ggml_vk_generate_shaders.py 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588
  1. #!/usr/bin/env python
  2. import argparse
  3. import asyncio
  4. import os
  5. import sys
  6. from tempfile import gettempdir, NamedTemporaryFile
  7. shader_f32 = """
  8. #define FLOAT_TYPE float
  9. """
  10. shader_f16 = """
  11. #extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
  12. #define FLOAT_TYPE float16_t
  13. """
  14. shader_int8_ext = """
  15. #extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
  16. """
  17. # Type-specific defines
  18. shader_f16_defines = """
  19. #define QUANT_K 1
  20. #define QUANT_R 1
  21. #define A_TYPE float16_t
  22. """
  23. shader_q4_0_defines = """
  24. #define QUANT_K 32
  25. #define QUANT_R 2
  26. struct block_q4_0
  27. {
  28. float16_t d;
  29. uint8_t qs[16];
  30. };
  31. #define A_TYPE block_q4_0
  32. """
  33. shader_q4_1_defines = """
  34. #define QUANT_K 32
  35. #define QUANT_R 2
  36. struct block_q4_1
  37. {
  38. float16_t d;
  39. float16_t m;
  40. uint8_t qs[16];
  41. };
  42. #define A_TYPE block_q4_1
  43. """
  44. shader_q5_0_defines = """
  45. #extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
  46. #define QUANT_K 32
  47. #define QUANT_R 2
  48. struct block_q5_0
  49. {
  50. float16_t d;
  51. uint16_t qh[2];
  52. uint8_t qs[16];
  53. };
  54. #define A_TYPE block_q5_0
  55. """
  56. shader_q5_1_defines = """
  57. #extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
  58. #define QUANT_K 32
  59. #define QUANT_R 2
  60. struct block_q5_1
  61. {
  62. float16_t d;
  63. float16_t m;
  64. uint qh;
  65. uint8_t qs[16];
  66. };
  67. #define A_TYPE block_q5_1
  68. """
  69. shader_q8_0_defines = """
  70. #define QUANT_K 32
  71. #define QUANT_R 1
  72. struct block_q8_0
  73. {
  74. float16_t d;
  75. int8_t qs[32];
  76. };
  77. #define A_TYPE block_q8_0
  78. """
  79. # K-quants
  80. shader_q2_K_defines = """
  81. #define QUANT_K 256
  82. struct block_q2_K
  83. {
  84. uint8_t scales[QUANT_K/16];
  85. uint8_t qs[QUANT_K/4];
  86. f16vec2 d;
  87. };
  88. #define A_TYPE block_q2_K
  89. """
  90. shader_q3_K_defines = """
  91. #define QUANT_K 256
  92. struct block_q3_K
  93. {
  94. uint8_t hmask[QUANT_K/8];
  95. uint8_t qs[QUANT_K/4];
  96. uint8_t scales[12];
  97. float16_t d;
  98. };
  99. #define A_TYPE block_q3_K
  100. """
  101. shader_q4_K_defines = """
  102. #define QUANT_K 256
  103. struct block_q4_K
  104. {
  105. f16vec2 d;
  106. uint8_t scales[3*QUANT_K/64];
  107. uint8_t qs[QUANT_K/2];
  108. };
  109. #define A_TYPE block_q4_K
  110. """
  111. shader_q5_K_defines = """
  112. #define QUANT_K 256
  113. struct block_q5_K
  114. {
  115. f16vec2 d;
  116. uint8_t scales[12];
  117. uint8_t qh[QUANT_K/8];
  118. uint8_t qs[QUANT_K/2];
  119. };
  120. #define A_TYPE block_q5_K
  121. """
  122. shader_q6_K_defines = """
  123. #define QUANT_K 256
  124. struct block_q6_K
  125. {
  126. uint8_t ql[QUANT_K/2];
  127. uint8_t qh[QUANT_K/4];
  128. int8_t scales[QUANT_K/16];
  129. float16_t d;
  130. };
  131. #define A_TYPE block_q6_K
  132. """
  133. # Dequant functions
  134. shader_f16_dequant_func = """
  135. #define DEQUANT_FUNC vec2 v = vec2(data_a[ib + 0], data_a[ib + 1]);
  136. """
  137. shader_q4_0_dequant_func = """
  138. #define DEQUANT_FUNC const float d = float(data_a[ib].d); \
  139. const uint vui = uint(data_a[ib].qs[iqs]); \
  140. vec2 v = vec2(vui & 0xF, vui >> 4); \
  141. v = (v - 8.0f)*d;
  142. """
  143. shader_q4_1_dequant_func = """
  144. #define DEQUANT_FUNC const float d = float(data_a[ib].d); \
  145. const float m = float(data_a[ib].m); \
  146. const uint vui = uint(data_a[ib].qs[iqs]); \
  147. vec2 v = vec2(vui & 0xF, vui >> 4); \
  148. v = v*d + m;
  149. """
  150. shader_q5_0_dequant_func = """
  151. #define DEQUANT_FUNC const float d = float(data_a[ib].d); \
  152. const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0]; \
  153. const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); \
  154. const uint vui = uint(data_a[ib].qs[iqs]); \
  155. vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y); \
  156. v = (v - 16.0f) * d;
  157. """
  158. shader_q5_1_dequant_func = """
  159. #define DEQUANT_FUNC const float d = float(data_a[ib].d); \
  160. const float m = float(data_a[ib].m); \
  161. const uint uint_qh = data_a[ib].qh; \
  162. const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); \
  163. const uint vui = uint(data_a[ib].qs[iqs]); \
  164. vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y); \
  165. v = v*d + m;
  166. """
  167. shader_q8_0_dequant_func = """
  168. #define DEQUANT_FUNC const float d = float(data_a[ib].d); \
  169. vec2 v = vec2(int(data_a[ib].qs[iqs]), int(data_a[ib].qs[iqs + 1])); \
  170. v = v * d;
  171. """
  172. # MULMAT
  173. mulmat_head = """#version 450
  174. #extension GL_EXT_control_flow_attributes : enable
  175. #extension GL_EXT_shader_16bit_storage : require
  176. #ifndef LOAD_VEC_A
  177. #define LOAD_VEC_A 1
  178. #endif
  179. #ifndef LOAD_VEC_B
  180. #define LOAD_VEC_B 1
  181. #endif
  182. """
  183. mulmat_body1 = """
  184. layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
  185. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  186. layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
  187. layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
  188. layout (push_constant) uniform parameter
  189. {
  190. uint M;
  191. uint N;
  192. uint K;
  193. uint stride_a;
  194. uint stride_b;
  195. uint stride_d;
  196. uint k_split;
  197. uint ne02;
  198. uint ne12;
  199. uint broadcast2;
  200. uint broadcast3;
  201. uint batch_stride_a;
  202. uint batch_stride_b;
  203. uint batch_stride_d;
  204. } p;
  205. layout (constant_id = 1) const uint BM = 64;
  206. layout (constant_id = 2) const uint BN = 64;
  207. layout (constant_id = 3) const uint BK = 16; // Assumed to be 32 if working with a quant
  208. layout (constant_id = 4) const uint WM = 32;
  209. layout (constant_id = 5) const uint WN = 32;
  210. layout (constant_id = 6) const uint WMITER = 2;
  211. layout (constant_id = 7) const uint TM = 4;
  212. layout (constant_id = 8) const uint TN = 2;
  213. layout (constant_id = 9) const uint WARP = 32;
  214. shared FLOAT_TYPE buf_a[BM * (BK+1)];
  215. shared FLOAT_TYPE buf_b[BN * (BK+1)];
  216. void main() {
  217. const uint i13 = gl_GlobalInvocationID.z / p.ne12;
  218. const uint i12 = gl_GlobalInvocationID.z % p.ne12;
  219. const uint i03 = i13 / p.broadcast3;
  220. const uint i02 = i12 / p.broadcast2;
  221. const uint batch_idx_a = i03 * p.ne02 + i02;
  222. const uint blocks_m = (p.M + BM - 1) / BM;
  223. const uint ir = gl_WorkGroupID.x % blocks_m;
  224. const uint ik = gl_WorkGroupID.x / blocks_m;
  225. const uint ic = gl_WorkGroupID.y;
  226. const uint warp_i = gl_LocalInvocationID.x / WARP;
  227. const uint warp_r = warp_i % (BM / WM);
  228. const uint warp_c = warp_i / (BM / WM);
  229. const uint WNITER = (WM * WN) / (WARP * TM * TN * WMITER);
  230. const uint WSUBM = WM / WMITER;
  231. const uint WSUBN = WN / WNITER;
  232. const uint tiw = gl_LocalInvocationID.x % WARP;
  233. const uint tiwr = tiw % (WSUBM / TM);
  234. const uint tiwc = tiw / (WSUBM / TM);
  235. const uint loadr_a = gl_LocalInvocationID.x % (BK / LOAD_VEC_A);
  236. const uint loadc_a = gl_LocalInvocationID.x / (BK / LOAD_VEC_A);
  237. const uint loadr_b = gl_LocalInvocationID.x % (BK / LOAD_VEC_B);
  238. const uint loadc_b = gl_LocalInvocationID.x / (BK / LOAD_VEC_B);
  239. const uint loadstride_a = gl_WorkGroupSize.x * LOAD_VEC_A / BK;
  240. const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK;
  241. const uint start_k = ik * p.k_split;
  242. const uint end_k = min(p.K, (ik + 1) * p.k_split);
  243. uint pos_a = (batch_idx_a * p.batch_stride_a + ir * BM * p.stride_a + start_k) / LOAD_VEC_A;
  244. uint pos_b = (gl_GlobalInvocationID.z * p.batch_stride_b + ic * BN * p.stride_b + start_k) / LOAD_VEC_B;
  245. float sums[WMITER * TM * WNITER * TN];
  246. FLOAT_TYPE cache_a[WMITER * TM];
  247. FLOAT_TYPE cache_b[WNITER * TN];
  248. [[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
  249. sums[i] = 0.0f;
  250. }
  251. [[unroll]] for (uint block = start_k; block < end_k; block += BK) {
  252. [[unroll]] for (uint l = 0; l < BM; l += loadstride_a) {"""
  253. mulmat_load_scalar = """
  254. #if LOAD_VEC_A == 8
  255. const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
  256. const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
  257. buf_a[buf_idx ] = FLOAT_TYPE(data_a[idx][0].x);
  258. buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx][0].y);
  259. buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx][0].z);
  260. buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx][0].w);
  261. buf_a[buf_idx + 4] = FLOAT_TYPE(data_a[idx][1].x);
  262. buf_a[buf_idx + 5] = FLOAT_TYPE(data_a[idx][1].y);
  263. buf_a[buf_idx + 6] = FLOAT_TYPE(data_a[idx][1].z);
  264. buf_a[buf_idx + 7] = FLOAT_TYPE(data_a[idx][1].w);
  265. #elif LOAD_VEC_A == 4
  266. const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
  267. const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
  268. buf_a[buf_idx ] = FLOAT_TYPE(data_a[idx].x);
  269. buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx].y);
  270. buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx].z);
  271. buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx].w);
  272. #else
  273. if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
  274. buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
  275. } else {
  276. buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(0.0f);
  277. }
  278. #endif
  279. """
  280. mulmat_load_q4_0 = """
  281. const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
  282. const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
  283. const uint ib = idx / 16;
  284. const uint iqs = idx & 0xF;
  285. const float d = float(data_a[ib].d);
  286. const uint vui = uint(data_a[ib].qs[iqs]);
  287. const vec2 v = (vec2(vui & 0xF, vui >> 4) - 8.0f) * d;
  288. buf_a[buf_idx ] = FLOAT_TYPE(v.x);
  289. buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
  290. mulmat_load_q4_1 = """
  291. const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
  292. const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
  293. const uint ib = idx / 16;
  294. const uint iqs = idx & 0xF;
  295. const float d = float(data_a[ib].d);
  296. const float m = float(data_a[ib].m);
  297. const uint vui = uint(data_a[ib].qs[iqs]);
  298. const vec2 v = vec2(vui & 0xF, vui >> 4) * d + m;
  299. buf_a[buf_idx ] = FLOAT_TYPE(v.x);
  300. buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
  301. mulmat_load_q5_0 = """
  302. const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
  303. const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
  304. const uint ib = idx / 16;
  305. const uint iqs = idx & 0xF;
  306. const float d = float(data_a[ib].d);
  307. const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0];
  308. const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
  309. const uint vui = uint(data_a[ib].qs[iqs]);
  310. const vec2 v = (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d;
  311. buf_a[buf_idx ] = FLOAT_TYPE(v.x);
  312. buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
  313. mulmat_load_q5_1 = """
  314. const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
  315. const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
  316. const uint ib = idx / 16;
  317. const uint iqs = idx & 0xF;
  318. const float d = float(data_a[ib].d);
  319. const float m = float(data_a[ib].m);
  320. const uint uint_qh = data_a[ib].qh;
  321. const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
  322. const uint vui = uint(data_a[ib].qs[iqs]);
  323. const vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m;
  324. buf_a[buf_idx ] = FLOAT_TYPE(v.x);
  325. buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
  326. mulmat_load_q8_0 = """
  327. const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
  328. const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
  329. const uint ib = idx / 16;
  330. const uint iqs = (idx & 0xF) * 2;
  331. const float d = float(data_a[ib].d);
  332. const vec2 v = vec2(int(data_a[ib].qs[iqs]), int(data_a[ib].qs[iqs + 1])) * d;
  333. buf_a[buf_idx ] = FLOAT_TYPE(v.x);
  334. buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);"""
  335. mulmat_body2 = """
  336. }
  337. [[unroll]] for (uint l = 0; l < BN; l += loadstride_b) {
  338. #if LOAD_VEC_B == 8
  339. const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
  340. const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
  341. buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx][0].x);
  342. buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx][0].y);
  343. buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx][0].z);
  344. buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx][0].w);
  345. buf_b[buf_idx + 4] = FLOAT_TYPE(data_b[idx][1].x);
  346. buf_b[buf_idx + 5] = FLOAT_TYPE(data_b[idx][1].y);
  347. buf_b[buf_idx + 6] = FLOAT_TYPE(data_b[idx][1].z);
  348. buf_b[buf_idx + 7] = FLOAT_TYPE(data_b[idx][1].w);
  349. #elif LOAD_VEC_B == 4
  350. const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
  351. const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
  352. buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx].x);
  353. buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx].y);
  354. buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx].z);
  355. buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx].w);
  356. #else
  357. if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) {
  358. buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
  359. } else {
  360. buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f);
  361. }
  362. #endif
  363. }
  364. barrier();
  365. pos_a += BK / LOAD_VEC_A;
  366. pos_b += BK / LOAD_VEC_B;
  367. for (uint i = 0; i < BK; i++) {
  368. // Load from shared into cache
  369. [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
  370. [[unroll]] for (uint j = 0; j < TM; j++) {
  371. cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * (BK+1) + i];
  372. }
  373. }
  374. [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
  375. [[unroll]] for (uint j = 0; j < TN; j++) {
  376. cache_b[wsic * TN + j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * (BK+1) + i];
  377. }
  378. }
  379. [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
  380. [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
  381. [[unroll]] for (uint cc = 0; cc < TN; cc++) {
  382. [[unroll]] for (uint cr = 0; cr < TM; cr++) {
  383. sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr] += float(cache_a[wsir * TM + cr]) * float(cache_b[wsic * TN + cc]);
  384. }
  385. }
  386. }
  387. }
  388. }
  389. barrier();
  390. }
  391. const uint dr = ir * BM + warp_r * WM;
  392. const uint dc = ic * BN + warp_c * WN;
  393. const uint offsets = gl_GlobalInvocationID.z * p.batch_stride_d + ik * p.batch_stride_d * gl_NumWorkGroups.z;
  394. [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
  395. [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
  396. const uint dr_warp = dr + wsir * WSUBM + tiwr * TM;
  397. const uint dc_warp = dc + wsic * WSUBN + tiwc * TN;
  398. [[unroll]] for (uint cc = 0; cc < TN; cc++) {
  399. [[unroll]] for (uint cr = 0; cr < TM; cr++) {
  400. if (dr_warp + cr < p.M && dc_warp + cc < p.N) {
  401. data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
  402. }
  403. }
  404. }
  405. }
  406. }
  407. }
  408. """
  409. mulmat_split_k_reduce_src = """#version 450
  410. #extension GL_EXT_control_flow_attributes : enable
  411. layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
  412. layout (binding = 0) readonly buffer A {float data_a[];};
  413. layout (binding = 1) writeonly buffer D {float data_d[];};
  414. layout (push_constant) uniform parameter {
  415. uint ne;
  416. uint k_num;
  417. } p;
  418. void main() {
  419. const uint idx = gl_GlobalInvocationID.x;
  420. if (idx >= p.ne) {
  421. return;
  422. }
  423. float result = 0.0f;
  424. [[unroll]] for (uint i = 0; i < p.k_num; i++) {
  425. result += data_a[i * p.ne + idx];
  426. }
  427. data_d[idx] = result;
  428. }
  429. """
  430. # DEQUANT SHADER
  431. dequant_head = """#version 450
  432. #extension GL_EXT_control_flow_attributes : require
  433. #extension GL_EXT_shader_16bit_storage : require
  434. layout (push_constant) uniform parameter
  435. {
  436. uint M;
  437. uint K;
  438. uint stride_a;
  439. uint stride_b;
  440. uint nel;
  441. } p;
  442. """
  443. dequant_f32_body = """
  444. layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
  445. layout (binding = 0) readonly buffer A {float data_a[];};
  446. layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
  447. void main() {
  448. const uint i = gl_GlobalInvocationID.x * 16;
  449. if (i >= p.nel) {
  450. return;
  451. }
  452. [[unroll]] for (uint l = 0; l < 16; l++) {
  453. data_b[i + l] = D_TYPE(data_a[i + l]);
  454. }
  455. }
  456. """
  457. dequant_q4_0_body = """
  458. layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
  459. layout (binding = 0) readonly buffer A {block_q4_0 data_a[];};
  460. layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
  461. void main() {
  462. const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
  463. const uint tid = gl_LocalInvocationID.x % 64;
  464. const uint il = tid/32;
  465. const uint ir = tid%32;
  466. const uint ib = 32*i + ir;
  467. if (ib >= p.nel / 32) {
  468. return;
  469. }
  470. const uint b_idx = 1024*i + 32*ir + 8*il;
  471. const float d = float(data_a[ib].d);
  472. const float dm = -8.0f * d;
  473. const uint q_idx = 8*il;
  474. [[unroll]] for (uint l = 0; l < 8; ++l) {
  475. data_b[b_idx + l + 0] = D_TYPE(d * (data_a[ib].qs[q_idx + l] & 0xF) + dm);
  476. data_b[b_idx + l + 16] = D_TYPE(d * (data_a[ib].qs[q_idx + l] >> 4) + dm);
  477. }
  478. }
  479. """
  480. dequant_q4_1_body = """
  481. layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
  482. layout (binding = 0) readonly buffer A {block_q4_1 data_a[];};
  483. layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
  484. void main() {
  485. const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
  486. const uint tid = gl_LocalInvocationID.x % 64;
  487. const uint il = tid/32;
  488. const uint ir = tid%32;
  489. const uint ib = 32*i + ir;
  490. if (ib >= p.nel / 32) {
  491. return;
  492. }
  493. const uint b_idx = 1024*i + 32*ir + 8*il;
  494. const float d = float(data_a[ib].d);
  495. const float m = float(data_a[ib].m);
  496. const uint q_idx = 8*il;
  497. [[unroll]] for (uint l = 0; l < 8; ++l) {
  498. data_b[b_idx + l + 0] = D_TYPE(d * (data_a[ib].qs[q_idx + l] & 0xF) + m);
  499. data_b[b_idx + l + 16] = D_TYPE(d * (data_a[ib].qs[q_idx + l] >> 4) + m);
  500. }
  501. }
  502. """
  503. dequant_q5_0_body = """
  504. layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
  505. layout (binding = 0) readonly buffer A {block_q5_0 data_a[];};
  506. layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
  507. void main() {
  508. const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
  509. const uint tid = gl_LocalInvocationID.x % 64;
  510. const uint il = tid/32;
  511. const uint ir = tid%32;
  512. const uint ib = 32*i + ir;
  513. if (ib >= p.nel / 32) {
  514. return;
  515. }
  516. const uint b_idx = 1024*i + 32*ir + 8*il;
  517. const float d = float(data_a[ib].d);
  518. const uint qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0];
  519. const uint q_idx = 8*il;
  520. [[unroll]] for (uint l = 0; l < 8; ++l) {
  521. const uint iqs = q_idx + l;
  522. const uint vui = uint(data_a[ib].qs[iqs]);
  523. data_b[b_idx + l + 0] = D_TYPE(d * (((vui & 0xF) | (((qh >> iqs) << 4) & 0x10)) - 16.0f));
  524. data_b[b_idx + l + 16] = D_TYPE(d * (((vui >> 4) | ((qh >> (iqs + 12)) & 0x10)) - 16.0f));
  525. }
  526. }
  527. """
  528. dequant_q5_1_body = """
  529. layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
  530. layout (binding = 0) readonly buffer A {block_q5_1 data_a[];};
  531. layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
  532. void main() {
  533. const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
  534. const uint tid = gl_LocalInvocationID.x % 64;
  535. const uint il = tid/32;
  536. const uint ir = tid%32;
  537. const uint ib = 32*i + ir;
  538. if (ib >= p.nel / 32) {
  539. return;
  540. }
  541. const uint b_idx = 1024*i + 32*ir + 8*il;
  542. const float d = float(data_a[ib].d);
  543. const float m = float(data_a[ib].m);
  544. const uint qh = data_a[ib].qh;
  545. const uint q_idx = 8*il;
  546. [[unroll]] for (uint l = 0; l < 8; ++l) {
  547. const uint iqs = q_idx + l;
  548. const uint vui = uint(data_a[ib].qs[iqs]);
  549. data_b[b_idx + l + 0] = D_TYPE(d * (((vui & 0xF) | (((qh >> iqs) << 4) & 0x10))) + m);
  550. data_b[b_idx + l + 16] = D_TYPE(d * (((vui >> 4) | ((qh >> (iqs + 12)) & 0x10))) + m);
  551. }
  552. }
  553. """
  554. dequant_q8_0_body = """
  555. layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
  556. layout (binding = 0) readonly buffer A {block_q8_0 data_a[];};
  557. layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
  558. void main() {
  559. const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
  560. const uint tid = gl_LocalInvocationID.x % 64;
  561. const uint il = tid/32;
  562. const uint ir = tid%32;
  563. const uint ib = 32*i + ir;
  564. if (ib >= p.nel / 32) {
  565. return;
  566. }
  567. const uint b_idx = 1024*i + 32*ir + 16*il;
  568. const float d = float(data_a[ib].d);
  569. const uint q_idx = 16*il;
  570. [[unroll]] for (uint l = 0; l < 16; l += 2) {
  571. data_b[b_idx + l ] = D_TYPE(d * data_a[ib].qs[q_idx + l ]);
  572. data_b[b_idx + l + 1] = D_TYPE(d * data_a[ib].qs[q_idx + l + 1]);
  573. }
  574. }
  575. """
  576. # K-quants
  577. dequant_q2_K_body = """
  578. layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
  579. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  580. layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
  581. void main() {
  582. [[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
  583. const uint i = gl_WorkGroupID.x * 256 + wgy;
  584. if (i >= p.M * p.K / QUANT_K) {
  585. return;
  586. }
  587. const uint tid = gl_LocalInvocationID.x;
  588. const uint ip = tid / 32;
  589. const uint il = tid - 32 * ip;
  590. const uint is = 8 * ip + il / 16;
  591. const uint y_idx = i * QUANT_K + 128 * ip + il;
  592. const uint ql_idx = 32 * ip + il;
  593. const uint8_t qs = data_a[i].qs[32 * ip + il];
  594. FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
  595. FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
  596. data_b[y_idx + 0] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+0] & 0xF) * ((qs >> 0) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+0] >> 4));
  597. data_b[y_idx + 32] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+2] & 0xF) * ((qs >> 2) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+2] >> 4));
  598. data_b[y_idx + 64] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+4] & 0xF) * ((qs >> 4) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+4] >> 4));
  599. data_b[y_idx + 96] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+6] & 0xF) * ((qs >> 6) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+6] >> 4));
  600. }
  601. }
  602. """
  603. dequant_q3_K_body = """
  604. layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
  605. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  606. layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
  607. void main() {
  608. [[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
  609. const uint i = uint(gl_WorkGroupID.x * 256 + wgy);
  610. if (i >= p.M * p.K / QUANT_K) {
  611. return;
  612. }
  613. const uint r = gl_LocalInvocationID.x / 4;
  614. const uint tid = r / 2;
  615. const uint is0 = r % 2;
  616. const uint l0 = 16 * is0 + 4 * (gl_LocalInvocationID.x % 4);
  617. const uint n = tid / 4;
  618. const uint j = tid - 4*n;
  619. const uint8_t m = uint8_t(1 << (4*n + j));
  620. const uint is = 8*n + 2*j + is0;
  621. const uint shift = 2*j;
  622. const int8_t us = int8_t(is < 4 ? (data_a[i].scales[is-0] & 0xF) | (((data_a[i].scales[is+8] >> 0) & 3) << 4) :
  623. is < 8 ? (data_a[i].scales[is-0] & 0xF) | (((data_a[i].scales[is+4] >> 2) & 3) << 4) :
  624. is < 12 ? (data_a[i].scales[is-8] >> 4) | (((data_a[i].scales[is+0] >> 4) & 3) << 4) :
  625. (data_a[i].scales[is-8] >> 4) | (((data_a[i].scales[is-4] >> 6) & 3) << 4));
  626. const FLOAT_TYPE d_all = FLOAT_TYPE(data_a[i].d);
  627. const FLOAT_TYPE dl = d_all * FLOAT_TYPE(us - 32);
  628. const uint y_idx = i * QUANT_K + 128 * n + 32 * j;
  629. const uint qs_idx = 32*n;
  630. for (uint l = l0; l < l0 + 4; ++l) {
  631. data_b[y_idx + l] = D_TYPE(dl * FLOAT_TYPE(int8_t((data_a[i].qs[qs_idx + l] >> shift) & 3) - (((data_a[i].hmask[l] & m) != 0) ? 0 : 4)));
  632. }
  633. }
  634. }
  635. """
  636. dequant_q4_K_body = """
  637. layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
  638. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  639. layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
  640. void main() {
  641. [[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
  642. const uint i = gl_WorkGroupID.x * 256 + wgy;
  643. if (i >= p.M * p.K / QUANT_K) {
  644. return;
  645. }
  646. const uint tid = gl_LocalInvocationID.x;
  647. const uint il = tid / 8;
  648. const uint ir = tid % 8;
  649. const uint is = 2 * il;
  650. const uint n = 4;
  651. const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
  652. const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
  653. const uint y_idx = i * QUANT_K + 64 * il + n * ir;
  654. const uint qs_idx = 32*il + n * ir;
  655. uint8_t sc;
  656. uint8_t m;
  657. if (is < 4) {
  658. sc = uint8_t(data_a[i].scales[is] & 63);
  659. m = uint8_t(data_a[i].scales[is + 4] & 63);
  660. } else {
  661. sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4));
  662. m = uint8_t((data_a[i].scales[is + 4] >> 4) | ((data_a[i].scales[is ] >> 6) << 4));
  663. }
  664. const FLOAT_TYPE d1 = dall * sc;
  665. const FLOAT_TYPE m1 = dmin * m;
  666. if (is < 4) {
  667. sc = uint8_t(data_a[i].scales[is + 1] & 63);
  668. m = uint8_t(data_a[i].scales[is + 5] & 63);
  669. } else {
  670. sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4));
  671. m = uint8_t((data_a[i].scales[is + 5] >> 4) | ((data_a[i].scales[is + 1] >> 6) << 4));
  672. }
  673. const FLOAT_TYPE d2 = dall * sc;
  674. const FLOAT_TYPE m2 = dmin * m;
  675. [[unroll]] for (uint l = 0; l < n; ++l) {
  676. data_b[y_idx + l ] = D_TYPE(d1 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] & 0xF) - m1);
  677. data_b[y_idx + l + 32] = D_TYPE(d2 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] >> 4) - m2);
  678. }
  679. }
  680. }
  681. """
  682. dequant_q5_K_body = """
  683. layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
  684. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  685. layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
  686. void main() {
  687. [[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
  688. const uint i = gl_WorkGroupID.x * 256 + wgy;
  689. if (i >= p.M * p.K / QUANT_K) {
  690. return;
  691. }
  692. const uint tid = gl_LocalInvocationID.x;
  693. const uint il = tid / 16;
  694. const uint ir = tid % 16;
  695. const uint is = 2 * il;
  696. const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
  697. const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
  698. const uint y_idx = i * QUANT_K + 64 * il + 2 * ir;
  699. const uint qs_idx = 32*il + 2 * ir;
  700. const uint qh_idx = 2 * ir;
  701. uint8_t sc;
  702. uint8_t m;
  703. if (is < 4) {
  704. sc = uint8_t(data_a[i].scales[is] & 63);
  705. m = uint8_t(data_a[i].scales[is + 4] & 63);
  706. } else {
  707. sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4));
  708. m = uint8_t((data_a[i].scales[is + 4] >> 4) | ((data_a[i].scales[is ] >> 6) << 4));
  709. }
  710. const FLOAT_TYPE d1 = dall * sc;
  711. const FLOAT_TYPE m1 = dmin * m;
  712. if (is < 4) {
  713. sc = uint8_t(data_a[i].scales[is + 1] & 63);
  714. m = uint8_t(data_a[i].scales[is + 5] & 63);
  715. } else {
  716. sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4));
  717. m = uint8_t((data_a[i].scales[is + 5] >> 4) | ((data_a[i].scales[is + 1] >> 6) << 4));
  718. }
  719. const FLOAT_TYPE d2 = dall * sc;
  720. const FLOAT_TYPE m2 = dmin * m;
  721. const uint8_t hm1 = uint8_t(1 << (2 * il ));
  722. const uint8_t hm2 = uint8_t(1 << (2 * il + 1));
  723. data_b[y_idx ] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx ] & 0xF) + (((data_a[i].qh[qh_idx ] & hm1) != 0) ? 16 : 0)) - m1);
  724. data_b[y_idx + 1] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1] & 0xF) + (((data_a[i].qh[qh_idx + 1] & hm1) != 0) ? 16 : 0)) - m1);
  725. data_b[y_idx + 32] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx ] >> 4) + (((data_a[i].qh[qh_idx ] & hm2) != 0) ? 16 : 0)) - m2);
  726. data_b[y_idx + 33] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1] >> 4) + (((data_a[i].qh[qh_idx + 1] & hm2) != 0) ? 16 : 0)) - m2);
  727. }
  728. }
  729. """
  730. dequant_q6_K_body = """
  731. layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
  732. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  733. layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
  734. void main() {
  735. [[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
  736. const uint i = gl_WorkGroupID.x * 256 + wgy;
  737. if (i >= p.M * p.K / QUANT_K) {
  738. return;
  739. }
  740. const uint tid = gl_LocalInvocationID.x;
  741. const uint ip = tid / 32;
  742. const uint il = tid - 32 * ip;
  743. const uint is = 8 * ip + il / 16;
  744. const uint y_idx = i * QUANT_K + 128 * ip + il;
  745. const uint ql_idx = 64 * ip + il;
  746. const uint8_t qh = data_a[i].qh[32 * ip + il];
  747. const FLOAT_TYPE d = FLOAT_TYPE(data_a[i].d);
  748. data_b[y_idx + 0] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 0] * (int8_t((data_a[i].ql[ql_idx + 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32)));
  749. data_b[y_idx + 32] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 2] * (int8_t((data_a[i].ql[ql_idx + 32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32)));
  750. data_b[y_idx + 64] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 4] * (int8_t((data_a[i].ql[ql_idx + 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32)));
  751. data_b[y_idx + 96] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 6] * (int8_t((data_a[i].ql[ql_idx + 32] >> 4) | (((qh >> 6) & 3) << 4)) - 32)));
  752. }
  753. }
  754. """
  755. # Mul Mat Vec
  756. mul_mat_vec_head = """#version 450
  757. #extension GL_EXT_control_flow_attributes : enable
  758. #extension GL_EXT_shader_16bit_storage : require
  759. #extension GL_EXT_shader_8bit_storage : require
  760. layout (push_constant) uniform parameter
  761. {
  762. uint ncols;
  763. uint b_offset;
  764. uint d_offset;
  765. } p;
  766. """
  767. mul_mat_vec_body = """
  768. layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
  769. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  770. layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
  771. layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
  772. layout (constant_id = 0) const uint BLOCK_SIZE = 32;
  773. shared FLOAT_TYPE tmp[BLOCK_SIZE];
  774. void main() {
  775. const uint row = gl_WorkGroupID.x;
  776. const uint tid = gl_LocalInvocationID.x;
  777. const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
  778. tmp[tid] = FLOAT_TYPE(0.0f);
  779. [[unroll]] for (uint i = 0; i < p.ncols/BLOCK_SIZE; i += 2) {
  780. const uint col = i*BLOCK_SIZE + 2*tid;
  781. const uint ib = (row*p.ncols + col)/QUANT_K; // block index
  782. const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
  783. const uint iybs = col - col%QUANT_K; // y block start index
  784. DEQUANT_FUNC
  785. // matrix multiplication
  786. tmp[tid] += FLOAT_TYPE(v.x) * FLOAT_TYPE(data_b[p.b_offset + iybs + iqs + 0]) +
  787. FLOAT_TYPE(v.y) * FLOAT_TYPE(data_b[p.b_offset + iybs + iqs + y_offset]);
  788. }
  789. // sum up partial sums and write back result
  790. barrier();
  791. [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
  792. if (tid < s) {
  793. tmp[tid] += tmp[tid + s];
  794. }
  795. barrier();
  796. }
  797. if (tid == 0) {
  798. dst[p.d_offset + row] = D_TYPE(tmp[0]);
  799. }
  800. }
  801. """
  802. # K-quants
  803. mul_mat_vec_q2_K_body = """
  804. layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
  805. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  806. layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
  807. layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
  808. shared FLOAT_TYPE tmp[32];
  809. void main() {
  810. const uint row = gl_WorkGroupID.x;
  811. const uint num_blocks_per_row = p.ncols / QUANT_K;
  812. const uint ib0 = row*num_blocks_per_row;
  813. const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
  814. const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
  815. const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
  816. const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
  817. const uint v_in = tid - step*v_im; // 0...15 or 0...7
  818. const uint l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15
  819. const uint q_offset = 32*v_im + l0;
  820. const uint s_offset = 8*v_im;
  821. const uint y_offset = 128*v_im + l0;
  822. tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
  823. [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  824. const uint y_idx = i * QUANT_K + y_offset;
  825. const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
  826. const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
  827. FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
  828. FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
  829. for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
  830. sum1 += FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 0) & 3)
  831. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 0) & 3)
  832. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 2) & 3)
  833. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 2) & 3)
  834. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 4) & 3)
  835. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 4) & 3)
  836. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 6) & 3)
  837. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 6) & 3);
  838. sum2 += FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 0]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 0] >> 4) & 0xF)
  839. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 16]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 1] >> 4) & 0xF)
  840. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 32]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 2] >> 4) & 0xF)
  841. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 48]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 3] >> 4) & 0xF)
  842. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 64]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 4] >> 4) & 0xF)
  843. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 80]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 5] >> 4) & 0xF)
  844. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 96]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 6] >> 4) & 0xF)
  845. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l +112]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 7] >> 4) & 0xF);
  846. }
  847. tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
  848. }
  849. // sum up partial sums and write back result
  850. barrier();
  851. [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
  852. if (tid < s) {
  853. tmp[tid] += tmp[tid + s];
  854. }
  855. barrier();
  856. }
  857. if (tid == 0) {
  858. dst[p.d_offset + row] = D_TYPE(tmp[0]);
  859. }
  860. }
  861. """
  862. mul_mat_vec_q3_K_body = """
  863. layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
  864. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  865. layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
  866. layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
  867. shared FLOAT_TYPE tmp[32];
  868. void main() {
  869. const uint row = gl_WorkGroupID.x;
  870. const uint num_blocks_per_row = p.ncols / QUANT_K;
  871. const uint ib0 = row*num_blocks_per_row;
  872. const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
  873. const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
  874. const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
  875. const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
  876. const uint v_in = tid - step*v_im; // 0...15 or 0...7
  877. const uint8_t m = uint8_t(1 << (4 * v_im));
  878. const uint l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15
  879. const uint q_offset = 32*v_im + l0;
  880. const uint y_offset = 128*v_im + l0;
  881. tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
  882. const uint s_shift = 4 * v_im;
  883. [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  884. const uint y_idx = i * QUANT_K + y_offset;
  885. const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
  886. FLOAT_TYPE sum = FLOAT_TYPE(0.0);
  887. for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
  888. sum += FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 0]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[0] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4))
  889. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 32]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[2] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4))
  890. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 64]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[4] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4))
  891. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 96]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[6] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4))
  892. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 16]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[1] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4))
  893. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 48]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[3] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4))
  894. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l + 80]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[5] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4))
  895. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l +112]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[7] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4));
  896. }
  897. tmp[16 * ix + tid] += d * sum;
  898. }
  899. // sum up partial sums and write back result
  900. barrier();
  901. [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
  902. if (tid < s) {
  903. tmp[tid] += tmp[tid + s];
  904. }
  905. barrier();
  906. }
  907. if (tid == 0) {
  908. dst[p.d_offset + row] = D_TYPE(tmp[0]);
  909. }
  910. }
  911. """
  912. mul_mat_vec_q4_K_body = """
  913. layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
  914. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  915. layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
  916. layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
  917. shared FLOAT_TYPE tmp[32];
  918. void main() {
  919. const uint row = gl_WorkGroupID.x;
  920. const uint num_blocks_per_row = p.ncols / QUANT_K;
  921. const uint ib0 = row*num_blocks_per_row;
  922. const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
  923. const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
  924. const uint step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
  925. const uint il = tid/step; // 0...3
  926. const uint ir = tid - step*il; // 0...7 or 0...3
  927. const uint n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
  928. const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
  929. const uint v_in = il % 2;
  930. const uint l0 = n * (2 * ir + v_in); // 0...15
  931. const uint q_offset = 32*v_im + l0;
  932. const uint y_offset = 64*v_im + l0;
  933. tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
  934. [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  935. const uint y1_idx = i * QUANT_K + y_offset;
  936. const uint y2_idx = y1_idx + 128;
  937. const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
  938. const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
  939. const uint8_t sc0 = uint8_t( data_a[ib0 + i].scales[v_im * 2 ] & 0x3f);
  940. const uint8_t sc1 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 1] & 0x3f);
  941. const uint8_t sc2 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 4] & 0x3f);
  942. const uint8_t sc3 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 5] & 0x3f);
  943. const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 ] & 0xc0) >> 2));
  944. const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2));
  945. const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2));
  946. const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2));
  947. #if K_QUANTS_PER_ITERATION == 2
  948. const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf);
  949. const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf);
  950. const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset + 2] & 0xf);
  951. const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 3] & 0xf);
  952. const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4);
  953. const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4);
  954. const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 2] >> 4);
  955. const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 3] >> 4);
  956. const uint8_t q4_8 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
  957. const uint8_t q4_9 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
  958. const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 66] & 0xf);
  959. const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 67] & 0xf);
  960. const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4);
  961. const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4);
  962. const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 66] >> 4);
  963. const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 67] >> 4);
  964. const FLOAT_TYPE sx = FLOAT_TYPE(data_b[p.b_offset + y1_idx] * q4_0 + data_b[p.b_offset + y1_idx + 1] * q4_1 + data_b[p.b_offset + y1_idx + 2] * q4_2 + data_b[p.b_offset + y1_idx + 3] * q4_3);
  965. const FLOAT_TYPE sy = FLOAT_TYPE(data_b[p.b_offset + y1_idx + 32] * q4_4 + data_b[p.b_offset + y1_idx + 33] * q4_5 + data_b[p.b_offset + y1_idx + 34] * q4_6 + data_b[p.b_offset + y1_idx + 35] * q4_7);
  966. const FLOAT_TYPE sz = FLOAT_TYPE(data_b[p.b_offset + y2_idx] * q4_8 + data_b[p.b_offset + y2_idx + 1] * q4_9 + data_b[p.b_offset + y2_idx + 2] * q4_10 + data_b[p.b_offset + y2_idx + 3] * q4_11);
  967. const FLOAT_TYPE sw = FLOAT_TYPE(data_b[p.b_offset + y2_idx + 32] * q4_12 + data_b[p.b_offset + y2_idx + 33] * q4_13 + data_b[p.b_offset + y2_idx + 34] * q4_14 + data_b[p.b_offset + y2_idx + 35] * q4_15);
  968. const FLOAT_TYPE smin = FLOAT_TYPE(
  969. data_b[p.b_offset + y1_idx ] * sc2 + data_b[p.b_offset + y1_idx + 32] * sc3 + data_b[p.b_offset + y2_idx ] * sc6 + data_b[p.b_offset + y2_idx + 32] * sc7
  970. + data_b[p.b_offset + y1_idx + 1] * sc2 + data_b[p.b_offset + y1_idx + 33] * sc3 + data_b[p.b_offset + y2_idx + 1] * sc6 + data_b[p.b_offset + y2_idx + 33] * sc7
  971. + data_b[p.b_offset + y1_idx + 2] * sc2 + data_b[p.b_offset + y1_idx + 34] * sc3 + data_b[p.b_offset + y2_idx + 2] * sc6 + data_b[p.b_offset + y2_idx + 34] * sc7
  972. + data_b[p.b_offset + y1_idx + 3] * sc2 + data_b[p.b_offset + y1_idx + 35] * sc3 + data_b[p.b_offset + y2_idx + 3] * sc6 + data_b[p.b_offset + y2_idx + 35] * sc7
  973. );
  974. tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * sc0 + sy * sc1 + sz * sc4 + sw * sc5) - dmin * smin);
  975. #else
  976. const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf);
  977. const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf);
  978. const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4);
  979. const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4);
  980. const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
  981. const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
  982. const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4);
  983. const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4);
  984. const FLOAT_TYPE sx = FLOAT_TYPE(data_b[p.b_offset + y1_idx ] * q4_0 + data_b[p.b_offset + y1_idx + 1] * q4_1);
  985. const FLOAT_TYPE sy = FLOAT_TYPE(data_b[p.b_offset + y1_idx + 32] * q4_2 + data_b[p.b_offset + y1_idx + 33] * q4_3);
  986. const FLOAT_TYPE sz = FLOAT_TYPE(data_b[p.b_offset + y2_idx ] * q4_4 + data_b[p.b_offset + y2_idx + 1] * q4_5);
  987. const FLOAT_TYPE sw = FLOAT_TYPE(data_b[p.b_offset + y2_idx + 32] * q4_6 + data_b[p.b_offset + y2_idx + 33] * q4_7);
  988. const FLOAT_TYPE smin = FLOAT_TYPE(
  989. data_b[p.b_offset + y1_idx] * sc2 + data_b[p.b_offset + y1_idx + 32] * sc3 + data_b[p.b_offset + y2_idx] * sc6 + data_b[p.b_offset + y2_idx + 32] * sc7
  990. + data_b[p.b_offset + y1_idx + 1] * sc2 + data_b[p.b_offset + y1_idx + 33] * sc3 + data_b[p.b_offset + y2_idx + 1] * sc6 + data_b[p.b_offset + y2_idx + 33] * sc7
  991. );
  992. tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * FLOAT_TYPE(data_a[ib0 + i].scales[v_im] & 0x3f) + sy * FLOAT_TYPE(data_a[ib0 + i].scales[v_im + 1] & 0x3f) + sz * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 4] & 0x0f) | ((data_a[ib0 + i].scales[v_im] & 0xc0) >> 2)) + sw * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 5] & 0x0f) | ((data_a[ib0 + i].scales[v_im + 1] & 0xc0) >> 2))) - dmin * smin);
  993. #endif
  994. }
  995. // sum up partial sums and write back result
  996. barrier();
  997. [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
  998. if (tid < s) {
  999. tmp[tid] += tmp[tid + s];
  1000. }
  1001. barrier();
  1002. }
  1003. if (tid == 0) {
  1004. dst[p.d_offset + row] = D_TYPE(tmp[0]);
  1005. }
  1006. }
  1007. """
  1008. mul_mat_vec_q5_K_body = """
  1009. layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
  1010. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  1011. layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
  1012. layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
  1013. shared FLOAT_TYPE tmp[32];
  1014. void main() {
  1015. const uint row = gl_WorkGroupID.x;
  1016. const uint num_blocks_per_row = p.ncols / QUANT_K;
  1017. const uint ib0 = row*num_blocks_per_row;
  1018. const uint tid = gl_LocalInvocationID.x/2; // 0...31 or 0...16
  1019. const uint ix = gl_LocalInvocationID.x%2; // 0 or 0, 1
  1020. const uint il = tid/4; // 0...3
  1021. const uint ir = tid - 4*il; // 0...7 or 0...3
  1022. const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
  1023. const uint v_in = il % 2;
  1024. const uint l0 = 4*ir + 2*v_in; // 0...15
  1025. const uint q_offset = 32*v_im + l0;
  1026. const uint y_offset = 64*v_im + l0;
  1027. const uint8_t hm1 = uint8_t(1 << (2*v_im));
  1028. const uint8_t hm2 = uint8_t(hm1 << 4);
  1029. tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
  1030. [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += 2) {
  1031. const uint y1_idx = i * QUANT_K + y_offset;
  1032. const uint y2_idx = y1_idx + 128;
  1033. const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
  1034. const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
  1035. const uint8_t sc0 = uint8_t( data_a[ib0 + i].scales[v_im * 2 ] & 0x3f);
  1036. const uint8_t sc1 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 1] & 0x3f);
  1037. const uint8_t sc2 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 4] & 0x3f);
  1038. const uint8_t sc3 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 5] & 0x3f);
  1039. const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 ] & 0xc0) >> 2));
  1040. const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2));
  1041. const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2));
  1042. const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2));
  1043. const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf);
  1044. const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf);
  1045. const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] & 0xf);
  1046. const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] & 0xf);
  1047. const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4);
  1048. const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4);
  1049. const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] >> 4);
  1050. const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] >> 4);
  1051. const uint8_t q4_8 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
  1052. const uint8_t q4_9 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
  1053. const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] & 0xf);
  1054. const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] & 0xf);
  1055. const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4);
  1056. const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4);
  1057. const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] >> 4);
  1058. const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] >> 4);
  1059. const FLOAT_TYPE sx = FLOAT_TYPE(
  1060. data_b[p.b_offset + y1_idx ] * (q4_0 + (((data_a[ib0 + i].qh[l0 ] & hm1) != 0) ? 16 : 0))
  1061. + data_b[p.b_offset + y1_idx + 1] * (q4_1 + (((data_a[ib0 + i].qh[l0 + 1] & hm1) != 0) ? 16 : 0))
  1062. + data_b[p.b_offset + y1_idx + 16] * (q4_2 + (((data_a[ib0 + i].qh[l0 + 16] & hm1) != 0) ? 16 : 0))
  1063. + data_b[p.b_offset + y1_idx + 17] * (q4_3 + (((data_a[ib0 + i].qh[l0 + 17] & hm1) != 0) ? 16 : 0))
  1064. );
  1065. const FLOAT_TYPE sy = FLOAT_TYPE(
  1066. data_b[p.b_offset + y1_idx + 32] * (q4_4 + (((data_a[ib0 + i].qh[l0 ] & (hm1 << 1)) != 0) ? 16 : 0))
  1067. + data_b[p.b_offset + y1_idx + 33] * (q4_5 + (((data_a[ib0 + i].qh[l0 + 1] & (hm1 << 1)) != 0) ? 16 : 0))
  1068. + data_b[p.b_offset + y1_idx + 48] * (q4_6 + (((data_a[ib0 + i].qh[l0 + 16] & (hm1 << 1)) != 0) ? 16 : 0))
  1069. + data_b[p.b_offset + y1_idx + 49] * (q4_7 + (((data_a[ib0 + i].qh[l0 + 17] & (hm1 << 1)) != 0) ? 16 : 0))
  1070. );
  1071. const FLOAT_TYPE sz = FLOAT_TYPE(
  1072. data_b[p.b_offset + y2_idx ] * (q4_8 + (((data_a[ib0 + i].qh[l0 ] & hm2) != 0) ? 16 : 0))
  1073. + data_b[p.b_offset + y2_idx + 1] * (q4_9 + (((data_a[ib0 + i].qh[l0 + 1] & hm2) != 0) ? 16 : 0))
  1074. + data_b[p.b_offset + y2_idx + 16] * (q4_10 + (((data_a[ib0 + i].qh[l0 + 16] & hm2) != 0) ? 16 : 0))
  1075. + data_b[p.b_offset + y2_idx + 17] * (q4_11 + (((data_a[ib0 + i].qh[l0 + 17] & hm2) != 0) ? 16 : 0))
  1076. );
  1077. const FLOAT_TYPE sw = FLOAT_TYPE(
  1078. data_b[p.b_offset + y2_idx + 32] * (q4_12 + (((data_a[ib0 + i].qh[l0 ] & (hm2 << 1)) != 0) ? 16 : 0))
  1079. + data_b[p.b_offset + y2_idx + 33] * (q4_13 + (((data_a[ib0 + i].qh[l0 + 1] & (hm2 << 1)) != 0) ? 16 : 0))
  1080. + data_b[p.b_offset + y2_idx + 48] * (q4_14 + (((data_a[ib0 + i].qh[l0 + 16] & (hm2 << 1)) != 0) ? 16 : 0))
  1081. + data_b[p.b_offset + y2_idx + 49] * (q4_15 + (((data_a[ib0 + i].qh[l0 + 17] & (hm2 << 1)) != 0) ? 16 : 0))
  1082. );
  1083. const FLOAT_TYPE smin = FLOAT_TYPE(
  1084. (data_b[p.b_offset + y1_idx] + data_b[p.b_offset + y1_idx + 1] + data_b[p.b_offset + y1_idx + 16] + data_b[p.b_offset + y1_idx + 17]) * sc2 + (data_b[p.b_offset + y1_idx + 32] + data_b[p.b_offset + y1_idx + 33] + data_b[p.b_offset + y1_idx + 48] + data_b[p.b_offset + y1_idx + 49]) * sc3
  1085. + (data_b[p.b_offset + y2_idx] + data_b[p.b_offset + y2_idx + 1] + data_b[p.b_offset + y2_idx + 16] + data_b[p.b_offset + y2_idx + 17]) * sc6 + (data_b[p.b_offset + y2_idx + 32] + data_b[p.b_offset + y2_idx + 33] + data_b[p.b_offset + y2_idx + 48] + data_b[p.b_offset + y2_idx + 49]) * sc7
  1086. );
  1087. tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * sc0 + sy * sc1 + sz * sc4 + sw * sc5) - dmin * smin);
  1088. }
  1089. // sum up partial sums and write back result
  1090. barrier();
  1091. [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
  1092. if (tid < s) {
  1093. tmp[tid] += tmp[tid + s];
  1094. }
  1095. barrier();
  1096. }
  1097. if (tid == 0) {
  1098. dst[p.d_offset + row] = D_TYPE(tmp[0]);
  1099. }
  1100. }
  1101. """
  1102. mul_mat_vec_q6_K_body = """
  1103. layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
  1104. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  1105. layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
  1106. layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
  1107. shared FLOAT_TYPE tmp[32];
  1108. void main() {
  1109. const uint block_size = gl_WorkGroupSize.x;
  1110. const uint row = gl_WorkGroupID.x;
  1111. const uint num_blocks_per_row = p.ncols / QUANT_K;
  1112. const uint ib0 = row*num_blocks_per_row;
  1113. const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
  1114. const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
  1115. const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
  1116. const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
  1117. const uint v_in = tid - step*v_im; // 0...15 or 0...7
  1118. #if K_QUANTS_PER_ITERATION == 1
  1119. const uint l0 = v_in; // 0...15
  1120. const uint is = 0;
  1121. #else
  1122. const uint l0 = 4 * v_in; // 0, 4, 8, ..., 28
  1123. const uint is = v_in / 4;
  1124. #endif
  1125. const uint ql_offset = 64*v_im + l0;
  1126. const uint qh_offset = 32*v_im + l0;
  1127. const uint s_offset = 8*v_im + is;
  1128. const uint y_offset = 128*v_im + l0;
  1129. tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
  1130. [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  1131. const uint y_idx = i * QUANT_K + y_offset;
  1132. const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
  1133. #if K_QUANTS_PER_ITERATION == 1
  1134. FLOAT_TYPE sum = FLOAT_TYPE(data_b[p.b_offset + y_idx + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x03) << 4)) - 32)
  1135. + FLOAT_TYPE(data_b[p.b_offset + y_idx + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x03) << 4)) - 32)
  1136. + FLOAT_TYPE(data_b[p.b_offset + y_idx + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x0c) << 2)) - 32)
  1137. + FLOAT_TYPE(data_b[p.b_offset + y_idx + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x0c) << 2)) - 32)
  1138. + FLOAT_TYPE(data_b[p.b_offset + y_idx + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x30) >> 0)) - 32)
  1139. + FLOAT_TYPE(data_b[p.b_offset + y_idx + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x30) >> 0)) - 32)
  1140. + FLOAT_TYPE(data_b[p.b_offset + y_idx + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0xc0) >> 2)) - 32)
  1141. + FLOAT_TYPE(data_b[p.b_offset + y_idx +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0xc0) >> 2)) - 32);
  1142. tmp[16 * ix + tid] += sum;
  1143. #else
  1144. FLOAT_TYPE sum = FLOAT_TYPE(0.0);
  1145. [[unroll]] for (int l = 0; l < 4; ++l) {
  1146. sum += FLOAT_TYPE(data_b[p.b_offset + y_idx + l+ 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 0) & 3) << 4)) - 32)
  1147. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l+32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 2) & 3) << 4)) - 32)
  1148. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l+64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 4) & 3) << 4)) - 32)
  1149. + FLOAT_TYPE(data_b[p.b_offset + y_idx + l+96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 6) & 3) << 4)) - 32);
  1150. }
  1151. tmp[16 * ix + tid] += sum;
  1152. #endif
  1153. }
  1154. // sum up partial sums and write back result
  1155. barrier();
  1156. [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
  1157. if (tid < s) {
  1158. tmp[tid] += tmp[tid + s];
  1159. }
  1160. barrier();
  1161. }
  1162. if (tid == 0) {
  1163. dst[p.d_offset + row] = D_TYPE(tmp[0]);
  1164. }
  1165. }
  1166. """
  1167. mul_mat_p021_src = """#version 450
  1168. #extension GL_EXT_control_flow_attributes : enable
  1169. #extension GL_EXT_shader_16bit_storage : require
  1170. #define BLOCK_SIZE 32
  1171. #define FLOAT_TYPE float
  1172. layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
  1173. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  1174. layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
  1175. layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
  1176. layout (push_constant) uniform parameter
  1177. {
  1178. uint ncols_x;
  1179. uint nrows_x;
  1180. uint nchannels_x;
  1181. uint nchannels_y;
  1182. uint b_offset;
  1183. uint d_offset;
  1184. } p;
  1185. shared FLOAT_TYPE tmp[BLOCK_SIZE];
  1186. void main() {
  1187. const uint tid = gl_LocalInvocationID.x;
  1188. const uint row_x = gl_GlobalInvocationID.y;
  1189. const uint channel = gl_GlobalInvocationID.z;
  1190. const uint channel_x = channel / (p.nchannels_y / p.nchannels_x);
  1191. const uint nrows_y = p.ncols_x;
  1192. const uint nrows_dst = p.nrows_x;
  1193. const uint row_dst = row_x;
  1194. tmp[tid] = FLOAT_TYPE(0.0f);
  1195. for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) {
  1196. const uint col_x = col_x0 + tid;
  1197. if (col_x >= p.ncols_x) {
  1198. break;
  1199. }
  1200. // x is transposed and permuted
  1201. const uint ix = row_x*p.nchannels_x*p.ncols_x + channel_x*p.ncols_x + col_x;
  1202. const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
  1203. const uint row_y = col_x;
  1204. // y is not transposed but permuted
  1205. const uint iy = channel*nrows_y + row_y;
  1206. tmp[tid] += xi * FLOAT_TYPE(data_b[iy]);
  1207. }
  1208. // dst is not transposed and not permuted
  1209. const uint idst = channel*nrows_dst + row_dst;
  1210. // sum up partial sums and write back result
  1211. barrier();
  1212. [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
  1213. if (tid < s) {
  1214. tmp[tid] += tmp[tid + s];
  1215. }
  1216. barrier();
  1217. }
  1218. if (tid == 0) {
  1219. dst[idst] = tmp[0];
  1220. }
  1221. }
  1222. """
  1223. mul_mat_nc_src = """#version 450
  1224. #extension GL_EXT_control_flow_attributes : enable
  1225. #extension GL_EXT_shader_16bit_storage : require
  1226. #define BLOCK_SIZE 32
  1227. #define FLOAT_TYPE float
  1228. layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
  1229. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  1230. layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
  1231. layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
  1232. layout (push_constant) uniform parameter
  1233. {
  1234. uint ncols_x;
  1235. uint nrows_x;
  1236. uint row_stride_x;
  1237. uint channel_stride_x;
  1238. uint channel_x_divisor;
  1239. uint b_offset;
  1240. uint d_offset;
  1241. } p;
  1242. shared FLOAT_TYPE tmp[BLOCK_SIZE];
  1243. void main() {
  1244. const uint tid = gl_LocalInvocationID.x;
  1245. const uint row_x = gl_GlobalInvocationID.y;
  1246. const uint channel = gl_GlobalInvocationID.z;
  1247. const uint channel_x = channel / p.channel_x_divisor;
  1248. const uint nrows_y = p.ncols_x;
  1249. const uint nrows_dst = p.nrows_x;
  1250. const uint row_dst = row_x;
  1251. const uint idst = channel*nrows_dst + row_dst;
  1252. tmp[tid] = 0.0f;
  1253. for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) {
  1254. const uint col_x = col_x0 + tid;
  1255. if (col_x >= p.ncols_x) {
  1256. break;
  1257. }
  1258. const uint row_y = col_x;
  1259. const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
  1260. const uint iy = channel*nrows_y + row_y;
  1261. const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
  1262. tmp[tid] += xi * FLOAT_TYPE(data_b[iy]);
  1263. }
  1264. // sum up partial sums and write back result
  1265. barrier();
  1266. [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
  1267. if (tid < s) {
  1268. tmp[tid] += tmp[tid + s];
  1269. }
  1270. barrier();
  1271. }
  1272. if (tid == 0) {
  1273. dst[idst] = tmp[0];
  1274. }
  1275. }
  1276. """
  1277. generic_head = """
  1278. #version 450
  1279. #extension GL_EXT_shader_16bit_storage : require
  1280. layout (push_constant) uniform parameter
  1281. {
  1282. uint KX;
  1283. uint KY;
  1284. float param1;
  1285. float param2;
  1286. } p;
  1287. """
  1288. generic_unary_op_head = """#version 450
  1289. #extension GL_EXT_shader_16bit_storage : require
  1290. layout (push_constant) uniform parameter
  1291. {
  1292. uint ne;
  1293. uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03;
  1294. uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
  1295. uint d_offset;
  1296. float param1; float param2;
  1297. } p;
  1298. layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
  1299. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  1300. layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
  1301. uint src0_idx(uint idx) {
  1302. const uint i03 = idx / (p.ne02*p.ne01*p.ne00);
  1303. const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
  1304. const uint i02 = (idx - i03_offset) / (p.ne01*p.ne00);
  1305. const uint i02_offset = i02*p.ne01*p.ne00;
  1306. const uint i01 = (idx - i03_offset - i02_offset) / p.ne00;
  1307. const uint i00 = idx - i03_offset - i02_offset - i01*p.ne00;
  1308. return i03*p.nb03 + i02*p.nb02 + i01*p.nb01 + i00*p.nb00;
  1309. }
  1310. uint dst_idx(uint idx) {
  1311. const uint i13 = idx / (p.ne12*p.ne11*p.ne10);
  1312. const uint i13_offset = i13 * p.ne12*p.ne11*p.ne10;
  1313. const uint i12 = (idx - i13_offset) / (p.ne11*p.ne10);
  1314. const uint i12_offset = i12*p.ne11*p.ne10;
  1315. const uint i11 = (idx - i13_offset - i12_offset) / p.ne10;
  1316. const uint i10 = idx - i13_offset - i12_offset - i11*p.ne10;
  1317. return i13*p.nb13 + i12*p.nb12 + i11*p.nb11 + i10*p.nb10;
  1318. }
  1319. void main() {
  1320. if (gl_GlobalInvocationID.x >= p.ne) {
  1321. return;
  1322. }
  1323. """
  1324. generic_binary_op_head = """#version 450
  1325. #extension GL_EXT_shader_16bit_storage : require
  1326. layout (push_constant) uniform parameter
  1327. {
  1328. uint ne;
  1329. uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03;
  1330. uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
  1331. uint ne20; uint ne21; uint ne22; uint ne23; uint nb20; uint nb21; uint nb22; uint nb23;
  1332. uint d_offset;
  1333. uint param1; uint param2;
  1334. } p;
  1335. layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
  1336. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  1337. layout (binding = 1) readonly buffer B {A_TYPE data_b[];};
  1338. layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
  1339. uint src0_idx(uint idx) {
  1340. const uint i03 = idx / (p.ne02*p.ne01*p.ne00);
  1341. const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
  1342. const uint i02 = (idx - i03_offset) / (p.ne01*p.ne00);
  1343. const uint i02_offset = i02*p.ne01*p.ne00;
  1344. const uint i01 = (idx - i03_offset - i02_offset) / p.ne00;
  1345. const uint i00 = idx - i03_offset - i02_offset - i01*p.ne00;
  1346. return i03*p.nb03 + i02*p.nb02 + i01*p.nb01 + i00*p.nb00;
  1347. }
  1348. uint src1_idx(uint idx) {
  1349. const uint i03 = idx / (p.ne02*p.ne01*p.ne00);
  1350. const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
  1351. const uint i02 = (idx - i03_offset) / (p.ne01*p.ne00);
  1352. const uint i02_offset = i02*p.ne01*p.ne00;
  1353. const uint i01 = (idx - i03_offset - i02_offset) / p.ne00;
  1354. const uint i00 = idx - i03_offset - i02_offset - i01*p.ne00;
  1355. return (i03 % p.ne13)*p.nb13 + (i02 % p.ne12)*p.nb12 + (i01 % p.ne11)*p.nb11 + (i00 % p.ne10)*p.nb10;
  1356. }
  1357. uint dst_idx(uint idx) {
  1358. const uint i23 = idx / (p.ne22*p.ne21*p.ne20);
  1359. const uint i23_offset = i23 * p.ne22*p.ne21*p.ne20;
  1360. const uint i22 = (idx - i23_offset) / (p.ne21*p.ne20);
  1361. const uint i22_offset = i22*p.ne21*p.ne20;
  1362. const uint i21 = (idx - i23_offset - i22_offset) / p.ne20;
  1363. const uint i20 = idx - i23_offset - i22_offset - i21*p.ne20;
  1364. return i23*p.nb23 + i22*p.nb22 + i21*p.nb21 + i20*p.nb20;
  1365. }
  1366. void main() {
  1367. if (gl_GlobalInvocationID.x >= p.ne) {
  1368. return;
  1369. }
  1370. """
  1371. # MUL F32
  1372. mul_body = """
  1373. data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) * FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)]));
  1374. }
  1375. """
  1376. # ADD
  1377. add_body = """
  1378. data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) + FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)]));
  1379. }
  1380. """
  1381. # SCALE
  1382. scale_body = """
  1383. data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) + FLOAT_TYPE(p.param1));
  1384. }
  1385. """
  1386. # SQR
  1387. sqr_body = """
  1388. const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
  1389. data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val * val);
  1390. }
  1391. """
  1392. # CLAMP
  1393. clamp_body = """
  1394. const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
  1395. data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val));
  1396. }
  1397. """
  1398. # CPY
  1399. cpy_end = """
  1400. data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
  1401. }
  1402. """
  1403. # Causes an optimization error otherwise
  1404. cpy_f16_f16_end = """
  1405. data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = data_a[src0_idx(gl_GlobalInvocationID.x)];
  1406. }
  1407. """
  1408. # GET_ROWS
  1409. get_rows_body = """
  1410. #extension GL_EXT_control_flow_attributes : enable
  1411. #extension GL_EXT_shader_8bit_storage : require
  1412. layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
  1413. layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
  1414. layout (binding = 1) readonly buffer Y {int data_b[];};
  1415. layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
  1416. void main() {
  1417. const uint col = int(gl_GlobalInvocationID.x) * 2;
  1418. const uint row = int(gl_GlobalInvocationID.y);
  1419. if (col >= p.KY) {
  1420. return;
  1421. }
  1422. const uint r = uint(data_b[row]);
  1423. // copy data_a[r*p.KY + col] to dst[row*p.KX + col]
  1424. const uint xi = r*p.KY + col;
  1425. const uint di = row*p.KY + col;
  1426. const uint ib = xi/QUANT_K; // block index
  1427. const uint iqs = (xi%QUANT_K)/QUANT_R; // quant index
  1428. const uint iybs = di - di%QUANT_K; // y block start index
  1429. const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
  1430. DEQUANT_FUNC
  1431. dst[iybs + iqs + 0] = D_TYPE(v.x);
  1432. dst[iybs + iqs + y_offset] = D_TYPE(v.y);
  1433. }
  1434. """
  1435. # UNARY
  1436. gelu_body = """
  1437. #extension GL_EXT_control_flow_attributes : enable
  1438. layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
  1439. layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
  1440. layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
  1441. void main() {
  1442. const float GELU_COEF_A = 0.044715f;
  1443. const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1444. const uint i = gl_GlobalInvocationID.x;
  1445. if (i >= p.KX) {
  1446. return;
  1447. }
  1448. const float xi = float(data_a[i]);
  1449. const float val = SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi);
  1450. data_d[i] = D_TYPE(0.5f*xi*(2.0f - 2.0f / (exp(2 * val) + 1)));
  1451. }
  1452. """
  1453. silu_body = """
  1454. #extension GL_EXT_control_flow_attributes : enable
  1455. layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
  1456. layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
  1457. layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
  1458. void main() {
  1459. const uint i = gl_GlobalInvocationID.x;
  1460. if (i >= p.KX) {
  1461. return;
  1462. }
  1463. const float xi = float(data_a[i]);
  1464. data_d[i] = D_TYPE(xi / (1.0f + exp(-xi)));
  1465. }
  1466. """
  1467. relu_body = """
  1468. #extension GL_EXT_control_flow_attributes : enable
  1469. layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
  1470. layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
  1471. layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
  1472. void main() {
  1473. const uint i = gl_GlobalInvocationID.x;
  1474. if (i >= p.KX) {
  1475. return;
  1476. }
  1477. data_d[i] = max(float(data_a[i]), 0);
  1478. }
  1479. """
  1480. # DIAG_MASK_INF
  1481. diag_mask_inf_head = """#version 450
  1482. #extension GL_EXT_shader_16bit_storage : require
  1483. layout (push_constant) uniform parameter
  1484. {
  1485. uint ncols;
  1486. uint rows_per_channel;
  1487. uint n_past;
  1488. } p;
  1489. """
  1490. diag_mask_inf_body = """
  1491. #extension GL_EXT_control_flow_attributes : enable
  1492. layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
  1493. layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
  1494. layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
  1495. void main() {
  1496. const uint col = gl_GlobalInvocationID.y;
  1497. const uint row = gl_GlobalInvocationID.x;
  1498. if (col >= p.ncols) {
  1499. return;
  1500. }
  1501. const uint i = row*p.ncols + col;
  1502. data_d[i] = D_TYPE(data_a[i] - float(uint(col > p.n_past + row % p.rows_per_channel) * 0xFFFFFFFF));
  1503. }
  1504. """
  1505. # NORMS
  1506. norm_body = """
  1507. #extension GL_EXT_control_flow_attributes : enable
  1508. #define BLOCK_SIZE 512
  1509. layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
  1510. layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
  1511. layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
  1512. shared vec2 sum[BLOCK_SIZE];
  1513. void main() {
  1514. const uint row = gl_WorkGroupID.x;
  1515. const uint tid = gl_LocalInvocationID.x;
  1516. const float eps = 1e-5f;
  1517. sum[tid] = vec2(0.0f, 0.0f);
  1518. [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
  1519. const float xi = float(data_a[row*p.KX + col]);
  1520. sum[tid].x += xi;
  1521. sum[tid].y += xi * xi;
  1522. }
  1523. // sum up partial sums and write back result
  1524. barrier();
  1525. [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
  1526. if (tid < s) {
  1527. sum[tid] += sum[tid + s];
  1528. }
  1529. barrier();
  1530. }
  1531. const float mean = sum[0].x / p.KX;
  1532. const float var = sum[0].y / p.KX - mean * mean;
  1533. const float inv_std = inversesqrt(var + 1e-5f);
  1534. [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
  1535. data_d[row*p.KX + col] = D_TYPE((float(data_a[row*p.KX + col]) - mean) * inv_std);
  1536. }
  1537. }
  1538. """
  1539. rms_norm_body = """
  1540. #extension GL_EXT_control_flow_attributes : enable
  1541. #define BLOCK_SIZE 512
  1542. layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
  1543. layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
  1544. layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
  1545. shared FLOAT_TYPE sum[BLOCK_SIZE];
  1546. void main() {
  1547. const uint row = gl_WorkGroupID.x;
  1548. const uint tid = gl_LocalInvocationID.x;
  1549. sum[tid] = FLOAT_TYPE(0.0f); // partial sum for thread in warp
  1550. [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
  1551. const FLOAT_TYPE xi = FLOAT_TYPE(data_a[row*p.KX + col]);
  1552. sum[tid] += xi * xi;
  1553. }
  1554. // sum up partial sums and write back result
  1555. barrier();
  1556. [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
  1557. if (tid < s) {
  1558. sum[tid] += sum[tid + s];
  1559. }
  1560. barrier();
  1561. }
  1562. const FLOAT_TYPE mean = sum[0] / FLOAT_TYPE(p.KX);
  1563. const FLOAT_TYPE scale = inversesqrt(mean + FLOAT_TYPE(p.param1));
  1564. [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
  1565. data_d[row*p.KX + col] = D_TYPE(scale * FLOAT_TYPE(data_a[row*p.KX + col]));
  1566. }
  1567. }
  1568. """
  1569. # SOFT_MAX
  1570. soft_max_head = """
  1571. #version 450
  1572. #extension GL_EXT_shader_16bit_storage : require
  1573. layout (push_constant) uniform parameter
  1574. {
  1575. uint KX;
  1576. uint KY;
  1577. uint KZ;
  1578. float scale;
  1579. float max_bias;
  1580. float m0;
  1581. float m1;
  1582. uint n_head_log2;
  1583. } p;
  1584. """
  1585. soft_max_body = """
  1586. #extension GL_EXT_control_flow_attributes : enable
  1587. #define BLOCK_SIZE 512
  1588. layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
  1589. layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
  1590. layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
  1591. layout (binding = 2) readonly buffer Z {C_TYPE data_c[];};
  1592. layout (binding = 3) buffer D {D_TYPE data_d[];};
  1593. shared FLOAT_TYPE vals[BLOCK_SIZE];
  1594. void main() {
  1595. const uint tid = gl_LocalInvocationID.x;
  1596. const uint rowx = gl_WorkGroupID.x;
  1597. const uint rowy = rowx % p.KY;
  1598. float slope = 0.0f;
  1599. // ALiBi
  1600. if (p.max_bias > 0.0f) {
  1601. const uint h = rowx/p.KY; // head index
  1602. const float base = h < p.n_head_log2 ? p.m0 : p.m1;
  1603. const uint exp = h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1;
  1604. slope = pow(base, exp);
  1605. }
  1606. // Find max
  1607. vals[tid] = uintBitsToFloat(0xFF800000);
  1608. [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
  1609. vals[tid] = max(vals[tid], FLOAT_TYPE(data_a[rowx * p.KX + col]) * p.scale + (p.KY > 0 ? FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) + (p.KZ > 0 ? slope * data_c[col] : 0.0f));
  1610. }
  1611. barrier();
  1612. [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
  1613. if (tid < s) {
  1614. vals[tid] = max(vals[tid], vals[tid + s]);
  1615. }
  1616. barrier();
  1617. }
  1618. const FLOAT_TYPE max_val = vals[0];
  1619. barrier();
  1620. // Sum up values
  1621. vals[tid] = FLOAT_TYPE(0.0f);
  1622. [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
  1623. const uint i = rowx * p.KX + col;
  1624. const FLOAT_TYPE val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
  1625. vals[tid] += val;
  1626. data_d[i] = D_TYPE(val);
  1627. }
  1628. barrier();
  1629. [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
  1630. if (tid < s) {
  1631. vals[tid] += vals[tid + s];
  1632. }
  1633. barrier();
  1634. }
  1635. const D_TYPE divisor = D_TYPE(vals[0]);
  1636. [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
  1637. data_d[rowx*p.KX + col] /= divisor;
  1638. }
  1639. }
  1640. """
  1641. # ROPE
  1642. rope_src = """
  1643. #version 450
  1644. #extension GL_EXT_shader_16bit_storage : require
  1645. layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in;
  1646. layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
  1647. layout (binding = 1) readonly buffer Y {int data_b[];};
  1648. layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
  1649. layout (push_constant) uniform parameter {
  1650. uint ncols;
  1651. float freq_scale;
  1652. uint p_delta_rows;
  1653. float freq_base;
  1654. float ext_factor;
  1655. float attn_factor;
  1656. float corr_dims[4];
  1657. } p;
  1658. float rope_yarn_ramp(const float low, const float high, const uint i0) {
  1659. const float y = (i0 / 2 - low) / max(0.001f, high - low);
  1660. return 1.0f - min(1.0f, max(0.0f, y));
  1661. }
  1662. void rope_yarn(const float theta_extrap, const uint i0, out float cos_theta, out float sin_theta) {
  1663. float mscale = p.attn_factor;
  1664. // Get n-d rotational scaling corrected for extrapolation
  1665. float theta_interp = p.freq_scale * theta_extrap;
  1666. float theta = theta_interp;
  1667. if (p.ext_factor != 0.0f) {
  1668. float ramp_mix = rope_yarn_ramp(p.corr_dims[0], p.corr_dims[1], i0) * p.ext_factor;
  1669. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  1670. // Get n-d magnitude scaling corrected for interpolation
  1671. mscale *= 1.0f + 0.1f * log(1.0f / p.freq_scale);
  1672. }
  1673. cos_theta = cos(theta) * mscale;
  1674. sin_theta = sin(theta) * mscale;
  1675. }
  1676. void main() {
  1677. const uint col = gl_GlobalInvocationID.y * 2;
  1678. const uint row = gl_GlobalInvocationID.x;
  1679. if (col >= p.ncols) {
  1680. return;
  1681. }
  1682. const uint i = row*p.ncols + col;
  1683. const uint i2 = row/p.p_delta_rows;
  1684. const int pos = data_b[i2];
  1685. const float theta_base = pos * pow(p.freq_base, -float(col)/p.ncols);
  1686. float cos_theta, sin_theta;
  1687. rope_yarn(theta_base, col, cos_theta, sin_theta);
  1688. const float x0 = float(data_a[i + 0]);
  1689. const float x1 = float(data_a[i + 1]);
  1690. data_d[i + 0] = D_TYPE(x0*cos_theta - x1*sin_theta);
  1691. data_d[i + 1] = D_TYPE(x0*sin_theta + x1*cos_theta);
  1692. }
  1693. """
  1694. rope_neox_src = """
  1695. #version 450
  1696. #extension GL_EXT_shader_16bit_storage : require
  1697. layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in;
  1698. layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
  1699. layout (binding = 1) readonly buffer Y {int data_b[];};
  1700. layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
  1701. layout (push_constant) uniform parameter {
  1702. uint ncols;
  1703. uint ndims;
  1704. float freq_scale;
  1705. uint p_delta_rows;
  1706. float freq_base;
  1707. float ext_factor;
  1708. float attn_factor;
  1709. float corr_dims[4];
  1710. float theta_scale;
  1711. float inv_ndims;
  1712. } p;
  1713. float rope_yarn_ramp(const float low, const float high, const uint i0) {
  1714. const float y = (i0 / 2 - low) / max(0.001f, high - low);
  1715. return 1.0f - min(1.0f, max(0.0f, y));
  1716. }
  1717. void rope_yarn(const float theta_extrap, const uint i0, out float cos_theta, out float sin_theta) {
  1718. float mscale = p.attn_factor;
  1719. // Get n-d rotational scaling corrected for extrapolation
  1720. float theta_interp = p.freq_scale * theta_extrap;
  1721. float theta = theta_interp;
  1722. if (p.ext_factor != 0.0f) {
  1723. float ramp_mix = rope_yarn_ramp(p.corr_dims[0], p.corr_dims[1], i0) * p.ext_factor;
  1724. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  1725. // Get n-d magnitude scaling corrected for interpolation
  1726. mscale *= 1.0f + 0.1f * log(1.0f / p.freq_scale);
  1727. }
  1728. cos_theta = cos(theta) * mscale;
  1729. sin_theta = sin(theta) * mscale;
  1730. }
  1731. void main() {
  1732. const uint col = gl_GlobalInvocationID.y * 2;
  1733. const uint row = gl_GlobalInvocationID.x;
  1734. if (col >= p.ncols) {
  1735. return;
  1736. }
  1737. const uint ib = col / p.ndims;
  1738. const uint ic = col % p.ndims;
  1739. if (ib > 0) {
  1740. const uint i = row*p.ncols + ib*p.ndims + ic;
  1741. data_d[i + 0] = data_a[i + 0];
  1742. data_d[i + 1] = data_a[i + 1];
  1743. return;
  1744. }
  1745. const uint i = row*p.ncols + ib*p.ndims + ic/2;
  1746. const uint i2 = row/p.p_delta_rows;
  1747. const float cur_rot = p.inv_ndims * ic - ib;
  1748. const int pos = data_b[i2];
  1749. const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f);
  1750. float cos_theta, sin_theta;
  1751. rope_yarn(theta_base, uint(cur_rot), cos_theta, sin_theta);
  1752. const float x0 = float(data_a[i + 0]);
  1753. const float x1 = float(data_a[i + p.ndims/2]);
  1754. data_d[i + 0] = D_TYPE(x0*cos_theta - x1*sin_theta);
  1755. data_d[i + p.ndims/2] = D_TYPE(x0*sin_theta + x1*cos_theta);
  1756. }
  1757. """
  1758. argsort_src = """
  1759. #version 450
  1760. #extension GL_EXT_shader_16bit_storage : require
  1761. layout(local_size_x = 1024, local_size_y = 1, local_size_z = 1) in;
  1762. layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
  1763. layout (binding = 1) buffer D {int data_d[];};
  1764. layout (push_constant) uniform parameter {
  1765. uint ncols;
  1766. bool ascending;
  1767. } p;
  1768. void swap(uint idx0, uint idx1) {
  1769. int tmp = data_d[idx0];
  1770. data_d[idx0] = data_d[idx1];
  1771. data_d[idx1] = tmp;
  1772. }
  1773. void main() {
  1774. // bitonic sort
  1775. const int col = int(gl_LocalInvocationID.x);
  1776. const uint row = gl_WorkGroupID.y;
  1777. if (col >= p.ncols) {
  1778. return;
  1779. }
  1780. const uint a_idx = row * p.ncols;
  1781. const uint d_idx = row * p.ncols;
  1782. // initialize indices
  1783. if (col < p.ncols) {
  1784. data_d[col] = col;
  1785. }
  1786. barrier();
  1787. for (uint k = 2; k <= p.ncols; k *= 2) {
  1788. for (uint j = k / 2; j > 0; j /= 2) {
  1789. const uint ixj = col ^ j;
  1790. if (ixj > col) {
  1791. if ((col & k) == 0) {
  1792. if (p.ascending ? data_a[a_idx + data_d[d_idx + col]] > data_a[a_idx + data_d[d_idx + ixj]] : data_a[a_idx + data_d[d_idx + col]] < data_a[a_idx + data_d[d_idx + ixj]]) {
  1793. swap(d_idx + col, d_idx + ixj);
  1794. }
  1795. } else {
  1796. if (p.ascending ? data_a[a_idx + data_d[d_idx + col]] < data_a[a_idx + data_d[d_idx + ixj]] : data_a[a_idx + data_d[d_idx + col]] > data_a[a_idx + data_d[d_idx + ixj]]) {
  1797. swap(d_idx + col, d_idx + ixj);
  1798. }
  1799. }
  1800. }
  1801. barrier();
  1802. }
  1803. }
  1804. }
  1805. """
  1806. GLSLC = "glslc"
  1807. VK_NUM_TYPES = 16
  1808. GGML_TYPE_F32 = 0
  1809. GGML_TYPE_F16 = 1
  1810. GGML_TYPE_Q4_0 = 2
  1811. GGML_TYPE_Q4_1 = 3
  1812. GGML_TYPE_Q5_0 = 6
  1813. GGML_TYPE_Q5_1 = 7
  1814. GGML_TYPE_Q8_0 = 8
  1815. GGML_TYPE_Q8_1 = 9
  1816. GGML_TYPE_Q2_K = 10
  1817. GGML_TYPE_Q3_K = 11
  1818. GGML_TYPE_Q4_K = 12
  1819. GGML_TYPE_Q5_K = 13
  1820. GGML_TYPE_Q6_K = 14
  1821. GGML_TYPE_Q8_K = 15
  1822. type_names = {
  1823. GGML_TYPE_F32: "f32",
  1824. GGML_TYPE_F16: "f16",
  1825. GGML_TYPE_Q4_0: "q4_0",
  1826. GGML_TYPE_Q4_1: "q4_1",
  1827. GGML_TYPE_Q5_0: "q5_0",
  1828. GGML_TYPE_Q5_1: "q5_1",
  1829. GGML_TYPE_Q8_0: "q8_0",
  1830. GGML_TYPE_Q8_1: "q8_1",
  1831. GGML_TYPE_Q2_K: "q2_K",
  1832. GGML_TYPE_Q3_K: "q3_K",
  1833. GGML_TYPE_Q4_K: "q4_K",
  1834. GGML_TYPE_Q5_K: "q5_K",
  1835. GGML_TYPE_Q6_K: "q6_K",
  1836. GGML_TYPE_Q8_K: "q8_K",
  1837. }
  1838. K_QUANTS_PER_ITERATION = 2
  1839. ASYNCIO_CONCURRENCY = 64
  1840. output_dir = gettempdir()
  1841. lock = asyncio.Lock()
  1842. shader_fnames = []
  1843. async def string_to_spv(name, code, defines, fp16=True):
  1844. f = NamedTemporaryFile(mode="w", delete=False)
  1845. f.write(code)
  1846. f.flush()
  1847. name = f"{name}{'_fp32' if not fp16 else ''}"
  1848. fname = os.path.join(output_dir, f"{name}.comp")
  1849. cmd = [GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", f.name, "-o", fname]
  1850. cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
  1851. proc = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)
  1852. stdout, stderr = await proc.communicate()
  1853. stdout = stdout.decode()
  1854. error = stderr.decode()
  1855. if proc.returncode:
  1856. # Generate preprocessed code
  1857. cmd = [GLSLC, "-E", f.name]
  1858. cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
  1859. proc = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)
  1860. stdout, stderr = await proc.communicate()
  1861. print(" ".join(cmd))
  1862. if proc.returncode:
  1863. raise RuntimeError(f"{name=} {f.name=} {stdout=} {stderr=}")
  1864. preprocessed_code = stdout.decode()
  1865. cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
  1866. code_with_lines = "\n".join([f"{i + 1}: {line}" for i, line in enumerate(preprocessed_code.splitlines())])
  1867. print(f"ERROR compiling {name}\n\n{code_with_lines}\n\n{error}")
  1868. f.close()
  1869. os.remove(f.name)
  1870. sys.exit(proc.returncode)
  1871. f.close()
  1872. os.remove(f.name)
  1873. async with lock:
  1874. shader_fnames.append((name, fname))
  1875. async def main():
  1876. print("ggml_vulkan: Generating and compiling shaders to SPIR-V")
  1877. tasks = []
  1878. stream = []
  1879. for fp16 in (False, True):
  1880. # mulmat
  1881. if fp16:
  1882. shader_float_type = shader_f16
  1883. load_vec = "8"
  1884. vec_type_f16 = "f16mat2x4"
  1885. vec_type = "mat2x4"
  1886. else:
  1887. shader_float_type = shader_f32
  1888. load_vec = "4"
  1889. vec_type_f16 = "f16vec4"
  1890. vec_type = "vec4"
  1891. stream.clear()
  1892. stream.extend((mulmat_head, shader_float_type, mulmat_body1, mulmat_load_scalar, mulmat_body2))
  1893. tasks.append(string_to_spv("matmul_f32", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
  1894. tasks.append(string_to_spv("matmul_f32_aligned", "".join(stream), {"LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
  1895. tasks.append(string_to_spv("matmul_f16", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
  1896. tasks.append(string_to_spv("matmul_f16_aligned", "".join(stream), {"LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
  1897. tasks.append(string_to_spv("matmul_f16_f32", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
  1898. tasks.append(string_to_spv("matmul_f16_f32_aligned", "".join(stream), {"LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
  1899. stream.clear()
  1900. stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_0_defines, mulmat_body1, mulmat_load_q4_0, mulmat_body2))
  1901. tasks.append(string_to_spv("matmul_q4_0_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q4_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
  1902. tasks.append(string_to_spv("matmul_q4_0_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
  1903. stream.clear()
  1904. stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_1_defines, mulmat_body1, mulmat_load_q4_1, mulmat_body2))
  1905. tasks.append(string_to_spv("matmul_q4_1_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q4_1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
  1906. tasks.append(string_to_spv("matmul_q4_1_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_1", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
  1907. stream.clear()
  1908. stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_0_defines, mulmat_body1, mulmat_load_q5_0, mulmat_body2))
  1909. tasks.append(string_to_spv("matmul_q5_0_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q5_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
  1910. tasks.append(string_to_spv("matmul_q5_0_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
  1911. stream.clear()
  1912. stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_1_defines, mulmat_body1, mulmat_load_q5_1, mulmat_body2))
  1913. tasks.append(string_to_spv("matmul_q5_1_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q5_1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
  1914. tasks.append(string_to_spv("matmul_q5_1_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_1", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
  1915. stream.clear()
  1916. stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q8_0_defines, mulmat_body1, mulmat_load_q8_0, mulmat_body2))
  1917. tasks.append(string_to_spv("matmul_q8_0_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q8_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
  1918. tasks.append(string_to_spv("matmul_q8_0_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q8_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
  1919. # Shaders where precision is needed, so no fp16 version
  1920. # mul mat vec
  1921. for i in range(0, VK_NUM_TYPES):
  1922. stream.clear()
  1923. stream.extend((mul_mat_vec_head, shader_int8_ext, shader_f32))
  1924. if i == GGML_TYPE_F16:
  1925. stream.extend((shader_f16_defines, shader_f16_dequant_func, mul_mat_vec_body))
  1926. elif i == GGML_TYPE_Q4_0:
  1927. stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func, mul_mat_vec_body))
  1928. elif i == GGML_TYPE_Q4_1:
  1929. stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func, mul_mat_vec_body))
  1930. elif i == GGML_TYPE_Q5_0:
  1931. stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func, mul_mat_vec_body))
  1932. elif i == GGML_TYPE_Q5_1:
  1933. stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func, mul_mat_vec_body))
  1934. elif i == GGML_TYPE_Q8_0:
  1935. stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func, mul_mat_vec_body))
  1936. elif i == GGML_TYPE_Q2_K:
  1937. stream.extend((shader_q2_K_defines, mul_mat_vec_q2_K_body))
  1938. elif i == GGML_TYPE_Q3_K:
  1939. stream.extend((shader_q3_K_defines, mul_mat_vec_q3_K_body))
  1940. elif i == GGML_TYPE_Q4_K:
  1941. stream.extend((shader_q4_K_defines, mul_mat_vec_q4_K_body))
  1942. elif i == GGML_TYPE_Q5_K:
  1943. stream.extend((shader_q5_K_defines, mul_mat_vec_q5_K_body))
  1944. elif i == GGML_TYPE_Q6_K:
  1945. stream.extend((shader_q6_K_defines, mul_mat_vec_q6_K_body))
  1946. else:
  1947. continue
  1948. tasks.append(string_to_spv(f"mul_mat_vec_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}))
  1949. # Dequant shaders
  1950. for i in range(0, VK_NUM_TYPES):
  1951. stream.clear()
  1952. stream.extend((dequant_head, shader_int8_ext, shader_f32))
  1953. if i == GGML_TYPE_F32:
  1954. stream.append(dequant_f32_body)
  1955. elif i == GGML_TYPE_Q4_0:
  1956. stream.extend((shader_q4_0_defines, dequant_q4_0_body))
  1957. elif i == GGML_TYPE_Q4_1:
  1958. stream.extend((shader_q4_1_defines, dequant_q4_1_body))
  1959. elif i == GGML_TYPE_Q5_0:
  1960. stream.extend((shader_q5_0_defines, dequant_q5_0_body))
  1961. elif i == GGML_TYPE_Q5_1:
  1962. stream.extend((shader_q5_1_defines, dequant_q5_1_body))
  1963. elif i == GGML_TYPE_Q8_0:
  1964. stream.extend((shader_q8_0_defines, dequant_q8_0_body))
  1965. elif i == GGML_TYPE_Q2_K:
  1966. stream.extend((shader_q2_K_defines, dequant_q2_K_body))
  1967. elif i == GGML_TYPE_Q3_K:
  1968. stream.extend((shader_q3_K_defines, dequant_q3_K_body))
  1969. elif i == GGML_TYPE_Q4_K:
  1970. stream.extend((shader_q4_K_defines, dequant_q4_K_body))
  1971. elif i == GGML_TYPE_Q5_K:
  1972. stream.extend((shader_q5_K_defines, dequant_q5_K_body))
  1973. elif i == GGML_TYPE_Q6_K:
  1974. stream.extend((shader_q6_K_defines, dequant_q6_K_body))
  1975. else:
  1976. continue
  1977. tasks.append(string_to_spv(f"dequant_{type_names[i]}", "".join(stream), {"D_TYPE": "float16_t"}))
  1978. # get_rows
  1979. for i in range(0, VK_NUM_TYPES):
  1980. stream.clear()
  1981. stream.extend((generic_head, shader_int8_ext, shader_f32))
  1982. if i == GGML_TYPE_F16:
  1983. stream.extend((shader_f16_defines, shader_f16_dequant_func, get_rows_body))
  1984. elif i == GGML_TYPE_Q4_0:
  1985. stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func, get_rows_body))
  1986. elif i == GGML_TYPE_Q4_1:
  1987. stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func, get_rows_body))
  1988. elif i == GGML_TYPE_Q5_0:
  1989. stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func, get_rows_body))
  1990. elif i == GGML_TYPE_Q5_1:
  1991. stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func, get_rows_body))
  1992. elif i == GGML_TYPE_Q8_0:
  1993. stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func, get_rows_body))
  1994. else:
  1995. continue
  1996. tasks.append(string_to_spv(f"get_rows_{type_names[i]}", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float16_t"}))
  1997. tasks.append(string_to_spv(f"get_rows_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float"}))
  1998. tasks.append(string_to_spv("mul_mat_vec_p021_f16_f32", mul_mat_p021_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
  1999. tasks.append(string_to_spv("mul_mat_vec_nc_f16_f32", mul_mat_nc_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
  2000. # Norms
  2001. tasks.append(string_to_spv("norm_f32", f"{generic_head}\n{shader_f32}\n{norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
  2002. tasks.append(string_to_spv("rms_norm_f32", f"{generic_head}\n{shader_f32}\n{rms_norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
  2003. tasks.append(string_to_spv("cpy_f32_f32", f"{generic_unary_op_head}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float"}))
  2004. tasks.append(string_to_spv("cpy_f32_f16", f"{generic_unary_op_head}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float16_t"}))
  2005. tasks.append(string_to_spv("cpy_f16_f16", f"{generic_unary_op_head}\n{cpy_f16_f16_end}", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
  2006. tasks.append(string_to_spv("add_f32", f"{generic_binary_op_head}\n{add_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
  2007. tasks.append(string_to_spv("split_k_reduce", mulmat_split_k_reduce_src, {}))
  2008. tasks.append(string_to_spv("mul_f32", f"{generic_binary_op_head}\n{mul_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
  2009. tasks.append(string_to_spv("scale_f32", f"{generic_unary_op_head}\n{scale_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
  2010. tasks.append(string_to_spv("sqr_f32", f"{generic_unary_op_head}\n{sqr_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
  2011. tasks.append(string_to_spv("clamp_f32", f"{generic_unary_op_head}\n{clamp_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
  2012. tasks.append(string_to_spv("gelu_f32", f"{generic_head}\n{shader_f32}\n{gelu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
  2013. tasks.append(string_to_spv("silu_f32", f"{generic_head}\n{shader_f32}\n{silu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
  2014. tasks.append(string_to_spv("relu_f32", f"{generic_head}\n{shader_f32}\n{relu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
  2015. tasks.append(string_to_spv("diag_mask_inf_f32", f"{diag_mask_inf_head}\n{shader_f32}\n{diag_mask_inf_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
  2016. tasks.append(string_to_spv("soft_max_f32", f"{soft_max_head}\n{shader_f32}\n{soft_max_body}", {"A_TYPE": "float", "B_TYPE": "float", "C_TYPE": "float", "D_TYPE": "float"}))
  2017. tasks.append(string_to_spv("rope_f32", rope_src, {"A_TYPE": "float", "D_TYPE": "float"}))
  2018. tasks.append(string_to_spv("rope_f16", rope_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
  2019. tasks.append(string_to_spv("rope_neox_f32", rope_neox_src, {"A_TYPE": "float", "D_TYPE": "float"}))
  2020. tasks.append(string_to_spv("rope_neox_f16", rope_neox_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
  2021. tasks.append(string_to_spv("argsort_f32", argsort_src, {"A_TYPE": "float"}))
  2022. # Helper to decorate tasks with semaphore acquisition.
  2023. async def withSemaphore(sem, task):
  2024. async with sem:
  2025. return await task
  2026. # Run tasks concurrently guarded by a concurrency limit.
  2027. sem = asyncio.Semaphore(ASYNCIO_CONCURRENCY)
  2028. await asyncio.gather(*(withSemaphore(sem, task) for task in tasks))
  2029. with open("ggml-vulkan-shaders.hpp", "w") as f:
  2030. f.write("#include <cstdint>\n\n")
  2031. for name, path in sorted(shader_fnames):
  2032. with open(path, "rb") as spv:
  2033. counter = 0
  2034. newline_counter = 0
  2035. f.write(f"unsigned char {name}_data[] = {{\n")
  2036. for val in spv.read():
  2037. f.write(f"0x{val:02x},")
  2038. newline_counter += 1
  2039. counter += 1
  2040. if newline_counter >= 12:
  2041. newline_counter = 0
  2042. f.write("\n")
  2043. f.write("\n};\n")
  2044. f.write(f"const uint64_t {name}_len = {counter};\n\n")
  2045. os.remove(path)
  2046. if __name__ == "__main__":
  2047. parser = argparse.ArgumentParser(description="GGML Vulkan Shader Generator")
  2048. parser.add_argument("--glslc", help="Path to glslc")
  2049. args = parser.parse_args()
  2050. if args.glslc:
  2051. GLSLC = args.glslc
  2052. asyncio.run(main())