy;
  5051. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5052. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5053. int32_t params[] = { npx, npy, w };
  5054. ggml_set_op_params(result, params, sizeof(params));
  5055. result->op = GGML_OP_WIN_PART;
  5056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5057. result->src[0] = a;
  5058. return result;
  5059. }
  5060. // ggml_win_unpart
  5061. struct ggml_tensor * ggml_win_unpart(
  5062. struct ggml_context * ctx,
  5063. struct ggml_tensor * a,
  5064. int w0,
  5065. int h0,
  5066. int w) {
  5067. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5068. bool is_node = false;
  5069. if (a->grad) {
  5070. GGML_ASSERT(false); // TODO: implement backward
  5071. is_node = true;
  5072. }
  5073. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5074. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5075. int32_t params[] = { w };
  5076. ggml_set_op_params(result, params, sizeof(params));
  5077. result->op = GGML_OP_WIN_UNPART;
  5078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5079. result->src[0] = a;
  5080. return result;
  5081. }
  5082. // ggml_get_rel_pos
  5083. struct ggml_tensor * ggml_get_rel_pos(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * a,
  5086. int qh,
  5087. int kh) {
  5088. GGML_ASSERT(qh == kh);
  5089. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5090. bool is_node = false;
  5091. if (a->grad) {
  5092. GGML_ASSERT(false); // TODO: implement backward
  5093. is_node = true;
  5094. }
  5095. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5096. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5097. result->op = GGML_OP_GET_REL_POS;
  5098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5099. result->src[0] = a;
  5100. return result;
  5101. }
  5102. // ggml_add_rel_pos
  5103. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5104. struct ggml_context * ctx,
  5105. struct ggml_tensor * a,
  5106. struct ggml_tensor * pw,
  5107. struct ggml_tensor * ph,
  5108. bool inplace) {
  5109. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5110. GGML_ASSERT(ggml_is_contiguous(a));
  5111. GGML_ASSERT(ggml_is_contiguous(pw));
  5112. GGML_ASSERT(ggml_is_contiguous(ph));
  5113. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5114. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5115. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5116. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5117. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5118. bool is_node = false;
  5119. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5120. is_node = true;
  5121. }
  5122. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5123. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5124. result->op = GGML_OP_ADD_REL_POS;
  5125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5126. result->src[0] = a;
  5127. result->src[1] = pw;
  5128. result->src[2] = ph;
  5129. return result;
  5130. }
  5131. struct ggml_tensor * ggml_add_rel_pos(
  5132. struct ggml_context * ctx,
  5133. struct ggml_tensor * a,
  5134. struct ggml_tensor * pw,
  5135. struct ggml_tensor * ph) {
  5136. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5137. }
  5138. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a,
  5141. struct ggml_tensor * pw,
  5142. struct ggml_tensor * ph) {
  5143. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5144. }
  5145. // gmml_unary
  5146. static struct ggml_tensor * ggml_unary_impl(
  5147. struct ggml_context * ctx,
  5148. struct ggml_tensor * a,
  5149. enum ggml_unary_op op,
  5150. bool inplace) {
  5151. bool is_node = false;
  5152. if (!inplace && (a->grad)) {
  5153. is_node = true;
  5154. }
  5155. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5156. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5157. result->op = GGML_OP_UNARY;
  5158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5159. result->src[0] = a;
  5160. return result;
  5161. }
  5162. struct ggml_tensor * ggml_unary(
  5163. struct ggml_context * ctx,
  5164. struct ggml_tensor * a,
  5165. enum ggml_unary_op op) {
  5166. return ggml_unary_impl(ctx, a, op, false);
  5167. }
  5168. struct ggml_tensor * ggml_unary_inplace(
  5169. struct ggml_context * ctx,
  5170. struct ggml_tensor * a,
  5171. enum ggml_unary_op op) {
  5172. return ggml_unary_impl(ctx, a, op, true);
  5173. }
  5174. // ggml_map_unary
  5175. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5176. struct ggml_context * ctx,
  5177. struct ggml_tensor * a,
  5178. const ggml_unary_op_f32_t fun,
  5179. bool inplace) {
  5180. bool is_node = false;
  5181. if (!inplace && a->grad) {
  5182. is_node = true;
  5183. }
  5184. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5185. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5186. result->op = GGML_OP_MAP_UNARY;
  5187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5188. result->src[0] = a;
  5189. return result;
  5190. }
  5191. struct ggml_tensor * ggml_map_unary_f32(
  5192. struct ggml_context * ctx,
  5193. struct ggml_tensor * a,
  5194. const ggml_unary_op_f32_t fun) {
  5195. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5196. }
  5197. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5198. struct ggml_context * ctx,
  5199. struct ggml_tensor * a,
  5200. const ggml_unary_op_f32_t fun) {
  5201. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5202. }
  5203. // ggml_map_binary
  5204. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5205. struct ggml_context * ctx,
  5206. struct ggml_tensor * a,
  5207. struct ggml_tensor * b,
  5208. const ggml_binary_op_f32_t fun,
  5209. bool inplace) {
  5210. GGML_ASSERT(ggml_are_same_shape(a, b));
  5211. bool is_node = false;
  5212. if (!inplace && (a->grad || b->grad)) {
  5213. is_node = true;
  5214. }
  5215. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5216. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5217. result->op = GGML_OP_MAP_BINARY;
  5218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5219. result->src[0] = a;
  5220. result->src[1] = b;
  5221. return result;
  5222. }
  5223. struct ggml_tensor * ggml_map_binary_f32(
  5224. struct ggml_context * ctx,
  5225. struct ggml_tensor * a,
  5226. struct ggml_tensor * b,
  5227. const ggml_binary_op_f32_t fun) {
  5228. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5229. }
  5230. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5231. struct ggml_context * ctx,
  5232. struct ggml_tensor * a,
  5233. struct ggml_tensor * b,
  5234. const ggml_binary_op_f32_t fun) {
  5235. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5236. }
  5237. // ggml_map_custom1_f32
  5238. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5239. struct ggml_context * ctx,
  5240. struct ggml_tensor * a,
  5241. const ggml_custom1_op_f32_t fun,
  5242. bool inplace) {
  5243. bool is_node = false;
  5244. if (!inplace && a->grad) {
  5245. is_node = true;
  5246. }
  5247. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5248. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5249. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5251. result->src[0] = a;
  5252. return result;
  5253. }
  5254. struct ggml_tensor * ggml_map_custom1_f32(
  5255. struct ggml_context * ctx,
  5256. struct ggml_tensor * a,
  5257. const ggml_custom1_op_f32_t fun) {
  5258. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5259. }
  5260. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5261. struct ggml_context * ctx,
  5262. struct ggml_tensor * a,
  5263. const ggml_custom1_op_f32_t fun) {
  5264. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5265. }
  5266. // ggml_map_custom2_f32
  5267. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. struct ggml_tensor * b,
  5271. const ggml_custom2_op_f32_t fun,
  5272. bool inplace) {
  5273. bool is_node = false;
  5274. if (!inplace && (a->grad || b->grad)) {
  5275. is_node = true;
  5276. }
  5277. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5278. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5279. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5281. result->src[0] = a;
  5282. result->src[1] = b;
  5283. return result;
  5284. }
  5285. struct ggml_tensor * ggml_map_custom2_f32(
  5286. struct ggml_context * ctx,
  5287. struct ggml_tensor * a,
  5288. struct ggml_tensor * b,
  5289. const ggml_custom2_op_f32_t fun) {
  5290. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5291. }
  5292. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5293. struct ggml_context * ctx,
  5294. struct ggml_tensor * a,
  5295. struct ggml_tensor * b,
  5296. const ggml_custom2_op_f32_t fun) {
  5297. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5298. }
  5299. // ggml_map_custom3_f32
  5300. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5301. struct ggml_context * ctx,
  5302. struct ggml_tensor * a,
  5303. struct ggml_tensor * b,
  5304. struct ggml_tensor * c,
  5305. const ggml_custom3_op_f32_t fun,
  5306. bool inplace) {
  5307. bool is_node = false;
  5308. if (!inplace && (a->grad || b->grad || c->grad)) {
  5309. is_node = true;
  5310. }
  5311. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5312. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5313. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5315. result->src[0] = a;
  5316. result->src[1] = b;
  5317. result->src[2] = c;
  5318. return result;
  5319. }
  5320. struct ggml_tensor * ggml_map_custom3_f32(
  5321. struct ggml_context * ctx,
  5322. struct ggml_tensor * a,
  5323. struct ggml_tensor * b,
  5324. struct ggml_tensor * c,
  5325. const ggml_custom3_op_f32_t fun) {
  5326. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5327. }
  5328. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5329. struct ggml_context * ctx,
  5330. struct ggml_tensor * a,
  5331. struct ggml_tensor * b,
  5332. struct ggml_tensor * c,
  5333. const ggml_custom3_op_f32_t fun) {
  5334. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5335. }
  5336. // ggml_map_custom1
  5337. struct ggml_map_custom1_op_params {
  5338. ggml_custom1_op_t fun;
  5339. int n_tasks;
  5340. void * userdata;
  5341. };
  5342. static struct ggml_tensor * ggml_map_custom1_impl(
  5343. struct ggml_context * ctx,
  5344. struct ggml_tensor * a,
  5345. const ggml_custom1_op_t fun,
  5346. int n_tasks,
  5347. void * userdata,
  5348. bool inplace) {
  5349. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5350. bool is_node = false;
  5351. if (!inplace && a->grad) {
  5352. is_node = true;
  5353. }
  5354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5355. struct ggml_map_custom1_op_params params = {
  5356. /*.fun =*/ fun,
  5357. /*.n_tasks =*/ n_tasks,
  5358. /*.userdata =*/ userdata
  5359. };
  5360. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5361. result->op = GGML_OP_MAP_CUSTOM1;
  5362. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5363. result->src[0] = a;
  5364. return result;
  5365. }
  5366. struct ggml_tensor * ggml_map_custom1(
  5367. struct ggml_context * ctx,
  5368. struct ggml_tensor * a,
  5369. const ggml_custom1_op_t fun,
  5370. int n_tasks,
  5371. void * userdata) {
  5372. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5373. }
  5374. struct ggml_tensor * ggml_map_custom1_inplace(
  5375. struct ggml_context * ctx,
  5376. struct ggml_tensor * a,
  5377. const ggml_custom1_op_t fun,
  5378. int n_tasks,
  5379. void * userdata) {
  5380. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5381. }
  5382. // ggml_map_custom2
  5383. struct ggml_map_custom2_op_params {
  5384. ggml_custom2_op_t fun;
  5385. int n_tasks;
  5386. void * userdata;
  5387. };
  5388. static struct ggml_tensor * ggml_map_custom2_impl(
  5389. struct ggml_context * ctx,
  5390. struct ggml_tensor * a,
  5391. struct ggml_tensor * b,
  5392. const ggml_custom2_op_t fun,
  5393. int n_tasks,
  5394. void * userdata,
  5395. bool inplace) {
  5396. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5397. bool is_node = false;
  5398. if (!inplace && (a->grad || b->grad)) {
  5399. is_node = true;
  5400. }
  5401. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5402. struct ggml_map_custom2_op_params params = {
  5403. /*.fun =*/ fun,
  5404. /*.n_tasks =*/ n_tasks,
  5405. /*.userdata =*/ userdata
  5406. };
  5407. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5408. result->op = GGML_OP_MAP_CUSTOM2;
  5409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5410. result->src[0] = a;
  5411. result->src[1] = b;
  5412. return result;
  5413. }
  5414. struct ggml_tensor * ggml_map_custom2(
  5415. struct ggml_context * ctx,
  5416. struct ggml_tensor * a,
  5417. struct ggml_tensor * b,
  5418. const ggml_custom2_op_t fun,
  5419. int n_tasks,
  5420. void * userdata) {
  5421. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5422. }
  5423. struct ggml_tensor * ggml_map_custom2_inplace(
  5424. struct ggml_context * ctx,
  5425. struct ggml_tensor * a,
  5426. struct ggml_tensor * b,
  5427. const ggml_custom2_op_t fun,
  5428. int n_tasks,
  5429. void * userdata) {
  5430. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5431. }
  5432. // ggml_map_custom3
  5433. struct ggml_map_custom3_op_params {
  5434. ggml_custom3_op_t fun;
  5435. int n_tasks;
  5436. void * userdata;
  5437. };
  5438. static struct ggml_tensor * ggml_map_custom3_impl(
  5439. struct ggml_context * ctx,
  5440. struct ggml_tensor * a,
  5441. struct ggml_tensor * b,
  5442. struct ggml_tensor * c,
  5443. const ggml_custom3_op_t fun,
  5444. int n_tasks,
  5445. void * userdata,
  5446. bool inplace) {
  5447. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5448. bool is_node = false;
  5449. if (!inplace && (a->grad || b->grad || c->grad)) {
  5450. is_node = true;
  5451. }
  5452. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5453. struct ggml_map_custom3_op_params params = {
  5454. /*.fun =*/ fun,
  5455. /*.n_tasks =*/ n_tasks,
  5456. /*.userdata =*/ userdata
  5457. };
  5458. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5459. result->op = GGML_OP_MAP_CUSTOM3;
  5460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5461. result->src[0] = a;
  5462. result->src[1] = b;
  5463. result->src[2] = c;
  5464. return result;
  5465. }
  5466. struct ggml_tensor * ggml_map_custom3(
  5467. struct ggml_context * ctx,
  5468. struct ggml_tensor * a,
  5469. struct ggml_tensor * b,
  5470. struct ggml_tensor * c,
  5471. const ggml_custom3_op_t fun,
  5472. int n_tasks,
  5473. void * userdata) {
  5474. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5475. }
  5476. struct ggml_tensor * ggml_map_custom3_inplace(
  5477. struct ggml_context * ctx,
  5478. struct ggml_tensor * a,
  5479. struct ggml_tensor * b,
  5480. struct ggml_tensor * c,
  5481. const ggml_custom3_op_t fun,
  5482. int n_tasks,
  5483. void * userdata) {
  5484. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5485. }
  5486. // ggml_cross_entropy_loss
  5487. struct ggml_tensor * ggml_cross_entropy_loss(
  5488. struct ggml_context * ctx,
  5489. struct ggml_tensor * a,
  5490. struct ggml_tensor * b) {
  5491. GGML_ASSERT(ggml_are_same_shape(a, b));
  5492. bool is_node = false;
  5493. if (a->grad || b->grad) {
  5494. is_node = true;
  5495. }
  5496. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5497. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5498. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5499. result->src[0] = a;
  5500. result->src[1] = b;
  5501. return result;
  5502. }
  5503. // ggml_cross_entropy_loss_back
  5504. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5505. struct ggml_context * ctx,
  5506. struct ggml_tensor * a,
  5507. struct ggml_tensor * b,
  5508. struct ggml_tensor * c) {
  5509. GGML_ASSERT(ggml_are_same_shape(a, b));
  5510. GGML_ASSERT(ggml_is_scalar(c));
  5511. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5512. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5513. result->grad = NULL;
  5514. result->src[0] = a;
  5515. result->src[1] = b;
  5516. result->src[2] = c;
  5517. return result;
  5518. }
  5519. ////////////////////////////////////////////////////////////////////////////////
  5520. void ggml_set_param(
  5521. struct ggml_context * ctx,
  5522. struct ggml_tensor * tensor) {
  5523. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5524. GGML_ASSERT(tensor->grad == NULL);
  5525. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5526. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5527. }
  5528. // ggml_compute_forward_dup
  5529. static void ggml_compute_forward_dup_same_cont(
  5530. const struct ggml_compute_params * params,
  5531. struct ggml_tensor * dst) {
  5532. const struct ggml_tensor * src0 = dst->src[0];
  5533. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5534. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5535. GGML_ASSERT(src0->type == dst->type);
  5536. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5537. return;
  5538. }
  5539. const size_t nb00 = src0->nb[0];
  5540. const size_t nb0 = dst->nb[0];
  5541. const int ith = params->ith; // thread index
  5542. const int nth = params->nth; // number of threads
  5543. // parallelize by elements
  5544. const int ne = ggml_nelements(dst);
  5545. const int dr = (ne + nth - 1) / nth;
  5546. const int ie0 = dr * ith;
  5547. const int ie1 = MIN(ie0 + dr, ne);
  5548. if (ie0 < ie1) {
  5549. memcpy(
  5550. ((char *) dst->data + ie0*nb0),
  5551. ((char *) src0->data + ie0*nb00),
  5552. (ie1 - ie0) * ggml_type_size(src0->type));
  5553. }
  5554. }
  5555. static void ggml_compute_forward_dup_f16(
  5556. const struct ggml_compute_params * params,
  5557. struct ggml_tensor * dst) {
  5558. const struct ggml_tensor * src0 = dst->src[0];
  5559. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5560. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5561. return;
  5562. }
  5563. GGML_TENSOR_UNARY_OP_LOCALS
  5564. const int ith = params->ith; // thread index
  5565. const int nth = params->nth; // number of threads
  5566. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5567. ggml_compute_forward_dup_same_cont(params, dst);
  5568. return;
  5569. }
  5570. // parallelize by rows
  5571. const int nr = ne01;
  5572. // number of rows per thread
  5573. const int dr = (nr + nth - 1) / nth;
  5574. // row range for this thread
  5575. const int ir0 = dr * ith;
  5576. const int ir1 = MIN(ir0 + dr, nr);
  5577. if (src0->type == dst->type &&
  5578. ne00 == ne0 &&
  5579. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5580. // copy by rows
  5581. const size_t rs = ne00*nb00;
  5582. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5583. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5584. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5585. memcpy(
  5586. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5587. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5588. rs);
  5589. }
  5590. }
  5591. }
  5592. return;
  5593. }
  5594. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5595. if (ggml_is_contiguous(dst)) {
  5596. if (nb00 == sizeof(ggml_fp16_t)) {
  5597. if (dst->type == GGML_TYPE_F16) {
  5598. size_t id = 0;
  5599. const size_t rs = ne00 * nb00;
  5600. char * dst_ptr = (char *) dst->data;
  5601. for (int i03 = 0; i03 < ne03; i03++) {
  5602. for (int i02 = 0; i02 < ne02; i02++) {
  5603. id += rs * ir0;
  5604. for (int i01 = ir0; i01 < ir1; i01++) {
  5605. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5606. memcpy(dst_ptr + id, src0_ptr, rs);
  5607. id += rs;
  5608. }
  5609. id += rs * (ne01 - ir1);
  5610. }
  5611. }
  5612. } else if (dst->type == GGML_TYPE_F32) {
  5613. size_t id = 0;
  5614. float * dst_ptr = (float *) dst->data;
  5615. for (int i03 = 0; i03 < ne03; i03++) {
  5616. for (int i02 = 0; i02 < ne02; i02++) {
  5617. id += ne00 * ir0;
  5618. for (int i01 = ir0; i01 < ir1; i01++) {
  5619. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5620. for (int i00 = 0; i00 < ne00; i00++) {
  5621. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5622. id++;
  5623. }
  5624. }
  5625. id += ne00 * (ne01 - ir1);
  5626. }
  5627. }
  5628. } else if (type_traits[dst->type].from_float) {
  5629. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5630. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5631. size_t id = 0;
  5632. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5633. char * dst_ptr = (char *) dst->data;
  5634. for (int i03 = 0; i03 < ne03; i03++) {
  5635. for (int i02 = 0; i02 < ne02; i02++) {
  5636. id += rs * ir0;
  5637. for (int i01 = ir0; i01 < ir1; i01++) {
  5638. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5639. for (int i00 = 0; i00 < ne00; i00++) {
  5640. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5641. }
  5642. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5643. id += rs;
  5644. }
  5645. id += rs * (ne01 - ir1);
  5646. }
  5647. }
  5648. } else {
  5649. GGML_ASSERT(false); // TODO: implement
  5650. }
  5651. } else {
  5652. //printf("%s: this is not optimal - fix me\n", __func__);
  5653. if (dst->type == GGML_TYPE_F32) {
  5654. size_t id = 0;
  5655. float * dst_ptr = (float *) dst->data;
  5656. for (int i03 = 0; i03 < ne03; i03++) {
  5657. for (int i02 = 0; i02 < ne02; i02++) {
  5658. id += ne00 * ir0;
  5659. for (int i01 = ir0; i01 < ir1; i01++) {
  5660. for (int i00 = 0; i00 < ne00; i00++) {
  5661. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5662. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5663. id++;
  5664. }
  5665. }
  5666. id += ne00 * (ne01 - ir1);
  5667. }
  5668. }
  5669. } else if (dst->type == GGML_TYPE_F16) {
  5670. size_t id = 0;
  5671. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5672. for (int i03 = 0; i03 < ne03; i03++) {
  5673. for (int i02 = 0; i02 < ne02; i02++) {
  5674. id += ne00 * ir0;
  5675. for (int i01 = ir0; i01 < ir1; i01++) {
  5676. for (int i00 = 0; i00 < ne00; i00++) {
  5677. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5678. dst_ptr[id] = *src0_ptr;
  5679. id++;
  5680. }
  5681. }
  5682. id += ne00 * (ne01 - ir1);
  5683. }
  5684. }
  5685. } else {
  5686. GGML_ASSERT(false); // TODO: implement
  5687. }
  5688. }
  5689. return;
  5690. }
  5691. // dst counters
  5692. int64_t i10 = 0;
  5693. int64_t i11 = 0;
  5694. int64_t i12 = 0;
  5695. int64_t i13 = 0;
  5696. if (dst->type == GGML_TYPE_F16) {
  5697. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5698. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5699. i10 += ne00 * ir0;
  5700. while (i10 >= ne0) {
  5701. i10 -= ne0;
  5702. if (++i11 == ne1) {
  5703. i11 = 0;
  5704. if (++i12 == ne2) {
  5705. i12 = 0;
  5706. if (++i13 == ne3) {
  5707. i13 = 0;
  5708. }
  5709. }
  5710. }
  5711. }
  5712. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5713. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5714. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5715. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5716. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5717. if (++i10 == ne00) {
  5718. i10 = 0;
  5719. if (++i11 == ne01) {
  5720. i11 = 0;
  5721. if (++i12 == ne02) {
  5722. i12 = 0;
  5723. if (++i13 == ne03) {
  5724. i13 = 0;
  5725. }
  5726. }
  5727. }
  5728. }
  5729. }
  5730. }
  5731. i10 += ne00 * (ne01 - ir1);
  5732. while (i10 >= ne0) {
  5733. i10 -= ne0;
  5734. if (++i11 == ne1) {
  5735. i11 = 0;
  5736. if (++i12 == ne2) {
  5737. i12 = 0;
  5738. if (++i13 == ne3) {
  5739. i13 = 0;
  5740. }
  5741. }
  5742. }
  5743. }
  5744. }
  5745. }
  5746. } else if (dst->type == GGML_TYPE_F32) {
  5747. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5748. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5749. i10 += ne00 * ir0;
  5750. while (i10 >= ne0) {
  5751. i10 -= ne0;
  5752. if (++i11 == ne1) {
  5753. i11 = 0;
  5754. if (++i12 == ne2) {
  5755. i12 = 0;
  5756. if (++i13 == ne3) {
  5757. i13 = 0;
  5758. }
  5759. }
  5760. }
  5761. }
  5762. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5763. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5764. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5765. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5766. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5767. if (++i10 == ne0) {
  5768. i10 = 0;
  5769. if (++i11 == ne1) {
  5770. i11 = 0;
  5771. if (++i12 == ne2) {
  5772. i12 = 0;
  5773. if (++i13 == ne3) {
  5774. i13 = 0;
  5775. }
  5776. }
  5777. }
  5778. }
  5779. }
  5780. }
  5781. i10 += ne00 * (ne01 - ir1);
  5782. while (i10 >= ne0) {
  5783. i10 -= ne0;
  5784. if (++i11 == ne1) {
  5785. i11 = 0;
  5786. if (++i12 == ne2) {
  5787. i12 = 0;
  5788. if (++i13 == ne3) {
  5789. i13 = 0;
  5790. }
  5791. }
  5792. }
  5793. }
  5794. }
  5795. }
  5796. } else {
  5797. GGML_ASSERT(false); // TODO: implement
  5798. }
  5799. }
  5800. static void ggml_compute_forward_dup_f32(
  5801. const struct ggml_compute_params * params,
  5802. struct ggml_tensor * dst) {
  5803. const struct ggml_tensor * src0 = dst->src[0];
  5804. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5805. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5806. return;
  5807. }
  5808. GGML_TENSOR_UNARY_OP_LOCALS
  5809. const int ith = params->ith; // thread index
  5810. const int nth = params->nth; // number of threads
  5811. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5812. ggml_compute_forward_dup_same_cont(params, dst);
  5813. return;
  5814. }
  5815. // parallelize by rows
  5816. const int nr = ne01;
  5817. // number of rows per thread
  5818. const int dr = (nr + nth - 1) / nth;
  5819. // row range for this thread
  5820. const int ir0 = dr * ith;
  5821. const int ir1 = MIN(ir0 + dr, nr);
  5822. if (src0->type == dst->type &&
  5823. ne00 == ne0 &&
  5824. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5825. // copy by rows
  5826. const size_t rs = ne00*nb00;
  5827. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5828. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5829. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5830. memcpy(
  5831. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5832. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5833. rs);
  5834. }
  5835. }
  5836. }
  5837. return;
  5838. }
  5839. if (ggml_is_contiguous(dst)) {
  5840. // TODO: simplify
  5841. if (nb00 == sizeof(float)) {
  5842. if (dst->type == GGML_TYPE_F32) {
  5843. size_t id = 0;
  5844. const size_t rs = ne00 * nb00;
  5845. char * dst_ptr = (char *) dst->data;
  5846. for (int i03 = 0; i03 < ne03; i03++) {
  5847. for (int i02 = 0; i02 < ne02; i02++) {
  5848. id += rs * ir0;
  5849. for (int i01 = ir0; i01 < ir1; i01++) {
  5850. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5851. memcpy(dst_ptr + id, src0_ptr, rs);
  5852. id += rs;
  5853. }
  5854. id += rs * (ne01 - ir1);
  5855. }
  5856. }
  5857. } else if (type_traits[dst->type].from_float) {
  5858. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5859. size_t id = 0;
  5860. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5861. char * dst_ptr = (char *) dst->data;
  5862. for (int i03 = 0; i03 < ne03; i03++) {
  5863. for (int i02 = 0; i02 < ne02; i02++) {
  5864. id += rs * ir0;
  5865. for (int i01 = ir0; i01 < ir1; i01++) {
  5866. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5867. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5868. id += rs;
  5869. }
  5870. id += rs * (ne01 - ir1);
  5871. }
  5872. }
  5873. } else {
  5874. GGML_ASSERT(false); // TODO: implement
  5875. }
  5876. } else {
  5877. //printf("%s: this is not optimal - fix me\n", __func__);
  5878. if (dst->type == GGML_TYPE_F32) {
  5879. size_t id = 0;
  5880. float * dst_ptr = (float *) dst->data;
  5881. for (int i03 = 0; i03 < ne03; i03++) {
  5882. for (int i02 = 0; i02 < ne02; i02++) {
  5883. id += ne00 * ir0;
  5884. for (int i01 = ir0; i01 < ir1; i01++) {
  5885. for (int i00 = 0; i00 < ne00; i00++) {
  5886. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5887. dst_ptr[id] = *src0_ptr;
  5888. id++;
  5889. }
  5890. }
  5891. id += ne00 * (ne01 - ir1);
  5892. }
  5893. }
  5894. } else if (dst->type == GGML_TYPE_F16) {
  5895. size_t id = 0;
  5896. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5897. for (int i03 = 0; i03 < ne03; i03++) {
  5898. for (int i02 = 0; i02 < ne02; i02++) {
  5899. id += ne00 * ir0;
  5900. for (int i01 = ir0; i01 < ir1; i01++) {
  5901. for (int i00 = 0; i00 < ne00; i00++) {
  5902. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5903. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5904. id++;
  5905. }
  5906. }
  5907. id += ne00 * (ne01 - ir1);
  5908. }
  5909. }
  5910. } else {
  5911. GGML_ASSERT(false); // TODO: implement
  5912. }
  5913. }
  5914. return;
  5915. }
  5916. // dst counters
  5917. int64_t i10 = 0;
  5918. int64_t i11 = 0;
  5919. int64_t i12 = 0;
  5920. int64_t i13 = 0;
  5921. if (dst->type == GGML_TYPE_F32) {
  5922. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5923. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5924. i10 += ne00 * ir0;
  5925. while (i10 >= ne0) {
  5926. i10 -= ne0;
  5927. if (++i11 == ne1) {
  5928. i11 = 0;
  5929. if (++i12 == ne2) {
  5930. i12 = 0;
  5931. if (++i13 == ne3) {
  5932. i13 = 0;
  5933. }
  5934. }
  5935. }
  5936. }
  5937. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5938. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5939. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5940. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5941. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5942. if (++i10 == ne0) {
  5943. i10 = 0;
  5944. if (++i11 == ne1) {
  5945. i11 = 0;
  5946. if (++i12 == ne2) {
  5947. i12 = 0;
  5948. if (++i13 == ne3) {
  5949. i13 = 0;
  5950. }
  5951. }
  5952. }
  5953. }
  5954. }
  5955. }
  5956. i10 += ne00 * (ne01 - ir1);
  5957. while (i10 >= ne0) {
  5958. i10 -= ne0;
  5959. if (++i11 == ne1) {
  5960. i11 = 0;
  5961. if (++i12 == ne2) {
  5962. i12 = 0;
  5963. if (++i13 == ne3) {
  5964. i13 = 0;
  5965. }
  5966. }
  5967. }
  5968. }
  5969. }
  5970. }
  5971. } else if (dst->type == GGML_TYPE_F16) {
  5972. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5973. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5974. i10 += ne00 * ir0;
  5975. while (i10 >= ne0) {
  5976. i10 -= ne0;
  5977. if (++i11 == ne1) {
  5978. i11 = 0;
  5979. if (++i12 == ne2) {
  5980. i12 = 0;
  5981. if (++i13 == ne3) {
  5982. i13 = 0;
  5983. }
  5984. }
  5985. }
  5986. }
  5987. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5988. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5989. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5990. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5991. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5992. if (++i10 == ne0) {
  5993. i10 = 0;
  5994. if (++i11 == ne1) {
  5995. i11 = 0;
  5996. if (++i12 == ne2) {
  5997. i12 = 0;
  5998. if (++i13 == ne3) {
  5999. i13 = 0;
  6000. }
  6001. }
  6002. }
  6003. }
  6004. }
  6005. }
  6006. i10 += ne00 * (ne01 - ir1);
  6007. while (i10 >= ne0) {
  6008. i10 -= ne0;
  6009. if (++i11 == ne1) {
  6010. i11 = 0;
  6011. if (++i12 == ne2) {
  6012. i12 = 0;
  6013. if (++i13 == ne3) {
  6014. i13 = 0;
  6015. }
  6016. }
  6017. }
  6018. }
  6019. }
  6020. }
  6021. } else {
  6022. GGML_ASSERT(false); // TODO: implement
  6023. }
  6024. }
  6025. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6026. static void ggml_compute_forward_dup_bytes(
  6027. const struct ggml_compute_params * params,
  6028. struct ggml_tensor * dst) {
  6029. const struct ggml_tensor * src0 = dst->src[0];
  6030. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6031. GGML_ASSERT(src0->type == dst->type);
  6032. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6033. return;
  6034. }
  6035. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6036. ggml_compute_forward_dup_same_cont(params, dst);
  6037. return;
  6038. }
  6039. GGML_TENSOR_UNARY_OP_LOCALS;
  6040. const size_t type_size = ggml_type_size(src0->type);
  6041. const int ith = params->ith; // thread index
  6042. const int nth = params->nth; // number of threads
  6043. // parallelize by rows
  6044. const int nr = ne01;
  6045. // number of rows per thread
  6046. const int dr = (nr + nth - 1) / nth;
  6047. // row range for this thread
  6048. const int ir0 = dr * ith;
  6049. const int ir1 = MIN(ir0 + dr, nr);
  6050. if (src0->type == dst->type &&
  6051. ne00 == ne0 &&
  6052. nb00 == type_size && nb0 == type_size) {
  6053. // copy by rows
  6054. const size_t rs = ne00 * type_size;
  6055. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6056. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6057. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6058. memcpy(
  6059. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6060. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6061. rs);
  6062. }
  6063. }
  6064. }
  6065. return;
  6066. }
  6067. if (ggml_is_contiguous(dst)) {
  6068. size_t id = 0;
  6069. char * dst_ptr = (char *) dst->data;
  6070. const size_t rs = ne00 * type_size;
  6071. if (nb00 == type_size) {
  6072. // src0 is contigous on first dimension, copy by rows
  6073. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6074. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6075. id += rs * ir0;
  6076. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6077. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6078. memcpy(dst_ptr + id, src0_ptr, rs);
  6079. id += rs;
  6080. }
  6081. id += rs * (ne01 - ir1);
  6082. }
  6083. }
  6084. } else {
  6085. //printf("%s: this is not optimal - fix me\n", __func__);
  6086. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6087. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6088. id += rs * ir0;
  6089. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6090. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6091. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6092. memcpy(dst_ptr + id, src0_ptr, type_size);
  6093. id += type_size;
  6094. }
  6095. }
  6096. id += rs * (ne01 - ir1);
  6097. }
  6098. }
  6099. }
  6100. return;
  6101. }
  6102. // dst counters
  6103. int64_t i10 = 0;
  6104. int64_t i11 = 0;
  6105. int64_t i12 = 0;
  6106. int64_t i13 = 0;
  6107. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6108. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6109. i10 += ne00 * ir0;
  6110. while (i10 >= ne0) {
  6111. i10 -= ne0;
  6112. if (++i11 == ne1) {
  6113. i11 = 0;
  6114. if (++i12 == ne2) {
  6115. i12 = 0;
  6116. if (++i13 == ne3) {
  6117. i13 = 0;
  6118. }
  6119. }
  6120. }
  6121. }
  6122. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6123. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6124. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6125. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6126. memcpy(dst_ptr, src0_ptr, type_size);
  6127. if (++i10 == ne0) {
  6128. i10 = 0;
  6129. if (++i11 == ne1) {
  6130. i11 = 0;
  6131. if (++i12 == ne2) {
  6132. i12 = 0;
  6133. if (++i13 == ne3) {
  6134. i13 = 0;
  6135. }
  6136. }
  6137. }
  6138. }
  6139. }
  6140. }
  6141. i10 += ne00 * (ne01 - ir1);
  6142. while (i10 >= ne0) {
  6143. i10 -= ne0;
  6144. if (++i11 == ne1) {
  6145. i11 = 0;
  6146. if (++i12 == ne2) {
  6147. i12 = 0;
  6148. if (++i13 == ne3) {
  6149. i13 = 0;
  6150. }
  6151. }
  6152. }
  6153. }
  6154. }
  6155. }
  6156. }
  6157. static void ggml_compute_forward_dup(
  6158. const struct ggml_compute_params * params,
  6159. struct ggml_tensor * dst) {
  6160. const struct ggml_tensor * src0 = dst->src[0];
  6161. if (src0->type == dst->type) {
  6162. ggml_compute_forward_dup_bytes(params, dst);
  6163. return;
  6164. }
  6165. switch (src0->type) {
  6166. case GGML_TYPE_F16:
  6167. {
  6168. ggml_compute_forward_dup_f16(params, dst);
  6169. } break;
  6170. case GGML_TYPE_F32:
  6171. {
  6172. ggml_compute_forward_dup_f32(params, dst);
  6173. } break;
  6174. default:
  6175. {
  6176. GGML_ASSERT(false);
  6177. } break;
  6178. }
  6179. }
  6180. // ggml_compute_forward_add
  6181. static void ggml_compute_forward_add_f32(
  6182. const struct ggml_compute_params * params,
  6183. struct ggml_tensor * dst) {
  6184. const struct ggml_tensor * src0 = dst->src[0];
  6185. const struct ggml_tensor * src1 = dst->src[1];
  6186. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6187. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6188. return;
  6189. }
  6190. const int ith = params->ith;
  6191. const int nth = params->nth;
  6192. #ifdef GGML_USE_CLBLAST
  6193. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6194. // TODO: OpenCL kernel support full broadcast
  6195. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6196. if (ith == 0) {
  6197. ggml_cl_add(src0, src1, dst);
  6198. }
  6199. return;
  6200. }
  6201. #endif
  6202. const int nr = ggml_nrows(src0);
  6203. GGML_TENSOR_BINARY_OP_LOCALS
  6204. GGML_ASSERT( nb0 == sizeof(float));
  6205. GGML_ASSERT(nb00 == sizeof(float));
  6206. // rows per thread
  6207. const int dr = (nr + nth - 1)/nth;
  6208. // row range for this thread
  6209. const int ir0 = dr*ith;
  6210. const int ir1 = MIN(ir0 + dr, nr);
  6211. if (nb10 == sizeof(float)) {
  6212. for (int ir = ir0; ir < ir1; ++ir) {
  6213. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6214. const int64_t i03 = ir/(ne02*ne01);
  6215. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6216. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6217. const int64_t i13 = i03 % ne13;
  6218. const int64_t i12 = i02 % ne12;
  6219. const int64_t i11 = i01 % ne11;
  6220. const int64_t nr0 = ne00 / ne10;
  6221. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6222. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6223. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6224. for (int64_t r = 0; r < nr0; ++r) {
  6225. #ifdef GGML_USE_ACCELERATE
  6226. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6227. #else
  6228. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6229. #endif
  6230. }
  6231. }
  6232. } else {
  6233. // src1 is not contiguous
  6234. for (int ir = ir0; ir < ir1; ++ir) {
  6235. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6236. const int64_t i03 = ir/(ne02*ne01);
  6237. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6238. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6239. const int64_t i13 = i03 % ne13;
  6240. const int64_t i12 = i02 % ne12;
  6241. const int64_t i11 = i01 % ne11;
  6242. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6243. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6244. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6245. const int64_t i10 = i0 % ne10;
  6246. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6247. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6248. }
  6249. }
  6250. }
  6251. }
  6252. static void ggml_compute_forward_add_f16_f32(
  6253. const struct ggml_compute_params * params,
  6254. struct ggml_tensor * dst) {
  6255. const struct ggml_tensor * src0 = dst->src[0];
  6256. const struct ggml_tensor * src1 = dst->src[1];
  6257. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6258. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6259. return;
  6260. }
  6261. const int ith = params->ith;
  6262. const int nth = params->nth;
  6263. const int nr = ggml_nrows(src0);
  6264. GGML_TENSOR_BINARY_OP_LOCALS
  6265. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6266. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6267. if (dst->type == GGML_TYPE_F32) {
  6268. GGML_ASSERT( nb0 == sizeof(float));
  6269. }
  6270. else {
  6271. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6272. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6273. }
  6274. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6275. // rows per thread
  6276. const int dr = (nr + nth - 1)/nth;
  6277. // row range for this thread
  6278. const int ir0 = dr*ith;
  6279. const int ir1 = MIN(ir0 + dr, nr);
  6280. if (nb10 == sizeof(float)) {
  6281. if (dst->type == GGML_TYPE_F16) {
  6282. for (int ir = ir0; ir < ir1; ++ir) {
  6283. // src0, src1 and dst are same shape => same indices
  6284. const int i3 = ir/(ne2*ne1);
  6285. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6286. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6287. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6288. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6289. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6290. for (int i = 0; i < ne0; i++) {
  6291. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6292. }
  6293. }
  6294. } else {
  6295. for (int ir = ir0; ir < ir1; ++ir) {
  6296. // src0, src1 and dst are same shape => same indices
  6297. const int i3 = ir/(ne2*ne1);
  6298. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6299. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6300. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6301. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6302. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6303. for (int i = 0; i < ne0; i++) {
  6304. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6305. }
  6306. }
  6307. }
  6308. }
  6309. else {
  6310. // src1 is not contiguous
  6311. GGML_ASSERT(false);
  6312. }
  6313. }
  6314. static void ggml_compute_forward_add_f16_f16(
  6315. const struct ggml_compute_params * params,
  6316. struct ggml_tensor * dst) {
  6317. const struct ggml_tensor * src0 = dst->src[0];
  6318. const struct ggml_tensor * src1 = dst->src[1];
  6319. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6320. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6321. return;
  6322. }
  6323. const int ith = params->ith;
  6324. const int nth = params->nth;
  6325. const int nr = ggml_nrows(src0);
  6326. GGML_TENSOR_BINARY_OP_LOCALS
  6327. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6328. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6329. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6330. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6331. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6332. // rows per thread
  6333. const int dr = (nr + nth - 1)/nth;
  6334. // row range for this thread
  6335. const int ir0 = dr*ith;
  6336. const int ir1 = MIN(ir0 + dr, nr);
  6337. if (nb10 == sizeof(ggml_fp16_t)) {
  6338. for (int ir = ir0; ir < ir1; ++ir) {
  6339. // src0, src1 and dst are same shape => same indices
  6340. const int i3 = ir/(ne2*ne1);
  6341. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6342. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6343. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6344. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6345. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6346. for (int i = 0; i < ne0; i++) {
  6347. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6348. }
  6349. }
  6350. }
  6351. else {
  6352. // src1 is not contiguous
  6353. GGML_ASSERT(false);
  6354. }
  6355. }
  6356. static void ggml_compute_forward_add_q_f32(
  6357. const struct ggml_compute_params * params,
  6358. struct ggml_tensor * dst) {
  6359. const struct ggml_tensor * src0 = dst->src[0];
  6360. const struct ggml_tensor * src1 = dst->src[1];
  6361. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6362. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6363. return;
  6364. }
  6365. const int nr = ggml_nrows(src0);
  6366. GGML_TENSOR_BINARY_OP_LOCALS
  6367. const int ith = params->ith;
  6368. const int nth = params->nth;
  6369. const enum ggml_type type = src0->type;
  6370. const enum ggml_type dtype = dst->type;
  6371. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6372. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6373. // we don't support permuted src0 or src1
  6374. GGML_ASSERT(nb00 == ggml_type_size(type));
  6375. GGML_ASSERT(nb10 == sizeof(float));
  6376. // dst cannot be transposed or permuted
  6377. GGML_ASSERT(nb0 <= nb1);
  6378. GGML_ASSERT(nb1 <= nb2);
  6379. GGML_ASSERT(nb2 <= nb3);
  6380. GGML_ASSERT(ggml_is_quantized(src0->type));
  6381. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6382. // rows per thread
  6383. const int dr = (nr + nth - 1)/nth;
  6384. // row range for this thread
  6385. const int ir0 = dr*ith;
  6386. const int ir1 = MIN(ir0 + dr, nr);
  6387. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6388. for (int ir = ir0; ir < ir1; ++ir) {
  6389. // src0 indices
  6390. const int i03 = ir/(ne02*ne01);
  6391. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6392. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6393. // src1 and dst are same shape as src0 => same indices
  6394. const int i13 = i03;
  6395. const int i12 = i02;
  6396. const int i11 = i01;
  6397. const int i3 = i03;
  6398. const int i2 = i02;
  6399. const int i1 = i01;
  6400. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6401. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6402. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6403. assert(ne00 % 32 == 0);
  6404. // unquantize row from src0 to temp buffer
  6405. dequantize_row_q(src0_row, wdata, ne00);
  6406. // add src1
  6407. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6408. // quantize row to dst
  6409. if (quantize_row_q != NULL) {
  6410. quantize_row_q(wdata, dst_row, ne00);
  6411. } else {
  6412. memcpy(dst_row, wdata, ne0*nb0);
  6413. }
  6414. }
  6415. }
  6416. static void ggml_compute_forward_add(
  6417. const struct ggml_compute_params * params,
  6418. struct ggml_tensor * dst) {
  6419. const struct ggml_tensor * src0 = dst->src[0];
  6420. const struct ggml_tensor * src1 = dst->src[1];
  6421. switch (src0->type) {
  6422. case GGML_TYPE_F32:
  6423. {
  6424. if (src1->type == GGML_TYPE_F32) {
  6425. ggml_compute_forward_add_f32(params, dst);
  6426. }
  6427. else {
  6428. GGML_ASSERT(false);
  6429. }
  6430. } break;
  6431. case GGML_TYPE_F16:
  6432. {
  6433. if (src1->type == GGML_TYPE_F16) {
  6434. ggml_compute_forward_add_f16_f16(params, dst);
  6435. }
  6436. else if (src1->type == GGML_TYPE_F32) {
  6437. ggml_compute_forward_add_f16_f32(params, dst);
  6438. }
  6439. else {
  6440. GGML_ASSERT(false);
  6441. }
  6442. } break;
  6443. case GGML_TYPE_Q4_0:
  6444. case GGML_TYPE_Q4_1:
  6445. case GGML_TYPE_Q5_0:
  6446. case GGML_TYPE_Q5_1:
  6447. case GGML_TYPE_Q8_0:
  6448. case GGML_TYPE_Q2_K:
  6449. case GGML_TYPE_Q3_K:
  6450. case GGML_TYPE_Q4_K:
  6451. case GGML_TYPE_Q5_K:
  6452. case GGML_TYPE_Q6_K:
  6453. case GGML_TYPE_IQ2_XXS:
  6454. case GGML_TYPE_IQ2_XS:
  6455. case GGML_TYPE_IQ3_XXS:
  6456. case GGML_TYPE_IQ1_S:
  6457. case GGML_TYPE_IQ4_NL:
  6458. case GGML_TYPE_IQ4_XS:
  6459. case GGML_TYPE_IQ3_S:
  6460. case GGML_TYPE_IQ2_S:
  6461. {
  6462. ggml_compute_forward_add_q_f32(params, dst);
  6463. } break;
  6464. default:
  6465. {
  6466. GGML_ASSERT(false);
  6467. } break;
  6468. }
  6469. }
  6470. // ggml_compute_forward_add1
  6471. static void ggml_compute_forward_add1_f32(
  6472. const struct ggml_compute_params * params,
  6473. struct ggml_tensor * dst) {
  6474. const struct ggml_tensor * src0 = dst->src[0];
  6475. const struct ggml_tensor * src1 = dst->src[1];
  6476. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6477. GGML_ASSERT(ggml_is_scalar(src1));
  6478. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6479. return;
  6480. }
  6481. const int ith = params->ith;
  6482. const int nth = params->nth;
  6483. const int nr = ggml_nrows(src0);
  6484. GGML_TENSOR_UNARY_OP_LOCALS
  6485. GGML_ASSERT( nb0 == sizeof(float));
  6486. GGML_ASSERT(nb00 == sizeof(float));
  6487. // rows per thread
  6488. const int dr = (nr + nth - 1)/nth;
  6489. // row range for this thread
  6490. const int ir0 = dr*ith;
  6491. const int ir1 = MIN(ir0 + dr, nr);
  6492. for (int ir = ir0; ir < ir1; ++ir) {
  6493. // src0 and dst are same shape => same indices
  6494. const int i3 = ir/(ne2*ne1);
  6495. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6496. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6497. #ifdef GGML_USE_ACCELERATE
  6498. UNUSED(ggml_vec_add1_f32);
  6499. vDSP_vadd(
  6500. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6501. (float *) ((char *) src1->data), 0,
  6502. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6503. ne0);
  6504. #else
  6505. ggml_vec_add1_f32(ne0,
  6506. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6507. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6508. *(float *) src1->data);
  6509. #endif
  6510. }
  6511. }
  6512. static void ggml_compute_forward_add1_f16_f32(
  6513. const struct ggml_compute_params * params,
  6514. struct ggml_tensor * dst) {
  6515. const struct ggml_tensor * src0 = dst->src[0];
  6516. const struct ggml_tensor * src1 = dst->src[1];
  6517. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6518. GGML_ASSERT(ggml_is_scalar(src1));
  6519. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6520. return;
  6521. }
  6522. // scalar to add
  6523. const float v = *(float *) src1->data;
  6524. const int ith = params->ith;
  6525. const int nth = params->nth;
  6526. const int nr = ggml_nrows(src0);
  6527. GGML_TENSOR_UNARY_OP_LOCALS
  6528. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6529. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6530. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6531. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6532. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6533. // rows per thread
  6534. const int dr = (nr + nth - 1)/nth;
  6535. // row range for this thread
  6536. const int ir0 = dr*ith;
  6537. const int ir1 = MIN(ir0 + dr, nr);
  6538. for (int ir = ir0; ir < ir1; ++ir) {
  6539. // src0 and dst are same shape => same indices
  6540. const int i3 = ir/(ne2*ne1);
  6541. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6542. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6543. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6544. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6545. for (int i = 0; i < ne0; i++) {
  6546. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6547. }
  6548. }
  6549. }
  6550. static void ggml_compute_forward_add1_f16_f16(
  6551. const struct ggml_compute_params * params,
  6552. struct ggml_tensor * dst) {
  6553. const struct ggml_tensor * src0 = dst->src[0];
  6554. const struct ggml_tensor * src1 = dst->src[1];
  6555. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6556. GGML_ASSERT(ggml_is_scalar(src1));
  6557. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6558. return;
  6559. }
  6560. // scalar to add
  6561. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6562. const int ith = params->ith;
  6563. const int nth = params->nth;
  6564. const int nr = ggml_nrows(src0);
  6565. GGML_TENSOR_UNARY_OP_LOCALS
  6566. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6567. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6568. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6569. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6570. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6571. // rows per thread
  6572. const int dr = (nr + nth - 1)/nth;
  6573. // row range for this thread
  6574. const int ir0 = dr*ith;
  6575. const int ir1 = MIN(ir0 + dr, nr);
  6576. for (int ir = ir0; ir < ir1; ++ir) {
  6577. // src0 and dst are same shape => same indices
  6578. const int i3 = ir/(ne2*ne1);
  6579. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6580. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6581. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6582. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6583. for (int i = 0; i < ne0; i++) {
  6584. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6585. }
  6586. }
  6587. }
  6588. static void ggml_compute_forward_add1_q_f32(
  6589. const struct ggml_compute_params * params,
  6590. struct ggml_tensor * dst) {
  6591. const struct ggml_tensor * src0 = dst->src[0];
  6592. const struct ggml_tensor * src1 = dst->src[1];
  6593. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6594. GGML_ASSERT(ggml_is_scalar(src1));
  6595. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6596. return;
  6597. }
  6598. // scalar to add
  6599. const float v = *(float *) src1->data;
  6600. const int ith = params->ith;
  6601. const int nth = params->nth;
  6602. const int nr = ggml_nrows(src0);
  6603. GGML_TENSOR_UNARY_OP_LOCALS
  6604. const enum ggml_type type = src0->type;
  6605. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6606. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6607. // we don't support permuted src0
  6608. GGML_ASSERT(nb00 == ggml_type_size(type));
  6609. // dst cannot be transposed or permuted
  6610. GGML_ASSERT(nb0 <= nb1);
  6611. GGML_ASSERT(nb1 <= nb2);
  6612. GGML_ASSERT(nb2 <= nb3);
  6613. GGML_ASSERT(ggml_is_quantized(src0->type));
  6614. GGML_ASSERT(dst->type == src0->type);
  6615. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6616. // rows per thread
  6617. const int dr = (nr + nth - 1)/nth;
  6618. // row range for this thread
  6619. const int ir0 = dr*ith;
  6620. const int ir1 = MIN(ir0 + dr, nr);
  6621. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6622. for (int ir = ir0; ir < ir1; ++ir) {
  6623. // src0 and dst are same shape => same indices
  6624. const int i3 = ir/(ne2*ne1);
  6625. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6626. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6627. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6628. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6629. assert(ne0 % 32 == 0);
  6630. // unquantize row from src0 to temp buffer
  6631. dequantize_row_q(src0_row, wdata, ne0);
  6632. // add src1
  6633. ggml_vec_acc1_f32(ne0, wdata, v);
  6634. // quantize row to dst
  6635. quantize_row_q(wdata, dst_row, ne0);
  6636. }
  6637. }
  6638. static void ggml_compute_forward_add1(
  6639. const struct ggml_compute_params * params,
  6640. struct ggml_tensor * dst) {
  6641. const struct ggml_tensor * src0 = dst->src[0];
  6642. const struct ggml_tensor * src1 = dst->src[1];
  6643. switch (src0->type) {
  6644. case GGML_TYPE_F32:
  6645. {
  6646. ggml_compute_forward_add1_f32(params, dst);
  6647. } break;
  6648. case GGML_TYPE_F16:
  6649. {
  6650. if (src1->type == GGML_TYPE_F16) {
  6651. ggml_compute_forward_add1_f16_f16(params, dst);
  6652. }
  6653. else if (src1->type == GGML_TYPE_F32) {
  6654. ggml_compute_forward_add1_f16_f32(params, dst);
  6655. }
  6656. else {
  6657. GGML_ASSERT(false);
  6658. }
  6659. } break;
  6660. case GGML_TYPE_Q4_0:
  6661. case GGML_TYPE_Q4_1:
  6662. case GGML_TYPE_Q5_0:
  6663. case GGML_TYPE_Q5_1:
  6664. case GGML_TYPE_Q8_0:
  6665. case GGML_TYPE_Q8_1:
  6666. case GGML_TYPE_Q2_K:
  6667. case GGML_TYPE_Q3_K:
  6668. case GGML_TYPE_Q4_K:
  6669. case GGML_TYPE_Q5_K:
  6670. case GGML_TYPE_Q6_K:
  6671. case GGML_TYPE_IQ2_XXS:
  6672. case GGML_TYPE_IQ2_XS:
  6673. case GGML_TYPE_IQ3_XXS:
  6674. case GGML_TYPE_IQ1_S:
  6675. case GGML_TYPE_IQ4_NL:
  6676. case GGML_TYPE_IQ4_XS:
  6677. case GGML_TYPE_IQ3_S:
  6678. case GGML_TYPE_IQ2_S:
  6679. {
  6680. ggml_compute_forward_add1_q_f32(params, dst);
  6681. } break;
  6682. default:
  6683. {
  6684. GGML_ASSERT(false);
  6685. } break;
  6686. }
  6687. }
  6688. // ggml_compute_forward_acc
  6689. static void ggml_compute_forward_acc_f32(
  6690. const struct ggml_compute_params * params,
  6691. struct ggml_tensor * dst) {
  6692. const struct ggml_tensor * src0 = dst->src[0];
  6693. const struct ggml_tensor * src1 = dst->src[1];
  6694. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6695. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6696. // view src0 and dst with these strides and data offset inbytes during acc
  6697. // nb0 is implicitly element_size because src0 and dst are contiguous
  6698. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6699. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6700. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6701. size_t offset = ((int32_t *) dst->op_params)[3];
  6702. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6703. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6704. if (params->ith != 0) {
  6705. return;
  6706. }
  6707. // memcpy needs to be synchronized across threads to avoid race conditions.
  6708. // => do it in INIT phase
  6709. memcpy(
  6710. ((char *) dst->data),
  6711. ((char *) src0->data),
  6712. ggml_nbytes(dst));
  6713. }
  6714. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6715. return;
  6716. }
  6717. const int ith = params->ith;
  6718. const int nth = params->nth;
  6719. const int nr = ggml_nrows(src1);
  6720. const int nc = src1->ne[0];
  6721. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6722. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6723. // src0 and dst as viewed during acc
  6724. const size_t nb0 = ggml_element_size(src0);
  6725. const size_t nb00 = nb0;
  6726. const size_t nb01 = nb1;
  6727. const size_t nb02 = nb2;
  6728. const size_t nb03 = nb3;
  6729. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6730. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6731. GGML_ASSERT(nb10 == sizeof(float));
  6732. // rows per thread
  6733. const int dr = (nr + nth - 1)/nth;
  6734. // row range for this thread
  6735. const int ir0 = dr*ith;
  6736. const int ir1 = MIN(ir0 + dr, nr);
  6737. for (int ir = ir0; ir < ir1; ++ir) {
  6738. // src0 and dst are viewed with shape of src1 and offset
  6739. // => same indices
  6740. const int i3 = ir/(ne12*ne11);
  6741. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6742. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6743. #ifdef GGML_USE_ACCELERATE
  6744. vDSP_vadd(
  6745. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6746. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6747. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6748. #else
  6749. ggml_vec_add_f32(nc,
  6750. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6751. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6752. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6753. #endif
  6754. }
  6755. }
  6756. static void ggml_compute_forward_acc(
  6757. const struct ggml_compute_params * params,
  6758. struct ggml_tensor * dst) {
  6759. const struct ggml_tensor * src0 = dst->src[0];
  6760. switch (src0->type) {
  6761. case GGML_TYPE_F32:
  6762. {
  6763. ggml_compute_forward_acc_f32(params, dst);
  6764. } break;
  6765. case GGML_TYPE_F16:
  6766. case GGML_TYPE_Q4_0:
  6767. case GGML_TYPE_Q4_1:
  6768. case GGML_TYPE_Q5_0:
  6769. case GGML_TYPE_Q5_1:
  6770. case GGML_TYPE_Q8_0:
  6771. case GGML_TYPE_Q8_1:
  6772. case GGML_TYPE_Q2_K:
  6773. case GGML_TYPE_Q3_K:
  6774. case GGML_TYPE_Q4_K:
  6775. case GGML_TYPE_Q5_K:
  6776. case GGML_TYPE_Q6_K:
  6777. case GGML_TYPE_IQ2_XXS:
  6778. case GGML_TYPE_IQ2_XS:
  6779. case GGML_TYPE_IQ3_XXS:
  6780. case GGML_TYPE_IQ1_S:
  6781. case GGML_TYPE_IQ4_NL:
  6782. case GGML_TYPE_IQ4_XS:
  6783. case GGML_TYPE_IQ3_S:
  6784. case GGML_TYPE_IQ2_S:
  6785. default:
  6786. {
  6787. GGML_ASSERT(false);
  6788. } break;
  6789. }
  6790. }
  6791. // ggml_compute_forward_sub
  6792. static void ggml_compute_forward_sub_f32(
  6793. const struct ggml_compute_params * params,
  6794. struct ggml_tensor * dst) {
  6795. const struct ggml_tensor * src0 = dst->src[0];
  6796. const struct ggml_tensor * src1 = dst->src[1];
  6797. assert(params->ith == 0);
  6798. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6799. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6800. return;
  6801. }
  6802. const int nr = ggml_nrows(src0);
  6803. GGML_TENSOR_BINARY_OP_LOCALS
  6804. GGML_ASSERT( nb0 == sizeof(float));
  6805. GGML_ASSERT(nb00 == sizeof(float));
  6806. if (nb10 == sizeof(float)) {
  6807. for (int ir = 0; ir < nr; ++ir) {
  6808. // src0, src1 and dst are same shape => same indices
  6809. const int i3 = ir/(ne2*ne1);
  6810. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6811. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6812. #ifdef GGML_USE_ACCELERATE
  6813. vDSP_vsub(
  6814. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6815. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6816. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6817. ne0);
  6818. #else
  6819. ggml_vec_sub_f32(ne0,
  6820. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6821. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6822. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6823. #endif
  6824. // }
  6825. // }
  6826. }
  6827. } else {
  6828. // src1 is not contiguous
  6829. for (int ir = 0; ir < nr; ++ir) {
  6830. // src0, src1 and dst are same shape => same indices
  6831. const int i3 = ir/(ne2*ne1);
  6832. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6833. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6834. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6835. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6836. for (int i0 = 0; i0 < ne0; i0++) {
  6837. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6838. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6839. }
  6840. }
  6841. }
  6842. }
  6843. static void ggml_compute_forward_sub(
  6844. const struct ggml_compute_params * params,
  6845. struct ggml_tensor * dst) {
  6846. const struct ggml_tensor * src0 = dst->src[0];
  6847. switch (src0->type) {
  6848. case GGML_TYPE_F32:
  6849. {
  6850. ggml_compute_forward_sub_f32(params, dst);
  6851. } break;
  6852. default:
  6853. {
  6854. GGML_ASSERT(false);
  6855. } break;
  6856. }
  6857. }
  6858. // ggml_compute_forward_mul
  6859. static void ggml_compute_forward_mul_f32(
  6860. const struct ggml_compute_params * params,
  6861. struct ggml_tensor * dst) {
  6862. const struct ggml_tensor * src0 = dst->src[0];
  6863. const struct ggml_tensor * src1 = dst->src[1];
  6864. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6865. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6866. return;
  6867. }
  6868. const int ith = params->ith;
  6869. const int nth = params->nth;
  6870. #if defined(GGML_USE_CLBLAST)
  6871. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6872. // TODO: OpenCL kernel support full broadcast
  6873. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6874. if (ith == 0) {
  6875. ggml_cl_mul(src0, src1, dst);
  6876. }
  6877. return;
  6878. }
  6879. #endif
  6880. const int64_t nr = ggml_nrows(src0);
  6881. GGML_TENSOR_BINARY_OP_LOCALS
  6882. GGML_ASSERT( nb0 == sizeof(float));
  6883. GGML_ASSERT(nb00 == sizeof(float));
  6884. if (nb10 == sizeof(float)) {
  6885. for (int64_t ir = ith; ir < nr; ir += nth) {
  6886. // src0 and dst are same shape => same indices
  6887. const int64_t i03 = ir/(ne02*ne01);
  6888. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6889. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6890. const int64_t i13 = i03 % ne13;
  6891. const int64_t i12 = i02 % ne12;
  6892. const int64_t i11 = i01 % ne11;
  6893. const int64_t nr0 = ne00 / ne10;
  6894. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6895. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6896. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6897. for (int64_t r = 0 ; r < nr0; ++r) {
  6898. #ifdef GGML_USE_ACCELERATE
  6899. UNUSED(ggml_vec_mul_f32);
  6900. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6901. #else
  6902. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6903. #endif
  6904. }
  6905. }
  6906. } else {
  6907. // src1 is not contiguous
  6908. for (int64_t ir = ith; ir < nr; ir += nth) {
  6909. // src0 and dst are same shape => same indices
  6910. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6911. const int64_t i03 = ir/(ne02*ne01);
  6912. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6913. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6914. const int64_t i13 = i03 % ne13;
  6915. const int64_t i12 = i02 % ne12;
  6916. const int64_t i11 = i01 % ne11;
  6917. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6918. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6919. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6920. const int64_t i10 = i0 % ne10;
  6921. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6922. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6923. }
  6924. }
  6925. }
  6926. }
  6927. static void ggml_compute_forward_mul(
  6928. const struct ggml_compute_params * params,
  6929. struct ggml_tensor * dst) {
  6930. const struct ggml_tensor * src0 = dst->src[0];
  6931. const struct ggml_tensor * src1 = dst->src[1];
  6932. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6933. switch (src0->type) {
  6934. case GGML_TYPE_F32:
  6935. {
  6936. ggml_compute_forward_mul_f32(params, dst);
  6937. } break;
  6938. default:
  6939. {
  6940. GGML_ASSERT(false);
  6941. } break;
  6942. }
  6943. }
  6944. // ggml_compute_forward_div
  6945. static void ggml_compute_forward_div_f32(
  6946. const struct ggml_compute_params * params,
  6947. struct ggml_tensor * dst) {
  6948. const struct ggml_tensor * src0 = dst->src[0];
  6949. const struct ggml_tensor * src1 = dst->src[1];
  6950. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6951. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6952. return;
  6953. }
  6954. const int ith = params->ith;
  6955. const int nth = params->nth;
  6956. const int64_t nr = ggml_nrows(src0);
  6957. GGML_TENSOR_BINARY_OP_LOCALS
  6958. GGML_ASSERT( nb0 == sizeof(float));
  6959. GGML_ASSERT(nb00 == sizeof(float));
  6960. if (nb10 == sizeof(float)) {
  6961. for (int64_t ir = ith; ir < nr; ir += nth) {
  6962. // src0 and dst are same shape => same indices
  6963. const int64_t i03 = ir/(ne02*ne01);
  6964. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6965. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6966. const int64_t i13 = i03 % ne13;
  6967. const int64_t i12 = i02 % ne12;
  6968. const int64_t i11 = i01 % ne11;
  6969. const int64_t nr0 = ne00 / ne10;
  6970. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6971. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6972. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6973. for (int64_t r = 0; r < nr0; ++r) {
  6974. #ifdef GGML_USE_ACCELERATE
  6975. UNUSED(ggml_vec_div_f32);
  6976. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6977. #else
  6978. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6979. #endif
  6980. }
  6981. }
  6982. } else {
  6983. // src1 is not contiguous
  6984. for (int64_t ir = ith; ir < nr; ir += nth) {
  6985. // src0 and dst are same shape => same indices
  6986. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6987. const int64_t i03 = ir/(ne02*ne01);
  6988. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6989. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6990. const int64_t i13 = i03 % ne13;
  6991. const int64_t i12 = i02 % ne12;
  6992. const int64_t i11 = i01 % ne11;
  6993. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6994. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6995. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6996. const int64_t i10 = i0 % ne10;
  6997. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6998. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6999. }
  7000. }
  7001. }
  7002. }
  7003. static void ggml_compute_forward_div(
  7004. const struct ggml_compute_params * params,
  7005. struct ggml_tensor * dst) {
  7006. const struct ggml_tensor * src0 = dst->src[0];
  7007. switch (src0->type) {
  7008. case GGML_TYPE_F32:
  7009. {
  7010. ggml_compute_forward_div_f32(params, dst);
  7011. } break;
  7012. default:
  7013. {
  7014. GGML_ASSERT(false);
  7015. } break;
  7016. }
  7017. }
  7018. // ggml_compute_forward_sqr
  7019. static void ggml_compute_forward_sqr_f32(
  7020. const struct ggml_compute_params * params,
  7021. struct ggml_tensor * dst) {
  7022. const struct ggml_tensor * src0 = dst->src[0];
  7023. assert(params->ith == 0);
  7024. assert(ggml_are_same_shape(src0, dst));
  7025. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7026. return;
  7027. }
  7028. const int n = ggml_nrows(src0);
  7029. const int nc = src0->ne[0];
  7030. assert( dst->nb[0] == sizeof(float));
  7031. assert(src0->nb[0] == sizeof(float));
  7032. for (int i = 0; i < n; i++) {
  7033. ggml_vec_sqr_f32(nc,
  7034. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7035. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7036. }
  7037. }
  7038. static void ggml_compute_forward_sqr(
  7039. const struct ggml_compute_params * params,
  7040. struct ggml_tensor * dst) {
  7041. const struct ggml_tensor * src0 = dst->src[0];
  7042. switch (src0->type) {
  7043. case GGML_TYPE_F32:
  7044. {
  7045. ggml_compute_forward_sqr_f32(params, dst);
  7046. } break;
  7047. default:
  7048. {
  7049. GGML_ASSERT(false);
  7050. } break;
  7051. }
  7052. }
  7053. // ggml_compute_forward_sqrt
  7054. static void ggml_compute_forward_sqrt_f32(
  7055. const struct ggml_compute_params * params,
  7056. struct ggml_tensor * dst) {
  7057. const struct ggml_tensor * src0 = dst->src[0];
  7058. assert(params->ith == 0);
  7059. assert(ggml_are_same_shape(src0, dst));
  7060. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7061. return;
  7062. }
  7063. const int n = ggml_nrows(src0);
  7064. const int nc = src0->ne[0];
  7065. assert( dst->nb[0] == sizeof(float));
  7066. assert(src0->nb[0] == sizeof(float));
  7067. for (int i = 0; i < n; i++) {
  7068. ggml_vec_sqrt_f32(nc,
  7069. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7070. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7071. }
  7072. }
  7073. static void ggml_compute_forward_sqrt(
  7074. const struct ggml_compute_params * params,
  7075. struct ggml_tensor * dst) {
  7076. const struct ggml_tensor * src0 = dst->src[0];
  7077. switch (src0->type) {
  7078. case GGML_TYPE_F32:
  7079. {
  7080. ggml_compute_forward_sqrt_f32(params, dst);
  7081. } break;
  7082. default:
  7083. {
  7084. GGML_ASSERT(false);
  7085. } break;
  7086. }
  7087. }
  7088. // ggml_compute_forward_log
  7089. static void ggml_compute_forward_log_f32(
  7090. const struct ggml_compute_params * params,
  7091. struct ggml_tensor * dst) {
  7092. const struct ggml_tensor * src0 = dst->src[0];
  7093. GGML_ASSERT(params->ith == 0);
  7094. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7095. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7096. return;
  7097. }
  7098. const int n = ggml_nrows(src0);
  7099. const int nc = src0->ne[0];
  7100. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7101. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7102. for (int i = 0; i < n; i++) {
  7103. ggml_vec_log_f32(nc,
  7104. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7105. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7106. }
  7107. }
  7108. static void ggml_compute_forward_log(
  7109. const struct ggml_compute_params * params,
  7110. struct ggml_tensor * dst) {
  7111. const struct ggml_tensor * src0 = dst->src[0];
  7112. switch (src0->type) {
  7113. case GGML_TYPE_F32:
  7114. {
  7115. ggml_compute_forward_log_f32(params, dst);
  7116. } break;
  7117. default:
  7118. {
  7119. GGML_ASSERT(false);
  7120. } break;
  7121. }
  7122. }
  7123. // ggml_compute_forward_sum
  7124. static void ggml_compute_forward_sum_f32(
  7125. const struct ggml_compute_params * params,
  7126. struct ggml_tensor * dst) {
  7127. const struct ggml_tensor * src0 = dst->src[0];
  7128. assert(params->ith == 0);
  7129. assert(ggml_is_scalar(dst));
  7130. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7131. return;
  7132. }
  7133. assert(ggml_is_scalar(dst));
  7134. assert(src0->nb[0] == sizeof(float));
  7135. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7136. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7137. ggml_float sum = 0;
  7138. ggml_float row_sum = 0;
  7139. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7140. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7141. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7142. ggml_vec_sum_f32_ggf(ne00,
  7143. &row_sum,
  7144. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7145. sum += row_sum;
  7146. }
  7147. }
  7148. }
  7149. ((float *) dst->data)[0] = sum;
  7150. }
  7151. static void ggml_compute_forward_sum_f16(
  7152. const struct ggml_compute_params * params,
  7153. struct ggml_tensor * dst) {
  7154. const struct ggml_tensor * src0 = dst->src[0];
  7155. assert(params->ith == 0);
  7156. assert(ggml_is_scalar(dst));
  7157. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7158. return;
  7159. }
  7160. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7161. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7162. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7163. float sum = 0;
  7164. float row_sum = 0;
  7165. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7166. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7167. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7168. ggml_vec_sum_f16_ggf(ne00,
  7169. &row_sum,
  7170. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7171. sum += row_sum;
  7172. }
  7173. }
  7174. }
  7175. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7176. }
  7177. static void ggml_compute_forward_sum(
  7178. const struct ggml_compute_params * params,
  7179. struct ggml_tensor * dst) {
  7180. const struct ggml_tensor * src0 = dst->src[0];
  7181. switch (src0->type) {
  7182. case GGML_TYPE_F32:
  7183. {
  7184. ggml_compute_forward_sum_f32(params, dst);
  7185. } break;
  7186. case GGML_TYPE_F16:
  7187. {
  7188. ggml_compute_forward_sum_f16(params, dst);
  7189. } break;
  7190. default:
  7191. {
  7192. GGML_ASSERT(false);
  7193. } break;
  7194. }
  7195. }
  7196. // ggml_compute_forward_sum_rows
  7197. static void ggml_compute_forward_sum_rows_f32(
  7198. const struct ggml_compute_params * params,
  7199. struct ggml_tensor * dst) {
  7200. const struct ggml_tensor * src0 = dst->src[0];
  7201. GGML_ASSERT(params->ith == 0);
  7202. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7203. return;
  7204. }
  7205. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7206. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7207. GGML_TENSOR_UNARY_OP_LOCALS
  7208. GGML_ASSERT(ne0 == 1);
  7209. GGML_ASSERT(ne1 == ne01);
  7210. GGML_ASSERT(ne2 == ne02);
  7211. GGML_ASSERT(ne3 == ne03);
  7212. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7213. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7214. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7215. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7216. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7217. float row_sum = 0;
  7218. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7219. dst_row[0] = row_sum;
  7220. }
  7221. }
  7222. }
  7223. }
  7224. static void ggml_compute_forward_sum_rows(
  7225. const struct ggml_compute_params * params,
  7226. struct ggml_tensor * dst) {
  7227. const struct ggml_tensor * src0 = dst->src[0];
  7228. switch (src0->type) {
  7229. case GGML_TYPE_F32:
  7230. {
  7231. ggml_compute_forward_sum_rows_f32(params, dst);
  7232. } break;
  7233. default:
  7234. {
  7235. GGML_ASSERT(false);
  7236. } break;
  7237. }
  7238. }
  7239. // ggml_compute_forward_mean
  7240. static void ggml_compute_forward_mean_f32(
  7241. const struct ggml_compute_params * params,
  7242. struct ggml_tensor * dst) {
  7243. const struct ggml_tensor * src0 = dst->src[0];
  7244. assert(params->ith == 0);
  7245. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7246. return;
  7247. }
  7248. assert(src0->nb[0] == sizeof(float));
  7249. GGML_TENSOR_UNARY_OP_LOCALS
  7250. assert(ne0 == 1);
  7251. assert(ne1 == ne01);
  7252. assert(ne2 == ne02);
  7253. assert(ne3 == ne03);
  7254. UNUSED(ne0);
  7255. UNUSED(ne1);
  7256. UNUSED(ne2);
  7257. UNUSED(ne3);
  7258. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7259. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7260. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7261. ggml_vec_sum_f32(ne00,
  7262. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7263. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7264. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7265. }
  7266. }
  7267. }
  7268. }
  7269. static void ggml_compute_forward_mean(
  7270. const struct ggml_compute_params * params,
  7271. struct ggml_tensor * dst) {
  7272. const struct ggml_tensor * src0 = dst->src[0];
  7273. switch (src0->type) {
  7274. case GGML_TYPE_F32:
  7275. {
  7276. ggml_compute_forward_mean_f32(params, dst);
  7277. } break;
  7278. default:
  7279. {
  7280. GGML_ASSERT(false);
  7281. } break;
  7282. }
  7283. }
  7284. // ggml_compute_forward_argmax
  7285. static void ggml_compute_forward_argmax_f32(
  7286. const struct ggml_compute_params * params,
  7287. struct ggml_tensor * dst) {
  7288. const struct ggml_tensor * src0 = dst->src[0];
  7289. assert(params->ith == 0);
  7290. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7291. return;
  7292. }
  7293. assert(src0->nb[0] == sizeof(float));
  7294. assert(dst->nb[0] == sizeof(float));
  7295. const int64_t ne00 = src0->ne[0];
  7296. const int64_t ne01 = src0->ne[1];
  7297. const size_t nb01 = src0->nb[1];
  7298. const size_t nb0 = dst->nb[0];
  7299. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7300. float * src = (float *) ((char *) src0->data + i1*nb01);
  7301. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7302. int v = 0;
  7303. ggml_vec_argmax_f32(ne00, &v, src);
  7304. dst_[0] = v;
  7305. }
  7306. }
  7307. static void ggml_compute_forward_argmax(
  7308. const struct ggml_compute_params * params,
  7309. struct ggml_tensor * dst) {
  7310. const struct ggml_tensor * src0 = dst->src[0];
  7311. switch (src0->type) {
  7312. case GGML_TYPE_F32:
  7313. {
  7314. ggml_compute_forward_argmax_f32(params, dst);
  7315. } break;
  7316. default:
  7317. {
  7318. GGML_ASSERT(false);
  7319. } break;
  7320. }
  7321. }
  7322. // ggml_compute_forward_repeat
  7323. static void ggml_compute_forward_repeat_f32(
  7324. const struct ggml_compute_params * params,
  7325. struct ggml_tensor * dst) {
  7326. const struct ggml_tensor * src0 = dst->src[0];
  7327. GGML_ASSERT(params->ith == 0);
  7328. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7329. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7330. return;
  7331. }
  7332. GGML_TENSOR_UNARY_OP_LOCALS
  7333. // guaranteed to be an integer due to the check in ggml_can_repeat
  7334. const int nr0 = (int)(ne0/ne00);
  7335. const int nr1 = (int)(ne1/ne01);
  7336. const int nr2 = (int)(ne2/ne02);
  7337. const int nr3 = (int)(ne3/ne03);
  7338. // TODO: support for transposed / permuted tensors
  7339. GGML_ASSERT(nb0 == sizeof(float));
  7340. GGML_ASSERT(nb00 == sizeof(float));
  7341. // TODO: maybe this is not optimal?
  7342. for (int i3 = 0; i3 < nr3; i3++) {
  7343. for (int k3 = 0; k3 < ne03; k3++) {
  7344. for (int i2 = 0; i2 < nr2; i2++) {
  7345. for (int k2 = 0; k2 < ne02; k2++) {
  7346. for (int i1 = 0; i1 < nr1; i1++) {
  7347. for (int k1 = 0; k1 < ne01; k1++) {
  7348. for (int i0 = 0; i0 < nr0; i0++) {
  7349. ggml_vec_cpy_f32(ne00,
  7350. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7351. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7352. }
  7353. }
  7354. }
  7355. }
  7356. }
  7357. }
  7358. }
  7359. }
  7360. static void ggml_compute_forward_repeat_f16(
  7361. const struct ggml_compute_params * params,
  7362. struct ggml_tensor * dst) {
  7363. const struct ggml_tensor * src0 = dst->src[0];
  7364. GGML_ASSERT(params->ith == 0);
  7365. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7366. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7367. return;
  7368. }
  7369. GGML_TENSOR_UNARY_OP_LOCALS
  7370. // guaranteed to be an integer due to the check in ggml_can_repeat
  7371. const int nr0 = (int)(ne0/ne00);
  7372. const int nr1 = (int)(ne1/ne01);
  7373. const int nr2 = (int)(ne2/ne02);
  7374. const int nr3 = (int)(ne3/ne03);
  7375. // TODO: support for transposed / permuted tensors
  7376. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7377. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7378. // TODO: maybe this is not optimal?
  7379. for (int i3 = 0; i3 < nr3; i3++) {
  7380. for (int k3 = 0; k3 < ne03; k3++) {
  7381. for (int i2 = 0; i2 < nr2; i2++) {
  7382. for (int k2 = 0; k2 < ne02; k2++) {
  7383. for (int i1 = 0; i1 < nr1; i1++) {
  7384. for (int k1 = 0; k1 < ne01; k1++) {
  7385. for (int i0 = 0; i0 < nr0; i0++) {
  7386. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7387. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7388. // ggml_vec_cpy_f16(ne00, y, x)
  7389. for (int i = 0; i < ne00; ++i) {
  7390. y[i] = x[i];
  7391. }
  7392. }
  7393. }
  7394. }
  7395. }
  7396. }
  7397. }
  7398. }
  7399. }
  7400. static void ggml_compute_forward_repeat(
  7401. const struct ggml_compute_params * params,
  7402. struct ggml_tensor * dst) {
  7403. const struct ggml_tensor * src0 = dst->src[0];
  7404. switch (src0->type) {
  7405. case GGML_TYPE_F16:
  7406. case GGML_TYPE_I16:
  7407. {
  7408. ggml_compute_forward_repeat_f16(params, dst);
  7409. } break;
  7410. case GGML_TYPE_F32:
  7411. case GGML_TYPE_I32:
  7412. {
  7413. ggml_compute_forward_repeat_f32(params, dst);
  7414. } break;
  7415. default:
  7416. {
  7417. GGML_ASSERT(false);
  7418. } break;
  7419. }
  7420. }
  7421. // ggml_compute_forward_repeat_back
  7422. static void ggml_compute_forward_repeat_back_f32(
  7423. const struct ggml_compute_params * params,
  7424. struct ggml_tensor * dst) {
  7425. const struct ggml_tensor * src0 = dst->src[0];
  7426. GGML_ASSERT(params->ith == 0);
  7427. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7428. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7429. return;
  7430. }
  7431. GGML_TENSOR_UNARY_OP_LOCALS
  7432. // guaranteed to be an integer due to the check in ggml_can_repeat
  7433. const int nr0 = (int)(ne00/ne0);
  7434. const int nr1 = (int)(ne01/ne1);
  7435. const int nr2 = (int)(ne02/ne2);
  7436. const int nr3 = (int)(ne03/ne3);
  7437. // TODO: support for transposed / permuted tensors
  7438. GGML_ASSERT(nb0 == sizeof(float));
  7439. GGML_ASSERT(nb00 == sizeof(float));
  7440. if (ggml_is_contiguous(dst)) {
  7441. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7442. } else {
  7443. for (int k3 = 0; k3 < ne3; k3++) {
  7444. for (int k2 = 0; k2 < ne2; k2++) {
  7445. for (int k1 = 0; k1 < ne1; k1++) {
  7446. ggml_vec_set_f32(ne0,
  7447. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7448. 0);
  7449. }
  7450. }
  7451. }
  7452. }
  7453. // TODO: maybe this is not optimal?
  7454. for (int i3 = 0; i3 < nr3; i3++) {
  7455. for (int k3 = 0; k3 < ne3; k3++) {
  7456. for (int i2 = 0; i2 < nr2; i2++) {
  7457. for (int k2 = 0; k2 < ne2; k2++) {
  7458. for (int i1 = 0; i1 < nr1; i1++) {
  7459. for (int k1 = 0; k1 < ne1; k1++) {
  7460. for (int i0 = 0; i0 < nr0; i0++) {
  7461. ggml_vec_acc_f32(ne0,
  7462. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7463. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7464. }
  7465. }
  7466. }
  7467. }
  7468. }
  7469. }
  7470. }
  7471. }
  7472. static void ggml_compute_forward_repeat_back(
  7473. const struct ggml_compute_params * params,
  7474. struct ggml_tensor * dst) {
  7475. const struct ggml_tensor * src0 = dst->src[0];
  7476. switch (src0->type) {
  7477. case GGML_TYPE_F32:
  7478. {
  7479. ggml_compute_forward_repeat_back_f32(params, dst);
  7480. } break;
  7481. default:
  7482. {
  7483. GGML_ASSERT(false);
  7484. } break;
  7485. }
  7486. }
  7487. // ggml_compute_forward_concat
  7488. static void ggml_compute_forward_concat_f32(
  7489. const struct ggml_compute_params * params,
  7490. struct ggml_tensor * dst) {
  7491. const struct ggml_tensor * src0 = dst->src[0];
  7492. const struct ggml_tensor * src1 = dst->src[1];
  7493. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7494. return;
  7495. }
  7496. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7497. const int ith = params->ith;
  7498. const int nth = params->nth;
  7499. GGML_TENSOR_BINARY_OP_LOCALS
  7500. // TODO: support for transposed / permuted tensors
  7501. GGML_ASSERT(nb0 == sizeof(float));
  7502. GGML_ASSERT(nb00 == sizeof(float));
  7503. GGML_ASSERT(nb10 == sizeof(float));
  7504. for (int i3 = 0; i3 < ne3; i3++) {
  7505. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7506. if (i2 < ne02) { // src0
  7507. for (int i1 = 0; i1 < ne1; i1++) {
  7508. for (int i0 = 0; i0 < ne0; i0++) {
  7509. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7510. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7511. *y = *x;
  7512. }
  7513. }
  7514. } // src1
  7515. else {
  7516. for (int i1 = 0; i1 < ne1; i1++) {
  7517. for (int i0 = 0; i0 < ne0; i0++) {
  7518. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7519. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7520. *y = *x;
  7521. }
  7522. }
  7523. }
  7524. }
  7525. }
  7526. }
  7527. static void ggml_compute_forward_concat(
  7528. const struct ggml_compute_params* params,
  7529. struct ggml_tensor* dst) {
  7530. const struct ggml_tensor * src0 = dst->src[0];
  7531. switch (src0->type) {
  7532. case GGML_TYPE_F32:
  7533. case GGML_TYPE_I32:
  7534. {
  7535. ggml_compute_forward_concat_f32(params, dst);
  7536. } break;
  7537. default:
  7538. {
  7539. GGML_ASSERT(false);
  7540. } break;
  7541. }
  7542. }
  7543. // ggml_compute_forward_abs
  7544. static void ggml_compute_forward_abs_f32(
  7545. const struct ggml_compute_params * params,
  7546. struct ggml_tensor * dst) {
  7547. const struct ggml_tensor * src0 = dst->src[0];
  7548. assert(params->ith == 0);
  7549. assert(ggml_are_same_shape(src0, dst));
  7550. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7551. return;
  7552. }
  7553. const int n = ggml_nrows(src0);
  7554. const int nc = src0->ne[0];
  7555. assert(dst->nb[0] == sizeof(float));
  7556. assert(src0->nb[0] == sizeof(float));
  7557. for (int i = 0; i < n; i++) {
  7558. ggml_vec_abs_f32(nc,
  7559. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7560. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7561. }
  7562. }
  7563. static void ggml_compute_forward_abs(
  7564. const struct ggml_compute_params * params,
  7565. struct ggml_tensor * dst) {
  7566. const struct ggml_tensor * src0 = dst->src[0];
  7567. switch (src0->type) {
  7568. case GGML_TYPE_F32:
  7569. {
  7570. ggml_compute_forward_abs_f32(params, dst);
  7571. } break;
  7572. default:
  7573. {
  7574. GGML_ASSERT(false);
  7575. } break;
  7576. }
  7577. }
  7578. // ggml_compute_forward_sgn
  7579. static void ggml_compute_forward_sgn_f32(
  7580. const struct ggml_compute_params * params,
  7581. struct ggml_tensor * dst) {
  7582. const struct ggml_tensor * src0 = dst->src[0];
  7583. assert(params->ith == 0);
  7584. assert(ggml_are_same_shape(src0, dst));
  7585. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7586. return;
  7587. }
  7588. const int n = ggml_nrows(src0);
  7589. const int nc = src0->ne[0];
  7590. assert(dst->nb[0] == sizeof(float));
  7591. assert(src0->nb[0] == sizeof(float));
  7592. for (int i = 0; i < n; i++) {
  7593. ggml_vec_sgn_f32(nc,
  7594. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7595. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7596. }
  7597. }
  7598. static void ggml_compute_forward_sgn(
  7599. const struct ggml_compute_params * params,
  7600. struct ggml_tensor * dst) {
  7601. const struct ggml_tensor * src0 = dst->src[0];
  7602. switch (src0->type) {
  7603. case GGML_TYPE_F32:
  7604. {
  7605. ggml_compute_forward_sgn_f32(params, dst);
  7606. } break;
  7607. default:
  7608. {
  7609. GGML_ASSERT(false);
  7610. } break;
  7611. }
  7612. }
  7613. // ggml_compute_forward_neg
  7614. static void ggml_compute_forward_neg_f32(
  7615. const struct ggml_compute_params * params,
  7616. struct ggml_tensor * dst) {
  7617. const struct ggml_tensor * src0 = dst->src[0];
  7618. assert(params->ith == 0);
  7619. assert(ggml_are_same_shape(src0, dst));
  7620. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7621. return;
  7622. }
  7623. const int n = ggml_nrows(src0);
  7624. const int nc = src0->ne[0];
  7625. assert(dst->nb[0] == sizeof(float));
  7626. assert(src0->nb[0] == sizeof(float));
  7627. for (int i = 0; i < n; i++) {
  7628. ggml_vec_neg_f32(nc,
  7629. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7630. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7631. }
  7632. }
  7633. static void ggml_compute_forward_neg(
  7634. const struct ggml_compute_params * params,
  7635. struct ggml_tensor * dst) {
  7636. const struct ggml_tensor * src0 = dst->src[0];
  7637. switch (src0->type) {
  7638. case GGML_TYPE_F32:
  7639. {
  7640. ggml_compute_forward_neg_f32(params, dst);
  7641. } break;
  7642. default:
  7643. {
  7644. GGML_ASSERT(false);
  7645. } break;
  7646. }
  7647. }
  7648. // ggml_compute_forward_step
  7649. static void ggml_compute_forward_step_f32(
  7650. const struct ggml_compute_params * params,
  7651. struct ggml_tensor * dst) {
  7652. const struct ggml_tensor * src0 = dst->src[0];
  7653. assert(params->ith == 0);
  7654. assert(ggml_are_same_shape(src0, dst));
  7655. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7656. return;
  7657. }
  7658. const int n = ggml_nrows(src0);
  7659. const int nc = src0->ne[0];
  7660. assert(dst->nb[0] == sizeof(float));
  7661. assert(src0->nb[0] == sizeof(float));
  7662. for (int i = 0; i < n; i++) {
  7663. ggml_vec_step_f32(nc,
  7664. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7665. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7666. }
  7667. }
  7668. static void ggml_compute_forward_step(
  7669. const struct ggml_compute_params * params,
  7670. struct ggml_tensor * dst) {
  7671. const struct ggml_tensor * src0 = dst->src[0];
  7672. switch (src0->type) {
  7673. case GGML_TYPE_F32:
  7674. {
  7675. ggml_compute_forward_step_f32(params, dst);
  7676. } break;
  7677. default:
  7678. {
  7679. GGML_ASSERT(false);
  7680. } break;
  7681. }
  7682. }
  7683. // ggml_compute_forward_tanh
  7684. static void ggml_compute_forward_tanh_f32(
  7685. const struct ggml_compute_params * params,
  7686. struct ggml_tensor * dst) {
  7687. const struct ggml_tensor * src0 = dst->src[0];
  7688. assert(params->ith == 0);
  7689. assert(ggml_are_same_shape(src0, dst));
  7690. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7691. return;
  7692. }
  7693. const int n = ggml_nrows(src0);
  7694. const int nc = src0->ne[0];
  7695. assert(dst->nb[0] == sizeof(float));
  7696. assert(src0->nb[0] == sizeof(float));
  7697. for (int i = 0; i < n; i++) {
  7698. ggml_vec_tanh_f32(nc,
  7699. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7700. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7701. }
  7702. }
  7703. static void ggml_compute_forward_tanh(
  7704. const struct ggml_compute_params * params,
  7705. struct ggml_tensor * dst) {
  7706. const struct ggml_tensor * src0 = dst->src[0];
  7707. switch (src0->type) {
  7708. case GGML_TYPE_F32:
  7709. {
  7710. ggml_compute_forward_tanh_f32(params, dst);
  7711. } break;
  7712. default:
  7713. {
  7714. GGML_ASSERT(false);
  7715. } break;
  7716. }
  7717. }
  7718. // ggml_compute_forward_elu
  7719. static void ggml_compute_forward_elu_f32(
  7720. const struct ggml_compute_params * params,
  7721. struct ggml_tensor * dst) {
  7722. const struct ggml_tensor * src0 = dst->src[0];
  7723. assert(params->ith == 0);
  7724. assert(ggml_are_same_shape(src0, dst));
  7725. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7726. return;
  7727. }
  7728. const int n = ggml_nrows(src0);
  7729. const int nc = src0->ne[0];
  7730. assert(dst->nb[0] == sizeof(float));
  7731. assert(src0->nb[0] == sizeof(float));
  7732. for (int i = 0; i < n; i++) {
  7733. ggml_vec_elu_f32(nc,
  7734. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7735. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7736. }
  7737. }
  7738. static void ggml_compute_forward_elu(
  7739. const struct ggml_compute_params * params,
  7740. struct ggml_tensor * dst) {
  7741. const struct ggml_tensor * src0 = dst->src[0];
  7742. switch (src0->type) {
  7743. case GGML_TYPE_F32:
  7744. {
  7745. ggml_compute_forward_elu_f32(params, dst);
  7746. } break;
  7747. default:
  7748. {
  7749. GGML_ASSERT(false);
  7750. } break;
  7751. }
  7752. }
  7753. // ggml_compute_forward_relu
  7754. static void ggml_compute_forward_relu_f32(
  7755. const struct ggml_compute_params * params,
  7756. struct ggml_tensor * dst) {
  7757. const struct ggml_tensor * src0 = dst->src[0];
  7758. assert(params->ith == 0);
  7759. assert(ggml_are_same_shape(src0, dst));
  7760. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7761. return;
  7762. }
  7763. const int n = ggml_nrows(src0);
  7764. const int nc = src0->ne[0];
  7765. assert(dst->nb[0] == sizeof(float));
  7766. assert(src0->nb[0] == sizeof(float));
  7767. for (int i = 0; i < n; i++) {
  7768. ggml_vec_relu_f32(nc,
  7769. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7770. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7771. }
  7772. }
  7773. static void ggml_compute_forward_relu(
  7774. const struct ggml_compute_params * params,
  7775. struct ggml_tensor * dst) {
  7776. const struct ggml_tensor * src0 = dst->src[0];
  7777. switch (src0->type) {
  7778. case GGML_TYPE_F32:
  7779. {
  7780. ggml_compute_forward_relu_f32(params, dst);
  7781. } break;
  7782. default:
  7783. {
  7784. GGML_ASSERT(false);
  7785. } break;
  7786. }
  7787. }
  7788. // ggml_compute_forward_gelu
  7789. static void ggml_compute_forward_gelu_f32(
  7790. const struct ggml_compute_params * params,
  7791. struct ggml_tensor * dst) {
  7792. const struct ggml_tensor * src0 = dst->src[0];
  7793. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7794. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7795. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7796. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7797. return;
  7798. }
  7799. const int ith = params->ith;
  7800. const int nth = params->nth;
  7801. const int nc = src0->ne[0];
  7802. const int nr = ggml_nrows(src0);
  7803. // rows per thread
  7804. const int dr = (nr + nth - 1)/nth;
  7805. // row range for this thread
  7806. const int ir0 = dr*ith;
  7807. const int ir1 = MIN(ir0 + dr, nr);
  7808. for (int i1 = ir0; i1 < ir1; i1++) {
  7809. ggml_vec_gelu_f32(nc,
  7810. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7811. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7812. #ifndef NDEBUG
  7813. for (int k = 0; k < nc; k++) {
  7814. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7815. UNUSED(x);
  7816. assert(!isnan(x));
  7817. assert(!isinf(x));
  7818. }
  7819. #endif
  7820. }
  7821. }
  7822. static void ggml_compute_forward_gelu(
  7823. const struct ggml_compute_params * params,
  7824. struct ggml_tensor * dst) {
  7825. const struct ggml_tensor * src0 = dst->src[0];
  7826. switch (src0->type) {
  7827. case GGML_TYPE_F32:
  7828. {
  7829. ggml_compute_forward_gelu_f32(params, dst);
  7830. } break;
  7831. default:
  7832. {
  7833. GGML_ASSERT(false);
  7834. } break;
  7835. }
  7836. }
  7837. // ggml_compute_forward_gelu_quick
  7838. static void ggml_compute_forward_gelu_quick_f32(
  7839. const struct ggml_compute_params * params,
  7840. struct ggml_tensor * dst) {
  7841. const struct ggml_tensor * src0 = dst->src[0];
  7842. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7843. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7844. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7845. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7846. return;
  7847. }
  7848. const int ith = params->ith;
  7849. const int nth = params->nth;
  7850. const int nc = src0->ne[0];
  7851. const int nr = ggml_nrows(src0);
  7852. // rows per thread
  7853. const int dr = (nr + nth - 1)/nth;
  7854. // row range for this thread
  7855. const int ir0 = dr*ith;
  7856. const int ir1 = MIN(ir0 + dr, nr);
  7857. for (int i1 = ir0; i1 < ir1; i1++) {
  7858. ggml_vec_gelu_quick_f32(nc,
  7859. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7860. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7861. #ifndef NDEBUG
  7862. for (int k = 0; k < nc; k++) {
  7863. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7864. UNUSED(x);
  7865. assert(!isnan(x));
  7866. assert(!isinf(x));
  7867. }
  7868. #endif
  7869. }
  7870. }
  7871. static void ggml_compute_forward_gelu_quick(
  7872. const struct ggml_compute_params * params,
  7873. struct ggml_tensor * dst) {
  7874. const struct ggml_tensor * src0 = dst->src[0];
  7875. switch (src0->type) {
  7876. case GGML_TYPE_F32:
  7877. {
  7878. ggml_compute_forward_gelu_quick_f32(params, dst);
  7879. } break;
  7880. default:
  7881. {
  7882. GGML_ASSERT(false);
  7883. } break;
  7884. }
  7885. }
  7886. // ggml_compute_forward_silu
  7887. static void ggml_compute_forward_silu_f32(
  7888. const struct ggml_compute_params * params,
  7889. struct ggml_tensor * dst) {
  7890. const struct ggml_tensor * src0 = dst->src[0];
  7891. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7892. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7893. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7894. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7895. return;
  7896. }
  7897. const int ith = params->ith;
  7898. const int nth = params->nth;
  7899. const int nc = src0->ne[0];
  7900. const int nr = ggml_nrows(src0);
  7901. // rows per thread
  7902. const int dr = (nr + nth - 1)/nth;
  7903. // row range for this thread
  7904. const int ir0 = dr*ith;
  7905. const int ir1 = MIN(ir0 + dr, nr);
  7906. for (int i1 = ir0; i1 < ir1; i1++) {
  7907. ggml_vec_silu_f32(nc,
  7908. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7909. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7910. #ifndef NDEBUG
  7911. for (int k = 0; k < nc; k++) {
  7912. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7913. UNUSED(x);
  7914. assert(!isnan(x));
  7915. assert(!isinf(x));
  7916. }
  7917. #endif
  7918. }
  7919. }
  7920. static void ggml_compute_forward_silu(
  7921. const struct ggml_compute_params * params,
  7922. struct ggml_tensor * dst) {
  7923. const struct ggml_tensor * src0 = dst->src[0];
  7924. switch (src0->type) {
  7925. case GGML_TYPE_F32:
  7926. {
  7927. ggml_compute_forward_silu_f32(params, dst);
  7928. } break;
  7929. default:
  7930. {
  7931. GGML_ASSERT(false);
  7932. } break;
  7933. }
  7934. }
  7935. // ggml_compute_forward_leaky_relu
  7936. static void ggml_compute_forward_leaky_relu_f32(
  7937. const struct ggml_compute_params * params,
  7938. struct ggml_tensor * dst) {
  7939. const struct ggml_tensor * src0 = dst->src[0];
  7940. assert(params->ith == 0);
  7941. assert(ggml_are_same_shape(src0, dst));
  7942. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7943. return;
  7944. }
  7945. const int n = ggml_nrows(src0);
  7946. const int nc = src0->ne[0];
  7947. float negative_slope;
  7948. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7949. assert(dst->nb[0] == sizeof(float));
  7950. assert(src0->nb[0] == sizeof(float));
  7951. for (int i = 0; i < n; i++) {
  7952. ggml_vec_leaky_relu_f32(nc,
  7953. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7954. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7955. }
  7956. }
  7957. static void ggml_compute_forward_leaky_relu(
  7958. const struct ggml_compute_params * params,
  7959. struct ggml_tensor * dst) {
  7960. const struct ggml_tensor * src0 = dst->src[0];
  7961. switch (src0->type) {
  7962. case GGML_TYPE_F32:
  7963. {
  7964. ggml_compute_forward_leaky_relu_f32(params, dst);
  7965. } break;
  7966. default:
  7967. {
  7968. GGML_ASSERT(false);
  7969. } break;
  7970. }
  7971. }
  7972. // ggml_compute_forward_silu_back
  7973. static void ggml_compute_forward_silu_back_f32(
  7974. const struct ggml_compute_params * params,
  7975. struct ggml_tensor * dst) {
  7976. const struct ggml_tensor * src0 = dst->src[0];
  7977. const struct ggml_tensor * grad = dst->src[1];
  7978. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7979. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7980. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7981. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7982. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7983. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7984. return;
  7985. }
  7986. const int ith = params->ith;
  7987. const int nth = params->nth;
  7988. const int nc = src0->ne[0];
  7989. const int nr = ggml_nrows(src0);
  7990. // rows per thread
  7991. const int dr = (nr + nth - 1)/nth;
  7992. // row range for this thread
  7993. const int ir0 = dr*ith;
  7994. const int ir1 = MIN(ir0 + dr, nr);
  7995. for (int i1 = ir0; i1 < ir1; i1++) {
  7996. ggml_vec_silu_backward_f32(nc,
  7997. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7998. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7999. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8000. #ifndef NDEBUG
  8001. for (int k = 0; k < nc; k++) {
  8002. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8003. UNUSED(x);
  8004. assert(!isnan(x));
  8005. assert(!isinf(x));
  8006. }
  8007. #endif
  8008. }
  8009. }
  8010. static void ggml_compute_forward_silu_back(
  8011. const struct ggml_compute_params * params,
  8012. struct ggml_tensor * dst) {
  8013. const struct ggml_tensor * src0 = dst->src[0];
  8014. switch (src0->type) {
  8015. case GGML_TYPE_F32:
  8016. {
  8017. ggml_compute_forward_silu_back_f32(params, dst);
  8018. } break;
  8019. default:
  8020. {
  8021. GGML_ASSERT(false);
  8022. } break;
  8023. }
  8024. }
  8025. static void ggml_compute_forward_hardswish_f32(
  8026. const struct ggml_compute_params * params,
  8027. struct ggml_tensor * dst) {
  8028. const struct ggml_tensor * src0 = dst->src[0];
  8029. assert(params->ith == 0);
  8030. assert(ggml_are_same_shape(src0, dst));
  8031. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8032. return;
  8033. }
  8034. const int n = ggml_nrows(src0);
  8035. const int nc = src0->ne[0];
  8036. assert(dst->nb[0] == sizeof(float));
  8037. assert(src0->nb[0] == sizeof(float));
  8038. for (int i = 0; i < n; i++) {
  8039. ggml_vec_hardswish_f32(nc,
  8040. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8041. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8042. }
  8043. }
  8044. static void ggml_compute_forward_hardswish(
  8045. const struct ggml_compute_params * params,
  8046. struct ggml_tensor * dst) {
  8047. const struct ggml_tensor * src0 = dst->src[0];
  8048. switch (src0->type) {
  8049. case GGML_TYPE_F32:
  8050. {
  8051. ggml_compute_forward_hardswish_f32(params, dst);
  8052. } break;
  8053. default:
  8054. {
  8055. GGML_ASSERT(false);
  8056. } break;
  8057. }
  8058. }
  8059. static void ggml_compute_forward_hardsigmoid_f32(
  8060. const struct ggml_compute_params * params,
  8061. struct ggml_tensor * dst) {
  8062. const struct ggml_tensor * src0 = dst->src[0];
  8063. assert(params->ith == 0);
  8064. assert(ggml_are_same_shape(src0, dst));
  8065. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8066. return;
  8067. }
  8068. const int n = ggml_nrows(src0);
  8069. const int nc = src0->ne[0];
  8070. assert(dst->nb[0] == sizeof(float));
  8071. assert(src0->nb[0] == sizeof(float));
  8072. for (int i = 0; i < n; i++) {
  8073. ggml_vec_hardsigmoid_f32(nc,
  8074. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8075. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8076. }
  8077. }
  8078. static void ggml_compute_forward_hardsigmoid(
  8079. const struct ggml_compute_params * params,
  8080. struct ggml_tensor * dst) {
  8081. const struct ggml_tensor * src0 = dst->src[0];
  8082. switch (src0->type) {
  8083. case GGML_TYPE_F32:
  8084. {
  8085. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8086. } break;
  8087. default:
  8088. {
  8089. GGML_ASSERT(false);
  8090. } break;
  8091. }
  8092. }
  8093. // ggml_compute_forward_norm
  8094. static void ggml_compute_forward_norm_f32(
  8095. const struct ggml_compute_params * params,
  8096. struct ggml_tensor * dst) {
  8097. const struct ggml_tensor * src0 = dst->src[0];
  8098. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8099. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8100. return;
  8101. }
  8102. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8103. const int ith = params->ith;
  8104. const int nth = params->nth;
  8105. GGML_TENSOR_UNARY_OP_LOCALS
  8106. float eps;
  8107. memcpy(&eps, dst->op_params, sizeof(float));
  8108. GGML_ASSERT(eps > 0.0f);
  8109. // TODO: optimize
  8110. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8111. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8112. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8113. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8114. ggml_float sum = 0.0;
  8115. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8116. sum += (ggml_float)x[i00];
  8117. }
  8118. float mean = sum/ne00;
  8119. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8120. ggml_float sum2 = 0.0;
  8121. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8122. float v = x[i00] - mean;
  8123. y[i00] = v;
  8124. sum2 += (ggml_float)(v*v);
  8125. }
  8126. float variance = sum2/ne00;
  8127. const float scale = 1.0f/sqrtf(variance + eps);
  8128. ggml_vec_scale_f32(ne00, y, scale);
  8129. }
  8130. }
  8131. }
  8132. }
  8133. static void ggml_compute_forward_norm(
  8134. const struct ggml_compute_params * params,
  8135. struct ggml_tensor * dst) {
  8136. const struct ggml_tensor * src0 = dst->src[0];
  8137. switch (src0->type) {
  8138. case GGML_TYPE_F32:
  8139. {
  8140. ggml_compute_forward_norm_f32(params, dst);
  8141. } break;
  8142. default:
  8143. {
  8144. GGML_ASSERT(false);
  8145. } break;
  8146. }
  8147. }
  8148. // ggml_compute_forward_group_rms_norm
  8149. static void ggml_compute_forward_rms_norm_f32(
  8150. const struct ggml_compute_params * params,
  8151. struct ggml_tensor * dst) {
  8152. const struct ggml_tensor * src0 = dst->src[0];
  8153. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8154. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8155. return;
  8156. }
  8157. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8158. const int ith = params->ith;
  8159. const int nth = params->nth;
  8160. GGML_TENSOR_UNARY_OP_LOCALS
  8161. float eps;
  8162. memcpy(&eps, dst->op_params, sizeof(float));
  8163. GGML_ASSERT(eps > 0.0f);
  8164. // TODO: optimize
  8165. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8166. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8167. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8168. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8169. ggml_float sum = 0.0;
  8170. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8171. sum += (ggml_float)(x[i00] * x[i00]);
  8172. }
  8173. const float mean = sum/ne00;
  8174. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8175. memcpy(y, x, ne00 * sizeof(float));
  8176. // for (int i00 = 0; i00 < ne00; i00++) {
  8177. // y[i00] = x[i00];
  8178. // }
  8179. const float scale = 1.0f/sqrtf(mean + eps);
  8180. ggml_vec_scale_f32(ne00, y, scale);
  8181. }
  8182. }
  8183. }
  8184. }
  8185. static void ggml_compute_forward_rms_norm(
  8186. const struct ggml_compute_params * params,
  8187. struct ggml_tensor * dst) {
  8188. const struct ggml_tensor * src0 = dst->src[0];
  8189. switch (src0->type) {
  8190. case GGML_TYPE_F32:
  8191. {
  8192. ggml_compute_forward_rms_norm_f32(params, dst);
  8193. } break;
  8194. default:
  8195. {
  8196. GGML_ASSERT(false);
  8197. } break;
  8198. }
  8199. }
  8200. static void ggml_compute_forward_rms_norm_back_f32(
  8201. const struct ggml_compute_params * params,
  8202. struct ggml_tensor * dst) {
  8203. const struct ggml_tensor * src0 = dst->src[0];
  8204. const struct ggml_tensor * src1 = dst->src[1];
  8205. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8206. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8207. return;
  8208. }
  8209. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8210. const int ith = params->ith;
  8211. const int nth = params->nth;
  8212. GGML_TENSOR_BINARY_OP_LOCALS
  8213. float eps;
  8214. memcpy(&eps, dst->op_params, sizeof(float));
  8215. // TODO: optimize
  8216. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8217. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8218. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8219. // src1 is same shape as src0 => same indices
  8220. const int64_t i11 = i01;
  8221. const int64_t i12 = i02;
  8222. const int64_t i13 = i03;
  8223. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8224. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8225. ggml_float sum_xx = 0.0;
  8226. ggml_float sum_xdz = 0.0;
  8227. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8228. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8229. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8230. }
  8231. //const float mean = (float)(sum_xx)/ne00;
  8232. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8233. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8234. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8235. // we could cache rms from forward pass to improve performance.
  8236. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8237. //const float rms = sqrtf(mean_eps);
  8238. const float rrms = 1.0f / sqrtf(mean_eps);
  8239. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8240. {
  8241. // z = rms_norm(x)
  8242. //
  8243. // rms_norm(src0) =
  8244. // scale(
  8245. // src0,
  8246. // div(
  8247. // 1,
  8248. // sqrt(
  8249. // add(
  8250. // scale(
  8251. // sum(
  8252. // sqr(
  8253. // src0)),
  8254. // (1.0/N)),
  8255. // eps))));
  8256. // postorder:
  8257. // ## op args grad
  8258. // 00 param src0 grad[#00]
  8259. // 01 const 1
  8260. // 02 sqr (#00) grad[#02]
  8261. // 03 sum (#02) grad[#03]
  8262. // 04 const 1/N
  8263. // 05 scale (#03, #04) grad[#05]
  8264. // 06 const eps
  8265. // 07 add (#05, #06) grad[#07]
  8266. // 08 sqrt (#07) grad[#08]
  8267. // 09 div (#01,#08) grad[#09]
  8268. // 10 scale (#00,#09) grad[#10]
  8269. //
  8270. // backward pass, given grad[#10]
  8271. // #10: scale
  8272. // grad[#00] += scale(grad[#10],#09)
  8273. // grad[#09] += sum(mul(grad[#10],#00))
  8274. // #09: div
  8275. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8276. // #08: sqrt
  8277. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8278. // #07: add
  8279. // grad[#05] += grad[#07]
  8280. // #05: scale
  8281. // grad[#03] += scale(grad[#05],#04)
  8282. // #03: sum
  8283. // grad[#02] += repeat(grad[#03], #02)
  8284. // #02:
  8285. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8286. //
  8287. // substitute and simplify:
  8288. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8289. // grad[#02] = repeat(grad[#03], #02)
  8290. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8291. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8292. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8293. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8294. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8295. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8296. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8297. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8298. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8299. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8300. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8301. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8302. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8303. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8304. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8305. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8306. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8307. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8308. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8309. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8310. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8311. // a = b*c + d*e
  8312. // a = b*c*f/f + d*e*f/f
  8313. // a = (b*c*f + d*e*f)*(1/f)
  8314. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8315. // a = (b + d*e/c)*c
  8316. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8317. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8318. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8319. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8320. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8321. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8322. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8323. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8324. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8325. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8326. }
  8327. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8328. // post-order:
  8329. // dx := x
  8330. // dx := scale(dx,-mean_xdz/mean_eps)
  8331. // dx := add(dx, dz)
  8332. // dx := scale(dx, rrms)
  8333. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8334. ggml_vec_cpy_f32 (ne00, dx, x);
  8335. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8336. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8337. ggml_vec_acc_f32 (ne00, dx, dz);
  8338. ggml_vec_scale_f32(ne00, dx, rrms);
  8339. }
  8340. }
  8341. }
  8342. }
  8343. static void ggml_compute_forward_rms_norm_back(
  8344. const struct ggml_compute_params * params,
  8345. struct ggml_tensor * dst) {
  8346. const struct ggml_tensor * src0 = dst->src[0];
  8347. switch (src0->type) {
  8348. case GGML_TYPE_F32:
  8349. {
  8350. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8351. } break;
  8352. default:
  8353. {
  8354. GGML_ASSERT(false);
  8355. } break;
  8356. }
  8357. }
  8358. // ggml_compute_forward_group_norm
  8359. static void ggml_compute_forward_group_norm_f32(
  8360. const struct ggml_compute_params * params,
  8361. struct ggml_tensor * dst) {
  8362. const struct ggml_tensor * src0 = dst->src[0];
  8363. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8364. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8365. return;
  8366. }
  8367. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8368. const int ith = params->ith;
  8369. const int nth = params->nth;
  8370. GGML_TENSOR_UNARY_OP_LOCALS
  8371. const float eps = 1e-6f; // TODO: make this a parameter
  8372. // TODO: optimize
  8373. int n_channels = src0->ne[2];
  8374. int n_groups = dst->op_params[0];
  8375. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8376. for (int i = ith; i < n_groups; i += nth) {
  8377. int start = i * n_channels_per_group;
  8378. int end = start + n_channels_per_group;
  8379. if (end > n_channels) {
  8380. end = n_channels;
  8381. }
  8382. int step = end - start;
  8383. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8384. ggml_float sum = 0.0;
  8385. for (int64_t i02 = start; i02 < end; i02++) {
  8386. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8387. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8388. ggml_float sumr = 0.0;
  8389. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8390. sumr += (ggml_float)x[i00];
  8391. }
  8392. sum += sumr;
  8393. }
  8394. }
  8395. const float mean = sum / (ne00 * ne01 * step);
  8396. ggml_float sum2 = 0.0;
  8397. for (int64_t i02 = start; i02 < end; i02++) {
  8398. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8399. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8400. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8401. ggml_float sumr = 0.0;
  8402. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8403. float v = x[i00] - mean;
  8404. y[i00] = v;
  8405. sumr += (ggml_float)(v * v);
  8406. }
  8407. sum2 += sumr;
  8408. }
  8409. }
  8410. const float variance = sum2 / (ne00 * ne01 * step);
  8411. const float scale = 1.0f / sqrtf(variance + eps);
  8412. for (int64_t i02 = start; i02 < end; i02++) {
  8413. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8414. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8415. ggml_vec_scale_f32(ne00, y, scale);
  8416. }
  8417. }
  8418. }
  8419. }
  8420. }
  8421. static void ggml_compute_forward_group_norm(
  8422. const struct ggml_compute_params * params,
  8423. struct ggml_tensor * dst) {
  8424. const struct ggml_tensor * src0 = dst->src[0];
  8425. switch (src0->type) {
  8426. case GGML_TYPE_F32:
  8427. {
  8428. ggml_compute_forward_group_norm_f32(params, dst);
  8429. } break;
  8430. default:
  8431. {
  8432. GGML_ASSERT(false);
  8433. } break;
  8434. }
  8435. }
  8436. // ggml_compute_forward_mul_mat
  8437. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8438. // helper function to determine if it is better to use BLAS or not
  8439. // for large matrices, BLAS is faster
  8440. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8441. const struct ggml_tensor * src0 = dst->src[0];
  8442. const struct ggml_tensor * src1 = dst->src[1];
  8443. //const int64_t ne00 = src0->ne[0];
  8444. //const int64_t ne01 = src0->ne[1];
  8445. const int64_t ne10 = src1->ne[0];
  8446. const int64_t ne0 = dst->ne[0];
  8447. const int64_t ne1 = dst->ne[1];
  8448. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8449. // all the experts for each batch element and the processing would become incredibly slow
  8450. // TODO: find the optimal values for these
  8451. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8452. ggml_is_contiguous(src0) &&
  8453. ggml_is_contiguous(src1) &&
  8454. //src0->type == GGML_TYPE_F32 &&
  8455. src1->type == GGML_TYPE_F32 &&
  8456. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8457. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8458. return true;
  8459. }
  8460. return false;
  8461. }
  8462. #endif
  8463. static void ggml_compute_forward_mul_mat(
  8464. const struct ggml_compute_params * params,
  8465. struct ggml_tensor * dst) {
  8466. const struct ggml_tensor * src0 = dst->src[0];
  8467. const struct ggml_tensor * src1 = dst->src[1];
  8468. int64_t t0 = ggml_perf_time_us();
  8469. UNUSED(t0);
  8470. GGML_TENSOR_BINARY_OP_LOCALS
  8471. const int ith = params->ith;
  8472. const int nth = params->nth;
  8473. const enum ggml_type type = src0->type;
  8474. const bool src1_cont = ggml_is_contiguous(src1);
  8475. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8476. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8477. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8478. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8479. GGML_ASSERT(ne0 == ne01);
  8480. GGML_ASSERT(ne1 == ne11);
  8481. GGML_ASSERT(ne2 == ne12);
  8482. GGML_ASSERT(ne3 == ne13);
  8483. // we don't support permuted src0 or src1
  8484. GGML_ASSERT(nb00 == ggml_type_size(type));
  8485. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8486. // dst cannot be transposed or permuted
  8487. GGML_ASSERT(nb0 == sizeof(float));
  8488. GGML_ASSERT(nb0 <= nb1);
  8489. GGML_ASSERT(nb1 <= nb2);
  8490. GGML_ASSERT(nb2 <= nb3);
  8491. // broadcast factors
  8492. const int64_t r2 = ne12/ne02;
  8493. const int64_t r3 = ne13/ne03;
  8494. // nb01 >= nb00 - src0 is not transposed
  8495. // compute by src0 rows
  8496. #if defined(GGML_USE_CLBLAST)
  8497. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8498. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8499. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8500. }
  8501. return;
  8502. }
  8503. #endif
  8504. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8505. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8506. const int64_t ne_plane = ne01*ne00;
  8507. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8508. UNUSED(desired_wsize);
  8509. if (params->type == GGML_TASK_TYPE_INIT) {
  8510. if (type != GGML_TYPE_F32) {
  8511. assert(params->wsize >= desired_wsize);
  8512. // parallelize by src0 rows
  8513. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8514. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8515. // broadcast src0 into src1 across 2nd,3rd dimension
  8516. const int64_t i03 = i13/r3;
  8517. const int64_t i02 = i12/r2;
  8518. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8519. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8520. ggml_to_float_t const to_float = type_traits[type].to_float;
  8521. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8522. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8523. }
  8524. }
  8525. }
  8526. }
  8527. return;
  8528. }
  8529. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8530. return;
  8531. }
  8532. // perform sgemm, parallelization controlled by blas lib
  8533. if (ith != 0) {
  8534. return;
  8535. }
  8536. //const int64_t tgemm0 = ggml_perf_time_us();
  8537. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8538. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8539. const int64_t i03 = i13/r3;
  8540. const int64_t i02 = i12/r2;
  8541. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8542. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8543. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8544. if (type != GGML_TYPE_F32) {
  8545. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8546. }
  8547. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8548. ne1, ne01, ne10,
  8549. 1.0f, y, ne10,
  8550. x, ne00,
  8551. 0.0f, d, ne01);
  8552. }
  8553. }
  8554. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8555. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8556. return;
  8557. }
  8558. #endif
  8559. if (params->type == GGML_TASK_TYPE_INIT) {
  8560. if (ith != 0) {
  8561. return;
  8562. }
  8563. if (src1->type != vec_dot_type) {
  8564. char * wdata = params->wdata;
  8565. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8566. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8567. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8568. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8569. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8570. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8571. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8572. wdata += row_size;
  8573. }
  8574. }
  8575. }
  8576. }
  8577. return;
  8578. }
  8579. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8580. return;
  8581. }
  8582. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8583. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8584. const int64_t nr0 = ne01; // src0 rows
  8585. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8586. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8587. // distribute the thread work across the inner or outer loop based on which one is larger
  8588. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8589. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8590. const int64_t ith0 = ith % nth0;
  8591. const int64_t ith1 = ith / nth0;
  8592. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8593. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8594. const int64_t ir010 = dr0*ith0;
  8595. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8596. const int64_t ir110 = dr1*ith1;
  8597. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8598. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8599. // threads with no work simply yield (not sure if it helps)
  8600. if (ir010 >= ir011 || ir110 >= ir111) {
  8601. sched_yield();
  8602. return;
  8603. }
  8604. assert(ne12 % ne02 == 0);
  8605. assert(ne13 % ne03 == 0);
  8606. // block-tiling attempt
  8607. const int64_t blck_0 = 16;
  8608. const int64_t blck_1 = 16;
  8609. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8610. int64_t nrc = vec_dot_num_rows;
  8611. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8612. // this check can be removed once they are extended to support odd numbered rows/cols too
  8613. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8614. nrc = 1;
  8615. }
  8616. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8617. // attempt to reduce false-sharing (does not seem to make a difference)
  8618. // 16 * 2, accounting for mmla kernels
  8619. float tmp[32];
  8620. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8621. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8622. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8623. const int64_t i13 = (ir1/(ne12*ne1));
  8624. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8625. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8626. // broadcast src0 into src1
  8627. const int64_t i03 = i13/r3;
  8628. const int64_t i02 = i12/r2;
  8629. const int64_t i1 = i11;
  8630. const int64_t i2 = i12;
  8631. const int64_t i3 = i13;
  8632. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8633. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8634. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8635. // the original src1 data pointer, so we should index using the indices directly
  8636. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8637. const char * src1_col = (const char *) wdata +
  8638. (src1_cont || src1->type != vec_dot_type
  8639. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8640. : (i11*nb11 + i12*nb12 + i13*nb13));
  8641. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8642. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8643. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8644. //}
  8645. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8646. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8647. }
  8648. for (int cn = 0; cn < nrc; ++cn) {
  8649. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8650. }
  8651. }
  8652. }
  8653. }
  8654. }
  8655. // ggml_compute_forward_mul_mat_id
  8656. static void ggml_compute_forward_mul_mat_id(
  8657. const struct ggml_compute_params * params,
  8658. struct ggml_tensor * dst) {
  8659. const struct ggml_tensor * ids = dst->src[0];
  8660. const struct ggml_tensor * src1 = dst->src[1];
  8661. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8662. GGML_TENSOR_BINARY_OP_LOCALS
  8663. const int ith = params->ith;
  8664. const int nth = params->nth;
  8665. const enum ggml_type type = src0->type;
  8666. const bool src1_cont = ggml_is_contiguous(src1);
  8667. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8668. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8669. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8670. GGML_ASSERT(ne0 == ne01);
  8671. GGML_ASSERT(ne1 == ne11);
  8672. GGML_ASSERT(ne2 == ne12);
  8673. GGML_ASSERT(ne3 == ne13);
  8674. // we don't support permuted src0 or src1
  8675. GGML_ASSERT(nb00 == ggml_type_size(type));
  8676. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8677. // dst cannot be transposed or permuted
  8678. GGML_ASSERT(nb0 == sizeof(float));
  8679. GGML_ASSERT(nb0 <= nb1);
  8680. GGML_ASSERT(nb1 <= nb2);
  8681. GGML_ASSERT(nb2 <= nb3);
  8682. // broadcast factors
  8683. const int64_t r2 = ne12/ne02;
  8684. const int64_t r3 = ne13/ne03;
  8685. // row groups
  8686. const int id = ggml_get_op_params_i32(dst, 0);
  8687. const int n_as = ggml_get_op_params_i32(dst, 1);
  8688. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8689. (char *) params->wdata :
  8690. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8691. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8692. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8693. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8694. if (params->type == GGML_TASK_TYPE_INIT) {
  8695. if (ith != 0) {
  8696. return;
  8697. }
  8698. char * wdata = params->wdata;
  8699. if (src1->type != vec_dot_type) {
  8700. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8701. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8702. assert(src1->type == GGML_TYPE_F32);
  8703. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8704. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8705. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8706. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8707. wdata += row_size;
  8708. }
  8709. }
  8710. }
  8711. }
  8712. // initialize matrix_row_counts
  8713. GGML_ASSERT(wdata == wdata_src1_end);
  8714. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8715. // group rows by src0 matrix
  8716. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8717. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8718. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8719. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8720. matrix_row_counts[row_id] += 1;
  8721. }
  8722. return;
  8723. }
  8724. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8725. return;
  8726. }
  8727. // compute each matrix multiplication in sequence
  8728. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8729. const int64_t cne1 = matrix_row_counts[cur_a];
  8730. if (cne1 == 0) {
  8731. continue;
  8732. }
  8733. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8734. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8735. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8736. const int64_t nr0 = ne01; // src0 rows
  8737. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8738. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8739. // distribute the thread work across the inner or outer loop based on which one is larger
  8740. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8741. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8742. const int64_t ith0 = ith % nth0;
  8743. const int64_t ith1 = ith / nth0;
  8744. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8745. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8746. const int64_t ir010 = dr0*ith0;
  8747. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8748. const int64_t ir110 = dr1*ith1;
  8749. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8750. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8751. // threads with no work simply yield (not sure if it helps)
  8752. if (ir010 >= ir011 || ir110 >= ir111) {
  8753. sched_yield();
  8754. continue;
  8755. }
  8756. assert(ne12 % ne02 == 0);
  8757. assert(ne13 % ne03 == 0);
  8758. // block-tiling attempt
  8759. const int64_t blck_0 = 16;
  8760. const int64_t blck_1 = 16;
  8761. // attempt to reduce false-sharing (does not seem to make a difference)
  8762. float tmp[16];
  8763. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8764. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8765. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8766. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8767. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8768. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8769. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8770. // broadcast src0 into src1
  8771. const int64_t i03 = i13/r3;
  8772. const int64_t i02 = i12/r2;
  8773. const int64_t i1 = i11;
  8774. const int64_t i2 = i12;
  8775. const int64_t i3 = i13;
  8776. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8777. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8778. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8779. // the original src1 data pointer, so we should index using the indices directly
  8780. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8781. const char * src1_col = (const char *) wdata +
  8782. (src1_cont || src1->type != vec_dot_type
  8783. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8784. : (i11*nb11 + i12*nb12 + i13*nb13));
  8785. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8786. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8787. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8788. //}
  8789. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8790. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8791. }
  8792. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8793. }
  8794. }
  8795. }
  8796. }
  8797. #undef MMID_MATRIX_ROW
  8798. }
  8799. // ggml_compute_forward_out_prod
  8800. static void ggml_compute_forward_out_prod_f32(
  8801. const struct ggml_compute_params * params,
  8802. struct ggml_tensor * dst) {
  8803. const struct ggml_tensor * src0 = dst->src[0];
  8804. const struct ggml_tensor * src1 = dst->src[1];
  8805. // int64_t t0 = ggml_perf_time_us();
  8806. // UNUSED(t0);
  8807. GGML_TENSOR_BINARY_OP_LOCALS
  8808. const int ith = params->ith;
  8809. const int nth = params->nth;
  8810. GGML_ASSERT(ne0 == ne00);
  8811. GGML_ASSERT(ne1 == ne10);
  8812. GGML_ASSERT(ne2 == ne02);
  8813. GGML_ASSERT(ne02 == ne12);
  8814. GGML_ASSERT(ne3 == ne13);
  8815. GGML_ASSERT(ne03 == ne13);
  8816. // we don't support permuted src0 or src1
  8817. GGML_ASSERT(nb00 == sizeof(float));
  8818. // dst cannot be transposed or permuted
  8819. GGML_ASSERT(nb0 == sizeof(float));
  8820. // GGML_ASSERT(nb0 <= nb1);
  8821. // GGML_ASSERT(nb1 <= nb2);
  8822. // GGML_ASSERT(nb2 <= nb3);
  8823. // nb01 >= nb00 - src0 is not transposed
  8824. // compute by src0 rows
  8825. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8826. // TODO: #if defined(GGML_USE_CLBLAST)
  8827. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8828. bool use_blas = ggml_is_matrix(src0) &&
  8829. ggml_is_matrix(src1) &&
  8830. ggml_is_contiguous(src0) &&
  8831. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8832. #endif
  8833. if (params->type == GGML_TASK_TYPE_INIT) {
  8834. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8835. if (use_blas) {
  8836. return;
  8837. }
  8838. #endif
  8839. if (ith != 0) {
  8840. return;
  8841. }
  8842. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8843. return;
  8844. }
  8845. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8846. return;
  8847. }
  8848. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8849. if (use_blas) {
  8850. if (params->ith != 0) { // All threads other than the first do no work.
  8851. return;
  8852. }
  8853. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8854. // src0: (k,n)
  8855. // src1: (k,m)
  8856. // dst: (m,n)
  8857. //
  8858. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8859. // Also expressed as (major,minor)
  8860. // a: (m,k): so src1 transposed
  8861. // b: (k,n): so src0
  8862. // c: (m,n)
  8863. //
  8864. // However, if ggml_is_transposed(src1) is true, then
  8865. // src1->data already contains a transposed version, so sgemm mustn't
  8866. // transpose it further.
  8867. int n = src0->ne[0];
  8868. int k = src0->ne[1];
  8869. int m = src1->ne[0];
  8870. int transposeA, lda;
  8871. if (!ggml_is_transposed(src1)) {
  8872. transposeA = CblasTrans;
  8873. lda = m;
  8874. } else {
  8875. transposeA = CblasNoTrans;
  8876. lda = k;
  8877. }
  8878. float * a = (float *) ((char *) src1->data);
  8879. float * b = (float *) ((char *) src0->data);
  8880. float * c = (float *) ((char *) dst->data);
  8881. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8882. return;
  8883. }
  8884. #endif
  8885. // dst[:,:,:,:] = 0
  8886. // for i2,i3:
  8887. // for i1:
  8888. // for i01:
  8889. // for i0:
  8890. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8891. // parallelize by last three dimensions
  8892. // total rows in dst
  8893. const int64_t nr = ne1*ne2*ne3;
  8894. // rows per thread
  8895. const int64_t dr = (nr + nth - 1)/nth;
  8896. // row range for this thread
  8897. const int64_t ir0 = dr*ith;
  8898. const int64_t ir1 = MIN(ir0 + dr, nr);
  8899. // block-tiling attempt
  8900. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8901. const int64_t blck_1 = 16;
  8902. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8903. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8904. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8905. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8906. for (int64_t ir = bir; ir < bir1; ++ir) {
  8907. // dst indices
  8908. const int64_t i3 = ir/(ne2*ne1);
  8909. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8910. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8911. const int64_t i02 = i2;
  8912. const int64_t i03 = i3;
  8913. //const int64_t i10 = i1;
  8914. const int64_t i12 = i2;
  8915. const int64_t i13 = i3;
  8916. #if GGML_VEC_MAD_UNROLL > 2
  8917. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8918. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8919. const int64_t i11 = i01;
  8920. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8921. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8922. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8923. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8924. }
  8925. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8926. const int64_t i11 = i01;
  8927. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8928. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8929. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8930. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8931. }
  8932. #else
  8933. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8934. const int64_t i11 = i01;
  8935. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8936. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8937. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8938. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8939. }
  8940. #endif
  8941. }
  8942. }
  8943. }
  8944. //int64_t t1 = ggml_perf_time_us();
  8945. //static int64_t acc = 0;
  8946. //acc += t1 - t0;
  8947. //if (t1 - t0 > 10) {
  8948. // printf("\n");
  8949. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8950. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8951. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8952. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8953. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8954. //}
  8955. }
  8956. static void ggml_compute_forward_out_prod_q_f32(
  8957. const struct ggml_compute_params * params,
  8958. struct ggml_tensor * dst) {
  8959. const struct ggml_tensor * src0 = dst->src[0];
  8960. const struct ggml_tensor * src1 = dst->src[1];
  8961. // int64_t t0 = ggml_perf_time_us();
  8962. // UNUSED(t0);
  8963. GGML_TENSOR_BINARY_OP_LOCALS;
  8964. const int ith = params->ith;
  8965. const int nth = params->nth;
  8966. const enum ggml_type type = src0->type;
  8967. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8968. GGML_ASSERT(ne02 == ne12);
  8969. GGML_ASSERT(ne03 == ne13);
  8970. GGML_ASSERT(ne2 == ne12);
  8971. GGML_ASSERT(ne3 == ne13);
  8972. // we don't support permuted src0 dim0
  8973. GGML_ASSERT(nb00 == ggml_type_size(type));
  8974. // dst dim0 cannot be transposed or permuted
  8975. GGML_ASSERT(nb0 == sizeof(float));
  8976. // GGML_ASSERT(nb0 <= nb1);
  8977. // GGML_ASSERT(nb1 <= nb2);
  8978. // GGML_ASSERT(nb2 <= nb3);
  8979. GGML_ASSERT(ne0 == ne00);
  8980. GGML_ASSERT(ne1 == ne10);
  8981. GGML_ASSERT(ne2 == ne02);
  8982. GGML_ASSERT(ne3 == ne03);
  8983. // nb01 >= nb00 - src0 is not transposed
  8984. // compute by src0 rows
  8985. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8986. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8987. if (params->type == GGML_TASK_TYPE_INIT) {
  8988. if (ith != 0) {
  8989. return;
  8990. }
  8991. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8992. return;
  8993. }
  8994. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8995. return;
  8996. }
  8997. // parallelize by last three dimensions
  8998. // total rows in dst
  8999. const int64_t nr = ne1*ne2*ne3;
  9000. // rows per thread
  9001. const int64_t dr = (nr + nth - 1)/nth;
  9002. // row range for this thread
  9003. const int64_t ir0 = dr*ith;
  9004. const int64_t ir1 = MIN(ir0 + dr, nr);
  9005. // dst[:,:,:,:] = 0
  9006. // for i2,i3:
  9007. // for i1:
  9008. // for i01:
  9009. // for i0:
  9010. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9011. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9012. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9013. // dst indices
  9014. const int64_t i3 = ir/(ne2*ne1);
  9015. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9016. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9017. const int64_t i02 = i2;
  9018. const int64_t i03 = i3;
  9019. //const int64_t i10 = i1;
  9020. const int64_t i12 = i2;
  9021. const int64_t i13 = i3;
  9022. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9023. const int64_t i11 = i01;
  9024. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9025. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9026. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9027. dequantize_row_q(s0, wdata, ne0);
  9028. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9029. }
  9030. }
  9031. //int64_t t1 = ggml_perf_time_us();
  9032. //static int64_t acc = 0;
  9033. //acc += t1 - t0;
  9034. //if (t1 - t0 > 10) {
  9035. // printf("\n");
  9036. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9037. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9038. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9039. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9040. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9041. //}
  9042. }
  9043. static void ggml_compute_forward_out_prod(
  9044. const struct ggml_compute_params * params,
  9045. struct ggml_tensor * dst) {
  9046. const struct ggml_tensor * src0 = dst->src[0];
  9047. switch (src0->type) {
  9048. case GGML_TYPE_Q4_0:
  9049. case GGML_TYPE_Q4_1:
  9050. case GGML_TYPE_Q5_0:
  9051. case GGML_TYPE_Q5_1:
  9052. case GGML_TYPE_Q8_0:
  9053. case GGML_TYPE_Q2_K:
  9054. case GGML_TYPE_Q3_K:
  9055. case GGML_TYPE_Q4_K:
  9056. case GGML_TYPE_Q5_K:
  9057. case GGML_TYPE_Q6_K:
  9058. case GGML_TYPE_IQ2_XXS:
  9059. case GGML_TYPE_IQ2_XS:
  9060. case GGML_TYPE_IQ3_XXS:
  9061. case GGML_TYPE_IQ1_S:
  9062. case GGML_TYPE_IQ4_NL:
  9063. case GGML_TYPE_IQ4_XS:
  9064. case GGML_TYPE_IQ3_S:
  9065. case GGML_TYPE_IQ2_S:
  9066. {
  9067. ggml_compute_forward_out_prod_q_f32(params, dst);
  9068. } break;
  9069. case GGML_TYPE_F16:
  9070. {
  9071. GGML_ASSERT(false); // todo
  9072. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9073. } break;
  9074. case GGML_TYPE_F32:
  9075. {
  9076. ggml_compute_forward_out_prod_f32(params, dst);
  9077. } break;
  9078. default:
  9079. {
  9080. GGML_ASSERT(false);
  9081. } break;
  9082. }
  9083. }
  9084. // ggml_compute_forward_scale
  9085. static void ggml_compute_forward_scale_f32(
  9086. const struct ggml_compute_params * params,
  9087. struct ggml_tensor * dst) {
  9088. const struct ggml_tensor * src0 = dst->src[0];
  9089. GGML_ASSERT(ggml_is_contiguous(src0));
  9090. GGML_ASSERT(ggml_is_contiguous(dst));
  9091. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9092. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9093. return;
  9094. }
  9095. // scale factor
  9096. float v;
  9097. memcpy(&v, dst->op_params, sizeof(float));
  9098. const int ith = params->ith;
  9099. const int nth = params->nth;
  9100. const int nc = src0->ne[0];
  9101. const int nr = ggml_nrows(src0);
  9102. // rows per thread
  9103. const int dr = (nr + nth - 1)/nth;
  9104. // row range for this thread
  9105. const int ir0 = dr*ith;
  9106. const int ir1 = MIN(ir0 + dr, nr);
  9107. const size_t nb01 = src0->nb[1];
  9108. const size_t nb1 = dst->nb[1];
  9109. for (int i1 = ir0; i1 < ir1; i1++) {
  9110. if (dst->data != src0->data) {
  9111. // src0 is same shape as dst => same indices
  9112. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9113. }
  9114. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9115. }
  9116. }
  9117. static void ggml_compute_forward_scale(
  9118. const struct ggml_compute_params * params,
  9119. struct ggml_tensor * dst) {
  9120. const struct ggml_tensor * src0 = dst->src[0];
  9121. switch (src0->type) {
  9122. case GGML_TYPE_F32:
  9123. {
  9124. ggml_compute_forward_scale_f32(params, dst);
  9125. } break;
  9126. default:
  9127. {
  9128. GGML_ASSERT(false);
  9129. } break;
  9130. }
  9131. }
  9132. // ggml_compute_forward_set
  9133. static void ggml_compute_forward_set_f32(
  9134. const struct ggml_compute_params * params,
  9135. struct ggml_tensor * dst) {
  9136. const struct ggml_tensor * src0 = dst->src[0];
  9137. const struct ggml_tensor * src1 = dst->src[1];
  9138. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9139. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9140. // view src0 and dst with these strides and data offset inbytes during set
  9141. // nb0 is implicitly element_size because src0 and dst are contiguous
  9142. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9143. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9144. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9145. size_t offset = ((int32_t *) dst->op_params)[3];
  9146. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9147. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9148. if (params->ith != 0) {
  9149. return;
  9150. }
  9151. // memcpy needs to be synchronized across threads to avoid race conditions.
  9152. // => do it in INIT phase
  9153. memcpy(
  9154. ((char *) dst->data),
  9155. ((char *) src0->data),
  9156. ggml_nbytes(dst));
  9157. }
  9158. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9159. return;
  9160. }
  9161. const int ith = params->ith;
  9162. const int nth = params->nth;
  9163. const int nr = ggml_nrows(src1);
  9164. const int nc = src1->ne[0];
  9165. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9166. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9167. // src0 and dst as viewed during set
  9168. const size_t nb0 = ggml_element_size(src0);
  9169. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9170. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9171. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9172. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9173. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9174. GGML_ASSERT(nb10 == sizeof(float));
  9175. // rows per thread
  9176. const int dr = (nr + nth - 1)/nth;
  9177. // row range for this thread
  9178. const int ir0 = dr*ith;
  9179. const int ir1 = MIN(ir0 + dr, nr);
  9180. for (int ir = ir0; ir < ir1; ++ir) {
  9181. // src0 and dst are viewed with shape of src1 and offset
  9182. // => same indices
  9183. const int i3 = ir/(ne12*ne11);
  9184. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9185. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9186. ggml_vec_cpy_f32(nc,
  9187. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9188. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9189. }
  9190. }
  9191. static void ggml_compute_forward_set(
  9192. const struct ggml_compute_params * params,
  9193. struct ggml_tensor * dst) {
  9194. const struct ggml_tensor * src0 = dst->src[0];
  9195. switch (src0->type) {
  9196. case GGML_TYPE_F32:
  9197. {
  9198. ggml_compute_forward_set_f32(params, dst);
  9199. } break;
  9200. case GGML_TYPE_F16:
  9201. case GGML_TYPE_Q4_0:
  9202. case GGML_TYPE_Q4_1:
  9203. case GGML_TYPE_Q5_0:
  9204. case GGML_TYPE_Q5_1:
  9205. case GGML_TYPE_Q8_0:
  9206. case GGML_TYPE_Q8_1:
  9207. case GGML_TYPE_Q2_K:
  9208. case GGML_TYPE_Q3_K:
  9209. case GGML_TYPE_Q4_K:
  9210. case GGML_TYPE_Q5_K:
  9211. case GGML_TYPE_Q6_K:
  9212. case GGML_TYPE_IQ2_XXS:
  9213. case GGML_TYPE_IQ2_XS:
  9214. case GGML_TYPE_IQ3_XXS:
  9215. case GGML_TYPE_IQ1_S:
  9216. case GGML_TYPE_IQ4_NL:
  9217. case GGML_TYPE_IQ4_XS:
  9218. case GGML_TYPE_IQ3_S:
  9219. case GGML_TYPE_IQ2_S:
  9220. default:
  9221. {
  9222. GGML_ASSERT(false);
  9223. } break;
  9224. }
  9225. }
  9226. // ggml_compute_forward_cpy
  9227. static void ggml_compute_forward_cpy(
  9228. const struct ggml_compute_params * params,
  9229. struct ggml_tensor * dst) {
  9230. ggml_compute_forward_dup(params, dst);
  9231. }
  9232. // ggml_compute_forward_cont
  9233. static void ggml_compute_forward_cont(
  9234. const struct ggml_compute_params * params,
  9235. struct ggml_tensor * dst) {
  9236. ggml_compute_forward_dup(params, dst);
  9237. }
  9238. // ggml_compute_forward_reshape
  9239. static void ggml_compute_forward_reshape(
  9240. const struct ggml_compute_params * params,
  9241. struct ggml_tensor * dst) {
  9242. // NOP
  9243. UNUSED(params);
  9244. UNUSED(dst);
  9245. }
  9246. // ggml_compute_forward_view
  9247. static void ggml_compute_forward_view(
  9248. const struct ggml_compute_params * params,
  9249. const struct ggml_tensor * dst) {
  9250. // NOP
  9251. UNUSED(params);
  9252. UNUSED(dst);
  9253. }
  9254. // ggml_compute_forward_permute
  9255. static void ggml_compute_forward_permute(
  9256. const struct ggml_compute_params * params,
  9257. const struct ggml_tensor * dst) {
  9258. // NOP
  9259. UNUSED(params);
  9260. UNUSED(dst);
  9261. }
  9262. // ggml_compute_forward_transpose
  9263. static void ggml_compute_forward_transpose(
  9264. const struct ggml_compute_params * params,
  9265. const struct ggml_tensor * dst) {
  9266. // NOP
  9267. UNUSED(params);
  9268. UNUSED(dst);
  9269. }
  9270. // ggml_compute_forward_get_rows
  9271. static void ggml_compute_forward_get_rows_q(
  9272. const struct ggml_compute_params * params,
  9273. struct ggml_tensor * dst) {
  9274. const struct ggml_tensor * src0 = dst->src[0];
  9275. const struct ggml_tensor * src1 = dst->src[1];
  9276. assert(params->ith == 0);
  9277. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9278. return;
  9279. }
  9280. GGML_TENSOR_BINARY_OP_LOCALS
  9281. const int64_t nc = ne00;
  9282. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9283. const enum ggml_type type = src0->type;
  9284. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9285. assert(ne0 == nc);
  9286. assert(ne02 == ne11);
  9287. assert(nb00 == ggml_type_size(type));
  9288. assert(ggml_nrows(dst) == nr);
  9289. // TODO: multi-thread
  9290. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9291. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9292. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9293. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9294. dequantize_row_q(
  9295. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9296. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9297. }
  9298. }
  9299. }
  9300. }
  9301. static void ggml_compute_forward_get_rows_f16(
  9302. const struct ggml_compute_params * params,
  9303. struct ggml_tensor * dst) {
  9304. const struct ggml_tensor * src0 = dst->src[0];
  9305. const struct ggml_tensor * src1 = dst->src[1];
  9306. assert(params->ith == 0);
  9307. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9308. return;
  9309. }
  9310. GGML_TENSOR_BINARY_OP_LOCALS
  9311. const int64_t nc = ne00;
  9312. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9313. assert(ne0 == nc);
  9314. assert(ne02 == ne11);
  9315. assert(nb00 == sizeof(ggml_fp16_t));
  9316. assert(ggml_nrows(dst) == nr);
  9317. // TODO: multi-thread
  9318. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9319. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9320. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9321. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9322. ggml_fp16_to_fp32_row(
  9323. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9324. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9325. }
  9326. }
  9327. }
  9328. }
  9329. static void ggml_compute_forward_get_rows_f32(
  9330. const struct ggml_compute_params * params,
  9331. struct ggml_tensor * dst) {
  9332. const struct ggml_tensor * src0 = dst->src[0];
  9333. const struct ggml_tensor * src1 = dst->src[1];
  9334. assert(params->ith == 0);
  9335. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9336. return;
  9337. }
  9338. GGML_TENSOR_BINARY_OP_LOCALS
  9339. const int64_t nc = ne00;
  9340. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9341. assert(ne0 == nc);
  9342. assert(ne02 == ne11);
  9343. assert(nb00 == sizeof(float));
  9344. assert(ggml_nrows(dst) == nr);
  9345. // TODO: multi-thread
  9346. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9347. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9348. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9349. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9350. ggml_vec_cpy_f32(nc,
  9351. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9352. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9353. }
  9354. }
  9355. }
  9356. }
  9357. static void ggml_compute_forward_get_rows(
  9358. const struct ggml_compute_params * params,
  9359. struct ggml_tensor * dst) {
  9360. const struct ggml_tensor * src0 = dst->src[0];
  9361. switch (src0->type) {
  9362. case GGML_TYPE_Q4_0:
  9363. case GGML_TYPE_Q4_1:
  9364. case GGML_TYPE_Q5_0:
  9365. case GGML_TYPE_Q5_1:
  9366. case GGML_TYPE_Q8_0:
  9367. case GGML_TYPE_Q8_1:
  9368. case GGML_TYPE_Q2_K:
  9369. case GGML_TYPE_Q3_K:
  9370. case GGML_TYPE_Q4_K:
  9371. case GGML_TYPE_Q5_K:
  9372. case GGML_TYPE_Q6_K:
  9373. case GGML_TYPE_IQ2_XXS:
  9374. case GGML_TYPE_IQ2_XS:
  9375. case GGML_TYPE_IQ3_XXS:
  9376. case GGML_TYPE_IQ1_S:
  9377. case GGML_TYPE_IQ4_NL:
  9378. case GGML_TYPE_IQ4_XS:
  9379. case GGML_TYPE_IQ3_S:
  9380. case GGML_TYPE_IQ2_S:
  9381. {
  9382. ggml_compute_forward_get_rows_q(params, dst);
  9383. } break;
  9384. case GGML_TYPE_F16:
  9385. {
  9386. ggml_compute_forward_get_rows_f16(params, dst);
  9387. } break;
  9388. case GGML_TYPE_F32:
  9389. case GGML_TYPE_I32:
  9390. {
  9391. ggml_compute_forward_get_rows_f32(params, dst);
  9392. } break;
  9393. default:
  9394. {
  9395. GGML_ASSERT(false);
  9396. } break;
  9397. }
  9398. //static bool first = true;
  9399. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9400. //if (first) {
  9401. // first = false;
  9402. //} else {
  9403. // for (int k = 0; k < dst->ne[1]; ++k) {
  9404. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9405. // for (int i = 0; i < 16; ++i) {
  9406. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9407. // }
  9408. // printf("\n");
  9409. // }
  9410. // printf("\n");
  9411. // }
  9412. // printf("\n");
  9413. // exit(0);
  9414. //}
  9415. }
  9416. // ggml_compute_forward_get_rows_back
  9417. static void ggml_compute_forward_get_rows_back_f32_f16(
  9418. const struct ggml_compute_params * params,
  9419. struct ggml_tensor * dst) {
  9420. const struct ggml_tensor * src0 = dst->src[0];
  9421. const struct ggml_tensor * src1 = dst->src[1];
  9422. GGML_ASSERT(params->ith == 0);
  9423. GGML_ASSERT(ggml_is_contiguous(dst));
  9424. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9425. if (params->type == GGML_TASK_TYPE_INIT) {
  9426. if (params->ith != 0) {
  9427. return;
  9428. }
  9429. memset(dst->data, 0, ggml_nbytes(dst));
  9430. }
  9431. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9432. return;
  9433. }
  9434. const int nc = src0->ne[0];
  9435. const int nr = ggml_nelements(src1);
  9436. GGML_ASSERT( dst->ne[0] == nc);
  9437. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9438. for (int i = 0; i < nr; ++i) {
  9439. const int r = ((int32_t *) src1->data)[i];
  9440. for (int j = 0; j < nc; ++j) {
  9441. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9442. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9443. }
  9444. }
  9445. }
  9446. static void ggml_compute_forward_get_rows_back_f32(
  9447. const struct ggml_compute_params * params,
  9448. struct ggml_tensor * dst) {
  9449. const struct ggml_tensor * src0 = dst->src[0];
  9450. const struct ggml_tensor * src1 = dst->src[1];
  9451. GGML_ASSERT(params->ith == 0);
  9452. GGML_ASSERT(ggml_is_contiguous(dst));
  9453. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9454. if (params->type == GGML_TASK_TYPE_INIT) {
  9455. if (params->ith != 0) {
  9456. return;
  9457. }
  9458. memset(dst->data, 0, ggml_nbytes(dst));
  9459. }
  9460. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9461. return;
  9462. }
  9463. const int nc = src0->ne[0];
  9464. const int nr = ggml_nelements(src1);
  9465. GGML_ASSERT( dst->ne[0] == nc);
  9466. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9467. for (int i = 0; i < nr; ++i) {
  9468. const int r = ((int32_t *) src1->data)[i];
  9469. ggml_vec_add_f32(nc,
  9470. (float *) ((char *) dst->data + r*dst->nb[1]),
  9471. (float *) ((char *) dst->data + r*dst->nb[1]),
  9472. (float *) ((char *) src0->data + i*src0->nb[1]));
  9473. }
  9474. }
  9475. static void ggml_compute_forward_get_rows_back(
  9476. const struct ggml_compute_params * params,
  9477. struct ggml_tensor * dst) {
  9478. const struct ggml_tensor * src0 = dst->src[0];
  9479. switch (src0->type) {
  9480. case GGML_TYPE_F16:
  9481. {
  9482. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9483. } break;
  9484. case GGML_TYPE_F32:
  9485. {
  9486. ggml_compute_forward_get_rows_back_f32(params, dst);
  9487. } break;
  9488. default:
  9489. {
  9490. GGML_ASSERT(false);
  9491. } break;
  9492. }
  9493. //static bool first = true;
  9494. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9495. //if (first) {
  9496. // first = false;
  9497. //} else {
  9498. // for (int k = 0; k < dst->ne[1]; ++k) {
  9499. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9500. // for (int i = 0; i < 16; ++i) {
  9501. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9502. // }
  9503. // printf("\n");
  9504. // }
  9505. // printf("\n");
  9506. // }
  9507. // printf("\n");
  9508. // exit(0);
  9509. //}
  9510. }
  9511. // ggml_compute_forward_diag
  9512. static void ggml_compute_forward_diag_f32(
  9513. const struct ggml_compute_params * params,
  9514. struct ggml_tensor * dst) {
  9515. const struct ggml_tensor * src0 = dst->src[0];
  9516. GGML_ASSERT(params->ith == 0);
  9517. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9518. return;
  9519. }
  9520. // TODO: handle transposed/permuted matrices
  9521. GGML_TENSOR_UNARY_OP_LOCALS
  9522. GGML_ASSERT(ne00 == ne0);
  9523. GGML_ASSERT(ne00 == ne1);
  9524. GGML_ASSERT(ne01 == 1);
  9525. GGML_ASSERT(ne02 == ne2);
  9526. GGML_ASSERT(ne03 == ne3);
  9527. GGML_ASSERT(nb00 == sizeof(float));
  9528. GGML_ASSERT(nb0 == sizeof(float));
  9529. for (int i3 = 0; i3 < ne3; i3++) {
  9530. for (int i2 = 0; i2 < ne2; i2++) {
  9531. for (int i1 = 0; i1 < ne1; i1++) {
  9532. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9533. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9534. for (int i0 = 0; i0 < i1; i0++) {
  9535. d[i0] = 0;
  9536. }
  9537. d[i1] = s[i1];
  9538. for (int i0 = i1+1; i0 < ne0; i0++) {
  9539. d[i0] = 0;
  9540. }
  9541. }
  9542. }
  9543. }
  9544. }
  9545. static void ggml_compute_forward_diag(
  9546. const struct ggml_compute_params * params,
  9547. struct ggml_tensor * dst) {
  9548. const struct ggml_tensor * src0 = dst->src[0];
  9549. switch (src0->type) {
  9550. case GGML_TYPE_F32:
  9551. {
  9552. ggml_compute_forward_diag_f32(params, dst);
  9553. } break;
  9554. default:
  9555. {
  9556. GGML_ASSERT(false);
  9557. } break;
  9558. }
  9559. }
  9560. // ggml_compute_forward_diag_mask_inf
  9561. static void ggml_compute_forward_diag_mask_f32(
  9562. const struct ggml_compute_params * params,
  9563. struct ggml_tensor * dst,
  9564. const float value) {
  9565. const struct ggml_tensor * src0 = dst->src[0];
  9566. const int ith = params->ith;
  9567. const int nth = params->nth;
  9568. const int n_past = ((int32_t *) dst->op_params)[0];
  9569. const bool inplace = src0->data == dst->data;
  9570. GGML_ASSERT(n_past >= 0);
  9571. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9572. if (ith != 0) {
  9573. return;
  9574. }
  9575. // memcpy needs to be synchronized across threads to avoid race conditions.
  9576. // => do it in INIT phase
  9577. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9578. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9579. memcpy(
  9580. ((char *) dst->data),
  9581. ((char *) src0->data),
  9582. ggml_nbytes(dst));
  9583. }
  9584. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9585. return;
  9586. }
  9587. // TODO: handle transposed/permuted matrices
  9588. const int n = ggml_nrows(src0);
  9589. const int nc = src0->ne[0];
  9590. const int nr = src0->ne[1];
  9591. const int nz = n/nr;
  9592. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9593. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9594. for (int k = 0; k < nz; k++) {
  9595. for (int j = ith; j < nr; j += nth) {
  9596. for (int i = n_past; i < nc; i++) {
  9597. if (i > n_past + j) {
  9598. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9599. }
  9600. }
  9601. }
  9602. }
  9603. }
  9604. static void ggml_compute_forward_diag_mask_inf(
  9605. const struct ggml_compute_params * params,
  9606. struct ggml_tensor * dst) {
  9607. const struct ggml_tensor * src0 = dst->src[0];
  9608. switch (src0->type) {
  9609. case GGML_TYPE_F32:
  9610. {
  9611. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9612. } break;
  9613. default:
  9614. {
  9615. GGML_ASSERT(false);
  9616. } break;
  9617. }
  9618. }
  9619. static void ggml_compute_forward_diag_mask_zero(
  9620. const struct ggml_compute_params * params,
  9621. struct ggml_tensor * dst) {
  9622. const struct ggml_tensor * src0 = dst->src[0];
  9623. switch (src0->type) {
  9624. case GGML_TYPE_F32:
  9625. {
  9626. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9627. } break;
  9628. default:
  9629. {
  9630. GGML_ASSERT(false);
  9631. } break;
  9632. }
  9633. }
  9634. // ggml_compute_forward_soft_max
  9635. static void ggml_compute_forward_soft_max_f32(
  9636. const struct ggml_compute_params * params,
  9637. struct ggml_tensor * dst) {
  9638. const struct ggml_tensor * src0 = dst->src[0];
  9639. const struct ggml_tensor * src1 = dst->src[1];
  9640. const struct ggml_tensor * src2 = dst->src[2];
  9641. assert(ggml_is_contiguous(dst));
  9642. assert(ggml_are_same_shape(src0, dst));
  9643. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9644. return;
  9645. }
  9646. float scale = 1.0f;
  9647. float max_bias = 0.0f;
  9648. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9649. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9650. // TODO: handle transposed/permuted matrices
  9651. const int ith = params->ith;
  9652. const int nth = params->nth;
  9653. GGML_TENSOR_UNARY_OP_LOCALS
  9654. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9655. // TODO: is this supposed to be ceil instead of floor?
  9656. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9657. const uint32_t n_head_kv = ne02;
  9658. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9659. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9660. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9661. const int nc = src0->ne[0];
  9662. const int nr = ggml_nrows(src0);
  9663. // rows per thread
  9664. const int dr = (nr + nth - 1)/nth;
  9665. // row range for this thread
  9666. const int ir0 = dr*ith;
  9667. const int ir1 = MIN(ir0 + dr, nr);
  9668. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9669. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9670. float * pos = src2 ? (float *) src2->data : src0->data;
  9671. for (int i1 = ir0; i1 < ir1; i1++) {
  9672. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9673. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9674. // broadcast the mask across rows
  9675. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9676. ggml_vec_cpy_f32 (nc, wp, sp);
  9677. ggml_vec_scale_f32(nc, wp, scale);
  9678. if (mp) {
  9679. ggml_vec_acc_f32(nc, wp, mp);
  9680. }
  9681. // ALiBi bias
  9682. if (max_bias > 0.0f) {
  9683. const uint32_t h = (i1/ne01)%ne02; // head
  9684. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9685. for (int i = 0; i < nc; i++) {
  9686. wp[i] = wp[i] + slope*pos[i];
  9687. }
  9688. }
  9689. #ifndef NDEBUG
  9690. for (int i = 0; i < nc; ++i) {
  9691. //printf("p[%d] = %f\n", i, p[i]);
  9692. assert(!isnan(wp[i]));
  9693. }
  9694. #endif
  9695. float max = -INFINITY;
  9696. ggml_vec_max_f32(nc, &max, wp);
  9697. ggml_float sum = 0.0;
  9698. uint16_t scvt;
  9699. for (int i = 0; i < nc; i++) {
  9700. if (wp[i] == -INFINITY) {
  9701. dp[i] = 0.0f;
  9702. } else {
  9703. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9704. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9705. memcpy(&scvt, &s, sizeof(scvt));
  9706. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9707. sum += (ggml_float)val;
  9708. dp[i] = val;
  9709. }
  9710. }
  9711. assert(sum > 0.0);
  9712. sum = 1.0/sum;
  9713. ggml_vec_scale_f32(nc, dp, sum);
  9714. #ifndef NDEBUG
  9715. for (int i = 0; i < nc; ++i) {
  9716. assert(!isnan(dp[i]));
  9717. assert(!isinf(dp[i]));
  9718. }
  9719. #endif
  9720. }
  9721. }
  9722. static void ggml_compute_forward_soft_max(
  9723. const struct ggml_compute_params * params,
  9724. struct ggml_tensor * dst) {
  9725. const struct ggml_tensor * src0 = dst->src[0];
  9726. switch (src0->type) {
  9727. case GGML_TYPE_F32:
  9728. {
  9729. ggml_compute_forward_soft_max_f32(params, dst);
  9730. } break;
  9731. default:
  9732. {
  9733. GGML_ASSERT(false);
  9734. } break;
  9735. }
  9736. }
  9737. // ggml_compute_forward_soft_max_back
  9738. static void ggml_compute_forward_soft_max_back_f32(
  9739. const struct ggml_compute_params * params,
  9740. struct ggml_tensor * dst) {
  9741. const struct ggml_tensor * src0 = dst->src[0];
  9742. const struct ggml_tensor * src1 = dst->src[1];
  9743. GGML_ASSERT(ggml_is_contiguous(src0));
  9744. GGML_ASSERT(ggml_is_contiguous(src1));
  9745. GGML_ASSERT(ggml_is_contiguous(dst));
  9746. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9747. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9748. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9749. return;
  9750. }
  9751. // TODO: handle transposed/permuted matrices
  9752. const int ith = params->ith;
  9753. const int nth = params->nth;
  9754. const int nc = src0->ne[0];
  9755. const int nr = ggml_nrows(src0);
  9756. // rows per thread
  9757. const int dr = (nr + nth - 1)/nth;
  9758. // row range for this thread
  9759. const int ir0 = dr*ith;
  9760. const int ir1 = MIN(ir0 + dr, nr);
  9761. for (int i1 = ir0; i1 < ir1; i1++) {
  9762. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9763. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9764. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9765. #ifndef NDEBUG
  9766. for (int i = 0; i < nc; ++i) {
  9767. //printf("p[%d] = %f\n", i, p[i]);
  9768. assert(!isnan(dy[i]));
  9769. assert(!isnan(y[i]));
  9770. }
  9771. #endif
  9772. // Jii = yi - yi*yi
  9773. // Jij = -yi*yj
  9774. // J = diag(y)-y.T*y
  9775. // dx = J * dy
  9776. // dxk = sum_i(Jki * dyi)
  9777. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9778. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9779. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9780. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9781. // dxk = -yk * dot(y, dy) + yk*dyk
  9782. // dxk = yk * (- dot(y, dy) + dyk)
  9783. // dxk = yk * (dyk - dot(y, dy))
  9784. //
  9785. // post-order:
  9786. // dot_y_dy := dot(y, dy)
  9787. // dx := dy
  9788. // dx := dx - dot_y_dy
  9789. // dx := dx * y
  9790. // linear runtime, no additional memory
  9791. float dot_y_dy = 0;
  9792. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9793. ggml_vec_cpy_f32 (nc, dx, dy);
  9794. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9795. ggml_vec_mul_f32 (nc, dx, dx, y);
  9796. #ifndef NDEBUG
  9797. for (int i = 0; i < nc; ++i) {
  9798. assert(!isnan(dx[i]));
  9799. assert(!isinf(dx[i]));
  9800. }
  9801. #endif
  9802. }
  9803. }
  9804. static void ggml_compute_forward_soft_max_back(
  9805. const struct ggml_compute_params * params,
  9806. struct ggml_tensor * dst) {
  9807. const struct ggml_tensor * src0 = dst->src[0];
  9808. switch (src0->type) {
  9809. case GGML_TYPE_F32:
  9810. {
  9811. ggml_compute_forward_soft_max_back_f32(params, dst);
  9812. } break;
  9813. default:
  9814. {
  9815. GGML_ASSERT(false);
  9816. } break;
  9817. }
  9818. }
  9819. // ggml_compute_forward_alibi
  9820. static void ggml_compute_forward_alibi_f32(
  9821. const struct ggml_compute_params * params,
  9822. struct ggml_tensor * dst) {
  9823. const struct ggml_tensor * src0 = dst->src[0];
  9824. assert(params->ith == 0);
  9825. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9826. return;
  9827. }
  9828. //const int n_past = ((int32_t *) dst->op_params)[0];
  9829. const int n_head = ((int32_t *) dst->op_params)[1];
  9830. float max_bias;
  9831. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9832. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9833. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9834. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9835. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9836. const int64_t n = ggml_nrows(src0);
  9837. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9838. const size_t nb0 = src0->nb[0];
  9839. const size_t nb1 = src0->nb[1];
  9840. const size_t nb2 = src0->nb[2];
  9841. //const int nb3 = src0->nb[3];
  9842. GGML_ASSERT(nb0 == sizeof(float));
  9843. GGML_ASSERT(n_head == ne2);
  9844. // add alibi to src0 (KQ_scaled)
  9845. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9846. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9847. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9848. for (int64_t k = 0; k < ne2_ne3; k++) {
  9849. // TODO: k*nb2 or k*nb3
  9850. float m_k;
  9851. if (k < n_heads_log2_floor) {
  9852. m_k = powf(m0, k + 1);
  9853. } else {
  9854. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9855. }
  9856. for (int64_t i = 0; i < ne0; i++) {
  9857. for (int64_t j = 0; j < ne1; j++) {
  9858. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9859. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9860. pdst[0] = i * m_k + src[0];
  9861. }
  9862. }
  9863. }
  9864. }
  9865. static void ggml_compute_forward_alibi_f16(
  9866. const struct ggml_compute_params * params,
  9867. struct ggml_tensor * dst) {
  9868. const struct ggml_tensor * src0 = dst->src[0];
  9869. assert(params->ith == 0);
  9870. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9871. return;
  9872. }
  9873. //const int n_past = ((int32_t *) dst->op_params)[0];
  9874. const int n_head = ((int32_t *) dst->op_params)[1];
  9875. float max_bias;
  9876. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9877. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9878. const int ne1 = src0->ne[1]; // seq_len_without_past
  9879. const int ne2 = src0->ne[2]; // n_head -> this is k
  9880. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9881. const int n = ggml_nrows(src0);
  9882. const int ne2_ne3 = n/ne1; // ne2*ne3
  9883. const int nb0 = src0->nb[0];
  9884. const int nb1 = src0->nb[1];
  9885. const int nb2 = src0->nb[2];
  9886. //const int nb3 = src0->nb[3];
  9887. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9888. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9889. GGML_ASSERT(n_head == ne2);
  9890. // add alibi to src0 (KQ_scaled)
  9891. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9892. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9893. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9894. for (int k = 0; k < ne2_ne3; k++) {
  9895. // TODO: k*nb2 or k*nb3
  9896. float m_k;
  9897. if (k < n_heads_log2_floor) {
  9898. m_k = powf(m0, k + 1);
  9899. } else {
  9900. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9901. }
  9902. for (int i = 0; i < ne0; i++) {
  9903. for (int j = 0; j < ne1; j++) {
  9904. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9905. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9906. // we return F32
  9907. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9908. }
  9909. }
  9910. }
  9911. }
  9912. static void ggml_compute_forward_alibi(
  9913. const struct ggml_compute_params * params,
  9914. struct ggml_tensor * dst) {
  9915. const struct ggml_tensor * src0 = dst->src[0];
  9916. switch (src0->type) {
  9917. case GGML_TYPE_F16:
  9918. {
  9919. ggml_compute_forward_alibi_f16(params, dst);
  9920. } break;
  9921. case GGML_TYPE_F32:
  9922. {
  9923. ggml_compute_forward_alibi_f32(params, dst);
  9924. } break;
  9925. case GGML_TYPE_Q4_0:
  9926. case GGML_TYPE_Q4_1:
  9927. case GGML_TYPE_Q5_0:
  9928. case GGML_TYPE_Q5_1:
  9929. case GGML_TYPE_Q8_0:
  9930. case GGML_TYPE_Q8_1:
  9931. case GGML_TYPE_Q2_K:
  9932. case GGML_TYPE_Q3_K:
  9933. case GGML_TYPE_Q4_K:
  9934. case GGML_TYPE_Q5_K:
  9935. case GGML_TYPE_Q6_K:
  9936. case GGML_TYPE_IQ2_XXS:
  9937. case GGML_TYPE_IQ2_XS:
  9938. case GGML_TYPE_IQ3_XXS:
  9939. case GGML_TYPE_IQ1_S:
  9940. case GGML_TYPE_IQ4_NL:
  9941. case GGML_TYPE_IQ4_XS:
  9942. case GGML_TYPE_IQ3_S:
  9943. case GGML_TYPE_IQ2_S:
  9944. case GGML_TYPE_Q8_K:
  9945. case GGML_TYPE_I8:
  9946. case GGML_TYPE_I16:
  9947. case GGML_TYPE_I32:
  9948. case GGML_TYPE_COUNT:
  9949. {
  9950. GGML_ASSERT(false);
  9951. } break;
  9952. }
  9953. }
  9954. // ggml_compute_forward_clamp
  9955. static void ggml_compute_forward_clamp_f32(
  9956. const struct ggml_compute_params * params,
  9957. struct ggml_tensor * dst) {
  9958. const struct ggml_tensor * src0 = dst->src[0];
  9959. assert(params->ith == 0);
  9960. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9961. return;
  9962. }
  9963. float min;
  9964. float max;
  9965. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9966. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9967. const int ith = params->ith;
  9968. const int nth = params->nth;
  9969. const int n = ggml_nrows(src0);
  9970. const int nc = src0->ne[0];
  9971. const size_t nb00 = src0->nb[0];
  9972. const size_t nb01 = src0->nb[1];
  9973. const size_t nb0 = dst->nb[0];
  9974. const size_t nb1 = dst->nb[1];
  9975. GGML_ASSERT( nb0 == sizeof(float));
  9976. GGML_ASSERT(nb00 == sizeof(float));
  9977. for (int j = ith; j < n; j += nth) {
  9978. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9979. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9980. for (int i = 0; i < nc; i++) {
  9981. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9982. }
  9983. }
  9984. }
  9985. static void ggml_compute_forward_clamp(
  9986. const struct ggml_compute_params * params,
  9987. struct ggml_tensor * dst) {
  9988. const struct ggml_tensor * src0 = dst->src[0];
  9989. switch (src0->type) {
  9990. case GGML_TYPE_F32:
  9991. {
  9992. ggml_compute_forward_clamp_f32(params, dst);
  9993. } break;
  9994. case GGML_TYPE_F16:
  9995. case GGML_TYPE_Q4_0:
  9996. case GGML_TYPE_Q4_1:
  9997. case GGML_TYPE_Q5_0:
  9998. case GGML_TYPE_Q5_1:
  9999. case GGML_TYPE_Q8_0:
  10000. case GGML_TYPE_Q8_1:
  10001. case GGML_TYPE_Q2_K:
  10002. case GGML_TYPE_Q3_K:
  10003. case GGML_TYPE_Q4_K:
  10004. case GGML_TYPE_Q5_K:
  10005. case GGML_TYPE_Q6_K:
  10006. case GGML_TYPE_IQ2_XXS:
  10007. case GGML_TYPE_IQ2_XS:
  10008. case GGML_TYPE_IQ3_XXS:
  10009. case GGML_TYPE_IQ1_S:
  10010. case GGML_TYPE_IQ4_NL:
  10011. case GGML_TYPE_IQ4_XS:
  10012. case GGML_TYPE_IQ3_S:
  10013. case GGML_TYPE_IQ2_S:
  10014. case GGML_TYPE_Q8_K:
  10015. case GGML_TYPE_I8:
  10016. case GGML_TYPE_I16:
  10017. case GGML_TYPE_I32:
  10018. case GGML_TYPE_COUNT:
  10019. {
  10020. GGML_ASSERT(false);
  10021. } break;
  10022. }
  10023. }
  10024. // ggml_compute_forward_rope
  10025. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10026. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10027. return 1 - MIN(1, MAX(0, y));
  10028. }
  10029. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10030. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10031. static void rope_yarn(
  10032. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10033. float * cos_theta, float * sin_theta
  10034. ) {
  10035. // Get n-d rotational scaling corrected for extrapolation
  10036. float theta_interp = freq_scale * theta_extrap;
  10037. float theta = theta_interp;
  10038. if (ext_factor != 0.0f) {
  10039. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10040. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10041. // Get n-d magnitude scaling corrected for interpolation
  10042. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10043. }
  10044. *cos_theta = cosf(theta) * mscale;
  10045. *sin_theta = sinf(theta) * mscale;
  10046. }
  10047. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10048. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10049. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10050. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10051. }
  10052. static void ggml_rope_cache_init(
  10053. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10054. float * cache, float sin_sign, float theta_scale
  10055. ) {
  10056. float theta = theta_base;
  10057. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10058. rope_yarn(
  10059. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10060. );
  10061. cache[i0 + 1] *= sin_sign;
  10062. theta *= theta_scale;
  10063. }
  10064. }
  10065. GGML_CALL void ggml_rope_yarn_corr_dims(
  10066. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10067. ) {
  10068. // start and end correction dims
  10069. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10070. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10071. dims[0] = MAX(0, start);
  10072. dims[1] = MIN(n_dims - 1, end);
  10073. }
  10074. static void ggml_compute_forward_rope_f32(
  10075. const struct ggml_compute_params * params,
  10076. struct ggml_tensor * dst,
  10077. const bool forward) {
  10078. const struct ggml_tensor * src0 = dst->src[0];
  10079. const struct ggml_tensor * src1 = dst->src[1];
  10080. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10081. return;
  10082. }
  10083. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10084. // these two only relevant for xPos RoPE:
  10085. float xpos_base;
  10086. bool xpos_down;
  10087. //const int n_past = ((int32_t *) dst->op_params)[0];
  10088. const int n_dims = ((int32_t *) dst->op_params)[1];
  10089. const int mode = ((int32_t *) dst->op_params)[2];
  10090. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10091. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10092. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10093. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10094. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10095. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10096. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10097. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10098. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10099. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10100. GGML_TENSOR_UNARY_OP_LOCALS
  10101. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10102. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10103. GGML_ASSERT(nb00 == sizeof(float));
  10104. const int ith = params->ith;
  10105. const int nth = params->nth;
  10106. const int nr = ggml_nrows(dst);
  10107. GGML_ASSERT(n_dims <= ne0);
  10108. GGML_ASSERT(n_dims % 2 == 0);
  10109. // rows per thread
  10110. const int dr = (nr + nth - 1)/nth;
  10111. // row range for this thread
  10112. const int ir0 = dr*ith;
  10113. const int ir1 = MIN(ir0 + dr, nr);
  10114. // row index used to determine which thread to use
  10115. int ir = 0;
  10116. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10117. const float inv_ndims = -1.f/n_dims;
  10118. float corr_dims[2];
  10119. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10120. const bool is_neox = mode & 2;
  10121. const bool is_glm = mode & 4;
  10122. // backward process uses inverse rotation by cos and sin.
  10123. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10124. // this essentially just switches the sign of sin.
  10125. const float sin_sign = forward ? 1.0f : -1.0f;
  10126. const int32_t * pos = (const int32_t *) src1->data;
  10127. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10128. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10129. const int64_t p = pos[i2];
  10130. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10131. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10132. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10133. }
  10134. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10135. if (ir++ < ir0) continue;
  10136. if (ir > ir1) break;
  10137. float theta_base = (float)p;
  10138. if (is_glm) {
  10139. theta_base = MIN(p, n_ctx - 2);
  10140. float block_theta = MAX(p - (n_ctx - 2), 0);
  10141. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10142. const float cos_theta = cosf(theta_base);
  10143. const float sin_theta = sinf(theta_base) * sin_sign;
  10144. const float cos_block_theta = cosf(block_theta);
  10145. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10146. theta_base *= theta_scale;
  10147. block_theta *= theta_scale;
  10148. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10149. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10150. const float x0 = src[0];
  10151. const float x1 = src[n_dims/2];
  10152. const float x2 = src[n_dims];
  10153. const float x3 = src[n_dims/2*3];
  10154. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10155. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10156. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10157. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10158. }
  10159. } else if (!is_neox) {
  10160. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10161. const float cos_theta = cache[i0 + 0];
  10162. const float sin_theta = cache[i0 + 1];
  10163. // zeta scaling for xPos only:
  10164. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10165. if (xpos_down) zeta = 1.0f / zeta;
  10166. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10167. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10168. const float x0 = src[0];
  10169. const float x1 = src[1];
  10170. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10171. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10172. }
  10173. } else {
  10174. // TODO: this might be wrong for ne0 != n_dims - need double check
  10175. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10176. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10177. theta_base *= freq_scale;
  10178. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10179. if (ic < n_dims) {
  10180. const int64_t ib = 0;
  10181. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10182. float cur_rot = inv_ndims * ic - ib;
  10183. float cos_theta, sin_theta;
  10184. rope_yarn(
  10185. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10186. &cos_theta, &sin_theta
  10187. );
  10188. sin_theta *= sin_sign;
  10189. theta_base *= theta_scale;
  10190. const int64_t i0 = ib*n_dims + ic/2;
  10191. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10192. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10193. const float x0 = src[0];
  10194. const float x1 = src[n_dims/2];
  10195. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10196. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10197. } else {
  10198. const int64_t i0 = ic;
  10199. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10200. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10201. dst_data[0] = src[0];
  10202. dst_data[1] = src[1];
  10203. }
  10204. }
  10205. }
  10206. }
  10207. }
  10208. }
  10209. }
  10210. static void ggml_compute_forward_rope_f16(
  10211. const struct ggml_compute_params * params,
  10212. struct ggml_tensor * dst,
  10213. const bool forward) {
  10214. const struct ggml_tensor * src0 = dst->src[0];
  10215. const struct ggml_tensor * src1 = dst->src[1];
  10216. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10217. return;
  10218. }
  10219. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10220. //const int n_past = ((int32_t *) dst->op_params)[0];
  10221. const int n_dims = ((int32_t *) dst->op_params)[1];
  10222. const int mode = ((int32_t *) dst->op_params)[2];
  10223. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10224. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10225. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10226. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10227. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10228. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10229. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10230. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10231. GGML_TENSOR_UNARY_OP_LOCALS
  10232. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10233. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10234. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10235. const int ith = params->ith;
  10236. const int nth = params->nth;
  10237. const int nr = ggml_nrows(dst);
  10238. GGML_ASSERT(n_dims <= ne0);
  10239. GGML_ASSERT(n_dims % 2 == 0);
  10240. // rows per thread
  10241. const int dr = (nr + nth - 1)/nth;
  10242. // row range for this thread
  10243. const int ir0 = dr*ith;
  10244. const int ir1 = MIN(ir0 + dr, nr);
  10245. // row index used to determine which thread to use
  10246. int ir = 0;
  10247. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10248. const float inv_ndims = -1.f/n_dims;
  10249. float corr_dims[2];
  10250. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10251. const bool is_neox = mode & 2;
  10252. const bool is_glm = mode & 4;
  10253. // backward process uses inverse rotation by cos and sin.
  10254. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10255. // this essentially just switches the sign of sin.
  10256. const float sin_sign = forward ? 1.0f : -1.0f;
  10257. const int32_t * pos = (const int32_t *) src1->data;
  10258. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10259. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10260. const int64_t p = pos[i2];
  10261. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10262. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10263. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10264. }
  10265. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10266. if (ir++ < ir0) continue;
  10267. if (ir > ir1) break;
  10268. float theta_base = (float)p;
  10269. if (is_glm) {
  10270. theta_base = MIN(p, n_ctx - 2);
  10271. float block_theta = MAX(p - (n_ctx - 2), 0);
  10272. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10273. const float cos_theta = cosf(theta_base);
  10274. const float sin_theta = sinf(theta_base) * sin_sign;
  10275. const float cos_block_theta = cosf(block_theta);
  10276. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10277. theta_base *= theta_scale;
  10278. block_theta *= theta_scale;
  10279. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10280. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10281. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10282. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10283. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10284. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10285. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10286. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10287. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10288. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10289. }
  10290. } else if (!is_neox) {
  10291. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10292. const float cos_theta = cache[i0 + 0];
  10293. const float sin_theta = cache[i0 + 1];
  10294. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10295. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10296. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10297. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10298. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10299. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10300. }
  10301. } else {
  10302. // TODO: this might be wrong for ne0 != n_dims - need double check
  10303. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10304. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10305. theta_base *= freq_scale;
  10306. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10307. if (ic < n_dims) {
  10308. const int64_t ib = 0;
  10309. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10310. float cur_rot = inv_ndims * ic - ib;
  10311. float cos_theta, sin_theta;
  10312. rope_yarn(
  10313. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10314. &cos_theta, &sin_theta
  10315. );
  10316. sin_theta *= sin_sign;
  10317. theta_base *= theta_scale;
  10318. const int64_t i0 = ib*n_dims + ic/2;
  10319. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10320. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10321. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10322. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10323. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10324. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10325. } else {
  10326. const int64_t i0 = ic;
  10327. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10328. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10329. dst_data[0] = src[0];
  10330. dst_data[1] = src[1];
  10331. }
  10332. }
  10333. }
  10334. }
  10335. }
  10336. }
  10337. }
  10338. static void ggml_compute_forward_rope(
  10339. const struct ggml_compute_params * params,
  10340. struct ggml_tensor * dst) {
  10341. const struct ggml_tensor * src0 = dst->src[0];
  10342. switch (src0->type) {
  10343. case GGML_TYPE_F16:
  10344. {
  10345. ggml_compute_forward_rope_f16(params, dst, true);
  10346. } break;
  10347. case GGML_TYPE_F32:
  10348. {
  10349. ggml_compute_forward_rope_f32(params, dst, true);
  10350. } break;
  10351. default:
  10352. {
  10353. GGML_ASSERT(false);
  10354. } break;
  10355. }
  10356. }
  10357. // ggml_compute_forward_rope_back
  10358. static void ggml_compute_forward_rope_back(
  10359. const struct ggml_compute_params * params,
  10360. struct ggml_tensor * dst) {
  10361. const struct ggml_tensor * src0 = dst->src[0];
  10362. switch (src0->type) {
  10363. case GGML_TYPE_F16:
  10364. {
  10365. ggml_compute_forward_rope_f16(params, dst, false);
  10366. } break;
  10367. case GGML_TYPE_F32:
  10368. {
  10369. ggml_compute_forward_rope_f32(params, dst, false);
  10370. } break;
  10371. default:
  10372. {
  10373. GGML_ASSERT(false);
  10374. } break;
  10375. }
  10376. }
  10377. // ggml_compute_forward_conv_transpose_1d
  10378. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10379. const struct ggml_compute_params * params,
  10380. struct ggml_tensor * dst) {
  10381. const struct ggml_tensor * src0 = dst->src[0];
  10382. const struct ggml_tensor * src1 = dst->src[1];
  10383. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10384. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10385. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10386. int64_t t0 = ggml_perf_time_us();
  10387. UNUSED(t0);
  10388. GGML_TENSOR_BINARY_OP_LOCALS
  10389. const int ith = params->ith;
  10390. const int nth = params->nth;
  10391. const int nk = ne00*ne01*ne02;
  10392. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10393. GGML_ASSERT(nb10 == sizeof(float));
  10394. if (params->type == GGML_TASK_TYPE_INIT) {
  10395. if (ith != 0) {
  10396. return;
  10397. }
  10398. memset(params->wdata, 0, params->wsize);
  10399. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10400. {
  10401. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10402. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10403. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10404. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10405. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10406. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10407. dst_data[i00*ne02 + i02] = src[i00];
  10408. }
  10409. }
  10410. }
  10411. }
  10412. // permute source data (src1) from (L x Cin) to (Cin x L)
  10413. {
  10414. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10415. ggml_fp16_t * dst_data = wdata;
  10416. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10417. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10418. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10419. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10420. }
  10421. }
  10422. }
  10423. // need to zero dst since we are accumulating into it
  10424. memset(dst->data, 0, ggml_nbytes(dst));
  10425. return;
  10426. }
  10427. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10428. return;
  10429. }
  10430. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10431. // total rows in dst
  10432. const int nr = ne1;
  10433. // rows per thread
  10434. const int dr = (nr + nth - 1)/nth;
  10435. // row range for this thread
  10436. const int ir0 = dr*ith;
  10437. const int ir1 = MIN(ir0 + dr, nr);
  10438. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10439. ggml_fp16_t * const wdata_src = wdata + nk;
  10440. for (int i1 = ir0; i1 < ir1; i1++) {
  10441. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10442. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10443. for (int i10 = 0; i10 < ne10; i10++) {
  10444. const int i1n = i10*ne11;
  10445. for (int i00 = 0; i00 < ne00; i00++) {
  10446. float v = 0;
  10447. ggml_vec_dot_f16(ne02, &v, 0,
  10448. (ggml_fp16_t *) wdata_src + i1n, 0,
  10449. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10450. dst_data[i10*s0 + i00] += v;
  10451. }
  10452. }
  10453. }
  10454. }
  10455. static void ggml_compute_forward_conv_transpose_1d_f32(
  10456. const struct ggml_compute_params * params,
  10457. struct ggml_tensor * dst) {
  10458. const struct ggml_tensor * src0 = dst->src[0];
  10459. const struct ggml_tensor * src1 = dst->src[1];
  10460. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10461. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10462. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10463. int64_t t0 = ggml_perf_time_us();
  10464. UNUSED(t0);
  10465. GGML_TENSOR_BINARY_OP_LOCALS
  10466. const int ith = params->ith;
  10467. const int nth = params->nth;
  10468. const int nk = ne00*ne01*ne02;
  10469. GGML_ASSERT(nb00 == sizeof(float));
  10470. GGML_ASSERT(nb10 == sizeof(float));
  10471. if (params->type == GGML_TASK_TYPE_INIT) {
  10472. if (ith != 0) {
  10473. return;
  10474. }
  10475. memset(params->wdata, 0, params->wsize);
  10476. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10477. {
  10478. float * const wdata = (float *) params->wdata + 0;
  10479. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10480. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10481. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10482. float * dst_data = wdata + i01*ne00*ne02;
  10483. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10484. dst_data[i00*ne02 + i02] = src[i00];
  10485. }
  10486. }
  10487. }
  10488. }
  10489. // prepare source data (src1)
  10490. {
  10491. float * const wdata = (float *) params->wdata + nk;
  10492. float * dst_data = wdata;
  10493. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10494. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10495. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10496. dst_data[i10*ne11 + i11] = src[i10];
  10497. }
  10498. }
  10499. }
  10500. // need to zero dst since we are accumulating into it
  10501. memset(dst->data, 0, ggml_nbytes(dst));
  10502. return;
  10503. }
  10504. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10505. return;
  10506. }
  10507. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10508. // total rows in dst
  10509. const int nr = ne1;
  10510. // rows per thread
  10511. const int dr = (nr + nth - 1)/nth;
  10512. // row range for this thread
  10513. const int ir0 = dr*ith;
  10514. const int ir1 = MIN(ir0 + dr, nr);
  10515. float * const wdata = (float *) params->wdata + 0;
  10516. float * const wdata_src = wdata + nk;
  10517. for (int i1 = ir0; i1 < ir1; i1++) {
  10518. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10519. float * wdata_kernel = wdata + i1*ne02*ne00;
  10520. for (int i10 = 0; i10 < ne10; i10++) {
  10521. const int i1n = i10*ne11;
  10522. for (int i00 = 0; i00 < ne00; i00++) {
  10523. float v = 0;
  10524. ggml_vec_dot_f32(ne02, &v, 0,
  10525. wdata_src + i1n, 0,
  10526. wdata_kernel + i00*ne02, 0, 1);
  10527. dst_data[i10*s0 + i00] += v;
  10528. }
  10529. }
  10530. }
  10531. }
  10532. static void ggml_compute_forward_conv_transpose_1d(
  10533. const struct ggml_compute_params * params,
  10534. struct ggml_tensor * dst) {
  10535. const struct ggml_tensor * src0 = dst->src[0];
  10536. switch (src0->type) {
  10537. case GGML_TYPE_F16:
  10538. {
  10539. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10540. } break;
  10541. case GGML_TYPE_F32:
  10542. {
  10543. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10544. } break;
  10545. default:
  10546. {
  10547. GGML_ASSERT(false);
  10548. } break;
  10549. }
  10550. }
  10551. // src0: kernel [OC, IC, KH, KW]
  10552. // src1: image [N, IC, IH, IW]
  10553. // dst: result [N, OH, OW, IC*KH*KW]
  10554. static void ggml_compute_forward_im2col_f32(
  10555. const struct ggml_compute_params * params,
  10556. struct ggml_tensor * dst) {
  10557. const struct ggml_tensor * src0 = dst->src[0];
  10558. const struct ggml_tensor * src1 = dst->src[1];
  10559. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10560. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10561. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10562. int64_t t0 = ggml_perf_time_us();
  10563. UNUSED(t0);
  10564. GGML_TENSOR_BINARY_OP_LOCALS;
  10565. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10566. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10567. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10568. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10569. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10570. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10571. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10572. const int ith = params->ith;
  10573. const int nth = params->nth;
  10574. const int64_t N = is_2D ? ne13 : ne12;
  10575. const int64_t IC = is_2D ? ne12 : ne11;
  10576. const int64_t IH = is_2D ? ne11 : 1;
  10577. const int64_t IW = ne10;
  10578. const int64_t KH = is_2D ? ne01 : 1;
  10579. const int64_t KW = ne00;
  10580. const int64_t OH = is_2D ? ne2 : 1;
  10581. const int64_t OW = ne1;
  10582. int ofs0 = is_2D ? nb13 : nb12;
  10583. int ofs1 = is_2D ? nb12 : nb11;
  10584. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10585. GGML_ASSERT(nb10 == sizeof(float));
  10586. if (params->type == GGML_TASK_TYPE_INIT) {
  10587. return;
  10588. }
  10589. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10590. return;
  10591. }
  10592. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10593. {
  10594. float * const wdata = (float *) dst->data;
  10595. for (int64_t in = 0; in < N; in++) {
  10596. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10597. for (int64_t iow = 0; iow < OW; iow++) {
  10598. for (int64_t iic = ith; iic < IC; iic += nth) {
  10599. // micro kernel
  10600. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10601. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10602. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10603. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10604. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10605. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10606. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10607. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10608. } else {
  10609. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10610. }
  10611. }
  10612. }
  10613. }
  10614. }
  10615. }
  10616. }
  10617. }
  10618. }
  10619. // src0: kernel [OC, IC, KH, KW]
  10620. // src1: image [N, IC, IH, IW]
  10621. // dst: result [N, OH, OW, IC*KH*KW]
  10622. static void ggml_compute_forward_im2col_f16(
  10623. const struct ggml_compute_params * params,
  10624. struct ggml_tensor * dst) {
  10625. const struct ggml_tensor * src0 = dst->src[0];
  10626. const struct ggml_tensor * src1 = dst->src[1];
  10627. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10628. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10629. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10630. int64_t t0 = ggml_perf_time_us();
  10631. UNUSED(t0);
  10632. GGML_TENSOR_BINARY_OP_LOCALS;
  10633. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10634. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10635. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10636. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10637. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10638. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10639. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10640. const int ith = params->ith;
  10641. const int nth = params->nth;
  10642. const int64_t N = is_2D ? ne13 : ne12;
  10643. const int64_t IC = is_2D ? ne12 : ne11;
  10644. const int64_t IH = is_2D ? ne11 : 1;
  10645. const int64_t IW = ne10;
  10646. const int64_t KH = is_2D ? ne01 : 1;
  10647. const int64_t KW = ne00;
  10648. const int64_t OH = is_2D ? ne2 : 1;
  10649. const int64_t OW = ne1;
  10650. int ofs0 = is_2D ? nb13 : nb12;
  10651. int ofs1 = is_2D ? nb12 : nb11;
  10652. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10653. GGML_ASSERT(nb10 == sizeof(float));
  10654. if (params->type == GGML_TASK_TYPE_INIT) {
  10655. return;
  10656. }
  10657. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10658. return;
  10659. }
  10660. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10661. {
  10662. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10663. for (int64_t in = 0; in < N; in++) {
  10664. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10665. for (int64_t iow = 0; iow < OW; iow++) {
  10666. for (int64_t iic = ith; iic < IC; iic += nth) {
  10667. // micro kernel
  10668. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10669. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10670. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10671. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10672. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10673. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10674. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10675. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10676. } else {
  10677. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10678. }
  10679. }
  10680. }
  10681. }
  10682. }
  10683. }
  10684. }
  10685. }
  10686. }
  10687. static void ggml_compute_forward_im2col(
  10688. const struct ggml_compute_params * params,
  10689. struct ggml_tensor * dst) {
  10690. switch (dst->type) {
  10691. case GGML_TYPE_F16:
  10692. {
  10693. ggml_compute_forward_im2col_f16(params, dst);
  10694. } break;
  10695. case GGML_TYPE_F32:
  10696. {
  10697. ggml_compute_forward_im2col_f32(params, dst);
  10698. } break;
  10699. default:
  10700. {
  10701. GGML_ASSERT(false);
  10702. } break;
  10703. }
  10704. }
  10705. // ggml_compute_forward_conv_transpose_2d
  10706. static void ggml_compute_forward_conv_transpose_2d(
  10707. const struct ggml_compute_params * params,
  10708. struct ggml_tensor * dst) {
  10709. const struct ggml_tensor * src0 = dst->src[0];
  10710. const struct ggml_tensor * src1 = dst->src[1];
  10711. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10712. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10713. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10714. int64_t t0 = ggml_perf_time_us();
  10715. UNUSED(t0);
  10716. GGML_TENSOR_BINARY_OP_LOCALS
  10717. const int ith = params->ith;
  10718. const int nth = params->nth;
  10719. const int nk = ne00*ne01*ne02*ne03;
  10720. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10721. GGML_ASSERT(nb10 == sizeof(float));
  10722. if (params->type == GGML_TASK_TYPE_INIT) {
  10723. if (ith != 0) {
  10724. return;
  10725. }
  10726. memset(params->wdata, 0, params->wsize);
  10727. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10728. {
  10729. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10730. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10731. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10732. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10733. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10734. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10735. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10736. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10737. }
  10738. }
  10739. }
  10740. }
  10741. }
  10742. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10743. {
  10744. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10745. for (int i12 = 0; i12 < ne12; i12++) {
  10746. for (int i11 = 0; i11 < ne11; i11++) {
  10747. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10748. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10749. for (int i10 = 0; i10 < ne10; i10++) {
  10750. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10751. }
  10752. }
  10753. }
  10754. }
  10755. memset(dst->data, 0, ggml_nbytes(dst));
  10756. return;
  10757. }
  10758. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10759. return;
  10760. }
  10761. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10762. // total patches in dst
  10763. const int np = ne2;
  10764. // patches per thread
  10765. const int dp = (np + nth - 1)/nth;
  10766. // patch range for this thread
  10767. const int ip0 = dp*ith;
  10768. const int ip1 = MIN(ip0 + dp, np);
  10769. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10770. ggml_fp16_t * const wdata_src = wdata + nk;
  10771. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10772. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10773. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10774. for (int i11 = 0; i11 < ne11; i11++) {
  10775. for (int i10 = 0; i10 < ne10; i10++) {
  10776. const int i1n = i11*ne10*ne12 + i10*ne12;
  10777. for (int i01 = 0; i01 < ne01; i01++) {
  10778. for (int i00 = 0; i00 < ne00; i00++) {
  10779. float v = 0;
  10780. ggml_vec_dot_f16(ne03, &v, 0,
  10781. wdata_src + i1n, 0,
  10782. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10783. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10784. }
  10785. }
  10786. }
  10787. }
  10788. }
  10789. }
  10790. // ggml_compute_forward_pool_1d_sk_p0
  10791. static void ggml_compute_forward_pool_1d_sk_p0(
  10792. const struct ggml_compute_params * params,
  10793. const enum ggml_op_pool op,
  10794. const int k,
  10795. struct ggml_tensor * dst) {
  10796. const struct ggml_tensor * src = dst->src[0];
  10797. assert(src->type == GGML_TYPE_F32);
  10798. assert(params->ith == 0);
  10799. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10800. return;
  10801. }
  10802. const char * cdata = (const char *)src->data;
  10803. const char * const data_end = cdata + ggml_nbytes(src);
  10804. float * drow = (float *)dst->data;
  10805. const int64_t rs = dst->ne[0];
  10806. while (cdata < data_end) {
  10807. const float * const srow = (const float *)cdata;
  10808. int j = 0;
  10809. for (int64_t i = 0; i < rs; ++i) {
  10810. switch (op) {
  10811. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10812. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10813. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10814. }
  10815. for (int ki = 0; ki < k; ++ki) {
  10816. switch (op) {
  10817. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10818. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10819. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10820. }
  10821. ++j;
  10822. }
  10823. switch (op) {
  10824. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10825. case GGML_OP_POOL_MAX: break;
  10826. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10827. }
  10828. }
  10829. cdata += src->nb[1];
  10830. drow += rs;
  10831. }
  10832. }
  10833. // ggml_compute_forward_pool_1d
  10834. static void ggml_compute_forward_pool_1d(
  10835. const struct ggml_compute_params * params,
  10836. struct ggml_tensor * dst) {
  10837. const int32_t * opts = (const int32_t *)dst->op_params;
  10838. enum ggml_op_pool op = opts[0];
  10839. const int k0 = opts[1];
  10840. const int s0 = opts[2];
  10841. const int p0 = opts[3];
  10842. GGML_ASSERT(p0 == 0); // padding not supported
  10843. GGML_ASSERT(k0 == s0); // only s = k supported
  10844. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  10845. }
  10846. // ggml_compute_forward_pool_2d
  10847. static void ggml_compute_forward_pool_2d(
  10848. const struct ggml_compute_params * params,
  10849. struct ggml_tensor * dst) {
  10850. const struct ggml_tensor * src = dst->src[0];
  10851. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10852. GGML_ASSERT(params->ith == 0);
  10853. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10854. return;
  10855. }
  10856. const int32_t * opts = (const int32_t *)dst->op_params;
  10857. enum ggml_op_pool op = opts[0];
  10858. const int k0 = opts[1];
  10859. const int k1 = opts[2];
  10860. const int s0 = opts[3];
  10861. const int s1 = opts[4];
  10862. const int p0 = opts[5];
  10863. const int p1 = opts[6];
  10864. const char * cdata = (const char*)src->data;
  10865. const char * const data_end = cdata + ggml_nbytes(src);
  10866. const int64_t px = dst->ne[0];
  10867. const int64_t py = dst->ne[1];
  10868. const int64_t pa = px * py;
  10869. float * dplane = (float *)dst->data;
  10870. const int ka = k0 * k1;
  10871. const int offset0 = -p0;
  10872. const int offset1 = -p1;
  10873. while (cdata < data_end) {
  10874. for (int oy = 0; oy < py; ++oy) {
  10875. float * const drow = dplane + oy * px;
  10876. for (int ox = 0; ox < px; ++ox) {
  10877. float * const out = drow + ox;
  10878. switch (op) {
  10879. case GGML_OP_POOL_AVG: *out = 0; break;
  10880. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10881. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10882. }
  10883. const int ix = offset0 + ox * s0;
  10884. const int iy = offset1 + oy * s1;
  10885. for (int ky = 0; ky < k1; ++ky) {
  10886. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10887. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10888. for (int kx = 0; kx < k0; ++kx) {
  10889. int j = ix + kx;
  10890. if (j < 0 || j >= src->ne[0]) continue;
  10891. switch (op) {
  10892. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10893. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10894. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10895. }
  10896. }
  10897. }
  10898. switch (op) {
  10899. case GGML_OP_POOL_AVG: *out /= ka; break;
  10900. case GGML_OP_POOL_MAX: break;
  10901. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10902. }
  10903. }
  10904. }
  10905. cdata += src->nb[2];
  10906. dplane += pa;
  10907. }
  10908. }
  10909. // ggml_compute_forward_upscale
  10910. static void ggml_compute_forward_upscale_f32(
  10911. const struct ggml_compute_params * params,
  10912. struct ggml_tensor * dst) {
  10913. const struct ggml_tensor * src0 = dst->src[0];
  10914. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10915. return;
  10916. }
  10917. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10918. const int ith = params->ith;
  10919. const int nth = params->nth;
  10920. GGML_TENSOR_UNARY_OP_LOCALS
  10921. const int scale_factor = dst->op_params[0];
  10922. // TODO: optimize
  10923. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10924. const int64_t i03 = i3;
  10925. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10926. const int64_t i02 = i2;
  10927. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10928. const int64_t i01 = i1 / scale_factor;
  10929. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10930. const int64_t i00 = i0 / scale_factor;
  10931. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10932. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10933. *y = *x;
  10934. }
  10935. }
  10936. }
  10937. }
  10938. }
  10939. static void ggml_compute_forward_upscale(
  10940. const struct ggml_compute_params * params,
  10941. struct ggml_tensor * dst) {
  10942. const struct ggml_tensor * src0 = dst->src[0];
  10943. switch (src0->type) {
  10944. case GGML_TYPE_F32:
  10945. {
  10946. ggml_compute_forward_upscale_f32(params, dst);
  10947. } break;
  10948. default:
  10949. {
  10950. GGML_ASSERT(false);
  10951. } break;
  10952. }
  10953. }
  10954. // ggml_compute_forward_pad
  10955. static void ggml_compute_forward_pad_f32(
  10956. const struct ggml_compute_params * params,
  10957. struct ggml_tensor * dst) {
  10958. const struct ggml_tensor * src0 = dst->src[0];
  10959. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10960. return;
  10961. }
  10962. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10963. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10964. const int ith = params->ith;
  10965. const int nth = params->nth;
  10966. GGML_TENSOR_UNARY_OP_LOCALS
  10967. float * dst_ptr = (float *) dst->data;
  10968. // TODO: optimize
  10969. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10970. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10971. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10972. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10973. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10974. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10975. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10976. dst_ptr[dst_idx] = *src_ptr;
  10977. } else {
  10978. dst_ptr[dst_idx] = 0;
  10979. }
  10980. }
  10981. }
  10982. }
  10983. }
  10984. }
  10985. static void ggml_compute_forward_pad(
  10986. const struct ggml_compute_params * params,
  10987. struct ggml_tensor * dst) {
  10988. const struct ggml_tensor * src0 = dst->src[0];
  10989. switch (src0->type) {
  10990. case GGML_TYPE_F32:
  10991. {
  10992. ggml_compute_forward_pad_f32(params, dst);
  10993. } break;
  10994. default:
  10995. {
  10996. GGML_ASSERT(false);
  10997. } break;
  10998. }
  10999. }
  11000. // ggml_compute_forward_arange
  11001. static void ggml_compute_forward_arange_f32(
  11002. const struct ggml_compute_params * params,
  11003. struct ggml_tensor * dst) {
  11004. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11005. return;
  11006. }
  11007. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11008. const int ith = params->ith;
  11009. const int nth = params->nth;
  11010. const float start = ggml_get_op_params_f32(dst, 0);
  11011. const float stop = ggml_get_op_params_f32(dst, 1);
  11012. const float step = ggml_get_op_params_f32(dst, 2);
  11013. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11014. GGML_ASSERT(ggml_nelements(dst) == steps);
  11015. for (int64_t i = ith; i < steps; i+= nth) {
  11016. float value = start + step * i;
  11017. ((float *)dst->data)[i] = value;
  11018. }
  11019. }
  11020. static void ggml_compute_forward_arange(
  11021. const struct ggml_compute_params * params,
  11022. struct ggml_tensor * dst) {
  11023. switch (dst->type) {
  11024. case GGML_TYPE_F32:
  11025. {
  11026. ggml_compute_forward_arange_f32(params, dst);
  11027. } break;
  11028. default:
  11029. {
  11030. GGML_ASSERT(false);
  11031. } break;
  11032. }
  11033. }
  11034. static void ggml_compute_forward_timestep_embedding_f32(
  11035. const struct ggml_compute_params * params,
  11036. struct ggml_tensor * dst) {
  11037. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11038. return;
  11039. }
  11040. const struct ggml_tensor * src0 = dst->src[0];
  11041. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11042. const int ith = params->ith;
  11043. const int nth = params->nth;
  11044. GGML_TENSOR_UNARY_OP_LOCALS
  11045. const int dim = ggml_get_op_params_i32(dst, 0);
  11046. const int max_period = ggml_get_op_params_i32(dst, 1);
  11047. int half = dim / 2;
  11048. for (int64_t i = 0; i < ne00; i++) {
  11049. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11050. for (int64_t j = ith; j < half; j += nth) {
  11051. float timestep = ((float *)src0->data)[i];
  11052. float freq = (float)expf(-logf(max_period) * j / half);
  11053. float arg = timestep * freq;
  11054. embed_data[j] = cosf(arg);
  11055. embed_data[j + half] = sinf(arg);
  11056. }
  11057. if (dim % 2 != 0 && ith == 0) {
  11058. embed_data[dim] = 0.f;
  11059. }
  11060. }
  11061. }
  11062. static void ggml_compute_forward_timestep_embedding(
  11063. const struct ggml_compute_params * params,
  11064. struct ggml_tensor * dst) {
  11065. const struct ggml_tensor * src0 = dst->src[0];
  11066. switch (src0->type) {
  11067. case GGML_TYPE_F32:
  11068. {
  11069. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11070. } break;
  11071. default:
  11072. {
  11073. GGML_ASSERT(false);
  11074. } break;
  11075. }
  11076. }
  11077. // ggml_compute_forward_argsort
  11078. static void ggml_compute_forward_argsort_f32(
  11079. const struct ggml_compute_params * params,
  11080. struct ggml_tensor * dst) {
  11081. const struct ggml_tensor * src0 = dst->src[0];
  11082. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11083. return;
  11084. }
  11085. GGML_TENSOR_UNARY_OP_LOCALS
  11086. GGML_ASSERT(nb0 == sizeof(float));
  11087. const int ith = params->ith;
  11088. const int nth = params->nth;
  11089. const int64_t nr = ggml_nrows(src0);
  11090. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11091. for (int64_t i = ith; i < nr; i += nth) {
  11092. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11093. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11094. for (int64_t j = 0; j < ne0; j++) {
  11095. dst_data[j] = j;
  11096. }
  11097. // C doesn't have a functional sort, so we do a bubble sort instead
  11098. for (int64_t j = 0; j < ne0; j++) {
  11099. for (int64_t k = j + 1; k < ne0; k++) {
  11100. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11101. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11102. int32_t tmp = dst_data[j];
  11103. dst_data[j] = dst_data[k];
  11104. dst_data[k] = tmp;
  11105. }
  11106. }
  11107. }
  11108. }
  11109. }
  11110. static void ggml_compute_forward_argsort(
  11111. const struct ggml_compute_params * params,
  11112. struct ggml_tensor * dst) {
  11113. const struct ggml_tensor * src0 = dst->src[0];
  11114. switch (src0->type) {
  11115. case GGML_TYPE_F32:
  11116. {
  11117. ggml_compute_forward_argsort_f32(params, dst);
  11118. } break;
  11119. default:
  11120. {
  11121. GGML_ASSERT(false);
  11122. } break;
  11123. }
  11124. }
  11125. // ggml_compute_forward_flash_attn
  11126. static void ggml_compute_forward_flash_attn_f32(
  11127. const struct ggml_compute_params * params,
  11128. const bool masked,
  11129. struct ggml_tensor * dst) {
  11130. const struct ggml_tensor * q = dst->src[0];
  11131. const struct ggml_tensor * k = dst->src[1];
  11132. const struct ggml_tensor * v = dst->src[2];
  11133. int64_t t0 = ggml_perf_time_us();
  11134. UNUSED(t0);
  11135. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11136. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11137. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11138. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11139. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11140. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11141. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11142. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11143. const int ith = params->ith;
  11144. const int nth = params->nth;
  11145. const int64_t D = neq0;
  11146. const int64_t N = neq1;
  11147. const int64_t P = nek1 - N;
  11148. const int64_t M = P + N;
  11149. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11150. GGML_ASSERT(ne0 == D);
  11151. GGML_ASSERT(ne1 == N);
  11152. GGML_ASSERT(P >= 0);
  11153. GGML_ASSERT(nbq0 == sizeof(float));
  11154. GGML_ASSERT(nbk0 == sizeof(float));
  11155. GGML_ASSERT(nbv0 == sizeof(float));
  11156. GGML_ASSERT(neq0 == D);
  11157. GGML_ASSERT(nek0 == D);
  11158. GGML_ASSERT(nev1 == D);
  11159. GGML_ASSERT(neq1 == N);
  11160. GGML_ASSERT(nek1 == N + P);
  11161. GGML_ASSERT(nev1 == D);
  11162. // dst cannot be transposed or permuted
  11163. GGML_ASSERT(nb0 == sizeof(float));
  11164. GGML_ASSERT(nb0 <= nb1);
  11165. GGML_ASSERT(nb1 <= nb2);
  11166. GGML_ASSERT(nb2 <= nb3);
  11167. if (params->type == GGML_TASK_TYPE_INIT) {
  11168. return;
  11169. }
  11170. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11171. return;
  11172. }
  11173. // parallelize by q rows using ggml_vec_dot_f32
  11174. // total rows in q
  11175. const int nr = neq1*neq2*neq3;
  11176. // rows per thread
  11177. const int dr = (nr + nth - 1)/nth;
  11178. // row range for this thread
  11179. const int ir0 = dr*ith;
  11180. const int ir1 = MIN(ir0 + dr, nr);
  11181. const float scale = 1.0f/sqrtf(D);
  11182. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11183. for (int ir = ir0; ir < ir1; ++ir) {
  11184. // q indices
  11185. const int iq3 = ir/(neq2*neq1);
  11186. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11187. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11188. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11189. for (int i = M; i < Mup; ++i) {
  11190. S[i] = -INFINITY;
  11191. }
  11192. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11193. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11194. // k indices
  11195. const int ik3 = iq3;
  11196. const int ik2 = iq2 % nek2;
  11197. const int ik1 = ic;
  11198. // S indices
  11199. const int i1 = ik1;
  11200. ggml_vec_dot_f32(neq0,
  11201. S + i1, 0,
  11202. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11203. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11204. }
  11205. // scale
  11206. ggml_vec_scale_f32(masked_begin, S, scale);
  11207. for (int64_t i = masked_begin; i < M; i++) {
  11208. S[i] = -INFINITY;
  11209. }
  11210. // softmax
  11211. // exclude known -INF S[..] values from max and loop
  11212. // dont forget to set their SW values to zero
  11213. {
  11214. float max = -INFINITY;
  11215. ggml_vec_max_f32(masked_begin, &max, S);
  11216. ggml_float sum = 0.0;
  11217. {
  11218. #ifdef GGML_SOFT_MAX_ACCELERATE
  11219. max = -max;
  11220. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11221. vvexpf(S, S, &Mup);
  11222. ggml_vec_sum_f32(Mup, &sum, S);
  11223. #else
  11224. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11225. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11226. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11227. if (i >= masked_begin) {
  11228. break;
  11229. }
  11230. float * SS = S + i;
  11231. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11232. if (i + j >= masked_begin) {
  11233. break;
  11234. } else if (SS[j] == -INFINITY) {
  11235. SS[j] = 0.0f;
  11236. } else {
  11237. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11238. const float val = expf(SS[j] - max);
  11239. #else
  11240. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11241. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11242. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11243. #endif
  11244. sump[j] += (ggml_float)val;
  11245. SS[j] = val;
  11246. }
  11247. }
  11248. }
  11249. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11250. sum += sump[i];
  11251. }
  11252. #endif
  11253. }
  11254. assert(sum > 0.0);
  11255. sum = 1.0/sum;
  11256. ggml_vec_scale_f32(masked_begin, S, sum);
  11257. #ifndef NDEBUG
  11258. for (int i = 0; i < masked_begin; ++i) {
  11259. assert(!isnan(S[i]));
  11260. assert(!isinf(S[i]));
  11261. }
  11262. #endif
  11263. }
  11264. for (int64_t ic = 0; ic < nev1; ++ic) {
  11265. // dst indices
  11266. const int i1 = iq1;
  11267. const int i2 = iq2;
  11268. const int i3 = iq3;
  11269. // v indices
  11270. const int iv2 = iq2 % nev2;
  11271. const int iv3 = iq3;
  11272. ggml_vec_dot_f32(masked_begin,
  11273. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11274. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11275. S, 0, 1);
  11276. }
  11277. }
  11278. }
  11279. static void ggml_compute_forward_flash_attn_f16(
  11280. const struct ggml_compute_params * params,
  11281. const bool masked,
  11282. struct ggml_tensor * dst) {
  11283. const struct ggml_tensor * q = dst->src[0];
  11284. const struct ggml_tensor * k = dst->src[1];
  11285. const struct ggml_tensor * v = dst->src[2];
  11286. int64_t t0 = ggml_perf_time_us();
  11287. UNUSED(t0);
  11288. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11289. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11290. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11291. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11292. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11293. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11294. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11295. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11296. const int ith = params->ith;
  11297. const int nth = params->nth;
  11298. const int64_t D = neq0;
  11299. const int64_t N = neq1;
  11300. const int64_t P = nek1 - N;
  11301. const int64_t M = P + N;
  11302. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11303. GGML_ASSERT(ne0 == D);
  11304. GGML_ASSERT(ne1 == N);
  11305. GGML_ASSERT(P >= 0);
  11306. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11307. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11308. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11309. GGML_ASSERT(neq0 == D);
  11310. GGML_ASSERT(nek0 == D);
  11311. GGML_ASSERT(nev1 == D);
  11312. GGML_ASSERT(neq1 == N);
  11313. GGML_ASSERT(nek1 == N + P);
  11314. GGML_ASSERT(nev1 == D);
  11315. // dst cannot be transposed or permuted
  11316. GGML_ASSERT(nb0 == sizeof(float));
  11317. GGML_ASSERT(nb0 <= nb1);
  11318. GGML_ASSERT(nb1 <= nb2);
  11319. GGML_ASSERT(nb2 <= nb3);
  11320. if (params->type == GGML_TASK_TYPE_INIT) {
  11321. return;
  11322. }
  11323. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11324. return;
  11325. }
  11326. // parallelize by q rows using ggml_vec_dot_f32
  11327. // total rows in q
  11328. const int nr = neq1*neq2*neq3;
  11329. // rows per thread
  11330. const int dr = (nr + nth - 1)/nth;
  11331. // row range for this thread
  11332. const int ir0 = dr*ith;
  11333. const int ir1 = MIN(ir0 + dr, nr);
  11334. const float scale = 1.0f/sqrtf(D);
  11335. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11336. for (int ir = ir0; ir < ir1; ++ir) {
  11337. // q indices
  11338. const int iq3 = ir/(neq2*neq1);
  11339. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11340. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11341. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11342. for (int i = M; i < Mup; ++i) {
  11343. S[i] = -INFINITY;
  11344. }
  11345. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11346. for (int64_t ic = 0; ic < nek1; ++ic) {
  11347. // k indices
  11348. const int ik3 = iq3;
  11349. const int ik2 = iq2 % nek2;
  11350. const int ik1 = ic;
  11351. // S indices
  11352. const int i1 = ik1;
  11353. ggml_vec_dot_f16(neq0,
  11354. S + i1, 0,
  11355. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11356. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11357. }
  11358. } else {
  11359. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11360. // k indices
  11361. const int ik3 = iq3;
  11362. const int ik2 = iq2 % nek2;
  11363. const int ik1 = ic;
  11364. // S indices
  11365. const int i1 = ik1;
  11366. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11367. S + i1,
  11368. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11369. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11370. }
  11371. }
  11372. // scale
  11373. ggml_vec_scale_f32(nek1, S, scale);
  11374. if (masked) {
  11375. for (int64_t i = P; i < M; i++) {
  11376. if (i > P + iq1) {
  11377. S[i] = -INFINITY;
  11378. }
  11379. }
  11380. }
  11381. // softmax
  11382. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11383. // dont forget to set their S values to zero
  11384. {
  11385. float max = -INFINITY;
  11386. ggml_vec_max_f32(M, &max, S);
  11387. ggml_float sum = 0.0;
  11388. {
  11389. #ifdef GGML_SOFT_MAX_ACCELERATE
  11390. max = -max;
  11391. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11392. vvexpf(S, S, &Mup);
  11393. ggml_vec_sum_f32(Mup, &sum, S);
  11394. #else
  11395. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11396. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11397. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11398. float * SS = S + i;
  11399. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11400. if (SS[j] == -INFINITY) {
  11401. SS[j] = 0.0f;
  11402. } else {
  11403. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11404. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11405. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11406. sump[j] += (ggml_float)val;
  11407. SS[j] = val;
  11408. }
  11409. }
  11410. }
  11411. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11412. sum += sump[i];
  11413. }
  11414. #endif
  11415. }
  11416. assert(sum > 0.0);
  11417. sum = 1.0/sum;
  11418. ggml_vec_scale_f32(M, S, sum);
  11419. #ifndef NDEBUG
  11420. for (int i = 0; i < M; ++i) {
  11421. assert(!isnan(S[i]));
  11422. assert(!isinf(S[i]));
  11423. }
  11424. #endif
  11425. }
  11426. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11427. for (int64_t i = 0; i < M; i++) {
  11428. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11429. }
  11430. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11431. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11432. for (int64_t ic = 0; ic < nev1; ++ic) {
  11433. // dst indices
  11434. const int i1 = iq1;
  11435. const int i2 = iq2;
  11436. const int i3 = iq3;
  11437. // v indices
  11438. const int iv2 = iq2 % nev2;
  11439. const int iv3 = iq3;
  11440. ggml_vec_dot_f16(nev0,
  11441. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11442. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11443. S16, 0, 1);
  11444. }
  11445. } else {
  11446. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11447. // dst indices
  11448. const int i1 = iq1;
  11449. const int i2 = iq2;
  11450. const int i3 = iq3;
  11451. // v indices
  11452. const int iv2 = iq2 % nev2;
  11453. const int iv3 = iq3;
  11454. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11455. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11456. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11457. S16);
  11458. }
  11459. }
  11460. }
  11461. }
  11462. static void ggml_compute_forward_flash_attn(
  11463. const struct ggml_compute_params * params,
  11464. const bool masked,
  11465. struct ggml_tensor * dst) {
  11466. const struct ggml_tensor * q = dst->src[0];
  11467. switch (q->type) {
  11468. case GGML_TYPE_F16:
  11469. {
  11470. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11471. } break;
  11472. case GGML_TYPE_F32:
  11473. {
  11474. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11475. } break;
  11476. default:
  11477. {
  11478. GGML_ASSERT(false);
  11479. } break;
  11480. }
  11481. }
  11482. // ggml_compute_forward_flash_ff
  11483. static void ggml_compute_forward_flash_ff_f16(
  11484. const struct ggml_compute_params * params,
  11485. struct ggml_tensor * dst) {
  11486. const struct ggml_tensor * a = dst->src[0]; // F16
  11487. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11488. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11489. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11490. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11491. int64_t t0 = ggml_perf_time_us();
  11492. UNUSED(t0);
  11493. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11494. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11495. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11496. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11497. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11498. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11499. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11500. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11501. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11502. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11503. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11504. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11505. const int ith = params->ith;
  11506. const int nth = params->nth;
  11507. const int64_t D = nea0;
  11508. //const int64_t N = nea1;
  11509. const int64_t M = neb01;
  11510. GGML_ASSERT(ne0 == nea0);
  11511. GGML_ASSERT(ne1 == nea1);
  11512. GGML_ASSERT(ne2 == nea2);
  11513. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11514. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11515. GGML_ASSERT(nbb10 == sizeof(float));
  11516. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11517. GGML_ASSERT(nbc10 == sizeof(float));
  11518. GGML_ASSERT(neb00 == D);
  11519. GGML_ASSERT(neb01 == M);
  11520. GGML_ASSERT(neb10 == M);
  11521. GGML_ASSERT(neb11 == 1);
  11522. GGML_ASSERT(nec00 == M);
  11523. GGML_ASSERT(nec01 == D);
  11524. GGML_ASSERT(nec10 == D);
  11525. GGML_ASSERT(nec11 == 1);
  11526. // dst cannot be transposed or permuted
  11527. GGML_ASSERT(nb0 == sizeof(float));
  11528. GGML_ASSERT(nb0 <= nb1);
  11529. GGML_ASSERT(nb1 <= nb2);
  11530. GGML_ASSERT(nb2 <= nb3);
  11531. if (params->type == GGML_TASK_TYPE_INIT) {
  11532. return;
  11533. }
  11534. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11535. return;
  11536. }
  11537. // parallelize by a rows using ggml_vec_dot_f32
  11538. // total rows in a
  11539. const int nr = nea1*nea2*nea3;
  11540. // rows per thread
  11541. const int dr = (nr + nth - 1)/nth;
  11542. // row range for this thread
  11543. const int ir0 = dr*ith;
  11544. const int ir1 = MIN(ir0 + dr, nr);
  11545. for (int ir = ir0; ir < ir1; ++ir) {
  11546. // a indices
  11547. const int ia3 = ir/(nea2*nea1);
  11548. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11549. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11550. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11551. for (int64_t ic = 0; ic < neb01; ++ic) {
  11552. // b0 indices
  11553. const int ib03 = ia3;
  11554. const int ib02 = ia2;
  11555. const int ib01 = ic;
  11556. // S indices
  11557. const int i1 = ib01;
  11558. ggml_vec_dot_f16(nea0,
  11559. S + i1, 0,
  11560. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11561. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11562. }
  11563. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11564. //ggml_vec_gelu_f32(neb01, S, S);
  11565. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11566. for (int64_t i = 0; i < M; i++) {
  11567. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11568. }
  11569. ggml_vec_gelu_f16(neb01, S16, S16);
  11570. {
  11571. // dst indices
  11572. const int i1 = ia1;
  11573. const int i2 = ia2;
  11574. const int i3 = ia3;
  11575. for (int64_t ic = 0; ic < nec01; ++ic) {
  11576. ggml_vec_dot_f16(neb01,
  11577. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11578. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11579. S16, 0, 1);
  11580. }
  11581. ggml_vec_add_f32(nec01,
  11582. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11583. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11584. (float *) c1->data);
  11585. }
  11586. }
  11587. }
  11588. static void ggml_compute_forward_flash_ff(
  11589. const struct ggml_compute_params * params,
  11590. struct ggml_tensor * dst) {
  11591. const struct ggml_tensor * b0 = dst->src[1];
  11592. switch (b0->type) {
  11593. case GGML_TYPE_F16:
  11594. {
  11595. ggml_compute_forward_flash_ff_f16(params, dst);
  11596. } break;
  11597. case GGML_TYPE_F32:
  11598. {
  11599. GGML_ASSERT(false); // TODO
  11600. } break;
  11601. default:
  11602. {
  11603. GGML_ASSERT(false);
  11604. } break;
  11605. }
  11606. }
  11607. // ggml_compute_forward_flash_attn_back
  11608. static void ggml_compute_forward_flash_attn_back_f32(
  11609. const struct ggml_compute_params * params,
  11610. const bool masked,
  11611. struct ggml_tensor * dst) {
  11612. const struct ggml_tensor * q = dst->src[0];
  11613. const struct ggml_tensor * k = dst->src[1];
  11614. const struct ggml_tensor * v = dst->src[2];
  11615. const struct ggml_tensor * d = dst->src[3];
  11616. int64_t t0 = ggml_perf_time_us();
  11617. UNUSED(t0);
  11618. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11619. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11620. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11621. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11622. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11623. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11624. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11625. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11626. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11627. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11628. const int ith = params->ith;
  11629. const int nth = params->nth;
  11630. const int64_t D = neq0;
  11631. const int64_t N = neq1;
  11632. const int64_t P = nek1 - N;
  11633. const int64_t M = P + N;
  11634. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11635. const int mxDM = MAX(D, Mup);
  11636. // GGML_ASSERT(ne0 == D);
  11637. // GGML_ASSERT(ne1 == N);
  11638. GGML_ASSERT(P >= 0);
  11639. GGML_ASSERT(nbq0 == sizeof(float));
  11640. GGML_ASSERT(nbk0 == sizeof(float));
  11641. GGML_ASSERT(nbv0 == sizeof(float));
  11642. GGML_ASSERT(neq0 == D);
  11643. GGML_ASSERT(nek0 == D);
  11644. GGML_ASSERT(nev1 == D);
  11645. GGML_ASSERT(ned0 == D);
  11646. GGML_ASSERT(neq1 == N);
  11647. GGML_ASSERT(nek1 == N + P);
  11648. GGML_ASSERT(nev1 == D);
  11649. GGML_ASSERT(ned1 == N);
  11650. // dst cannot be transposed or permuted
  11651. GGML_ASSERT(nb0 == sizeof(float));
  11652. GGML_ASSERT(nb0 <= nb1);
  11653. GGML_ASSERT(nb1 <= nb2);
  11654. GGML_ASSERT(nb2 <= nb3);
  11655. if (params->type == GGML_TASK_TYPE_INIT) {
  11656. if (ith == 0) {
  11657. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11658. }
  11659. return;
  11660. }
  11661. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11662. return;
  11663. }
  11664. const int64_t elem_q = ggml_nelements(q);
  11665. const int64_t elem_k = ggml_nelements(k);
  11666. enum ggml_type result_type = dst->type;
  11667. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11668. const size_t tsize = ggml_type_size(result_type);
  11669. const size_t offs_q = 0;
  11670. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11671. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11672. void * grad_q = (char *) dst->data;
  11673. void * grad_k = (char *) dst->data + offs_k;
  11674. void * grad_v = (char *) dst->data + offs_v;
  11675. const size_t nbgq1 = nb0*neq0;
  11676. const size_t nbgq2 = nb0*neq0*neq1;
  11677. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11678. const size_t nbgk1 = nb0*nek0;
  11679. const size_t nbgk2 = nb0*nek0*nek1;
  11680. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11681. const size_t nbgv1 = nb0*nev0;
  11682. const size_t nbgv2 = nb0*nev0*nev1;
  11683. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11684. // parallelize by k rows using ggml_vec_dot_f32
  11685. // total rows in k
  11686. const int nr = nek2*nek3;
  11687. // rows per thread
  11688. const int dr = (nr + nth - 1)/nth;
  11689. // row range for this thread
  11690. const int ir0 = dr*ith;
  11691. const int ir1 = MIN(ir0 + dr, nr);
  11692. const float scale = 1.0f/sqrtf(D);
  11693. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11694. // how often k2 (and v2) is repeated in q2
  11695. int nrep = neq2/nek2;
  11696. for (int ir = ir0; ir < ir1; ++ir) {
  11697. // q indices
  11698. const int ik3 = ir/(nek2);
  11699. const int ik2 = ir - ik3*nek2;
  11700. const int iq3 = ik3;
  11701. const int id3 = ik3;
  11702. const int iv3 = ik3;
  11703. const int iv2 = ik2;
  11704. for (int irep = 0; irep < nrep; ++irep) {
  11705. const int iq2 = ik2 + irep*nek2;
  11706. const int id2 = iq2;
  11707. // (ik2 + irep*nek2) % nek2 == ik2
  11708. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11709. const int id1 = iq1;
  11710. // not sure about CACHE_LINE_SIZE_F32..
  11711. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11712. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11713. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11714. for (int i = M; i < Mup; ++i) {
  11715. S[i] = -INFINITY;
  11716. }
  11717. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11718. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11719. // k indices
  11720. const int ik1 = ic;
  11721. // S indices
  11722. const int i1 = ik1;
  11723. ggml_vec_dot_f32(neq0,
  11724. S + i1, 0,
  11725. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11726. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11727. }
  11728. // scale
  11729. ggml_vec_scale_f32(masked_begin, S, scale);
  11730. for (int64_t i = masked_begin; i < M; i++) {
  11731. S[i] = -INFINITY;
  11732. }
  11733. // softmax
  11734. // exclude known -INF S[..] values from max and loop
  11735. // dont forget to set their SM values to zero
  11736. {
  11737. float max = -INFINITY;
  11738. ggml_vec_max_f32(masked_begin, &max, S);
  11739. ggml_float sum = 0.0;
  11740. {
  11741. #ifdef GGML_SOFT_MAX_ACCELERATE
  11742. max = -max;
  11743. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11744. vvexpf(SM, SM, &Mup);
  11745. ggml_vec_sum_f32(Mup, &sum, SM);
  11746. #else
  11747. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11748. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11749. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11750. if (i >= masked_begin) {
  11751. break;
  11752. }
  11753. float * SR = S + i;
  11754. float * SW = SM + i;
  11755. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11756. if (i + j >= masked_begin) {
  11757. break;
  11758. } else if (SR[j] == -INFINITY) {
  11759. SW[j] = 0.0f;
  11760. } else {
  11761. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11762. const float val = expf(SR[j] - max);
  11763. #else
  11764. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11765. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11766. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11767. #endif
  11768. sump[j] += (ggml_float)val;
  11769. SW[j] = val;
  11770. }
  11771. }
  11772. }
  11773. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11774. sum += sump[i];
  11775. }
  11776. #endif
  11777. }
  11778. assert(sum > 0.0);
  11779. sum = 1.0/sum;
  11780. ggml_vec_scale_f32(masked_begin, SM, sum);
  11781. }
  11782. // step-by-step explanation
  11783. {
  11784. // forward-process shape grads from backward process
  11785. // parallel_for ik2,ik3:
  11786. // for irep:
  11787. // iq2 = ik2 + irep*nek2
  11788. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11789. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11790. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11791. // for iq1:
  11792. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11793. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11794. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11795. // S0 = -Inf [D,1,1,1]
  11796. // ~S1[i] = dot(kcur[:D,i], qcur)
  11797. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11798. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11799. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11800. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11801. // ~S5[i] = dot(vcur[:,i], S4)
  11802. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11803. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11804. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11805. // dst backward-/ grad[dst] = d
  11806. //
  11807. // output gradients with their dependencies:
  11808. //
  11809. // grad[kcur] = grad[S1].T @ qcur
  11810. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11811. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11812. // grad[S4] = grad[S5] @ vcur
  11813. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11814. // grad[qcur] = grad[S1] @ kcur
  11815. // grad[vcur] = grad[S5].T @ S4
  11816. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11817. //
  11818. // in post-order:
  11819. //
  11820. // S1 = qcur @ kcur.T
  11821. // S2 = S1 * scale
  11822. // S3 = diag_mask_inf(S2, P)
  11823. // S4 = softmax(S3)
  11824. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11825. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11826. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11827. // grad[qcur] = grad[S1] @ kcur
  11828. // grad[kcur] = grad[S1].T @ qcur
  11829. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11830. //
  11831. // using less variables (SM=S4):
  11832. //
  11833. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11834. // SM = softmax(S)
  11835. // S = d[:D,iq1,iq2,iq3] @ vcur
  11836. // dot_SM_gradSM = dot(SM, S)
  11837. // S = SM * (S - dot(SM, S))
  11838. // S = diag_mask_zero(S, P) * scale
  11839. //
  11840. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11841. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11842. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11843. }
  11844. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11845. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11846. // for ic:
  11847. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11848. // exclude known future zero S[..] values from operation
  11849. ggml_vec_set_f32(masked_begin, S, 0);
  11850. for (int64_t ic = 0; ic < D; ++ic) {
  11851. ggml_vec_mad_f32(masked_begin,
  11852. S,
  11853. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11854. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11855. }
  11856. // S = SM * (S - dot(SM, S))
  11857. float dot_SM_gradSM = 0;
  11858. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11859. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11860. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11861. // S = diag_mask_zero(S, P) * scale
  11862. // already done by above ggml_vec_set_f32
  11863. // exclude known zero S[..] values from operation
  11864. ggml_vec_scale_f32(masked_begin, S, scale);
  11865. // S shape [M,1]
  11866. // SM shape [M,1]
  11867. // kcur shape [D,M]
  11868. // qcur shape [D,1]
  11869. // vcur shape [M,D]
  11870. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11871. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11872. // for ic:
  11873. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11874. // exclude known zero S[..] values from loop
  11875. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11876. ggml_vec_mad_f32(D,
  11877. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11878. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11879. S[ic]);
  11880. }
  11881. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11882. // for ic:
  11883. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11884. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11885. // exclude known zero S[..] values from loop
  11886. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11887. ggml_vec_mad_f32(D,
  11888. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11889. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11890. S[ic]);
  11891. }
  11892. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11893. // for ic:
  11894. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11895. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11896. // exclude known zero SM[..] values from mad
  11897. for (int64_t ic = 0; ic < D; ++ic) {
  11898. ggml_vec_mad_f32(masked_begin,
  11899. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11900. SM,
  11901. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11902. }
  11903. }
  11904. }
  11905. }
  11906. }
  11907. static void ggml_compute_forward_flash_attn_back(
  11908. const struct ggml_compute_params * params,
  11909. const bool masked,
  11910. struct ggml_tensor * dst) {
  11911. const struct ggml_tensor * q = dst->src[0];
  11912. switch (q->type) {
  11913. case GGML_TYPE_F32:
  11914. {
  11915. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  11916. } break;
  11917. default:
  11918. {
  11919. GGML_ASSERT(false);
  11920. } break;
  11921. }
  11922. }
  11923. // ggml_compute_forward_win_part
  11924. static void ggml_compute_forward_win_part_f32(
  11925. const struct ggml_compute_params * params,
  11926. struct ggml_tensor * dst) {
  11927. const struct ggml_tensor * src0 = dst->src[0];
  11928. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11929. return;
  11930. }
  11931. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11932. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11933. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11934. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11935. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11936. assert(ne00 == ne0);
  11937. assert(ne3 == nep0*nep1);
  11938. // TODO: optimize / multi-thread
  11939. for (int py = 0; py < nep1; ++py) {
  11940. for (int px = 0; px < nep0; ++px) {
  11941. const int64_t i3 = py*nep0 + px;
  11942. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11943. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11944. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11945. const int64_t i02 = py*w + i2;
  11946. const int64_t i01 = px*w + i1;
  11947. const int64_t i00 = i0;
  11948. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11949. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11950. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11951. ((float *) dst->data)[i] = 0.0f;
  11952. } else {
  11953. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11954. }
  11955. }
  11956. }
  11957. }
  11958. }
  11959. }
  11960. }
  11961. static void ggml_compute_forward_win_part(
  11962. const struct ggml_compute_params * params,
  11963. struct ggml_tensor * dst) {
  11964. const struct ggml_tensor * src0 = dst->src[0];
  11965. switch (src0->type) {
  11966. case GGML_TYPE_F32:
  11967. {
  11968. ggml_compute_forward_win_part_f32(params, dst);
  11969. } break;
  11970. default:
  11971. {
  11972. GGML_ASSERT(false);
  11973. } break;
  11974. }
  11975. }
  11976. // ggml_compute_forward_win_unpart
  11977. static void ggml_compute_forward_win_unpart_f32(
  11978. const struct ggml_compute_params * params,
  11979. struct ggml_tensor * dst) {
  11980. const struct ggml_tensor * src0 = dst->src[0];
  11981. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11982. return;
  11983. }
  11984. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11985. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11986. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11987. // padding
  11988. const int px = (w - ne1%w)%w;
  11989. //const int py = (w - ne2%w)%w;
  11990. const int npx = (px + ne1)/w;
  11991. //const int npy = (py + ne2)/w;
  11992. assert(ne0 == ne00);
  11993. // TODO: optimize / multi-thread
  11994. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11995. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11996. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11997. const int ip2 = i2/w;
  11998. const int ip1 = i1/w;
  11999. const int64_t i02 = i2%w;
  12000. const int64_t i01 = i1%w;
  12001. const int64_t i00 = i0;
  12002. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12003. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12004. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12005. }
  12006. }
  12007. }
  12008. }
  12009. static void ggml_compute_forward_win_unpart(
  12010. const struct ggml_compute_params * params,
  12011. struct ggml_tensor * dst) {
  12012. const struct ggml_tensor * src0 = dst->src[0];
  12013. switch (src0->type) {
  12014. case GGML_TYPE_F32:
  12015. {
  12016. ggml_compute_forward_win_unpart_f32(params, dst);
  12017. } break;
  12018. default:
  12019. {
  12020. GGML_ASSERT(false);
  12021. } break;
  12022. }
  12023. }
  12024. //gmml_compute_forward_unary
  12025. static void ggml_compute_forward_unary(
  12026. const struct ggml_compute_params * params,
  12027. struct ggml_tensor * dst) {
  12028. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12029. switch (op) {
  12030. case GGML_UNARY_OP_ABS:
  12031. {
  12032. ggml_compute_forward_abs(params, dst);
  12033. } break;
  12034. case GGML_UNARY_OP_SGN:
  12035. {
  12036. ggml_compute_forward_sgn(params, dst);
  12037. } break;
  12038. case GGML_UNARY_OP_NEG:
  12039. {
  12040. ggml_compute_forward_neg(params, dst);
  12041. } break;
  12042. case GGML_UNARY_OP_STEP:
  12043. {
  12044. ggml_compute_forward_step(params, dst);
  12045. } break;
  12046. case GGML_UNARY_OP_TANH:
  12047. {
  12048. ggml_compute_forward_tanh(params, dst);
  12049. } break;
  12050. case GGML_UNARY_OP_ELU:
  12051. {
  12052. ggml_compute_forward_elu(params, dst);
  12053. } break;
  12054. case GGML_UNARY_OP_RELU:
  12055. {
  12056. ggml_compute_forward_relu(params, dst);
  12057. } break;
  12058. case GGML_UNARY_OP_GELU:
  12059. {
  12060. ggml_compute_forward_gelu(params, dst);
  12061. } break;
  12062. case GGML_UNARY_OP_GELU_QUICK:
  12063. {
  12064. ggml_compute_forward_gelu_quick(params, dst);
  12065. } break;
  12066. case GGML_UNARY_OP_SILU:
  12067. {
  12068. ggml_compute_forward_silu(params, dst);
  12069. } break;
  12070. case GGML_UNARY_OP_HARDSWISH:
  12071. {
  12072. ggml_compute_forward_hardswish(params, dst);
  12073. } break;
  12074. case GGML_UNARY_OP_HARDSIGMOID:
  12075. {
  12076. ggml_compute_forward_hardsigmoid(params, dst);
  12077. } break;
  12078. default:
  12079. {
  12080. GGML_ASSERT(false);
  12081. } break;
  12082. }
  12083. }
  12084. // ggml_compute_forward_get_rel_pos
  12085. static void ggml_compute_forward_get_rel_pos_f16(
  12086. const struct ggml_compute_params * params,
  12087. struct ggml_tensor * dst) {
  12088. const struct ggml_tensor * src0 = dst->src[0];
  12089. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12090. return;
  12091. }
  12092. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12093. GGML_TENSOR_UNARY_OP_LOCALS
  12094. const int64_t w = ne1;
  12095. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12096. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12097. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12098. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12099. const int64_t pos = (w - i1 - 1) + i2;
  12100. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12101. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12102. }
  12103. }
  12104. }
  12105. }
  12106. static void ggml_compute_forward_get_rel_pos(
  12107. const struct ggml_compute_params * params,
  12108. struct ggml_tensor * dst) {
  12109. const struct ggml_tensor * src0 = dst->src[0];
  12110. switch (src0->type) {
  12111. case GGML_TYPE_F16:
  12112. {
  12113. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12114. } break;
  12115. default:
  12116. {
  12117. GGML_ASSERT(false);
  12118. } break;
  12119. }
  12120. }
  12121. // ggml_compute_forward_add_rel_pos
  12122. static void ggml_compute_forward_add_rel_pos_f32(
  12123. const struct ggml_compute_params * params,
  12124. struct ggml_tensor * dst) {
  12125. const struct ggml_tensor * src0 = dst->src[0];
  12126. const struct ggml_tensor * src1 = dst->src[1];
  12127. const struct ggml_tensor * src2 = dst->src[2];
  12128. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12129. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12130. if (params->ith != 0) {
  12131. return;
  12132. }
  12133. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12134. return;
  12135. }
  12136. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12137. return;
  12138. }
  12139. int64_t t0 = ggml_perf_time_us();
  12140. UNUSED(t0);
  12141. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12142. float * src1_data = (float *) src1->data;
  12143. float * src2_data = (float *) src2->data;
  12144. float * dst_data = (float *) dst->data;
  12145. const int64_t ne10 = src1->ne[0];
  12146. const int64_t ne11 = src1->ne[1];
  12147. const int64_t ne12 = src1->ne[2];
  12148. const int64_t ne13 = src1->ne[3];
  12149. const int ith = params->ith;
  12150. const int nth = params->nth;
  12151. // total patches in dst
  12152. const int np = ne13;
  12153. // patches per thread
  12154. const int dp = (np + nth - 1)/nth;
  12155. // patch range for this thread
  12156. const int ip0 = dp*ith;
  12157. const int ip1 = MIN(ip0 + dp, np);
  12158. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12159. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12160. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12161. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12162. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12163. const int64_t jp0 = jp1 + i10;
  12164. const float src1_e = src1_data[jp0];
  12165. const float src2_e = src2_data[jp0];
  12166. const int64_t jdh = jp0 * ne10;
  12167. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12168. for (int64_t j = 0; j < ne10; ++j) {
  12169. dst_data[jdh + j ] += src2_e;
  12170. dst_data[jdw + j*ne10] += src1_e;
  12171. }
  12172. }
  12173. }
  12174. }
  12175. }
  12176. }
  12177. static void ggml_compute_forward_add_rel_pos(
  12178. const struct ggml_compute_params * params,
  12179. struct ggml_tensor * dst) {
  12180. const struct ggml_tensor * src0 = dst->src[0];
  12181. switch (src0->type) {
  12182. case GGML_TYPE_F32:
  12183. {
  12184. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12185. } break;
  12186. default:
  12187. {
  12188. GGML_ASSERT(false);
  12189. } break;
  12190. }
  12191. }
  12192. // ggml_compute_forward_map_unary
  12193. static void ggml_compute_forward_map_unary_f32(
  12194. const struct ggml_compute_params * params,
  12195. struct ggml_tensor * dst,
  12196. const ggml_unary_op_f32_t fun) {
  12197. const struct ggml_tensor * src0 = dst->src[0];
  12198. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12199. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12200. return;
  12201. }
  12202. const int n = ggml_nrows(src0);
  12203. const int nc = src0->ne[0];
  12204. assert( dst->nb[0] == sizeof(float));
  12205. assert(src0->nb[0] == sizeof(float));
  12206. for (int i = 0; i < n; i++) {
  12207. fun(nc,
  12208. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12209. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12210. }
  12211. }
  12212. static void ggml_compute_forward_map_unary(
  12213. const struct ggml_compute_params * params,
  12214. struct ggml_tensor * dst,
  12215. const ggml_unary_op_f32_t fun) {
  12216. const struct ggml_tensor * src0 = dst->src[0];
  12217. switch (src0->type) {
  12218. case GGML_TYPE_F32:
  12219. {
  12220. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12221. } break;
  12222. default:
  12223. {
  12224. GGML_ASSERT(false);
  12225. } break;
  12226. }
  12227. }
  12228. // ggml_compute_forward_map_binary
  12229. static void ggml_compute_forward_map_binary_f32(
  12230. const struct ggml_compute_params * params,
  12231. struct ggml_tensor * dst,
  12232. const ggml_binary_op_f32_t fun) {
  12233. const struct ggml_tensor * src0 = dst->src[0];
  12234. const struct ggml_tensor * src1 = dst->src[1];
  12235. assert(params->ith == 0);
  12236. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12237. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12238. return;
  12239. }
  12240. const int n = ggml_nrows(src0);
  12241. const int nc = src0->ne[0];
  12242. assert( dst->nb[0] == sizeof(float));
  12243. assert(src0->nb[0] == sizeof(float));
  12244. assert(src1->nb[0] == sizeof(float));
  12245. for (int i = 0; i < n; i++) {
  12246. fun(nc,
  12247. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12248. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12249. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12250. }
  12251. }
  12252. static void ggml_compute_forward_map_binary(
  12253. const struct ggml_compute_params * params,
  12254. struct ggml_tensor * dst,
  12255. const ggml_binary_op_f32_t fun) {
  12256. const struct ggml_tensor * src0 = dst->src[0];
  12257. switch (src0->type) {
  12258. case GGML_TYPE_F32:
  12259. {
  12260. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12261. } break;
  12262. default:
  12263. {
  12264. GGML_ASSERT(false);
  12265. } break;
  12266. }
  12267. }
  12268. // ggml_compute_forward_map_custom1
  12269. static void ggml_compute_forward_map_custom1_f32(
  12270. const struct ggml_compute_params * params,
  12271. struct ggml_tensor * dst,
  12272. const ggml_custom1_op_f32_t fun) {
  12273. const struct ggml_tensor * a = dst->src[0];
  12274. assert(params->ith == 0);
  12275. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12276. return;
  12277. }
  12278. fun(dst, a);
  12279. }
  12280. // ggml_compute_forward_map_custom2
  12281. static void ggml_compute_forward_map_custom2_f32(
  12282. const struct ggml_compute_params * params,
  12283. struct ggml_tensor * dst,
  12284. const ggml_custom2_op_f32_t fun) {
  12285. const struct ggml_tensor * a = dst->src[0];
  12286. const struct ggml_tensor * b = dst->src[1];
  12287. assert(params->ith == 0);
  12288. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12289. return;
  12290. }
  12291. fun(dst, a, b);
  12292. }
  12293. // ggml_compute_forward_map_custom3
  12294. static void ggml_compute_forward_map_custom3_f32(
  12295. const struct ggml_compute_params * params,
  12296. struct ggml_tensor * dst,
  12297. const ggml_custom3_op_f32_t fun) {
  12298. const struct ggml_tensor * a = dst->src[0];
  12299. const struct ggml_tensor * b = dst->src[1];
  12300. const struct ggml_tensor * c = dst->src[1];
  12301. assert(params->ith == 0);
  12302. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12303. return;
  12304. }
  12305. fun(dst, a, b, c);
  12306. }
  12307. // ggml_compute_forward_map_custom1
  12308. static void ggml_compute_forward_map_custom1(
  12309. const struct ggml_compute_params * params,
  12310. struct ggml_tensor * dst) {
  12311. const struct ggml_tensor * a = dst->src[0];
  12312. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12313. return;
  12314. }
  12315. struct ggml_map_custom1_op_params p;
  12316. memcpy(&p, dst->op_params, sizeof(p));
  12317. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12318. }
  12319. // ggml_compute_forward_map_custom2
  12320. static void ggml_compute_forward_map_custom2(
  12321. const struct ggml_compute_params * params,
  12322. struct ggml_tensor * dst) {
  12323. const struct ggml_tensor * a = dst->src[0];
  12324. const struct ggml_tensor * b = dst->src[1];
  12325. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12326. return;
  12327. }
  12328. struct ggml_map_custom2_op_params p;
  12329. memcpy(&p, dst->op_params, sizeof(p));
  12330. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12331. }
  12332. // ggml_compute_forward_map_custom3
  12333. static void ggml_compute_forward_map_custom3(
  12334. const struct ggml_compute_params * params,
  12335. struct ggml_tensor * dst) {
  12336. const struct ggml_tensor * a = dst->src[0];
  12337. const struct ggml_tensor * b = dst->src[1];
  12338. const struct ggml_tensor * c = dst->src[2];
  12339. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12340. return;
  12341. }
  12342. struct ggml_map_custom3_op_params p;
  12343. memcpy(&p, dst->op_params, sizeof(p));
  12344. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12345. }
  12346. // ggml_compute_forward_cross_entropy_loss
  12347. static void ggml_compute_forward_cross_entropy_loss_f32(
  12348. const struct ggml_compute_params * params,
  12349. struct ggml_tensor * dst) {
  12350. const struct ggml_tensor * src0 = dst->src[0];
  12351. const struct ggml_tensor * src1 = dst->src[1];
  12352. GGML_ASSERT(ggml_is_contiguous(src0));
  12353. GGML_ASSERT(ggml_is_contiguous(src1));
  12354. GGML_ASSERT(ggml_is_scalar(dst));
  12355. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12356. const int ith = params->ith;
  12357. const int nth = params->nth;
  12358. float * sums = (float *) params->wdata;
  12359. // TODO: handle transposed/permuted matrices
  12360. const int nc = src0->ne[0];
  12361. const int nr = ggml_nrows(src0);
  12362. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12363. if (params->type == GGML_TASK_TYPE_INIT) {
  12364. if (ith == 0) {
  12365. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12366. }
  12367. return;
  12368. }
  12369. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12370. if (ith == 0) {
  12371. float * dp = (float *) dst->data;
  12372. ggml_vec_sum_f32(nth, dp, sums);
  12373. dp[0] *= -1.0f / (float) nr;
  12374. }
  12375. return;
  12376. }
  12377. const double eps = 1e-9;
  12378. // rows per thread
  12379. const int dr = (nr + nth - 1)/nth;
  12380. // row range for this thread
  12381. const int ir0 = dr*ith;
  12382. const int ir1 = MIN(ir0 + dr, nr);
  12383. for (int i1 = ir0; i1 < ir1; i1++) {
  12384. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12385. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12386. float * st = ((float *) params->wdata) + nth + ith*nc;
  12387. #ifndef NDEBUG
  12388. for (int i = 0; i < nc; ++i) {
  12389. //printf("p[%d] = %f\n", i, p[i]);
  12390. assert(!isnan(s0[i]));
  12391. assert(!isnan(s1[i]));
  12392. }
  12393. #endif
  12394. // soft_max
  12395. ggml_float sum = 0.0;
  12396. {
  12397. float max = -INFINITY;
  12398. ggml_vec_max_f32(nc, &max, s0);
  12399. uint16_t scvt; UNUSED(scvt);
  12400. for (int i = 0; i < nc; i++) {
  12401. if (s0[i] == -INFINITY) {
  12402. st[i] = 0.0f;
  12403. } else {
  12404. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12405. const float s = s0[i] - max;
  12406. const float val = expf(s);
  12407. #else
  12408. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12409. memcpy(&scvt, &s, sizeof(scvt));
  12410. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12411. #endif
  12412. sum += (ggml_float)val;
  12413. st[i] = val;
  12414. }
  12415. }
  12416. assert(sum > 0.0);
  12417. // sum = 1.0/sum;
  12418. }
  12419. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12420. sum = (1.0 - eps) / sum;
  12421. ggml_vec_scale_f32(nc, st, sum);
  12422. ggml_vec_add1_f32(nc, st, st, eps);
  12423. ggml_vec_log_f32(nc, st, st);
  12424. ggml_vec_mul_f32(nc, st, st, s1);
  12425. float st_sum = 0;
  12426. ggml_vec_sum_f32(nc, &st_sum, st);
  12427. sums[ith] += st_sum;
  12428. #ifndef NDEBUG
  12429. for (int i = 0; i < nc; ++i) {
  12430. assert(!isnan(st[i]));
  12431. assert(!isinf(st[i]));
  12432. }
  12433. #endif
  12434. }
  12435. }
  12436. static void ggml_compute_forward_cross_entropy_loss(
  12437. const struct ggml_compute_params * params,
  12438. struct ggml_tensor * dst) {
  12439. const struct ggml_tensor * src0 = dst->src[0];
  12440. switch (src0->type) {
  12441. case GGML_TYPE_F32:
  12442. {
  12443. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12444. } break;
  12445. default:
  12446. {
  12447. GGML_ASSERT(false);
  12448. } break;
  12449. }
  12450. }
  12451. // ggml_compute_forward_cross_entropy_loss_back
  12452. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12453. const struct ggml_compute_params * params,
  12454. struct ggml_tensor * dst) {
  12455. const struct ggml_tensor * src0 = dst->src[0];
  12456. const struct ggml_tensor * src1 = dst->src[1];
  12457. const struct ggml_tensor * opt0 = dst->src[2];
  12458. GGML_ASSERT(ggml_is_contiguous(dst));
  12459. GGML_ASSERT(ggml_is_contiguous(src0));
  12460. GGML_ASSERT(ggml_is_contiguous(src1));
  12461. GGML_ASSERT(ggml_is_contiguous(opt0));
  12462. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12463. const int64_t ith = params->ith;
  12464. const int64_t nth = params->nth;
  12465. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12466. return;
  12467. }
  12468. const double eps = 1e-9;
  12469. // TODO: handle transposed/permuted matrices
  12470. const int64_t nc = src0->ne[0];
  12471. const int64_t nr = ggml_nrows(src0);
  12472. // rows per thread
  12473. const int64_t dr = (nr + nth - 1)/nth;
  12474. // row range for this thread
  12475. const int64_t ir0 = dr*ith;
  12476. const int64_t ir1 = MIN(ir0 + dr, nr);
  12477. float * d = (float *) opt0->data;
  12478. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12479. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12480. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12481. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12482. #ifndef NDEBUG
  12483. for (int i = 0; i < nc; ++i) {
  12484. //printf("p[%d] = %f\n", i, p[i]);
  12485. assert(!isnan(s0[i]));
  12486. assert(!isnan(s1[i]));
  12487. }
  12488. #endif
  12489. // soft_max
  12490. ggml_float sum = 0.0;
  12491. {
  12492. float max = -INFINITY;
  12493. ggml_vec_max_f32(nc, &max, s0);
  12494. uint16_t scvt; UNUSED(scvt);
  12495. for (int i = 0; i < nc; i++) {
  12496. if (s0[i] == -INFINITY) {
  12497. ds0[i] = 0.0f;
  12498. } else {
  12499. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12500. const float s = s0[i] - max;
  12501. const float val = expf(s);
  12502. #else
  12503. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12504. memcpy(&scvt, &s, sizeof(scvt));
  12505. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12506. #endif
  12507. sum += (ggml_float)val;
  12508. ds0[i] = val;
  12509. }
  12510. }
  12511. assert(sum > 0.0);
  12512. sum = (1.0 - eps)/sum;
  12513. }
  12514. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12515. ggml_vec_scale_f32(nc, ds0, sum);
  12516. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12517. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12518. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12519. #ifndef NDEBUG
  12520. for (int i = 0; i < nc; ++i) {
  12521. assert(!isnan(ds0[i]));
  12522. assert(!isinf(ds0[i]));
  12523. }
  12524. #endif
  12525. }
  12526. }
  12527. static void ggml_compute_forward_cross_entropy_loss_back(
  12528. const struct ggml_compute_params * params,
  12529. struct ggml_tensor * dst) {
  12530. const struct ggml_tensor * src0 = dst->src[0];
  12531. switch (src0->type) {
  12532. case GGML_TYPE_F32:
  12533. {
  12534. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12535. } break;
  12536. default:
  12537. {
  12538. GGML_ASSERT(false);
  12539. } break;
  12540. }
  12541. }
  12542. /////////////////////////////////
  12543. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12544. GGML_ASSERT(params);
  12545. if (tensor->op == GGML_OP_NONE) {
  12546. return;
  12547. }
  12548. #ifdef GGML_USE_CUBLAS
  12549. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12550. if (skip_cpu) {
  12551. return;
  12552. }
  12553. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12554. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12555. #elif defined(GGML_USE_VULKAN)
  12556. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12557. #ifdef GGML_VULKAN_CHECK_RESULTS
  12558. if (skip_cpu) {
  12559. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12560. }
  12561. #endif
  12562. if (skip_cpu) {
  12563. return;
  12564. }
  12565. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12566. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12567. #endif // GGML_USE_CUBLAS
  12568. #ifdef GGML_USE_SYCL
  12569. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12570. if (skip_cpu) {
  12571. return;
  12572. }
  12573. #endif // GGML_USE_SYCL
  12574. switch (tensor->op) {
  12575. case GGML_OP_DUP:
  12576. {
  12577. ggml_compute_forward_dup(params, tensor);
  12578. } break;
  12579. case GGML_OP_ADD:
  12580. {
  12581. ggml_compute_forward_add(params, tensor);
  12582. } break;
  12583. case GGML_OP_ADD1:
  12584. {
  12585. ggml_compute_forward_add1(params, tensor);
  12586. } break;
  12587. case GGML_OP_ACC:
  12588. {
  12589. ggml_compute_forward_acc(params, tensor);
  12590. } break;
  12591. case GGML_OP_SUB:
  12592. {
  12593. ggml_compute_forward_sub(params, tensor);
  12594. } break;
  12595. case GGML_OP_MUL:
  12596. {
  12597. ggml_compute_forward_mul(params, tensor);
  12598. } break;
  12599. case GGML_OP_DIV:
  12600. {
  12601. ggml_compute_forward_div(params, tensor);
  12602. } break;
  12603. case GGML_OP_SQR:
  12604. {
  12605. ggml_compute_forward_sqr(params, tensor);
  12606. } break;
  12607. case GGML_OP_SQRT:
  12608. {
  12609. ggml_compute_forward_sqrt(params, tensor);
  12610. } break;
  12611. case GGML_OP_LOG:
  12612. {
  12613. ggml_compute_forward_log(params, tensor);
  12614. } break;
  12615. case GGML_OP_SUM:
  12616. {
  12617. ggml_compute_forward_sum(params, tensor);
  12618. } break;
  12619. case GGML_OP_SUM_ROWS:
  12620. {
  12621. ggml_compute_forward_sum_rows(params, tensor);
  12622. } break;
  12623. case GGML_OP_MEAN:
  12624. {
  12625. ggml_compute_forward_mean(params, tensor);
  12626. } break;
  12627. case GGML_OP_ARGMAX:
  12628. {
  12629. ggml_compute_forward_argmax(params, tensor);
  12630. } break;
  12631. case GGML_OP_REPEAT:
  12632. {
  12633. ggml_compute_forward_repeat(params, tensor);
  12634. } break;
  12635. case GGML_OP_REPEAT_BACK:
  12636. {
  12637. ggml_compute_forward_repeat_back(params, tensor);
  12638. } break;
  12639. case GGML_OP_CONCAT:
  12640. {
  12641. ggml_compute_forward_concat(params, tensor);
  12642. } break;
  12643. case GGML_OP_SILU_BACK:
  12644. {
  12645. ggml_compute_forward_silu_back(params, tensor);
  12646. } break;
  12647. case GGML_OP_NORM:
  12648. {
  12649. ggml_compute_forward_norm(params, tensor);
  12650. } break;
  12651. case GGML_OP_RMS_NORM:
  12652. {
  12653. ggml_compute_forward_rms_norm(params, tensor);
  12654. } break;
  12655. case GGML_OP_RMS_NORM_BACK:
  12656. {
  12657. ggml_compute_forward_rms_norm_back(params, tensor);
  12658. } break;
  12659. case GGML_OP_GROUP_NORM:
  12660. {
  12661. ggml_compute_forward_group_norm(params, tensor);
  12662. } break;
  12663. case GGML_OP_MUL_MAT:
  12664. {
  12665. ggml_compute_forward_mul_mat(params, tensor);
  12666. } break;
  12667. case GGML_OP_MUL_MAT_ID:
  12668. {
  12669. ggml_compute_forward_mul_mat_id(params, tensor);
  12670. } break;
  12671. case GGML_OP_OUT_PROD:
  12672. {
  12673. ggml_compute_forward_out_prod(params, tensor);
  12674. } break;
  12675. case GGML_OP_SCALE:
  12676. {
  12677. ggml_compute_forward_scale(params, tensor);
  12678. } break;
  12679. case GGML_OP_SET:
  12680. {
  12681. ggml_compute_forward_set(params, tensor);
  12682. } break;
  12683. case GGML_OP_CPY:
  12684. {
  12685. ggml_compute_forward_cpy(params, tensor);
  12686. } break;
  12687. case GGML_OP_CONT:
  12688. {
  12689. ggml_compute_forward_cont(params, tensor);
  12690. } break;
  12691. case GGML_OP_RESHAPE:
  12692. {
  12693. ggml_compute_forward_reshape(params, tensor);
  12694. } break;
  12695. case GGML_OP_VIEW:
  12696. {
  12697. ggml_compute_forward_view(params, tensor);
  12698. } break;
  12699. case GGML_OP_PERMUTE:
  12700. {
  12701. ggml_compute_forward_permute(params, tensor);
  12702. } break;
  12703. case GGML_OP_TRANSPOSE:
  12704. {
  12705. ggml_compute_forward_transpose(params, tensor);
  12706. } break;
  12707. case GGML_OP_GET_ROWS:
  12708. {
  12709. ggml_compute_forward_get_rows(params, tensor);
  12710. } break;
  12711. case GGML_OP_GET_ROWS_BACK:
  12712. {
  12713. ggml_compute_forward_get_rows_back(params, tensor);
  12714. } break;
  12715. case GGML_OP_DIAG:
  12716. {
  12717. ggml_compute_forward_diag(params, tensor);
  12718. } break;
  12719. case GGML_OP_DIAG_MASK_INF:
  12720. {
  12721. ggml_compute_forward_diag_mask_inf(params, tensor);
  12722. } break;
  12723. case GGML_OP_DIAG_MASK_ZERO:
  12724. {
  12725. ggml_compute_forward_diag_mask_zero(params, tensor);
  12726. } break;
  12727. case GGML_OP_SOFT_MAX:
  12728. {
  12729. ggml_compute_forward_soft_max(params, tensor);
  12730. } break;
  12731. case GGML_OP_SOFT_MAX_BACK:
  12732. {
  12733. ggml_compute_forward_soft_max_back(params, tensor);
  12734. } break;
  12735. case GGML_OP_ROPE:
  12736. {
  12737. ggml_compute_forward_rope(params, tensor);
  12738. } break;
  12739. case GGML_OP_ROPE_BACK:
  12740. {
  12741. ggml_compute_forward_rope_back(params, tensor);
  12742. } break;
  12743. case GGML_OP_ALIBI:
  12744. {
  12745. ggml_compute_forward_alibi(params, tensor);
  12746. } break;
  12747. case GGML_OP_CLAMP:
  12748. {
  12749. ggml_compute_forward_clamp(params, tensor);
  12750. } break;
  12751. case GGML_OP_CONV_TRANSPOSE_1D:
  12752. {
  12753. ggml_compute_forward_conv_transpose_1d(params, tensor);
  12754. } break;
  12755. case GGML_OP_IM2COL:
  12756. {
  12757. ggml_compute_forward_im2col(params, tensor);
  12758. } break;
  12759. case GGML_OP_CONV_TRANSPOSE_2D:
  12760. {
  12761. ggml_compute_forward_conv_transpose_2d(params, tensor);
  12762. } break;
  12763. case GGML_OP_POOL_1D:
  12764. {
  12765. ggml_compute_forward_pool_1d(params, tensor);
  12766. } break;
  12767. case GGML_OP_POOL_2D:
  12768. {
  12769. ggml_compute_forward_pool_2d(params, tensor);
  12770. } break;
  12771. case GGML_OP_UPSCALE:
  12772. {
  12773. ggml_compute_forward_upscale(params, tensor);
  12774. } break;
  12775. case GGML_OP_PAD:
  12776. {
  12777. ggml_compute_forward_pad(params, tensor);
  12778. } break;
  12779. case GGML_OP_ARANGE:
  12780. {
  12781. ggml_compute_forward_arange(params, tensor);
  12782. } break;
  12783. case GGML_OP_TIMESTEP_EMBEDDING:
  12784. {
  12785. ggml_compute_forward_timestep_embedding(params, tensor);
  12786. } break;
  12787. case GGML_OP_ARGSORT:
  12788. {
  12789. ggml_compute_forward_argsort(params, tensor);
  12790. } break;
  12791. case GGML_OP_LEAKY_RELU:
  12792. {
  12793. ggml_compute_forward_leaky_relu(params, tensor);
  12794. } break;
  12795. case GGML_OP_FLASH_ATTN:
  12796. {
  12797. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12798. GGML_ASSERT(t == 0 || t == 1);
  12799. const bool masked = t != 0;
  12800. ggml_compute_forward_flash_attn(params, masked, tensor);
  12801. } break;
  12802. case GGML_OP_FLASH_FF:
  12803. {
  12804. ggml_compute_forward_flash_ff(params, tensor);
  12805. } break;
  12806. case GGML_OP_FLASH_ATTN_BACK:
  12807. {
  12808. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12809. GGML_ASSERT(t == 0 || t == 1);
  12810. bool masked = t != 0;
  12811. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  12812. } break;
  12813. case GGML_OP_WIN_PART:
  12814. {
  12815. ggml_compute_forward_win_part(params, tensor);
  12816. } break;
  12817. case GGML_OP_WIN_UNPART:
  12818. {
  12819. ggml_compute_forward_win_unpart(params, tensor);
  12820. } break;
  12821. case GGML_OP_UNARY:
  12822. {
  12823. ggml_compute_forward_unary(params, tensor);
  12824. } break;
  12825. case GGML_OP_GET_REL_POS:
  12826. {
  12827. ggml_compute_forward_get_rel_pos(params, tensor);
  12828. } break;
  12829. case GGML_OP_ADD_REL_POS:
  12830. {
  12831. ggml_compute_forward_add_rel_pos(params, tensor);
  12832. } break;
  12833. case GGML_OP_MAP_UNARY:
  12834. {
  12835. ggml_unary_op_f32_t fun;
  12836. memcpy(&fun, tensor->op_params, sizeof(fun));
  12837. ggml_compute_forward_map_unary(params, tensor, fun);
  12838. }
  12839. break;
  12840. case GGML_OP_MAP_BINARY:
  12841. {
  12842. ggml_binary_op_f32_t fun;
  12843. memcpy(&fun, tensor->op_params, sizeof(fun));
  12844. ggml_compute_forward_map_binary(params, tensor, fun);
  12845. }
  12846. break;
  12847. case GGML_OP_MAP_CUSTOM1_F32:
  12848. {
  12849. ggml_custom1_op_f32_t fun;
  12850. memcpy(&fun, tensor->op_params, sizeof(fun));
  12851. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  12852. }
  12853. break;
  12854. case GGML_OP_MAP_CUSTOM2_F32:
  12855. {
  12856. ggml_custom2_op_f32_t fun;
  12857. memcpy(&fun, tensor->op_params, sizeof(fun));
  12858. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  12859. }
  12860. break;
  12861. case GGML_OP_MAP_CUSTOM3_F32:
  12862. {
  12863. ggml_custom3_op_f32_t fun;
  12864. memcpy(&fun, tensor->op_params, sizeof(fun));
  12865. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  12866. }
  12867. break;
  12868. case GGML_OP_MAP_CUSTOM1:
  12869. {
  12870. ggml_compute_forward_map_custom1(params, tensor);
  12871. }
  12872. break;
  12873. case GGML_OP_MAP_CUSTOM2:
  12874. {
  12875. ggml_compute_forward_map_custom2(params, tensor);
  12876. }
  12877. break;
  12878. case GGML_OP_MAP_CUSTOM3:
  12879. {
  12880. ggml_compute_forward_map_custom3(params, tensor);
  12881. }
  12882. break;
  12883. case GGML_OP_CROSS_ENTROPY_LOSS:
  12884. {
  12885. ggml_compute_forward_cross_entropy_loss(params, tensor);
  12886. }
  12887. break;
  12888. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12889. {
  12890. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  12891. }
  12892. break;
  12893. case GGML_OP_NONE:
  12894. {
  12895. // nop
  12896. } break;
  12897. case GGML_OP_COUNT:
  12898. {
  12899. GGML_ASSERT(false);
  12900. } break;
  12901. }
  12902. }
  12903. ////////////////////////////////////////////////////////////////////////////////
  12904. static size_t ggml_hash_size(size_t min_sz) {
  12905. // next primes after powers of two
  12906. static const size_t primes[] = {
  12907. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12908. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12909. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12910. 16777259, 33554467, 67108879, 134217757, 268435459,
  12911. 536870923, 1073741827, 2147483659
  12912. };
  12913. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12914. // find the smallest prime that is larger or equal to min_sz
  12915. size_t l = 0;
  12916. size_t r = n_primes;
  12917. while (l < r) {
  12918. size_t m = (l + r)/2;
  12919. if (primes[m] < min_sz) {
  12920. l = m + 1;
  12921. } else {
  12922. r = m;
  12923. }
  12924. }
  12925. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12926. return sz;
  12927. }
  12928. static size_t ggml_hash(const void * p) {
  12929. return (size_t)p;
  12930. }
  12931. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12932. size_t h = ggml_hash(key) % hash_set.size;
  12933. // linear probing
  12934. size_t i = h;
  12935. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12936. i = (i + 1) % hash_set.size;
  12937. if (i == h) {
  12938. // visited all hash table entries -> not found
  12939. return GGML_HASHTABLE_FULL;
  12940. }
  12941. }
  12942. return i;
  12943. }
  12944. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12945. size_t i = ggml_hash_find(hash_set, key);
  12946. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12947. }
  12948. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12949. size_t i = ggml_hash_find(hash_set, key);
  12950. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12951. if (hash_set.keys[i] == key) {
  12952. return GGML_HASHTABLE_ALREADY_EXISTS;
  12953. }
  12954. // insert
  12955. GGML_ASSERT(hash_set.keys[i] == NULL);
  12956. hash_set.keys[i] = key;
  12957. return i;
  12958. }
  12959. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12960. size_t i = ggml_hash_find(hash_set, key);
  12961. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12962. hash_set.keys[i] = key;
  12963. return i;
  12964. }
  12965. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12966. size = ggml_hash_size(size);
  12967. struct ggml_hash_set result;
  12968. result.size = size;
  12969. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12970. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12971. return result;
  12972. }
  12973. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12974. GGML_FREE(hash_set.keys);
  12975. }
  12976. struct hash_map {
  12977. struct ggml_hash_set set;
  12978. struct ggml_tensor ** vals;
  12979. };
  12980. static struct hash_map * ggml_new_hash_map(size_t size) {
  12981. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12982. result->set = ggml_hash_set_new(size);
  12983. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12984. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12985. return result;
  12986. }
  12987. static void ggml_hash_map_free(struct hash_map * map) {
  12988. ggml_hash_set_free(map->set);
  12989. GGML_FREE(map->vals);
  12990. GGML_FREE(map);
  12991. }
  12992. // gradient checkpointing
  12993. static struct ggml_tensor * ggml_recompute_graph_node(
  12994. struct ggml_context * ctx,
  12995. struct ggml_cgraph * graph,
  12996. struct hash_map * replacements,
  12997. struct ggml_tensor * node) {
  12998. if (node == NULL) {
  12999. return NULL;
  13000. }
  13001. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13002. return node;
  13003. }
  13004. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13005. return node;
  13006. }
  13007. int count_children = 0;
  13008. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13009. if (node->src[k]) {
  13010. ++count_children;
  13011. }
  13012. }
  13013. if (count_children == 0) {
  13014. return node;
  13015. }
  13016. size_t i = ggml_hash_find(replacements->set, node);
  13017. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13018. if (replacements->set.keys[i] == node) {
  13019. return replacements->vals[i];
  13020. }
  13021. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13022. // insert clone into replacements
  13023. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13024. replacements->set.keys[i] = node;
  13025. replacements->vals[i] = clone;
  13026. clone->op = node->op;
  13027. clone->grad = node->grad;
  13028. clone->flags = node->flags;
  13029. clone->extra = node->extra;
  13030. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13031. clone->nb[k] = node->nb[k];
  13032. }
  13033. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13034. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13035. }
  13036. if (node->view_src != NULL) {
  13037. clone->data = (node->view_src->data == NULL)
  13038. ? NULL // view_src not yet allocated
  13039. : (char *) node->view_src->data // view_src already allocated
  13040. + node->view_offs;
  13041. clone->view_src = node->view_src;
  13042. clone->view_offs = node->view_offs;
  13043. }
  13044. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13045. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13046. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13047. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13048. return clone;
  13049. }
  13050. void ggml_build_backward_gradient_checkpointing(
  13051. struct ggml_context * ctx,
  13052. struct ggml_cgraph * gf,
  13053. struct ggml_cgraph * gb,
  13054. struct ggml_cgraph * gb_tmp,
  13055. struct ggml_tensor * * checkpoints,
  13056. int n_checkpoints) {
  13057. ggml_graph_cpy(gf, gb_tmp);
  13058. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13059. if (n_checkpoints <= 0) {
  13060. ggml_graph_cpy(gb_tmp, gb);
  13061. return;
  13062. }
  13063. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13064. // insert checkpoints in replacements
  13065. for (int i = 0; i < n_checkpoints; ++i) {
  13066. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13067. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13068. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13069. replacements->set.keys[k] = checkpoints[i];
  13070. replacements->vals[k] = checkpoints[i];
  13071. }
  13072. ggml_graph_cpy(gf, gb);
  13073. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13074. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13075. // by recomputing them from checkpoints
  13076. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13077. struct ggml_tensor * node = gb_tmp->nodes[i];
  13078. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13079. // insert new tensors recomputing src, reusing already made replacements,
  13080. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13081. // recurse for input tensors,
  13082. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13083. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13084. }
  13085. // insert rewritten backward node with replacements made into resulting backward graph gb
  13086. ggml_build_forward_expand(gb, node);
  13087. }
  13088. ggml_hash_map_free(replacements);
  13089. }
  13090. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13091. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13092. if (ggml_hash_contains(zero_table, a)) {
  13093. return b;
  13094. } else {
  13095. return ggml_add_impl(ctx, a, b, false);
  13096. }
  13097. }
  13098. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13099. if (ggml_hash_contains(zero_table, a)) {
  13100. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13101. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13102. } else {
  13103. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13104. }
  13105. }
  13106. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13107. if (ggml_hash_contains(zero_table, a)) {
  13108. return ggml_repeat(ctx, b, a);
  13109. } else {
  13110. return ggml_add1_impl(ctx, a, b, false);
  13111. }
  13112. }
  13113. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13114. if (ggml_hash_contains(zero_table, a)) {
  13115. return ggml_neg(ctx, b);
  13116. } else {
  13117. return ggml_sub_impl(ctx, a, b, false);
  13118. }
  13119. }
  13120. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13121. struct ggml_tensor * src0 = tensor->src[0];
  13122. struct ggml_tensor * src1 = tensor->src[1];
  13123. switch (tensor->op) {
  13124. case GGML_OP_DUP:
  13125. {
  13126. if (src0->grad) {
  13127. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13128. }
  13129. } break;
  13130. case GGML_OP_ADD:
  13131. {
  13132. if (src0->grad) {
  13133. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13134. }
  13135. if (src1->grad) {
  13136. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13137. }
  13138. } break;
  13139. case GGML_OP_ADD1:
  13140. {
  13141. if (src0->grad) {
  13142. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13143. }
  13144. if (src1->grad) {
  13145. src1->grad = ggml_add_or_set(ctx,
  13146. src1->grad,
  13147. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13148. zero_table);
  13149. }
  13150. } break;
  13151. case GGML_OP_ACC:
  13152. {
  13153. if (src0->grad) {
  13154. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13155. }
  13156. if (src1->grad) {
  13157. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13158. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13159. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13160. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13161. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13162. tensor->grad,
  13163. src1->grad->ne[0],
  13164. src1->grad->ne[1],
  13165. src1->grad->ne[2],
  13166. src1->grad->ne[3],
  13167. nb1, nb2, nb3, offset);
  13168. src1->grad =
  13169. ggml_add_or_set(ctx,
  13170. src1->grad,
  13171. ggml_reshape(ctx,
  13172. ggml_cont(ctx, tensor_grad_view),
  13173. src1->grad),
  13174. zero_table);
  13175. }
  13176. } break;
  13177. case GGML_OP_SUB:
  13178. {
  13179. if (src0->grad) {
  13180. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13181. }
  13182. if (src1->grad) {
  13183. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13184. }
  13185. } break;
  13186. case GGML_OP_MUL:
  13187. {
  13188. if (src0->grad) {
  13189. src0->grad =
  13190. ggml_add_or_set(ctx,
  13191. src0->grad,
  13192. ggml_mul(ctx, src1, tensor->grad),
  13193. zero_table);
  13194. }
  13195. if (src1->grad) {
  13196. src1->grad =
  13197. ggml_add_or_set(ctx,
  13198. src1->grad,
  13199. ggml_mul(ctx, src0, tensor->grad),
  13200. zero_table);
  13201. }
  13202. } break;
  13203. case GGML_OP_DIV:
  13204. {
  13205. if (src0->grad) {
  13206. src0->grad =
  13207. ggml_add_or_set(ctx,
  13208. src0->grad,
  13209. ggml_div(ctx, tensor->grad, src1),
  13210. zero_table);
  13211. }
  13212. if (src1->grad) {
  13213. src1->grad =
  13214. ggml_sub_or_set(ctx,
  13215. src1->grad,
  13216. ggml_mul(ctx,
  13217. tensor->grad,
  13218. ggml_div(ctx, tensor, src1)),
  13219. zero_table);
  13220. }
  13221. } break;
  13222. case GGML_OP_SQR:
  13223. {
  13224. if (src0->grad) {
  13225. src0->grad =
  13226. ggml_add_or_set(ctx,
  13227. src0->grad,
  13228. ggml_scale(ctx,
  13229. ggml_mul(ctx, src0, tensor->grad),
  13230. 2.0f),
  13231. zero_table);
  13232. }
  13233. } break;
  13234. case GGML_OP_SQRT:
  13235. {
  13236. if (src0->grad) {
  13237. src0->grad =
  13238. ggml_add_or_set(ctx,
  13239. src0->grad,
  13240. ggml_scale(ctx,
  13241. ggml_div(ctx,
  13242. tensor->grad,
  13243. tensor),
  13244. 0.5f),
  13245. zero_table);
  13246. }
  13247. } break;
  13248. case GGML_OP_LOG:
  13249. {
  13250. if (src0->grad) {
  13251. src0->grad =
  13252. ggml_add_or_set(ctx,
  13253. src0->grad,
  13254. ggml_div(ctx,
  13255. tensor->grad,
  13256. src0),
  13257. zero_table);
  13258. }
  13259. } break;
  13260. case GGML_OP_SUM:
  13261. {
  13262. if (src0->grad) {
  13263. src0->grad =
  13264. ggml_add1_or_set(ctx,
  13265. src0->grad,
  13266. tensor->grad,
  13267. zero_table);
  13268. }
  13269. } break;
  13270. case GGML_OP_SUM_ROWS:
  13271. {
  13272. if (src0->grad) {
  13273. src0->grad =
  13274. ggml_add_or_set(ctx,
  13275. src0->grad,
  13276. ggml_repeat(ctx,
  13277. tensor->grad,
  13278. src0->grad),
  13279. zero_table);
  13280. }
  13281. } break;
  13282. case GGML_OP_MEAN:
  13283. case GGML_OP_ARGMAX:
  13284. {
  13285. GGML_ASSERT(false); // TODO: implement
  13286. } break;
  13287. case GGML_OP_REPEAT:
  13288. {
  13289. // necessary for llama
  13290. if (src0->grad) {
  13291. src0->grad = ggml_add_or_set(ctx,
  13292. src0->grad,
  13293. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13294. zero_table);
  13295. }
  13296. } break;
  13297. case GGML_OP_REPEAT_BACK:
  13298. {
  13299. if (src0->grad) {
  13300. // TODO: test this
  13301. src0->grad = ggml_add_or_set(ctx,
  13302. src0->grad,
  13303. ggml_repeat(ctx, tensor->grad, src0->grad),
  13304. zero_table);
  13305. }
  13306. } break;
  13307. case GGML_OP_CONCAT:
  13308. {
  13309. GGML_ASSERT(false); // TODO: implement
  13310. } break;
  13311. case GGML_OP_SILU_BACK:
  13312. {
  13313. GGML_ASSERT(false); // TODO: not implemented
  13314. } break;
  13315. case GGML_OP_NORM:
  13316. {
  13317. GGML_ASSERT(false); // TODO: not implemented
  13318. } break;
  13319. case GGML_OP_RMS_NORM:
  13320. {
  13321. // necessary for llama
  13322. if (src0->grad) {
  13323. float eps;
  13324. memcpy(&eps, tensor->op_params, sizeof(float));
  13325. src0->grad = ggml_add_or_set(ctx,
  13326. src0->grad,
  13327. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13328. zero_table);
  13329. }
  13330. } break;
  13331. case GGML_OP_RMS_NORM_BACK:
  13332. {
  13333. GGML_ASSERT(false); // TODO: not implemented
  13334. } break;
  13335. case GGML_OP_GROUP_NORM:
  13336. {
  13337. GGML_ASSERT(false); // TODO: not implemented
  13338. } break;
  13339. case GGML_OP_MUL_MAT:
  13340. {
  13341. // https://cs231n.github.io/optimization-2/#staged
  13342. // # forward pass
  13343. // s0 = np.random.randn(5, 10)
  13344. // s1 = np.random.randn(10, 3)
  13345. // t = s0.dot(s1)
  13346. // # now suppose we had the gradient on t from above in the circuit
  13347. // dt = np.random.randn(*t.shape) # same shape as t
  13348. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13349. // ds1 = t.T.dot(dt)
  13350. // tensor.shape [m,p,qq,rr]
  13351. // src0.shape [n,m,q1,r1]
  13352. // src1.shape [n,p,qq,rr]
  13353. // necessary for llama
  13354. if (src0->grad) {
  13355. struct ggml_tensor * s1_tg =
  13356. ggml_out_prod(ctx, // [n,m,qq,rr]
  13357. src1, // [n,p,qq,rr]
  13358. tensor->grad); // [m,p,qq,rr]
  13359. const int64_t qq = s1_tg->ne[2];
  13360. const int64_t rr = s1_tg->ne[3];
  13361. const int64_t q1 = src0->ne[2];
  13362. const int64_t r1 = src0->ne[3];
  13363. const bool ne2_broadcasted = qq > q1;
  13364. const bool ne3_broadcasted = rr > r1;
  13365. if (ne2_broadcasted || ne3_broadcasted) {
  13366. // sum broadcast repetitions of s1_tg into shape of src0
  13367. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13368. }
  13369. src0->grad =
  13370. ggml_add_or_set(ctx,
  13371. src0->grad, // [n,m,q1,r1]
  13372. s1_tg, // [n,m,q1,r1]
  13373. zero_table);
  13374. }
  13375. if (src1->grad) {
  13376. src1->grad =
  13377. ggml_add_or_set(ctx,
  13378. src1->grad, // [n,p,qq,rr]
  13379. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13380. // ggml_cont(ctx, // [m,n,q1,r1]
  13381. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13382. // tensor->grad), // [m,p,qq,rr]
  13383. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13384. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13385. // // and then use ggml_out_prod
  13386. ggml_out_prod(ctx, // [n,p,qq,rr]
  13387. src0, // [n,m,q1,r1]
  13388. ggml_transpose(ctx, // [p,m,qq,rr]
  13389. tensor->grad)), // [m,p,qq,rr]
  13390. zero_table);
  13391. }
  13392. } break;
  13393. case GGML_OP_MUL_MAT_ID:
  13394. {
  13395. GGML_ASSERT(false); // TODO: not implemented
  13396. } break;
  13397. case GGML_OP_OUT_PROD:
  13398. {
  13399. GGML_ASSERT(false); // TODO: not implemented
  13400. } break;
  13401. case GGML_OP_SCALE:
  13402. {
  13403. // necessary for llama
  13404. if (src0->grad) {
  13405. float s;
  13406. memcpy(&s, tensor->op_params, sizeof(float));
  13407. src0->grad =
  13408. ggml_add_or_set(ctx,
  13409. src0->grad,
  13410. ggml_scale_impl(ctx, tensor->grad, s, false),
  13411. zero_table);
  13412. }
  13413. } break;
  13414. case GGML_OP_SET:
  13415. {
  13416. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13417. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13418. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13419. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13420. struct ggml_tensor * tensor_grad_view = NULL;
  13421. if (src0->grad || src1->grad) {
  13422. GGML_ASSERT(src0->type == tensor->type);
  13423. GGML_ASSERT(tensor->grad->type == tensor->type);
  13424. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13425. tensor_grad_view = ggml_view_4d(ctx,
  13426. tensor->grad,
  13427. src1->grad->ne[0],
  13428. src1->grad->ne[1],
  13429. src1->grad->ne[2],
  13430. src1->grad->ne[3],
  13431. nb1, nb2, nb3, offset);
  13432. }
  13433. if (src0->grad) {
  13434. src0->grad = ggml_add_or_set(ctx,
  13435. src0->grad,
  13436. ggml_acc_impl(ctx,
  13437. tensor->grad,
  13438. ggml_neg(ctx, tensor_grad_view),
  13439. nb1, nb2, nb3, offset, false),
  13440. zero_table);
  13441. }
  13442. if (src1->grad) {
  13443. src1->grad =
  13444. ggml_add_or_set(ctx,
  13445. src1->grad,
  13446. ggml_reshape(ctx,
  13447. ggml_cont(ctx, tensor_grad_view),
  13448. src1->grad),
  13449. zero_table);
  13450. }
  13451. } break;
  13452. case GGML_OP_CPY:
  13453. {
  13454. // necessary for llama
  13455. // cpy overwrites value of src1 by src0 and returns view(src1)
  13456. // the overwriting is mathematically equivalent to:
  13457. // tensor = src0 * 1 + src1 * 0
  13458. if (src0->grad) {
  13459. // dsrc0 = dtensor * 1
  13460. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13461. }
  13462. if (src1->grad) {
  13463. // dsrc1 = dtensor * 0 -> noop
  13464. }
  13465. } break;
  13466. case GGML_OP_CONT:
  13467. {
  13468. // same as cpy
  13469. if (src0->grad) {
  13470. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13471. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13472. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13473. }
  13474. } break;
  13475. case GGML_OP_RESHAPE:
  13476. {
  13477. // necessary for llama
  13478. if (src0->grad) {
  13479. src0->grad =
  13480. ggml_add_or_set(ctx, src0->grad,
  13481. ggml_reshape(ctx,
  13482. ggml_is_contiguous(tensor->grad)
  13483. ? tensor->grad
  13484. : ggml_cont(ctx, tensor->grad),
  13485. src0->grad),
  13486. zero_table);
  13487. }
  13488. } break;
  13489. case GGML_OP_VIEW:
  13490. {
  13491. // necessary for llama
  13492. if (src0->grad) {
  13493. size_t offset;
  13494. memcpy(&offset, tensor->op_params, sizeof(offset));
  13495. size_t nb1 = tensor->nb[1];
  13496. size_t nb2 = tensor->nb[2];
  13497. size_t nb3 = tensor->nb[3];
  13498. if (src0->type != src0->grad->type) {
  13499. // gradient is typically F32, but src0 could be other type
  13500. size_t ng = ggml_element_size(src0->grad);
  13501. size_t n0 = ggml_element_size(src0);
  13502. GGML_ASSERT(offset % n0 == 0);
  13503. GGML_ASSERT(nb1 % n0 == 0);
  13504. GGML_ASSERT(nb2 % n0 == 0);
  13505. GGML_ASSERT(nb3 % n0 == 0);
  13506. offset = (offset / n0) * ng;
  13507. nb1 = (nb1 / n0) * ng;
  13508. nb2 = (nb2 / n0) * ng;
  13509. nb3 = (nb3 / n0) * ng;
  13510. }
  13511. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13512. }
  13513. } break;
  13514. case GGML_OP_PERMUTE:
  13515. {
  13516. // necessary for llama
  13517. if (src0->grad) {
  13518. int32_t * axes = (int32_t *) tensor->op_params;
  13519. int axis0 = axes[0] & 0x3;
  13520. int axis1 = axes[1] & 0x3;
  13521. int axis2 = axes[2] & 0x3;
  13522. int axis3 = axes[3] & 0x3;
  13523. int axes_backward[4] = {0,0,0,0};
  13524. axes_backward[axis0] = 0;
  13525. axes_backward[axis1] = 1;
  13526. axes_backward[axis2] = 2;
  13527. axes_backward[axis3] = 3;
  13528. src0->grad =
  13529. ggml_add_or_set(ctx, src0->grad,
  13530. ggml_permute(ctx,
  13531. tensor->grad,
  13532. axes_backward[0],
  13533. axes_backward[1],
  13534. axes_backward[2],
  13535. axes_backward[3]),
  13536. zero_table);
  13537. }
  13538. } break;
  13539. case GGML_OP_TRANSPOSE:
  13540. {
  13541. // necessary for llama
  13542. if (src0->grad) {
  13543. src0->grad =
  13544. ggml_add_or_set(ctx, src0->grad,
  13545. ggml_transpose(ctx, tensor->grad),
  13546. zero_table);
  13547. }
  13548. } break;
  13549. case GGML_OP_GET_ROWS:
  13550. {
  13551. // necessary for llama (only for tokenizer)
  13552. if (src0->grad) {
  13553. src0->grad =
  13554. ggml_add_or_set(ctx, src0->grad,
  13555. // last ggml_get_rows_back argument src0->grad is only
  13556. // necessary to setup correct output shape
  13557. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13558. zero_table);
  13559. }
  13560. if (src1->grad) {
  13561. // noop
  13562. }
  13563. } break;
  13564. case GGML_OP_GET_ROWS_BACK:
  13565. {
  13566. GGML_ASSERT(false); // TODO: not implemented
  13567. } break;
  13568. case GGML_OP_DIAG:
  13569. {
  13570. GGML_ASSERT(false); // TODO: not implemented
  13571. } break;
  13572. case GGML_OP_DIAG_MASK_INF:
  13573. {
  13574. // necessary for llama
  13575. if (src0->grad) {
  13576. const int n_past = ((int32_t *) tensor->op_params)[0];
  13577. src0->grad =
  13578. ggml_add_or_set(ctx, src0->grad,
  13579. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13580. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13581. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13582. zero_table);
  13583. }
  13584. } break;
  13585. case GGML_OP_DIAG_MASK_ZERO:
  13586. {
  13587. // necessary for llama
  13588. if (src0->grad) {
  13589. const int n_past = ((int32_t *) tensor->op_params)[0];
  13590. src0->grad =
  13591. ggml_add_or_set(ctx, src0->grad,
  13592. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13593. zero_table);
  13594. }
  13595. } break;
  13596. case GGML_OP_SOFT_MAX:
  13597. {
  13598. // necessary for llama
  13599. if (src0->grad) {
  13600. src0->grad =
  13601. ggml_add_or_set(ctx, src0->grad,
  13602. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13603. zero_table);
  13604. }
  13605. } break;
  13606. case GGML_OP_SOFT_MAX_BACK:
  13607. {
  13608. GGML_ASSERT(false); // TODO: not implemented
  13609. } break;
  13610. case GGML_OP_ROPE:
  13611. {
  13612. // necessary for llama
  13613. if (src0->grad) {
  13614. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13615. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13616. const int mode = ((int32_t *) tensor->op_params)[2];
  13617. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13618. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13619. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13620. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13621. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13622. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13623. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13624. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13625. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13626. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13627. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13628. src0->grad = ggml_add_or_set(ctx,
  13629. src0->grad,
  13630. ggml_rope_back(ctx,
  13631. tensor->grad,
  13632. src1,
  13633. n_dims,
  13634. mode,
  13635. n_ctx,
  13636. n_orig_ctx,
  13637. freq_base,
  13638. freq_scale,
  13639. ext_factor,
  13640. attn_factor,
  13641. beta_fast,
  13642. beta_slow,
  13643. xpos_base,
  13644. xpos_down),
  13645. zero_table);
  13646. }
  13647. } break;
  13648. case GGML_OP_ROPE_BACK:
  13649. {
  13650. if (src0->grad) {
  13651. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13652. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13653. const int mode = ((int32_t *) tensor->op_params)[2];
  13654. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13655. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13656. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13657. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13658. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13659. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13660. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13661. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13662. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13663. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13664. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13665. src0->grad = ggml_add_or_set(ctx,
  13666. src0->grad,
  13667. ggml_rope_impl(ctx,
  13668. tensor->grad,
  13669. src1,
  13670. n_dims,
  13671. mode,
  13672. n_ctx,
  13673. n_orig_ctx,
  13674. freq_base,
  13675. freq_scale,
  13676. ext_factor,
  13677. attn_factor,
  13678. beta_fast,
  13679. beta_slow,
  13680. xpos_base,
  13681. xpos_down,
  13682. false),
  13683. zero_table);
  13684. }
  13685. } break;
  13686. case GGML_OP_ALIBI:
  13687. {
  13688. GGML_ASSERT(false); // TODO: not implemented
  13689. } break;
  13690. case GGML_OP_CLAMP:
  13691. {
  13692. GGML_ASSERT(false); // TODO: not implemented
  13693. } break;
  13694. case GGML_OP_CONV_TRANSPOSE_1D:
  13695. {
  13696. GGML_ASSERT(false); // TODO: not implemented
  13697. } break;
  13698. case GGML_OP_IM2COL:
  13699. {
  13700. GGML_ASSERT(false); // TODO: not implemented
  13701. } break;
  13702. case GGML_OP_CONV_TRANSPOSE_2D:
  13703. {
  13704. GGML_ASSERT(false); // TODO: not implemented
  13705. } break;
  13706. case GGML_OP_POOL_1D:
  13707. {
  13708. GGML_ASSERT(false); // TODO: not implemented
  13709. } break;
  13710. case GGML_OP_POOL_2D:
  13711. {
  13712. GGML_ASSERT(false); // TODO: not implemented
  13713. } break;
  13714. case GGML_OP_UPSCALE:
  13715. {
  13716. GGML_ASSERT(false); // TODO: not implemented
  13717. } break;
  13718. case GGML_OP_PAD:
  13719. {
  13720. GGML_ASSERT(false); // TODO: not implemented
  13721. } break;
  13722. case GGML_OP_ARANGE:
  13723. {
  13724. GGML_ASSERT(false); // TODO: not implemented
  13725. } break;
  13726. case GGML_OP_TIMESTEP_EMBEDDING:
  13727. {
  13728. GGML_ASSERT(false); // TODO: not implemented
  13729. } break;
  13730. case GGML_OP_ARGSORT:
  13731. {
  13732. GGML_ASSERT(false); // TODO: not implemented
  13733. } break;
  13734. case GGML_OP_LEAKY_RELU:
  13735. {
  13736. GGML_ASSERT(false); // TODO: not implemented
  13737. } break;
  13738. case GGML_OP_FLASH_ATTN:
  13739. {
  13740. struct ggml_tensor * flash_grad = NULL;
  13741. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13742. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13743. GGML_ASSERT(t == 0 || t == 1);
  13744. bool masked = t != 0;
  13745. flash_grad =
  13746. ggml_flash_attn_back(ctx,
  13747. src0,
  13748. src1,
  13749. tensor->src[2],
  13750. tensor->grad,
  13751. masked);
  13752. }
  13753. struct ggml_tensor * src2 = tensor->src[2];
  13754. const int64_t elem_q = ggml_nelements(src0);
  13755. const int64_t elem_k = ggml_nelements(src1);
  13756. const int64_t elem_v = ggml_nelements(src2);
  13757. enum ggml_type result_type = flash_grad->type;
  13758. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13759. const size_t tsize = ggml_type_size(result_type);
  13760. const size_t offs_q = 0;
  13761. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13762. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13763. if (src0->grad) {
  13764. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13765. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13766. src0->grad = ggml_add_or_set(ctx,
  13767. src0->grad,
  13768. grad_q,
  13769. zero_table);
  13770. }
  13771. if (src1->grad) {
  13772. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13773. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13774. src1->grad = ggml_add_or_set(ctx,
  13775. src1->grad,
  13776. grad_k,
  13777. zero_table);
  13778. }
  13779. if (src2->grad) {
  13780. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13781. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13782. src2->grad = ggml_add_or_set(ctx,
  13783. src2->grad,
  13784. grad_v,
  13785. zero_table);
  13786. }
  13787. } break;
  13788. case GGML_OP_FLASH_FF:
  13789. {
  13790. GGML_ASSERT(false); // not supported
  13791. } break;
  13792. case GGML_OP_FLASH_ATTN_BACK:
  13793. {
  13794. GGML_ASSERT(false); // not supported
  13795. } break;
  13796. case GGML_OP_WIN_PART:
  13797. case GGML_OP_WIN_UNPART:
  13798. case GGML_OP_UNARY:
  13799. {
  13800. switch (ggml_get_unary_op(tensor)) {
  13801. case GGML_UNARY_OP_ABS:
  13802. {
  13803. if (src0->grad) {
  13804. src0->grad =
  13805. ggml_add_or_set(ctx,
  13806. src0->grad,
  13807. ggml_mul(ctx,
  13808. ggml_sgn(ctx, src0),
  13809. tensor->grad),
  13810. zero_table);
  13811. }
  13812. } break;
  13813. case GGML_UNARY_OP_SGN:
  13814. {
  13815. if (src0->grad) {
  13816. // noop
  13817. }
  13818. } break;
  13819. case GGML_UNARY_OP_NEG:
  13820. {
  13821. if (src0->grad) {
  13822. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13823. }
  13824. } break;
  13825. case GGML_UNARY_OP_STEP:
  13826. {
  13827. if (src0->grad) {
  13828. // noop
  13829. }
  13830. } break;
  13831. case GGML_UNARY_OP_TANH:
  13832. {
  13833. GGML_ASSERT(false); // TODO: not implemented
  13834. } break;
  13835. case GGML_UNARY_OP_ELU:
  13836. {
  13837. GGML_ASSERT(false); // TODO: not implemented
  13838. } break;
  13839. case GGML_UNARY_OP_RELU:
  13840. {
  13841. if (src0->grad) {
  13842. src0->grad = ggml_add_or_set(ctx,
  13843. src0->grad,
  13844. ggml_mul(ctx,
  13845. ggml_step(ctx, src0),
  13846. tensor->grad),
  13847. zero_table);
  13848. }
  13849. } break;
  13850. case GGML_UNARY_OP_GELU:
  13851. {
  13852. GGML_ASSERT(false); // TODO: not implemented
  13853. } break;
  13854. case GGML_UNARY_OP_GELU_QUICK:
  13855. {
  13856. GGML_ASSERT(false); // TODO: not implemented
  13857. } break;
  13858. case GGML_UNARY_OP_SILU:
  13859. {
  13860. // necessary for llama
  13861. if (src0->grad) {
  13862. src0->grad = ggml_add_or_set(ctx,
  13863. src0->grad,
  13864. ggml_silu_back(ctx, src0, tensor->grad),
  13865. zero_table);
  13866. }
  13867. } break;
  13868. default:
  13869. GGML_ASSERT(false);
  13870. }
  13871. } break;
  13872. case GGML_OP_GET_REL_POS:
  13873. case GGML_OP_ADD_REL_POS:
  13874. case GGML_OP_MAP_UNARY:
  13875. case GGML_OP_MAP_BINARY:
  13876. case GGML_OP_MAP_CUSTOM1_F32:
  13877. case GGML_OP_MAP_CUSTOM2_F32:
  13878. case GGML_OP_MAP_CUSTOM3_F32:
  13879. case GGML_OP_MAP_CUSTOM1:
  13880. case GGML_OP_MAP_CUSTOM2:
  13881. case GGML_OP_MAP_CUSTOM3:
  13882. {
  13883. GGML_ASSERT(false); // not supported
  13884. } break;
  13885. case GGML_OP_CROSS_ENTROPY_LOSS:
  13886. {
  13887. if (src0->grad) {
  13888. src0->grad = ggml_add_or_set(ctx,
  13889. src0->grad,
  13890. ggml_cross_entropy_loss_back(ctx,
  13891. src0,
  13892. src1,
  13893. tensor->grad),
  13894. zero_table);
  13895. }
  13896. } break;
  13897. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13898. {
  13899. GGML_ASSERT(false); // not supported
  13900. } break;
  13901. case GGML_OP_NONE:
  13902. {
  13903. // nop
  13904. } break;
  13905. case GGML_OP_COUNT:
  13906. {
  13907. GGML_ASSERT(false);
  13908. } break;
  13909. }
  13910. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13911. if (tensor->src[i] && tensor->src[i]->grad) {
  13912. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13913. }
  13914. }
  13915. }
  13916. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13917. if (node->grad == NULL) {
  13918. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13919. // it can also happen during forward pass, if the user performs computations with constants
  13920. if (node->op != GGML_OP_NONE) {
  13921. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13922. }
  13923. }
  13924. // check if already visited
  13925. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13926. return;
  13927. }
  13928. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13929. const int k =
  13930. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13931. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13932. /* unknown order, just fall back to using i*/ i;
  13933. if (node->src[k]) {
  13934. ggml_visit_parents(cgraph, node->src[k]);
  13935. }
  13936. }
  13937. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13938. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13939. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13940. if (strlen(node->name) == 0) {
  13941. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13942. }
  13943. cgraph->leafs[cgraph->n_leafs] = node;
  13944. cgraph->n_leafs++;
  13945. } else {
  13946. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13947. if (strlen(node->name) == 0) {
  13948. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13949. }
  13950. cgraph->nodes[cgraph->n_nodes] = node;
  13951. if (cgraph->grads) {
  13952. cgraph->grads[cgraph->n_nodes] = node->grad;
  13953. }
  13954. cgraph->n_nodes++;
  13955. }
  13956. }
  13957. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13958. if (!expand) {
  13959. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13960. ggml_graph_clear(cgraph);
  13961. }
  13962. const int n0 = cgraph->n_nodes;
  13963. UNUSED(n0);
  13964. ggml_visit_parents(cgraph, tensor);
  13965. const int n_new = cgraph->n_nodes - n0;
  13966. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13967. if (n_new > 0) {
  13968. // the last added node should always be starting point
  13969. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13970. }
  13971. }
  13972. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13973. ggml_build_forward_impl(cgraph, tensor, true);
  13974. }
  13975. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13976. GGML_ASSERT(gf->n_nodes > 0);
  13977. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13978. if (keep) {
  13979. for (int i = 0; i < gf->n_nodes; i++) {
  13980. struct ggml_tensor * node = gf->nodes[i];
  13981. if (node->grad) {
  13982. node->grad = ggml_dup_tensor(ctx, node);
  13983. gf->grads[i] = node->grad;
  13984. }
  13985. }
  13986. }
  13987. // remember original gradients which start with zero values
  13988. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13989. for (int i = 0; i < gf->n_nodes; i++) {
  13990. if (gf->grads[i]) {
  13991. ggml_hash_insert(zero_table, gf->grads[i]);
  13992. }
  13993. }
  13994. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13995. struct ggml_tensor * node = gf->nodes[i];
  13996. // inplace operations to add gradients are not created by ggml_compute_backward
  13997. // use allocator to automatically make inplace operations
  13998. if (node->grad) {
  13999. ggml_compute_backward(ctx, node, zero_table);
  14000. }
  14001. }
  14002. for (int i = 0; i < gf->n_nodes; i++) {
  14003. struct ggml_tensor * node = gf->nodes[i];
  14004. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14005. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14006. ggml_build_forward_expand(gb, node->grad);
  14007. }
  14008. }
  14009. ggml_hash_set_free(zero_table);
  14010. }
  14011. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14012. size_t nbytes = sizeof(struct ggml_cgraph);
  14013. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14014. if (grads) {
  14015. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14016. }
  14017. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14018. return nbytes;
  14019. }
  14020. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14021. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14022. }
  14023. size_t ggml_graph_overhead(void) {
  14024. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14025. }
  14026. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14027. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14028. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14029. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14030. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14031. size_t hash_size = ggml_hash_size(size * 2);
  14032. struct ggml_tensor ** nodes_ptr = data_start;
  14033. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14034. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14035. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14036. // check that we allocated the correct amount of memory
  14037. assert(obj_size == (size_t) (
  14038. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14039. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14040. *cgraph = (struct ggml_cgraph) {
  14041. /*.size =*/ size,
  14042. /*.n_nodes =*/ 0,
  14043. /*.n_leafs =*/ 0,
  14044. /*.nodes =*/ nodes_ptr,
  14045. /*.grads =*/ grads_ptr,
  14046. /*.leafs =*/ leafs_ptr,
  14047. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14048. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14049. /*.perf_runs =*/ 0,
  14050. /*.perf_cycles =*/ 0,
  14051. /*.perf_time_us =*/ 0,
  14052. };
  14053. return cgraph;
  14054. }
  14055. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14056. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14057. }
  14058. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14059. struct ggml_cgraph cgraph = {
  14060. /*.size =*/ 0,
  14061. /*.n_nodes =*/ i1 - i0,
  14062. /*.n_leafs =*/ 0,
  14063. /*.nodes =*/ cgraph0->nodes + i0,
  14064. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14065. /*.leafs =*/ NULL,
  14066. /*.hash_table =*/ { 0, NULL },
  14067. /*.order =*/ cgraph0->order,
  14068. /*.perf_runs =*/ 0,
  14069. /*.perf_cycles =*/ 0,
  14070. /*.perf_time_us =*/ 0,
  14071. };
  14072. return cgraph;
  14073. }
  14074. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14075. GGML_ASSERT(dst->size >= src->n_leafs);
  14076. GGML_ASSERT(dst->size >= src->n_nodes);
  14077. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14078. dst->n_leafs = src->n_leafs;
  14079. dst->n_nodes = src->n_nodes;
  14080. dst->order = src->order;
  14081. for (int i = 0; i < src->n_leafs; ++i) {
  14082. dst->leafs[i] = src->leafs[i];
  14083. }
  14084. for (int i = 0; i < src->n_nodes; ++i) {
  14085. dst->nodes[i] = src->nodes[i];
  14086. }
  14087. if (src->grads) {
  14088. GGML_ASSERT(dst->grads != NULL);
  14089. for (int i = 0; i < src->n_nodes; ++i) {
  14090. dst->grads[i] = src->grads[i];
  14091. }
  14092. }
  14093. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14094. if (src->visited_hash_table.keys[i]) {
  14095. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14096. }
  14097. }
  14098. }
  14099. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14100. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14101. ggml_graph_cpy(cgraph, result);
  14102. return result;
  14103. }
  14104. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14105. GGML_ASSERT(cgraph->grads != NULL);
  14106. for (int i = 0; i < cgraph->n_nodes; i++) {
  14107. struct ggml_tensor * grad = cgraph->grads[i];
  14108. if (grad) {
  14109. ggml_set_zero(grad);
  14110. }
  14111. }
  14112. }
  14113. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14114. cgraph->n_leafs = 0;
  14115. cgraph->n_nodes = 0;
  14116. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14117. }
  14118. //
  14119. // thread data
  14120. //
  14121. // synchronization is done via busy loops
  14122. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14123. //
  14124. #ifdef __APPLE__
  14125. //#include <os/lock.h>
  14126. //
  14127. //typedef os_unfair_lock ggml_lock_t;
  14128. //
  14129. //#define ggml_lock_init(x) UNUSED(x)
  14130. //#define ggml_lock_destroy(x) UNUSED(x)
  14131. //#define ggml_lock_lock os_unfair_lock_lock
  14132. //#define ggml_lock_unlock os_unfair_lock_unlock
  14133. //
  14134. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14135. typedef int ggml_lock_t;
  14136. #define ggml_lock_init(x) UNUSED(x)
  14137. #define ggml_lock_destroy(x) UNUSED(x)
  14138. #define ggml_lock_lock(x) UNUSED(x)
  14139. #define ggml_lock_unlock(x) UNUSED(x)
  14140. #define GGML_LOCK_INITIALIZER 0
  14141. typedef pthread_t ggml_thread_t;
  14142. #define ggml_thread_create pthread_create
  14143. #define ggml_thread_join pthread_join
  14144. #else
  14145. //typedef pthread_spinlock_t ggml_lock_t;
  14146. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14147. //#define ggml_lock_destroy pthread_spin_destroy
  14148. //#define ggml_lock_lock pthread_spin_lock
  14149. //#define ggml_lock_unlock pthread_spin_unlock
  14150. typedef int ggml_lock_t;
  14151. #define ggml_lock_init(x) UNUSED(x)
  14152. #define ggml_lock_destroy(x) UNUSED(x)
  14153. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14154. #define ggml_lock_lock(x) _mm_pause()
  14155. #else
  14156. #define ggml_lock_lock(x) UNUSED(x)
  14157. #endif
  14158. #define ggml_lock_unlock(x) UNUSED(x)
  14159. #define GGML_LOCK_INITIALIZER 0
  14160. typedef pthread_t ggml_thread_t;
  14161. #define ggml_thread_create pthread_create
  14162. #define ggml_thread_join pthread_join
  14163. #endif
  14164. // Android's libc implementation "bionic" does not support setting affinity
  14165. #if defined(__gnu_linux__)
  14166. static void set_numa_thread_affinity(int thread_n) {
  14167. if (!ggml_is_numa()) {
  14168. return;
  14169. }
  14170. int node_num;
  14171. int rv;
  14172. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14173. switch(g_state.numa.numa_strategy) {
  14174. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14175. // run thread on node_num thread_n / (threads per node)
  14176. node_num = thread_n % g_state.numa.n_nodes;
  14177. break;
  14178. case GGML_NUMA_STRATEGY_ISOLATE:
  14179. // run thread on current_node
  14180. node_num = g_state.numa.current_node;
  14181. break;
  14182. case GGML_NUMA_STRATEGY_NUMACTL:
  14183. // use the cpuset that numactl gave us
  14184. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14185. if (rv) {
  14186. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14187. }
  14188. return;
  14189. default:
  14190. return;
  14191. }
  14192. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14193. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14194. CPU_ZERO_S(setsize, cpus);
  14195. for (size_t i = 0; i < node->n_cpus; ++i) {
  14196. CPU_SET_S(node->cpus[i], setsize, cpus);
  14197. }
  14198. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14199. if (rv) {
  14200. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14201. }
  14202. CPU_FREE(cpus);
  14203. }
  14204. static void clear_numa_thread_affinity(void) {
  14205. if (!ggml_is_numa()) {
  14206. return;
  14207. }
  14208. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14209. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14210. CPU_ZERO_S(setsize, cpus);
  14211. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14212. CPU_SET_S(i, setsize, cpus);
  14213. }
  14214. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14215. if (rv) {
  14216. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14217. }
  14218. CPU_FREE(cpus);
  14219. }
  14220. #else
  14221. // TODO: Windows etc.
  14222. // (the linux implementation may also work on BSD, someone should test)
  14223. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14224. static void clear_numa_thread_affinity(void) {}
  14225. #endif
  14226. struct ggml_compute_state_shared {
  14227. const struct ggml_cgraph * cgraph;
  14228. const struct ggml_cplan * cplan;
  14229. int64_t perf_node_start_cycles;
  14230. int64_t perf_node_start_time_us;
  14231. const int n_threads;
  14232. // synchronization primitives
  14233. atomic_int n_active; // num active threads
  14234. atomic_int node_n; // active graph node
  14235. atomic_int node_task; // active graph node task phase
  14236. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14237. void * abort_callback_data;
  14238. };
  14239. struct ggml_compute_state {
  14240. ggml_thread_t thrd;
  14241. int ith;
  14242. struct ggml_compute_state_shared * shared;
  14243. enum ggml_status ec;
  14244. };
  14245. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14246. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14247. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14248. node->perf_runs++;
  14249. node->perf_cycles += cycles_cur;
  14250. node->perf_time_us += time_us_cur;
  14251. }
  14252. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  14253. int n_tasks = 0;
  14254. switch (node->op) {
  14255. case GGML_OP_CPY:
  14256. case GGML_OP_DUP:
  14257. case GGML_OP_ADD:
  14258. case GGML_OP_ADD1:
  14259. case GGML_OP_ACC:
  14260. {
  14261. n_tasks = n_threads;
  14262. } break;
  14263. case GGML_OP_SUB:
  14264. case GGML_OP_SQR:
  14265. case GGML_OP_SQRT:
  14266. case GGML_OP_LOG:
  14267. case GGML_OP_SUM:
  14268. case GGML_OP_SUM_ROWS:
  14269. case GGML_OP_MEAN:
  14270. case GGML_OP_ARGMAX:
  14271. case GGML_OP_REPEAT:
  14272. case GGML_OP_REPEAT_BACK:
  14273. case GGML_OP_LEAKY_RELU:
  14274. {
  14275. n_tasks = 1;
  14276. } break;
  14277. case GGML_OP_UNARY:
  14278. switch (ggml_get_unary_op(node)) {
  14279. case GGML_UNARY_OP_ABS:
  14280. case GGML_UNARY_OP_SGN:
  14281. case GGML_UNARY_OP_NEG:
  14282. case GGML_UNARY_OP_STEP:
  14283. case GGML_UNARY_OP_TANH:
  14284. case GGML_UNARY_OP_ELU:
  14285. case GGML_UNARY_OP_RELU:
  14286. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14287. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14288. {
  14289. n_tasks = 1;
  14290. } break;
  14291. case GGML_UNARY_OP_GELU:
  14292. case GGML_UNARY_OP_GELU_QUICK:
  14293. case GGML_UNARY_OP_SILU:
  14294. {
  14295. n_tasks = n_threads;
  14296. } break;
  14297. default:
  14298. GGML_ASSERT(false);
  14299. }
  14300. break;
  14301. case GGML_OP_SILU_BACK:
  14302. case GGML_OP_MUL:
  14303. case GGML_OP_DIV:
  14304. case GGML_OP_NORM:
  14305. case GGML_OP_RMS_NORM:
  14306. case GGML_OP_RMS_NORM_BACK:
  14307. case GGML_OP_GROUP_NORM:
  14308. case GGML_OP_CONCAT:
  14309. {
  14310. n_tasks = n_threads;
  14311. } break;
  14312. case GGML_OP_MUL_MAT:
  14313. {
  14314. n_tasks = n_threads;
  14315. // TODO: use different scheduling for different matrix sizes
  14316. //const int nr0 = ggml_nrows(node->src[0]);
  14317. //const int nr1 = ggml_nrows(node->src[1]);
  14318. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14319. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14320. } break;
  14321. case GGML_OP_MUL_MAT_ID:
  14322. {
  14323. n_tasks = n_threads;
  14324. } break;
  14325. case GGML_OP_OUT_PROD:
  14326. {
  14327. n_tasks = n_threads;
  14328. } break;
  14329. case GGML_OP_SCALE:
  14330. case GGML_OP_SET:
  14331. case GGML_OP_CONT:
  14332. case GGML_OP_RESHAPE:
  14333. case GGML_OP_VIEW:
  14334. case GGML_OP_PERMUTE:
  14335. case GGML_OP_TRANSPOSE:
  14336. case GGML_OP_GET_ROWS:
  14337. case GGML_OP_GET_ROWS_BACK:
  14338. case GGML_OP_DIAG:
  14339. {
  14340. n_tasks = 1;
  14341. } break;
  14342. case GGML_OP_DIAG_MASK_ZERO:
  14343. case GGML_OP_DIAG_MASK_INF:
  14344. case GGML_OP_SOFT_MAX_BACK:
  14345. case GGML_OP_ROPE:
  14346. case GGML_OP_ROPE_BACK:
  14347. case GGML_OP_ADD_REL_POS:
  14348. {
  14349. n_tasks = n_threads;
  14350. } break;
  14351. case GGML_OP_ALIBI:
  14352. {
  14353. n_tasks = 1; //TODO
  14354. } break;
  14355. case GGML_OP_CLAMP:
  14356. {
  14357. n_tasks = 1; //TODO
  14358. } break;
  14359. case GGML_OP_SOFT_MAX:
  14360. {
  14361. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14362. } break;
  14363. case GGML_OP_CONV_TRANSPOSE_1D:
  14364. {
  14365. n_tasks = n_threads;
  14366. } break;
  14367. case GGML_OP_IM2COL:
  14368. {
  14369. n_tasks = n_threads;
  14370. } break;
  14371. case GGML_OP_CONV_TRANSPOSE_2D:
  14372. {
  14373. n_tasks = n_threads;
  14374. } break;
  14375. case GGML_OP_POOL_1D:
  14376. case GGML_OP_POOL_2D:
  14377. {
  14378. n_tasks = 1;
  14379. } break;
  14380. case GGML_OP_UPSCALE:
  14381. {
  14382. n_tasks = n_threads;
  14383. } break;
  14384. case GGML_OP_PAD:
  14385. {
  14386. n_tasks = n_threads;
  14387. } break;
  14388. case GGML_OP_ARANGE:
  14389. {
  14390. n_tasks = n_threads;
  14391. } break;
  14392. case GGML_OP_TIMESTEP_EMBEDDING:
  14393. {
  14394. n_tasks = n_threads;
  14395. } break;
  14396. case GGML_OP_ARGSORT:
  14397. {
  14398. n_tasks = n_threads;
  14399. } break;
  14400. case GGML_OP_FLASH_ATTN:
  14401. {
  14402. n_tasks = n_threads;
  14403. } break;
  14404. case GGML_OP_FLASH_FF:
  14405. {
  14406. n_tasks = n_threads;
  14407. } break;
  14408. case GGML_OP_FLASH_ATTN_BACK:
  14409. {
  14410. n_tasks = n_threads;
  14411. } break;
  14412. case GGML_OP_WIN_PART:
  14413. case GGML_OP_WIN_UNPART:
  14414. case GGML_OP_GET_REL_POS:
  14415. case GGML_OP_MAP_UNARY:
  14416. case GGML_OP_MAP_BINARY:
  14417. case GGML_OP_MAP_CUSTOM1_F32:
  14418. case GGML_OP_MAP_CUSTOM2_F32:
  14419. case GGML_OP_MAP_CUSTOM3_F32:
  14420. {
  14421. n_tasks = 1;
  14422. } break;
  14423. case GGML_OP_MAP_CUSTOM1:
  14424. {
  14425. struct ggml_map_custom1_op_params p;
  14426. memcpy(&p, node->op_params, sizeof(p));
  14427. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14428. n_tasks = n_threads;
  14429. } else {
  14430. n_tasks = MIN(p.n_tasks, n_threads);
  14431. }
  14432. } break;
  14433. case GGML_OP_MAP_CUSTOM2:
  14434. {
  14435. struct ggml_map_custom2_op_params p;
  14436. memcpy(&p, node->op_params, sizeof(p));
  14437. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14438. n_tasks = n_threads;
  14439. } else {
  14440. n_tasks = MIN(p.n_tasks, n_threads);
  14441. }
  14442. } break;
  14443. case GGML_OP_MAP_CUSTOM3:
  14444. {
  14445. struct ggml_map_custom3_op_params p;
  14446. memcpy(&p, node->op_params, sizeof(p));
  14447. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14448. n_tasks = n_threads;
  14449. } else {
  14450. n_tasks = MIN(p.n_tasks, n_threads);
  14451. }
  14452. } break;
  14453. case GGML_OP_CROSS_ENTROPY_LOSS:
  14454. {
  14455. n_tasks = n_threads;
  14456. } break;
  14457. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14458. {
  14459. n_tasks = n_threads;
  14460. } break;
  14461. case GGML_OP_NONE:
  14462. {
  14463. n_tasks = 1;
  14464. } break;
  14465. case GGML_OP_COUNT:
  14466. {
  14467. GGML_ASSERT(false);
  14468. } break;
  14469. default:
  14470. {
  14471. fprintf(stderr, "%s: op not implemented: ", __func__);
  14472. if (node->op < GGML_OP_COUNT) {
  14473. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14474. } else {
  14475. fprintf(stderr, "%d\n", node->op);
  14476. }
  14477. GGML_ASSERT(false);
  14478. } break;
  14479. }
  14480. assert(n_tasks > 0);
  14481. return n_tasks;
  14482. }
  14483. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14484. // wait for other threads to finish
  14485. const int last_node_n = * node_n;
  14486. while (true) {
  14487. if (do_yield) {
  14488. sched_yield();
  14489. }
  14490. * node_n = atomic_load(&state->shared->node_n);
  14491. if (* node_n != last_node_n) break;
  14492. }
  14493. }
  14494. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14495. // wait for other threads to finish
  14496. const int last_task_phase = * task_phase;
  14497. while (true) {
  14498. if (do_yield) {
  14499. sched_yield();
  14500. }
  14501. * task_phase = atomic_load(&state->shared->node_task);
  14502. if (* task_phase != last_task_phase) break;
  14503. }
  14504. }
  14505. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14506. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14507. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14508. const struct ggml_cplan * cplan = state->shared->cplan;
  14509. const int n_threads = state->shared->n_threads;
  14510. set_numa_thread_affinity(state->ith);
  14511. int node_n = -1;
  14512. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14513. while (true) {
  14514. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14515. state->shared->node_n += 1;
  14516. state->ec = GGML_STATUS_ABORTED;
  14517. return 0;
  14518. }
  14519. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14520. // all other threads are finished and spinning
  14521. // do finalize and init here so we don't have synchronize again
  14522. struct ggml_compute_params params = {
  14523. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14524. /*.ith =*/ 0,
  14525. /*.nth =*/ 0,
  14526. /*.wsize =*/ cplan->work_size,
  14527. /*.wdata =*/ cplan->work_data,
  14528. };
  14529. if (node_n != -1) {
  14530. /* FINALIZE */
  14531. struct ggml_tensor * node = cgraph->nodes[node_n];
  14532. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14533. params.nth = ggml_get_n_tasks(node, n_threads);
  14534. ggml_compute_forward(&params, node);
  14535. }
  14536. ggml_graph_compute_perf_stats_node(node, state->shared);
  14537. }
  14538. // distribute new work or execute it direct if 1T
  14539. while (++node_n < cgraph->n_nodes) {
  14540. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14541. struct ggml_tensor * node = cgraph->nodes[node_n];
  14542. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14543. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14544. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14545. params.nth = n_tasks;
  14546. if (n_tasks == 1) {
  14547. /* INIT */
  14548. if (GGML_OP_HAS_INIT[node->op]) {
  14549. params.type = GGML_TASK_TYPE_INIT;
  14550. ggml_compute_forward(&params, node);
  14551. }
  14552. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14553. // they do something more efficient than spinning (?)
  14554. params.type = GGML_TASK_TYPE_COMPUTE;
  14555. ggml_compute_forward(&params, node);
  14556. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14557. params.type = GGML_TASK_TYPE_FINALIZE;
  14558. ggml_compute_forward(&params, node);
  14559. }
  14560. ggml_graph_compute_perf_stats_node(node, state->shared);
  14561. } else {
  14562. break;
  14563. }
  14564. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14565. break;
  14566. }
  14567. }
  14568. task_phase = GGML_TASK_TYPE_INIT;
  14569. atomic_store(&state->shared->n_active, n_threads);
  14570. atomic_store(&state->shared->node_n, node_n);
  14571. atomic_store(&state->shared->node_task, task_phase);
  14572. } else {
  14573. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14574. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14575. }
  14576. // check if we should stop
  14577. if (node_n >= cgraph->n_nodes) break;
  14578. /* INIT & COMPUTE */
  14579. struct ggml_tensor * node = cgraph->nodes[node_n];
  14580. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14581. struct ggml_compute_params params = {
  14582. /*.type =*/ GGML_TASK_TYPE_INIT,
  14583. /*.ith =*/ state->ith,
  14584. /*.nth =*/ n_tasks,
  14585. /*.wsize =*/ cplan->work_size,
  14586. /*.wdata =*/ cplan->work_data,
  14587. };
  14588. if (state->ith < n_tasks) {
  14589. if (GGML_OP_HAS_INIT[node->op]) {
  14590. ggml_compute_forward(&params, node);
  14591. }
  14592. }
  14593. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14594. task_phase = GGML_TASK_TYPE_COMPUTE;
  14595. atomic_store(&state->shared->n_active, n_threads);
  14596. atomic_store(&state->shared->node_task, task_phase);
  14597. }
  14598. else {
  14599. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14600. // depending on the workload and the operating system.
  14601. // since it is not clear what is the best approach, it should potentially become user-configurable
  14602. // ref: https://github.com/ggerganov/ggml/issues/291
  14603. // UPD: adding the do_yield flag seems to resolve the issue universally
  14604. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14605. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14606. }
  14607. if (state->ith < n_tasks) {
  14608. params.type = GGML_TASK_TYPE_COMPUTE;
  14609. ggml_compute_forward(&params, node);
  14610. }
  14611. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14612. task_phase = GGML_TASK_TYPE_FINALIZE;
  14613. atomic_store(&state->shared->n_active, n_threads);
  14614. atomic_store(&state->shared->node_task, task_phase);
  14615. }
  14616. else {
  14617. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14618. }
  14619. }
  14620. return 0;
  14621. }
  14622. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14623. if (n_threads <= 0) {
  14624. n_threads = GGML_DEFAULT_N_THREADS;
  14625. }
  14626. size_t work_size = 0;
  14627. struct ggml_cplan cplan;
  14628. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14629. int max_tasks = 1;
  14630. // thread scheduling for the different operations + work buffer size estimation
  14631. for (int i = 0; i < cgraph->n_nodes; i++) {
  14632. struct ggml_tensor * node = cgraph->nodes[i];
  14633. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14634. max_tasks = MAX(max_tasks, n_tasks);
  14635. size_t cur = 0;
  14636. switch (node->op) {
  14637. case GGML_OP_CPY:
  14638. case GGML_OP_DUP:
  14639. {
  14640. if (ggml_is_quantized(node->type)) {
  14641. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14642. }
  14643. } break;
  14644. case GGML_OP_ADD:
  14645. case GGML_OP_ADD1:
  14646. {
  14647. if (ggml_is_quantized(node->src[0]->type)) {
  14648. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14649. }
  14650. } break;
  14651. case GGML_OP_ACC:
  14652. {
  14653. if (ggml_is_quantized(node->src[0]->type)) {
  14654. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14655. }
  14656. } break;
  14657. case GGML_OP_MUL_MAT:
  14658. {
  14659. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14660. #if defined(GGML_USE_CLBLAST)
  14661. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14662. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14663. } else
  14664. #endif
  14665. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14666. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14667. if (node->src[0]->type != GGML_TYPE_F32) {
  14668. // here we need memory for fully dequantized matrix from src0
  14669. // take into account that src0 can be broadcasted into src1[2,3]
  14670. cur = ggml_type_size(GGML_TYPE_F32)
  14671. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14672. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14673. }
  14674. } else
  14675. #endif
  14676. if (node->src[1]->type != vec_dot_type) {
  14677. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14678. }
  14679. } break;
  14680. case GGML_OP_MUL_MAT_ID:
  14681. {
  14682. cur = 0;
  14683. const struct ggml_tensor * src0 = node->src[2];
  14684. const struct ggml_tensor * src1 = node->src[1];
  14685. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14686. if (src1->type != vec_dot_type) {
  14687. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14688. }
  14689. const int n_as = ggml_get_op_params_i32(node, 1);
  14690. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14691. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14692. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14693. } break;
  14694. case GGML_OP_OUT_PROD:
  14695. {
  14696. if (ggml_is_quantized(node->src[0]->type)) {
  14697. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14698. }
  14699. } break;
  14700. case GGML_OP_SOFT_MAX:
  14701. case GGML_OP_ROPE:
  14702. {
  14703. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14704. } break;
  14705. case GGML_OP_CONV_TRANSPOSE_1D:
  14706. {
  14707. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14708. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14709. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14710. const int64_t ne00 = node->src[0]->ne[0]; // K
  14711. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14712. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14713. const int64_t ne10 = node->src[1]->ne[0]; // L
  14714. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14715. if (node->src[0]->type == GGML_TYPE_F16 &&
  14716. node->src[1]->type == GGML_TYPE_F32) {
  14717. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14718. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14719. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14720. node->src[1]->type == GGML_TYPE_F32) {
  14721. cur += sizeof(float)*ne00*ne01*ne02;
  14722. cur += sizeof(float)*ne10*ne11;
  14723. } else {
  14724. GGML_ASSERT(false);
  14725. }
  14726. } break;
  14727. case GGML_OP_CONV_TRANSPOSE_2D:
  14728. {
  14729. const int64_t ne00 = node->src[0]->ne[0]; // W
  14730. const int64_t ne01 = node->src[0]->ne[1]; // H
  14731. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14732. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14733. const int64_t ne10 = node->src[1]->ne[0]; // W
  14734. const int64_t ne11 = node->src[1]->ne[1]; // H
  14735. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14736. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14737. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14738. } break;
  14739. case GGML_OP_FLASH_ATTN:
  14740. {
  14741. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14742. if (node->src[1]->type == GGML_TYPE_F32) {
  14743. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14744. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14745. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14746. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14747. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14748. }
  14749. } break;
  14750. case GGML_OP_FLASH_FF:
  14751. {
  14752. if (node->src[1]->type == GGML_TYPE_F32) {
  14753. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14754. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14755. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14756. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14757. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14758. }
  14759. } break;
  14760. case GGML_OP_FLASH_ATTN_BACK:
  14761. {
  14762. const int64_t D = node->src[0]->ne[0];
  14763. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14764. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14765. if (node->src[1]->type == GGML_TYPE_F32) {
  14766. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14767. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14768. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14769. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14770. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14771. }
  14772. } break;
  14773. case GGML_OP_CROSS_ENTROPY_LOSS:
  14774. {
  14775. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14776. } break;
  14777. case GGML_OP_COUNT:
  14778. {
  14779. GGML_ASSERT(false);
  14780. } break;
  14781. default:
  14782. break;
  14783. }
  14784. work_size = MAX(work_size, cur);
  14785. }
  14786. if (work_size > 0) {
  14787. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14788. }
  14789. cplan.n_threads = MIN(max_tasks, n_threads);
  14790. cplan.work_size = work_size;
  14791. cplan.work_data = NULL;
  14792. return cplan;
  14793. }
  14794. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14795. {
  14796. GGML_ASSERT(cplan);
  14797. GGML_ASSERT(cplan->n_threads > 0);
  14798. if (cplan->work_size > 0) {
  14799. GGML_ASSERT(cplan->work_data);
  14800. }
  14801. }
  14802. #ifdef GGML_USE_VULKAN
  14803. for (int i = 0; i < cgraph->n_nodes; i++) {
  14804. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14805. }
  14806. ggml_vk_preallocate_buffers_cpu_assist();
  14807. for (int i = 0; i < cgraph->n_nodes; i++) {
  14808. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14809. }
  14810. #endif
  14811. const int n_threads = cplan->n_threads;
  14812. struct ggml_compute_state_shared state_shared = {
  14813. /*.cgraph =*/ cgraph,
  14814. /*.cgraph_plan =*/ cplan,
  14815. /*.perf_node_start_cycles =*/ 0,
  14816. /*.perf_node_start_time_us =*/ 0,
  14817. /*.n_threads =*/ n_threads,
  14818. /*.n_active =*/ n_threads,
  14819. /*.node_n =*/ -1,
  14820. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  14821. /*.abort_callback =*/ NULL,
  14822. /*.abort_callback_data =*/ NULL,
  14823. };
  14824. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14825. // create thread pool
  14826. if (n_threads > 1) {
  14827. for (int j = 1; j < n_threads; ++j) {
  14828. workers[j] = (struct ggml_compute_state) {
  14829. .thrd = 0,
  14830. .ith = j,
  14831. .shared = &state_shared,
  14832. .ec = GGML_STATUS_SUCCESS,
  14833. };
  14834. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14835. GGML_ASSERT(rc == 0);
  14836. UNUSED(rc);
  14837. }
  14838. }
  14839. workers[0].ith = 0;
  14840. workers[0].shared = &state_shared;
  14841. workers[0].ec = GGML_STATUS_SUCCESS;
  14842. const int64_t perf_start_cycles = ggml_perf_cycles();
  14843. const int64_t perf_start_time_us = ggml_perf_time_us();
  14844. // this is a work thread too
  14845. ggml_graph_compute_thread(&workers[0]);
  14846. enum ggml_status compute_status = workers[0].ec;
  14847. // don't leave affinity set on the main thread
  14848. clear_numa_thread_affinity();
  14849. // join or kill thread pool
  14850. if (n_threads > 1) {
  14851. for (int j = 1; j < n_threads; j++) {
  14852. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14853. GGML_ASSERT(rc == 0);
  14854. if (workers[j].ec != GGML_STATUS_SUCCESS)
  14855. compute_status = workers[j].ec;
  14856. }
  14857. }
  14858. #ifdef GGML_USE_VULKAN
  14859. ggml_vk_graph_cleanup_cpu_assist();
  14860. #endif
  14861. // performance stats (graph)
  14862. {
  14863. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14864. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14865. cgraph->perf_runs++;
  14866. cgraph->perf_cycles += perf_cycles_cur;
  14867. cgraph->perf_time_us += perf_time_us_cur;
  14868. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14869. __func__, cgraph->perf_runs,
  14870. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14871. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14872. (double) perf_time_us_cur / 1000.0,
  14873. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14874. }
  14875. return compute_status;
  14876. }
  14877. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14878. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14879. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  14880. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14881. return ggml_graph_compute(cgraph, &cplan);
  14882. }
  14883. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14884. for (int i = 0; i < cgraph->n_leafs; i++) {
  14885. struct ggml_tensor * leaf = cgraph->leafs[i];
  14886. if (strcmp(leaf->name, name) == 0) {
  14887. return leaf;
  14888. }
  14889. }
  14890. for (int i = 0; i < cgraph->n_nodes; i++) {
  14891. struct ggml_tensor * node = cgraph->nodes[i];
  14892. if (strcmp(node->name, name) == 0) {
  14893. return node;
  14894. }
  14895. }
  14896. return NULL;
  14897. }
  14898. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14899. const int64_t * ne = tensor->ne;
  14900. const size_t * nb = tensor->nb;
  14901. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14902. ggml_type_name(tensor->type),
  14903. ggml_op_name (tensor->op),
  14904. ggml_n_dims(tensor),
  14905. ne[0], ne[1], ne[2], ne[3],
  14906. nb[0], nb[1], nb[2], nb[3],
  14907. tensor->data,
  14908. tensor->name);
  14909. }
  14910. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14911. const int64_t * ne = tensor->ne;
  14912. const size_t * nb = tensor->nb;
  14913. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14914. arg,
  14915. ggml_type_name(tensor->type),
  14916. ggml_op_name (tensor->op),
  14917. ggml_n_dims(tensor),
  14918. ne[0], ne[1], ne[2], ne[3],
  14919. nb[0], nb[1], nb[2], nb[3],
  14920. tensor->data,
  14921. tensor->name);
  14922. }
  14923. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14924. uint64_t size_eval = 0;
  14925. // compute size of intermediate results
  14926. // TODO: does not take into account scratch buffers !!!!
  14927. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14928. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14929. }
  14930. // print
  14931. {
  14932. FILE * fout = stdout;
  14933. fprintf(fout, "\n");
  14934. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14935. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14936. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14937. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14938. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14939. // header
  14940. fprintf(fout, "\n");
  14941. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14942. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14943. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14944. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14945. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14946. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14947. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14948. }
  14949. // header
  14950. fprintf(fout, "\n");
  14951. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14952. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14953. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14954. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14955. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14956. if (cgraph->nodes[i]->src[j]) {
  14957. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14958. }
  14959. }
  14960. fprintf(fout, "\n");
  14961. }
  14962. fprintf(fout, "\n");
  14963. }
  14964. // write binary data
  14965. {
  14966. FILE * fout = fopen(fname, "wb");
  14967. if (!fout) {
  14968. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14969. return;
  14970. }
  14971. // header
  14972. {
  14973. const uint32_t magic = GGML_FILE_MAGIC;
  14974. const uint32_t version = GGML_FILE_VERSION;
  14975. const uint32_t n_leafs = cgraph->n_leafs;
  14976. const uint32_t n_nodes = cgraph->n_nodes;
  14977. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14978. fwrite(&version, sizeof(uint32_t), 1, fout);
  14979. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14980. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14981. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14982. }
  14983. // leafs
  14984. {
  14985. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14986. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14987. const uint32_t type = tensor->type;
  14988. const uint32_t op = tensor->op;
  14989. fwrite(&type, sizeof(uint32_t), 1, fout);
  14990. fwrite(&op, sizeof(uint32_t), 1, fout);
  14991. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14992. const uint64_t ne = tensor->ne[j];
  14993. const uint64_t nb = tensor->nb[j];
  14994. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14995. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14996. }
  14997. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14998. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14999. // dump the data
  15000. // TODO: pad this to 32 byte boundary
  15001. {
  15002. const size_t size = ggml_nbytes(tensor);
  15003. fwrite(tensor->data, sizeof(char), size, fout);
  15004. }
  15005. }
  15006. }
  15007. // nodes
  15008. {
  15009. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15010. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15011. const uint32_t type = tensor->type;
  15012. const uint32_t op = tensor->op;
  15013. fwrite(&type, sizeof(uint32_t), 1, fout);
  15014. fwrite(&op, sizeof(uint32_t), 1, fout);
  15015. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15016. const uint64_t ne = tensor->ne[j];
  15017. const uint64_t nb = tensor->nb[j];
  15018. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15019. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15020. }
  15021. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15022. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15023. // output the op arguments
  15024. {
  15025. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15026. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15027. args[j] = tensor->src[j];
  15028. }
  15029. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15030. if (args[j]) {
  15031. int32_t idx = -1;
  15032. // check if leaf
  15033. {
  15034. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15035. if (args[j] == cgraph->leafs[k]) {
  15036. idx = k;
  15037. break;
  15038. }
  15039. }
  15040. }
  15041. // check if node
  15042. if (idx == -1) {
  15043. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15044. if (args[j] == cgraph->nodes[k]) {
  15045. idx = cgraph->n_leafs + k;
  15046. break;
  15047. }
  15048. }
  15049. }
  15050. if (idx == -1) {
  15051. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15052. fclose(fout);
  15053. return;
  15054. }
  15055. fwrite(&idx, sizeof(int32_t), 1, fout);
  15056. } else {
  15057. const int32_t nul = -1;
  15058. fwrite(&nul, sizeof(int32_t), 1, fout);
  15059. }
  15060. }
  15061. }
  15062. }
  15063. }
  15064. fclose(fout);
  15065. }
  15066. }
  15067. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15068. assert(*ctx_data == NULL);
  15069. assert(*ctx_eval == NULL);
  15070. struct ggml_cgraph * result = NULL;
  15071. struct ggml_tensor * data = NULL;
  15072. // read file into data
  15073. {
  15074. FILE * fin = fopen(fname, "rb");
  15075. if (!fin) {
  15076. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15077. return result;
  15078. }
  15079. size_t fsize = 0;
  15080. fseek(fin, 0, SEEK_END);
  15081. fsize = ftell(fin);
  15082. fseek(fin, 0, SEEK_SET);
  15083. // create the data context
  15084. {
  15085. const size_t overhead = 1*ggml_tensor_overhead();
  15086. struct ggml_init_params params = {
  15087. .mem_size = fsize + overhead,
  15088. .mem_buffer = NULL,
  15089. .no_alloc = false,
  15090. };
  15091. *ctx_data = ggml_init(params);
  15092. if (!*ctx_data) {
  15093. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15094. fclose(fin);
  15095. return result;
  15096. }
  15097. }
  15098. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15099. {
  15100. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15101. if (ret != fsize) {
  15102. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15103. fclose(fin);
  15104. return result;
  15105. }
  15106. }
  15107. fclose(fin);
  15108. }
  15109. // populate result
  15110. {
  15111. char * ptr = (char *) data->data;
  15112. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15113. if (magic != GGML_FILE_MAGIC) {
  15114. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15115. return result;
  15116. }
  15117. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15118. if (version != GGML_FILE_VERSION) {
  15119. fprintf(stderr, "%s: invalid version number\n", __func__);
  15120. return result;
  15121. }
  15122. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15123. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15124. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15125. const int graph_size = MAX(n_leafs, n_nodes);
  15126. // create the data context
  15127. {
  15128. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15129. struct ggml_init_params params = {
  15130. .mem_size = size_eval + overhead,
  15131. .mem_buffer = NULL,
  15132. .no_alloc = true,
  15133. };
  15134. *ctx_eval = ggml_init(params);
  15135. if (!*ctx_eval) {
  15136. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15137. return result;
  15138. }
  15139. }
  15140. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15141. result->n_leafs = n_leafs;
  15142. result->n_nodes = n_nodes;
  15143. // leafs
  15144. {
  15145. uint32_t type;
  15146. uint32_t op;
  15147. for (uint32_t i = 0; i < n_leafs; ++i) {
  15148. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15149. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15150. int64_t ne[GGML_MAX_DIMS];
  15151. size_t nb[GGML_MAX_DIMS];
  15152. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15153. uint64_t ne_cur;
  15154. uint64_t nb_cur;
  15155. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15156. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15157. ne[j] = ne_cur;
  15158. nb[j] = nb_cur;
  15159. }
  15160. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15161. tensor->op = (enum ggml_op) op;
  15162. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15163. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15164. tensor->data = (void *) ptr;
  15165. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15166. tensor->nb[j] = nb[j];
  15167. }
  15168. result->leafs[i] = tensor;
  15169. ptr += ggml_nbytes(tensor);
  15170. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15171. }
  15172. }
  15173. ggml_set_no_alloc(*ctx_eval, false);
  15174. // nodes
  15175. {
  15176. uint32_t type;
  15177. uint32_t op;
  15178. for (uint32_t i = 0; i < n_nodes; ++i) {
  15179. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15180. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15181. enum ggml_op eop = (enum ggml_op) op;
  15182. int64_t ne[GGML_MAX_DIMS];
  15183. size_t nb[GGML_MAX_DIMS];
  15184. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15185. uint64_t ne_cur;
  15186. uint64_t nb_cur;
  15187. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15188. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15189. ne[j] = ne_cur;
  15190. nb[j] = nb_cur;
  15191. }
  15192. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15193. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15194. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15195. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15196. // parse args
  15197. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15198. const int32_t arg_idx = ptr_arg_idx[j];
  15199. if (arg_idx == -1) {
  15200. continue;
  15201. }
  15202. if (arg_idx < result->n_leafs) {
  15203. args[j] = result->leafs[arg_idx];
  15204. } else {
  15205. args[j] = result->nodes[arg_idx - result->n_leafs];
  15206. }
  15207. }
  15208. // create the tensor
  15209. // "view" operations are handled differently
  15210. // TODO: handle inplace ops - currently a copy is always made
  15211. struct ggml_tensor * tensor = NULL;
  15212. switch (eop) {
  15213. // TODO: implement other view ops
  15214. case GGML_OP_RESHAPE:
  15215. {
  15216. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15217. } break;
  15218. case GGML_OP_VIEW:
  15219. {
  15220. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15221. size_t offs;
  15222. memcpy(&offs, ptr_op_params, sizeof(offs));
  15223. tensor->data = ((char *) tensor->data) + offs;
  15224. } break;
  15225. case GGML_OP_TRANSPOSE:
  15226. {
  15227. tensor = ggml_transpose(*ctx_eval, args[0]);
  15228. } break;
  15229. case GGML_OP_PERMUTE:
  15230. {
  15231. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15232. } break;
  15233. default:
  15234. {
  15235. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15236. tensor->op = eop;
  15237. } break;
  15238. }
  15239. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15240. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15241. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15242. tensor->nb[j] = nb[j];
  15243. }
  15244. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15245. tensor->src[j] = args[j];
  15246. }
  15247. result->nodes[i] = tensor;
  15248. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15249. }
  15250. }
  15251. }
  15252. return result;
  15253. }
  15254. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15255. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15256. GGML_PRINT("=== GRAPH ===\n");
  15257. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15258. for (int i = 0; i < cgraph->n_nodes; i++) {
  15259. struct ggml_tensor * node = cgraph->nodes[i];
  15260. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15261. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15262. i,
  15263. node->ne[0], node->ne[1], node->ne[2],
  15264. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15265. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15266. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15267. (double) node->perf_time_us / 1000.0,
  15268. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15269. }
  15270. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15271. for (int i = 0; i < cgraph->n_leafs; i++) {
  15272. struct ggml_tensor * node = cgraph->leafs[i];
  15273. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15274. i,
  15275. node->ne[0], node->ne[1],
  15276. ggml_op_name(node->op),
  15277. ggml_get_name(node));
  15278. }
  15279. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15280. if (perf_total_per_op_us[i] == 0) {
  15281. continue;
  15282. }
  15283. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15284. }
  15285. GGML_PRINT("========================================\n");
  15286. }
  15287. // check if node is part of the graph
  15288. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15289. if (cgraph == NULL) {
  15290. return true;
  15291. }
  15292. for (int i = 0; i < cgraph->n_nodes; i++) {
  15293. if (cgraph->nodes[i] == node) {
  15294. return true;
  15295. }
  15296. }
  15297. return false;
  15298. }
  15299. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15300. for (int i = 0; i < cgraph->n_nodes; i++) {
  15301. struct ggml_tensor * parent = cgraph->nodes[i];
  15302. if (parent->grad == node) {
  15303. return parent;
  15304. }
  15305. }
  15306. return NULL;
  15307. }
  15308. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15309. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15310. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15311. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15312. gparent0 ? (void *) gparent0 : (void *) parent,
  15313. gparent0 ? "g" : "x",
  15314. gparent ? (void *) gparent : (void *) node,
  15315. gparent ? "g" : "x",
  15316. gparent ? "empty" : "vee",
  15317. gparent ? "dashed" : "solid",
  15318. label);
  15319. }
  15320. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15321. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15322. (void *) parent, "x",
  15323. (void *) node, "x",
  15324. label);
  15325. }
  15326. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15327. char color[16];
  15328. FILE * fp = fopen(filename, "w");
  15329. GGML_ASSERT(fp);
  15330. fprintf(fp, "digraph G {\n");
  15331. fprintf(fp, " newrank = true;\n");
  15332. fprintf(fp, " rankdir = LR;\n");
  15333. for (int i = 0; i < gb->n_nodes; i++) {
  15334. struct ggml_tensor * node = gb->nodes[i];
  15335. if (ggml_graph_get_parent(gb, node) != NULL) {
  15336. continue;
  15337. }
  15338. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15339. snprintf(color, sizeof(color), "yellow");
  15340. } else if (node->grad) {
  15341. if (ggml_graph_find(gf, node)) {
  15342. snprintf(color, sizeof(color), "green");
  15343. } else {
  15344. snprintf(color, sizeof(color), "lightblue");
  15345. }
  15346. } else {
  15347. snprintf(color, sizeof(color), "white");
  15348. }
  15349. fprintf(fp, " \"%p\" [ "
  15350. "style = filled; fillcolor = %s; shape = record; "
  15351. "label=\"",
  15352. (void *) node, color);
  15353. if (strlen(node->name) > 0) {
  15354. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15355. } else {
  15356. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15357. }
  15358. if (ggml_is_matrix(node)) {
  15359. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15360. } else {
  15361. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15362. }
  15363. if (node->grad) {
  15364. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15365. } else {
  15366. fprintf(fp, "\"; ]\n");
  15367. }
  15368. }
  15369. for (int i = 0; i < gb->n_leafs; i++) {
  15370. struct ggml_tensor * node = gb->leafs[i];
  15371. snprintf(color, sizeof(color), "pink");
  15372. fprintf(fp, " \"%p\" [ "
  15373. "style = filled; fillcolor = %s; shape = record; "
  15374. "label=\"<x>",
  15375. (void *) node, color);
  15376. if (strlen(node->name) > 0) {
  15377. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15378. } else {
  15379. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15380. }
  15381. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15382. if (ggml_nelements(node) < 5) {
  15383. fprintf(fp, " | (");
  15384. for (int j = 0; j < ggml_nelements(node); j++) {
  15385. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15386. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15387. }
  15388. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15389. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15390. }
  15391. else {
  15392. fprintf(fp, "#");
  15393. }
  15394. if (j < ggml_nelements(node) - 1) {
  15395. fprintf(fp, ", ");
  15396. }
  15397. }
  15398. fprintf(fp, ")");
  15399. }
  15400. fprintf(fp, "\"; ]\n");
  15401. }
  15402. for (int i = 0; i < gb->n_nodes; i++) {
  15403. struct ggml_tensor * node = gb->nodes[i];
  15404. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15405. if (node->src[j]) {
  15406. char label[16];
  15407. snprintf(label, sizeof(label), "src %d", j);
  15408. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15409. }
  15410. }
  15411. }
  15412. for (int i = 0; i < gb->n_leafs; i++) {
  15413. struct ggml_tensor * node = gb->leafs[i];
  15414. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15415. if (node->src[j]) {
  15416. char label[16];
  15417. snprintf(label, sizeof(label), "src %d", j);
  15418. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15419. }
  15420. }
  15421. }
  15422. fprintf(fp, "}\n");
  15423. fclose(fp);
  15424. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15425. }
  15426. ////////////////////////////////////////////////////////////////////////////////
  15427. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15428. int i = 0;
  15429. for (int p = 0; p < np; ++p) {
  15430. const int64_t ne = ggml_nelements(ps[p]) ;
  15431. // TODO: add function to set tensor from array
  15432. for (int64_t j = 0; j < ne; ++j) {
  15433. ggml_set_f32_1d(ps[p], j, x[i++]);
  15434. }
  15435. }
  15436. }
  15437. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15438. int i = 0;
  15439. for (int p = 0; p < np; ++p) {
  15440. const int64_t ne = ggml_nelements(ps[p]) ;
  15441. // TODO: add function to get all elements at once
  15442. for (int64_t j = 0; j < ne; ++j) {
  15443. x[i++] = ggml_get_f32_1d(ps[p], j);
  15444. }
  15445. }
  15446. }
  15447. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15448. int64_t i = 0;
  15449. for (int p = 0; p < np; ++p) {
  15450. const int64_t ne = ggml_nelements(ps[p]) ;
  15451. // TODO: add function to get all elements at once
  15452. for (int64_t j = 0; j < ne; ++j) {
  15453. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15454. }
  15455. }
  15456. }
  15457. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15458. int64_t i = 0;
  15459. for (int p = 0; p < np; ++p) {
  15460. const int64_t ne = ggml_nelements(ps[p]) ;
  15461. // TODO: add function to get all elements at once
  15462. for (int64_t j = 0; j < ne; ++j) {
  15463. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15464. }
  15465. }
  15466. }
  15467. //
  15468. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15469. //
  15470. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15471. //
  15472. static enum ggml_opt_result ggml_opt_adam(
  15473. struct ggml_context * ctx,
  15474. struct ggml_opt_context * opt,
  15475. struct ggml_opt_params params,
  15476. struct ggml_tensor * f,
  15477. struct ggml_cgraph * gf,
  15478. struct ggml_cgraph * gb,
  15479. ggml_opt_callback callback,
  15480. void * callback_data) {
  15481. GGML_ASSERT(ggml_is_scalar(f));
  15482. // these will store the parameters we want to optimize
  15483. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15484. int np = 0;
  15485. int64_t nx = 0;
  15486. for (int i = 0; i < gf->n_nodes; ++i) {
  15487. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15488. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15489. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15490. ps[np++] = gf->nodes[i];
  15491. nx += ggml_nelements(gf->nodes[i]);
  15492. }
  15493. }
  15494. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15495. int iter = opt->iter;
  15496. ggml_opt_init(opt->ctx, opt, params, nx);
  15497. opt->iter = iter;
  15498. }
  15499. // constants
  15500. float sched = params.adam.sched;
  15501. const float alpha = params.adam.alpha;
  15502. const float decay = params.adam.decay * alpha;
  15503. const float beta1 = params.adam.beta1;
  15504. const float beta2 = params.adam.beta2;
  15505. const float eps = params.adam.eps;
  15506. const float gclip = params.adam.gclip;
  15507. const int decay_min_ndim = params.adam.decay_min_ndim;
  15508. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15509. const float accum_norm = 1.0f / (float) n_accum;
  15510. float * g = opt->adam.g->data; // gradients
  15511. float * m = opt->adam.m->data; // first moment
  15512. float * v = opt->adam.v->data; // second moment
  15513. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15514. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15515. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15516. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15517. bool cancel = false;
  15518. // compute the function value
  15519. float fx = 0;
  15520. ggml_set_zero(opt->adam.g);
  15521. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15522. if (callback) {
  15523. callback(callback_data, accum_step, &sched, &cancel);
  15524. if (cancel) {
  15525. return GGML_OPT_RESULT_CANCEL;
  15526. }
  15527. }
  15528. // ggml_graph_reset (gf);
  15529. ggml_set_f32 (f->grad, 1.0f);
  15530. ggml_graph_compute(gb, &cplan);
  15531. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15532. fx += ggml_get_f32_1d(f, 0);
  15533. }
  15534. fx *= accum_norm;
  15535. opt->adam.fx_prev = fx;
  15536. opt->adam.fx_best = opt->adam.fx_prev;
  15537. if (pf) {
  15538. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15539. }
  15540. opt->loss_before = opt->adam.fx_prev;
  15541. opt->loss_after = opt->adam.fx_prev;
  15542. // initialize
  15543. if (opt->just_initialized) {
  15544. opt->adam.n_no_improvement = 0;
  15545. opt->just_initialized = false;
  15546. }
  15547. float * fx_best = &opt->adam.fx_best;
  15548. float * fx_prev = &opt->adam.fx_prev;
  15549. int * n_no_improvement = &opt->adam.n_no_improvement;
  15550. int iter0 = opt->iter;
  15551. // run the optimizer
  15552. for (int t = 0; t < params.adam.n_iter; ++t) {
  15553. opt->iter = iter0 + t + 1;
  15554. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15555. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15556. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15557. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15558. for (int i = 0; i < np; ++i) {
  15559. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15560. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15561. }
  15562. const int64_t t_start_wall = ggml_time_us();
  15563. const int64_t t_start_cpu = ggml_cycles();
  15564. UNUSED(t_start_wall);
  15565. UNUSED(t_start_cpu);
  15566. {
  15567. float gnorm = 1.0f;
  15568. if (gclip > 0.0f) {
  15569. // gradient clipping
  15570. ggml_float sum = 0.0;
  15571. for (int64_t i = 0; i < nx; ++i) {
  15572. sum += (ggml_float)(g[i]*g[i]);
  15573. }
  15574. ggml_float norm = sqrt(sum);
  15575. if (norm > (ggml_float) gclip) {
  15576. gnorm = (float) ((ggml_float) gclip / norm);
  15577. }
  15578. }
  15579. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15580. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15581. int64_t i = 0;
  15582. for (int p = 0; p < np; ++p) {
  15583. const int64_t ne = ggml_nelements(ps[p]);
  15584. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15585. for (int64_t j = 0; j < ne; ++j) {
  15586. float x = ggml_get_f32_1d(ps[p], j);
  15587. float g_ = g[i]*gnorm;
  15588. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15589. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15590. float mh = m[i]*beta1h;
  15591. float vh = v[i]*beta2h;
  15592. vh = sqrtf(vh) + eps;
  15593. x = x*(1.0f - p_decay) - mh/vh;
  15594. ggml_set_f32_1d(ps[p], j, x);
  15595. ++i;
  15596. }
  15597. }
  15598. }
  15599. fx = 0;
  15600. ggml_set_zero(opt->adam.g);
  15601. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15602. if (callback) {
  15603. callback(callback_data, accum_step, &sched, &cancel);
  15604. if (cancel) {
  15605. return GGML_OPT_RESULT_CANCEL;;
  15606. }
  15607. }
  15608. // ggml_graph_reset (gf);
  15609. ggml_set_f32 (f->grad, 1.0f);
  15610. ggml_graph_compute(gb, &cplan);
  15611. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15612. fx += ggml_get_f32_1d(f, 0);
  15613. }
  15614. fx *= accum_norm;
  15615. opt->loss_after = fx;
  15616. // check convergence
  15617. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15618. GGML_PRINT_DEBUG("converged\n");
  15619. return GGML_OPT_RESULT_OK;
  15620. }
  15621. // delta-based convergence test
  15622. if (pf != NULL) {
  15623. // need at least params.past iterations to start checking for convergence
  15624. if (params.past <= iter0 + t) {
  15625. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15626. if (fabsf(rate) < params.delta) {
  15627. return GGML_OPT_RESULT_OK;
  15628. }
  15629. }
  15630. pf[(iter0 + t)%params.past] = fx;
  15631. }
  15632. // check for improvement
  15633. if (params.max_no_improvement > 0) {
  15634. if (fx_best[0] > fx) {
  15635. fx_best[0] = fx;
  15636. n_no_improvement[0] = 0;
  15637. } else {
  15638. ++n_no_improvement[0];
  15639. if (n_no_improvement[0] >= params.max_no_improvement) {
  15640. return GGML_OPT_RESULT_OK;
  15641. }
  15642. }
  15643. }
  15644. fx_prev[0] = fx;
  15645. {
  15646. const int64_t t_end_cpu = ggml_cycles();
  15647. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15648. UNUSED(t_end_cpu);
  15649. const int64_t t_end_wall = ggml_time_us();
  15650. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15651. UNUSED(t_end_wall);
  15652. }
  15653. }
  15654. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15655. }
  15656. //
  15657. // L-BFGS
  15658. //
  15659. // the L-BFGS implementation below is based on the following implementation:
  15660. //
  15661. // https://github.com/chokkan/liblbfgs
  15662. //
  15663. struct ggml_lbfgs_iteration_data {
  15664. float alpha;
  15665. float ys;
  15666. float * s;
  15667. float * y;
  15668. };
  15669. static enum ggml_opt_result linesearch_backtracking(
  15670. const struct ggml_opt_params * params,
  15671. int nx,
  15672. float * x,
  15673. float * fx,
  15674. float * g,
  15675. float * d,
  15676. float * step,
  15677. const float * xp,
  15678. struct ggml_tensor * f,
  15679. struct ggml_cgraph * gb,
  15680. struct ggml_cplan * cplan,
  15681. const int np,
  15682. struct ggml_tensor * ps[],
  15683. bool * cancel,
  15684. ggml_opt_callback callback,
  15685. void * callback_data) {
  15686. int count = 0;
  15687. float width = 0.0f;
  15688. float dg = 0.0f;
  15689. float finit = 0.0f;
  15690. float dginit = 0.0f;
  15691. float dgtest = 0.0f;
  15692. const float dec = 0.5f;
  15693. const float inc = 2.1f;
  15694. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15695. const float accum_norm = 1.0f / (float) n_accum;
  15696. if (*step <= 0.f) {
  15697. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15698. }
  15699. // compute the initial gradient in the search direction
  15700. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15701. // make sure that d points to a descent direction
  15702. if (0 < dginit) {
  15703. return GGML_LINESEARCH_FAIL;
  15704. }
  15705. // initialize local variables
  15706. finit = *fx;
  15707. dgtest = params->lbfgs.ftol*dginit;
  15708. while (true) {
  15709. ggml_vec_cpy_f32(nx, x, xp);
  15710. ggml_vec_mad_f32(nx, x, d, *step);
  15711. // evaluate the function and gradient values
  15712. {
  15713. ggml_opt_set_params(np, ps, x);
  15714. *fx = 0;
  15715. memset(g, 0, sizeof(float)*nx);
  15716. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15717. if (callback) {
  15718. // LBFG-S does not support learning rate -> ignore learning schedule
  15719. float sched = 0;
  15720. callback(callback_data, accum_step, &sched, cancel);
  15721. if (*cancel) {
  15722. return GGML_OPT_RESULT_CANCEL;
  15723. }
  15724. }
  15725. // ggml_graph_reset (gf);
  15726. ggml_set_f32 (f->grad, 1.0f);
  15727. ggml_graph_compute(gb, cplan);
  15728. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15729. *fx += ggml_get_f32_1d(f, 0);
  15730. }
  15731. *fx *= accum_norm;
  15732. }
  15733. ++count;
  15734. if (*fx > finit + (*step)*dgtest) {
  15735. width = dec;
  15736. } else {
  15737. // Armijo condition is satisfied
  15738. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15739. return count;
  15740. }
  15741. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15742. // check the Wolfe condition
  15743. if (dg < params->lbfgs.wolfe * dginit) {
  15744. width = inc;
  15745. } else {
  15746. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15747. // regular Wolfe conditions
  15748. return count;
  15749. }
  15750. if(dg > -params->lbfgs.wolfe*dginit) {
  15751. width = dec;
  15752. } else {
  15753. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15754. return count;
  15755. }
  15756. }
  15757. }
  15758. if (*step < params->lbfgs.min_step) {
  15759. return GGML_LINESEARCH_MINIMUM_STEP;
  15760. }
  15761. if (*step > params->lbfgs.max_step) {
  15762. return GGML_LINESEARCH_MAXIMUM_STEP;
  15763. }
  15764. if (params->lbfgs.max_linesearch <= count) {
  15765. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15766. }
  15767. (*step) *= width;
  15768. }
  15769. GGML_ASSERT(false && "line search failed");
  15770. return GGML_LINESEARCH_FAIL;
  15771. }
  15772. static enum ggml_opt_result ggml_opt_lbfgs(
  15773. struct ggml_context * ctx,
  15774. struct ggml_opt_context * opt,
  15775. struct ggml_opt_params params,
  15776. struct ggml_tensor * f,
  15777. struct ggml_cgraph * gf,
  15778. struct ggml_cgraph * gb,
  15779. ggml_opt_callback callback,
  15780. void * callback_data) {
  15781. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15782. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15783. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15784. return GGML_OPT_RESULT_INVALID_WOLFE;
  15785. }
  15786. }
  15787. const int m = params.lbfgs.m;
  15788. // these will store the parameters we want to optimize
  15789. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15790. int np = 0;
  15791. int nx = 0;
  15792. for (int i = 0; i < gf->n_nodes; ++i) {
  15793. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15794. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15795. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15796. ps[np++] = gf->nodes[i];
  15797. nx += ggml_nelements(gf->nodes[i]);
  15798. }
  15799. }
  15800. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15801. int iter = opt->iter;
  15802. ggml_opt_init(ctx, opt, params, nx);
  15803. opt->iter = iter;
  15804. }
  15805. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15806. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15807. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15808. float * x = opt->lbfgs.x->data; // current parameters
  15809. float * xp = opt->lbfgs.xp->data; // previous parameters
  15810. float * g = opt->lbfgs.g->data; // current gradient
  15811. float * gp = opt->lbfgs.gp->data; // previous gradient
  15812. float * d = opt->lbfgs.d->data; // search direction
  15813. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15814. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15815. const float accum_norm = 1.0f / (float) n_accum;
  15816. float fx = 0.0f; // cost function value
  15817. float xnorm = 0.0f; // ||x||
  15818. float gnorm = 0.0f; // ||g||
  15819. // initialize x from the graph nodes
  15820. ggml_opt_get_params(np, ps, x);
  15821. // the L-BFGS memory
  15822. float * lm_alpha = opt->lbfgs.lmal->data;
  15823. float * lm_ys = opt->lbfgs.lmys->data;
  15824. float * lm_s = opt->lbfgs.lms->data;
  15825. float * lm_y = opt->lbfgs.lmy->data;
  15826. bool cancel = false;
  15827. // evaluate the function value and its gradient
  15828. {
  15829. ggml_opt_set_params(np, ps, x);
  15830. fx = 0;
  15831. memset(g, 0, sizeof(float)*nx);
  15832. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15833. if (callback) {
  15834. // LBFG-S does not support learning rate -> ignore learning schedule
  15835. float sched = 0;
  15836. callback(callback_data, accum_step, &sched, &cancel);
  15837. if (cancel) {
  15838. return GGML_OPT_RESULT_CANCEL;
  15839. }
  15840. }
  15841. // ggml_graph_reset (gf);
  15842. ggml_set_f32 (f->grad, 1.0f);
  15843. ggml_graph_compute(gb, &cplan);
  15844. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15845. fx += ggml_get_f32_1d(f, 0);
  15846. }
  15847. fx *= accum_norm;
  15848. opt->loss_before = fx;
  15849. opt->loss_after = fx;
  15850. }
  15851. // search direction = -gradient
  15852. ggml_vec_neg_f32(nx, d, g);
  15853. // ||x||, ||g||
  15854. ggml_vec_norm_f32(nx, &xnorm, x);
  15855. ggml_vec_norm_f32(nx, &gnorm, g);
  15856. if (xnorm < 1.0f) {
  15857. xnorm = 1.0f;
  15858. }
  15859. // already optimized
  15860. if (gnorm/xnorm <= params.lbfgs.eps) {
  15861. return GGML_OPT_RESULT_OK;
  15862. }
  15863. if (opt->just_initialized) {
  15864. if (pf) {
  15865. pf[0] = fx;
  15866. }
  15867. opt->lbfgs.fx_best = fx;
  15868. // initial step
  15869. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15870. opt->lbfgs.j = 0;
  15871. opt->lbfgs.k = 1;
  15872. opt->lbfgs.end = 0;
  15873. opt->lbfgs.n_no_improvement = 0;
  15874. opt->just_initialized = false;
  15875. }
  15876. float * fx_best = &opt->lbfgs.fx_best;
  15877. float * step = &opt->lbfgs.step;
  15878. int * j = &opt->lbfgs.j;
  15879. int * k = &opt->lbfgs.k;
  15880. int * end = &opt->lbfgs.end;
  15881. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15882. int ls = 0;
  15883. int bound = 0;
  15884. float ys = 0.0f;
  15885. float yy = 0.0f;
  15886. float beta = 0.0f;
  15887. int it = 0;
  15888. while (true) {
  15889. // store the current position and gradient vectors
  15890. ggml_vec_cpy_f32(nx, xp, x);
  15891. ggml_vec_cpy_f32(nx, gp, g);
  15892. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15893. // to determine if the optimization should be cancelled
  15894. // this is a simple change, but not doing this atm, since I don't have a nice
  15895. // way to test and don't want to break something with so many changes lined up
  15896. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15897. if (cancel) {
  15898. return GGML_OPT_RESULT_CANCEL;
  15899. }
  15900. if (ls < 0) {
  15901. // linesearch failed - go back to the previous point and return
  15902. ggml_vec_cpy_f32(nx, x, xp);
  15903. ggml_vec_cpy_f32(nx, g, gp);
  15904. return ls;
  15905. }
  15906. opt->loss_after = fx;
  15907. ggml_vec_norm_f32(nx, &xnorm, x);
  15908. ggml_vec_norm_f32(nx, &gnorm, g);
  15909. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15910. if (xnorm < 1.0f) {
  15911. xnorm = 1.0f;
  15912. }
  15913. if (gnorm/xnorm <= params.lbfgs.eps) {
  15914. // converged
  15915. return GGML_OPT_RESULT_OK;
  15916. }
  15917. // delta-based convergence test
  15918. if (pf != NULL) {
  15919. // need at least params.past iterations to start checking for convergence
  15920. if (params.past <= k[0]) {
  15921. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15922. if (fabsf(rate) < params.delta) {
  15923. return GGML_OPT_RESULT_OK;
  15924. }
  15925. }
  15926. pf[k[0]%params.past] = fx;
  15927. }
  15928. // check for improvement
  15929. if (params.max_no_improvement > 0) {
  15930. if (fx < fx_best[0]) {
  15931. fx_best[0] = fx;
  15932. n_no_improvement[0] = 0;
  15933. } else {
  15934. n_no_improvement[0]++;
  15935. if (n_no_improvement[0] >= params.max_no_improvement) {
  15936. return GGML_OPT_RESULT_OK;
  15937. }
  15938. }
  15939. }
  15940. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15941. // reached the maximum number of iterations
  15942. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15943. }
  15944. // update vectors s and y:
  15945. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15946. // y_{k+1} = g_{k+1} - g_{k}.
  15947. //
  15948. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15949. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15950. // compute scalars ys and yy:
  15951. // ys = y^t \cdot s -> 1 / \rho.
  15952. // yy = y^t \cdot y.
  15953. //
  15954. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15955. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15956. lm_ys[end[0]] = ys;
  15957. // find new search direction
  15958. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15959. bound = (m <= k[0]) ? m : k[0];
  15960. k[0]++;
  15961. it++;
  15962. end[0] = (end[0] + 1)%m;
  15963. // initialize search direction with -g
  15964. ggml_vec_neg_f32(nx, d, g);
  15965. j[0] = end[0];
  15966. for (int i = 0; i < bound; ++i) {
  15967. j[0] = (j[0] + m - 1) % m;
  15968. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15969. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15970. lm_alpha[j[0]] /= lm_ys[j[0]];
  15971. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15972. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15973. }
  15974. ggml_vec_scale_f32(nx, d, ys/yy);
  15975. for (int i = 0; i < bound; ++i) {
  15976. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15977. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15978. beta /= lm_ys[j[0]];
  15979. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15980. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15981. j[0] = (j[0] + 1)%m;
  15982. }
  15983. step[0] = 1.0;
  15984. }
  15985. GGML_ASSERT(false && "lbfgs failed");
  15986. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15987. }
  15988. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15989. struct ggml_opt_params result;
  15990. switch (type) {
  15991. case GGML_OPT_TYPE_ADAM:
  15992. {
  15993. result = (struct ggml_opt_params) {
  15994. .type = GGML_OPT_TYPE_ADAM,
  15995. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15996. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15997. .past = 0,
  15998. .delta = 1e-5f,
  15999. .max_no_improvement = 100,
  16000. .print_forward_graph = true,
  16001. .print_backward_graph = true,
  16002. .n_gradient_accumulation = 1,
  16003. .adam = {
  16004. .n_iter = 10000,
  16005. .sched = 1.000f,
  16006. .decay = 0.0f,
  16007. .decay_min_ndim = 2,
  16008. .alpha = 0.001f,
  16009. .beta1 = 0.9f,
  16010. .beta2 = 0.999f,
  16011. .eps = 1e-8f,
  16012. .eps_f = 1e-5f,
  16013. .eps_g = 1e-3f,
  16014. .gclip = 0.0f,
  16015. },
  16016. };
  16017. } break;
  16018. case GGML_OPT_TYPE_LBFGS:
  16019. {
  16020. result = (struct ggml_opt_params) {
  16021. .type = GGML_OPT_TYPE_LBFGS,
  16022. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16023. .n_threads = 1,
  16024. .past = 0,
  16025. .delta = 1e-5f,
  16026. .max_no_improvement = 0,
  16027. .print_forward_graph = true,
  16028. .print_backward_graph = true,
  16029. .n_gradient_accumulation = 1,
  16030. .lbfgs = {
  16031. .m = 6,
  16032. .n_iter = 100,
  16033. .max_linesearch = 20,
  16034. .eps = 1e-5f,
  16035. .ftol = 1e-4f,
  16036. .wolfe = 0.9f,
  16037. .min_step = 1e-20f,
  16038. .max_step = 1e+20f,
  16039. .linesearch = GGML_LINESEARCH_DEFAULT,
  16040. },
  16041. };
  16042. } break;
  16043. }
  16044. return result;
  16045. }
  16046. GGML_API void ggml_opt_init(
  16047. struct ggml_context * ctx,
  16048. struct ggml_opt_context * opt,
  16049. struct ggml_opt_params params,
  16050. int64_t nx) {
  16051. opt->ctx = ctx;
  16052. opt->params = params;
  16053. opt->iter = 0;
  16054. opt->nx = nx;
  16055. opt->just_initialized = true;
  16056. if (opt->ctx == NULL) {
  16057. struct ggml_init_params ctx_opt_params;
  16058. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16059. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16060. if (opt->params.past > 0) {
  16061. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16062. }
  16063. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16064. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16065. if (opt->params.past > 0) {
  16066. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16067. }
  16068. }
  16069. ctx_opt_params.mem_buffer = NULL;
  16070. ctx_opt_params.no_alloc = false;
  16071. opt->ctx = ggml_init(ctx_opt_params);
  16072. }
  16073. switch (opt->params.type) {
  16074. case GGML_OPT_TYPE_ADAM:
  16075. {
  16076. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16077. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16078. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16079. opt->adam.pf = params.past > 0
  16080. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16081. : NULL;
  16082. ggml_set_zero(opt->adam.m);
  16083. ggml_set_zero(opt->adam.v);
  16084. if (opt->adam.pf) {
  16085. ggml_set_zero(opt->adam.pf);
  16086. }
  16087. } break;
  16088. case GGML_OPT_TYPE_LBFGS:
  16089. {
  16090. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16091. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16092. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16093. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16094. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16095. opt->lbfgs.pf = params.past > 0
  16096. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16097. : NULL;
  16098. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16099. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16100. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16101. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16102. ggml_set_zero(opt->lbfgs.x);
  16103. ggml_set_zero(opt->lbfgs.xp);
  16104. ggml_set_zero(opt->lbfgs.g);
  16105. ggml_set_zero(opt->lbfgs.gp);
  16106. ggml_set_zero(opt->lbfgs.d);
  16107. if (opt->lbfgs.pf) {
  16108. ggml_set_zero(opt->lbfgs.pf);
  16109. }
  16110. ggml_set_zero(opt->lbfgs.lmal);
  16111. ggml_set_zero(opt->lbfgs.lmys);
  16112. ggml_set_zero(opt->lbfgs.lms);
  16113. ggml_set_zero(opt->lbfgs.lmy);
  16114. } break;
  16115. }
  16116. }
  16117. enum ggml_opt_result ggml_opt(
  16118. struct ggml_context * ctx,
  16119. struct ggml_opt_params params,
  16120. struct ggml_tensor * f) {
  16121. bool free_ctx = false;
  16122. if (ctx == NULL) {
  16123. struct ggml_init_params params_ctx = {
  16124. .mem_size = 16*1024*1024,
  16125. .mem_buffer = NULL,
  16126. .no_alloc = false,
  16127. };
  16128. ctx = ggml_init(params_ctx);
  16129. if (ctx == NULL) {
  16130. return GGML_OPT_RESULT_NO_CONTEXT;
  16131. }
  16132. free_ctx = true;
  16133. }
  16134. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16135. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16136. ggml_opt_init(ctx, opt, params, 0);
  16137. result = ggml_opt_resume(ctx, opt, f);
  16138. if (free_ctx) {
  16139. ggml_free(ctx);
  16140. }
  16141. return result;
  16142. }
  16143. enum ggml_opt_result ggml_opt_resume(
  16144. struct ggml_context * ctx,
  16145. struct ggml_opt_context * opt,
  16146. struct ggml_tensor * f) {
  16147. // build forward + backward compute graphs
  16148. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16149. ggml_build_forward_expand(gf, f);
  16150. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16151. ggml_build_backward_expand(ctx, gf, gb, true);
  16152. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16153. }
  16154. enum ggml_opt_result ggml_opt_resume_g(
  16155. struct ggml_context * ctx,
  16156. struct ggml_opt_context * opt,
  16157. struct ggml_tensor * f,
  16158. struct ggml_cgraph * gf,
  16159. struct ggml_cgraph * gb,
  16160. ggml_opt_callback callback,
  16161. void * callback_data) {
  16162. // build forward + backward compute graphs
  16163. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16164. switch (opt->params.type) {
  16165. case GGML_OPT_TYPE_ADAM:
  16166. {
  16167. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16168. } break;
  16169. case GGML_OPT_TYPE_LBFGS:
  16170. {
  16171. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16172. } break;
  16173. }
  16174. if (opt->params.print_forward_graph) {
  16175. ggml_graph_print (gf);
  16176. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16177. }
  16178. if (opt->params.print_backward_graph) {
  16179. ggml_graph_print (gb);
  16180. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16181. }
  16182. return result;
  16183. }
  16184. ////////////////////////////////////////////////////////////////////////////////
  16185. void ggml_set_input(struct ggml_tensor * tensor) {
  16186. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16187. }
  16188. void ggml_set_output(struct ggml_tensor * tensor) {
  16189. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16190. }
  16191. ////////////////////////////////////////////////////////////////////////////////
  16192. void ggml_quantize_init(enum ggml_type type) {
  16193. ggml_critical_section_start();
  16194. switch (type) {
  16195. case GGML_TYPE_IQ2_XXS:
  16196. case GGML_TYPE_IQ2_XS:
  16197. case GGML_TYPE_IQ2_S:
  16198. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16199. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16200. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16201. default: // nothing
  16202. break;
  16203. }
  16204. ggml_critical_section_end();
  16205. }
  16206. void ggml_quantize_free(void) {
  16207. ggml_critical_section_start();
  16208. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16209. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16210. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16211. iq3xs_free_impl(256);
  16212. ggml_critical_section_end();
  16213. }
  16214. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16215. assert(k % QK4_0 == 0);
  16216. const int nb = k / QK4_0;
  16217. for (int b = 0; b < n; b += k) {
  16218. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16219. quantize_row_q4_0_reference(src + b, y, k);
  16220. for (int i = 0; i < nb; i++) {
  16221. for (int j = 0; j < QK4_0; j += 2) {
  16222. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16223. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16224. hist[vi0]++;
  16225. hist[vi1]++;
  16226. }
  16227. }
  16228. }
  16229. return (n/QK4_0*sizeof(block_q4_0));
  16230. }
  16231. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16232. assert(k % QK4_1 == 0);
  16233. const int nb = k / QK4_1;
  16234. for (int b = 0; b < n; b += k) {
  16235. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16236. quantize_row_q4_1_reference(src + b, y, k);
  16237. for (int i = 0; i < nb; i++) {
  16238. for (int j = 0; j < QK4_1; j += 2) {
  16239. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16240. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16241. hist[vi0]++;
  16242. hist[vi1]++;
  16243. }
  16244. }
  16245. }
  16246. return (n/QK4_1*sizeof(block_q4_1));
  16247. }
  16248. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16249. assert(k % QK5_0 == 0);
  16250. const int nb = k / QK5_0;
  16251. for (int b = 0; b < n; b += k) {
  16252. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16253. quantize_row_q5_0_reference(src + b, y, k);
  16254. for (int i = 0; i < nb; i++) {
  16255. uint32_t qh;
  16256. memcpy(&qh, &y[i].qh, sizeof(qh));
  16257. for (int j = 0; j < QK5_0; j += 2) {
  16258. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16259. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16260. // cast to 16 bins
  16261. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16262. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16263. hist[vi0]++;
  16264. hist[vi1]++;
  16265. }
  16266. }
  16267. }
  16268. return (n/QK5_0*sizeof(block_q5_0));
  16269. }
  16270. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16271. assert(k % QK5_1 == 0);
  16272. const int nb = k / QK5_1;
  16273. for (int b = 0; b < n; b += k) {
  16274. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16275. quantize_row_q5_1_reference(src + b, y, k);
  16276. for (int i = 0; i < nb; i++) {
  16277. uint32_t qh;
  16278. memcpy(&qh, &y[i].qh, sizeof(qh));
  16279. for (int j = 0; j < QK5_1; j += 2) {
  16280. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16281. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16282. // cast to 16 bins
  16283. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16284. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16285. hist[vi0]++;
  16286. hist[vi1]++;
  16287. }
  16288. }
  16289. }
  16290. return (n/QK5_1*sizeof(block_q5_1));
  16291. }
  16292. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16293. assert(k % QK8_0 == 0);
  16294. const int nb = k / QK8_0;
  16295. for (int b = 0; b < n; b += k) {
  16296. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16297. quantize_row_q8_0_reference(src + b, y, k);
  16298. for (int i = 0; i < nb; i++) {
  16299. for (int j = 0; j < QK8_0; ++j) {
  16300. const int8_t vi = y[i].qs[j];
  16301. hist[vi/16 + 8]++;
  16302. }
  16303. }
  16304. }
  16305. return (n/QK8_0*sizeof(block_q8_0));
  16306. }
  16307. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16308. return
  16309. type == GGML_TYPE_IQ2_XXS ||
  16310. type == GGML_TYPE_IQ2_XS ||
  16311. type == GGML_TYPE_IQ1_S;
  16312. }
  16313. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16314. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16315. ggml_quantize_init(type); // this is noop if already initialized
  16316. size_t result = 0;
  16317. int n = nrows * n_per_row;
  16318. switch (type) {
  16319. case GGML_TYPE_Q4_0:
  16320. {
  16321. GGML_ASSERT(start % QK4_0 == 0);
  16322. GGML_ASSERT(start % n_per_row == 0);
  16323. size_t start_row = start / n_per_row;
  16324. size_t row_size = ggml_row_size(type, n_per_row);
  16325. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16326. GGML_ASSERT(result == row_size * nrows);
  16327. } break;
  16328. case GGML_TYPE_Q4_1:
  16329. {
  16330. GGML_ASSERT(start % QK4_1 == 0);
  16331. GGML_ASSERT(start % n_per_row == 0);
  16332. size_t start_row = start / n_per_row;
  16333. size_t row_size = ggml_row_size(type, n_per_row);
  16334. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16335. GGML_ASSERT(result == row_size * nrows);
  16336. } break;
  16337. case GGML_TYPE_Q5_0:
  16338. {
  16339. GGML_ASSERT(start % QK5_0 == 0);
  16340. GGML_ASSERT(start % n_per_row == 0);
  16341. size_t start_row = start / n_per_row;
  16342. size_t row_size = ggml_row_size(type, n_per_row);
  16343. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16344. GGML_ASSERT(result == row_size * nrows);
  16345. } break;
  16346. case GGML_TYPE_Q5_1:
  16347. {
  16348. GGML_ASSERT(start % QK5_1 == 0);
  16349. GGML_ASSERT(start % n_per_row == 0);
  16350. size_t start_row = start / n_per_row;
  16351. size_t row_size = ggml_row_size(type, n_per_row);
  16352. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16353. GGML_ASSERT(result == row_size * nrows);
  16354. } break;
  16355. case GGML_TYPE_Q8_0:
  16356. {
  16357. GGML_ASSERT(start % QK8_0 == 0);
  16358. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16359. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16360. } break;
  16361. case GGML_TYPE_Q2_K:
  16362. {
  16363. GGML_ASSERT(start % QK_K == 0);
  16364. GGML_ASSERT(start % n_per_row == 0);
  16365. size_t start_row = start / n_per_row;
  16366. size_t row_size = ggml_row_size(type, n_per_row);
  16367. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16368. GGML_ASSERT(result == row_size * nrows);
  16369. } break;
  16370. case GGML_TYPE_Q3_K:
  16371. {
  16372. GGML_ASSERT(start % QK_K == 0);
  16373. GGML_ASSERT(start % n_per_row == 0);
  16374. size_t start_row = start / n_per_row;
  16375. size_t row_size = ggml_row_size(type, n_per_row);
  16376. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16377. GGML_ASSERT(result == row_size * nrows);
  16378. } break;
  16379. case GGML_TYPE_Q4_K:
  16380. {
  16381. GGML_ASSERT(start % QK_K == 0);
  16382. GGML_ASSERT(start % n_per_row == 0);
  16383. size_t start_row = start / n_per_row;
  16384. size_t row_size = ggml_row_size(type, n_per_row);
  16385. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16386. GGML_ASSERT(result == row_size * nrows);
  16387. } break;
  16388. case GGML_TYPE_Q5_K:
  16389. {
  16390. GGML_ASSERT(start % QK_K == 0);
  16391. GGML_ASSERT(start % n_per_row == 0);
  16392. size_t start_row = start / n_per_row;
  16393. size_t row_size = ggml_row_size(type, n_per_row);
  16394. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16395. GGML_ASSERT(result == row_size * nrows);
  16396. } break;
  16397. case GGML_TYPE_Q6_K:
  16398. {
  16399. GGML_ASSERT(start % QK_K == 0);
  16400. GGML_ASSERT(start % n_per_row == 0);
  16401. size_t start_row = start / n_per_row;
  16402. size_t row_size = ggml_row_size(type, n_per_row);
  16403. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16404. GGML_ASSERT(result == row_size * nrows);
  16405. } break;
  16406. case GGML_TYPE_IQ2_XXS:
  16407. {
  16408. GGML_ASSERT(start % QK_K == 0);
  16409. GGML_ASSERT(start % n_per_row == 0);
  16410. GGML_ASSERT(imatrix);
  16411. size_t start_row = start / n_per_row;
  16412. size_t row_size = ggml_row_size(type, n_per_row);
  16413. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16414. GGML_ASSERT(result == row_size * nrows);
  16415. } break;
  16416. case GGML_TYPE_IQ2_XS:
  16417. {
  16418. GGML_ASSERT(start % QK_K == 0);
  16419. GGML_ASSERT(start % n_per_row == 0);
  16420. GGML_ASSERT(imatrix);
  16421. size_t start_row = start / n_per_row;
  16422. size_t row_size = ggml_row_size(type, n_per_row);
  16423. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16424. GGML_ASSERT(result == row_size * nrows);
  16425. } break;
  16426. case GGML_TYPE_IQ3_XXS:
  16427. {
  16428. GGML_ASSERT(start % QK_K == 0);
  16429. GGML_ASSERT(start % n_per_row == 0);
  16430. size_t start_row = start / n_per_row;
  16431. size_t row_size = ggml_row_size(type, n_per_row);
  16432. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16433. GGML_ASSERT(result == row_size * nrows);
  16434. } break;
  16435. case GGML_TYPE_IQ3_S:
  16436. {
  16437. GGML_ASSERT(start % QK_K == 0);
  16438. GGML_ASSERT(start % n_per_row == 0);
  16439. size_t start_row = start / n_per_row;
  16440. size_t row_size = ggml_row_size(type, n_per_row);
  16441. result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16442. GGML_ASSERT(result == row_size * nrows);
  16443. } break;
  16444. case GGML_TYPE_IQ2_S:
  16445. {
  16446. GGML_ASSERT(start % QK_K == 0);
  16447. GGML_ASSERT(start % n_per_row == 0);
  16448. size_t start_row = start / n_per_row;
  16449. size_t row_size = ggml_row_size(type, n_per_row);
  16450. result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16451. GGML_ASSERT(result == row_size * nrows);
  16452. } break;
  16453. case GGML_TYPE_IQ1_S:
  16454. {
  16455. GGML_ASSERT(start % QK_K == 0);
  16456. GGML_ASSERT(start % n_per_row == 0);
  16457. size_t start_row = start / n_per_row;
  16458. size_t row_size = ggml_row_size(type, n_per_row);
  16459. result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16460. GGML_ASSERT(result == row_size * nrows);
  16461. } break;
  16462. case GGML_TYPE_IQ4_NL:
  16463. #if QK_K == 64
  16464. case GGML_TYPE_IQ4_XS:
  16465. #endif
  16466. {
  16467. GGML_ASSERT(start % QK4_NL == 0);
  16468. GGML_ASSERT(start % n_per_row == 0);
  16469. size_t start_row = start / n_per_row;
  16470. size_t row_size = ggml_row_size(type, n_per_row);
  16471. result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16472. GGML_ASSERT(result == row_size * nrows);
  16473. } break;
  16474. #if QK_K != 64
  16475. case GGML_TYPE_IQ4_XS:
  16476. {
  16477. GGML_ASSERT(start % QK_K == 0);
  16478. GGML_ASSERT(start % n_per_row == 0);
  16479. size_t start_row = start / n_per_row;
  16480. size_t row_size = ggml_row_size(type, n_per_row);
  16481. result = quantize_iq4_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16482. GGML_ASSERT(result == row_size * nrows);
  16483. } break;
  16484. #endif
  16485. case GGML_TYPE_F16:
  16486. {
  16487. size_t elemsize = sizeof(ggml_fp16_t);
  16488. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16489. result = n * elemsize;
  16490. } break;
  16491. case GGML_TYPE_F32:
  16492. {
  16493. size_t elemsize = sizeof(float);
  16494. result = n * elemsize;
  16495. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16496. } break;
  16497. default:
  16498. assert(false);
  16499. }
  16500. return result;
  16501. }
  16502. ////////////////////////////////////////////////////////////////////////////////
  16503. struct gguf_str {
  16504. uint64_t n; // GGUFv2
  16505. char * data;
  16506. };
  16507. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16508. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16509. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16510. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16511. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16512. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16513. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16514. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16515. [GGUF_TYPE_BOOL] = sizeof(bool),
  16516. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16517. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16518. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16519. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16520. [GGUF_TYPE_ARRAY] = 0, // undefined
  16521. };
  16522. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16523. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16524. [GGUF_TYPE_UINT8] = "u8",
  16525. [GGUF_TYPE_INT8] = "i8",
  16526. [GGUF_TYPE_UINT16] = "u16",
  16527. [GGUF_TYPE_INT16] = "i16",
  16528. [GGUF_TYPE_UINT32] = "u32",
  16529. [GGUF_TYPE_INT32] = "i32",
  16530. [GGUF_TYPE_FLOAT32] = "f32",
  16531. [GGUF_TYPE_BOOL] = "bool",
  16532. [GGUF_TYPE_STRING] = "str",
  16533. [GGUF_TYPE_ARRAY] = "arr",
  16534. [GGUF_TYPE_UINT64] = "u64",
  16535. [GGUF_TYPE_INT64] = "i64",
  16536. [GGUF_TYPE_FLOAT64] = "f64",
  16537. };
  16538. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16539. union gguf_value {
  16540. uint8_t uint8;
  16541. int8_t int8;
  16542. uint16_t uint16;
  16543. int16_t int16;
  16544. uint32_t uint32;
  16545. int32_t int32;
  16546. float float32;
  16547. uint64_t uint64;
  16548. int64_t int64;
  16549. double float64;
  16550. bool bool_;
  16551. struct gguf_str str;
  16552. struct {
  16553. enum gguf_type type;
  16554. uint64_t n; // GGUFv2
  16555. void * data;
  16556. } arr;
  16557. };
  16558. struct gguf_kv {
  16559. struct gguf_str key;
  16560. enum gguf_type type;
  16561. union gguf_value value;
  16562. };
  16563. struct gguf_header {
  16564. char magic[4];
  16565. uint32_t version;
  16566. uint64_t n_tensors; // GGUFv2
  16567. uint64_t n_kv; // GGUFv2
  16568. };
  16569. struct gguf_tensor_info {
  16570. struct gguf_str name;
  16571. uint32_t n_dims;
  16572. uint64_t ne[GGML_MAX_DIMS];
  16573. enum ggml_type type;
  16574. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16575. // for writing API
  16576. const void * data;
  16577. size_t size;
  16578. };
  16579. struct gguf_context {
  16580. struct gguf_header header;
  16581. struct gguf_kv * kv;
  16582. struct gguf_tensor_info * infos;
  16583. size_t alignment;
  16584. size_t offset; // offset of `data` from beginning of file
  16585. size_t size; // size of `data` in bytes
  16586. //uint8_t * padding;
  16587. void * data;
  16588. };
  16589. static size_t gguf_type_size(enum gguf_type type) {
  16590. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16591. return GGUF_TYPE_SIZE[type];
  16592. }
  16593. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16594. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16595. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16596. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16597. GGML_ASSERT(info->ne[i] > 0);
  16598. }
  16599. // prevent overflow for total number of elements
  16600. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16601. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16602. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16603. }
  16604. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16605. const size_t n = fread(dst, 1, size, file);
  16606. *offset += n;
  16607. return n == size;
  16608. }
  16609. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16610. p->n = 0;
  16611. p->data = NULL;
  16612. bool ok = true;
  16613. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16614. // early exit if string length is invalid, prevents from integer overflow
  16615. if (p->n == SIZE_MAX) {
  16616. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16617. return false;
  16618. }
  16619. p->data = GGML_CALLOC(p->n + 1, 1);
  16620. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16621. return ok;
  16622. }
  16623. struct gguf_context * gguf_init_empty(void) {
  16624. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16625. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16626. ctx->header.version = GGUF_VERSION;
  16627. ctx->header.n_tensors = 0;
  16628. ctx->header.n_kv = 0;
  16629. ctx->kv = NULL;
  16630. ctx->infos = NULL;
  16631. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16632. ctx->offset = 0;
  16633. ctx->size = 0;
  16634. ctx->data = NULL;
  16635. return ctx;
  16636. }
  16637. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16638. FILE * file = fopen(fname, "rb");
  16639. if (!file) {
  16640. return NULL;
  16641. }
  16642. // offset from start of file
  16643. size_t offset = 0;
  16644. char magic[4];
  16645. // check the magic before making allocations
  16646. {
  16647. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16648. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16649. if (magic[i] != GGUF_MAGIC[i]) {
  16650. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16651. fclose(file);
  16652. return NULL;
  16653. }
  16654. }
  16655. }
  16656. bool ok = true;
  16657. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16658. // read the header
  16659. {
  16660. strncpy(ctx->header.magic, magic, 4);
  16661. ctx->kv = NULL;
  16662. ctx->infos = NULL;
  16663. ctx->data = NULL;
  16664. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16665. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16666. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16667. if (ctx->header.version == 1) {
  16668. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16669. fclose(file);
  16670. gguf_free(ctx);
  16671. return NULL;
  16672. }
  16673. // sanity-checks to prevent from integer/buffer overflows
  16674. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16675. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16676. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16677. if (!ok) {
  16678. fprintf(stderr, "%s: failed to read header\n", __func__);
  16679. fclose(file);
  16680. gguf_free(ctx);
  16681. return NULL;
  16682. }
  16683. }
  16684. // read the kv pairs
  16685. {
  16686. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16687. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16688. struct gguf_kv * kv = &ctx->kv[i];
  16689. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16690. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16691. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16692. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16693. switch (kv->type) {
  16694. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16695. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16696. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16697. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16698. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16699. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16700. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16701. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16702. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16703. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16704. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16705. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16706. case GGUF_TYPE_ARRAY:
  16707. {
  16708. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16709. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16710. switch (kv->value.arr.type) {
  16711. case GGUF_TYPE_UINT8:
  16712. case GGUF_TYPE_INT8:
  16713. case GGUF_TYPE_UINT16:
  16714. case GGUF_TYPE_INT16:
  16715. case GGUF_TYPE_UINT32:
  16716. case GGUF_TYPE_INT32:
  16717. case GGUF_TYPE_FLOAT32:
  16718. case GGUF_TYPE_UINT64:
  16719. case GGUF_TYPE_INT64:
  16720. case GGUF_TYPE_FLOAT64:
  16721. case GGUF_TYPE_BOOL:
  16722. {
  16723. // prevent from integer overflow in the malloc below
  16724. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16725. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16726. fclose(file);
  16727. gguf_free(ctx);
  16728. return NULL;
  16729. }
  16730. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16731. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16732. } break;
  16733. case GGUF_TYPE_STRING:
  16734. {
  16735. // prevent from integer overflow in the malloc below
  16736. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16737. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16738. fclose(file);
  16739. gguf_free(ctx);
  16740. return NULL;
  16741. }
  16742. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16743. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16744. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16745. }
  16746. } break;
  16747. case GGUF_TYPE_ARRAY:
  16748. default: GGML_ASSERT(false && "invalid type"); break;
  16749. }
  16750. } break;
  16751. default: GGML_ASSERT(false && "invalid type");
  16752. }
  16753. if (!ok) {
  16754. break;
  16755. }
  16756. }
  16757. if (!ok) {
  16758. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16759. fclose(file);
  16760. gguf_free(ctx);
  16761. return NULL;
  16762. }
  16763. }
  16764. // read the tensor infos
  16765. {
  16766. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16767. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16768. struct gguf_tensor_info * info = &ctx->infos[i];
  16769. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16770. info->ne[j] = 1;
  16771. }
  16772. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16773. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16774. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16775. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16776. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16777. }
  16778. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16779. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16780. gguf_tensor_info_sanitize(info);
  16781. if (!ok) {
  16782. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16783. fclose(file);
  16784. gguf_free(ctx);
  16785. return NULL;
  16786. }
  16787. }
  16788. }
  16789. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16790. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16791. if (alignment_idx != -1) {
  16792. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16793. }
  16794. // we require the data section to be aligned, so take into account any padding
  16795. {
  16796. const size_t offset_pad = offset % ctx->alignment;
  16797. if (offset_pad != 0) {
  16798. offset += ctx->alignment - offset_pad;
  16799. fseek(file, offset, SEEK_SET);
  16800. }
  16801. }
  16802. // store the current file offset - this is where the data section starts
  16803. ctx->offset = offset;
  16804. // compute the total size of the data section, taking into account the alignment
  16805. {
  16806. ctx->size = 0;
  16807. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16808. struct gguf_tensor_info * info = &ctx->infos[i];
  16809. const int64_t ne =
  16810. (int64_t) info->ne[0] *
  16811. (int64_t) info->ne[1] *
  16812. (int64_t) info->ne[2] *
  16813. (int64_t) info->ne[3];
  16814. if (ne % ggml_blck_size(info->type) != 0) {
  16815. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16816. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16817. fclose(file);
  16818. gguf_free(ctx);
  16819. return NULL;
  16820. }
  16821. const size_t size_cur = ggml_row_size(info->type, ne);
  16822. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16823. }
  16824. }
  16825. // load the tensor data only if requested
  16826. if (params.ctx != NULL) {
  16827. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16828. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16829. // the ggml_tensor structs to the appropriate locations in the binary blob
  16830. // compute the exact size needed for the new ggml_context
  16831. const size_t mem_size =
  16832. params.no_alloc ?
  16833. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16834. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16835. struct ggml_init_params pdata = {
  16836. .mem_size = mem_size,
  16837. .mem_buffer = NULL,
  16838. .no_alloc = params.no_alloc,
  16839. };
  16840. *params.ctx = ggml_init(pdata);
  16841. struct ggml_context * ctx_data = *params.ctx;
  16842. struct ggml_tensor * data = NULL;
  16843. if (!params.no_alloc) {
  16844. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16845. ok = ok && data != NULL;
  16846. // read the binary blob with the tensor data
  16847. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16848. if (!ok) {
  16849. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16850. fclose(file);
  16851. ggml_free(ctx_data);
  16852. gguf_free(ctx);
  16853. return NULL;
  16854. }
  16855. ctx->data = data->data;
  16856. }
  16857. ggml_set_no_alloc(ctx_data, true);
  16858. // create the tensors
  16859. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16860. const int64_t ne[GGML_MAX_DIMS] = {
  16861. ctx->infos[i].ne[0],
  16862. ctx->infos[i].ne[1],
  16863. ctx->infos[i].ne[2],
  16864. ctx->infos[i].ne[3],
  16865. };
  16866. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16867. ok = ok && cur != NULL;
  16868. ggml_set_name(cur, ctx->infos[i].name.data);
  16869. if (!ok) {
  16870. break;
  16871. }
  16872. // point the data member to the appropriate location in the binary blob using the tensor infos
  16873. if (!params.no_alloc) {
  16874. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16875. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16876. }
  16877. }
  16878. if (!ok) {
  16879. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16880. fclose(file);
  16881. ggml_free(ctx_data);
  16882. gguf_free(ctx);
  16883. return NULL;
  16884. }
  16885. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16886. }
  16887. fclose(file);
  16888. return ctx;
  16889. }
  16890. void gguf_free(struct gguf_context * ctx) {
  16891. if (ctx == NULL) {
  16892. return;
  16893. }
  16894. if (ctx->kv) {
  16895. // free string memory - not great..
  16896. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16897. struct gguf_kv * kv = &ctx->kv[i];
  16898. if (kv->key.data) {
  16899. GGML_FREE(kv->key.data);
  16900. }
  16901. if (kv->type == GGUF_TYPE_STRING) {
  16902. if (kv->value.str.data) {
  16903. GGML_FREE(kv->value.str.data);
  16904. }
  16905. }
  16906. if (kv->type == GGUF_TYPE_ARRAY) {
  16907. if (kv->value.arr.data) {
  16908. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16909. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16910. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16911. if (str->data) {
  16912. GGML_FREE(str->data);
  16913. }
  16914. }
  16915. }
  16916. GGML_FREE(kv->value.arr.data);
  16917. }
  16918. }
  16919. }
  16920. GGML_FREE(ctx->kv);
  16921. }
  16922. if (ctx->infos) {
  16923. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16924. struct gguf_tensor_info * info = &ctx->infos[i];
  16925. if (info->name.data) {
  16926. GGML_FREE(info->name.data);
  16927. }
  16928. }
  16929. GGML_FREE(ctx->infos);
  16930. }
  16931. GGML_ALIGNED_FREE(ctx);
  16932. }
  16933. const char * gguf_type_name(enum gguf_type type) {
  16934. return GGUF_TYPE_NAME[type];
  16935. }
  16936. int gguf_get_version(const struct gguf_context * ctx) {
  16937. return ctx->header.version;
  16938. }
  16939. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16940. return ctx->alignment;
  16941. }
  16942. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16943. return ctx->offset;
  16944. }
  16945. void * gguf_get_data(const struct gguf_context * ctx) {
  16946. return ctx->data;
  16947. }
  16948. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16949. return ctx->header.n_kv;
  16950. }
  16951. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16952. // return -1 if key not found
  16953. int keyfound = -1;
  16954. const int n_kv = gguf_get_n_kv(ctx);
  16955. for (int i = 0; i < n_kv; ++i) {
  16956. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16957. keyfound = i;
  16958. break;
  16959. }
  16960. }
  16961. return keyfound;
  16962. }
  16963. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16964. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16965. return ctx->kv[key_id].key.data;
  16966. }
  16967. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16968. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16969. return ctx->kv[key_id].type;
  16970. }
  16971. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16972. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16973. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16974. return ctx->kv[key_id].value.arr.type;
  16975. }
  16976. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16977. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16978. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16979. return ctx->kv[key_id].value.arr.data;
  16980. }
  16981. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16982. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16983. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16984. struct gguf_kv * kv = &ctx->kv[key_id];
  16985. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16986. return str->data;
  16987. }
  16988. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16989. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16990. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16991. return ctx->kv[key_id].value.arr.n;
  16992. }
  16993. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16994. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16995. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16996. return ctx->kv[key_id].value.uint8;
  16997. }
  16998. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16999. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17000. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17001. return ctx->kv[key_id].value.int8;
  17002. }
  17003. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17004. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17005. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17006. return ctx->kv[key_id].value.uint16;
  17007. }
  17008. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17009. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17010. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17011. return ctx->kv[key_id].value.int16;
  17012. }
  17013. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17014. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17015. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17016. return ctx->kv[key_id].value.uint32;
  17017. }
  17018. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17019. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17020. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17021. return ctx->kv[key_id].value.int32;
  17022. }
  17023. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17024. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17025. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17026. return ctx->kv[key_id].value.float32;
  17027. }
  17028. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17029. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17030. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17031. return ctx->kv[key_id].value.uint64;
  17032. }
  17033. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17034. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17035. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17036. return ctx->kv[key_id].value.int64;
  17037. }
  17038. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17039. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17040. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17041. return ctx->kv[key_id].value.float64;
  17042. }
  17043. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17044. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17045. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17046. return ctx->kv[key_id].value.bool_;
  17047. }
  17048. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17049. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17050. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17051. return ctx->kv[key_id].value.str.data;
  17052. }
  17053. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17054. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17055. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17056. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17057. return &ctx->kv[key_id].value;
  17058. }
  17059. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17060. return ctx->header.n_tensors;
  17061. }
  17062. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17063. // return -1 if tensor not found
  17064. int tensorfound = -1;
  17065. const int n_tensors = gguf_get_n_tensors(ctx);
  17066. for (int i = 0; i < n_tensors; ++i) {
  17067. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17068. tensorfound = i;
  17069. break;
  17070. }
  17071. }
  17072. return tensorfound;
  17073. }
  17074. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17075. return ctx->infos[i].offset;
  17076. }
  17077. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17078. return ctx->infos[i].name.data;
  17079. }
  17080. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17081. return ctx->infos[i].type;
  17082. }
  17083. // returns the index
  17084. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17085. const int idx = gguf_find_key(ctx, key);
  17086. if (idx >= 0) {
  17087. return idx;
  17088. }
  17089. const int n_kv = gguf_get_n_kv(ctx);
  17090. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17091. ctx->kv[n_kv].key.n = strlen(key);
  17092. ctx->kv[n_kv].key.data = strdup(key);
  17093. ctx->header.n_kv++;
  17094. return n_kv;
  17095. }
  17096. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17097. const int idx = gguf_get_or_add_key(ctx, key);
  17098. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17099. ctx->kv[idx].value.uint8 = val;
  17100. }
  17101. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17102. const int idx = gguf_get_or_add_key(ctx, key);
  17103. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17104. ctx->kv[idx].value.int8 = val;
  17105. }
  17106. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17107. const int idx = gguf_get_or_add_key(ctx, key);
  17108. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17109. ctx->kv[idx].value.uint16 = val;
  17110. }
  17111. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17112. const int idx = gguf_get_or_add_key(ctx, key);
  17113. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17114. ctx->kv[idx].value.int16 = val;
  17115. }
  17116. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17117. const int idx = gguf_get_or_add_key(ctx, key);
  17118. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17119. ctx->kv[idx].value.uint32 = val;
  17120. }
  17121. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17122. const int idx = gguf_get_or_add_key(ctx, key);
  17123. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17124. ctx->kv[idx].value.int32 = val;
  17125. }
  17126. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17127. const int idx = gguf_get_or_add_key(ctx, key);
  17128. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17129. ctx->kv[idx].value.float32 = val;
  17130. }
  17131. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17132. const int idx = gguf_get_or_add_key(ctx, key);
  17133. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17134. ctx->kv[idx].value.uint64 = val;
  17135. }
  17136. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17137. const int idx = gguf_get_or_add_key(ctx, key);
  17138. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17139. ctx->kv[idx].value.int64 = val;
  17140. }
  17141. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17142. const int idx = gguf_get_or_add_key(ctx, key);
  17143. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17144. ctx->kv[idx].value.float64 = val;
  17145. }
  17146. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17147. const int idx = gguf_get_or_add_key(ctx, key);
  17148. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17149. ctx->kv[idx].value.bool_ = val;
  17150. }
  17151. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17152. const int idx = gguf_get_or_add_key(ctx, key);
  17153. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17154. ctx->kv[idx].value.str.n = strlen(val);
  17155. ctx->kv[idx].value.str.data = strdup(val);
  17156. }
  17157. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17158. const int idx = gguf_get_or_add_key(ctx, key);
  17159. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17160. ctx->kv[idx].value.arr.type = type;
  17161. ctx->kv[idx].value.arr.n = n;
  17162. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17163. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17164. }
  17165. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17166. const int idx = gguf_get_or_add_key(ctx, key);
  17167. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17168. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17169. ctx->kv[idx].value.arr.n = n;
  17170. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17171. for (int i = 0; i < n; i++) {
  17172. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17173. str->n = strlen(data[i]);
  17174. str->data = strdup(data[i]);
  17175. }
  17176. }
  17177. // set or add KV pairs from another context
  17178. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17179. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17180. switch (src->kv[i].type) {
  17181. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17182. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17183. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17184. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17185. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17186. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17187. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17188. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17189. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17190. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17191. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17192. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17193. case GGUF_TYPE_ARRAY:
  17194. {
  17195. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17196. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17197. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17198. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17199. }
  17200. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17201. GGML_FREE((void *)data);
  17202. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17203. GGML_ASSERT(false && "nested arrays not supported");
  17204. } else {
  17205. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17206. }
  17207. } break;
  17208. default: GGML_ASSERT(false && "invalid type"); break;
  17209. }
  17210. }
  17211. }
  17212. void gguf_add_tensor(
  17213. struct gguf_context * ctx,
  17214. const struct ggml_tensor * tensor) {
  17215. const int idx = ctx->header.n_tensors;
  17216. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17217. ctx->infos[idx].name.n = strlen(tensor->name);
  17218. ctx->infos[idx].name.data = strdup(tensor->name);
  17219. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17220. ctx->infos[idx].ne[i] = 1;
  17221. }
  17222. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17223. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17224. ctx->infos[idx].ne[i] = tensor->ne[i];
  17225. }
  17226. ctx->infos[idx].type = tensor->type;
  17227. ctx->infos[idx].offset = 0;
  17228. ctx->infos[idx].data = tensor->data;
  17229. ctx->infos[idx].size = ggml_nbytes(tensor);
  17230. if (ctx->header.n_tensors > 0) {
  17231. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17232. }
  17233. ctx->header.n_tensors++;
  17234. }
  17235. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17236. const int idx = gguf_find_tensor(ctx, name);
  17237. if (idx < 0) {
  17238. GGML_ASSERT(false && "tensor not found");
  17239. }
  17240. ctx->infos[idx].type = type;
  17241. }
  17242. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17243. const int idx = gguf_find_tensor(ctx, name);
  17244. if (idx < 0) {
  17245. GGML_ASSERT(false && "tensor not found");
  17246. }
  17247. ctx->infos[idx].data = data;
  17248. ctx->infos[idx].size = size;
  17249. // update offsets
  17250. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17251. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17252. }
  17253. }
  17254. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17255. // fwrite(&val->n, sizeof(val->n), 1, file);
  17256. // fwrite(val->data, sizeof(char), val->n, file);
  17257. //}
  17258. //
  17259. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17260. // fwrite(val, sizeof(char), size, file);
  17261. //}
  17262. struct gguf_buf {
  17263. void * data;
  17264. size_t size;
  17265. size_t offset;
  17266. };
  17267. static struct gguf_buf gguf_buf_init(size_t size) {
  17268. struct gguf_buf buf = {
  17269. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17270. /*buf.size =*/ size,
  17271. /*buf.offset =*/ 0,
  17272. };
  17273. return buf;
  17274. }
  17275. static void gguf_buf_free(struct gguf_buf buf) {
  17276. if (buf.data) {
  17277. GGML_FREE(buf.data);
  17278. }
  17279. }
  17280. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17281. if (buf->offset + size > buf->size) {
  17282. buf->size = 1.5*(buf->offset + size);
  17283. if (buf->data) {
  17284. buf->data = realloc(buf->data, buf->size);
  17285. }
  17286. }
  17287. }
  17288. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17289. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17290. if (buf->data) {
  17291. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17292. }
  17293. buf->offset += sizeof(val->n);
  17294. if (buf->data) {
  17295. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17296. }
  17297. buf->offset += val->n;
  17298. }
  17299. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17300. gguf_buf_grow(buf, el_size);
  17301. if (buf->data) {
  17302. memcpy((char *) buf->data + buf->offset, val, el_size);
  17303. }
  17304. buf->offset += el_size;
  17305. }
  17306. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17307. // write header
  17308. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17309. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17310. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17311. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17312. // write key-value pairs
  17313. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17314. struct gguf_kv * kv = &ctx->kv[i];
  17315. gguf_bwrite_str(buf, &kv->key);
  17316. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17317. switch (kv->type) {
  17318. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17319. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17320. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17321. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17322. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17323. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17324. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17325. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17326. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17327. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17328. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17329. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17330. case GGUF_TYPE_ARRAY:
  17331. {
  17332. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17333. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17334. switch (kv->value.arr.type) {
  17335. case GGUF_TYPE_UINT8:
  17336. case GGUF_TYPE_INT8:
  17337. case GGUF_TYPE_UINT16:
  17338. case GGUF_TYPE_INT16:
  17339. case GGUF_TYPE_UINT32:
  17340. case GGUF_TYPE_INT32:
  17341. case GGUF_TYPE_FLOAT32:
  17342. case GGUF_TYPE_UINT64:
  17343. case GGUF_TYPE_INT64:
  17344. case GGUF_TYPE_FLOAT64:
  17345. case GGUF_TYPE_BOOL:
  17346. {
  17347. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17348. } break;
  17349. case GGUF_TYPE_STRING:
  17350. {
  17351. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17352. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17353. }
  17354. } break;
  17355. case GGUF_TYPE_ARRAY:
  17356. default: GGML_ASSERT(false && "invalid type"); break;
  17357. }
  17358. } break;
  17359. default: GGML_ASSERT(false && "invalid type");
  17360. }
  17361. }
  17362. // write tensor infos
  17363. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17364. struct gguf_tensor_info * info = &ctx->infos[i];
  17365. gguf_bwrite_str(buf, &info->name);
  17366. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17367. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17368. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17369. }
  17370. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17371. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17372. }
  17373. // we require the data section to be aligned, so take into account any padding
  17374. {
  17375. const size_t offset = buf->offset;
  17376. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17377. if (offset_pad != offset) {
  17378. uint8_t pad = 0;
  17379. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17380. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17381. }
  17382. }
  17383. }
  17384. if (only_meta) {
  17385. return;
  17386. }
  17387. size_t offset = 0;
  17388. // write tensor data
  17389. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17390. struct gguf_tensor_info * info = &ctx->infos[i];
  17391. const size_t size = info->size;
  17392. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17393. gguf_bwrite_el(buf, info->data, size);
  17394. if (size_pad != size) {
  17395. uint8_t pad = 0;
  17396. for (size_t j = 0; j < size_pad - size; ++j) {
  17397. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17398. }
  17399. }
  17400. GGML_ASSERT(offset == info->offset);
  17401. offset += size_pad;
  17402. }
  17403. }
  17404. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17405. FILE * file = fopen(fname, "wb");
  17406. if (!file) {
  17407. GGML_ASSERT(false && "failed to open file for writing");
  17408. }
  17409. struct gguf_buf buf = gguf_buf_init(16*1024);
  17410. gguf_write_to_buf(ctx, &buf, only_meta);
  17411. fwrite(buf.data, 1, buf.offset, file);
  17412. gguf_buf_free(buf);
  17413. fclose(file);
  17414. }
  17415. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17416. // no allocs - only compute size
  17417. struct gguf_buf buf = gguf_buf_init(0);
  17418. gguf_write_to_buf(ctx, &buf, true);
  17419. return buf.offset;
  17420. }
  17421. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17422. struct gguf_buf buf = gguf_buf_init(16*1024);
  17423. gguf_write_to_buf(ctx, &buf, true);
  17424. memcpy(data, buf.data, buf.offset);
  17425. gguf_buf_free(buf);
  17426. }
  17427. ////////////////////////////////////////////////////////////////////////////////
  17428. int ggml_cpu_has_avx(void) {
  17429. #if defined(__AVX__)
  17430. return 1;
  17431. #else
  17432. return 0;
  17433. #endif
  17434. }
  17435. int ggml_cpu_has_avx_vnni(void) {
  17436. #if defined(__AVXVNNI__)
  17437. return 1;
  17438. #else
  17439. return 0;
  17440. #endif
  17441. }
  17442. int ggml_cpu_has_avx2(void) {
  17443. #if defined(__AVX2__)
  17444. return 1;
  17445. #else
  17446. return 0;
  17447. #endif
  17448. }
  17449. int ggml_cpu_has_avx512(void) {
  17450. #if defined(__AVX512F__)
  17451. return 1;
  17452. #else
  17453. return 0;
  17454. #endif
  17455. }
  17456. int ggml_cpu_has_avx512_vbmi(void) {
  17457. #if defined(__AVX512VBMI__)
  17458. return 1;
  17459. #else
  17460. return 0;
  17461. #endif
  17462. }
  17463. int ggml_cpu_has_avx512_vnni(void) {
  17464. #if defined(__AVX512VNNI__)
  17465. return 1;
  17466. #else
  17467. return 0;
  17468. #endif
  17469. }
  17470. int ggml_cpu_has_fma(void) {
  17471. #if defined(__FMA__)
  17472. return 1;
  17473. #else
  17474. return 0;
  17475. #endif
  17476. }
  17477. int ggml_cpu_has_neon(void) {
  17478. #if defined(__ARM_NEON)
  17479. return 1;
  17480. #else
  17481. return 0;
  17482. #endif
  17483. }
  17484. int ggml_cpu_has_arm_fma(void) {
  17485. #if defined(__ARM_FEATURE_FMA)
  17486. return 1;
  17487. #else
  17488. return 0;
  17489. #endif
  17490. }
  17491. int ggml_cpu_has_metal(void) {
  17492. #if defined(GGML_USE_METAL)
  17493. return 1;
  17494. #else
  17495. return 0;
  17496. #endif
  17497. }
  17498. int ggml_cpu_has_f16c(void) {
  17499. #if defined(__F16C__)
  17500. return 1;
  17501. #else
  17502. return 0;
  17503. #endif
  17504. }
  17505. int ggml_cpu_has_fp16_va(void) {
  17506. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17507. return 1;
  17508. #else
  17509. return 0;
  17510. #endif
  17511. }
  17512. int ggml_cpu_has_wasm_simd(void) {
  17513. #if defined(__wasm_simd128__)
  17514. return 1;
  17515. #else
  17516. return 0;
  17517. #endif
  17518. }
  17519. int ggml_cpu_has_blas(void) {
  17520. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17521. return 1;
  17522. #else
  17523. return 0;
  17524. #endif
  17525. }
  17526. int ggml_cpu_has_cublas(void) {
  17527. #if defined(GGML_USE_CUBLAS)
  17528. return 1;
  17529. #else
  17530. return 0;
  17531. #endif
  17532. }
  17533. int ggml_cpu_has_clblast(void) {
  17534. #if defined(GGML_USE_CLBLAST)
  17535. return 1;
  17536. #else
  17537. return 0;
  17538. #endif
  17539. }
  17540. int ggml_cpu_has_vulkan(void) {
  17541. #if defined(GGML_USE_VULKAN)
  17542. return 1;
  17543. #else
  17544. return 0;
  17545. #endif
  17546. }
  17547. int ggml_cpu_has_kompute(void) {
  17548. #if defined(GGML_USE_KOMPUTE)
  17549. return 1;
  17550. #else
  17551. return 0;
  17552. #endif
  17553. }
  17554. int ggml_cpu_has_sycl(void) {
  17555. #if defined(GGML_USE_SYCL)
  17556. return 1;
  17557. #else
  17558. return 0;
  17559. #endif
  17560. }
  17561. int ggml_cpu_has_gpublas(void) {
  17562. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17563. ggml_cpu_has_sycl();
  17564. }
  17565. int ggml_cpu_has_sse3(void) {
  17566. #if defined(__SSE3__)
  17567. return 1;
  17568. #else
  17569. return 0;
  17570. #endif
  17571. }
  17572. int ggml_cpu_has_ssse3(void) {
  17573. #if defined(__SSSE3__)
  17574. return 1;
  17575. #else
  17576. return 0;
  17577. #endif
  17578. }
  17579. int ggml_cpu_has_vsx(void) {
  17580. #if defined(__POWER9_VECTOR__)
  17581. return 1;
  17582. #else
  17583. return 0;
  17584. #endif
  17585. }
  17586. int ggml_cpu_has_matmul_int8(void) {
  17587. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17588. return 1;
  17589. #else
  17590. return 0;
  17591. #endif
  17592. }
  17593. ////////////////////////////////////////////////////////////////////////////////